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The high mortality rate of cancer is associated with metastasis of the primary tumor and 

can drastically reduce a patient’s 5-year survival rate. Patient outcomes typically scale with the 

rate of cell dissemination from the primary tumor, but the lack of a universal molecular 

prognostic marker and cell heterogeneity within the tumor complicate calibrating patient care. 

Even though there is limited overlap in the genetic mutations and biochemical changes that arise 

in specific cancer types, all solid tumor cells must detach, migrate, and invade the surrounding 
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tissue in order to metastasize. The cell mechanotype and its effect on cell-ECM dynamics plays 

an important role in this process, and offers a more conserved feature across the variety of 

different cancers. This dissertation aims to utilize these characteristics – specifically adhesion 

strength between the cell and the extracellular matrix – to assess the metastatic risk of a given 

cancer cell population. We first examined how heterogeneity in cell-ECM adhesion strength 

within an isogenic population of cancer cells could present intrapopulation differences in 

metastatic ability. Weakly adherent cells from a number of different cancer types consistently 

displayed greater migration speeds in vitro compared to their strongly adherent counterparts. 

Biophysical modeling and experimental validation suggest that differences in intra-cellular 

actomyosin activity are the proximate driver for differences in migration speed, rigidity sensing, 

and durotactic behavior. Using a murine mammary tumor model, we then demonstrated the 

prognostic capabilities of a divergent parallel-plate flow chamber to measure the adhesion 

strength and cancer cell percentage of tumor and stromal biopsies, and found that less adherent 

cancer cells generate more secondary metastases. Taken together, these studies demonstrate the 

utility of using adhesion strength as a biophysical marker to predict metastatic risk. Our 

microfluidic device that utilizes shear to measure adhesion strength may provide the means to 

accurately assess the metastatic potential of a patient’s primary tumor and better inform 

treatment options.   
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CHAPTER 1. UNDERSTANDING METASTASIS THROUGH 

COMPUTATIONAL AND EXPERIMENTAL MODELS 

1.1 Abstract 

Tumor cells migrate through changing microenvironments of diseased and healthy tissue, 

making their migration particularly challenging to describe. To better understand this process, 

computational and experimental models have been developed to interrogate how the properties 

of the cell and its environment affect migratory potential and enable it to become metastatic. In 

this chapter, I will give an overview of the various approaches that have been used to account for 

the physical environment's effect on cell migration in both computational and experimental 

models, with a focus on their application to understanding cancer metastasis and the related 

phenomenon of durotaxis. I will first discuss some the relevant computer models used to 

describe both mesenchymal and amoeboid modes of migration, and then highlight how in vitro 

experiments are engineered to recreate the architectural, mechanical, and biological features of 

the tumor microenvironment. Lastly, I will conclude with perspective elements that would 

enhance their ability to recapitulate the microenvironment both in vitro and in silico and survey 

potential applications for diagnosing diseases or identifying therapeutic targets.  

1.2 Introduction 

Cell migration is an integral part of many biological functions and pathological 

conditions, from immune response and wound healing to organ development and cancer 

metastasis. A cell's ability to move through space and reach its destination is critically important 

for it to fulfill its intended function. Depending on the cell type and the circumstances it finds 
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itself in, cells can adopt different modes of migration1,2, but all modes of migration can be 

described with the same basic steps: membrane extension, attachment formation, contraction, 

and rear release3. Mechanisms that control each step and the degree to which each step affects 

migration varies with cell migration mode, as well as the cell’s environment. Although a 

continuum of possibilities exists between the extremes of migration modes, two main subsets of 

migration, ameboid and mesenchymal migration, are among the most described, especially in the 

context of—but not exclusive to—cancer metastasis. 

Ameboid migration occurs both in single-celled organisms, such as the ameba 

Dictyostelium discoideum, and within specific cell types in multicellular organisms, such as 

neutrophils4. Cells undergoing ameboid migration exhibit rounded protrusions, i.e., blebs, and 

show little spreading on their substrate. This mode of migration progresses through a three-step 

blebbing cycle: nucleation, growth, and contraction (Figure 1.1A). The formation and expansion 

of these blebs are driven by weaknesses in the actin cortex and cytoplasmic pressure differences 

that cause the cellular membrane to expand outward5. During the nucleation and growth phases, 

it is not clear to what extent the actin cortex ruptures, but there is a clear separation between the 

two6. As blebs transition from growth to contraction, myosin causes the bleb to retract back into 

the main body of the cell, which can result in an overall movement of the cell toward the 

direction of the bleb expansion7. It should be noted that ameboid cells can exhibit other types of 

protrusions that are closer to the mesenchymal end of the migration spectrum, i.e., 

pseudopods8. Pseudopods initiate as blebs; however, their expansion from the cell body is 

coupled with continuous active expansion of F-actin in the underlying cellular membrane. Both 

types of protrusions can form on the same ameboid cell, and blebs and pseudopods have been 

shown to operate cooperatively during chemotaxis9. Regardless of the main protrusion type, 
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ameboid cells exhibit clearly defined polarization with a leading and trailing side10. They can 

also travel at relatively fast speeds compared to other modes of migration11 (~10 µm/min) 

depending on their surroundings. Additionally, these cells do not form strong focal adhesions 

with the surrounding extracellular matrix4 (ECM) and tend to be more processive in their 

migration, especially in the dense matrix12.  

 

Figure 1.1: Processes of ameboid and mesenchymal migration in cancer 

(A) Ameboid migration typically occurs as a three-step blebbing cycle with nucleation, growth, and contraction 

steps. (B) Mesenchymal migration typically involves a different process wherein cells extend their leading edge and 

adhere, contract, and release their trailing edge. 

Conversely, a wide variety of migrating cells contract against focal adhesions in 

protrusions from the main cell body to move in a second method often termed mesenchymal 

migration (Figure 1.1B). Protrusions used in this mode are typically classified as filopodial or 

lamellipodial, with the former being thin spindle-like protrusions and the latter being sheet-like 

protrusions3. Additionally, cells in the mesenchymal mode form strong focal adhesions to the 

ECM13–15 and, as a result, appear to spread over their substrate; this mode is typically slower than 

ameboid migration4 and is classically observed on two-dimensional substrates. In addition to 

morphological differences, there are mechanistic differences between the two modes of 

migration; cytoplasmic pressure gradients drive ameboid migration12 often in confined settings, 
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whereas mesenchymal migration is driven by actin polymerization and the active maturation and 

turnover of focal adhesions coupled with actin-myosin contraction16 across a more spread cell. 

This different mechanism is not entirely distinct from the pressure-driven flowing actin networks 

of ameboid migration; mesenchymal migrating cells exhibit a retrograde actin flow away from 

the leading edge and toward the main cell body17,18. However, computational models typically 

treat different migration modes as entirely distinct for the sake of simplicity and are used to 

answer specific questions. Contact guidance between these modes is also markedly different and 

results in proliferative differences that could underlie migration19 and hybrid cell formation20. A 

summary of major differences in migration outcomes21–30 is shown in Table 1.1. 

Table 1.1: Major performance differences between migration modes for cancer cells 

 Amoeboid Mesenchymal Reference 

Migration Speed 2-25 μm/min 0.1-1 µm/min 21–23 

Persistence Low High 24,25 

Morphology Rounded  Elongated 23,26 

ECM 

Attachment 

Weak, short term, lower 

integrin expression 

Integrin clusters forming 

focal adhesions 
23,27 

Migration in 

ECM 

Squeezing or blebbing 

through ECM pores  

Adhesion mediated 

tractions, ECM 

degradation  

23,28,29 

CSK 

Organization 

Actin cortex  Actin meshwork, 

contractile stress fibers, 

microtubules 

23,29,30 

 

Although these two extreme modes represent a majority of cellular movements 

observed in vivo and in vitro (and models describing mesenchymal migration are significantly 

more common than ameboid migration), several other modes, both intermediate and distinct, 

have also been described but were omitted here for clarity31. The use of these modes often 

depends on the environment's dimensionality (which can regulate adhesion assembly32), on the 

cell type, and on the receptor-ligand pairs as with selectins used in leukocyte migration33. These 

modes often exhibit distinct features, making them easily identifiable, such as the crescent moon 
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shape and gliding motion of keratocytes34, but exist in a continuum between mesenchymal and 

ameboid modes.  

1.3 Migration and Cancer Metastasis 

Cancer is the second leading cause of death in the United States, and the vast majority of 

its mortality is associated with secondary tumor formation35. In order for cancer cells to 

metastasize and form secondary disease, they must migrate out of the primary tumor, intravasate 

into the bloodstream, and then extravasate into other tissues throughout the body36. Cells within 

tumors are also very heterogeneous, making it difficult to separate indolent cancers from deadly 

ones, as only a subset of cells is able to disseminate from the main tumor and the others remain 

stationary and benign. Alongside migration mode, directionality is incredibly important for 

metastasis, yet remains poorly understood in certain contexts. For example, cancer cell 

chemotaxis (i.e., migration along a chemical concentration gradient) has been studied in-depth in 

ameboid cells but comparatively little for mesenchymal cells4,37. More recently, effort has been 

made to understand the effect of cells' mechanosensing on migration. For example, the 

progression of metastatic breast cancer has been related to the levels of mechanosensing proteins 

in stiff ECM38. Cells migrate at different speeds depending on substrate stiffness and oftentimes 

exhibit durotaxis, the ability to sense and migrate up a stiffness gradient39–41. However, this 

seems counterintuitive for understanding cancer metastasis, as often times, the tumor 

microenvironment becomes much stiffer than the surrounding healthy stroma due to matrix 

secretion and cross-linking by cancer-associated fibroblasts42,43. In these cases, the metastatic 

cells must exhibit adurotactic behavior in order to leave the primary tumor, which further 

complicates our current understanding of cancer cell migration and metastasis. Adding yet 

another level of complexity is the observation that tumor cells migrate in both the ameboid and 
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mesenchymal modes and, depending on their environment, can switch between the 

two1,2,44. They can also migrate individually or collectively45, and their migration is highly 

dependent on the physical properties of their niche, such as stiffness, porosity, dimensionality, 

and toporgaphy46, which can change as a result of clinical care47. Despite these many influences, 

tumor migration models, thus far, largely focus on intracellular mechanisms governing 

mesenchymal and ameboid modes, and thus, we will describe the effects of additional modes and 

matrix properties in the context of model limitations later. 

1.4 Computational Modeling of Cell Migration 

Cancer cell interactions are often very complex; reductionist approaches using model 

systems, e.g., microfluidic bioreactors48, explore many isolated variables, and more complex 

models may even include the vasculature to study extravasation48,49. However, despite the 

simplicity of these model systems, fidelity with in vivo disease progression may be limited or at 

least require context and necessitate significant engineering to generate robust datasets. 

Computational models, however, may offer an alternative—where applicable—to create and test 

reasonably complex niches in silico to understand migration mechanisms prior to experimental 

studies, thus better informing the design of more effective and efficient experimental studies. 

A key consideration for any computational model is the complexity of its physics; over- 

or under-determined systems can limit applicability and predictive value. With respect to cell 

migration, many models consider the following key concepts: force balance, mass conservation, 

biochemical activity, active forces, and passive forces50 (Figure 1.2). Force balances are used in 

all models to determine the net force magnitude and direction, which governs a cell's movement. 

Mass conservation is especially prevalent in models with a focus on protrusion dynamics or 

morphology changes in migrating cells to determine cells' changing shapes with a constant mass. 



7 

 

Biochemical activity connects intra, inter, and extracellular signaling to cellular and extracellular 

mechanics. Active forces include forces generated by cytoskeletal dynamics such as actin and 

microtubule polymerization and depolymerization and actomyosin contractility. On the other 

hand, passive forces include reaction forces arising within cells, between neighboring cells, and 

between cells and the surrounding environment elastic strain, viscous drag, and molecular 

friction50. The integration of these components in the model, the degree to which they affect each 

other, and, more broadly, overall migration depends on a number of intracellular and 

extracellular parameters in the model's framework. A brief overview of some of the modeling 

approaches discussed below51–68, and associated equations, is shown in Table 1.2. Note that this 

is meant to introduce readers to the various ways that physical laws governing cell migration can 

be described mathematically and is meant to direct readers to specific examples where these 

methods are applied. As computational costs continue to go down, the equations and models can 

become more detailed and combine multiple approaches into hybrid models. For the remainder 

of this section, we will broadly discuss how the above-described key concepts are modeled and 

affect cell migration mode citing specific examples. 

 
Figure 1.2: Conserved components of computational models of cancer migration 

Four concepts are typically present to some degree in computational models of migration: force balance, mass 

conservation, active forces, and passive forces. Each is illustrated here and where active forces are those generated 

by motor proteins and polymerization and depolymerization of cytoskeletal filaments and passive forces are those 

from the viscoelastic parts of the cytoskeleton and ECM as well as from molecular friction. 

https://aip.scitation.org/doi/full/10.1063/5.0023748#t2
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Table 1.2: List of frequently physical frameworks used to model cancer cell migration and their applications. 

Common Modeling Approaches Applications & Examples 

Chemo-mechanical models based on Force 
dependent reaction kinetics 
 
𝐹(𝜇) − 𝛾(𝐹, 𝑛)𝑣 = 0  … Force balance 
between active forces driven by chemical 
potential, 𝜇, dissipative forces, 𝛾𝑣. 

𝛾(𝐹, 𝑛) =  𝐾𝜏0exp (−
𝐹

𝑛𝐹0
)  … stiffness, 𝐾, and 

number, 𝑛, and kinetics of molecular bonds, 
𝜏0 dictate drag coefficient, 𝛾 

Used to model sub-cellular processes such as 
cell-substrate bond formation, filament 
polymerization and gliding and 
mechanosensing-based changes to predict 
resulting cell adhesion, traction, and 
migration (e.g., various spring/dashpot 
models51–53, active matter models54, and 
molecular clutch models55). 

Agent-based models focusing on force 
balance between individual cells and their 
environment 
 

�⃗�𝑎𝑐𝑡𝑖𝑣𝑒 + �⃗�𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + �⃗�𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑣𝑒 = 0 …  

 
or an energy minimization approach 
 

𝐸 =  ∑ 𝜆𝑖(𝐴𝑖 − 𝐴0)2 + ∑ 𝜎𝑖𝑗𝑙𝑖𝑗 + ∑
𝑑𝑈

𝑑𝑟𝑖
. 𝑟𝑖  

Used to model cell populations interacting 
with each other and the environment. Coarse 
grained to implicitly include effects of various 
sub-cellular processes (e.g., force-based 
models56–58, energy-based models59,60, and 
lattice-based/cellular Potts models61–63). 

Thermodynamic models based on 
equilibrium and non-equilibrium Work-Free 
Energy Change relationships  
 

∆𝐹 = ∑ ∆𝜇𝑖 − 𝑘𝐵𝑇𝑙𝑛
Ω

Ω0
   …  Free energy 

change of the system 
𝑊 =  ∫ 𝐹𝑎𝑐𝑡𝑖𝑣𝑒𝑑𝑥  … work done by the 
system 
 
Equilibrium … minimize (Δ𝐹) 
Non-Equilibrium … Δ𝐹 ≳ 𝑊 

Used to model both cellular and sub-cellular 
processes and assess the energetic states 
that the system can occupy (e.g., free-
energy-based models64,65). 

Continuum Phase-Field models  
 
𝑑Φ𝑖

𝑑𝑡
+ �⃗�𝑖 ∙ ∇⃗⃗⃗Φ𝑖 +

𝛿𝐹

𝛿Φ𝑖
= 0 … Describes the 

dynamics of the cell shape in response to 
free energy changes. The free energy 
functional, 𝐹, is chosen so that minima 
correspond to phases (i.e., intracellular and 
extracellular environment) of the system. 

Used to describe cell and surrounding free 
space as an evolving phase-field, with the 
moving boundary representing the cell 
membrane. Well suited to describe collective 
migration66,67 and migration of cell 
monolayers68.  
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1.4.1 Mesenchymal migration models: applications and directions 

Computational models describing mesenchymal cell migration primarily focus on 

intracellular active forces driving protrusion and retraction of lamellipodia and filopodia, 

balancing these forces against elastic, viscous, and friction forces within and outside the cell, and 

mass balance that defines the cell shape as the cell migrates under the action of these forces50,69–

71. At the nanoscale, these models can focus on the dynamics of actin polymerization and 

depolymerization, force generation by individual myosin motors, binding and unbinding of 

adhesion receptors to the extracellular matrix, clustering of adhesion receptors and maturation of 

adhesion sites, and binding of polymerized actin filaments to these receptors to form adhesion 

complexes27,72,73. At this scale, models incorporate force generation and sensing aspects such as 

conformational changes in adhesion complex proteins, recruitment of additional actin-myosin 

fibers, and branching of actin fibers. At the mesoscale, models focus on cell spreading, filopodial 

and lamellipodial protrusion and contraction, coupling between the nucleus and the cytoskeleton, 

viscoelastic strains within the cytoskeleton and the nucleus under the influence of active and 

passive migration forces, and resulting cell shape changes30,61,70,74,75. Models at this scale are 

particularly useful for predicting cell shape dynamics and interactions between two neighboring 

cells or a single cell and its environment. At the microscale, the focus of modeling is on overall 

cell migration dynamics under the influence of a driving force balanced by the drag forces from 

the environment56–58,76,77. At this scale, the goal of the models is to predict cell migration velocity 

and path persistence as a function of the mechanistic interactions between the cell, its neighbors, 

and the surrounding extracellular matrix. Computational models may focus on a specific length 

scale or combine multiple length scales to predict migration dynamics. Models can also vary in 

their representation of the extracellular environment. For example, to describe cell migration on 
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a 2D substrate, the ECM can be described as a continuous elastic material or discretized into a 

collection of binding sites connected to springs61,63,78–80. In 3D, the ECM can be described as a 

viscous continuum, discretely as a collection of randomly or uniformly distributed binding sites, 

or as fibers distributed randomly or along the grid in 3D space56,62,76,81,82. Depending on the 

choice of the ECM model, various aspects of cell–ECM interactions can be integrated such as 

ECM degradation, ECM remodeling, contact guidance along aligned fibers, and squeezing of 

cell through ECM pores. A common thread between all these models of mesenchymal cell 

migration is that the migration is driven by forces generated within long protrusions that grow 

along the surface in search of sufficient binding sites in 2D and along the length of fibers in 3D. 

The primary goal of these computational models has been to predict how fast and 

persistently cells will migrate along or within a given substrate depending on their specific 

mechanical and chemical properties. Models have also been successful in predicting 

experimentally observed behavior of the biphasic dependence of migration speed on ECM 

density, adhesivity, and stiffness41. Models can also recreate qualitative trends in migration 

persistence, which have been observed experimentally and clinically. More recently, modeling of 

experimentally observed emergent phenomena such as chemotaxis, durotaxis, haptotaxis, and 

contact guidance, which direct cells along specific directions, is gaining attention. How 

mechanobiology affects migration, i.e., how do changes in niche parameters direct processive 

migration and ultimately intravasation, is of extreme importance in understanding processes such 

as wound healing and cancer metastasis. Most adherent cells migrate toward a stiffer region of a 

substrate when presented with a gradient83, i.e., “durotax;” yet, tumors are inherently stiff 

relative to adjacent, soft stroma in vivo84,85. created by cancer-associated fibroblasts. This creates 

a cancer cell “migration paradox” where tumor cells must migrate down ECM stiffness gradients 
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that otherwise support migration in the opposing direction (Figure 1.3). Here, we will focus on a 

few mesenchymal cell migration models that explain cancer cell durotaxis and their applicability 

toward answering the cancer cell migration paradox. That being said, it is important to note that 

we are restricting our discussion and this concept to the disseminating cells from the tumor. 

Many other cells must migrate toward the tumor, i.e., durotax, including inflammatory cells, 

among others. 

 
Figure 1.3: The migration paradox 

Most cells migrate toward stiffer regions of tissues in a process called durotaxis. However, tumor cells must migrate 

from stiff tumors through the progressively softer matrix to disseminate from a tumor core and intravasate into the 

blood stream. This metastatic migratory process is counter to conventional thought on stiffness gradient migration, 

and it is not clear which migration mode, if any based on available data, permits such migration. Note that for 

simplicity, additional cell types, e.g., cancer associated fibroblasts, have been omitted but play a key role in niche 

remodeling nonetheless. 

To start, many models describe migrating cells as polarized with a higher probability of 

protrusion at the leading edge and retraction fibers at the trailing edge. Focal adhesions form 

preferentially along the leading edge and dissociate more frequently along the trailing edge, 

resulting in net motion in the direction of the leading edge3. Some computational models 

replicate durotaxis on a surface using polarized cell filopodia, which are more likely to grow 

along elastic fibers aligned along an increasing stiffness gradient81. This approach to simulating 

migration succeeds in predicting the general movement of durotactic cells and in creating a more 

https://aip.scitation.org/doi/full/10.1063/5.0023748
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realistic representation of ECM fiber networks rather than conventional models that treat the 

substrate as a continuum. Yet, such a rigid integration of durotaxis is not without disadvantages, 

e.g., durotactic behavior has to be built into the model, rather than durotactic behavior arising 

from it. Furthermore, while the elastic fibers can be deformed, the cell cannot remodel or 

degrade them. Thus, from such polarity-based models and those that take similar approaches, 

e.g., adhesions that bind more strongly on the stiffer region than softer regions forcing polarized 

shapes a priori86, it may be difficult to infer mechanisms of durotaxis or even adurotaxis as 

observed in cancer in vivo. These models are, however, convenient to study the effect of inter-

cellular heterogeneity in these parameters on overall population dynamics when predicting 

collective cell behavior. Indeed, within a tumor, not all cells metastasize, and thus, cancer 

migration models should highlight both cellular and temporal heterogeneity87 when describing 

gradients. 

One of the early models that explained the origin of durotactic behavior rather than 

making it an intrinsic property of migrating cells was by Schwarz et al., which used a simple 2 

spring attachment-detachment model between the actin myosin force generating elements, cell 

membrane attached adhesion protein, and the substrate51. The model showed that as the substrate 

stiffness increases, the rate at which the force is generated within the actin–myosin filament 

increases, leading to larger overall traction forces within the lifetime of a cell–substrate adhesion 

bond. The increase in traction forces on stiffer substrates drives cell migration up the stiffness 

gradient explaining durotaxis. This phenomenon has since been integrated as an a 

priori mechanism of cell migration in a number of other models. A more recent addition to 

models explaining durotaxis is based on a rigidity sensing-based change in the biochemical 

activity of motor protein regulating units within the cell72. Increased feedback from a stiffer 
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substrate drives increased myosin activity and higher speeds for cells in stiffer regions, driving 

an accumulation of cells up a stiffness gradient. A third alternate model focuses on the 

mechanical response of the ECM fibers rather than that of the cell itself. The model is based on 

fiber mechanics that suggests that the deformation/extension of a fiber decreases as a cell gets 

closer to the point where the fiber is crosslinked to a stiffer environment. This generates a 

stronger passive force on the cell, pulling the cell toward the stiffer regions and driving 

durotaxis81. There are many other models that explain durotaxis through variations or 

combinations of the above-described themes that we are not discussing here. A more recent 

model88 by Heck et al. suggests yet another possible explanation for durotactic behavior. This 

model accounts for ECM as an obstacle that the cell must negotiate or degrade; this type of 

confined migration is often observed in dense tissue where degradation by the cancer cell 

proceeds filopodial extension89 and requires significant deformation (which can be measured in 

high throughput with fluidics90). The model predicts that migration is most affected by ECM 

stiffness, cell adhesion strength, and protrusion properties, e.g., number, lifetime, and length. The 

model shows the standard correlation between matrix stiffness and migration speed, consistent 

with past models and experimental observation using degradation and filopodial 

extension91. They also show that adhesion turnover makes migration more processive. By 

incorporating force-dependent adhesion turnover rates and increased forces in stiffer ECM 

regions, they show an additional mechanism for durotactic behavior driven by increased 

persistence. A connection between processive migration and adhesion strength is also supported 

experimentally as seen when a weakly adherent phenotype results in a reduced disease-free 

interval92. The implication that protrusion activity and matrix deformation in three-dimensions, 

not the development of robust focal adhesions as in two dimensions, as the origin of their 
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processivity, may be consistent with some results in three dimensions28.  

The models discussed so far cover most known aspects of mesenchymal cell migration 

and also can be used to describe a number of emergent phenomena. With regard to durotactic 

behavior, they all suggest using one argument or another that cells should durotax, and for the 

most part, adherent cells do so. However, the cancer cell migration paradox of metastatic cells 

migrating against a stiffness gradient to metastasize still remains unanswered. It may be 

necessary to develop mechanistic models that explain anti-, a-, and durotactic migration that 

focus not on the ECM but rather on the cytoskeletal elements that drive mesenchymal migration; 

here, we summarize two such models. To interrogate such cytoskeletal elements, the most 

common mesenchymal model used has been the molecular motor-clutch93, which employs 

multiple molecular motors to pull actin filaments toward the cell body on a compliant, 

continuous substrate; conversely, the molecular clutch binds to actin stochastically and links it to 

the extracellular environment via a force-dependent Bell model connection94. These models 

typically predict a stiffness-dependent relationship for migration where on compliant substrates, 

the motors undergo load-fail cycles, whereas on stiff substrates, the complex slips. This model 

predicts biphasic behaviors in force and migration that can reinforce adhesion95, with an optimal 

stiffness region that cells will most likely migrate to. The model, thus, does not always predict 

durotaxis or antidurotaxis, but rather migration in the direction of the preferred stiffness for a 

given cell type. Optimal stiffness for a cell type is dependent on the actomyosin contractile force 

that the cells can generate and the number of clutches between the cell and the substrate. Overall, 

the clutch model may provide a possible reason for the adurotactic migration of metastatic cancer 

cells away from a stiff tumor ECM, but validation of experimentally observation of adurotaxis 

by highly metastatic cancer cells needs to be further explored. Another model in which the 
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mechanical environment can be considered in migration is an equilibrium thermodynamics 

model. This model provides an alternative way to characterize the two-way feedback loop 

between cell contractility and matrix realignment. This model calculates the total change in free 

energy of the system, consisting of the energies of the cell, matrix, and adhesions to determine 

whether or not migration will occur as the system tries to move into a lower energy 

state65. Similar to the clutch model, this thermodynamic migration model predicts a biphasic 

migration response to matrix stiffness and depends on the contractile force that a cell can 

generate and the strength of its adhesions. It is possible to envision that in the presence of 

gradients, cells could adurotactically migrate to an optimum away from the tumor, thus 

achieving goals similar to the clutch model. 

Overall, due to important fluctuations in force96, heterogeneous adhesion within a 

tumor92, and stiffness gradients (vs changing but static substrates in these models) on the 

stroma85, there is a need for new models where these or similar parameters are incorporated 

together, e.g., maximum force generated by a stress fiber, catch bond dynamics, etc. Changes to 

the force-bond lifetime relationship could then result in anti-, a-, and durotactic behavior 

depending on how each parameter varies with the others. 

 

1.4.2 Ameboid migration models 

Ameboid migration is dominated by propulsive membrane blebbing, i.e., the key concept 

of force balances, rather than spreading and forming strong focal adhesions to their substrate, 

i.e., the key concept of active contractile forces4. It also relies less on modification or 

degradation of the adjacent ECM and more so on becoming highly deformable and pushing 

through matrix pores. Despite the differences between mesenchymal and ameboid migration, 

cancer cells display unique plasticity in their ability to switch between modes24,97, making our 



16 

 

understanding of ameboid migration even more critical. Unlike mesenchymal migration, 

ameboid migration models reviewed here tend to focus on intracellular parameters, e.g., the 

development of pressure gradients to form blebs or propel the cell forward12, rather than on the 

cells' physical environment. Despite this, ameboid cells may indirectly mechano-sense, which 

may be necessary for tumor metastasis. 

A common characteristic of ameboid models is that they highlight a specific aspect of 

migration based on the nature of their model. For example, cell membrane deformability—

modeled as a system of springs—has been used to determine a cancer cell's migration speed 

through confined spaces70, such as pores in a matrix. This model suggests that, but does not 

assess, stiffness gradients are able to drive a cells' direction of travel, but polarization in this 

model is simply defined to guide the cells through the obstacles and is not a result of it. The 

ECM playing only a passive role in influencing cell behavior is also observed in an earlier model 

from the study7 by Lim et al. In this model, the cell has a permeable actin cortex inside an 

impermeable outer membrane, with adhesion points connecting the two. Cell movement occurs 

when membrane-cortex adhesions rupture, the outer membrane expands, and the actin cortex is 

pulled toward the rupture by a cytoplasmic pressure gradient; again, the matrix is only an 

obstacle and polarization is built in to the model rather than a result of it. From such models, 

neither mechanosensing nor migration from gradients has been considered. 

Ameboid-like migration has been frequently observed in 198- and three 

dimensions99,100 when the environment requires less adhesive, confined migration distinct from 

mesenchymal modes. Despite not engaging traditional machinery, cancer cells in this mode and 

confinement do recognize substrate stiffness unlike the models mentioned previously, and it is 

observed that stiffer, confined spaces support more ameboid migration26. Thus, models that 
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highlight this behavior often consider possible ways that gradient sensing could occur in 

ameboid migration, either de novo or as a switch between models. For example, probabilistic 

models highlight that migration mode switching occurs in heterogenous matrix conditions and 

that both migration modes and plasticity are advantageous in heterogenous tumors because cells 

can sense their niche and switch modes as needed. Modulating the degree of cytoskeletal 

polymerization can also induce transitions71 as observed by Niculescu et al. Simulated cells 

displayed ameboid blebbing or a spread lamellipodium and gliding behavior simply by changing 

maximum actin polymerization. Each mode fed back on itself, and so switching events were rare 

as in in vitro observations but were not dependent on local conditions, i.e., cell could not sense 

environmental changes. 

All models discussed in this section portray a common trend and limitation of 

computational models used for ameboid migration: focus remains on processes within the cell 

rather than interactions between the cell and its environment. Even for the few models that 

incorporate interactions between migrating cells and their physical environment, they still 

simplified as they restrict the cell from taking some shape or prevent the membrane from 

expanding into the physical obstacle. Although an emerging part of the 

literature100, mechanosensing in this mode should be validated so that we better understand the 

environmental conditions and gradients that could result in migrating cells switching between 

modes1,2 and if ameboid migration could support adurotaxis as the mechanisms still remain to be 

elucidated (Figure 1.3). While these models are able to analyze how cells change the shape and 

what sized spaces they can fit through, thus providing information about the process of 

migration, they are limited in that they only account for one portion of complicated processes 

like tumor metastasis and adurotaxis.  

https://aip.scitation.org/doi/full/10.1063/5.0023748
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1.5 In Vitro Tumor Models for Migration and Metastasis 

Tumor models are designed to recapitulate the properties of the tumor microenvironment 

and provide an essential platform for understanding the progression and treatment of cancer in 

vitro. These tools serve a low-cost and high throughput alternative to screen for drug therapies 

compared to in vivo animals models101, and contribute to our understanding of tumorigenesis in 

ways that may not be fully captured with just computational modeling. By recreating the unique 

properties of the tumor microenvironment, researchers can use these systems to identify and 

evaluate specific tumor pathways and cell behaviors involved in disease progression102. 

Advances in these models have also provided new insights into the critical steps of the metastatic 

cascade, including intravasation, extravasation, angiogenesis, matrix remodeling, and immune 

response101,103. These models vary in complexity from simple 2D cultures comprised of tumor-

derived cell lines to bioprinted 3D structures incorporating multiple different cell types, each 

striving to recapitulate the key mechanical and biological functions of the tumor 

microenvironment. In this section, I will discuss how these in vitro models are engineered to 

recreate the properties of the tumor microenvironment, and then examine how they can be used 

to characterize the metastatic potential that arises from the biophysical properties of the cell and 

its environment.  

1.5.1 Reproducing the tumor microenvironment for cell migration 

The tumor microenvironment (TME) is a complex and heterogenous structure consisting 

of a variety of different cell types, including cancer associated fibroblasts (CAFs) and a variety 

of immune cells, that are surrounded by a 3D fibrillar extracellular matrix. CAFs are strong 

contributors to the construction of the TME104, and with the help of tumor cells, stiffen the 

surrounding matrix via the secretion of collagen and other fibrillar proteins84,85. These natural 
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materials can be used to create 2D or 3D hydrogels that recreate a specific ECM composition 

(Figure 1.4A). The stiffness, i.e., the Young’s modulus, of these gels can be modulated by 

adjusting the polymer concentration or crosslink density to match that of the TME (Figure 1.4B), 

enabling cells in culture to respond in a similar manner to their natural environment. The 

behavior of cancer cells is also affected by the architecture and topography of ECM fibers, and 

invasion and metastasis can be induced by the degree of fiber alignment (Figure 1.4C). 

Additionally, the porosity of the ECM can determine how effectively malignant and 

nonmalignant cells move through the TME (Figure 1.4D), which is strongly dependent on the 

size and stiffness of a cell’s nucleus. Taken together, in vitro models that capture many of these 

properties will be more relevant to understanding the cell behaviors that are induced by the TME.   

 
Figure is reproduced and modified with permission from ref.,102  

Figure 1.4: Mechanical properties of the tumor microenvironment 

(A) The composition of the ECM that makes up the TME can vary in ligand type and presentation. 2D hydrogels can 

be coated in these proteins, or 3D hydrogels comprised of them, to recreate a specific ECM composition. (B) 

Stiffness of the TME also effects cell behavior and can be modulated by adjusting polymer size and length to 

increase entanglements (line a) or crosslinking (line b). The stiffness, i.e., Young’s modulus, is calculated by the 

stress in the material per cross-sectional area. (C) Topographical features can be fabricated by electro-spinning 

biocompatible polymer fibers onto a surface, or specific nano- or microtopographical features such as pits or 

channels can be etched into a material. (D) Modulating bulk polymer density or droplet size in emulsions allows for 

creating model TMEs with varying pore size and connectivity. CAF, cancer-associated fibroblast.  
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 TME models can be used as 2D or 3D migration assays to assess the migratory potential 

of cancer cells. 2D migration assays are generally easier to produce, and are able to recreate 

important features of the TME such as ECM stiffness and ligand density105,106. Polyacrylamide 

hydrogels offer a simple way of tuning substrate stiffness, and photo-initiators allow for the use 

of photomasks to selectively stiffen regions as a means of interrogating the durotactic behavior 

of cells105. While these models are useful for analyzing a cell’s response to a small number of 

variables, they do not necessarily faithfully behavior that would be seen in a 3D environment. 

Spheroid models utilize aggregates of cells that can either be grown in suspension or embedded 

in a 3D matrix comprised of various ECM proteins101,107,108. These models are useful for drug 

screening studies and in the case of embedded spheroids, studies of invasion, collective 

migration, and matrix remodeling109–111. 3D spheroid models better recapitulate the cell-cell and 

cell-ECM interactions that you would find in vivo, but require more advanced fabrication 

methods to model gradients in stiffness, ligand density, or chemotactic signals. New advances in 

3D bioprinting have made it possible to spatially organize the matrix architecture by offering 

precise control over cell population and ECM deposition112–114.  

While it is important that these systems be designed to incorporate the mechanical and 

materials properties of the TME, they must also take into account requirements beyond just 

materials. Tumors often contain a variety of different cells types, including CAFs, endothelial 

cells, pericytes, and immune cells102,103, and the vast majority of in vitro models lack some of 

this essential diversity. Immune-based cancer treatments often fail to treat solid tumors due to the 

physical and chemical barriers created in the TME by these cell types103,115 A handful of 

microfluidic systems have been developed to include some of these interactions116,117, that have 

begun to shed light on tumor-immune interactions that occur in the TME. As these technologies 
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mature, they will certainly offer new insights into the effects of the biophysical properties of the 

cell and its environment on tumor progression and metastasis.      

1.5.2 Utilizing biophysical metrics for migratory and metastatic potential 

Researchers have begun to look towards using the biophysical properties of a cell that 

allow them to escape from the TME of the primary tumor as a way of predicting metastatic 

potential. Because the cells must migrate through confined pores in the stromal ECM, which are 

often smaller than the nucleus of the cell, metastatic cells must be compliant enough to squeeze 

through them. Thus, cell deformability have emerged as invasive marker for aggressive cancer 

cells118 and techniques developed to characterize this deformability ex vivo119,120 (Figure 1.5A). 

Whole cell deformability can be measured using micropipette aspiration, optical stretching, or 

microfluidic confinement assays, or at the local scale using atomic force microscopy (AFM) to 

obtain the specific stiffness of the nucleus. Cell contractility may also play an important role in 

metastasis, and has been shown to increase with metastatic potential121. Traction force 

microscopy can be used to measure stresses generated by the cell by tracking fluorescent bead 

displacement as a cell pulls against an ECM coated hydrogel122 (Figure 1.5B). Cell-ECM 

adhesion strength has been shown to be another important biophysical characteristic that 

correlates with metastatic potential, where cancer cells with a lower adhesion strength tend to be 

more metastatic123. Spinning disk assays or microfluidic parallel plate chambers can be used 

asses cell-ECM adhesion strength124,125, by generating fluid shear stresses on cells that are 

adherent on ECM coated glass slides (Figure 1.5C). These biophysical properties tend to be more 

universal across cancers of different tissue origins, making them promising indicators for 

predicting metastatic potential for a broader range of cancers.  
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Figure 1.5: Biophysical markers emerging as metrics of metastatic potential 

(A) Assays for measuring cell deformation. (B) Cell contractility can be measured using traction force microscopy. 

Stress generated by a cell can be calculated by measuring bead displacement in a substrate of known stiffness. (C) 

Spinning disk assay to measure cell-ECM adhesion strength. Shear stress experience by the cells increases as a 

function of radial position. 

1.5.3 Early-stage detection technologies for cancer using biophysical parameters  

Current standard of care for detecting cancers consists of regular screenings, such helical 

computed tomography scans for lung cancer, mammography for breast cancer, or 

colonoscopy, sigmoidoscopy, and stool tests for colon cancer. While these tests can be life-

saving when they catch disease early enough, they offer a complete assessment of tumor state or 

expected patient outcomes. A relatively recent advancement in diagnosing the degree of cancer 

progression and metastasis has been the development of screens to detect circulating tumor cells 

(CTC) in the peripheral blood.  Developments in biomaterial-based detection systems utilize the 

increased epithelial cell adhesion molecule (EPCAM) expression on the surface of CTCs to 

capture and enumerate the quantity of tumor cells circulating in the blood126, with their presence 

correlating with a decreased progression-free survival and decreased overall survival. The main 

drawback to these screens however, is that by the time tumor cells are detectable in the 

bloodstream the cancer has already progressed to a dangerous degree. 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044460&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044460&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045648&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045880&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046605&version=Patient&language=en
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Emerging technologies that utilize some of the biophysical properties of tumor cells 

collected from the primary tumor aim to better prognose metastatic risk prior to metastasis. 

Several studies have looked at how migration speeds, displacement, and persistence differ across 

multiple cancer lines36,127, most notably one that used a microfluidic based platform to 

characterize a migratory signature predictive of metastatic potential128. While this device also 

required staining of Ki67 to assess cell proliferation rate, they were able to accurately predict 

which immortalized or patient-derived breast cancers would be highly aggressive or not, 

showing that cells isolated from a patient’s primary tumor can reliably belie their metastatic risk. 

Another group used live-cell phenotypic-biomarkers and machine learning to stratify prostate 

cancer patients based on risk129. Although these tests have yet to receive FDA approval, they 

provide promising evidence that these biophysical traits can be useful for assessing metastatic 

risk. 

   Cell-ECM adhesion strength and the mechanisms that regulate it provide another 

physical metric to assess metastatic potential of cancer cells. A range of tools exist to measure 

the strength of these bonds, from single integrin-RGD ligand bonds measured via AFM130, to 

whole cell-ECM interactions using fluidic shear assays123–125. These assays require a relatively 

small number of cancer cells, on the order of a few thousand cells, that can be collected from 

either the primary tumor or surrounding stroma. However, one major complication is that 

because tumor rarely consist primarily of cancer cells, patient biopsies will contain a variety of 

different cell types. Once advantage of using adhesion strength over other biophysical properties 

is that there is at least a 3-fold difference in adhesion strength between healthy and cancer 

cells92,123. This could provide a label-free metric to quantify the number of cancer cells that may 

have only locally invaded the surrounding stroma, and allow clinicians to assess metastatic risk 
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before these cancer cells reach the bloodstream.  

1.6 Perspectives and Conclusions 

The models discussed in this chapter show varying degrees of importance given to cells' 

mechanosensing capabilities and the effects of the ECM on migration. This is especially 

important to understand in cancer, where cells' ability to sense and migrate against a stiffness 

gradient may contribute to their ability to metastasize38,42,43. Due to the complex nature of cell 

migration and mechanosensing, computational models offer one of our best ways to understand 

and learn about migrating cell behavior. However, none of the models discussed consider all the 

variables involved in migration and to do so would likely be overcomplicated, computationally 

taxing, and, therefore, infeasible. Even the models that give extensive thought to the cells' 

physical environment do not consider cells' ability to switch between migration modes as other 

models do26. Beyond this, few models explore the cooperative or inhibitory migration behaviors 

arising from interactions between multiple cell types such as metastatic cancer cells, cancer-

associated fibroblasts, and senescent tumor cells, which can all occupy neighboring spaces 

within the tumor microenvironment. Multicellular interactions can be extremely complex and 

can assist or hinder durotactic behavior through short- and long-range mechanical and chemical 

coupling131–134. No single modeling framework captures the complete breadth of these 

observations as far as we are aware. The current work on computational cell migration models 

has undoubtedly helped increase our knowledge of processes like cancer metastasis and 

migration in general to address the cancer cell migration paradox, but there are still many 

unanswered questions on how cell migration is guided by gradient sensing mechanisms 

illustrated in the paradox (Figure 1.3). 

Improvements in in vitro tumor model systems have been useful for understanding many 
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of the cell and matrix mechanics used in the computational models discussed in this chapter. 

Experimental models provide a means to test and improve upon the theories created by the in 

silico simulations, which together highlight the essential drivers for cancer cell migration and 

metastasis. By designing computational and experimental models in parallel, we can improve our 

ability to recognize and assess the underlying physics of disease progression. Computational 

models can be used to quickly predict what are the key characteristics that affect a specific 

behavior, and guide the experimental design to effectively test these predictions. This knowledge 

can then be translated into diagnostic assays that utilize the keystone phenotypes that exist across 

multiple cancer types and are necessary for driving metastasis. As the genetic and molecular 

drivers for these phenotypes becomes better understood, both models can be used to generate 

potential therapeutic avenues towards treating cancer. 

The scope of the research discussed in this dissertation encompasses the design and 

application of these types of models to describe how cells with a lower cell-ECM adhesion 

strength have increased metastatic potential. We will first characterize how differences in 

adhesion strength within an isogenic population of cancer cells allows the more weakly adherent 

subset to become more migratory. Then using both computational and in vitro models, how these 

differences allow these cells to migrate counter to typical durotactic behavior, allowing weakly 

adherent cells to migrate from the stiffer tumor ECM into the softer stroma. Finally, we will use 

a in vivo murine model to characterize differences in metastatic potential of weakly and strongly 

adherent breast cancer, and use a microfluidic parallel plate assay to measure the adhesion 

strength of the primary tumor and surrounding stroma of the injected cancer cells. The eventual 

goal is to use cell-ECM adhesion strength as a metric for metastatic potential in a clinical setting, 

and improve patient outcome by informing doctors on the best form of treatment. 
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CHAPTER 2. CELL ADHESIVENESS SERVES AS A 

BIOPHYSICAL MARKER FOR METASTATIC POTENTIAL 

2.1 Abstract 

Tumors are heterogeneous and composed of cells with different dissemination abilities. 

Despite significant effort, there is no universal biological marker that serves as a metric for 

metastatic potential of solid tumors. Common to disseminating cells from such tumors, however, 

is the need to modulate their adhesion as they detach from the tumor and migrate through stroma 

to intravasate. Adhesion strength is heterogeneous even among cancer cells within a given 

population, and using a parallel plate flow chamber, we separated and sorted these populations 

into weakly and strongly adherent groups; when cultured under stromal conditions, this adhesion 

phenotype was stable over multiple days, sorting cycles, and common across all epithelial tumor 

lines investigated. Weakly adherent cells displayed increased migration in both two-dimensional 

and three-dimensional migration assays; this was maintained for several days in culture. 

Subpopulations did not show differences in expression of proteins involved in the focal adhesion 

complex but did exhibit intrinsic focal adhesion assembly as well as contractile differences that 

resulted from differential expression of genes involved in microtubules, cytoskeleton linkages, 

and motor activity. In human breast tumors, expression of genes associated with the weakly 

adherent population resulted in worse progression-free and disease-free intervals. These data 

suggest that adhesion strength could potentially serve as a stable marker for migration and 

metastatic potential within a given tumor population and that the fraction of weakly adherent 

cells present within a tumor could act as a physical marker for metastatic potential. 
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2.2 Introduction 

The high mortality rate associated with cancer is due to metastasis from a primary tumor 

to a distal site35,135. Patient outcomes typically scale with rate of cell dissemination from the 

tumor, resulting in lower 5-year survival rates for aggressive tumors such as invasive ductal 

carcinoma135. However, determining cell dissemination rate from a tumor is difficult due to 

heterogeneity, that is cells in the same tumor have different propensities for forming secondary 

metastases136–138. Furthermore, there are no universal biochemical markers that predict metastatic 

potential across solid tumors137,139; next-generation assays that use these biomarkers typically 

only surveil cells post-intravasation. 

Biophysical markers, such as cell deformability, are an emerging alternative to assess 

metastatic potential102,118,140–143. Assays based on these metrics focus largely on characterizing 

the physical properties of already circulating cells rather than understanding how cancer cells 

physically interact with and adhere to the extracellular matrix (ECM) at the onset of invasion. 

Given that all cancer cells must interact with the ECM to initiate metastasis, understanding 

variations in these interactions can serve as an early indicator of metastatic ability. For optimal 

cell migration into adjacent parenchyma, cells must turnover their focal adhesions (FA) to move 

through the tissue effectively; extremely unstable or stable adhesion can arrest migration as the 

cell can never establish contractile forces or unbind and retract rear portions of the cell144. Thus, 

migration speed is a function of the strength of attachment and is maximized when migrating 

cells can cycle their adhesions144,145. Indeed, invasive cancer cells have more dynamic FAs than 

their noninvasive counterparts146, and decreased adhesion strength corresponds to increased 

metastatic potential147. As a result, the adhesion of cancer cells to ECM proteins is becoming an 

accepted metric for metastatic potential148,149. 
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Many assays have been developed to demonstrate how adhesion differs in metastatic cells 

compared with their nonmetastatic counterparts148,150–152. However, such assays are either low 

throughput or not quantitative. It is also difficult to assess adhesive heterogeneity within a single 

cancer line using these methods153. We have previously demonstrated that metastatic breast 

cancer cells display lower cell-ECM adhesion strength than their nonmetastatic counterparts 

using a spinning-disk shear assay123,154, especially when cells are exposed to an environment 

whose low cation concentration mirrors stroma155,156. We also observed an inherent 

heterogeneity in adhesion strength in multiple lineages including breast, prostate, and lung 

cancer cell lines123. Given this information, we developed a parallel plate flow chamber to isolate 

distinct fractions of cells from a heterogeneous population. Cells were isolated by applying a 

uniform shear stress to the cell population in the presence of stromal concentrations of Mg and 

Ca cations155,156. Within a given tumor line, we observed significant adhesion heterogeneity and 

found that the more weakly adherent fraction displays increased migration in both two dimension 

(2D) and three dimension (3D). This is due to the increased contractility and FA disassembly 

present in weakly adherent cells, resulting from transcriptomic expression differences in 

cytoskeletal components. Together, these data suggest that intrinsic differences in adhesion 

strength of cells within a population can act as markers of intratumoral heterogeneity in 

metastatic potential and be exploited to biophysically fractionate subpopulations. 

2.3 Results 

2.3.1 SA and WA phenotypes are maintained after sort 

We fabricated a parallel plate flow chamber that exposes cells to discrete, uniform shear 

stresses to isolate fractions of cells based on adhesion strength, and study those cells within a 

heterogeneous population (Supplementary Figure S2.6). To ensure that the application of shear 
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did not change the adhesive heterogeneity of the population, we isolated weakly and strongly 

adherent fractions of MDA-MB-231 cells from a parental cell population by exposing the cell to 

a shear of 170 dynes/cm2 and stratifying the populations depending on whether they were found 

in the flow-through or still attached to the device. After sorting, cells were cultured separately, 

remixed, seeded into the device, and subsequently sheared. We found no significant changes 

between the percent of WA and SA cells when tracking cells between days 0 and 2 (Figure 

2.1A), indicating that the parallel plate shear device assesses, but does not alter, the inherent 

adhesion heterogeneity of the population. 

 
Figure 2.1: Low cation PPFC accurately and precisely sorts cancer cell populations that are stable long-term 

(A) MDA-MB-231 populations were sorted at day 0, remixed, and then resorted at day 2. Differences between WA 

and SA populations were assessed by two-tailed unpaired t test (n = 3). (B) Adherent cells post-sort were cultured in 

high cations for 3, 6, 11, and 14 days and resorted. Cells that detached were cultured in high cations or low cations 

mirroring stroma prior to resorting. Differences between WA and SA populations as a function of culture time and 

condition were assessed by two-way ANOVA with Tukey test for multiple comparisons (n = 3). For time and 

condition, ANOVA showed ***, P < 0.001 and ****, P < 0.0001, respectively as indicated at the corner of the plot. 

Individual comparisons to their counterpart cation conditions are indicated in the plot with †, P < 0.1; *, P < 0.05. 

(C) Images of cells from the flow-through (detached) and remaining on the plate (adherent) after exposure to shear 

along with quantification of the percentage of cells that detached relative to plated cells from each line (n = 3). ***, 

P < 0.001 for two-tailed unpaired t test between lines. (D) Plot showing the fraction of detached cells from MDA-

MB-231, MCF7, and MCF10A and their H-Ras–transformed counterparts MCF10AT after exposure to 250 

dynes/cm2 of shear stress. NS, not significant. 
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We next wanted to determine if the adhesion phenotype is stably maintained post 

isolation. We isolated both fractions from MDA-MB-231 cells, cultured them separately in either 

normal or reduced cation media, and then repeated the isolation on the separated fractions. We 

found that strongly adherent cells maintained their adherent phenotype 14 days post isolation, 

regardless of culture conditions. Weakly adherent cells did not maintain their adhesion 

phenotype in normal culture media as cells reverted back to their distribution in the parental 

population; if the selection pressure of low stromal-like cation concentrations was maintained 

post isolation, weakly adherent cells were enriched to more than 70% of the population 6 days 

post isolation (Figure 2.1B). 

2.3.2 Parallel plate flow chamber can distinguish between WA and SA cell lines 

To test the ability of the flow chamber to select for cells known to have a weaker 

adhesion strength as a result their higher metastatic potential, MDA-MB-231 (metastatic breast 

cancer line) and MCF10A (nonmalignant breast cell line) cells were seeded in a 50:50 mixture 

and exposed to a shear stress that should detach the MDA-MB-231 cells but not the MCF10A 

cells (170 dynes/cm2 based on population adhesion assays123). The fraction of cells that detached 

contained 41.7% of the total number of MDA-MB-231 cells, whereas only 0.7% of the total 

number of MCF10A cells were present in the detached fraction (Figure 2.1C), consistent with 

10-fold higher adhesion strength of MCF10A versus MDA-MB-231 cells in the absence of 

cations123 and suggesting that this assay could distinguish metastatic cells from noncancerous 

cells. 

To link quantitative adhesiveness to metastatic potential, we exposed four cell lines of 

varying metastatic potential (high metastatic capability: MDA-MB-231; low metastatic 

capability: MCF7 and MCF10A; and H-Ras transformed: MCF10AT, which give rise to invasive 
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carcinomas in vivo157) to 250 dynes/cm2 of shear stress and counted the fraction of detached 

cells. As expected, cells with greater tumorigenic and/or metastatic potential had significantly 

greater detachment at the same shear stress in comparison to cells with lower tumorigenic and/or 

metastatic potential (Figure 2.1D). 

2.3.3 WA cells display greater migratory propensity than SA cells 

To assess migration differences in adhesion sorted populations, we isolated the ∼2% 

most weakly and most strongly adherent cells of the MDA-MB-231 population using 28 and 510 

dynes/cm2, respectively and seeded them onto type I collagen gels. Over 24 hours post plating, 

we found that WA cells displayed significantly higher average speed than the SA or unselected 

(non-sheared) cells (Figure 2.2A). Weakly adherent cells also displayed increased total cell 

displacement than the SA or unselected cells (Figure 2.2B; Supplemental Figure S2.7). Because 

the adhesion phenotype appears stable, we investigated if migratory differences were stable. WA 

and SA cells along with unselected population were imaged after selection, and then re-imaged 2 

days later. No significant differences for any population were observed after selection or later 

while the WA fraction maintained its increased migratory propensity (Figure 2.2C). The two 

populations did not exhibit differential proliferation during migration assessments (Figure 2.2D), 

suggesting that higher migration speeds for WA cells were not the result of proliferation 

differences. In addition to sorting a metastatic population, we further demonstrated sorting 

fidelity by directly comparing the ∼2% most WA and SA of MCF10A and isogenic H-Ras 

transformed MCF10AT cells. Post-sort on collagen gels, we observed that the WA fraction of 

MCF10AT cells had increased migration speed and displacement relative to its strongly adherent 

counterpart, whereas MCF10A cell fractions did not show differences (Supplemental Figure 

S2.8). These data suggest that heterogeneity in migratory phenotype as a result of selection by 
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adhesion strength is only present in more aggressive cells with increased tumorigenic capability. 

 
Figure 2.2: Sorted populations of single cells and spheroids exhibit and sustain different migration patterns. 

(A) and (B), Average speed (A) and total displacement (B) were plotted for MDA-MB-231 cells sorted by the 

indicated shear stress and allowed to migrate on collagen gels for 24 hours. Percentages in A reflect the portion of 

each population that detaches or remains adherent at a given stress; n = 3 biological replicates for the number of 

cells per condition inset in the bars in B. (C) Average speed was measured after initial isolation and after 2 days, n = 

3 biological replicates. (D) Plot showing the percentage of dividing cells on a collagen gel over 24 hours for cells 

selected by the indicated shear stress. n = 3 biological replicates.  
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Figure 2.3:-Continued: Sorted populations of single cells and spheroids exhibit and sustain different 

migration patterns.  

(E) Schematic of tumor spheroid formation (top) and subsequent dissemination (bottom) in a collagen 

gel. (F) Brightfield images at the time of spheroid embedding in a collagen gel and fluorescent image 24 hours later. 

Dashed line, average radius of disseminating cells. (G) and (H) Plots of maximum (G) and normalized (H) average 

outward radial migration of cells selected by indicated shear (see Supplementary Fig. S5, for radius measurements). 

One-way ANOVA with Tukey test for multiple comparisons was used to indicate significance, where *, P < 0.05; 

**, P < 0.01; ***, P < 0.001; ***, P < 0.0001; NS, not significant. 

 

Migration can often be affected by matrix properties, and so we sought to determine if 

migration differences are intrinsic and therefore persist regardless of environmental changes that 

could reduce substrate adhesion. WA and SA MDA-MB-231 cells were plated on 

polyacrylamide gels of low (300 Pa) and high stiffness (1.8 kPa) and migration observed for 24 

hours. WA cells were more migratory that the SA cells independent of substrate stiffness. 
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However, average speed scaled with substrate stiffness gel for both cell fractions, which 

indicates that both fractions are mechanically sensitive (Supplemental Figure S2.9). These results 

indicate that there are cell intrinsic differences independent of environmental changes that could 

potentially alter substrate adhesion. 

Assays thus far show behaviors in 2D rather than 3D, so we next assessed the outward 

migration from spheroids containing WA, SA, or unselected cells (Figure 2.2E and F). There was 

no significant difference in maximum cell displacement (Figure 2.2G), but the leading edge of 

weakly adherent cells, that is the distance at which the signal is higher than background 

(Supplemental Figure S2.10), migrated further than SA and unselected cells, indicated by the 

significantly higher ratio of final radius to initial radius (Figure 2.2F and H). Consistent with 2D 

migration, these 3D spheroid data bolster the concept that the fraction of tumor cells with the 

WA most represents those with the highest metastatic potential. 

All the cells examined thus far are mammary epithelial, so we next explored whether 

cells from other epithelial tumors would exhibit the same cation-dependent adhesion sorting and 

migration phenotype. WA and SA NCI-H1299 metastatic lung cancer cells were isolated and 

their migration analyzed. As with the metastatic mammary tumor line, WA metastatic lung 

cancer cells were more migratory than their SA counterparts (Supplemental Figure S2.11), 

suggesting that this behavior may be universal across epithelial tumors. 

2.3.4 WA cells have more labile FAs and are more contractile 

Migratory differences between WA and SA cells did not result from expression 

differences in FA proteins, for example pFAK, FAK, paxillin, or actin (Figure 2.3A). However, 

we previously found that metastatic cells preferentially disassemble their FAs relative to 

nonmetastatic cells when exposed to low cation conditions123. Consistent with this, we found that 
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the strongly adherent subpopulation of MDA-MB-231 cells did not fully disassemble FAs after 

removal of cations. Conversely, WA cells disassembled their FAs in the absence of cations on 

fibronectin (Figure 2.3B–D) or on type I collagen-coated substrates (Supplemental Figure 

S2.12). These data suggest that weak adhesion could be driven by differential sensitivity to 

cations and could therefore enhance migration. Similarly, cancer cells that exhibit increased 

contractility are also more migratory than their less contractile counterparts121,158. To ascertain if 

adhesive state is coupled with contractility differences, traction force microscopy was performed 

on cells post-sort. WA cells were significantly more contractile than their strongly adherent 

counterparts (Figure 2.3E and F), suggesting that weakly adherent cells represent a more 

aggressive fraction of the population. 
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Figure 2.4: Adherent phenotypes within a cancer line result from intrinsic adhesion stability and contractility 

differences 

(A) Comparison of the expression of common FA proteins in SA and WA cells. (B) Representative images of FAs 

in SA and WA cells when subjected to with or without cation conditions. (C) and (D) FA density (C) and total area 

per cell area (D) are plotted for the indicated sorting and cation conditions. n = 3 biological replicates and >50 

cells/condition. One-way ANOVA, with Tukey multiple comparison test was performed for the indicated 

comparisons with **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (E) Brightfield and traction stress plots for cells 

from the indicated shear conditions. Scale bar, 10 μm. (F) Plot of normalized strain energy for WA and SA cells. n = 

3 biological replicates and >30 cells/condition. A two-tailed unpaired t test between lines indicated **, P <0.01; 

***, P < 0.001; ****, P < 0.0001. 
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2.3.5 Intrinsic transcriptional variation in microtubule proteins contributes to increased 

migration of WA cells 

Given that populations sorted at the less restrictive 170 dynes/cm2 still remain stable with 

over 1 to 2 weeks in culture, and cells sorted at the more restrictive 28 dynes/cm2 show cell 

intrinsic migration differences independent of environmental changes that are stable for days in 

culture, we next interrogated transcriptional differences underlying WA and SA phenotypes 

sorted at 28 dynes/cm2. Stability appears in part because individual populations do not out 

compete each other, that is cell proliferation rates appear similar (Supplementary Figure S2.13). 

With stable sorting and expansion, we sought to assess differences through post-sort RNA 

sequencing (RNA-seq). Analyses revealed 500 differentially expressed genes between the 

subpopulations (Figure 2.4A); replicates clustered by subpopulation when comparing 

differentially expressed genes (Figure 2.4B). Analysis of genes upregulated in weakly adherent 

cells demonstrated significant enrichment of gene ontology terms involved in microtubule and 

cytoskeletal organization and binding (Figure 2.4C). Genes in these categories with the most 

significant expression differences are involved in cytoskeletal components, specifically 

microtubule-associated proteins. For example, GAS2L3 has been implicated in linking 

microtubules and actin and results in increased FA turnover and migration; SYNE2 is also 

essential for nuclear-cytoskeletal mechano-transduction in invasion and cell contraction159–161. 

Components linking the cytoskeleton to the nuclear or plasma membranes were also implicated, 

for example AKAP9, which regulates microtubule movement and is highly expressed in highly 

metastatic cells162,163 (Figure 2.4D). There was also significant enrichment in the expression of 

motor proteins, specifically those involved in vesicular transport along microtubules (KIF14, 

DYNC1H1) as well as in cytoskeletal contraction (MYO9A; Figure 2.4C and D). KIF14, in 
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particular, is a potent oncogene that is highly expressed in several cancers, particularly breast 

cancer, and is linked to improved invasiveness and dynamically changing FAs164,165. Changes 

detected through RNA-seq were validated by qPCR, which confirmed increased expression in 

WA cells (Figure 2.4E). 

 
 

Figure 2.5: RNA-seq identifies intrinsic patterns that indicate structural rather than expression changes in 

adhesion 

(A) Differences in gene expression between WA and SA MDA-MB-231 cells. (B) Hierarchical clustering of 

differentially expressed genes between WA and SA cells. Vertical bars indicate clustering of genes that are 

upregulated in SA cells and WA cells. (C) Gene ontology terms that are upregulated in the WA subpopulation. 

Cytoskeletal and microtubule gene ontology terms, as well as proteins that bind to these components, were 

significantly upregulated in WA cells. (D) Expressions of genes upregulated in cytoskeleton and motor activity, 

normalized to SA subpopulation. (E) Validation of RNA-seq gene expression differences via qPCR for select genes. 

*, P < 0.05 and **, P < 0.01 for two-tailed unpaired t test between WA and SA cells. (F) Average speed of WA and 

SA cells when treated with microtubule-targeting drugs. At identical concentrations of nocodazole (0.2 μg/mL) and 

paclitaxel (0.5 μg/mL), WA cells displayed a significant decrease in migration speed, whereas the SA cells 

demonstrated no change. One-way ANOVA with Tukey multiple comparison test was performed for the indicated 

comparisons with **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001. NS, not significant. 

To functionally confirm a link between the upregulated microtubule components in the 

WA cells and their subsequent increased migration, we exposed both WA and SA cells to either 

nocodazole or paclitaxel to dissemble or cap microtubules, respectively. When tracking 
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migration, untreated WA cells had increased average speed compared with untreated strongly 

adherent cells. However, when treated with either microtubule-targeting drugs, the WA cells 

exhibited a significant decrease in average speed, whereas the SA cells were unaffected (Figure 

2.4F). These data suggest that inhibiting the microtubule cytoskeleton preferentially impacts the 

WA fraction and points to microtubule-affecting agents as potent therapeutic targets. 

Finally, we investigated whether differentially expressed genes linked to the highlighted 

microtubule, cytoskeletal, and microtubule-binding protein ontology terms played a role in 

human cancer progression. We narrowed the list of genes down to those linked to our highlighted 

GO terms in Fig. 4C, resulting in 100 genes (Supplemental Table S2.2). Using this gene set, we 

then analyzed The Cancer Genome Atlas (TCGA) breast cancer dataset and restricted our 

analysis to patients with triple-negative breast cancer (TNBC) with tumors that ranged from 

stage I to III. We then compared patients who had gene expression scores that aligned with the 

SA and WA cells. We observed that patients with gene expression profiles similar to the WA 

cells had decreased progression-free intervals (Figure 2.5A) and disease-free intervals (Figure 

2.5B) compared with patients with gene expression profiles similar to the SA cells. These data 

suggest that increased expression of genes associated with microtubule and microtubule-binding 

proteins, as present in the WA fraction, could define an “adhesive signature” that results in an 

increase in metastatic potential and promotes human breast tumor progression. 
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Figure 2.6: Expression of microtubule-associated genes resembling WA fraction predicts poor outcome in 

patients with breast cancer 

(A) and (B) Progression-free interval (A) and disease-free interval (B) of patients with TNBC with stage I to III 

tumors. Patients with gene expression that resembled SA and WA cells were compared. Genes were restricted to 

those associated with highlighted gene ontology terms in Figure 2.4C, resulting in a cohort of 100 genes. 

2.4 Discussion 

Because of the highly heterogeneous nature of tumor cells, both within a given tumor as 

well as across tumors from different patients, it is difficult to assess tumor aggressiveness and the 

likelihood of metastasis. In addition, there are no universal biochemical markers that can be 

utilized to determine metastatic potential. The emergence of biophysical markers is a new 

approach to identifying the most aggressive subpopulations of the tumor population. Common 

cell–ECM interactions of early dissemination of cancer cells of different tumor origins and 

subsequent ECM deformation reflect the importance of identifying biophysical markers as 

metrics for metastatic potential35,135. To accomplish this, we utilized a parallel plate flow 

chamber to study the correlation between decreased adhesion strength of cells to ECM proteins 

and their subsequent metastatic potential. In conjunction with our previous studies123, we showed 

that metastatic cancer cells are significantly less adherent than their nonmetastatic counterparts. 

This is demonstrated by the ability to select for MDA-MB-231 cells over MCF10A cells from a 

mixed population. We also found that WA can serve as a potential marker for metastatic 
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potential, which was demonstrated by the greater percent detachments of MDA-MB-231 and 

MCF10AT cells in comparison to MCF7 and MCF10A cells at the same shear stress. 

This study also identified heterogeneity in adhesion strength of cells within a metastatic 

cancer cell population, especially under stromal-like cation conditions, which may be linked to 

heterogeneity in metastatic potential of cells within a tumor population and/or circulating tumor 

cells. This notion is supported by our observations that WA MDA-MB-231 cells exhibited 

increased migration in comparison to their strongly adherent counterparts. These differences in 

migration exist in both 2D and 3D environments, which indicates that the WA subpopulation 

represents the cells that are more likely to leave the primary tumor and establish secondary 

metastases166–168. The stability of this increased migratory propensity for multiple days post-

sorting further demonstrates the intrinsic nature of this phenotype. In addition, recapitulating this 

phenotype in metastatic lung cancer cells suggests that adhesion strength is broadly involved in 

the more migratory subpopulations within tumors from multiple epithelial backgrounds. 

The ability to select this more migratory subpopulation of the cell line stems from 

differences in FA disassembly between the WA and SA cells. Faster FA disassembly of WA 

cells is consistent with previous findings that link quicker FA disassembly to more migratory cell 

lines146,169,170. In addition, WA cells are more contractile than their SA counterparts, where 

increased contractility has also been linked to increased migration and more aggressive 

cancers121,158. Differences in migration, FA assembly, and contractility can be tied to inherent 

transcriptomic differences between WA and SA cells; genes linked to the cytoskeleton, 

specifically to microtubules, as well as motor proteins involved in vesicular transport and 

contraction showed significant differential expression. When we compared human patients with 

breast cancer with gene expression signatures that resembled the WA and SA cells for our genes 
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of interest, we observed decreased progression-free and disease-free intervals, implying that 

tumors resembling the WA fraction are more aggressive. Several standard cancer therapy drugs 

(nocodazole, taxols, etc.) target microtubules to reduce the growth and spread of aggressive 

tumors, indicating that differences in microtubules and the cytoskeleton could explain the 

heterogeneity of tumor cell populations. We confirmed these findings by treating WA cells to 

nocodazole and paclitaxel and found that their migration speed reduced to that of the SA cells, 

whose speed was unaffected by both drugs. Therefore, targeting the cytoskeleton is potentially 

an important method of restricting the motility of highly aggressive subpopulations early in 

tumor development and suppressing the migratory populations that we observe171. 

This study reveals a strategy to identify distinct subpopulations via shear separation that 

can be implemented to study the dissemination of cells from a variety of epithelial cancers. 

Comparing WA cell populations across multiple metastatic cell lines of various tumor origins 

could enable the identification of similarities among the most aggressive subpopulation in an 

effort to identify more universal targeted treatments. Finally, this shear assay can be adapted to 

study diseases with a similar adhesion component, highlighting the versatility of this technique. 

2.5 Methods 

2.5.1 Cell culture 

MDA-MB-231 and MCF7 cells were cultured in DMEM, 10% FBS, and 1% 

antibiotic/antimycotic; MCF10A and MCF10AT cells were cultured in DMEM/F-12, 5% horse 

serum, 1% penicillin/streptomycin (Pen/Strep), 0.5 μg/mL hydrocortisone, 20 ng/mL hEGF, 10 

μg/mL insulin, 100 ng/mL cholera toxin; NCI-H1299 cells were cultured in RPMI, 10% FBS, 

and 1% Pen/Strep. Products were purchased from Life Technologies. All cells were obtained 

from ATCC (authenticated by morphology, growth curve, and isoenzyme analysis), verified 
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Mycoplasma free via PCR, and were not used beyond passage 10. 

2.5.2 Parallel plate shear assay 

Glass plates (Brain Research Laboratories) were sonicated in 70% ethanol and water. 

Plates were coated with fibronectin at 2 μg/cm2 for 60 minutes and then blocked with 5% BSA 

for 2 hours at 37°C. Plates are then seeded with cells at a density of 5,000 cells/cm2 and 

incubated overnight. Components of the parallel plate shear assay (polysulfone base plate), 38-

μm-thick silicone gasket (SMI), polypropylene luer fixtures (Cole Parmer), 1/8-inch inner 

diameter tubing (Thermo Fisher Scientific) were assembled and the glass plate was clamped to 

the base plate containing the inlet and outlet. The inlet tubing was connected to a syringe pump. 

Shear stress, 𝜏 , was calculated using the following equation: 

𝜏 =
6𝜇𝑄

𝑤ℎ2      (2.1) 

where 𝜇 is viscosity of the fluid, 𝑄 is volumetric flow rate, 𝑤 is the width of the chamber, and ℎ 

is the height of the chamber. 

2.5.3 Isolating weakly and strongly adherent cells 

To test adhesion stability of weakly adherent (WA) and strongly adherent (SA) fractions 

of the population, we first determined an intermediate shear stress to detach roughly 40% of cells 

(∼170 dynes/cm2 for MDA-MB-231 cells). PBS without magnesium and calcium and with 4.5 

g/L of dextrose was used to shear cells. Cells were subjected to the intermediate shear stress for 3 

minutes to isolate WA cells in the flow-through, which was collected at the outlet. 0.25% 

trypsin-EDTA was added to the device to isolate SA cells. Once cells detached, media was 

pushed through the device to neutralize the trypsin and remove the SA cells. Both populations 

were then seeded. 

To perform the adhesion stability remixed population assay, WA and SA cells were 
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isolated at day 0, cultured separately for 24 hours, re-mixed and seeded onto a plate overnight, 

then re-isolated at 48 hours after the initial isolation. 

To isolate the weakest and strongest 2% of the MDA-MB-231 cell population for 

migration assays, the seeded plate was subjected to a low shear stress (28 dynes/cm2) for 3 

minutes to isolate WA cells in the flow through from the outlet. The shear stress was then 

increased to a high shear stress (510 dynes/cm2) for 2 minutes to eliminate intermediate cell 

fractions. The remaining steps to isolate SA cells are listed above. The weakest MCF10A and 

MCF10AT cells were isolated using 170 and 130 dynes/cm2 of shear stress, respectively; the 

strongest were isolated using 1,275 and 595 dynes/cm2, respectively. 

2.5.4 Coculture assay 

MDA-MB-231 and MCF10A cells were trypsinized and resuspended in 25 μmol/L of 

CellTracker fluorescent probes (Molecular Probes, Life Technologies) in serum-free DMEM: 

MDA-MB-231 in green CMFDA and MCF10A in Orange CMRA. Cell-dye solutions were 

incubated at room temperature for 20 minutes. The cells were then centrifuged and resuspended 

in MDA-MB-231 media. Cells were mixed 50:50 and seeded such that the final seeding density 

was 5,000 cells/cm2, then incubated overnight. 

Upon isolation of WA and SA cells, both fractions were seeded, incubated overnight, 

then fixed the following day with 3.7% formaldehyde for 10 minutes. Cells were imaged using a 

Nikon Eclipse Ti-S microscope at ×10 magnification with FITC and Texas Red and counted by 

color. 

2.5.5 Measuring percent detachment versus metastatic capability 

MDA-MB-231, MCF7, MCF10A, and MCF10AT cells were subjected to 250 

dynes/cm2 of shear. The detached and adherent fractions were isolated as described and counted 
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to calculate the fraction of cells detached. 

2.5.6 Immunofluorescence staining and FA analysis 

Fixed cells were incubated for 10 minutes at room temperature with CellMask Deep Red 

plasma membrane stain (1:1,000; Thermo Fisher Scientific) in 1 mmol/L MgCl2 solution, 

followed by incubation for 1 hour at room temperature with blocking solution of 10% goat 

serum, 0.1% saponin, 1% BSA, 0.03 M glycine in 1 mmol/L MgCl2 solution. Primary paxillin 

antibody (1:250; ab32084; Abcam) in blocking solution was applied overnight at 4°C. Then, a 

secondary Alexa Fluor 488-conjugated antibody (1:2,000; Invitrogen) in blocking solution was 

applied for 1 hour at room temperature, followed by Hoechst 33342 (1:2,000; Invitrogen) in DI 

water for 10 minutes at room temperature. The cells were subsequently mounted with 

Fluoromount-G (Southern Biotech). The samples were imaged with a Zeiss LSM 780 confocal 

microscope (Zeiss) with a 63× oil-immersion objective. A custom-written ImageJ program was 

used to quantify cell area and FA number and size. All FA metrics were computed across the 

entire cell to avoid regional biases. 

2.5.7 Traction force microscopy 

Cell tractions were measured as described and calculated using a custom MATLAB 

routine122. 2% (v/v) of 0.2 μm diameter 580/605 FluoSpheres microspheres (Invitrogen) were 

added to the prepolymer solution, composed of 5% acrylamide, 0.06% bisacrylamide, 1% 

ammonium persulfate (Thermo Fisher Scientific), and 0.1% (v/v) of N,N,N',N'-

tetramethylethylenediamine (VWR International). Gels were prepared in 12-well glass bottom 

plates (Cellvis), which were precleaned in a UV/Ozone cleaner (ProCleaner Plus; Bioforce 

Nanosciences) and methacrylated to ensure binding of the gel. Collagen was bound to the surface 

by adding 0.2 mg/mL sulfo-SANPAH and activating with UV light (wavelength 350 nm) for 10 
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minutes followed by incubation with 0.15 mg/mL type I collagen. Isolated cells were seeded at 

∼15,000 cells/cm2 on the gels and allowed to adhere for 3 hours. Brightfield images were taken 

of each cell prior to obtaining microsphere displacements at 60×. Bead reference positions were 

then reobtained after removing the cells with a 10% (v/v) Triton X solution for 10 minutes. 

Strain energy was determined from the traction stress map and normalized to cell area. 

2.5.8 Western blotting 

WA and SA cells were isolated and plated in fibronectin-coated 12-well plates for 3 

hours. Cells were lysed with mRIPA supplemented with phosphatase and protease inhibitors as 

described previously172. Protein concentration was measured using a BCA assay. Five 

micrograms of protein were mixed with 50 mmol/L DTT, loading buffer, and mRIPA, heated at 

95°C for 5 minutes, and loaded into a Bolt 4% to 12% Bis-Tris Plus gel (Invitrogen) and then run 

with MES running buffer for 30 minutes at 200 V. Protein was transferred to a nitrocellulose 

membrane using an iBlot Cell Transfer Stack (Invitrogen). Membrane was blocked with 5% 

SeaBlock for 1 hour at room temperature then incubated overnight at 4°C with anti-paxillin 

(Abcam, ab32084), anti-pFAK (Y397; Abcam, ab81298), anti-FAK (Origene, TA506161), anti-

actin (Abcam, ab8226), and anti-GAPDH (Abcam, ab8245). The membrane was then incubated 

for 2 hours at room temperature with Alexa Fluor 680 donkey antimouse (Life Technologies, 

A32788) and Alexa Fluor 790 donkey anti-rabbit (Life Technologies, A11374) antibodies. The 

membrane was imaged using a Li-Cor Odyssey CLx and analyzed using Image Studio Lite (Li-

Cor). 

2.5.9 2D migration assays on collagen gels 

2.4 mg/mL type I collagen gels were prepared by mixing collagen (Corning) with PBS, 

DI water, and 1 M NaOH and adjusted to pH 7.0. Gels were added to a 12-well plate and cured 
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at 37°C for 30 minutes. The weakest and strongest 2% of the cell population were seeded onto 

the gels and incubated overnight. The cells were imaged with a Nikon Eclipse Ti-S microscope 

equipped with a temperature- and CO2-controlled stage. Cells were imaged at 10× in brightfield 

every 15 minutes for 24 hours. The migration data were analyzed via Fiji. The positions were 

normalized to the starting point and analyzed via a custom MATLAB script to compute 

instantaneous speed and cell displacement. Cells that divided or did not remain in the frame for 

24 hours were not tracked. Cells that interacted with other cells for more than 2 hours were not 

tracked, as cell–cell interactions artificially slowed cell speed. For MDA-MB-231 cell migration 

under drug treatment, cells were treated with either 0.2 μg/mL nocodazole (Cayman Chemical) 

or 0.5 μg/mL paclitaxel (LC Laboratories). Cells were imaged the following day for 24 hours and 

tracked as stated above. 

2.5.10 2D migration assays on polyacrylamide gels of varying stiffness 

Polyacrylamide gels of low and high stiffness were prepared as described in the TFM 

methods section, without fluorescent microbeads. The high stiffness prepolymer solution has an 

identical composition to the gels used for TFM, whereas the low stiffness prepolymer solution 

consists of 3% acrylamide and 0.06% bisacrylamide with all other components identical to the 

high stiffness gel. Cells were isolated, seeded, and tracked as described previously. 

2.5.11 Preparing spheroids of MDA-MB-231 cells 

The weakest and strongest 2% of the MDA-MB-231 cell population and unselected cells 

were isolated and seeded in a 12-well plate overnight. Cells were trypsinized and resuspended in 

25 μmol/L CellTracker fluorescent probes (Molecular Probes, Life Technologies) as described 

above. Cells were then centrifuged and resuspended in a solution of 0.25% Methocult in culture 

media. A total of 2,500 cells (either WA or SA) were added to wells in a 96-well Corning Ultra-
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Low Attachment Spheroid Microplate (Corning) then incubated for 48 hours. 

2.5.12 3D migration assays in collagen gels 

Collagen gels were prepared as described previously. Spheroids were embedded in a 

collagen gel solution and added to a 24-well plate. Media was added to the top of the gel, and a 

time 0 image was captured at ×10 magnification with brightfield to obtain initial radius. 

Embedded spheroids were incubated for 24 hours, after which, they were fixed with 3.7% 

formaldehyde in solution A for 20 minutes. Spheroids were imaged with a Zeiss LSM 780 

confocal microscope at ×10 magnification with the FITC and Texas Red channel. Z-stack images 

were acquired at 30 μm intervals from the bottom to the top of the spheroid. Maximum intensity 

projection images were generated and input into a custom Python script to analyze invasive 

index of spheroid and maximum displacement of cells in the spheroid. Invasive index is defined 

as: 

𝐼 =
𝑟𝑓𝑖𝑛𝑎𝑙

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙
      (2.2) 

where 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the radius at time t = 0 hours of the spheroid and 𝑟𝑓𝑖𝑛𝑎𝑙 is the radius at 

time t = 24 hours. 

2.5.13 RNA sequencing 

RNA from WA and SA cells was purified using Qiagen RNeasy Mini Kit (Qiagen, 

74104). RNA quality was assessed using TapeStation (Agilent), RNA libraries were prepared 

using the Illumina TruSeq Stranded RNA, High Throughput Library Prep Kit and sequenced 

using the Illumina HiSeq 4000 system to generate 50 bp single-end reads. Data were analyzed by 

Rosalind (https://rosalind.onramp.bio/), with a HyperScale architecture developed by OnRamp 

BioInformatics, Inc. Reads were trimmed using cutadapt173. Quality scores were assessed using 

FastQC174. Reads were aligned to the Homo sapiens genome build hg19 using STAR175. 
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Individual sample reads were quantified using HTseq176 and normalized via relative log 

expression (RLE) using DESeq2 R library177. Read Distribution percentages, heatmaps, and 

sample plots were generated as part of the QC step using RSeQC178. DEseq2 was also used to 

calculate fold changes and P values. Clustering for the differentially expressed gene heatmap was 

done using the Partitioning Around Medoids method with the fpc R library179. Functional 

enrichment analysis of pathways, gene ontology, domain structure, and other ontologies was 

performed using HOMER180. Enrichment was calculated relative to a set of background genes 

relevant for the experiment. 

2.5.14 qPCR 

RNA from WA and SA cells was purified using Qiagen RNeasy Mini Kit and reverse 

transcribed using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, 18080093). 

Quantitative PCR was performed (45 cycles, 95°C for 15 seconds followed by 60°C for 1 min) 

using a 7900HT Fast Real-Time PCR System (Thermo Scientific, 4329001) with the primers 

listed (Supplementary Table S2.1), and iQ SYBR Green Supermix (Bio-Rad Laboratories, 

1708880). Target genes were normalized to GAPDH and mRNA quantity was calculated on the 

basis of a standard curve generated from a fibronectin plasmid. 

2.5.15 The cancer genome atlas dataset analysis 

The Cancer Genome Atlas (TCGA) raw data were downloaded from NIH NCI GDC Data 

portal directly. Corresponding clinical metadata were obtained from a previous publication181. 

Only the patients with breast cancer (BRCA) with reported negative histological staining for the 

three markers (Her2, ER, PR) and American Joint Committee on Cancer (AJCC) pathology 

stages below stage IV were included in our analysis cohort. Patient data were analyzed to 

determine correlation between gene expression corresponding to WA or SA phenotypes and 5-
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year survival. Patient data were analyzed by normalizing patient gene expression to z-

transformed scores with respect to the differentially expressed genes between the WA and SA 

subpopulations. The z-scores were then summed for every patient, and z-score sum-based 

quantiles were mapped to SA and WA categories based on mean gene expression levels. The 

Kaplan–Meier method was used to create survival plots comparing the 20% of individuals with 

the lowest score to the 20% with the highest score. The log-rank test was used to determine 

significance of survival differences between groups. Survival analyses use the Lifelines python 

library (https://lifelines.readthedocs.io/en/latest/). Relevant scripts for the analysis of TCGA data 

are available at: https://github.com/kec162ucsd/Tumor-Heterogeneity-Adhesion-Strength/. 

2.5.16 Statistical analysis 

2D migration assays, 3D spheroid migration assays, and FA disassembly plots were 

analyzed using a one-way ANOVA with Tukey test for multiple comparisons. Adhesion stability 

remixed population assay was analyzed with a two-way ANOVA, with Sidak multiple 

comparison test. All other comparisons were performed using two-tailed unpaired t test unless 

otherwise indicated. For all analyses, *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 

0.0001. Data expressed as box-and-whisker plots show all points with the whisker ends 

corresponding to minimum and maximum values. All other values are expressed as mean ± SD. 

Statistical analyses were performed using Prism software. 

https://lifelines.readthedocs.io/en/latest/
https://github.com/kec162ucsd/Tumor-Heterogeneity-Adhesion-Strength/
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2.6 Supplementary Information 

 
Supplemental Figure S2.7: PPFC Assembly and Use 

(A) Exploded parts diagram of the flow chamber. Arrows indicate fluid direction. (B) Assembled cross-section 

schematic of the flow chamber with cell locations shown and fluid flow indicated. (C) Image of assembled flow 

chamber (dashed lines). 

 
Supplemental Figure S2.8: Rose Plots of Post-Sort Cells 

Rose plots of MDA-MB231 cells (each colored differently to visualize their paths) selected at 500 dynes/cm2. n=3 

biological replicates and 250 cells/condition shown. 
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Supplemental Figure S2.9 : Migratory Differences in Isogenic MCF10A and MCF10AT Cells 

(A) Average speed and (B) total displacement of MCF10A and MCF10AT cells sorted for the indicated fractions 

and allowed to migrate on collagen gels for 8 hours. n=3 biological replicates and >90 cells/condition. A two-tailed 

unpaired t-test between lines indicated ****p<0.00001. 

 
Supplemental Figure S2.10: Sorted Populations of MDA-MB231 Cells Display Migratory Differences Under 

Different Substrate Stiffnesses 

(A) Average speed and (B) total displacement over 24 hours is plotted for MDA-MB231 weakly and strongly 

adherent cells on soft (300 Pa) and stiff (1.8 kPa) collagen-coated polyacrylamide gels. A two-tailed unpaired t-test 

between lines indicated ****p<0.00001. 
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Supplemental Figure S2.11: Determining Spheroid Front 

To automate the detection process for the leading edge of a spheroid embedded in and migrating through a collage 

gel, image analysis code was written to identify the radial intensity of the spheroid and surround matrix. When that 

line drops to within 2% of baseline, the average radius of the spheroid is calculated. The invasive ratio is then 

calculated. Examples of image used to determine the threshold for average radius (top) and the calculation of 

average radius after 24 hours (bottom) are displayed. 

 
Supplemental Figure S2.12: Other Epithelial Cell Populations Exhibit Migration Differences Post-Sort 

(A) Average speed and (B) total displacement is plotted for NCI-H1299 lung carcinoma cells sorted by the indicated 

shear stress and allowed to migrate on collagen gels for 24 hours. Percentages in panel A reflect the portion of each 

population that detaches or remains adherent at a given stress. n=3 biological replicates for the number of cells per 

condition inset in the bars in panel B. One-way ANOVA with Tukey test for multiple comparisons was used to 

indicate significance where **p<0.0001. 
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Supplemental Figure S2.13: Focal Adhesion Disassembly in Stromal Cation Conditions 

(A) Focal adhesion density and (B) total area per cell area is plotted for the indicated sorting and cation conditions 

for MDA-MB231 cells cultured on collagen. n=3 biological replicates and >50 cells/condition. One-way ANOVA 

with Tukey’s multiple comparison test was performed for the indicated comparisons with **p<0.0001. 

 
 

Supplemental Figure S2.14: Proliferation of Post-Sort Cells in not Different 

BrdU absorbance is plotted for cells post sort. 
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Supplemental Table S2.1: qPCR Primers 

Primer sequences for real time PCR. 

Target Gene Forward Reverse 

GAS2L3 AGCCTGCAATTCAAGTATGGTT TGGTCCGTGTCTGGGAGTC 

DST GATCTTACAGCTCTGCCAGTGTGT AGTAGCTTCTTTGGCATCATTGAA 

KIF14 TGGTGAAATGGCCTGTACAAGT GGCAACCAGTTAACCCTTTGAG 

SYNE2 ACCACCCTATGGAAAGCTACT CATCTCCCATCTGTCGAAGGC 

GAPDH TCGACAGTCAGCCGCATCTTC ACCAAATCCGTTGACTCCGAC 

Fibronectin 

(Standard) AGGCTTGAACCAACCTACGGA GCCTAAGCACTGGCACAACAG 

 
Supplemental Table S2.2: Genes linked to highlighted GO terms that were used for TCGA analysis 

 List of all genes from the ontological terms in Figure 2.4 that were included in the TCGA analysis. Genes are 

shown in alphabetical order. 

 Gene Name Gene Name Gene Name Gene Name 

AHNAK CEP350 KIF11 PEAK1 

AKAP13 CEP97 KIF14 PLEKHH2 

AKAP9 CKAP2 KIF18A PLK2 

ALMS1 CKAP5 KIF18B PSRC1 

APC CNTRL KIF20A PTPN14 

ASPM DCLRE1B KIF20B RANBP2 

ATM DSP KIF4A RBBP6 

BIRC6 DST KNSTRN RCSD1 

BMF DTL KRT17 REEP4 

BRCA2 DYNC1H1 KRT81 RIF1 

BUB1B DYNC2H1 MACF1 SAA1 

CCDC88A E2F1 MAP1B SCLT1 

CCNA1 ESPL1 MCM2 SETD2 

CCNB1 FLG MCM3 SH3PXD2A 

CCNB2 FRMD6 MDN1 SLC7A11 

CCNF GAS2L3 MYH15 SPAG5 

CDC25B GEM MYO5A SPTBN1 

CDC42BPA GEN1 MYO9A SYNE1 

CDC42EP2 GPSM2 NAV1 SYNE2 

CDC45 GTSE1 NDE1 TACC3 

CDC6 HDAC4 NEK2 TOP2A 

CENPE HERC2 PAWR TRIM59 

CENPF HMMR PCNA TTK 

CENPJ HTT PCNT UBR4 

CEP192 KIAA0586 PDE4DIP UTRN 
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CHAPTER 3. ADHESION STRENGTH AND CONTRACTILITY 

ENABLE METASTATIC CELLS TO BECOME ADUROTACTIC 

3.1 Abstract 

Significant changes in cell stiffness, contractility, and adhesion, i.e., mechanotype, are 

observed during a variety of biological processes. Whether cell mechanics merely change as a 

side effect of or driver for biological processes is still unclear. Here, we sort genotypically 

similar metastatic cancer cells into strongly adherent (SA) versus weakly adherent (WA) 

phenotypes to study how contractility and adhesion differences alter the ability of cells to sense 

and respond to gradients in material stiffness. We observe that SA cells migrate up a stiffness 

gradient, or durotax, while WA cells largely ignore the gradient, i.e., adurotax. Biophysical 

modeling and experimental validation suggest that differences in cell migration and durotaxis 

between weakly and strongly adherent cells are driven by differences in intra-cellular actomyosin 

activity. These results provide a direct relationship between cell phenotype and durotaxis and 

suggest how, unlike other senescent cells, metastatic cancer cells navigate against stiffness 

gradients. 

3.2 Introduction 

Durotaxis is a form of directional cell migration in which cells respond to and move 

toward extracellular regions of increasing stiffness83,182. Durotactic migration has been observed 

in a large number of migratory cells of mesenchymal lineage and is almost universally reported 

to occur in both 2D and 3D environments in the direction of increasing stiffness182–184, with some 

speculation that it may occur in reverse185,186. While multi-que migrational responses may occur 
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in vivo187, as the majority of tumors progress, their microenvironment gradually becomes stiffer 

than the surrounding stroma42,188. This suggests that the ability to move against stiffness 

gradients seems to be highly relevant at least in some cancers. Therefore, a breakdown in the 

normal processes regulating durotaxis may contribute to cancer cells developing different 

sensitivities to stiffness gradients leading to an increase in metastatic potential. 

Several mechanisms have been proposed for the molecular basis of durotaxis131,189, but 

how and when these molecular interactions are transduced into a directed force along or against a 

stiffness gradient is unclear. Computational and mathematical models have bridged gaps in our 

understanding of how cell mechanics and the microenvironment affect the speed, 

persistence50,58,76,81,190,191, and emergent behaviors such as durotaxis184,192–194. However, a 

number of these models make additional a priori assumptions about how intra-cellular processes 

are differentially affected by stiffness in order to show durotactic behavior195. Additionally, co-

occurrence of durotaxis, adurotaxis, or anti-durotaxis in similar cell populations, as might occur 

in metastatic tumors, is difficult to explain by current models. 

We hypothesize that mechanotypic heterogeneity across and within cell populations 

might be responsible for differential durotactic behavior in these populations. In recent work, we 

found that adhesion strength acted as a physical marker that sorted isogenic cells into weakly and 

strongly adhesive cell groups that were more versus less contractile and migratory92, 

respectively. RNA sequencing further showed transcriptional differences characteristic of 

distinct mechanotypes that sorted patient outcomes in The Cancer Genome Atlas (TCGA); 

patients with the weakly adhesive gene signatures relapsed at a rate 2-fold higher than the 

strongly adhesive gene signatures. Such differences could contribute to durotactic differences not 

previously observed, and here we show that mechanotypic differences are the proximate driver 
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for differential rigidity sensing and adurotactic behavior. 

3.3 Results 

3.3.1 Adhesion dynamics define an adurotactic phenotype 

Here, we report that weakly adherent populations of various types of cancers cells are 

significantly less durotactic than their strongly adherent counterparts, potentially explaining how 

tumor cells migrate down stiffness gradients. Using the parallel plate flow chamber (PPFC)92, 

cells are isolated based on adhesion strength and seeded onto photopatterned hydrogels with 

alternating soft and stiff elasticity profiles that match Young’s moduli of softer stromal and 

stiffer tumor extracellular matrix (ECM) for each type of cancer (Figures 3.1A and 3.1B ), i.e., 

0.3 and 1.5 kPa for mammary85,196, 4 and 20 kPa for lung197–199, and 10 and 30 kPa for 

prostate200–202. When cells were plated on these gradients and observed by time-lapse video 

microscopy, we found that strongly adherent (SA) cells on average migrate significantly slower 

than their weakly adherent (WA) counterparts for mammary, lung, and prostate cancer cell lines 

(Figure 3.1C; Figure S3.5A) on stiff substrates, and slightly slower on softer substrates. 

Although slower, SA cells for each cell type were more likely to durotax and less likely to 

undergo adurotaxis than WA subpopulations (Figure 3.1D; Figure S3.5B); quantitatively, the 

durotactic odds ratio is calculated as the ratio of the odds that a SA cell is durotactic to the odds 

that a WA cells is durotactic. We found that this ratio was between 1.75 and 3 for durotaxis. 

Conversely for adurotaxis, that ratio was between 0.66 and 0.33 across all cell lines, which 

indicates that SA cells durotax and WA cells adurotax. Consistent with phenotype differences, 

we observe accumulation only of the SA cells over 24 h in culture on patterned substrates as SA 

cells moved from a random distribution to one biased toward stiffer regions (Figure 3.1E; Figure 

S3.5C). These behaviors again are largely conserved across cell lines from multiple tumor types, 
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albeit with varying degrees of effect such that accumulation is most robust for a mammary cell 

line. While the effects are the same, variability may be due in part to inherent mechanotype 

differences. For example, cells sort into WA and SA subpopulations at different shear stress in 

the PPFC; lung tumor cells are less adherent overall with the SA fraction sorting at >180 

dynes/cm2, while prostate and mammary lines require >500 dynes/cm2 to sort their SA fraction.  

 
Figure 3.1: Weakly adherent cells exhibit higher adurotactic behavior 

A) Bright-field image of cells (dots) with lines to indicate transitions between soft and stiff substrate regions of step-

gradient hydrogels (bottom). Double-headed arrows indicate the distance relative to the closest gradient or 

boundary. Atomic force microscopy (AFM) map is also shown (center) with corresponding color map (top). Position 

is indicated in micrometers. (B) Plot of average substrate stiffness versus position for step-gradient hydrogels (n > 

3). Error bars represent standard deviation. (C) MDA-MB-231 cell speed on soft or stiff side of step-gradient 

hydrogels is plotted. Data are shown for cells sorted by adhesion strength, i.e., weakly (orange) versus strongly 

(blue), and cells on softer (open) versus stiffer (closed) regions. (n > 144 cells for each condition from triplicate 

experiments). ∗p < 0.05, ∗∗∗p < 10−3, ∗∗∗∗p < 10−4 were determined by one-way ANOVA with Tukey test for 

multiple comparisons for the indicated comparisons. (D) For adhesion-sorted MDA-MB-231 cells that encounter the 

step gradient, the fraction of durotactic, anti-durotactic, and adurotactic behavior is plotted. Data represent n = 45 of 

144 WA cells and 88 of 237 cells that crossed the gradient over triplicate experiments. Comparisons made using a 

Fisher’s exact test for the same migration behavior between WA and SA cells, ∗p < 0.05. (E) At 0 and 24 h, 

probability density function of MDA-MB-231 cell distribution (calculated using the unbounded kernel density 

function) versus hydrogel position is shown for weakly (orange) versus strongly (blue) adherent cells from triplicate 

experiments. The stiffer region is shaded in gray. Blue arrow indicates a peak in the strongly adherent cell 

distribution at 24 h. 

To understand what gives rise to mechanotype, we first measured traction forces across 

adhesion-sorted cell lines. We found that weakly adherent tumor cells exhibit higher traction 
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forces—measured for prostate cell lines on both single modulus soft and stiff substrates (Figure 

S3.6A) and for mammary cell lines on single modulus stiff substrates mimicking their fibrotic 

niche (Figure 3.2A); the lung cell lines were generally less adherent, and thus we did not observe 

significant traction differences (Figure S3.6A). This general trend, however, may appear 

counterintuitive: first, that weakly adherent cells generate stronger forces, and second, that cells 

generating stronger forces show decreased durotaxis and increased adurotaxis. We note that, as 

WA cells approached the gradient from either side, their velocities are dependent on distance to 

the boundary irrespective of the side they are approaching from, while SA cell speed generally 

increases moving from softer to stiffer substrates (Figure S3.6B). This suggests possible traction 

force redistribution along the cell length for the WA cells as they move across the stiffness 

gradient. We also noted that focal adhesion sizes were stiffness dependent for SA cells, while 

focal adhesion sizes for WA were the similar on either stiffness (Figures S3.7A and S3.7B). 

These observations suggest that adurotaxis could arise from a lack of change in balance between 

adhesion dynamics, redistribution of traction forces across the stiffness gradient, or both. 

Conversely, what does not appear to regulate durotaxis are differences in cytokine expression; 

blotting of 105 cytokines showed only 4 that were expressed above background and none were 

differentially expressed (Figure S3.7C). 
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Figure 3.2: Higher forces on catch bonds leads to adurotactic behavior 

(A) Traction force, normalized to cell area, is plotted for MDA-MB-231 cells on single-modulus hydrogels. Data are 

shown for weakly (orange) versus strongly (blue) adherent cells, (n > 50). ∗p < 0.05 was determined by one-way 

ANOVA with Tukey test for multiple comparisons. (B) Schematic of bond lifetime versus force with bond states for 

weakly (orange) versus strongly (blue) adherent cells as used in the computational model. (C) Force/FA versus 

substrate elasticity for catch (solid lines) and slip bonds (dashed lines) comparing 30 pN max SF force (blue) and 45 

pN max SF force (orange), predicted by computational model. (D) Average FA lifetime plotted versus substrate 

elasticity for the same simulations. (E) Schematic of cells migrating over a step gradient. For durotactic cells, higher 

tractions and longer bond lifetimes on the stiff side drive adhesion maturation and net migration toward the stiffer 

substrate. For adurotactic cells, tractions balance across the boundary due to longer bond lifetimes on the soft side of 

the step gradient. (F) Histogram of all X component forces simulated over 1 h for a cell fixed at a step gradient, 

comparing 30 pN max SF force (blue) and 45 pN max SF force (orange). Inset shows model cell with protruding 

stress fibers and X component force (green arrow), Y component force (red arrow), and resultant force (blue arrow). 

(G) X and Y component forces versus max SF force for slip bonds (top) and catch bonds (bottom) from the 

computational model. Colors match the arrows in inset for Figure 3.2E. Error bars represent standard deviation. 
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To test the above suggestions, we employed a focal adhesion maturation and traction 

force generation model dependent on catch bond dynamics between cell-adhesion proteins and 

the substrate (Figure 3.2B). In this model, polymerizing actin fibers bind to substrate bound 

adhesion proteins, mature into actin-myosin stress fibers (SFs) and focal adhesions (FAs), and 

generate traction forces between the cell and the substrate. The focal adhesions grow/shrink via 

addition/dissociation of individual integrin-substrate bonds and SF recruitment in a force-

dependent manner. Stress fibers are limited by the maximum force that each one can generate, 

i.e., max SF force, and ideally corresponds to the myosin stall force of collectively contracting 

heads against the actin stress fiber; max SF force is reached exponentially as the stress fiber pulls 

against the substrate51. The substrate stiffness in this model controls the rate of force increase in 

the stress fibers (Equation 3.5), which in turn alters the force generated in each stress fiber 

dependent on the associated integrin-substrate adhesion lifetime. The forces driving cell 

migration are obtained by vectorially summing forces in all the FA bound SFs within the cell at 

any given instant. Using this model, we compared the effect of integrin catch and slip bonds 

dynamics43 on the force per adhesion and on focal adhesion lifetimes as a function of substrate 

stiffness for cells with different max SF force (assigned from prior observations of SF force51). 

As a function of substrate stiffness, both catch and slip bonds show increased force per focal 

adhesion, with catch bonds generating and sustaining higher forces due to bond strengthening 

and recruitment of secondary stress fibers (Figure 3.2C). For focal adhesion lifetimes, lifetimes 

with slip bond dynamics remained constant across relevant substrate stiffness. For catch bonds, 

however, lower max SF forces saturated focal adhesion lifetimes at higher values whereas higher 

max SF forces exhibit a small peak near normal mammary stiffness and then drop to saturate at a 

lower value at higher stiffnesses (Figure 3.2D). These data suggest that max SF force and 
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stiffness-dependent values for FA lifetimes optimize cell-migration forces for a given 

mechanotype. To test the predicted changes in adhesion lifetimes based on substrate stiffness, we 

applied a range of shear stress to cells cultured on substrates resembling normal and pathological 

mammary stiffness using a population-based adhesion assay203. We found that cells selected on 

glass as weakly but not strongly adherent could modulate their average adhesion strength and 

become more adherent in softer conditions (Figure S3.7D). These results align with model 

predictions based on catch-bond dynamics between the cell-adhesion receptors and the substrate 

(solid lines in Figure 3.2D). Since average FA lifetime is more substrate stiffness sensitive for 

weakly adherent cells and identical to strongly adherent cells on softer substrates, these data 

suggest that weakly adherent cells are less adherent and primed to migrate on stiffer substrates 

with lower FA lifetimes. These correlations will next be explored in a cell-based model to 

understand mechanotype mechanisms. 

3.3.2 Actomyosin contractility defines adhesion phenotype and explains migration behavior 

In this model framework (Figures S3.8A and S3.8B), we compared a range of max SF 

forces, finding that 30 pN indeed corresponds to peak bond lifetime at high substrate stiffness but 

that at higher max SF force, softer substrates experience longer bond lifetimes. We also found 

monotonically increasing force per adhesion for catch bonds, consistent with higher traction 

forces seen experimentally in WA cells (Figure 3.2A). Bond lifetimes were insensitive to 

stiffness for slip bonds, while force per adhesion increased monotonically as with catch bonds 

(Figure S3.8C). The relationship between average bond lifetime and substrate elasticity suggests 

that by increasing max SF force, a scenario could arise in which a cell’s catch bonds are more 

stable adhesions on a softer substrate (Figure 3.2E). Stress fibers attached to those adhesion sites 

would have more time to pull a WA cell in the direction of the softer substrate, balancing 
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numerous shorter-lived forces in focal adhesions on the stiffer region. To illustrate this, we fixed 

a cell at the step gradient interface and measured force generated parallel (𝐹𝑥) and perpendicular 

(𝐹𝑦) to the gradient. On average, cells with 30 pN max SF force had a positive Fx, indicating that 

the overall force on the cell is pulling it toward the stiffer substrate, whereas cells with 45 pN 

max SF force had neutral 𝐹𝑥, suggesting the cell would behave adurotactically (Figure 3.2F). 

This scenario requires cell-surface adhesions to behave as catch bonds, which appears 

reasonable130,204,205. We would also note that when slip bond dynamics are used, it results in cells 

with higher max SF force to durotax (Figure 3.2G), which would be at odds with experimental 

results where WA cells are more contractile but less durotactic than SA cells. 

The main input required for this model is the max SF force of the WA and SA mammary 

cells, but with this difference cell-migration speeds and traction forces match experimental 

observations with the small exception of migration speeds of SA cells on soft substrates, which 

go up slightly according to the model (Figures 3.3A and 3.3B). While a fine tuning of other 

model parameters can fix the disparity, we focus only on the effect of max SF force here and 

maintain other parameter values at those commonly found in literature. Additionally, just this 

difference in max SF force enables the model to correctly predict durotactic differences (Figure 

3.3C) and the accumulation of SA cells on stiffer substrates versus uniform distribution of WA 

cells across the gradient over 24 h for mammary cells (Figure 3.3D). Importantly, when substrate 

stiffness is altered to resemble the prostate cancer stiffness gradient200–202, mammary cell 

parameters (Table S3.1) cause SA cells to not durotax (Figure S3.8D). However, when substrate 

stiffness range is maintained, i.e., 0.35 to 1.8 kPa, but the gradient made shallower, we do not 

observe changes in cell accumulation on the stiff region of the substrate for SA cells; i.e., they 

continue to durotax; for WA cells under the same conditions, they still fail to accumulate (Figure 
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S3.8E). Thus, it would appear that durotactic and adurotactic behaviors may not be very sensitive 

to gradient magnitude but rather the mere presence of a gradient. 

 
Figure 3.3: Differential bond stiffness affect tractions to induce adurotaxis 

(A) Model cell speed on simulated on soft or stiff side of step gradient is plotted. Data are shown for cells of 

differing max SF force, i.e., 45 pN (orange) versus 30 pN (blue), and cells on softer (open) versus stiffer (closed) 

regions. (n = 100 cells for each simulation). (B) Average traction force per focal adhesion, as determined from the 

computational model, is plotted for 45 pN (orange) and 30 pN (blue) max SF force (n = 100 cells for each 

condition). ∗p < 0.05, ∗∗p < 10−2, ∗∗∗p < 10−3, ∗∗∗∗p < 10−4 were determined by one-way ANOVA with Tukey 

test for multiple comparisons for the indicated comparisons in (A) and (B). (C) For model cells that encounter the 

step gradient, the fraction of durotactic, anti-durotactic, and adurotactic behavior is plotted. Data represent n = 44 of 

100 and 36 of 100 cells simulated at 45 and 30 pN, respectively; those not counted did not interact with the gradient. 

Comparisons made using a Fisher’s exact test for the same migration behavior between 30 and 45 pN conditions, ∗p 

< 0.05 and ∗∗p < 0.01. (D) At 0 and 24 h, the model probability density function (PDF) of cell distribution versus 

simulated hydrogel position is shown for cells with 45 pN (orange) versus 30 pN (blue) max SF force. The stiffer 

region is shaded in gray. Blue arrow indicates a peak in the 30 pN cell distribution at 24 h. ∗p < 0.05, ∗∗p < 10−2, 

∗∗∗∗p < 10−4 were determined by paired Student’s t test for the indicated comparisons unless otherwise stated. 
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3.3.3 Adurotactic phenotype is titratable by myosin activity 

 The dependence of durotaxis on a change of max SF forces implies that the number of 

active myosin motors per SF filament could affect behavior; prior work suggests that such 

differences could impart control over cell migration and stiffness206. To validate such control in 

our system, we reduced the number of active myosin motors within a cell, i.e., SF force, finding 

that it increases the durotactic tendency of cells as predicted by the model between 30 and 45 pN 

(Figure 3.4A). Furthermore, we tested this experimentally by inhibiting the myosin II activity of 

WA mammary cells with blebbistatin. Cell speed decreased for blebbistatin treated cells on soft 

and stiff substrates (Figure 3.4B), resulting in similar velocities as untreated SA cells. 

Furthermore, treated cells are 2-fold more likely to migrate from the soft substrate into the stiff 

substrate and much less likely to exhibit antidurotactic migration (Figure 3.4C). WA mammary 

cells also showed a dose-dependent response to blebbistatin treatment, wherein the WA 

phenotype became more durotactic, resembling the durotactic behavior of SA cells (Figure 

3.4D). Conversely, SA mammary cells also showed a dose-dependent response to 

lysophosphatidic acid treatment, wherein the SA phenotype became less durotactic, resembling 

the adurotactic behavior of WA cells (Figure 3.4E). These data confirm the suggestion that max 

SF force, as produced by the number of active myosin motors per SF filament, enables WA cells 

to exhibit less durotaxis and is a mechanical argument for why WA cells metastasize. 
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Figure 3.4: Tuning contractility modulates adurotaxis in adhesion-sorted cells 

(A) Model PDF of cell distribution versus simulated hydrogel position as predicted for 30 (purple), 35 (yellow), 40 

(red), and 45 pN (blue) max SF forces at t = 0 and t = 24 h. Durotactic tendency increased with decreasing max SF 

force. (B) Weakly adherent MDA-MB-231 cell speed on soft or stiff side of step-gradient hydrogels for cells is 

plotted. Data are shown for blebbistatin-treated and nontreated cells, i.e., DMSO (orange) versus 100 μM (blue), and 

cells on softer (open) versus stiffer (closed) regions. (n > 245 cells for each condition from triplicate experiments). 

∗∗∗p < 10−3, ∗∗∗∗p < 10−4 were determined by one-way ANOVA with Tukey test for multiple comparisons for the 

indicated comparisons. (C) For treated and nontreated weakly adherent MDA-MB-231 cells that encounter the step 

gradient, the fraction of durotactic, anti-durotactic, and adurotactic behavior is plotted. Data represent n = 154 of 256 

DMSO-treated and 167 of 245 blebbistatin-treated cells over triplicate experiments; those not counted did not 

interact with the gradient. Comparisons were made using a Fisher’s exact test for the same migration behavior 

between treated and DMSO, ∗p < 0.05. (D) Weakly adherent MDA-MB-231 PDF of cell distribution was plotted 

versus hydrogel position for blebbistatin treatment of 100 μM (purple), 10 μM (yellow), 1 μM (red), or DMSO 

(blue) at t = 3 and t = 27 h. (E) Strongly adherent MDA-MB-231 PDF of cell distribution was plotted versus 

hydrogel position for LPA treatment of 10 μM (yellow), 1 μM (red), or DMSO (blue) at t = 3 and t = 24 h. 
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3.4 Discussion 

The findings of this work help explain how a metastatic cell’s distinct mechanotype 

correlates to the paradoxical migration down a stiffness gradient that occurs during cancer 

metastasis. Cancer cells isolated by their adhesion strength from a seemingly isogenic population 

exhibit consistent behavior across different cell lines from vastly different cancer types; 

moreover, each cancer type exhibits adurotaxis in their tumor-specific niche, which change 

dramatically for step gradient strength (between 3- and 5-fold) and gradient range (from 0.3 to 30 

kPa). Despite these differences, greater contractility in weakly adherent cells is conserved and 

led to decreased durotactic behavior that is not directly governed by lack of rigidity sensing, as 

evidenced by slow down at the gradient boundary. From previous work, RNA sequencing shows 

a distinct underlying phenotype for weakly versus strongly adherent cells with differences in 

cytoskeletal protein expression, which relates to decreased progression-free and disease-free 

intervals when compared to the gene expression signatures of human patients92. A weakly 

adherent cell’s ability to migrate against stiffness gradients connects this observation to the 

material properties of the niche, which contribute to its increased metastatic potential. 

Computational modeling suggests that mechanotype differences in weakly and strongly 

adherent cells arises from increased contractility. Furthermore, it demonstrates that catch bonds 

are a necessary component for the diverging migratory behaviors seen in metastatic cells. 

Interestingly, catch-bond dynamics have been largely left out of most cell-migration and FA 

dynamics models until recently207. Additionally, the model is able to simulate cells that exhibit 

both durotaxis and adurotaxis without relying on any a priori assumptions about how rigidity 

sensing mechanisms are uniquely dependent on substrate stiffness184. Actomyosin activity within 

in single stress fiber largely determines the stress a single bond experiences206, with substrate 
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stiffness affecting maximum force loading rate. The biphasic nature of catch bond lifetime 

allows cancer cells to become more migratory and less durotactic with increased contractility, 

which likely contributes to the greater metastatic potential as well as sets population stability as 

observed experimentally92. That being said, while our data suggest a cytoskeletally driven 

mechanism, it does not rule out confounding issues from adhesion location, composition, or 

dynamics. 

While material properties change between tumors85,196–202 and can be affected by cancer 

treatment47, we found that durotactic behavior and migration speed can be tuned by actomyosin 

contractility, without any direct tweaks to protein expression levels. This suggests that the 

differences in migratory behavior are indeed linked directly to cell mechanotype within its niche. 

This may also explain why drugs that specifically target proteins involved in cell contractility are 

so effective at reducing invasion and metastasis. Yet tumors are heterogeneous and likely contain 

cells that encompass a range of actomyosin activities. Additionally, the ECM surrounding tumors 

show dynamic, non-linear properties, which are known to influence the outcome of tumor 

progression and metastasis208–210. These heterogeneities and tumor plasticity could present some 

key challenges to drug development. While our current in vitro and in silico models do not focus 

on these parameters, our results suggest that future metastatic modeling should couple adhesion 

dynamics, stress fiber considerations, and heterogeneity in cellular and ECM mechanics when 

identifying the lowest effective dose required to prevent metastasis. 

3.5 Methods 

3.5.1 Cell culture 

Human metastatic cell lines used in this study include MDA-MB-231 (mammary, female 

51 years), PC-3 (prostate, male 62 years), and NCI-H1299 (lung, male 43 years). MDA-MB-231 
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cells were cultured in DMEM, 10% FBS, and 1% antibiotic/antimycotic; PC-3 cells were 

cultured in F-12K, 10% FBS, and 1% penicillin/streptomycin; NCI-H1299 cells cultured in 

RPMI 1640, 10% FBS, and 1% antibiotic/antimycotic. All cells were purchased from ATCC and 

authenticated by morphology, growth curve, and isoenzyme analysis. PCR was used to verify 

cultures were free of Mycoplasma, and cells were not used beyond passage 11. Media reagents 

were purchased from Life Technologies. 

3.5.2 Fabrication of step-gradient polyacrylamide gels 

 We used a two-step photopolymerization method described previously105 to produce 

hydrogels with alternating elasticity profiles. Acrylamide concentrations of the prepolymer 

solutions were modified to obtain elasticities matching that of the tumor and stromal 

environment of each type of cancer. For breast cancer hydrogels, 3% acrylamide (3.7% for lung, 

6.4% for prostate) and 0.4% bis-acrylamide were used for the first prepolymer solution, which 

was polymerized between a methacrylated 18mm coverslip and a chlorosilanated glass slide by 

exposing to ultraviolet light (350 nm) for 5 minutes, using 2-hydroxy-4’-(2-hydroxyethoxy)-2-

methylpropiophenone (0.5%) as the photo-initiator. The PA hydrogel was removed from the 

chlorosilanated glass slide and dehydrated for 1 hour on a hot plate at 30ᴼ C prior to rehydrating 

with a 2% acrylamide (3.7% for lung, 3.2% for prostate) and 0.4% bis-acrylamide prepolymer 

solution. The rehydrated gel was again exposed to UV light for 5 min through a high-resolution 

chrome patterned photomask 200 μm dark stripes and 100 μm clear stripes. The Young’s moduli 

of each region were validated using atomic force microscopy. 

The hydrogels were then placed in a 12-well plate on top of 50 μl of 2 mg/ml of collagen 

I to adhere the coverslip to the bottom of the well. After the collagen polymerized, the gels were 

immersed in a solution of sulfosuccinimidyl 6-(4’-azido-2′-nitrophenylamino)hexanoate (0.2 
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mg/ml, Sulfo-SANPAH; Pierce) dissolved in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid buffer (pH 8.4, 50 mM) and exposed to UV light (350 nm) for 10 minutes. After washing 

several times with PBS, the functionalized surface of the gels was coated with collagen I (150 

μg/ml) by incubating overnight at 37ᴼ C. 

3.5.3 Isolating weakly and strongly adherent cells 

Weakly and strongly adherent cells were isolated at varying shear stresses using a parallel 

plate flow chamber92. To ensure sufficient spacing between individual cells, MDA-MB-231 and 

NCI-H1299 cells were seeded at ~1800 cells/cm2 onto a fibronectin (2 μg/cm2) coated glass 

plate and incubated overnight. PC-3 cells were found to detach more consistently on a collagen I 

(1 μg/cm2) coated glass plate and seeded lower at 1500 cells/cm2. For each cell line, PBS free of 

magnesium and calcium and with 4.5 g/L of dextrose was used to shear cells. Shear stresses used 

to detach the weakly adherent (WA) population were selected to collect about 20,000 cells at a 

given flow rate (3 min at 30 dynes/cm2 for MDA-MB-231, 3 min at 60 dynes/cm2 for PC-3 and 

NCI-H1299 cells). The strongly adherent (SA) population was collected after washing away the 

intermediate population at a higher shear stress (2 min 500 at dynes/cm2 for MDA-MB-231, 5 

min at 300 dynes/cm2 for NCI-H1299, and 2 min at 750 dynes/cm2 for PC-3), and detaching the 

remaining SA population using 0.25% trypsin-EDTA. Media was then pumped though the 

device to neutralize the trypsin and collect the SA cells. Collected cells were then seeded onto 

hydrogels and allowed to adhere for at least 2 hours prior to imaging. 

3.5.4 Population-based adhesion assay 

Cells were seeded onto 0.35 and 1.8 kPa hydrogels attached to 25 mm glass coverslips 

that were functionalized with 10 μg/mL human fibronectin. Cells were seeded at a density 

~1,800 cells/cm2 to minimize cell-cell contact. Cells attached to coverslips for a minimum of 12 
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hr using appropriate cell culture media at which time they were then mounted on a custom-built 

spinning-disk device203, submerged into temperature-controlled PBS free of magnesium and 

calcium and with 4.5 g/L of dextrose, and exposed to a range of fluid sheer–depending on 

rotational speed–for 5 min. Once spun, cells were then fixed with 3.7% formaldehyde. Cell 

nuclei were then stained with 4’,6-Diamidino-2-Phenylindole (DAPI, 1:2500) and imaged using 

a CSU-X1 confocal scanner unit (Yokogawa), QuantEM:512SC camera (Photometrics), and MS-

2000-WK multi-axis stage controller (Applied Scientific Instrumentation) on a Nikon Ti-S 

microscope. Metamorph 7.6 software and a custom-written MATLAB script 

(https://github.com/englea52/EnglerLab, MathWorks, Natick, MA) was used to stitched together 

1500 individual images of nuclei and quantify average cell adhesion, i.e., τ50, which is defined 

as the shear stress at which 50% of the initial cell population is removed by shear stress. Shear 

stress was calculated based on Equation 3.1: 

τ =
4

5
r√ρμω3      (3.1) 

where r is the radial position from the center of the disk, ρ is the buffer density, μ is the buffer 

viscosity, and ω is the rotational velocity. 

3.5.5 2D migration assays 

 Isolated cells were seeded at ~1500 cells/well onto step-gradient gels fixed in a 12-well 

plate and allowed to adhere for no more than 2 hours to ensure a random distribution across the 

step-gradient at the start of imaging. The cells were imaged over 24 hours using a Nikon Eclipse 

Ti-S microscope equipped with a temperature and CO2 controller (Pathology Devices Inc., 

LiveCell). Images at multiple cell positions were taken in brightfield at 10x every 15 minutes. 

Cell trajectories were collected and analyzed using a custom MATLAB script 

(https://github.com/compactmatterlab/Durotaxis, MathWorks, Natick, MA). To prevent biases 
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due to differences in cell division on soft or stiff substrates, daughter cells were excluded in 

trajectory analysis. From cell trajectories, we categorized cell migration as durotactic, anti-

durotactic, or adurotactic, meaning that cells migrated across the substrate stiffness boundary 

only from soft to stiff, only from stiff to soft, or crossed the boundary multiple times, 

respectively; cells never approaching the boundary were not categorized. Trajectories were used 

to determine the distance between each cell and its closest soft-stiff boundary and plot the 

distribution of cells across the boundary. For cell migrating under drug treatment, cells were 

treated with either DMSO, 1μM, 10μM, or 100μM (S)4’nitroBlebbistatin (24171, Cayman 

Chemical Co.) or lysophosphatidic acid and imaged 3 hours after treatment for up to 24 hours. 

3.5.6 Traction force microscopy 

 Traction forces were measured as previously described and calculated using a custom 

MATLAB script122. Cells were seeded on to single-modulus polyacrylamide hydrogels with an 

elasticity matching their respective tumor microenvironment. Prepolymer solutions contained 2% 

(v/v) of 0.2 μm diameter 580/605 FluoSpheres microspheres (Invitrogen). Gels were prepared as 

we previously described92 in 24-well glass bottom plates (Cellvis). Cells were seeded at ~5,000 

cells per well and allowed to adhere for at least 3 hours. Brightfield images were taken at 60x to 

obtain cell areas as measured in ImageJ. Bead images were then captured every minute for 30 

minutes. Reference images were then taken after removing the cells with 10% (v/v) Triton X 

solution. Traction forces were determined from the traction stress map and normalized to cell 

area. 

3.5.7 Computational modeling 

 To understand how durotaxis and adurotaxis can occur due to differences in cell 

contractility and adhesion dynamics, we built a computational model that incorporates focal 
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adhesion formation, stress fiber (SF) mediated force generation, and catch or slip bond dynamics 

between the cell receptors and surface adhesion sites. This model is described in detail below. 

1) A cell is defined by a central point. A random number of stress fibers, obtained from a 

Poisson distribution with mean 𝜇𝑆𝐹, are generated about the central point. Each stress fiber 

has an initial length equal to the radius of the cell (5 μm) and is oriented radially. The angular 

distribution of these stress fiber is uniform from 0 to 2π radian. 

2) These stress fibers can then grow in length radially based on the rate of actin polymerization 

(𝑣𝑎𝑐𝑡_𝐿 if along the leading edge, defined by a region within -π/2 and π/2 radians of the cell 

migration direction, or 𝑣𝑎𝑐𝑡_𝑇 if in the direction of the trailing edge, a region complimentary 

to the leading edge) or shrink in length based on the rate of depolymerization (𝑣𝑟𝑒𝑡). (Initial 

cell migration direction is picked randomly, though this changes as described in part 7). The 

stress fibers switch from polymerization to depolymerization sporadically at time intervals 

generated from an exponential random number based on an average retraction time (𝑡𝑟𝑒𝑡), 

while depolymerization stops when the stress fiber reaches a minimum length (assumed to be 

the cell radius). The polymerizing and depolymerizing stress fibers are free to diffuse 

angularly about the cell center, with a diffusion coefficient dependent on the length of the 

SF211, Equation 3.2. 

𝐷𝑟𝑜𝑡 =
3𝑘𝐵𝑇𝑙𝑛(𝐿 𝑑𝑎𝑐𝑡⁄ )

𝜋𝜂𝐿3
     (3.2) 

Here 𝑘𝐵 is Boltzmann’s constant, 𝑇 is temperature, 𝐿 is the length of the actin filament, 𝑑𝑎𝑐𝑡 

is the diameter of an F-actin, and 𝜂 is the viscosity of the cytoplasm. 

3) Both polymerizing and depolymerizing SFs can bind to the substrate at their free end and 

begin to form a focal adhesion via integrin-substate bonds. This arrests the growth, shrinking 

and diffusion of the SF. The newly formed ECM-integrin-SF complex may be comprised of 
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solely an adaptor protein (i.e., paxillin212, zyxin213, etc.214–216), an adaptor protein with a 

stress sensor protein (i.e., vinculin217,218, talin218,219), or branched (i.e., Apr2/3220) with some 

combination of adaptor and tension sensor proteins. The dynamics of these protein 

interactions are modeled by first determining the SF-integrin-ECM binding probability, 

calculated by Equation 3.3, 

𝑃𝑜𝑛 = 1 − 𝑒−Δtkon     (3.3) 

where Δ𝑡 is the model’s timestep and 𝑘𝑜𝑛 is the assembly rate of the SF-integrin-ECM 

complex. The number of integrins bound to the SF is determined stochastically using the 

Poisson distribution with an average given by the average number of integrins/F-actin (𝜇𝐼𝑛𝑡). 

We assume stress fibers with more than one integrin have a branching protein already bound 

to the SF prior to assembly of the complex. Likewise, each integrin has a certain probability 

(𝑃𝑡𝑎𝑙) of being bound to a stress sensor protein prior to complex assembly. 

4) Integrin-ECM bonds have a certain probability of unbinding based on the applied load on 

each bond via the SF and the catch or slip bond dynamics measured experimentally130 by 

Kong et al. and calculated by (Equation 3.4a), (Equation 3.4b), (Equation 3.4c), 

𝑃𝑜𝑓𝑓 = 1 − 𝑒Δ𝑡𝑘𝑜𝑓𝑓(𝑓)      (3.4a) 

𝑘𝑜𝑓𝑓(𝑓) = [𝐴𝑒
−

𝑓𝜉
𝑘𝐵𝑇⁄

+ (𝐵𝑒
𝑓𝜉

𝑘𝐵𝑇⁄
+ 𝐶𝑒

−
𝑓𝜉

𝑘𝐵𝑇⁄
)

−1

]

−1

𝑓𝑜𝑟 𝑐𝑎𝑡𝑐ℎ  (3.4b) 

𝑘𝑜𝑓𝑓(𝑓) = 𝐾0𝑒
𝑓

𝐹𝑏
⁄

 𝑓𝑜𝑟 𝑠𝑙𝑖𝑝     (3.4c) 

where 𝐴, 𝐵, and 𝐶 are constants, 𝜉 is the unbinding length, and 𝑓 is the load on an individual 

bond. For slip bonds, 𝐾0 is the unloaded off rate and 𝐹𝑏 is the characteristic bond rupture 

force72. When a single SF is bound to multiple integrin-ECM bonds, the SF forces is 

distributed equally across each of these bonds. 
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5) The SF force increases exponentially with time51 based on Equation 3.5,  

𝐹 = 𝐹𝑠 (1 − 𝑒
−

𝑣0𝐾𝑒𝑐𝑚𝑡
𝐹𝑠

⁄
)     (3.5) 

where 𝐹𝑠 is the max SF force, determined by the myosin motor force (𝐹𝑚𝑦𝑜) times the 

number of myosin motors (𝑛𝑚𝑦𝑜). 𝑣0 is the myosin sliding velocity and 𝐾𝑒𝑐𝑚 is the 

underlying ECM stiffness. The model is based on the linear force velocity relationship of 

molecular motors such as non-muscle myosin II221, and a simple two-spring model. The 

stiffness of the ECM is converted from the user defined Young’s modulus (𝐸𝑠𝑡𝑖𝑓𝑓, 𝐸𝑠𝑜𝑓𝑡) by 

multiplying the modulus with a characteristic length (set to 0.1 μm) based on the order of 

magnitude for molecular sensing of myosin and related motor protein structures, e.g., thin 

filaments. The ECM stiffness value is spatially varied to simulate the photopatterned PA 

gels with a gradient length (𝐿𝑔𝑟𝑎𝑑) of 10μm between the soft and stiff regions, as determined 

from AFM measurements. The stiffness of the protein complexes involved in the ECM bond 

is neglected as they are an order of magnitude stiffer than the underlying substrate. 

6) If a tension sensor protein experiences a sufficiently large force 𝑓 > 𝐹𝑡ℎ𝑟𝑒𝑠 it opens actin 

binding sites for recruiting new SFs217,218, leading to FA growth and maturation. A new SFs 

(not one of the existing SFs) will bind to this open site with a given probability determined 

by Equation 3.6, 

𝑃𝑎𝑐𝑡 = 1 − 𝑒−𝑡𝑆𝐹𝐾𝑎𝑐𝑡      (3.6) 

where 𝑡𝑆𝐹 is the time the binding site has been open and 𝐾𝑎𝑐𝑡 is the SF binding rate. Number 

of new SFs that can be recruited is limited by a finite max number of SFs possible in the cell 

(𝑛𝑆𝐹). The new stress fibers are not explicitly simulated as the initial free SFs described in 

part 2, but are included as newly formed ECM-Integrin-SF complexes described in part 3, 

within the vicinity of and parallel to the recruiting ECM-Integrin-SF complex. 
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7) The forces at all bound ECM-Integrin-SF complexes are then summed (∑ �⃗�) to get the net 

force on the cell, which is divided by the friction factor due to bound integrins to calculate 

the distance the cell will move before the next time step, Equation 3.7. 

𝑑 = Δ𝑡
∑ �⃗�𝑖

𝑛𝑏Π
     (3.7) 

where 𝐹 is the force generated by each SF, 𝑛𝑏 number of active integrin bonds, and Π is the 

friction factor for an individual bond. The direction of migration also determines the new 

leading and trailing edges of the cell. 

8) SF ends attached to active integrin bonds remain stationary in space as the cell moves. ECM-

Integrin-SF complexes deteriorate if all integrin-ECM bonds an SF is attached to are broken. 

When no ECM-Integrin-SF complexes remain attached in the FA, the FA is dissolved 

releasing a free SF into the cell. The position of the free SF end is updated with the cell 

position before the next iteration begins. 

9) During any timestep, the dynamics of the free SFs (SFs not bound to integrins) are 

determined as described in part 2. 

Values for each parameter used in this model are shown in Table S3.1. We simulate 24 hours of 

cell migration, and track the cells position relative to the soft/stiff boundary as in the time-lapse 

microscopy images. The model loops through the flow schematic in Figure S3.8A and described 

in detail above, with each loop comprising a single timestep. 

3.5.8 Immunofluorescence staining and FA analysis 

 MDA-MB-231 cells were seeded onto single moduli gels (either 0.48 kPa or 1.8 kPa) and 

allowed to adhere overnight. Cells were washed with PBS with cations and fixed with 4% 

paraformaldehyde for 10 minutes. Fixed cells were then stained with deep red cell mask in PBS 

(1:1000 v/v; Thermofisher Scientific) for 10 minutes. 0.1% TritonX in PBS was used to 
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permeabilize the cells for 10 minutes. Blocking was done with PBS supplemented with FBS 

(10% v/v, Gemini Bio) for 20 minutes at room temperature. Cells were incubated overnight at 4ᴼ 

C with primary paxillin antibody (1:500; ab32084, Abcam) in blocking buffer. Gels were then 

washed with blocking buffer and incubated with secondary Alexa Fluor 488-conjugated antibody 

(1:500; A11008, Invitrogen) and rhodamine phalloidin (1:3000, R415, Thermofisher Scientific) 

for 1 hour at room temperature, followed by Hoechst 33342 (1:2000; Invitrogen) in DI water for 

10 minutes. Coverslips were then mounted onto slides with Flouromount-G (Southern Biotech). 

Samples were imaged using a Zeiss LSM 780 confocal microscope (Zeiss) with a 63x oil-

immersion objective. A custom MATLAB script was used to measure cell area and size and 

number of focal adhesions. 

3.5.9 Cytokine antibody array 

 Media was analyzed using the Proteome Profiler Human XL Cytokine Array (R&D 

Systems). Briefly, membranes were blocked for 1 hour using array buffer, and media was then 

combined with array buffer overnight at 4°C with rocking. Membranes were washed, incubated 

with the antibody cocktail diluted for 1 hour, washed, and incubated with streptavidin-HRP for 

30 minutes, and finally treated with chemiluminescent reagent mix; membranes were exposed to 

film and imaged. Pixel quantification was performed in ImageJ and normalized to positive and 

loading controls. Conditioned media for SA and WA cells on 0.35 and 1.8 kPa substrates were 

normalized to internal loading control spots and plotted against each other. 

3.5.10 Quantification and statistical analysis 

 Comparisons for migration speeds and traction forces were done using a two-tailed 

unpaired t test or one-way ANOVA with Tukey test for multiple comparisons for the indicated 

comparisons where appropriate and as indicated. Categorical comparisons for durotactic, anti-
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durotactic, and adurotactic cells were done using a Fisher’s exact test using definitions from the 

2D migration assay section of this manuscript; again, durotactic cells were defined as cells that 

are on the soft region at the start of the time lapse and migrated to the stiff in the 24 hours of 

imaging, and vice versa for anti-durotactic. Adurotactic cells were defined as cells that crossed 

the boundary at some point during imaging and returned to the substrate they started on. 

Probability density estimations were calculated using MATLAB’s kernel smoothing function and 

plotted to visualize cell distributions at the start of imaging (t = 0 h) and after 24 hours of 

imaging (t = 24 h). The theoretical optimum bandwidth for the kernel smoothing function was 

used to generate reasonably smooth curves. Despite potential errors near the edges of the 

bounded region (−57.5 to 85 μm of the boundary), to reduce sensitivity to sampling error, we 

chose to use an unbounded KDE. This does not affect the cell density estimation near the 

stiffness gradient. P values for all analyses, ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001; and ∗∗∗∗, p 

< 0.0001. Outliers were removed only in plotting using MATLAB’s quartiles method, so box-

and-whisker plots remove points outside the whisker ends, defined by 1.5 interquartile ranges 

above the upper quartile or below the lower quartile. Other error bars were expressed as mean ± 

SD. Statistical analyses were done using MATLAB. 
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3.6 Supplementary Information 

 

Supplemental Figure S3.5: Weakly adherent cells exhibit higher adurotactic behavior 

(A) PC-3 (left) and NCI-H1299 (right) cell speed on soft or stiff side of step-gradient hydrogels is plotted. Data is 

shown for cells sorted by adhesion strength, i.e., weakly (orange) vs. strongly (blue), and cells on softer (open) vs. 

stiffer (closed) regions. (n>200 cells for each condition from triplicate experiments). (B) For adhesion sorted PC-3 

and NCI-H1299 cells that encounter the step-gradient, the frequency of durotactic, anti-durotactic, and adurotactic 

behavior is plotted. Data represents n= 210, 246 for PC-3 and n= 231, 247 for NCI-H1299 cells over triplicate 

experiments. (C) At 0 and 24 hours, PC-3 and NCI-H1299 cell frequency versus hydrogel position is shown for 

weakly (orange) vs. strongly (blue) adherent cells from triplicate experiments. The stiffer region is shaded in gray. 

Blue arrow indicates a peak in the strongly adherent cell distribution at 24 hours. *p<0.05, **p<10-2, ****p<10-4, 

*****p<10-5determined by paired student t-test for cell speeds and a Fisher’s exact for durotactic frequencies for 

the indicated comparisons. 
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Supplemental Figure S3.6: Traction forces and instantaneous speed for PC-3 and NCI-H1299 cells 

(A) Traction force, normalized to cell area, plotted for PC-3 cells on soft or stiff single-modulus (left) hydrogels and 

NCI-H1299 cells on stiff hydrogels (right). Data is shown for weakly (orange) vs. strongly (blue) adherent cells, and 

open circles for PC-3 cells on soft (n>47 for PC-3, n>15 for NCI-H1299). *p<0.05, **p<0.01,***p<0.001, and 

****p<0.0001 via one-way ANOVA with Tukey test for multiple comparisons for the indicated comparisons. (B) 

Instantaneous cell speed is plotted as a function of position relative to the step-gradient for adhesion sorted weakly 

(left) and strongly (right) adherent MDA-MB-231 (orange/blue), PC-3 (yellow/green), and NCI-H1299 (pink/red) 

cells. Negative values are on the soft substrate and positive are on the stiff. Average speed ± standard error of the 

mean is plotted for n>144 cells for each condition from triplicate experiments. 
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Supplemental Figure S3.7: Effects of focal adhesions, cytokines, and stiffness on adhesion 

(A) Representative images of FAs in weakly and strongly adherent MDA-MB-231 cells on soft or stiff single 

modulus hydrogels. Paxillin is shown in green and highlighted in the inset images (dashed boxes indicating which 

regions are magnified) by arrowheads that point to representative paxillin adhesions. Scale bar is 10 μm. (B) FA area 

(top) and number of FAs normalized to cell area (bottom) are plotted for the indicated sorting and elasticities. n>20 

cells/condition from triplicate experiments. (C) Cytokine expression for WA and SA cells, normalized to loading 

controls, is plotted ± standard deviation for 105 cytokines found in cell culture media collected from WA (orange) 

and SA (blue) MDA-MB-231 cells plated onto soft (0.35 kPa) and stiff (1.8 kPa) hydrogels for 65 24 hours. Specific 

cytokines expressed above background noise are noted with corresponding error bars from triplicate media 

collections; dashed arrows link cytokine names with their respective data. No data was statistically different between 

substrate stiffness or adhesion mechanotype based on one-way ANOVA with Tukey test for multiple comparisons. 

(D) Post-selection weakly and strongly adherent MDA-MB-231 cells were plated onto hydrogels of indicated 

stiffness and subjected to a shear stress gradient. Adhesion strength or t50, i.e., the shear stress at which 50% of the 

population detaches from the substrate, is plotted ± standard deviation. *p<0.05, **p<0.01, ***p<0.001, and 

****p<0.0001 via one-way ANOVA with Tukey test for multiple comparisons for the indicated comparisons. 
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Supplemental Figure S3.8: Computational model schematic and sensitivity to stiffness 

(A) Schematic of rigidity sensing in cells where softer catch bonds, i.e., strongly adherent cells, leads to asymmetric 

adhesion maturation at the step-gradient whereas stiffer bonds in weakly adherent cells break and prevent rigidity 

sensing. This occurs in four phases: i) integrin binding, ii) assembly and force production, iii) adhesion growth and 

stress fiber recruitment, and iv) cell movement. (B) Diagram indicates the decision logic for the computational 

durotaxis model described in Figures 2 and 3. Gray indicates initial conditions, which feed in to the force on 

adhesions equations (blue). Adhesion outcomes are shown in orange with cell migration shown in green. Arrows 

indicate the decision logic with notes about each pathway indicated above or to the side of the decision.  
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Supplemental Figure S3.9-Continued: Computational model schematic and sensitivity to stiffness 

(C) Comparison of catch (left) and slip (right) bond dynamics, Force/FA (top) and average FA lifetime (bottom) as a 

function of max SF force for ECM stiffnesses fixed at 0.35 or 1.8 kPa (green and blue, respectively). The gray 

region highlights where force is greater and bond lifetime is also greater or equal than it is on soft, which 

corresponds to the onset of durotactic behavior. (D) Model cell durotaxis on gradients with a different stiffness 

range at 0 and 24 hours, model cell probability density versus simulated hydrogel position is shown for cells with 45 

pN (orange) vs. 30 pN (blue) max SF force. The stiffer region is shaded in gray (30 kPa) vs. the softer region in 

white (10 kPa); values were chosen to mirror prostate tumor gradients rather than mammary tumor gradients to 

which model parameters were otherwise tuned. (E) Model cell durotaxis on gradients of different magnitude but 

same stiffness range. (Left) At 0 and 24 hours, model cell probability density versus simulated hydrogel position is 

shown for cells with 45 pN (Weakly Adherent) vs. 30 pN (Strongly Adherent) max SF force. The stiffer region is 

shaded in gray (1.8 kPa) vs. the softer region in white (0.35 kPa); gradient slope was changes as indicated. All 

previous simulations use 145 Pa/μm2 (blue) but plots here also include gradients 3- (dark orange) and 5-fold 

shallower (light orange). (Right) Instantaneous cell velocities ± S.E.M. for the indicated gradients and WA (top) or 

SA (bottom). 
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Supplementary Table S3.1: Model parameters and values 

Parameter Description Value Source 

Fmyo Myosin Motor Force 2 pN 222 

nmyo # of Myosin Motors/F-actin Adjustable, 10-25 223 

Π Bond friction factor 2 × 10-5 kg s-1 224 

tret Retraction Time 10 s 10,225 

Fthres Force sensor threshold  1 pN 217,218 

Kon Integrin-SF assembly rate 0.1 s-1 226,227 

Kact Actin-Talin assembly rate 1 s-1 228 

koff Unbinding rate Calculated, s-1  

μInt Average Integrins/F-actin 1 229 

Ptal Probability of force-sensor protein 0.7 230 

vdis Actin disassembly velocity 0.5 µm s-1 231 

vact_L Actin assembly, leading edge 0.2 µm s-1 231–233 

vact_T Actin assembly, trailing edge 0.1 µm s-1 231–233 

Estiff Young's modulus, Stiff 1800 Pa, Measured 

experimentally 

 

Esoft Young's modulus, Soft 350 Pa, Measured 

experimentally 

 

Lgrad Gradient Length 10 µm, from AFM 

measurements 

 

nSF Maximum SFs/FA Adjustable, 100 233 

μSF Average assembly sites/cell Adjustable, 50 234 

v0 Myosin sliding velocity 1 µm s-1 235 

Drot Rotational diffusion constant of F-actin Calculated, s-1 
 

η Cytoplasm (water) viscosity @ 37C 0.0006913 Pa s 
 

T Temperature 310.15 K 
 

kB Boltzmann’s constant 1.3806E-23 kg m2 s-2 K-1 
 

L Length of actin filament Calculated, µm 
 

dact Diameter of Actin 7 nm 236 

A Fitting constant 3.309 
 

B Fitting constant 0.0003942 
 

C Fitting constant 58.19 
 

ξ Unbinding length 0.7959 nm 130 

Fmax Max filament force Fmyo x nmyo 
 

KECM ECM stiffness  ECM modulus x 0.1 µm 
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CHAPTER 4. STROMAL CELL ADHESION PREDICTS 

SEVERITY OF METASTATIC DISEASE 

4.1 Abstract 

Despite better outcomes with early-stage detection, local invasion significantly reduces 

patient survival rates for many carcinomas. Heterogeneity within and between tumors has 

precluded identification of predictive biological markers, but adhesion strength has emerged as a 

potential biophysical marker. Here we demonstrate that cells disseminating from mammary 

tumors are weakly adherent, and when presorted by adhesion, primary tumors created from 

strongly adherent cells exhibit fewer lung metastases than weakly adherent cells or unsorted 

populations. Migratory ontologies from tumors correlate with freshly sorted cells, suggesting that 

cell intrinsic differences are maintained in vivo. We further demonstrate that admixed cancer 

lines can be separated by label-free adhesive signatures using a next-generation flow chamber. 

When applied to metastatic tumors, the device retrospectively predicted metastatic disease from 

stromal samples with 100% specificity, 85% sensitivity, and AUC of 0.94. Data from this device 

suggest that label-free adhesive signatures may effectively predict clinical outcomes in patients. 

4.2 Introduction 

Tumors are often detected and treated when disease is local, but when epithelial 

carcinomas become regionally invasive, 5-year recurrence rates can exceed 15% for breast 

cancer and are even worse for other solid tumors237,238. Patient relapse is multifactorial, but it is 

due in part to our inability to identify metastasizing cells early, quantify their presence in stroma, 

and create appropriate risk assessments to guide standards of care. Significant efforts have 
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attempted to identify universal molecular prognostic markers137,139 from liquid biopsies but have 

only identified tumor-specific markers at best139,239, owing in part to cell heterogeneity153 and a 

lack of marker exclusivity139,240,241. These assays also only surveil cells post-intravasation, 

missing an opportunity to assess dormant cell populations resident in tumor-adjacent stroma242. 

Metastasis can be compartmentalized into a series of discrete physical events required for 

all solid tumors: detachment from tumor, migration through stroma, and intravasation into the 

blood stream102,243–245. At each step, cells undergo numerous, distinct biophysical changes that 

enable metastasis102,118,140–143. As with many molecular marker assays, recent FDA-approved 

devices that utilize biophysical markers focus on detecting circulating tumor cells (CTCs). 

However, CTC detection in the blood may be a point at which disease has already progressed too 

far for effective prognostic assessment; tumor cells can often remain dormant in stroma for 

years242, and significant sample dilution may allow some CTCs to escape detection. Conversely 

stromal-based physical assays are now being used to probe cells from these heterogeneous yet 

dormant populations102 and determine their mechanotypes90. For example, microchannel assays 

that confine cancer cells as they migrate have been used to determine invasive mechanisms99 and 

to assess progression-free survival128, making widespread clinical adoption more feasible. Weak 

adhesion strength is another biophysical metastatic marker that promotes migration via increased 

focal adhesion turnover123,144–149,246. Triple negative breast cancer patients whose tumors have 

transcriptomic profiles mirroring weakly adherent cells also have shorter disease-free 

intervals246, suggesting a correlation between clinical outcomes and physical properties, i.e., an 

adhesion mechanotype. 

Despite strong evidence, adhesion data have not yet established a predictive capacity for 

metastatic disease. Herein, we use straight- and divergent-wall parallel plate flow chambers 
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(PPFCs) to evaluate sorting and analysis capabilities using admixed and stromal cell populations. 

We find an inverse relationship between adhesion strength and metastatic behavior using a 

murine mammary tumor model. Cells that sort as weakly adherent are more migratory, result in 

more secondary disease, and have a stable mechanotype in vivo. PPFC analyses provide label-

free measurements of adhesion strength and cell abundance relative to the analyzed population, 

which when used for admixed cancer lines enables separation and when applied to metastatic 

disease can retrospectively predict metastatic potential.  These results suggest that weakly 

adherent cells migrate out of the primary tumor microenvironment and can be isolated to 

prognostically assess future patient outcomes. 

4.3 Results 

4.3.1 Invading cells have decreased adhesion strength compared to primary tumors  

Metastatic cell lines have lower adhesion strength and more labile focal adhesions than 

their non-metastatic counterparts123. To determine to what extent a mouse tumor model 

phenocopies adhesion, MDA-MB231 mammary epithelial cells were exposed to lentiviral 

vectors containing GFP and firefly luciferase (Luc) and selected for both markers (Supplemental 

Figure S4.6A-B). To ensure that transduction did not impact adhesion strength and migration, 

cells were selectively exposed to pre-determined shear stresses to isolate weakly and strongly 

adherent fractions1 and their migration was assessed on collagen gels; weakly adherent cells 

exhibited greater migration speed and displacement compared to strongly adherent cells 

(Supplemental Figure S4.6C-D), which is consistent with untreated cells246 and indicates that 

GFP and Luc transduction had minimal impact on function. Given that adhesion and migration 

speed are inversely correlated in vitro, we next determined this relationship in vivo. GPF+Luc+ 
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MDA-MB231 cells were injected into inguinal fat pads of 11-week-old NOD/SCID mice, 

monitored at 2-week intervals, and resected at 6 weeks post injection (Supplemental Figure 

S4.7A-B). GFP+ cells were isolated from tumor and stroma, sorted using FACS, and their 

adhesion profile quantified (Figure 4.1A, Supplemental Figure S4.7C). The GFP+ fraction in 

stroma was lower than in tumor (Figure 4.1B) and significantly less adhesive compared to tumor 

resident GFP+ cells (Figure 4.1C). For paired samples isolated from the same fat pad, GFP+ 

tumor cells were 60% more adherent than GFP+ stromal cells (Figure 4.1D), suggesting that cells 

of the weakly adherent mechanotype escape the tumor, consistent with the observations in 

culture247. 

 
Figure 4.1: MDA-MB231 cells that have invaded into the stroma display decreased adhesion strength 

compared to cells in the stiff tumor 

(A) Timeline of tumor resection and adhesion strength study. (B) There are fewer GFP-positive cells present in the 

stroma versus the tumor (n=11). (C, D) Invaded MDA-MB231 cells have decreased adhesion strength compared to 

MDA-MB231 cells that remain in the tumor (n=9 and 7 for tumor and stroma, respectively; n=7 for paired samples 

in panel D). (B, C) Statistical analysis via unpaired t-test. ** represents p<0.01. 
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4.3.2 Cell intrinsic adhesion differences correlate with lung metastatic frequency 

While cells that disseminate are less adherent, it is not clear if this translates to a greater 

propensity to form secondary sites of disease. To artificially create differences in metastatic 

potential between tumors, GFP+Luc+ MDA-MB231 cells were first sorted by adhesion using a 

parallel plate flow chamber (FFPC; Supplemental Figure S4.8) and then injected into inguinal fat 

pads. Tumors were allowed to grow for 6 weeks prior to assessing primary tumors and secondary 

disease in the lungs (Figure 4.2A-B). While there was no difference in primary tumor weight 

(Figure 4.2C), transcriptional analyses of primary tumors found 265 differentially expressed 

genes (DEGs) with adhesion strength (Figure 4.2D-E), indicating that they retain pre-injection 

differences. Gene ontology (GO) terms associated with DEGs were stratified and compared to 

those of cells sorted in vitro (Figure 2F)246; we found significant GO term overlap for biological 

processes, and among these terms, many were associated with cell migration and locomotion 

(Figure 4.2G, red; Supplemental Table S4.1). These data suggest a common gene signature that 

may correlate with metastatic risk and establish what constitutes an adhesive mechanotype.  
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Figure 4.2: Primary tumors cluster based on adhesion phenotype of injected cells despite no difference in 

primary tumor size among groups 

(A) Timeline of the lung metastases tumor study. (B) Representative IVIS imaging of mice injected with unsorted 

(US), weakly adherent (WA), or strongly adherent (SA) cells (left, middle, and right column, respectively) 2-, 4-, or 

6-weeks post-injection (top, middle, and bottom rows, respectively). (C) Tumor to mouse weight ratio at time of 

sacrifice 6-weeks post injection (n=5, 6, and 6 for mice with unsorted, weakly adherent, and strongly adherent cells 

injected, respectively). (D) Differences in gene expression between WA and SA primary tumors are shown in a 

volcano plot (n=265 DEGs; 4 SA and 6 WA tumors). (E) Hierarchical clustering of differentially expressed genes 

(DEGs) between WA and SA cells. Vertical bars indicate clustering of genes that are upregulated in SA cells and 

WA cells (n=4 SA and 6 WA tumors). (F) Venn diagram of gene ontology (GO) terms associated with DEGs. (G) 

GO terms that are upregulated in WA tumors. Red terms indicate association with cell migration or locomotion. (C) 

Statistical analysis by one-way ANOVA with Tukey test for multiple comparisons. 
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To directly assess metastatic burden, we determined the number of GFP+ lesions in lungs 

post resection. Mice receiving weakly adherent cells exhibited more metastases than those 

injected with strongly adherent cells or the unsorted parental line (Figure 4.3A-B); mice injected 

with strongly adherent cells consistently showed minimal metastatic activity, even after 8 weeks 

in vivo, in stark contrast to the broad range and greater average number of metastatic lung tumors 

in mice that received unsorted paternal or weakly adherent populations (Figure 4.3B, 

Supplemental Figure S4.9). Importantly, metastatic tumor size was not affected by pre-sorting on 

adhesion strength (Figure 4.3C), indicating that the fraction of cells disseminating, but not 

secondary tumor growth, differ with pre-injection adhesion sorting. Rather, differences may 

occur in the migration machinery of cells leaving the primary tumor, hence tumors composed of 

only strongly adherent cells are less likely to metastasize. 

 
Figure 4.3: Mice injected with weakly adherent cells have more lung metastases 

(A) Representative images of lung metastases from unsorted, weakly adherent, or strongly adherent cells (left, 

middle, and right column, respectively). (B) The number of lung metastases in mice injected with unsorted (US), 

weakly adherent (WA), or strongly adherent (SA) cells (n= 8, 8, and 10 for tumors composed of unsorted, WA, and 

SA cells, respectively). (C) Size of lung metastases (n=57 and 78 lesions analyzed for US and WA, respectively), 

excluding SA tumors given the low frequency of lesion formation. (B,C) Statistical analysis via (B) one-way 

ANOVA with Tukey test for multiple comparisons or (C) unpaired t-test. ** represents p < 0.01. *** represents p < 

0.001. ns represents no significance. 
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4.3.3 Differences in metastatic and non-metastatic adhesion strength sort admixed 

populations 

To determine if the inverse relationship between adhesion strength and metastatic 

propensity is not specific to MDA-MB-231 cells, adhesion strength of 8 other breast cancer and 

epithelial cell lines was measured using a divergent parallel plate flow chamber (dPPFC) where 

shear stress scales with chamber position (Supplemental Figure S4.10A-D). For each cell line, 

average adhesion strength, 𝜏50, was plotted against migration speed and displacement on 

hydrogels matched to breast tumor stiffness248. Cell lines that detached at 𝜏50<150 dyn/cm2 have 

been largely characterized as metastatic128,249,250 whereas those detaching at 𝜏50>150 dyn/cm2 

were derived from primary tumor or non-cancerous lines; thus, lower adhesion strength had a 

strong correlation with an increase in cell speed and displacement (Figure 4.4A-B), suggesting 

that an inverse relationship between adhesion strength and migration is not unique and that the 

dPPFC can measure parameters potentially important to outcomes. 
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Figure 4.4: Cell line metastatic potential correlates with a decreased adhesion strength 

(A) Cell speed and (B) displacement versus average shear stress of various metastatic (green) and non-metastatic 

cell lines (blue). Gradient represents shift from weakly adherent cells (gray) to strongly adherent cells (white). For 

cell speed and displacement, metastatic cell lines (green) had n = 553, 475, 137 and 306 cells analyzed for 

MDAMB231, MDAMB468, BT459, and SUM1315, respectively. For cell speed and displacement, non-metastatic 

cell lines (blue) had n = 609, 253, 253, 225, and 305 cells analyzed for BT20, MCF7, MCF10A, MCF10AT, and 

MCF10AT-DCIS, respectively. For adhesion strength, metastatic cell lines (green) had 13, 10, 13, and 12 replicates 

for MDAMB231, MDAMB468, BT459, and SUM1315, respectively. For adhesion strength, non-metastatic cell 

lines (blue) had 12, 10, 8, 9, and 9 replicates for BT20, MCF7, MCF10A, MCF10AT, and MCF10AT-DCIS, 

respectively. (C) The absolute error of simulated average shear stresses (n=192) and (D) simulated cancer fractions 

(n=196). (E) Shear stress plots of monocultured MCF10A (blue) and monocultured MDAMB231 (green) cells 

calculated using a divergent parallel plate flow chamber. (F) Shear stress plots of cocultured MCF10A and 

MDAMB231 cells (n>3 replicates). (E,F) Error bars denote the standard error of mean. 
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Since mouse and patient tumors are likely a mixed population of metastatic and non-

metastatic cells, we developed a deconvolution method to distinguish adhesion profiles of two 

populations with different adhesion strengths. Using the parameters of a Weibull distribution to 

describe MDA-MB-231 and MCF10A adhesion profiles (see methods, 𝜆 and 𝑘 from Equation 

4.3), we simulated mixtures with varying adhesion strength to test the accuracy of the method’s 

predictions of 𝜏50 and cancer cell fraction in a virtual mixture. For monocultures, simulated 

populations randomly selected from Weibull distributions of MDA-MB-231 and MCF10A cells 

created adhesion profiles that matched experimental observations (Supplemental Figure S4.10E). 

For co-cultures simulated with pre-determined fractions of MCF10A and MDA-MB-231, we 

used a two population Weibull distribution to describe the overall obtained adhesion profile (see 

methods, Equation 4.5; Supplemental Figure S4.10F) based on the adhesion profiles of non-

metastatic cells (e.g., MCF10A). We predicted the adhesion strength and metastatic cell fraction 

(e.g., MDA-MB-231, 𝑃𝑐) in the mixture and found that 80% of 𝜏50 predictions for the metastatic 

population fell within ±20 dyn/cm2 and that 80% of predictions of the cancer fraction, 𝑃𝑐, i.e., the 

percentage of the population that is metastatic, fell within ±0.06 of simulated values (Figure 

4.4C-D). We validated mixtures experimentally by seeding MDA-MB-231 and MCF10A cells in 

ratios of 25:75, 50:50, and 75:25 into the dPPFC and measuring their combined adhesion 

profiles. The 𝜏50 and cancer fraction were predicted using the same deconvolution method, and 

all cancer fractions were within ±7.7% and 𝜏50 values were within ±43 dyn/cm2 of the measured 

monoculture values (Figure 4.4E-F). These results suggest that the dPPFC can accurately 

measure the cancer cell adhesion profile for heterogeneous populations without prior sorting. 
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4.3.4 Label-free assessment of stromal biopsies retrospectively predicts metastatic risk 

To assess dPPFC functionality in predicting metastatic risk, we analyzed resected tumors, 

stroma, and contralateral fat pads from NSG mice. The adhesion profile of contralateral fat pads 

was used as the deconvolution standard to obtain the cancer fraction and τ50 of the stroma and 

tumor samples (Supplemental Figure S4.11A). Host cell adhesion strength from contralateral fat 

pads were ~3 fold higher than any of the cancer cells from the tumor or stroma samples 

(Supplemental Figure S4.11B). The number of GFP+ nodules observed in the lungs was 

inversely proportional to the τ50 measured from the tumor and stroma samples (Figure 4.5A and 

Supplemental Figure S4.11C). Only in the stroma was there a positive correlation with the 

estimated cancer fraction of the sample with GFP+ lung nodules (Figure 4.5B), whereas in the 

tumor biopsy there was less correlation (Supplemental Figure S4.11C). Next, we performed a 

ROC analysis to determine prediction accuracy for the cancer fraction and its τ50 for either high 

or low metastatic risk, defined as high risk if 2 GFP+ nodules were counted in the lungs. 

Classification accuracy was highest from stromal cancer fraction with an area under the curve 

(AUC) of 0.83 (Supplemental Figure S4.11D). However, by fitting the number of metastatic 

lesions, τ50, and cancer fraction data with a logistic regression model, we generated probability 

estimates for 2 GFP+ nodules in lungs (Figure 4.5C and Supplemental Figure S4.11E-F). 

Stromal samples proved better at predicting risk, as the regression model for these data was the 

most statistically different from a constant model, determined by a deviance test (p=0.0167). We 

then used the probability estimates in the ROC analysis to evaluate how well the cancer fraction 

and its τ50 classify metastatic risk. Combining both metrics together improved prediction 

accuracy, increasing the AUC to 0.94 and specificity to 100% with a sensitivity of 85% (Figure 

4.5D). Altogether, these data show that the dPPFC can detect cancer cells that have locally 
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invaded the surrounding stroma, and their quantity and adhesion mechanotype can be used to 

predict an increased rate of metastatic tumor formation. 

 
Figure 4.5: Average shear threshold of stroma surrounding the primary tumor predicts number of metastases 

in vivo 

Tumors and surrounding stroma were dissected from mice injected with SA (circle), WA (diamond) or US (star) 

cells. (A) The average shear stress, and cancer fraction, P_c (B), as calculated from the combined adhesion profile of 

GFP+ cancer cells and mouse cells, plotted against the number of GFP+ lung nodules (n=20 lungs). (C) Logistic 

regression model showing probability estimate of a mouse having more than 1 tumor based on the average shear 

stress and cancer fraction measured from the dPPFC. (D) Receiver operating characteristics (ROC) curve of 

metastatic risk predictions based on model’s probability estimates. Red points are classified as high metastatic risk 

and blue are low. 

 

4.4 Discussion  

Currently several independent parameters, e.g., tumor grade, stage, and subtype, are 

assessed histologically to help establish standard of care, but these data provide a far from 

complete assessment of tumor state and expected patient outcomes. Indeed, non-uniform 

distribution of genetic and phenotypic subpopulations within solid tumors causes many tumors of 
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similar histological grade to have vastly different metastatic potential, thus complicating existing 

prognostic assays251–253. Without more advanced detection methods, oncologists cannot provide 

the best recommendations for patients whose disease is marginal, low grade, or where consensus 

treatment options fail237,238. Notably, adhesion strength has emerged as a potential biophysical 

marker123,144–149,246, but its links to cancer metastasis have only been demonstrated in vitro using 

surrogates, e.g. migration, velocity, and persistence246. Here, we showed that weak cellular 

adhesion correlates with increased metastatic risk in vivo, demonstrating possible clinical 

relevance of adhesion strength as a prognostic marker. Furthermore, our divergent parallel plate 

flow chamber (dPPFC) can be used as a label-free assay to accurately measure the adhesion 

profile and cancer cell frequency in tumor and stromal biopsies, and this measure may better 

assess clinical outcomes than standard methods.  

The dPPFC appears to have several key advantages to other emerging or recently FDA-

approved devices. While other methods surveil CTCs in liquid biopsies via single markers to 

detect cancer cells that have intravasated into the blood stream254–258, many have been unable to 

accurately predict disease severity or increase patient survival. Often, disease may have already 

progressed, be hindered by intravasating cell heterogeneity259–261, signal substantially diluted as 

CTC clear quickly from the bloodstream262, or cells may disseminate after assessment due to 

significant tumor dormancy242. These considerations result in lower single marker assay 

specificity, sensitivity, and AUC263 versus stromal-based physical assays90,128,141,243,264,265. While 

biomarker assays have also moved from single to multigene prognostic analyses (i.e., 21 to 70 

genes)266,267, even their prediction accuracy has remained less268 than reported here or for other 

physical assays. Conversely, many physical assays have been benchmarked against large panels 

of normal epithelial, cancer, and transgenic cell lines that demonstrate predictive capabilities 
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when assessing metastatic potential. When distinguishing between these physical assays, the 

dPPFC may be faster and more robust owing to short interrogation time (minutes) versus channel 

confinement assays (hours)128,243. Confinement assays also require significant microfabrication 

and are single-use devices; dPPFC consumables are only the underlying standard-sized 

microscope slide. With multi-channel designs, dPPFC can still be used in moderate throughput to 

evaluate potential therapeutics. It also only requires 5x103 cells to achieve an AUC of 0.94, 

which is an order of magnitude fewer cells than reported in other assays128,243 with comparable 

sensitivity and specificity.  

Relative to other physical markers, adhesion may be a more robust in vivo indicator of 

metastatic disease. First, GPF+ cells that disseminated to the stroma were less adhesive, and 

when cells were pre-sorted to create tumors of a single adhesive mechanotype, strongly adherent 

cells often resulted in no or almost no GFP+ lesions in the lungs of injected NSG mice. RNA 

sequencing of these sorted cell types showed that cells in primary tumors up to 6 weeks in vivo 

maintained pre-injection differences246. Genes associated with weakly adherent cells 

corresponded to cell migration and locomotion, which is associated with shorter disease-free 

intervals in The Cancer Genome Atlas (TCGA)246 and could constitute the gene signature of the 

adhesive mechanotype. Notably, our dPPFC detect and quantify cells with this adhesion 

mechanotype, which appears to directly correlate with metastatic tumor formation. These 

observations also suggest that a pharmacological strategy that alters the mechanotype of a 

disseminating cell, perhaps via changes to its transcriptome, could render it less metastatic.  

Despite the broad implications of these findings, it is important to note ongoing 

limitations to dPPFC and other physical assays. First, patients often have tumors resected and 

then monitored for secondary disease without the primary tumor being present. Our model here 



103 

 

primarily involved tumor progression for 6 weeks without resection; results may reflect higher 

than normal metastatic burden relative to patients receiving standard of care. Second, patients are 

typically treated with a combination of doxorubicin hydrochloride (Adriamycin) and 

Cyclophosphamide followed by paclitaxel (Taxol), i.e., AC-T therapy269, which may alter the 

adhesion mechanotype of disseminating cells. However, the perivascular niche can protect 

chemoresistant disseminating tumor cells270, so despite treatment, the adhesive mechanotype 

may remain intact; indeed, only when combined with integrin function blocking antibodies was 

there significant sensitization to chemotherapy. Third, we assayed tumors from NSG mice, but 

the presence of immune cells could complicate disseminating cell signaling and dormancy; 

prolonged inflammation via neutrophil infiltration can awaken dormant cancer cells by cleaving 

extracellular matrix, activating integrins271, and potentially changing adhesion mechanotype. 

While these concerns are important, we believe that the data shown here supports further ex vivo 

assessment of human samples using the dPPFC to predict the metastatic risk to the patient. 

Succinctly, our results suggest that adhesion strength and cancer fraction are two label-free 

metrics of the device that can serve as markers of metastatic potential and be utilized in a 

prognostic fashion to screen patient samples. 

4.5 Methods 

4.5.1 Cell culture 

Cell lines were cultured according to media conditions in Supplemental Table S4.2. 

Products were purchased from Life Technologies. Cells were obtained from ATCC 

(authenticated by morphology, growth curve, and isoenzyme analysis) and verified mycoplasma 

free via PCR. 
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4.5.2 Creating GFP and luciferase-expressing MDA-MB 231 cells and validating adhesion 

heterogeneity 

To make lentivirus particles, HEK293T were seeded into a 20 cm dish in high glucose 

DMEM supplemented with 10% FBS and 1% antibiotic/antimycotic. Cells were allowed to grow 

until 70% confluence. At this time, 3 g of pMD2.G (Addgene 12259), 12 g of pCMV 

deltaR8.2 (Addgene 12263), and 9 g of either GFP or luciferase plasmid (generous gift of the 

Kun-Liang Guan lab) was added to 1.5 mL Opti-MEM. Separately, 36 L of Lipofectectamine 

2000 was added to 1.5 mL Opti-MEM. After incubating the solutions for 15 minutes, the 

solutions were mixed and allowed to incubate for an additional 30 minutes. The mixture was 

then added dropwise to HEK293T cells. After 48 hours, media was harvested and replaced. After 

an additional 24 hours, media was harvested again and all media was concentrated using an 

Amicon Ultra-15 ultrafilter (100,000 NMWL cutoff) to a final volume of 1 mL, which was 

aliquoted into 250 L aliquots and frozen at -80oC. 

Media with packaged lentiviral particles was added to cultured MDA-MB231 cells along 

with 8 g/mL of polybrene. After 24 hours, the media was aspirated and replaced with normal 

culture media. Upon observation of GFP expression through fluorescence microscopy, the 

cultured cells were treated with 2 g/mL of puromycin in culture media and cultured for two 

days. The remaining cells were sorted with a Becton Dickinson FACSAria II for presence of 

GFP, with unstained cells as a negative control to establish a gating strategy. All data was 

analyzed by FlowJo software. GFP expression was validated via fluorescence microscopy using 

a Nikon Eclipse Ti-S microscope at 10X magnification with FITC. 

To validate that adhesion heterogeneity is maintained post-transduction, weakly and 

strongly adherent subpopulations were isolated by exposure to pre-determined low and high 
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shear stresses, respectively, in a microfluidic flow chamber as previously described1. Weakly and 

strongly adherent cell fractions were seeded onto 2.4 mg/mL Type I collagen gels (Corning) and 

imaged with a Nikon Eclipse Ti-S microscope equipped with a temperature- and CO2-controlled 

stage for 24 hours, after which their migration was tracked and analyzed using a custom 

MATLAB script. Cells that divided or did not remain in the frame for 24 hours were not tracked. 

4.5.3 Isolation of MDA-MB 231 cells in tumor and surrounding stroma 

  All animal care and experiments were approved by the Institutional Animal Care and Use 

Committee of the University of California, San Diego (study #S11102). 106 MDA-MB 231 cells, 

expressing GFP and Luciferase, were suspended in 40 L of Matrigel-PBS (1:1) mixture and 

were injected bilaterally into the inguinal mammary fat pads of 11-week-old female NOD/SCID 

mice. Tumor growth was monitored at 2-week intervals and the mice were sacrificed at 6 weeks 

post-injection. Mice were dissected and the fat pads were surgically removed. Using an inverted 

fluorescent microscope, the stiffened tumor bolus was manually separated from the surrounding 

stroma. Both tumor and stroma were finely minced then treated with Accumax and placed on a 

shaker at room temperature for 2 hours. Cells were then pipetted through a 70 m cell strainer 

and neutralized with culture media. For spinning disk assay cells were centrifuged and 

resuspended in FACS buffer (2% goat serum, 5 mM EDTA in PBS), and GFP-positive cells in 

tumor and stroma sections were sorted via FACS.  

4.5.4 Spinning disk assay for quantification of cellular adhesion strength 

GFP-positive MDA-MB231 cells from tumor and stroma fractions were seeded onto 25 

mm glass coverslips—coated with 2 g/mL of fibronectin and blocked with 5% bovine serum 

albumin—and incubated overnight at 37C. Cells were then exposed to shear stress at varying 

RPMs using the spinning disk shear assay as previously described2. Cells were immediately 
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fixed in 3.7% formaldehyde for 10 minutes, after which they were stained with 1:2000 Hoechst 

in DI water. Quantification of cellular adhesion strength was performed as previously 

described123. 

4.5.5 Sorting of MDA-MB 231 cells and injection into mice for lung metastases study 

GFP+ Luc+ MDA-MB 231 cells were seeded (~5000 cells/cm2) overnight onto 

fibronectin-coated glass slides. Using the parallel-plate flow chamber, the slides were exposed to 

15 dynes/cm2 shear stress for 2 minutes to collect the weakly adherent cell fraction. 

Subsequently, the slides were exposed to 60 dyn/cm2 shear stress for 2 minutes. Any cells that 

remained on the slide were removed via 0.25% trypsin and collected as the strongly adherent cell 

fraction. The weakly adherent and strongly adherent cell fractions were cultured separately for 

48 hours, as well as a perfused but unsorted control population. 106 GFP and Luciferase 

expressing MDA-MB 231 cells from the strongly adherent fraction, weakly adherent fraction, or 

the unsorted control were suspended in 40 L of Matrigel-PBS (1:1) mixture and were injected 

into the inguinal mammary fat pad of 11-week-old female NOD/SCID mice. Tumor growth was 

monitored at 2-week intervals and the mice were sacrificed at 6 weeks post-injection. 6 weeks 

was chosen as the length of the study because few metastatic tumors were seen at 4 weeks 

(Supplemental Figure S4.9A), but the lungs were saturated with metastases at 8 weeks 

(Supplemental Figure S4.9B-C). At time of sacrifice, the lungs and primary tumors were 

harvested, frozen in optimal cutting temperature compound, and stored at -80oC. Prior to 

freezing, the lungs were imaged using a GFP filter on a microscope to quantify the number of 

metastatic tumors. 

4.5.6 RNA sequencing 

Tumors were dissociated, and the resulting RNA purified using Qiagen RNeasy Mini Kit. 
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RNA quality was quantified and assessed using TapeStation (Agilent), RNA libraries were 

prepared using the Illumina TruSeq Stranded RNA, High Throughput Library Prep Kit. RNA 

was sequenced using the Illumina HiSeq 4000 system to generate 50 bp single-end reads. Data 

was analyzed using Rosalind, with a HyperScale architecture developed by OnRamp 

Bioenformatics, Inc. Reads were trimmed using cutadapt173 and quality scores were assessed 

using FastQC272. Reads were aligned to the Homo Sapien genome build hg19 using STAR175, 

while individual sample reads were quantified using HTseq and normalized via relative log 

expression using DESeq2 R library176. DESeq2 was also used to calculate fold-changes. 

Clustering for the differentially expressed gene heatmap was performed via the Partitioning 

Around Medoids method with the fpc R library273. Functional enrichment analysis of gene 

ontology was done using HOMER180. GO terms were assigned based on PANTHER pathways. 

4.5.7 Quantification of lung metastases sizes 

Images of lung metastases obtained from the GFP microscope were quantified using the 

ImageJ Particle Analysis plug-in. Briefly, a constant binary threshold was applied to each image 

to identify each incidence of a metastasis, the pixel area of each metastasis was recorded, and the 

sizes were normalized to the smallest metastasis recorded. 

4.5.8 Validation of divergent parallel plate flow chamber design  

The divergent parallel plate is based off of the linear shear stress flow chamber from 

Usami and co-workers125, and designed using Solidworks. The width of the chamber was 

profiled so that it becomes increasingly wider along the length of the chamber so that shear stress 

in the device decreases exponentially, with the profile of the side walls varying according to, 

𝑤 = 𝑤𝑚𝑖𝑛𝑒
(

ln(10)

𝐿𝑚𝑎𝑥
𝐿)

      (4.1) 

where 𝐿 is the position along the channel, 𝑤𝑚𝑖𝑛 is the narrowest part of the channel, 𝐿𝑚𝑎𝑥 is the 
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length between the widest and narrowest points of the channel. The wall shear stress can then be 

calculated at any point inside the device according to,  

𝜏 =
6𝑄𝜇

𝑤ℎ2       (4.2) 

where 𝑄, 𝜇, and ℎ are flow rate, viscosity, and channel height respectively. The V-shaped outlet 

of the channel allows the shear stress to continue to decrease to zero from where the channel is 

widest (Supplemental Figure S4.10C). Wall shear stress along the length of the chamber was 

validated by finite element analysis using COMSOL Multiphysics and agreed with values 

determined from equation 4.2 and shown in Supplemental Figure S4.10C.  

The flow chamber was fabricated out of polycarbonate (McMaster-Carr, 8707K173). The 

channel was made by cutting the divergent profile in 127µm thick silicone gasket (SMI) using a 

craft cutter (Silhouette Cameo 4). A pocket was made out of 1 mm thick adhesive backed 

silicone rubber (McMaster-Carr, 5787T115) to align a 25x75 mm glass slide against the gasket. 

The slide was then clamped down onto the gasket by a second polycarbonate plate by screwing it 

into the base plate.  

 

4.5.9 Shear threshold quantification of mammary epithelial cancer cell lines 

  The cell lines used to quantify shear threshold are listed in Supplemental Table S4.2, 

consisting of a mix of mammary cancer or epithelial origin. ~3000 cells/cm2 were seeded onto 

25x75 mm glass slides coated with 2 µg/cm2 of human fibronectin and allowed to adhere 

overnight. Before imaging, cells were stain with Hoechst 33342 (ThermoFisher, H3570) for 10 

minutes prior to imaging, and then assembled in the divergent parallel flow plate chamber. A 

2.1x45mm region within the chamber was scanned using a Nikon Eclipse Ti-S confocal 

microscope at 10x in both phase and DAPI channels to count the number of cells in the chamber 
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before shearing. The device was then connected to a syringe pump with the flow rate set to 

obtain a maximum shear of either 330 or 660 dyn/cm2. 4.5 g/L of dextrose in PBS without 

magnesium and calcium was used to shear cells for 3 minutes, before returning the device to the 

microscope to image and count the remaining cells.  

The adhesion profiles for each cell line were determined by dividing the imaged region 

into 61 equal sized bins (775µm) and plotting the shear at the center of each bin versus the 

fraction of cells remaining after shearing. Using MATLAB’s curve fitting toolbox, the curve of 

the adhesion profile was then fit to these points using the following equation, 

𝑆 = 𝑒−(
𝜏

𝜆 
)

𝑘

      (4.3) 

 where 𝜏 is the shear along the chamber, and 𝜆 and 𝑘 are the scale and shape parameters of the 

Weibull distribution. The 𝜏50, or the shear stress at which 50% of the cells detach can then be 

calculated according to, 

𝜏50 = 𝜆(− ln(0.5))1 𝑘⁄      (4.4) 

Co-culture experiments were performed similarly, with a 25:75, 50:50, or 75:25 mixture of 

MDA-MB-231 and MCF10A cells seeded at a total ~3000 cells/cm2. To predict the percentage 

and 𝜏50 of the MDA-MB-231 cells in the mixture, the adhesion profile of the combined cell 

types was fit to, 

𝑆 = 𝑃𝑐𝑒−(
𝜏

𝜆 
)

𝑘

+ (1 − 𝑃𝑐)𝑒
−(

𝜏

𝜆10𝐴 
)

𝑘10𝐴

        (4.5) 

Using the known values for 𝜆10𝐴 and 𝑘10𝐴 from the adhesion profile MCF10A cell line, the 

fraction of MDA-MB-231 cells, 𝑃𝑐, and their 𝜆 and 𝑘 can be predicted from the curve fit.  

4.5.10 Cell speed and displacement measurements 

Cell speed and displacement was measured using timelapse microscopy on cells 
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migrating on 3.2kPa polyacrylamide gels. The Young’s modulus of the gel was validated using 

atomic force microscopy. Prior to seeding the cells, the surface of the gels was functionalized 

with collagen I (150 μg/ml) using sulfosuccinimidyl 6-(4’-azido-2′-nitrophenylamino)hexanoate 

(0.2 mg/ml, Sulfo-SANPAH; Pierce) as a crosslinker to the PA, and allowed to incubate at 37C 

overnight. Cells were seeded at ~1500 cells/well and allowed to adhere to the PA gels overnight. 

The cells were then imaged for 15 hours using a Nikon Eclipse Ti-S microscope equipped with a 

temperature and CO2 controller (Pathology Devices Inc., LiveCell). Images were taken every 5 

minutes using phase contrast at 10x. The cell trajectories were then traced using a custom 

MATLAB script, and dividing cells were excluded in the analysis. Cell speed was calculated by 

dividing the path length by the 15-hour runtime and displacement by finding the distance 

between the starting and ending position of the cell. 

4.5.11 Dissociation and adhesion quantification of tumor, stroma, and mammary fat pad 

Tumor, stroma, and the tissue from the contralateral fat pad were resected from mice 

sacrificed at 6 weeks post GFP+ Luc+ MDA-MB 231 cell injection. The tumor and stroma were 

separated as described above. All tissues were finely minced and the cells were dissociated in a 

collagenase solution comprised of 2mg/ml trypsin, 2mg/ml trypsin, 5% FBS, 50µg/ml 

gentamicin, 5µg/ml insulin, and DMEM/F12, as described previously274. GFP+ cells from the 

tumor were not FAC sorted to better recapitulate tumor samples obtain from a patient biopsy, 

and test the flow chamber’s ability to distinguish between cancer and healthy cells. All of the 

dissociated mouse and cancer cells were then seeded and allowed to grow in a 6 well plate, for 2-

3 days or until there were enough for seeding onto 25x75mm FN coated glass slides. The cells 

were then sheared in the flow chamber and the adhesion profile for each sample was determined 

as described above. Tumor and stroma adhesion profiles were fit to equation 4.5 to predict the 
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𝜏50 and percentage of cancer cells in these samples, using the 𝜆 and 𝑘 values measured from the 

adhesion profile of the contralateral fat pad in place of those from the MCF10A cells.  

4.5.12 Logistic regression model and receiver operating characteristic (ROC) analysis 

Metastatic risk was defined as either high or low by a threshold number of GFP+ lung 

nodules. For the stroma samples, using a threshold of 2 nodules, and comparing the  𝜏50 and 

cancer fractions of mice with nodule counts above and below that threshold, gave us the most 

significant difference by a Wilcoxon rank sum test between the two groups. The binary response 

variable was then defined as low risk for mice with 1 or fewer GFP+ lung nodules and high risk 

for mice with more than 1 GFP+ lung nodule. A logistic linear regression model was then fit to 

obtain the probability estimates of having more than 1 tumor based on the following equation, 

𝑝 = 𝑙𝑜𝑔𝑖𝑡(𝑦) =  𝑎 + 𝑏𝜏50 + 𝑐𝑃𝑐 + 𝑑𝜏50𝑃𝑐    (4.6) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are the estimated coefficients from MATLAB’s generalized linear 

regression model, and 𝜏50 and 𝑃𝑐 are the median detachment shear and cancer fraction 

respectively. A deviance test was used to compare whether the model differs significantly from a 

constant model. The probability estimates from the model were then used as the classifier scores 

for obtaining the ROC curve and area under the curve (AUC) using MATLAB’s perfcurve 

function.  

4.5.13 Statistical analysis  

For all analyses, *, p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001. Figures 

4.1B-D, S4.6C, and 4.3C were performed using two-tailed unpaired t test. Figure 4.2C and 4.3B 

was analyzed using a one-way ANOVA with Tukey test for multiple comparisons. Data 

expressed as box-and-whisker plots show all points with the whisker ends corresponding to 

minimum and maximum values. All other values are expressed as mean ± SD. Statistical 
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analyses were performed using GraphPad Prism Software v9.0.  

4.6 Supplementary Information 

 
Supplemental Figure S4.6: GFP-Luciferase lentiviral transduction does not alter inherent heterogeneity of 

MDA-MB231 cells 

(A) After treatment with puromycin to select for cells that expressed Luciferase, cells were sorted using FACS for 

GFP+ signal (y-axis). Gating strategy is based on excluding cells from an unlabeled control sample. (B) GFP 

expression was verified using fluorescence microscopy. (C, D) Weakly adherent cells were more migratory than 

their strongly adherent counterparts, consistent with previous findings. (n=89 and 111 for weakly and strongly 

adherent, respectively). (C) Statistical analysis via unpaired t-test. ** represents p<0.01. *** represents p<0.001. 
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Supplemental Figure S4.7: Tumor growth was monitored using IVIS and GFP+ cells can be sorted from 

tumor and stroma 

(A) Tumor growth was monitored using IVIS at 2-week intervals using (B) total flux as a measurement (n=6 mice). 

(C) After manual separation of the stiff tumor from the surrounding stroma and dissociation into single cells, GFP+ 

cells (y-axis) could be isolated from both tissue fractions using FACS. 
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Supplemental Figure S4.8: Parallel plate flow chamber applies a uniform shear stress to cells seeded in the 

device 

(A) SolidWorks design and (B) top-down view of a straight walled parallel plate flow chamber (PPFC). (C) 
COMSOL simulation of the shear stress profile through the straight-walled parallel plate flow chamber 
(PPFC). 
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Supplemental Figure S4.9: Few lung metastases were seen 4 weeks post-injection, but lungs were saturated 

with metastases 8 weeks post-injection 
Representative images of GFP+ lung metastases in mice sacrificed (A) 4 weeks or (B) 8 weeks post-injection. (B) 

Representative IVIS image of mice 8 weeks post-injection. 
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Supplemental Figure S4.10: Divergent parallel plate flow chamber applies an increasing shear stress to cells 

seeded in the device 

(A) SolidWorks design, (B) top-down view, and (C) COMSOL simulation of the shear stress profile through the 

imaging, divergent parallel plate flow chamber (dPPFC). (D) Percent of attached cells versus shear stress value in 

the imaging PPFC for various replicates of perfusion of MDAMB231 cells. Black dashed line represents the average 

shear stress plot of the replicates (n=12 replicates; >500 cells/replicate). (E) Comparison of statistically generated 

adhesion profiles and experimental adhesion profiles (n=3 replicates/cell line). (F) Schematic of adhesion profile to 

highlight how cancer fraction, Pc, and adhesion strength are plotted on an adhesion metric with the dPPFC; dashed 

lines indicate Pcancer and Pstroma and darker dashed lines represent media cell adhesion strength for a given population. 
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Supplemental Figure S4.11: Raw data from mammary epithelial cancer adhesion assays 

(A) Shear plots of replicates of cells dissociated from the contralateral mammary fat pad (n=7 mice). (B) Average 

shear stress of cells dissociated from the contralateral mammary fat pads, tumors, and surrounding stroma (n=7 

mice/condition). (C) Average shear stress and cancer fraction vs. GFP+ lung nodules from resected tumor samples 

(n=20 lungs). (D) ROC curves of metastatic risk predictions for average shear stress or cancer fraction for resected 

tumor and stroma samples. (E) Logistic regression model showing probability estimate of a mouse having 2 tumor 

based on the average shear stress and cancer fraction for tumor sample. (F) ROC curve of metastatic risk predictions 

based on model’s probability estimates. Red points are classified as high metastatic risk and blue are low. 
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Supplemental Table S4.1: Intersection of migration and locomotion GO terms between primary tumors and 

pre-sorted cells 

Top GO terms (as assigned by Panther) between in vitro and in vivo primary tumors and their corresponding p-

Values as plotted in Figure 2F. Data is ordered by in vivo p-value. 

GO Term 
In Vivo GO 

p-Val 

In Vitro GO 

p-Val 

anatomical structure morphogenesis (GO:0009653) 1.310 12.740 

animal organ development (GO:0048513) 1.344 11.197 

anatomical structure formation involved in morphogenesis 

(GO:0048646) 

1.367 3.939 

tube development (GO:0035295) 1.371 1.440 

system development (GO:0048731) 1.372 3.359 

regulation of multicellular organismal process (GO:0051239) 1.374 2.943 

regulation of localization (GO:0032879) 1.385 1.609 

regulation of cellular component movement (GO:0051270) 1.554 10.383 

tube morphogenesis (GO:0035239) 1.879 10.481 

multicellular organism development (GO:0007275) 1.936 7.575 

multicellular organismal process (GO:0032501) 2.000 3.335 

anatomical structure development (GO:0048856) 2.048 4.967 

regulation of locomotion (GO:0040012) 2.056 7.939 

blood vessel morphogenesis (GO:0048514) 2.204 4.228 

tissue development (GO:0009888) 2.230 9.801 

developmental process (GO:0032502) 2.302 3.757 

regulation of cellular process (GO:0050794) 2.389 2.326 

regulation of biological process (GO:0050789) 2.437 5.783 

biological regulation (GO:0065007) 2.438 5.572 
 

Supplemental Table S4.2: Cell line culture conditions 

Media formulation for each cell line. Note the following abbreviations: Dulbecco's Modified Eagle Medium 

(DMEM), fetal bovine serum (FBS), penicillin/streptomycin (P/S), hEGF, and horse serum (HS). 

Cell Line Media 

MDAMB-231 DMEM + 10% FBS + 1% P/S 

MDAMB-468 

BT20 

MCF-7 DMEM + 10% FBS + 1% P/S + 10 ug/mL insulin 

BT549 DMEM + 10% FBS + 1% P/S + 1ug/mL insulin 

SUM1315 DMEM/F-12 + 5% FBS + 1% P/S + 5ug/mL hEGF, 5ug/mL 

insulin 

MCF10AT Growth media: DMEM/F-12 + 5% HS + 0.5 ug/mL 

hydrocortisone, 20 ng/mL hEGF, 10 ug/mL Insulin, 100 ng/mL 

cholera toxin + 1% P/S 
MCF10A-DCIS 

MCF10A Resuspension media: DMEM/F-12 + 20% HS + 1% P/S 
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CHAPTER 5. CONCLUSIONS 

5.1 Weakly Adherent Cells Exhibit Greater Metastatic Potential  

Epithelial cancers display a significant degree of heterogeneity in metastatic capability 

between the cells that comprise them. This results in a more aggressive subset within the 

population to be more likely to disseminate from the primary tumor. In chapters 2 and 3, we 

explored how the weakly adherent fraction of cancer cells presented characteristics in vitro 

indicative of having a greater metastatic potential. Weakly and strongly adherent cells were 

isolated from an isogenic population using a microfluidic parallel plate flow chamber, where less 

adherent cells could be detached and collected under low shear stress at low flow rates, and the 

then increasing the shear stress to wash away moderately adherent cells. By trypsinizing the 

remaining cells, we were then able to detach and collect the most strongly adherent fraction. 

These two groups could then be used to investigate migratory propensity in 2D and 3D 

environments, focal adhesion assembly, contractility, and differential gene expression. We found 

that increased focal adhesion disassembly and contractility attributed to the lower adhesion 

strength and increased migration speeds seen in the weakly adherent cells. Furthermore, 

computational modeling showed that increased contractility in weakly adherent cells allowed 

them to become adurotactic and migrate against the stiffness gradients seen in primary tumors. 

This was then validated experimental by inhibiting myosin activity by treating the weakly 

adherent cells with blebbistatin to restore durotactic behavior, or enhancing contractility with 

lysophosphatidic acid to make strongly adherent cells adurotactic, suggesting the more 

contractile, weakly adherent will exhibit higher metastatic potential.  

RNA sequencing of weakly and strongly adherent MDA-MB-231 breast cancer cells 



121 

 

showed that they have inherent expression differences genes associated with the cytoskeleton, in 

particular microtubules and motor proteins involved in vesical transport and contractility. The 

gene expression profile of triple negative breast cancer patients that was more similar to the 

weakly adherent cells had a higher recurrence rate or continued progression of their cancer 

compared to patients with an expression profile similar to the strongly adherent cells. When both 

fractions were treated with microtubule stabilizing or destabilizing drugs, paclitaxel or 

nocodazole respectively, the weakly adherent cells become less migratory but no change was 

observed in the strongly adherent cells. Moreover, the adhesion phenotypes arising from these 

genetic differences was found to be stable for multiple weeks in culture. Taken together, these 

studies highlight the potential of using weak cell-ECM adhesion as a prognostic marker for 

metastatic risk and recurrence of cancer. 

5.2 A Label-Free Metric of Metastatic Potential    

Compared to other biophysical markers, adhesion strength may serve as a more robust in 

vivo indicator of metastatic disease. In a NOD/SCID mouse model, GFP and Luciferase 

expressing MDA-MB-231 cells were injected into the inguinal mammary fat pad and allowed to 

grow for six weeks. Primary tumors and the surrounding stroma were resected and separated, 

after which the GFP expressing cancer were isolated using FACS and adhesion strength was 

measured using a spinning disk shear assay. The cells that had invaded the surrounding stroma 

were found to be less adherent than those that remained within the primary tumor. We then 

injected mice with presorted weakly or strongly adherent MDA-MB-231 cells, and found that the 

weakly adherent cells generated significantly more GFP+ lung nodules after 6 weeks. The 

primary tumors and stroma again were resected, and RNA sequencing of the cancer cells 

confirmed that gene ontologies associated with migration and invasion were maintained in vivo.  
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We then dissociated the cells collected in these samples to assess their adhesion strength 

in a divergent channel parallel plate flow chamber. With this device, we were able to deconvolve 

the adhesion profiles of the cancer and healthy host cells, and quantify the adhesion strength and 

percentage of metastatic cells in the sample in a label-free manner. Mice that presented with a 

greater percentage of less adherent cells in the stroma were found to have a higher chance of 

developing secondary metastases in the lungs, suggesting that these measurements could 

potentially be used to assess metastatic risk. It is important to note that these murine models may 

note fully reflect the standard of care received by a patient. Typically, patients will have the 

primary tumor resected early on in the treatment, followed by treatment with a combination of 

Adriamycin and Cyclophosphamide, followed by Taxol. Furthermore, the mice used in these 

studies lacked the presence an immune system, unlike the majority of cancer patients. Together, 

these differences could potentially lead to changes in the adhesion mechanotype of cells 

collected from a patient biopsy. While these concerns are important, we believe our results 

support further ex vivo assessment of metastatic risk by measuring the adhesion strength and 

cancer fraction from patient samples with the divergent parallel plate flow chamber.  

5.3 Future Directions 

While the results of this dissertation establish the potential of using adhesion strength and 

percentage of cancer cells as a predictor of metastatic risk in mice, additional studies are 

necessary to determine if these metrics are as capable for human samples. Repeating these 

analyses using patient biopsies will be required to validate the clinical relevance of the divergent 

parallel plate flow chamber. The progression and recurrence of cancer in these patients will be 

evaluated for at least 5 years to determine the prediction accuracy of the device. However, it 

remains unclear how or if the tumor microenvironment and its resident cells may affect the 
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adhesion mechanotype of the metastatic subpopulation. In parallel to these studies, we can 

characterize the different cell types present in the patient samples, then measure the adhesion 

profile of immortalized cell lines of the similar type and tissue origin. Then by developing an in 

vitro co-culture model, we can test how the adhesion mechanotype of FACS sorted GFP+ cancer 

cells changes in response to the presence of these different cell types. This model could also be 

used to test how the combination of the standard drug treatments affects the overall adhesion 

profile of the collective population.  

Lastly, the ECM proteins found in the tumor microenvironment, as well as its stiffness, 

may also be of consideration for making improvements to the device’s accuracy. To date, we 

have only measured cell-ECM adhesion strength on fibronectin coated glass slides, and it is 

unclear if the specific properties of the tumor ECM are required for to make accurate predictions. 

We can test this by simply repeating the experiments with the cohort of immortalized breast 

cancer cell lines coating the glass slides with other ECM proteins in place of the fibronectin, and 

see if cell migration speed and displacement has a better correlation with adhesion strength. 

Additionally, the glass slide can be coated with a polyacrylamide hydrogel that matches the 

stiffness of the tumor microenvironment, and coated with the protein of choice, to assess if the 

substrate stiffness better stratifies metastatic and non-metastatic cell lines.    
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