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Spring 1958
LECTURE 1

Continuous Groups and Reflections in Quantum Theory

Interesting subjects:

a, Lorentz gr.
b. Canonical gr.
c. Linear Canonical transformations (Symplectic Gr.)
For (a), the épinofs will be interesting, and the more recent appli-
cations concern the neutrinos., Also:
Majorana spinors
Charge conjugation - discrete gr.

Space reflections (parity) - discrete gr.

We will discuss the 2 x 2 matrices intfoduced by Gursey.
Then comes:

Isotopic spin

Quantization questions

Vacuum expectation values

Weaek interactions

Analytic continuation (Wightman)

C P T theorem,
We will use free particles but only as examples, preparatory to the

the interacting case.
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-
Elementary properties of 2 x‘2 matfices
We will have, in general,
A
a= [ B
AZl
and now considers:
W = ; W==-w w ==l W =-u
1 0 : o
Nows
Dz det A = A -
1 © 11 22 12 21
but:
(A)AU\)-]-‘ = A=pat,

' Thus the inverse can be specified as a rational construct of A if D # O.

2
Also:

Remark on canonical transforms

Consider the pairs of variables pc,‘q
i

o
@n

o= X e X
i 2i~-1" 2i

© 00 : X X e 80 X
(P19 ql)s s (Pn:v qn) = (19 5? 9 2n)

and we will treat the linear canon transforms of thése variables.

Define: o -
OO—I O,‘"

A canonical transform will leave Q. invariant:
]

Let: X =X S
© i k ki

_Then: SOSs = L

ey
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3
(If we had required orthogonality instead, we would omit the L and get ST =1.)

Now consider:

Xi = XK SKi
"=y S
i 7 9% %1
ands
XLyt = X8ssy = XQOy. _

Thus the form is imvariant., XOyz 2 {p (2) , @) p, ) qi(zﬂ
_ AN

If we specialize to n = 1, then the condition is equivalent to D = 1,

Thus a linear canonical transform is equivalent to a unimodular transform.

For n# 1, D is still necessary, but not sufficient for the canonical form. -
This is clear by taking the det of egn. det S = det'gz. This only proves
D=21, The Liouville theorem says D = +1, and it can be proved independent
of continuity arguments. There is a difference in the orthogonal group

(reflections).,

Spinors
Let us now introduce:
o 1 0 i 1 0
Q- = o = o =
1 1 0 2 i 0 3 0 =l

Except for an "i";, these are the quaternionms.
2
C. = i 000} g =
1_0é 105, H i 1

The relations are retained under a unitary transform. Here; W= ~ 1 OEV.
In other representations; however, w is invariant so the relation is only

specially true. We also introduce: .
_ (1 0 5 :
O'O" _ and O = iQ %=~ 1.
0o 1 4 0 _
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Other relations:

172
[Notes D'{m} = -1 12 1,000, he
i
Thuss '
o, = wt o = - =
AL o, =0y w =1, 2,3
while

Unitary Transforms.

U corresponds to the rotation gr. in 3-dimensions.

Now considers:

ist O,
U () =e 1 = cosxt + iG;L sin e
i 0% 2
(Expanding e 1 and using 0" = 1).
o oL+ o = O L
Here: U ( 1 2) = U ( l) U ( 2)0

Thus we have the one-dimension rotation group about the i axis.
(The connection with coordinates will come in later.)
. jox 0=, =1 O;_
U 1is of course unitary: U U =e T e = 1,
+ . s
U = cosx -~ 1 S1n o0y
; .. A . 4
If we want to rotate about an arbitrary axis, ‘ns

A D
eix(n»o’.) = cosx + 1 sinx (R-%)

U =
Thus ¢ . Det U = 1
. 2.2 is 4 . . 5
since ne is invariant on rotations.

To get Det U # 1, we can introduce an arbitrary phase factor:

o= oy
1r: Jaet v |2 = 2
det U = oF

LIS

e ¢
[y a 8
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The most general U iss
°°( /\’3 N
o (n )4-58

U =
FOOTNOTES
1 wiwt o [0 7 [ Azly oo
1 o) \&, Ayl 2 o

A A
21 11

- - A -A
- © 1 j - 22 12
1 0 -A A =A A
22 12 21 11
But:
' A A ,-A4 5A 0 :
\ - 22
WAW 1 A= 11 12721 = D Q.E.D,
0 A11A22_A12A21
A A 0 =1 +A A \
2. Ak = 11 12 | 11 21
Ay Ay 10 ho Ay
0 -A A A A
- 11722 “12721\ - wD{A}
~Aiohot Ay han 0
3. We have, as eqns., of motion:
dx.
= = & b, =-QH , g = &I
1K K + 293 1 3Pi
and: . .
dx. d
i, X s = 28 s
dt dt Ki ki g% ki
ox'
- H_ ° m ~ H
ki Tki oX'y 0% ( Sik” ke Fm ) oxT_



3. (Cont)

But:

so: ML=

4«0 (?}.‘E

5. Or:
U

—6-

FOOTNOTES

. o= 8Nns

= 8as
- N—l~_1
w7l o= gty
°. Ne= §ln gt
)2
[ad
(nx<)~x-o-nyO’y-t—nZ .
2 - 2 . 2

: n
n+ n + n, + nng

cosxX + 1 sinoa-nz

i sin o (n, + iny)

UCRL-8213
Lecture 1

o~ - o .
Ty ¥ 0% )+ eees = 1
11
I

i sin « (nx - ing )

cosx - i sin Q<anz

o
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Notes by R. J. Riddell, Jr.
Radiation Laboratory

University of California
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LECTURE 2

Connection between the rotation group and Lorentz group with
transforhatibns of 2 complex variables. o

4The Loreppz group is a representation of the unimodular group of
2 x 2 complex matricgg. |

Considers:

¥ 'z g,eA/S’“ | A/@u = complex

X

This will be isomorphic to the Lorentz group. Det A = 1. The subgroup -

o+

of unitary transforms: A A" = &Y A o= 1 is isomorphic to the

3~dimenslonal rotations.,

The connection is most simply illustrated by considering a null-vector:

r - 1 = 0
Then we define:l
x:— iy _ t -z _ §2
t +2 x + iy ' 5
: 1
, _ w
x +iy t -2 22
t+ 2 T x- iy X
1
Then: '
) ¥ . 3t
x - iy = & ¢ X +iy = C§
Y 1 55 y 1 5

3 ' %
t =C¥t - =
+ 2z 1 fl -2 ' C§% fz
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Now, we introduce the matrix

'

= O%

o+

t+Z x—iy X
x + iy t -2
(Note that ‘g* is treated as a column vector; ‘¢, & row.)

Evidently:2 '
det X = 0

which gives

If we now let
g = T4

then3 , "
X* = A X A,

and to each transform, A, of the ¢'s we get a transform on the X's,
The det 1s invariant if . {det Al = 1, so this corresponds to a Lorentz
transformation, maintaining lfw 2 t = const. We use:

det X! = det X ; ] det A '2 .

[?hough X - here is a null-vector, the relation is true in any casé]

We may generalize to a non-zero vector by choosing:

v = 0 3* + 3
| | Xx/g (g *gﬁ, . YZ,g)
where the ¥ choice gives a time-like or a space-like vector.

Then:%
Gt x = rczlglﬂz—gzyzllz =>t2"lzl.2

Now:

t =%v‘°r>< = 3O (EE T £, 8,)
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so that the Trace-inv, unitarity restriction on A gives the sub-group of
spatial-rotations. Note that if C >0, t >0; C<¢C, t <O0.

From the definition of X , we find:
& :
-5 - A - L3
, X*=XCTE¥ (where Xe«'g" ZE’“%&)
or: ' .
sz\go-‘(g* k = 0, 1, 2, 3. f{or 1,...,4)
O- : l’.ﬂ. *»

[]

Now, under a Lorentz transform -

? : _ ’ '
= X X .
X, 21 " _LiK.(A) | K = 1,ui0,4

. . :6
and we readily find:

. + B R
= L
A o1< A oy 1k (4),

‘which thus relates A to L’. The transformation preserves the dets. of the 01's°

If we now consideré A and the related L (A) as well as B and the
related L'(B) then:
BA is related to L (B 4) = L (B) + L (4).
this folloﬁs'from:
$
Hi - =
\g - E A EB A

Where we let B operate and then A. Then we get:

Also: ) - ' : e
o- L B L A = a + )
2 Lix (B) . (4) .(B . B Lys (4)
BPC S )
= BAC 4 B Q.E.D.
' J

So far, we have proven that:
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0 , L
1 Tc every unitary A, there is associated a 3-D rét.
go To every unimodular A, there is associated a Lorentz

transform.
Tha relations are not unique, howsver, gince by continuous transforms we

can change '

€., & - %

This leaves the ’XK"s unchanged. Consider a continuous rotation about XB:.

o

/1 0
o =
> o a 13

P eyxob‘

€

This corresponds to a rotation by' 2%, Thus:

5= eiugl A
and if %« = T
R
wheréass . 24 &

L
N

[1]

o
e
Do

n
o
N

A ¥Fisld Theory

o~

. ° .x..
Let us now identify ¢ , a R~component spinor, with g

.
eed P with § . Then we writes
T~y % —d 3#

j= (P oY j°ﬂ8 = 2 QO<Q%.
The momentum vector is:
Py = 3, p,) (a null-vector)
- -
o = P - el
PK X p P9

Further, we will define:

(?K T, )y = B x const.
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Now if: ' = Aty (since ¥ ~¢") ,

then:8

AR AR (ijJKO“K)‘AtP

~1 Y = A—l(pio.ij tP = A—l g,

L
oy

= pL, »

A
JK
In 3-D rotations, A o= A"l, so that () and @ ‘transform in the same

way. In the complete Lorentz case, however, they are different.

We may recall that

L wEwt = (aet A) st .
If: ¢ =4wq;*~ (this.ié just one particular way to construct 525)
Then: v
- Co ~  # - -] ® =1
g = WP = WAW = ATwy = AT g,

since9 det A = 1.

. FOOTNOTES
1. Sihce
(x +iy) (x=-1y) - (t +2) (t-2) = 0.
X - 1 t X - i f'*
- ’ - - 1
v y=§21
t + 3z X + iy x+1iy E. 5 *
- | | 152
or: * ' . ? #
x-dy = CLE x+iy = ORF

where C is a resl constant (normalization)

Thén:

_ )3 o %
t+z=;§—'.12- (x-—iy) =C§1El
#*
EZ %
t—z'«‘-‘\g*(x-.'iy)‘ =CE2?2

1

‘Note that, if t >0, C>»0 andif t<O, C <O.
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FOOTNOTES
2. * g
El 5 ‘é‘l E,
Xz C 3% 3%
(PR 5,5
3*1 t 3% 3*
3. X“/; = S %, =¥ A %ASK’
= A gx*gs A%ﬁ = WX“ sg

o Since the ¥ parts or Y] parts have det x = O we get'

detX t[ N, 722 +’§ gznlrgl
- Ei*gzyzz*yzl - ?2* ?1\/11'*)71
SR2 [gl*yzz* ) EZ*YZI*] ) Ezyzl'[\gl*}?; -

l’;yz 17 = ¥ »‘l"éwYle

5 Here, again, “¢ ¥ is on the right because of its role as a column vector.

' +
6, XK' = \SAUK A - Eoi’g* PiK

~and since L . dossn't operate on the ¥ aﬁdx"§~is arbitrary we get the stated

result,

7. - We can.get another such relation from

o= g . '
Xk K(l_ 2sk4),

which is evident from the explicit form of X. Now:.

R 1 " - = 2T l: r, _ A
. X (1 23“) ATX A AXKO‘K(l 2sk4)
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FOOTNOTES
7. (Cont.) )
. )
© Thus: L o (- = X A & - A
Thus Xl ik %k ( 2$k4) K k(l 281(4)
SO +
L 0 (1-2% =A0 (1-25% A
iKK( k4) i 14)
L. L o 1< 25 V=4 L (1 - 2% A
i ikk,< Ky i1 ) A
*-
5 0o 1-2% Ao L 1-26 )4
Re K ( KA) i g (- 14)

and finally:

+ -1 -1 _ .
4)7"g ( -'28'14) A ._O_i Linv(l - 25,,)

If we have a 3-D rotation, AT = 471 and the relation is the same as on

page 3.
. : X,'x,' =XL XL
8 We'use 1 &= Kb
= XXL L :
UK kL
. L L = 9 .
Ji ki ik
9. . The requirement for a Lorentz transform is only the I det A ‘ = 1.

However, if det A # 1., we can always choose A' = o A  such that
det A' = 1, This leaves X unchanged and so only serves to meke A

unique in this respect.



UCRL-8213
Lecture 3

UNIVERSITY OF CALIFORNIA.

Radiation Laboratory -
Berkeley, California

Contract No. W-7405-engﬂ-48

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
g IN QUANTUM MECHANICS" BY W, PAULI

_ Liecture 3
R.J. Riddell, Jr. -

March 31, 1958

Printed for the U.S. Atomic Energy Commission

¥



UCRL-8213

_ ' Lecture 3
LECTURE ON "CONTINUOUS GROUPS AND REFLEGTIONS
IN QUANTUM MECHANICS" BY W. PAULI
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Radiation Laboratory .
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~ Spring 1958
LECTURE

Now, we will obtain the Dirac equation:

| (po )V = const. f=-nff .
(The const. m has the meaning of a rest-mass)
(=p + AP =-ng

so if we also choose:

(p,+ Be8) f=ny
we find: _ »

2 212 2 -~ '

(-po + @+ )Y =0 (Klein-Gordon Equation)

{%n this we have used:
‘ , 2

(-p,+ BB + B.8) = -p *+ @)

which follows from the commutation relations fdr the ¢ 's for any vector pZ]

Added remark:

Here, we have obtained the K.G. equation from the first two equations.,
We could have gone the otﬁer way Jjust as well. If electromagnetic fields
are present this method is readily generalized. Pauli doesn't see any
advantage to this approach. Kramers ééveloped it in his 2nd volume of quantum
theory on Electrons and Radiation.

To get the coordinate space equation, we will introduce

=-g: 2 o‘*:’_?_
Po i‘axo’p ‘7% *
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. Then we haver

 2 +-oz;‘9>q)--+im¢-o - , | N
2% _ L

2xo

2. -3-_2) f+imyp =0 .
T Py Ve
These equations can be written more symmetrically if we introduce:

— —
=~

o =1

To o

E\Iote that T T, = -1 ,,..j .

Then:

]
'
8

=

k

ep )Y = -1 (a;;;%{ )Y

J
B
<

. | o : 5
(-’Ukpk)ﬁ = - i ('C;{ ;—i )@
From the relation:

124 (get A)

4%~
we see immédiately that

L :

T - ' T : ~1
= o~ . o =
T:k LU» k w 2 k wtl-;w . .
since det 0y = -1 i=z1, 2, 3 and det‘o-o =+1.
Reflections

There is a fundamental connection between the two kinds of spinors
U, ¢ and reflections in space. We assert that @ >@ , §— ¢ corresponds
to a reflection. So far we have ohly considered a continuous group, but now

we will consider the discrete group, P (parity):
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=1, 2, 3

»
il
t
"

1
X - X
(e} 0

From the Dirac equations, it is clear that if QY=g , #—¢ and the

coordinates transform as above, than the equations are invariant. Now:1
X% "% '-(xi - ixz) T o1 -1,
Xt = - = WX'W™ - X "(det X)
—(leF ixz) Cox + Xy
= X (as denoted by Gitrsey)
and if:
X' = £X4
then:
s R R | ~1
®H =A@

In the subgroup of the pure rotations A" = Afl and so we see that- X and
X1 or X ell transforn alike.

The transformation y' =@, ¢' = is .invariant with respect to the
3-D rotations.? Thus, as long as we are dealiﬁg with theories which are P
invarient it is natural to introduce the 4-component spinors as is done by

Dirac. If the invariance is not present, then it is no longer natural.

The'Dirac spinors:

we now introduce:
vor 0\ +0~ 0 0 1

N
0 <7

->
S

1t
o
\
=
1]
[ ]
o
H
g
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sot X ¢ = 2%
{i s} 1
1l 0
o = -'_:'l .

The pair of equations are then combined to:

P Prmpy =0
or:
g o= 2 . .
L= L QU + =
(4) 2t+ ;;9f+lmfw o .
Taking the complex conjugate, we get:

S oy ay*
(B) ot + X

From (A) and (B) we readily construct:

R-inyp =0 .

\

93 i = const. P ¢
[e) Ty . - - o] - -
R + divj = 0 vwherse

? cops‘t. (Llj_*;: 9)
[}'o > 0 if the ¢'s are c-numbers, but it is not necessary if the P's
are q—numbers{] ‘

We can now introduce the Y's:

ﬁ
& =z ix?;ﬁ= YA

4 .
Y = -i/cx = i<></? ‘

and then we can write (x, =1 t):

A
W =
Yk 3’3(+m£ 0
and if we let:B _
- M M
= = A 1
b=u'p o=ty
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then we get:
Y - :
— - =
g kT EmEo. L

Now we see easily that

J, ¥ const. (P Xkl\_))

and
23y

7%

- ' ‘ #
[?he' P is more useful for studying the Lorentz properties, while ¢ is

it
(@]
L ]

more useful for studying the reality.properties]

Another important matrix is:

= .y T
‘(5 ‘(1\'2 3’3 4 5

and we can extend the commutation relations as:

{x,r} =25, 121, vaey 5
{?he origin of the 1, ..., 5 is a S-dimensional theory, and will not be

discussed heréa

In our representation:

1 0
Xé =
0 -1
. =
- 0 ~-i0 v o 1
¥ = . - *
Miocd 4
ic 0 1 0

Charge conjugation:
The equations suggest defining:

¢° = —-wq:*
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[Then: LVcc - +w(¢c)* =y, | CC =g ]

Then:

-

Q.g_ A Y
o]

<9i -7 L) Fring=0

) 95?
We will show that in the presence of an electromagnetic field, the change
will correspond to e— - &, |
Remark:

Majorana spinor:

g =g
| MR
Then:

) 3*
(Okpk)kp -nwy =0
(Tp) wy -m¢ =o0.

These forms can only hold for non-electromagnetic particles, though m need
not be zero. The equation is not gauge invariant and so cannot represent

- charged particles.

FOOTNOTES

1 The relation between X' and Xt is clear from the cofactors involved.

2 It is not surprising that the full Lorentz transformations do not leave
things invariant since the definition of P on the coordinates is manifestly
non-covariant.

3

We choose [ :‘P* XA since the anti-commutator of y's then reestablishes

the symmetry between X15 Xy xg and xz which was lost on complex conjugation.
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Spring 1958
LECTURE 4

Now, from the Dirac equations we find the relationl

wheres
AT T=v'Ty-g'2p .

Though we have used the free particle equations to get the current, the
latter are considerably more general thanbthat° Pauli also considers that -
postulating the relations from 31 jo is a justification for the definition
of the P operation, since thens

- -
jt=-13 it = .
The transformation is still not the most general one, since we could

[

also have chosen as well:

¢ =g »eio(-
where o« will first be considered as constant. The equations are invariant
~ under sucﬁ a change also, - The transformation is a gauge transformation
and all charged particles allow this change, leaving the equationsvof motion
invariant,2 For neutral particles, the arbitrariness is not so clear,
since then the transformation is not allowed. Here it would be necessary
“to consider the interactions to fix the phase, however, as the free particle

equations will not suffice.
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From experience, we believe that baryons (nucleons, hyperons) are conserved.
In addition, leptonic charge may also be, though the evidence here is less cer-
tain., Pauli feels that the former and charge conservation are certain., The

lepton case may be related to a discrete group rather than a continuocus one, .

in which case the conservation would not be rigorous,

Charge conjugation (again):
- % : c
We had:3 ﬁc = —u}W 3 P =+Ld¢* o

Now, in 4—compohent system, we might writes

where
0 ) w 0 -1
E = = +1
-0J 0] ' +1
-1 0
so that: e _y % Q)C ) ¢ %
. _l - _4 . 9 _2 3
e o ® ¢ 3
9_)3 - \£2 H i)z" - “”qi °

Majorana introduced this concept of charge conjugation, and it was later
generalized by Racah and Kramers.
Now: With our present choice of C, we would find that it does not
commute with P ( [?, éj #O)} but if we makeva different choice of phase,
it will. Thus we sets® | |
Fary £ =it ' | '

¥
yF =14 V© = -iwf
A
| {?ith the old phases, {%, P} = 0. This result is of importance.]
For E, we note that

Panrd f=

E=E EE

i
=
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-3 |

These properties of E are essential, X:hlso, here, E" = E, E? = i;
The "essential" features are seen in considering the transformations of E.
We let: |
W' = Uy, o =1 :
which can also be considered as change of representation of the 1'3:5

]

Y'EUX U—l °
k k

Then we find:

E'=UET ,
gnd
E' = B' E' B =1,
Nows
Y =£YE ¥ z.5lvy E
4 47

We would have started with these requirements on E, and then the essential

properties will come out. The latter relations come from:

0 w 0 ~i0, 0 s
YD' = E'IS?E = 4
+ -w 0 i0y 0 -0 0
\ . .
_ 0 (;.)) 10'1(0 0] ) 0 1000“;103
= (U 0 0 1(?100 -—1wU'iuo 0
Now: ;
wio L = cwheo = 471 (det 4)
s0%
wa =
iU) G;
since
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o
Thus: : : -~
. 0 ig; -
K - 1 =Y
-5, 0 % .
i

"For Yy , we have: .
4
0«)0”0(,) ="O'O ’

which proves the resulto6

We might also proceed from:

e 3 -1- oy |
q) :ElP :C LP :——LEC °
{?hen, again, E has simpler reality conditions and _C, simpler
transformation propértieéﬂ ' -
Pe =Cp= -yo.

Properties of C:

and’
¥ oy ¢t k=1
k = -~ o= 3 ooy 4‘0
If we look at: .
~ -1
Y = Y. ¥ %Y = C
ERARA S ¥, =07,
From C, we find:
C, C %B, C'Yka are anti-symmetric (6) /
Y o
C ¥, Cjk@ are symmetric (10)

Y =4 - r Yo
g = Oy, \(gzk)
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External Electromagnetic Fields

Rule:
2 -3 2 - 1e 1? !
2? ?}x’
2 7
DXO—?‘CXO+16AO
A =1A X, =1x o
4 o b4 = o

n = ' . B
<' 2_+1ie A) [ (;9§?- ieMg+imp=0

If we do the same charge conjugation as before, we gets

. Cc
<9 -ie A ¢+0.<%+ief>p°+im¢°=o

axb QX

<._l.aieAc> ¢°_5’o<—§=,+iez>¢°+ imq)cgb

We will then find that the equations are invariant if e'— -e, or

8 .
A — _A}c Thus we can truly call the transformation charge conjugation.

/bL

FOOTNOTES

1 ' »
?&t+?o%qj+ imf@=0 x "
R T

/ A

3*
Y2 PP, -§F. 2, ff o
R R AL

Adding complex conjugate equation, we get the desired result.
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b

directly to charge conservation.,

3 c 3* c = _ #*
c _ * c ¥
q)l = - ¢2' ’ \P2 = - ¢1 °
b4 We have,
. ix?
g, =y ey et
— - - - s
b = §° = of" e
S0 : 1{4 '
P)° < ol . S A )wyj*
D L S . oy e .
@) = - o _pet (O =) g
W)° = ety 122D
p 2N 1 3 o .
(ch)p = 0)(¢*) elh = wel(a' A) o
Thus, we need:
T . =t T
. 2
eil = i i
)’ is arbitrary.
5 ' 1
HP Y T b =0 yh=UY p= Ty
¥ Py U_lf' + m U—l\\_)' =0 q}*u = U*LI,)*
v ] q)l u)‘ O § UX U—l
. P + m = ¥ = °
k kL = "k k
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5 (Cont.,)
Now:

i 4 ' ¥ #*
o cEYT B TY .

We want to maintain the Dirac equations for ¢c the same as for g,

however, so we would have:

£:3
4,°“=U¢)C=UE¢J )

Thus:
E' U - UE
u—l —~
E'=UE (W) " -UET .
Alsos
B =UET - E'E* =UEJ.,Uu E U'=1 .,
1
6 We could have proceeded by:
3
q;c :qu °
Then, from the Dirac equations
- 29 -
‘?st*md)w & Y - pm=0
H [l
* % T
u-?iq?_,___‘bw oy-i-mlv*zo
0 X BXA A
Ansatz:
#* 3
q)C - ELP q} - Elq‘)c
Thus:s
St v gl -1 e
YE - }L E 5% +nETYP =0
and
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-8
(Cont.)
To make this agree with the Y equation, we must have:
?:E:;E-l 7=—E?E-l
Lo 4
Thus:
Fzgl7E ¥ =-E%tY BE.
L 4
Since the ?3 satisfy the same commutation relations as the ‘fi,

E must be unitary. Now:
E

¥ -EYEL y =-F ¥ T
4 4
T-EEL¥ElE | ‘JAZAEJ:E_IEEE—:L

Thus: - E L commutes with all 4 Yi,_andﬁhence with all 16 constructs

of 7&'8 and thus = const.

e EE T = T = XE But taking transposes

YE=FEY= ¥E so YE=t YE
Also
Tt YE=T. Y E
E E, E=F Y
o PRV 457
wh'xi ==, Y, LELIFIF 4L
¥ v E ¥ E
.Y, E= T 7.
i R
—
Yo E=F % E
J v E=tY¥Y Y E
Y. =t ¥ y
3% s
/_\_/
Y E=%Yy ¥y, E .
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(Cont.)
For o = -1, we find 10 independent anti-symmetric and 6 symmetric

matrices. Since this is not possible for 4 x 4 matrices, <# - 1,

If we choose < = +1, the situation is reversed so

Since:
- Y E (antisymmetric)

we find
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IECTURE 5

o IECTURES ON "CONTINUOUS GROUPS AND REFIECT
' -IN QUANTUM MECHANICS" &Y W, PAULL

|
i
i
i
'i
!
1
i

“Remark on the signs of the transformations:

v As we saw, the phase in the - ¢c equation is arbitrary and Pauli now

. | /0 -1 '
wants to go back to ¢c - Y¥, v = 2% = < . >
' 1 o/

Now, in four-component language, the Dirac eguation is:
Y S -ie ¥ + m Vv o+ i -
k 3xk : Ak ‘

Here, we have added the Pauli term of the "anomalous" magnetic moment in the

1 ? .
o~ “’é“"E‘i}E“‘xf‘Y‘k’;“—we ha.'ve ‘.

A oAy

Fix = & T &

are the fields;

UCRL-8213
~ Iecture 5

Notes by
R. J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California

Spring 1958

i

i
[

U .
02‘

.
7 Fax i V

- : 1
ff, E. The anomalous moment term is: 5

ix. 1 Y%

- @B - (2D
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where:

TV = = 1 L B;j . ¥p.
i : ' v t !

I
Thus we can also . write:

<~£— + ier> v o+ - ('aés? - 1."e;f)\y+ imp v
o] : .

- ga%a;fﬁ 12-F{v -0 .

1

In the limit of small velocities, we get an additional magnetic moment beyond

e A
2me

moment for the neutron while the proton has a large part also. (The correction

the "normal" . The latter, anomalous part, gives the entire magnetic

for the electron is ve_i'y small.)

More on charge conjugatiozi:

~

If ¥ - \J,fc, then '\lrc' satisfies the same Dirac equation as V¢ 1if

either 2 e » -e or A“ - -A“' f
N e Co Fax 7 Pk

.{‘.
- o~ l
l_We find® £ = -ETFE ; (see footnote 1)

(68 - =Xz .]

In the Majorana theory (two components) :
. c X

vo= v .

Thus, for \irc, \jrv. to satisfy the same equation, it is neéessary that e =0 = u
{(no electromagnetic interactioris). . This theory has been used to describe the
neutrinos recently. [We note that m = O does not follow directly from the

Majorans theorys] _ »
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We have'been using a particular representation of

/1 o fo 1 . [d
‘Y = . ‘Y = -,.'
5 0 w1/ 0 H 1 0 0

0

_—

o

[These signs disagree with the previous choice for 5% but to get the sign.
- for Y5 right, this choice for & is necessary°]
Another representation is that using (Majorana representation

Yl:‘Y'ey Ys = real - (Syﬁe)
Y, = pure imaginary (anti-sym. )

- This is not unique. For example, we can permute the Y's chosen

[,Tl Sy Yp Tz s —arl] or we might also multiply the v's by -Ll.

These Majorana ¥'s may“bé obtained by a ﬁnitary transfonmation; for ex.ample:2
i =im :
. . 7 -
U= = &’ - uvad vl
' 12 S\l w
“and then: .
- i .
o] 0 0 U‘ c O‘\
et 2 3
al= ’ a2 = i . P a3 =
0] oy =0, 0 0 03
- /0 o
B = 1] \°
9 0]
e
In the Majorana representation, E = 1; wc = ¥ ; C= =) - Thus in the

]
=3
4.*

abbreviated two-component theory vc =V {Kbvchange will appear in

the form of the current.] .

The change V¥ ;9¢c: corresponds to either the same particle in the
opposite field or & particle with the opposite charge in the same field. Now

to give physical meaning to the transformation it will be necessary to have:
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If the V¥'s are 'ordinary numbers, it is not possible to get a reversal since:

* e . *

{J°=W1lf Sy =YY = g
and the sign has not changed. To continue, it is necessary to introduceN;he T
a“hole" theory or second dpantization. |

In the first quantized theory, the charge‘density is > 0 while

. the energy density is not. This is not satisfacfory since there will be no
lowest state, and so we proceedAdifferently in the second quantized theory.
The technique was developed by Jordan and Wigner uéing the anticommutation
relations (exclﬁsion principle). [itAis certéinly necessary to-have spinors;

whether one needs explicit Bose fields also is not yet clear.]

R

R 2

e e —

Second quantization:

*
We introduce a, a  where:

* * . *
a® = (a )2 =0 aa + a a = 1 .
* - * ' I
If we set N = a aj l-N= aasa
'N(l -N) = 0. (Exclusion principle)
Then & representation is:
o 1 . o o\ ! o o0 ) 1 0
a = s a = '; N = , l-N-=
0 0 1 o 0 1 0 o

It is interesting tc note that there is complete syrmetry between &, a .

Thus the theory is symmetrié between N, 1 = N.

[ Notation: Anticommutator %.A, B‘i AB + BA

Commitator [a, ] AB - BA .
Here, we have quantized according to the exclusion principle since N takes

only the values O, 1.
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- : S < CLectue s o v

If we now consider a set of a's, we chcose:
S Cx ) ' \ : . SRR
v a, a = b : 3 : : R
T s o rs . e o : S
N ' * k) f ) _
~da , a - = a. ., a L =.0 . o
: r’ s _ r s ST SRR
S

'a'" correésponds to absorption. s R o .

~ "a*" - corresponds to emission since: . . o S :

a w-(,,,vv 1 ) = .s;rw(.;,.‘ or)

't;Thej~ver's depend‘on the_¢hOice of'ordefing the - rjs;‘since'“

e e _ . o . - Fr- N ' I
oo T Lo » . k21 k oy .
R 4 e e (N ey Nrf cao): = (-1) R .

P i

" . ".If We change the order of the states, the €'s will be changed though it would

M?5§ °nl5'C6rreSP0nd to a unitary transformation. No physical results can depend

[

v

7';? if;ffwé now introduce the complete set of eigenfunctions in & box Vi

| .‘Vp(xj : ;bv';%’rgl;-g B i { a'r(.l?)‘- I‘Jpr,(f)véi(k"x?} b:(i’) v T(®) e=-i(k‘.x)‘f |

where:' BT L e
kex = K. X ~wt , o W .£_j+'Y k 4+ m

. ) : I % T L : T

~ We have separated ¥ into two parts &a, b (or wu, v) because of the double- ..~

vélﬁed‘ﬁature of w. 5 We now havelleft the'twé'pdééible spin'choices'(r=l;2),,~5

The u's and v's satisfy: L

&



or:-"

i

whlle we chooce the no*mallzatlon of

@ ¥

1,2(5?0 i

-;ju?givfi'

We' can easily verify_that:

A

(k) 3 us<~—f)

‘:v?<E3 B vsff

'(wi ¥ o kX + m)j Vr(k):

.v§(~E3'f 

Bt (’3 u (k

)j>

3,

i

4

'

|
o -

R O_ "

4

+ ﬁ m - w) u \k3

+ B m + w) v (—k,';

. UCRL-821%

O‘. ;.l’.

the -u's so that:

o4

Lecture 5

i

| FOOTNOTES

‘

- [FJ.E 1Y tF

137 75 F

Fas Yo 5

R T Foy Yo My +.F31+ 3 T_h*] o

. Footnote

2

cont. . .
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Y

Q
I
INHEES
),_‘I
8 -
. >\—‘ . o
(&)
al ©
e
|
o

- TS ' R S B

p [eg g, SRR RS HE S X - A
: L e . RN ==
= = e el o S —~ Cosince O W = O

i

o

' ::l;tfi\wﬂ and we get Pauli's choice’ﬁy'changing the sign of 211 a's, ﬁ‘czé

 ”3_;:”,h e ET P : ‘.; -

T 11113;3 No+e that the \(%\"appears on_ﬁhe operator assoéi&tédeith ﬁhe‘négativef

N\ I

v

;. ﬁfj'}- freauency, while that withou one goes w:rh poqlrlve froqupu Y. _ThiSiS»?}

e ;'also_true for, ¥ Thls ig close¢v *elatpd ~ to the "ole theory“ of
S A . , ) o * o B
.., Dirac,.since- a »1s related’to annlhllatlo, and a 1= relatad u“ ﬂreationa
. . - v' ,.1 >‘ -; L ‘. .; . v' . . . » " :’ . . . - . ) .. . ) V . .‘.‘ ; 'v .. ' ‘..’ .
- o "'H _-PI‘OOfZ e . AR ';’ S ¢ oL : CLote e
: A l_e (a - k- + B;mvm_m) u \k‘)) ‘ DR Sh .
AU 'i‘ .’thl‘ CL iy iy . curT _ S o0 o : .’ i“ C P
T A S {d » Xk + B rn + <n v ( mﬂf)‘-— S O R O T e N
A - : e . R v

o R~ T {Q’ N }_(-) + B m +(D} fvfji'(‘,,“.?) : O? [ f o R

7 s Laded b A nB oSl N

Multiplying 1. by v (-K), and . 2 by = (“3 adaiﬁg,>wéfgepgi;« T

.

' BT gy e A S
2o(v (-k) uw (k)) = "0 . ’ S
P while, using 1. for wu , u - we get nothing of interest; but we may choose.

RS St £l

R T S Coee ’
u (k) and u (k) orthoncrmal. -
;:: v" ! ' ‘.. K é;," '
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. LECTURE ON "CONTINUGUS GROUFS® AND REWLMCTIONS Rt
- 70 U0 L IN GUANTUM MECRANICS" BY W. PAULT- . .

RO thcq by R“ J. Fdeﬂ]l Jr.t
L ”'t. "? ~.7w' : ﬂdlatlon Laboratury ) U? v ‘ .
S University-of California R
e Bezkviey Ca lifornia e . R

y - s e,

1

. ' ’! , 'v;'r» ;’
' A ‘ ,“ v '.‘
A . . - s :" ) " »: R . P ' ’ ’» L.
} We L&u iruTPuUuP pre ection ope ratorq Casimir)‘via:’ R
' ' ‘o i A
. - . ot I L4 .

_ o e i
PUE = 2 J®u®
: 1,2 3 . I

; Sog N STp g v - ,
T : r=1,2 o . '
) ’ 2 e r’ o "
. ¢ .
- ¥

N

" From the: orthogonelity relations:™ - . o

o+
i)
=
AL
1}
‘_.!

. . [N & By
. R ' Lie -
IS . J " )
W \ T ¥ v
+o @y 2. ¥ - T
; = P g P) =P :
Y Pe 9 L J N .
. M ” v :
. P 1N
t =) + ¥ )
. — i P P O 3 1 *
= P o= .
j' b L &
. » : v
. ST, 4 N

“ootn Sinmce the P's are also congtructed from u's;r v's, they are solutions- of .

4 : ' o R N . . ) ! . s . .

?the‘Dir&C_eQuatioﬁL:; R T B

R TN f"'f.'i“‘._' N gy S e
T @R e e @ -0 L

- and we can thus write:, | O ST I T

‘ P‘t(l?‘) = £ f}a as k- + Bm * w), ’ - ‘ ;
- " Speci:f“ical]v, we ;an zﬂ *30 o‘h*am ' o -
. .. o L ‘.M e . “.‘

PR (R =0 PHE) (D) m T
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ot
A

. yijf;', Our choLce of v,,u glreg a p&rfioular ccnneCuion of tha‘nharge S

v’;;"f - congugationo “We hame:'j;'fﬁf“ﬁ ;"»:-\ I R SU

. . e v MEN . . IR
. PR oy [®

i &

H i t - i .
o N b3
4 N i . ;
. . :
! s . .
o ; :
¢ el

. x " ®
“‘. -5 . ' :

V 3 <

¢ N R
4 - . :
. . 1 RO
3, . ) . - ot
CH . 5 . K - ¥
4 N g P I |
: . 4 - ) e
$ L 2 . . : ~ : !
) T . . . . 1 k
B s L cy . Syt . ' D . s . "
. v L . \ ERTTERN

ST We now pa,s"s on to tne mva,riant functions, vrela:t&‘d 0 “bhe &n'ti-v i

'Wéémmﬁtatopsfand-ﬁﬁe vacuum'expectation values of free’figldso We h&ve: s

wo

-

B e s L ey
S la A = .8 L C b, b.: = B
) r 7 Ts . S - PR S X Tsef L Tre

IWhilé'élludthers are‘zérdn“'Weicah:génerélizé the uée'dethése“féiatiohéiﬁ§f""

. . . B . l ¢

:*consiaering the Vacuum as thP state of 1owest energyo, Then ‘a5 b(fmuét b&f}

considered to be absorpt cn operatorso i i
. Eefiﬁition'of'the vacuum ) .
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; ¥ ..
.

AN

O

oo
> - .
o T
o

1l

.
I

SR We Will see that the -

A oo i . . ; [ R . oL » - *

- Rt . o . : “ M '
LU e et us now iefine the energy@momenﬁum'vaectcre' For-this :

R ;~;ﬁé7will maks uge of the Hel e;berg xul\ rﬁlatlug LpuPQ?O”b in a Oanum» T "

¢ ! . . N . I S e

;. theory uo tnose 1n a qgnumbcr theﬂry

‘zr . FEUEE ‘ ‘ v . o , . -» . . . - . : [
o e : * - S| ¥ . : 3
A . . Lo o7t ar o o . . R . —_— o w 6/ O - 0 . "r A ‘f',’ )

./This rule mekes, expréssions in the fields more symmetric
S . ) . o . . . .

. important for the current as will be seens, .. .

. ;,; R ) i - . " .o S oy . ' . ,"
Co7 L Thus we iotreduce: : : _

)
[
;

. e
K

u's, v's. Now we.

§ _ - »
. o i . - [
oy S : . B LI P S N
o s - S e T e e :

S0 T We finds oo L e e .
PTL T ' “ P SR B LT e ST
; P,o= oz Tz @ ) . o
e Lo r=1,2 . k. _ . « :
SRS [Pauli feels that “the infi ni y ag §0w1aced wjoh'mup «i}i“’ e .
. ! R : » R A
“indicates that the ‘formaiiem 1s ro; yeu eniirelv se,'sfactoryo
' parflcleb are never re &iLf frea u moﬁ‘give‘a sufi: 7
. L ) ' £ o . B
' . JT i+ v'.'& ’ ' Y i
, K g Y
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SRR ’Ihﬂthis_case, the (= l) isn t such a probiem, ‘since we can sum k over xe g&» L

V'ﬂ.{; angles firwt and theu cver | k l . TIn:this Way, the sum.is set ‘=

1l

Ox

i sxk CoE, Y

. From the»commutaticn'relations:;q‘

P _ j GBX' %(W* 1 a\y % oy . o

A
oo
R
- f
ot +
Pl
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S Qd the time° a1l to be the same. Then e w1l] also see . that
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' 1 ’ whé‘-" . T N . -II .
. Foomwoms. o<

2 The relatibn follows immedistely for V¥, ¥  and then is readily generalized
: : L e e T e Tl

Lo

.

- to a: rary functions using powsr series.:
~to arbitrary functions u g power seri

Tyl eod | 9"*x-ar' -V TN BN
R ,U LS A
{f:Bﬁt we'wiil see that - SR . :A:f;- ' ’?- 

"W(X')} =oei S\x - x )

v'ﬁbw, “Pk will be 1nvariant from the equatlons of motlon 50 we may

g iy O

837 () “Ff;{ﬁ:‘ﬁ}fff:

i

R

such a rela,tion°




e

"UCRL-821% "
Tecture 6"




,
i ;
.
.
A . 13
Sy
o 1
. i
S e T 'y
: g : .
P o N

U@ﬁmﬂ N'”NWD%MJ

IV QUKNTUM MBLHANXCS" BY W AﬂLl

SN Notes bv Rn uovRLd6671 Jr.
S o ;, }f 't . .
G L Radlatlaa Lab .ry“ 2
“Uﬁlversluy of California

AR Bprkelﬂy, L,a,l1

i y' f":vﬁ_'_a}. ﬁpr:ng 1958 ,i K 7

1Ant1conmutators and Vacuum Expectafﬂon Values- _ _

L mhe (ml) is purely conventlona ]
l

s i i \

becaﬁse of he assump*ion of” tree fiel s ;

L v

under the tranqlabion groupa Tha

Tﬁgée “unctxonq ar e all

consegpeﬂce of tbp aSaumpu*on of

'

GROUPS AND REFIECTIONS

ornia .

SO  a.. STy v
{ g l' ' ;
(\V (x) \b % ) > == 58 ]
: ’<:W (x' B x):>b Aféiw% (S“. *éo SR
func Jons.oﬁ"x'mfx‘kibnly'as .'result nf %h

the anticommutato;
. e
ree paruiolcvo ;f

; . S
* 4 S
.-
. “ . . !
. " R , ‘
A DT K - K ",
UCRL-8213 - ’ .
T al >" p 3 '(
Tecture. (=
g
"t
: n
. P o .
a P - L :
K . - ‘ [}
. P - Y 3
P b ) N 2
K L i o 5 -
oy .
. H :
x Lf T " -4
' ;' o : B
N ’ PRRSRY)
] oy 5
“ ¥ ’ e
. = B A
i o A
. e N
o . 3
. e .
' ‘- : o el ! :
- - . .
R e e
‘ o T
) . 4 .
- v .
v

is a. Cnnumb is

"
. .
- -
sy .
B i
X
i
n :
'
. .
. ’




UCRL-8213
Lecture 7

"mSOmH vﬂf3:f :.

| t'eqﬁetion, plus the boundary“condition, we mey readily find: .

N (N [ 1EF - wt) 1(f° - d>t)
e ' . .

o

C e e

ARy s e A

. T e : .. _ L
or;” . o . S - . o R : %
R : _ _ - . - - S

i A(.}?:’ t)‘ :.=. =

(%)5

We wil] aluo define° .

oa(x, t) = : |
w.“ )*~(aP&_.

”"Q;v andee seerthat:

o 4

RN AR

I

AR Y = @ et .

4 There are some nroperties which will play a role later, and which

{~3 we Will lauer generalizee_ We may also write° ‘

iA Sdk'e(k) ikx.S(kk+m)

(2:r)3

(k) L | o

-1 '.k ¢o
R o

If we carry out the integration on' k first, we readily see that ' A | is;in J.ﬁ

{ agreement W1th the previous reoult.‘ In this we use,f
“¢<94aaﬂaﬁagjg' ez
el T e Jf’“o” | |

. where f(q,) = 0, [The seemlngly "harmless" factor e(k ) in k-space makee t

for a large change in the XvSp&Ce, and vice-versa ]
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Similerly:
B ot = —-—1—-5-. ae ot KX 8(kek + *ng) AL
IR . \zn} s O R :

w . -

- Iet us- row‘consiaer the c~mbina+1on A i 4 ., which occurs in the

: " vacuum expecﬁation velues: : o o S o T e

LU

RRCOKED)

B e

,:anélyfic'propertieso' We &éfiﬁe;u

CTLTL T v eia, = A rias R ) ate ek ) et KX

&

)3

0 .

SO N
sin kr e [ o

g ThlS 1ntegral is not properly def 1n9d 31nce 1t is not pr opprly behavedﬂas»“:i{ ~ )
5 \ B e -
‘%. k ~>CX; a One dev1ce for definlng the 1ntegral to take the lim1t°,~» ?ﬁ;;

1im

‘Vs [ We could also non81de¢ the 1ntegral as a contour 1ntegra1 and then chooso e o

N .
H

‘j \f,}C in an approprlate way. ]
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p

s evidently a’function of only sne variable.  This is & consequence o <

. 1 . . ’ ' . . A v - o R Uy ,‘ C
of the lorentz invariance. (4, A”  are invarisnt also., .The - elk ) -ig"-

LT .always invariant for time-like points, thcugh it is not for space-like ones ) - .
oo v o We define: T R
o 2 2! .2 * ,
! « S = r = t = XeX . V

'_J
n i

\B.“'”_‘”“!“ sin'k S';p‘j
0

S 7 and then:” - e S | e

At‘.-:.;‘ ",' . . . ejA '——. muﬁ S Hl ’ (i nl S‘)n i ‘ ]

- For space=like points, we use the Lorentz invariance and. then for t = 0,
Qi r =5 .; since we may always choosé a reference’frame in which %' =0y For -

timemlike points, tbe situation is not so simplea‘ We choose: -

:, . . _l 2 ] . .‘« - ) ’\ . . ) - » . , ]

- e 1 r - t . . . space=like - .

' S = +1 S »-  forward light cone

ki : | _m;~;MA . - : . - A .

vﬂf ,-..‘ S { =1 /; B backwerd light cone. .~ . . ' . . ff"

‘ﬁii%;‘ Now, alnce tne integrand contains only pbqltive frequencieb, we mus + consider ' "
:?xﬂfy' the 1ntegrals as aralytlc functlonu of s (nghtmaq) ThiS'resultAis'mQre." ) ’
L genera; than the assunptlon of free particleso LSlnce [EAVRVARS have both :
&g-ﬂ} ",j positive ‘and negatlve frequonc1es, they do. not qatlufy the ana]yticttv'z’%f } "'f
, - reqpirement.@ Ir /\ were*to venich fgr poco=4Jke 1o*nt for ghamp*c;" R =
f“?> . - ‘"thefaﬁalyticity requifes ittto.vdnish-évérywhercn_¢f )
r')‘\‘ * ‘ , )
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.x!

P

B N R T

if" 1§;3lf;“A';':v(The 5(3)(E3'isiréally-a Kronecker ® ;. since we are using a ﬁﬁ) fl  '¥}

R S A A O3] RS S| gw o TRt el K,

RRPIE N - e . o _ N S _
Lf we now set. t' = %, we get: ST : s S ST

’1 . vm- "‘\-"; — 1 . 5 :
DR, T E) e e )y BT

O T T

toe

* +. wheré. we: have %helcompleteness relation of the'u's and'v's, . - .7 % VS

- 12‘{u(ﬁ ﬁ »vrmavﬁ%3§’= B .

L . [ o . - oo o T
S r_1,2 . \ o T S T e e e
i[Tﬁistcanwnﬂ&'bef&ﬁﬁewhénfﬁ;;ﬂt‘,f;,”1‘; yL - k ;  ‘ ! :‘f{;

- But, 'in a volume, v,

e 5iRS

Py
-
.

-..‘«“" g -—)

'n;%;u:,hjsiﬁ - ;J.';‘; | 35(5)(;5;;; ;;%_ é§ K- x._ff;“ﬁf.‘  Co .;'5T“,IJ. .7iLJ?:'
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i
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- ’ e RERERER .
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IECTURE 8
We will now defineﬂfunctions of positive class. We will restrict
‘the discussion to Lorentz invariant functions. Then:
F+(x) = —;LTS cSd.uk e(ko) o( =k°k) ot KX
(ex)”. <
The © insures the presence of only positivé frequencies, but F will only

)
be Iorentz invariant if : J

o(=k<k) = 0 for k<k > 0. (space=-like)

" "We have

7
. - 1 4 B : _
i A#(x, N) = — (5 a'k e(ko) 8(kk + A)e

(2n)

1 k.X

where

We can obtain F+ from _ A# by introducing a "spectrum" of rest masses.

Then: o0

'F%(x) = j; an o(N\) iA#(x; ).
0 ' :
[It is important that only m2 appears.} Clearly:

if P(x) is in the positive class,

then F(-x) is in the negative class,
o *

and P (x) is in the negative class,

* : '
§0 F (-x) is in the positive class.
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-Da

Now, we go back to the problem of the analytic continuation. We
have seen that for functions of positive class, the function will be analytic
under the change:

t—>t-i6 » e

\/
o
~

since 9 . .
=1 kKat -] t - k5 ©
e °* e ko x e

The integral will then still exist, and hence such functions can be qontinued
into the lower half plane. Functions of negative class can be continued
into the upper half plane, and. those of mixed class cennot bé continued

at all.

Side remark: We are here reminded of the canonical ensemble, since there

-E/xT

we also have e Thﬁs e - Pauli doésn“t know of any deeper

1
kT*
significance here, The analytic continuation may have physical significaﬁce,

though he doesn't know what it is.

The continuation mey be done in an invariant way:

¥ o oX =16
where

(ee ) <« 0, o, > © (Forward cone),
~and then

ik.x ikex +ke8
e -3 e .
- , ~ ,

Now, (k«®) < 0, since k.0 = k:8 =~ kg6p , and

ko > \ E)\ b ) o > ‘ 5’\ .

In this case, the canonical ensemble is extended to a distribution in

momentum as well as energy.
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Now, let us consider the analytic continuation. The singular points
of S and Hl(l)(s) are those for:
t=1r; t=-r: 8 = 0.

If we follow t and s, we will obtain the continuation of A# .

¢ - plane | St ptare % - frtone
. U2 I

s = \r° -t ) (space=-like).

‘ e
Near the singularity, we choose +t =r = €,ei s to remain in the lower half

plane. Then

2 2 2 ie o

s = r =t < 2r €e 0 <« <~
s = \/2 r € e:"e/2 0
Thus, in the forward light cone s = +-i.Vt2 - r2 . For the backward cone
we findl [
2 2
s = =1 t- -r o

For negative class functions, we take the conjugate definition. For the
mixed case, we can do nothing.
We now wish to apply this analysis to A# H
o _ _.m (1)
2i A+ = ETI-J?-S_ Hl (ims) .

Now
Hl(l)(z) = Jl(z) + 1 Nl(z) s
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e
and )
_ o ] - ze,
J (Z) = %l - g + e e
2 z X : 2
Nl(z) = = (log 5 + r) Jl(z) - =+ Fl(z) .

- where Y 1is Euler's consfant, and Fl(z) is an odd function of z with
no singularities in the finiﬁe z plane. Everything is uniquely defined except

for the log-g term. We find°

£ 0G) - (- -2 5 () v 12 ;(ﬁn—g EEACRE TS S RSY

where

z = rei<2ﬂn+¢), 0O £ @ «2t . nis an arbitrary
integer, determined by the Riemann sheet which =z is on.

Thus; the only uhknown.quantity is n. . To dete:mine it, we see that

if x is space=like, 2 = ir, so

i 1 .
¢ = 5 » and ;,'Jl(z), Fl(z) are pure imaginary.

0 and éo

1]

Now for space-like surfaces, A

1

21'A+ = A pure real,

so that n = O.
Now, in the forward light cone, s =i | s ’ , and SO zZ = - lsl ,

ﬁ = . Thus we have

Hl(l)(z) = - Jl(-‘m [ s ’ ) +i§- { (/n —LZ—L + ‘{) Jl('.-'v-m']vs.l )

|

+’s, + g- Fl(-m ,sl )}

21A+=Et—in—s‘—l—,{iJl(m,»,/s/) +Nl(m’sl)} .

S0
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Similarly, in the backward cone s = = i ’s! s Z = i s & , and

ei A, = E—EETET { ~ i Jl(m |s 1)+ Nl(m \SI-)] .

Now we can obtain the A and Ai by teking the real and imaginary

parts of 2i A4 = Ai + i A, This must be done with care, since the ;%

5
singularity must be defined. The A4(32) will generally occur in integrals

over se, and thus we will set:

t=plane se~planer
7\ > N — St

where we have chosen t 1n the way that preserves the analyticity of A4,
Thus, at the pole in the backward light-cone sihgularity, ve get % the
usual integral around the pole. On the other hand, if we integrate .52 in
the increasing direction, we cbtain - % ; Since we integrate clockwise. Thus

we find

Looe(d)- w)in (D) ,
s 5 ' :

where P indicates that a principal value is meant for the integration.

Thus we ob‘l'.a.in)'IL

e(t) [-7{§T- Jl(m |s|) =2 5(52)] : ‘. s £o0

e A = .
. 0 : S2 > 0 .

[Here, we have obtained the "famous" e(t).J

Now, if we go back to the F+(s), we find for the singular part55

. 2
in s:
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b=

o0 o0

2 _, 2 On s o | 1 ‘ ' " |

(2r) F+(s) = 5 o(A)*N an + ) o(A)An + convergent parts.
0 s 0 ‘

If we divide F + into its real and imaginary parts:

F+ = Fl + 1 F ,
we fihd:6 : ' oo D o0 i
) [- os®) Seman + 1 §otanan+ 02
g P = 0 0 .~
| (s“ < 0)
0 ‘ : (s2 > 0)

[In reno_rx_nalization theory one assumes that

oo

5 s g
A

m02

oo .
" is convergent, though J p(AN)dn = ©© , and one then subtracts the:
7 0
" ‘divergencess, J o
FOOTNOTES
1 2
t=plane , " 5 =~plane s~plane
I n
T ‘v _ N 5’
—(—-—kr—*-— - s -
'l::_-r+ée"'ie sezzree'ly s o~ YVere e

0 £ 6<¢x

ESince ﬁnz= an+i¢ if z=rej“.
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FOOTNOTES

21 A = E:TiTIQT —Jl(n-mls]) + }}_2_ {(&—L?-+Y)Jl(—m|sf)‘

+ [:sL[ + %Fl(-m]sl)J}

sl
E

1

ﬁ—'ﬁé—‘-— iJl(m,s]) - _i_j,t_%_ ‘:(ﬁn + Y)Jl(m ls!)

- —-——-‘i, + %Fl(mlsl )Jj .

_ m (1),, ~ _ I i2 1 2
T (ims) 7 Iixs { ﬂoims} T I o2

~ I}; (- 21 «(t) s(sg)> .

=)
J an o(A) 1A (x5 A)

F+(x} =
O
= J e [g-jf-; Hl(l)(ims)]
0
© But:
Hl(l)(ims) - j_(?t-logsx'i—%nl - n:iams> + regular parts
80 0 -
(x) 5 ()[ m2 - 1J
F(x) = dh o(N) | == log s + —— ===
+ o 81:2 ll-!tg 82
(m® = ) .

This comes immediately on expanding J 1 in the expression for A, and then

using the linearity of the relation between A+ and F +

7 See, for example, H. Lehmann, Nuovo Cimento 11, 342 (1954).
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Now, we have seen that

)

1 L 1 1 ko
F(s) = o) Sdk e(k,) p(-k-k) e x

- S o) Y B (1 /T s
0

There is a possible generalizaticn of this form if we allow an indefinite

metriec. There could be a complex value of the mess and the analyticity would

be preserved. (ka = me) We may set:
m o= m + i‘u m, =0
kK = m«k K K ==1
M n T

where Ku has the ordinary reality properties. We may add a finite number

of terms of this type and still preserve the analyticity theorem of Wightman,

(1)

since Hl is an analytic function of m. If we have & specific 'F+,

we have terms added of the form

Pls) = -2 (A g 5 ) (ime) + B g B, (V(uw's)p .
m

% ‘ ,
It F+ has a reality condition, we may find B = A , though in general this

would not be necessary}
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Let us now go back-to the case of free particles. We recall that
ol

% (s +.'i s) .(xiw x')

AORACODA o

(Folx) ayx) 5 = (st -1 8)y (x - ')

“where

= Y — - n)
sl Bx 4 . Al
Now we wish to consider two kinds of operations: Charge conjugation and

reflections.

Chafge conjugation:

Now
\I!c=Cul\|I=-=il7C’-l
v o= cv
+ -1 ~ : ' v
and CC = 1, C Yk C = - Tk .  From these relations we find that

A ORACOD N ERCACRACHDS

and |

NACRAOD?

T Al
These follow from the properties of the C. and 8:2
(c(sl Ti s)c"l>o£B - (sl-i.- 1 S)aa (=x).
These relations may be generalized to the case of abmass spectrum as:
-, d ,
Lip(®) Fglx') Do = = {(r& Jop F(s) + 8,5 G(s))

@plx) 4,00 >

it

[

(r 3 )op F(sD) 4 By G(sT) .
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*
Here s @appears as the variable in the second equation, since as a function

of x - x', the function is of negative class. Thus, for the analytic
continuation to apply, s* rather than .s appears.i Here, eVeh with this
generalization of the commutation relations, the charge conjugation invariance
holds. The minus sign in the first relation is conventional. In general
there will be no relation between (wa(x) i?B(x') >O and <\-176(x') \Va(x) >O’
but here the relation is so chosen that charge conjugation invariance occurs.,5
There is a reality condition on F(s), G(s), which reqpires that they be

L

real, for real s.

Strong reflections: (Equivalent to C P T).

We now go back to the case of a single free spinor field, of mass m.

We define the strong reflections so that
' i (x) (~x)
X = - X y X = - - -
J m Ju 1

Elhmier P, the space components of ju change sign, and so do they under
T. Thus P T gives no change, while C changes the signy]
We will now set:

ic

¥ (x) e 15 ¥(=x)

]

"% -X)Y5 .

V(%)

The value of o cannot be determined in a gauge invariant theory. This is
very similar to the usual space reflections.
[_In the Majorana theory:

a = _%_ since wc = v .]f

We have a further rule to be considered. We have
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wlpm

: i ~ =
X) = - - )

au(») - (¥ YT, ¥)

The above transformation in V¥ will only be correct if we add a third

operational rule for computations.

Inversion

st '_i vN”"_—v 1 _;..‘.,
3, = g (v, ¥ - ¥y W) = - (o)

where we have changed the order of the factors, or we read‘?rom right to

left in the operations. The reason for this inversion is evident already

in the equations of motion:

. _ df
1 [PP-’ f-] = ~3;{- °
The total E must not change sign (and hence P must be invariant) because

E > E ge,+ Thus:

from ILorentz invariance. Thus

g of! of! ’
i[Pu’ f] =°'§>§' =B_x:,:'i[Pu’f']

Thus
/

‘[Pu,f] - -[Pu,.f'] .

This can be brought about by the change of order.

let us consider the effect of this transformation on the vacuum
expectation value of the product of two free. field operators. According

to the above prescription:
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B
— 4 -t
Qi) Talx) p = (T o) 9,
- (gt L Tpul-x) ¥qu(-2) 3 (r5)gug

-%‘- [y5(sln is) "(’5 leB (x' = x)

(]

But:

Ts s, (=x) Y5 s, (x)

= 8(x)

Ys S(=x) Ts

since the 'rs's change the sign of the ¥ +term in the relation between
S,vA and the (=x) changes it again. Further A(x) is odd in x, and

Al is _evén. Thus
/
L) Tlx) 3 = =5 (57 + 18)y (x=x) .

Thus all of the functions (anticommutators, etc.) are invariant under the

C P T transformation.

FOOTNOTES
l .
References to this general guestion of analyticity:

A. S. Wightman, Phys. Rev. 101, 860 (1956);
Wightmen and Hall, Kgl. Danske Vidensk 31, 5 (1957).

2 We have

CAORA DY

1l
L]

— - -1
_ 1 s L V(o -1
= e CBB' -2- (‘B" &‘T’ n m>6“a' (A - 1 A)(X - X)Ca,a

= ..-é]-:(y 58; "m>6a (Al.+iA)(x-=x')

= "’%(Sl+ iS)aB(me')
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FOOTNOTES

2 (Cont.) ' . ,
and similarly for < Wéc(x') Wac(x) )b . Here, we have used the fact

that A" is even in (x = x') and A is odd.

3 We see that
c,y = ¢, _ — , =1
() Tox) Dy = e T (3) ¥gu(x1) D Gy

= - g Zf (r 3 Ve F(sX(x' = ) + aﬁ,a,a(’sr~'~-<x'-x>)§ca,m"~

But s(x' - x) = s*(x - x'), since ] s(x' - x)[ = \ s(x = x‘)! and
the only changes necessary are to change the future cone into the past

in going from x' « x to x = x'. Thus

@S0 T >y = - {(r S )op (o) + 8 G(s)}

Q.E.D.
Note here that we assume 51 t are real. |

There is a reality condition on F, G. We have:

v SN d .
L) Tglx) D = Q) 4 (x) S (1)1 = «{(r«&)aa F(s) + 8,4 G(sﬁo

In general, _W* will be the "adjoint" of V¥, and we.will héve
(A]M*|B) = <B|M\A>*, and (AB)" = B A" ..

Thus, here:

a0 95,7060 2" (g = QO 45709 3y ()

= —(YM)BB' {(Y‘B?CT )B,Bn F(S*) + 5&'3" G(S*)} (TM)B"G



4 (Cont.)

But, since

S0

F*(s)

UCRL-8213
Lecture 9

FOOTNOTES

X5 X5 x5 are real and X, is pure imaginary:

- {(7»3%; )Boz F(s*) + B G(S*);

- ; (r& )y F(s) + 8 Gs%) }

il

F(s*) and G¥(s) = a(s¥)
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LECTURE 10
Now we consider the state vectors rather than the operators.,l We bear in

mind that in comstructing expectation values we have to deal with two kinds of

state vectors, one which appears on the right and one, on the left. Thus we have:

*
(e | &by = Y, ¢ %
In the case of a positive definite metric, we choose @* as the conjugate complex
of ¥. More generally, it will represent the adjoint.
Now, if ¢ is the unit operator, & = 1
*
{a b = ¥ § .

To compute expectation values, it is necessary to have a connection between the
bras and the kets, though the eigenvalue problem can be solved independently of
the correspondence. At this point, the bras.and'kets can be considered as completely
different types of objecfs. Now, with Schwinger, we assume that they are in fact
objects of the same type and that the same vector can be either a bra or a ket.

. *
The ket vector that is identical to bra vector Wa may be denoted by

* : *

= ¥ 5 = ,
V. = . T.S = ¥ | .(1001)

a 3 b
Assuming further that the order of the vectors in a scalar product is not significant

we have ,
<a]vy=<b[z )

We next define the "transposed operator," OT , by
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=2

gt =1 & :

Then one easily obtains the relations

e [& vy = G |&FE) | (10.2)

(A B)T' - B AT, C S (10.3)

- If we have a metric preserving transformastion then U U = 1. In the general
S * . % ;
case of an indefinite metric, we still write UU = 1, but U is now meant to be
‘the adjoint (rather than conjugate) and U is not unitary, but rather "pseudo-

unitary.” Then if we have;

] L 4 * O *
I, = UY, t, =¥ 0,
and if;
¢ *
g =uv &uv ,
the expectation values will be preserved!
¥ 84 *
y, ¢ ¢, =%, ¢9 .

It is possible to combine a metric preserving transformation with the transposition

operation. That'is, we may generalize the relation (10.1) by setting:

Loy, L = vy

°

Then if we require:

we find.

Qi
1
[
&
(]

and | — ——

AB= BA °'
We have here defined a transposition operstion which will be used in the definition
of time reversal. This will avoid complex conjugation.
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Remark: Wigner introduced the concept of "anti-linear operator" to discuss time

reversal.
Linear operator: GTcl o+ e ﬁg) = ¢ 4 ¥y * e, v 1,

. . Py *-éJ *6./
Anti-linear operator: S(cl Ql + c Wg) = ¢ Yl + e, ¥, -

-Let us now return to the strong reflections. [The CPT inversion is
identical to strong reflectionsoj\

One must always include the bra — ket inversion in some form to get the
time reversal, T. For CPT inversion, we have taken, |

vix) = &%y w(ex)

and!
3, (®) = =3

In charge conjugation, ,
] - - =1

¢ =z ¢ F = ¥ ¢
V oz ¢cv = -¥cC .

We want to require that CPT have the same form for charge conjugated quantities,

so that
vo(x) = & Ys ¥o(-x) .
Then we find® a = %. Thus ve have fixed a. (X% - 1)
Thus we find:
vi(x) = 17y ¥(x), viI(x) = 1 Y5 ¥o(-x) .

We wish to consider now other classes of fields; specifically, we want to show
that the transformation of quantities under CPT is already known from the continuous

Lorentz transformation properties.

\
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We have used certain assumptions in the development:
1. The vacuum is the state of lowest energy.
2. Spinors satisfy anticommtation relations.
3. The theory is local in character. [ The current is a local quantity.
The momentum, P , is not local, and behaves differently. ] |

Iet us conéider, for instence; a quantity like:

R(x) = 2(W(x) € 8(x) - #(x) ¥ ¥x)
where V¥, @ transform in the same way.

If:

¥ = v or T, Ts R = vector (V) axial vector. (A)

u

& = 1 or Ts R = scalar (8), or pseudoscalar (P)

antisymmetric tensor (T).

Y

¢ = %(rur\)«»p r,) R

Now, if we introduce:

v (x)

kR V(=x); E'(#) i W(=X)Y5 s

gr(x) = 1 Ys g(-x);  P'(x) i B(-x) Y5

and we take the inversion into account in computing R'(x); that is:

R'(x) = 3(0'(0) T¥(x) - vi(x) Fgr(x)

then we find the rules for CPT inversion:

(v, &) (x) = =(V, &) (~x)
(5, P) (x) = (s, P) (=x)
T (x) = +T(=x) .

This is in accord with the behavior of the current or a coordinate,
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For the energy-momentum vector, however:

_ 3
Pu = ‘g a-x Tuh(x) s
so that Pu has the properties of part of a tensor under CPT. A scalar can be
made from Ty)}= S.
The theorem of CPT invariance was first formulated in a clear way by

Tuders.

NOTE: . Pauli's Rule of Transposition and CPT

(1) In order to understand Pauli's prescription let us first consider
time reversal in ordinary (first quantized) quantum mechanics. We suppose that
the operators q(t) and p(t) represent & possible solution to the equations

of motion. That is,

]

.y da(t)

[ E(p(%), a(t); 1), q(t)] | 3t

dp(t
dt

=i

[ 5(v), a(t); ©), (t) ]
where

[p(t), q(’c)] = =i
In classical mechanics the '"time reversed" physical process is defined by the
equations:

2'(t) = al-t) p'(8) = -p(-t) .

For a large class of hamiltonians this "time reversed" process will also be a
solution of the equations of motion.

In quantum mechanics;, the operators defined by the above equations do not
obey the commutation reia.tions° However it is easily verified that these relations

\
are satisfied by
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il

g () = al(-t) p(t) = =p'(t)

where here, as throughout, GT represents the transpose of ¢.

. We may now inguire whether these transformed operators are also solutions
to the (original) equations of motion. If one takes the transpose of the original
equations of motion for gq(t) and p(t) and replaces the dummy variable t by

(-t) then one obtains

|

T T k T
S8 28 L (), o0 -8, aen)]

[q?(mt), H (pT(~t), q'(=t); °t2] .

The introduction of the new variables gives

‘ dq, (%)
[ 5 (py(8), (00 -0), q(-0)] = -

The corresponding equation for pt(t) is obtained in the same way. EA superscript
"tf” on an operstor GK ¢ , 10 ) means the order of the operators ¢ and n‘ are
to be inverfed, but that these operators are not transposed; i.e., 0(§, n)T =

dtr(gT, nT)]° These equations show that if
tr —
H" (=p, a, -t} = H-(Ps 5 t)

then the transformed operators Pt(t) and qt(t) will satisfy the original
equations of motion. [It might be remarked that for the Hermitian operators
p and q the transpose and complex conjugate operators are identi¢al so that
one could have used complex conjugation instead of transposition in this casei]
(2) The operation of transposing an operator is somewhat subtle. Tb
’examine the properties of this operation, we follow Wigner who introduces the

(antilinear) operator ¥ which is required to satisfy the relations
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(| ®y = (afv)
Kia|a>+6,b; =a*’Ka>+a*\Kb)

K2 = 1.
The complex conjugate of an operator ‘A, is defined as Ak = KAK. One will
observe that

(a 13)k - aF gt

(Ka/Ak]Kb> = (ke |KA[D) = <a\A\b>* .

The transpose of an operator is defined as the complex conjugate of the adjoint:

* *
AT = A k = KA K .

T

_ Lo
[An equivalent form is A (A7) °J We see that

(a B)T [(A B)*Jk = (3 ANE - BT AT

and

(ka|aT [Kb ) = <a/A*[b *> = <Aa.[b>* = (v [a]a) .
These two properties of the transposed operator are those given in Eq. (10.2) and

(10.3) of the text. One additional property we state as Lemma I:

1t {c|A]c)y = (Ke|B|Kec) forall c, then

{e|alv) - (kb[B|Ka)
for all a and b. The proof is obtained by considering for a fixed a and b
all c¢ of the form 'c) ==a)a> + B | b>c This lemma allows one to deduce
from the form of a transformation of expectation values the form of the corresponding

transformation on matrix elements.
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In order to calculate expe;tation values in & new br transformed system
it is necessary to know not only the new 6perators but alsp the new state vectors.
The transformation of ﬁhe oﬁerators given above must be coupled with the trans-
formation of the state vectors to their complex conjugates. Thus if a certain

measurement on the original system gives an expectation value of

(et)y = <a| &o(t), oft)) |a),
then the expectation value of this measurement on the transformed system is given

by

i

(o) ) = (Ka|elp(t), gt) |Ka ) .

One readily verifies that

 olt) )u -

il

{of=t) >

and

i

(p(t) Y = - <p<a£)>

in accordance with thé classical equations.

Tt should be noticed that the operator K is not uniquely defined by
Wigner;s three conditions. A particular operator, K, will be selected if, in
‘addition to Wigner's conditions, we require for all of the vectdfs ]i.> of -
some complete orthogonal set the relationship ] K i > = | §>o The operator K

is then defined by
_ , v .

Ci]ka) = (ki Ka) = {i]a)y .

In this "real" representation the matrices representing A, Ak, and ATv satisfy

the simple relationships:

Crla%)a)
(18" 3)

<.i'Alj>*,
(s lali) .

and
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The definition Wg = Wa used in the text can be understood as an equation in

this real representation:

ilay = (a1
Notice that an equation of this form cannot be valid in all representations;
e.g., consider ] ity = e | 1 > .

(3) The case of quantum field theory may be treated in a menner similar to

that of the first quantized case. Suppose (V¥(x), #(x) ...) are a set of fields
that satisfy the commutation relations and the equations of motion. We wish to
detérmine a "new" set of fields (WN(X), ¢N(x), ...) that represent the CPT-inverse
physical situation and then inquire about the conditions under which the new |
physical situation can actually exist in nature (i.e., whether it also satisfies

the equations of motion). According to the physical meaning of the operations

C, P, and T expectation values in the original and CPT inverse systems must be

related by
<Q)' = =4Q) = Sd00<Jo(x)>
'
<Pu> = <Pp> = Sdao (Tou(x)>
(39> = =) = Sag, (i /=)
where Q, fu, gnd Ju>) are the total charge, momentum, and angular momentum
of the system. These relations must be satisfied also locally, where one is to

compare contributions at x with those at (-x). These more restrictive

requirements are
(G (x) ) = <3 (x)
<TH\)(X) >' = <Tu\)(=’x)>
<an\(x)> = §<Mu17}\(ax)> .



UCRL-8213
.Iecture 10

=]10=

:[:It is to be stressed that no change of coordinate system is contemplated here,
although the same results could be obtained using this device. We are comparing
two different physical situaﬁionsi] The conditions on the local densities

(i.e., Ju(x), Tuf(x)’ ete.) are of form
(Hx) > = (-1 (el-n)>

where n is the number of tensor indiees on the operator o, In'order-that the
CPT inverse physics at x be related to the original physics at (-x), the |
'(yN(x), ¢N(x), ...) mist be functions of (\ir(éx)y #(=x), ¢o0). A linear relation-
ship between them will not be satisféctory; éince, for one thingyvthe commutatdr
eguations of mdtion‘can neﬁef be satisfied. [We will require at least.fér sdme
possible systems (e.g. free particles) that the CPT inverse fields will satisfy

the equations of motion. ] As in the first guantized case the satlsfactory

transformatlon 1nvolves the transpose:

i

(D) = 1 g ¥ix) T = 1T T

1

f(x) = (17 d(m)

where @ is a boson field of rank n (n +tensor indices).
In addition to this transformation on the operators, it is necessary to
. 4

transform the state vectors. In particular if an expectationvvalue“in the 6riginal

system is
(0> = <o ] SO, 10, s 0 |2
then in the transformed systgm it will be given»by
(o) ) = (xa | @iy g(x), s x) [Ka)

' :
In the calculation of <.6Kx) > ; the complex conjugation can be removed from the
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state vectors by using the relation <K a | A | x b> = <b \AT \ a>

then one obtains

{Hx) )

[

(a | Flug(x), gy(x), v %) | 2D

o | (1 % Wx), (<) g(-x), o x) | 8D
(a | 650 (0, 8'(x), o5 x) |2

= (a |6, 90, o5 %) | a)

Ll

1 |
where V¥ (x) 1is the new field as defined by Pauli, and & (W(x), @(x), +0.; %)
is the operator computed using Pauli's prescription as' given in the text.

In order to verify that the transformation we have given will actually

generé,te the CPT inversion it is sufficient to show that

¢ (-x) = (-1)® x) ,

for all tensor operators constructed from the field operators, their derivatives,
and the vectors x“, To see this notice that for eé.ch tensor index attached to a
boson field operator there is ome (-1), by our definition. Also, for each
derivative of a field operator and for eé.ch vector xu there is a minus sign

associated with the change (x) - (=x). For fermions, we have

¥ (-x) & ¥ (-x)

~¥(x) Ty ¢ Ts \k(X)
= -(-1)" Wx) ¢ ¥(x)

where m 1is the rank of the tensor €. If the Lagrangian (and therefore all the
operators derived from it) is antisymmetrized with respect to all fermion fields

;;nd symmetrized with respect to boson field_s then the required transposition of

s

the order of all the operators will introduce the necessary minus sign for each

pair of fermion fields and the required transformation properties are indeed
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obtained. A detailed demonétration is given by Pauli iﬁ the Bohr énﬁiversary volume.
We may now turn to the question of whether the equatlons of motion are

satisfied for the new fields 'wN(x), ‘Thus we ask whether the'eqpation

(2,000, gm0, ooe 0, 2@, g ] = - 15-;2: 204y (%), Fy(x))
(Eq. A)
is satisfied. If in this equation we replace the dummy variables x by (=x)

and transpose, we obtain

9

5 £ (i (=x), Fy(=x)

(2,200 (-3), #y(-2), woes (-0, fuylom), Al = -1
which may Ee written

(2.5 (), 8'(0), o5 (20, v’ (), #'(x))]= wiéﬁugw"(x), 7' (x))

where “g(¥(x), #(x)) = £7(1 v ¥(x), (-1)" #(x)). Comparing this equstion
to the known equation of motion for functions of ¥(x) anmd @(x), we see that

Eq. (A) is satisfied if
B, (W(-x), B(=x), <oy (=2)) = B (W), 0(x), .05 %)

If Pu is obtained from a properly symmetrized Lorentz invariant Lagrangian,
theh ' this equation is always true as a consequence of the relationship

¢ (-x) = (-1)" e(x)

applied to the stress»energy,tensor3_Tuiﬂx)o

The CPT transformgtion is peculiar in that the law of transformation with
regard to each tensor index is the same, independently of the particular type of
quantity involved. It is for this reason that the lLorentz inveriance alone (see
below) will guarantee the invariance under CPT, Under parity (P) and time reversed

(TC) the possibility of having pseudoscalars, etc., destroys this connection, while
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charge conjugation alone (C) is not correlated to the tensor indices but to specific
operators. Consequently for P, C and T separately the requirement that fhe new
fields satisfy the original equations places additional restrictions on the Lagrangian.

Begides the assumption of proper Lorentz invariance [.and a tacit
assumption regarding the 1oéal natﬁre of the fields and the Lag}angian ] the fact
that the Lagrangisn, and consequently all operators, is symmetrized with respect to
boson fields and antisymmetrized with respect to fermion-fields hes been used in
the above development. Since for commuting (anticommuting) fields the anti-
symmetrized (symmetrized) forms would reduce to c-numbers and hence constitute a
reﬁoveable normalization constant in the Lagrangian, the normal connection between
spin and statistics is implicit in the symmetrization rule. Hence the usual
connection was, in effect, assumed in the construction of our CPT transformation.

Conversely, if we are to represent the CPT-transformation in the way that
we &ﬁvey then we must require the usual connection between spin end statistics.
This is Schwinger's deduction of that connection. This proof involves showing,
independently of the connection between spin and statistices, that the CPT
transformgtion can only be represented in a way eqnivalent_to the one that was
used here and hence that no CPT transformation could have been found if the
lagrangian had been symmetrized differently.

(4) It might be useful to point out that since the new fields and the old fields

obey the same canonical commutation relations (ioe,; on a space=like surface),

they may be related by a unitary transformation:

Rt ¥(x) R

()

gy(x) = B gx) R .

If R 1is independent of the space=~like surface then the commutator equations

of motion are invariant. In terms of R +the transformed expectation value is
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<é(x) Y = (ke | 6lyglx), gi(x) Ka )
- <K a | o(r"L W(x)R, R™T @#(x)R) lxad
= {(RKe { o ¥(x) g(x)) | RKa >
= (e @)ad

In fhis form the tramnsformetion to the new physical situation is represented by a
change in the state vectors alone. Pauli's transformetion changes dnly the operators.
If one wishes the transformation to change only the fundemental dynamical variables
(i.e., » and q) but to meintain the functional form of the derived observables
and also the cbmmutation relations, then both cperators and staste vectors must be
changed.
(5) It may be of interest to sketch briefly the connection of the trans-
formations given above to the corresponding trensformations in the Schrodinger
representation. In that case, the state vectors are changed and the operators are
left unaltered. In particular if
(he) ) = (v | & | Ue))

then we may represent the expectation value in the transformed system by
SOPARCES COIR TREA SOOI

where U 1is a time independent unitary transformstion. If we write §(t) = S(t)@H

and define 8"(t) = U K 8(=-t) K U"l, then

CODS

{8"(t) UK ¥ \o’s | s"(t) U K @’H}
- «U K g | 5"(t) 8 8"(%) | UK )
5<UK&H | e"H(t)l UK\EH>

- (g | TR oy v Ky )

= (I | @R 0T g >
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If s"(t) 1is equal to S(%), which is the condition here that the physics is
"
invariant under the transformation, then G’H(t).is the same ag the usual Heisenberg

opérator cq;(t), and U 'is the-same as the R defined in the preceding section.

Canonical commutation relations for & scalar field (t = t'):

These relations do not exhibit Lorentz invariance. For a complex scalar

field, #(x):

i l@%%a , g(;gv )J = 1 [ éﬁ_(% R g*(;{-)')J - = Const. X 5(5)(5?*?')

where

6(3)(53 is a three dimensional & function.

On strong reflections:

g (x) = gl-x) , g (x) = #F(-x) .

Again we must take account of the inversion in the commutator to find

i[-g—i—la‘”tx , #x) 1[;5'(::'), S x)] - 1 pex), - Bl

n

t

-

Const. x 5(3)(? - %)

Thus, for scalar fields we have the same invariance in the commutator under CPT

{
as for spinor fields.

FOOTNOTES
1 pauli prefers the treatment of Schwinger: Phys. Rev. 82, 914 (1951),
especially p. 925, ff.). Here the concept of the transposed operator appears.
The concept of the conjugate complex does not so directly appear.
2 ' ©] =! -1 eiq =
¥x) = TV () =« T T W(ex)
= ¥ (%) = ¥y ™ Yex)
5 5
. iOl "l "ia ﬂl ~F
N c = c
Ts T \
ic =iy A~ iy ~~ -iC-

e C Y5 = =€ Y= C = e CT5 = =€ C 75
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We will: now generalize our results ‘concerning the vacuum expectation values

t 'of field operetors from free particles to interacting ones, The only assumption

that will be made is thet,the vacuum is the state of lowest energy. We will follow-
the development of H, Lehman (Nuovo cimento 11, 342 (1954) ).

{?huli regrets that spinor fields are ignored in later papers of this group. He

feels that one should not make a set of assumptions er axioms if they are "empty™;

:'ioeop they cannot describe our physical world, Physically, a syeteﬁ involving only

scalar fields is not acceptable.

We will begin with a sealar field, but\ﬁill then pass to spinor fields., No

-explicit assumption about the interacting fields will be made, aside from aseuming

that the theory is invariant under the Lorentz tranelation group.‘

apd
%M(x),aoosqﬁx(x),ooo

" The equations of motion for a scalar field give: .,

N ~;;2A()-’
G '; [?k?.é‘%ﬁ  ﬂTli'2J;i~
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wheres E ' |
v[%“ 9 gg]_ﬁ:_oo

If we consider the eigenfunctions of Bu g

!k) :_k,,»lk) 5

o

olal) = Gl a@| %) o= .

Thus we are explicitly using the concept of an energy-momentum four vectoro.'In this
formalism, however; it ié nét correct to express thémvin terms of the fields.
The eigenvalue problem, whose solution would allow such an expression, is very
‘important but it has not been fully treated as yet, . :

For simplicity, we will assume that the eigenvalues are real, glthough more
generally we might have complex eigenvalues., We assumes. |

k)05 and A - kek)O

\

(that is, k,)O is all coordinate frames).

[:?or the general; non-reel eigenvalues, we might write

lf/“' ;M&A where g‘*[/" =z -1, and Re [m}? (ﬂ

Now we consider the expectation value in the vacuum of the product of two

‘fields:® | .
(o | 4 8@t | 0) = Zk; olielx =) (o| a0 1) ( x|BO)0) .
. % M | |

(k> 0)
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Thus we have a function of the positive class, {Eﬁis can be generalized to a
finite number of complex masses, with their complex conjugates as weli}] We assume

that this expectation value is invariant with respect to the continuous Lorentz

_ group, so that the function satisfies our previous requirements about functions of

a positive class., We now define a mass spectrum:

™.

2_ <olaol k7<k\B(Q'),0>
(ke 3k,,) 5

S

/OAB(M (2m)3

where the summation (or integration) is %o be carriedxpuﬁ over the 4-dimensional

‘region in k of volume d4k, centered on %M o The sum must only depénd_on A , 88 a

‘result of its Lorentz invariance,

A
A\

. Thus? ' v ~

'<A(x)B(x')>° As.{;l.).s . dAkIOAB (N\) 9ik;(x -x') o FAB'(" -xt).

or: . oo

Fip (5) = [ 14, €N gy () ak 21y @),

[~

and the theorem of Wightman holds.

We have an important reality condition:®
¥ : , |

[Ef the metric is not positive definite; B¥%, A* are the adjoint operators to B,EE}
Thus we see that the expectation value of a self-adjoint operator is real.

If we choose B = A¥3

,/O::Agg/ou*l
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80 £,y 18 real, If the metric is also positive definite, £ e 18 also > 0,

since then: .
o] 2@k x|ax@o = ]’<o]a(o)[k>|2 ¥ 0o

In the indefinite metric, these results will ‘only be true for states of positive |

QQIE&A

We define a real field to be one which is identical to its adjoint ("self-

adjoint.")

Now we return to the CPT theorem:
(1) Since F is of positive class, if F = 0 for space-like points, it will be
zero everywhere,

(2) For any invariant function of a single 4-vector and a space-like argument:

F(%) = F(-§) L3 XS

The latter statement is easily proven by choosing a Lorentz frame in which t = O,

- -
Then it is always possible to rotate coordinates so that §— — § . The theorem
also holds for two vectors, but not for three. It will not be true for time-like

arguments.

We.will now prove the equivalence of the CPT inversion and microcausality.
(& more general discussion is given by R. Jost, Helv. Phys. Acta 30, 409 (1957) ).

In the present case, the CPT theorem gives:

AL DRERCGISNOY \

<B(-x' )A(-—x)>o ‘= Fy (&)

. S | | o <A(+x)_l3,(+x')>a,"f“ FiB (g)°

ez am o oo
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The last line only follows if the CPT theorem holds.5 Note that the arguments, % ;

are the same for the two functions, since

(=x') = (=x) s x-=x" &

- The CPT equality is not an identity even if B = A%, but'only if B=s Ao Eie cannot

. use 5.4 5 Pysy o ©Ven though both are Peag - | ’

We can show the equivalence of the CPT relation, which ist
F,p (8) = Fp, (8) | o :
to a relation for the commutator.

Microcausality: ‘
A system will 'satisfy a microcausality condition ifs

E(x)g B(X“)j ‘=’%0é . for (%) > o, /MQ%; | |

. We will actually only need the much weaker! assumption that

o (E@s m)) =0 O (E®)>o0

Nows

88

F}ua (§) -F, (%)

| ([ae, 36)]5,

(

0 for (E°E)>0 ).

However, FBA (E) = FBA (ai) on this space-like region, so if

6y (8) = F, (8) -7y, (%),

then G, is a function of positive class, zero on a space~-like surface, and hence

is zero everywhere., Thus, for all s '

]
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Fp (5)=F, (8) .
Thus microcausality is equivalent to the CPT theorem.
FOOTNOTES
1_ We can integrate the equations of motion to obtain
- Alx +a) = e~18P p(x) oi8F |
from which the result follows immediately, since ! O;> 0, if ;> is
the vacuum,

2 ' If the metric is not positive definite, g 'k > < k) will not in general represent
the unit operator, even if k is a complete, orthogonal set of eigenvectors, since
*they would not be normalized to + 1. In general, the unit operator would be

s TN
> begu |, 5 M <l
k <k|k> 3 <
It should be pointed out that "expectation value®™ as used in the text only has
| the conventional/;baning if the metric is positive definite. 0£herw1539 the
matrix elemen&//i<ol 6’\6> must be divided by the norm of the state‘<o!o>
3 smce<o(A*(o)|k> = <k|A(O)|O> * |
"4 In the more general case, we haves
<OIA(O)lk>< k|a%(0))0) = [ <OIA(O)!k>’ (k)
5

'As we have seen in the long notey lecture 10, the CPT inversion may be either

identified with the operators exclusively, as is done by Pauli, or partly with

the operators and partly with the state vectors, as was done in the note.. The

‘. latter has the advantege that operator functions of the fisld operators need not -

be chaenged in the inversion. It would also be possible to change only the state

i
N .
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FOOTNOTES
5 (Cont.)

vectors. Then we ﬁould have:
7
(a6 3y = (8, | 4G 36 | €, )

However, if we assume that the vacuum is unique, the CPT inversion can at most

le\ad to a trivial phase change from the original ‘vacuum; P o ° Thus:

'. _<A(x).B(x')>'a = <A(x) B(x“) >o°,
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.':  LECTURE 11

We will now generalize our ‘results concerning the vacuum expectation values

.iof field operatoté ffom free particles tb“ihteractipg ones, The only assumption
'}that will be mﬁde is that the facuum is the state of lowest energy. We will follow
 the development of H. Lehman (Nuovo cimento 1L, 342 (1954) ).

i'{?huli regrets that spinor fields are ignored in later papers of this group. He
'?feels that one should not make a set of assumptions or axioms if they are "empty";
fAige., they cannot describe our ph‘ysicallworld° Physically, a ajstém involving only
_;acalar fields is not acceptable. | B

We will begin with a scalar field, but ‘will then pass to spinor fields. No
1}ezplicit asaumption about the interacting fields will be made, aside from aaauming

that the theory ;is_,invariant under the Lorentz transhtion groups

i

(x),“o,\y (x)5000

are assumed to: transform according to a representation of the Lorentz group. L

f The equationa of otion for a scalar field giV68

] f.'- oA
i D Ry
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[jp/u , P,Z) = 0,
If ve consider the eigenfunctions of Bu ¢
I;,J k) = k}Jk7 5
thens ™ | |
<olA(x)|f§) = <of A(o‘)l 17) olke®

Thus we are explicitly using the concept of an energy~-momentum four vector. " In this
formalism, however, it is not correct to express them in terms of the fields.

The eigenvalue problem, whose solution would allow such an expression, is very

important but it has not been fully treated as yet.

For simplicity, we will assume that the eigeriValues are real, although more

. generally we might have complex eigenvalues., We assume:

k,70, and Ag - kek)O

Y

(that is, k°> 0 1is all coordinate frames).

[For the general; non-real eigenvalues, we might write

k, =ul,  ubere g/% = -1, and Re [m})@]

Now we consider the expectation value in the vacuum of the product of two

‘fields :2

<o | A(}:) B_(x.e)l]"o> = Zk_ aike (x u.x“). , <0!A(0‘)‘] k>< k]B(o)fo> o

(k> 0)

o
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‘Thus we have a function of the positive class, [Epis can be generalized to a

finite number of complex masses, with their complex conjugates as welé}} We assume
that this expectation value is invariant with respect to the continuous Lorentz
group, so that the function satisfies our previous requirements about functions of

a positive class, We now define a mass spectrum:

k %’_k<)omo)l RCEOLy

(Lg Ky

M =
ﬁw(m (2m3

where the summation (or integration) is to be carried out over the 4-dimensional
region in k of volume d4k, centered on KM o The sum must only depend on A , 88 a

result of its Lorentz invariance,

\

Thuss | . | |
Qo)) = s [obepy Y
ors o o -
Fpg (%) :f‘i Adf?“f-’w (A) dA = Fyp (s),

and thes theorem of Wightman holds.

{
We have an important reality condition:>
& | |
4 AB ()\) = PB*‘A* (A)

Ef’ the metric.' is not pqs':!.tive definite; B¥, A* are the adjoint operators to B,g

- Thus we see that the expectatioh value of a self-adjoint operator is real.

If we choose B = A¥s

- R ,
. '/OM%.E/QAA*L_
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so /QAA* is real, If the metric is also positive definite;‘/ﬂAA* is also )‘O,

- since then: :
(o] 4@k @0 = | {oa@)|K)[? » 0.

In the indefinite metric, these results will only be true for states of positive

891&&4

We define a real field to be one which is identical to its adjoint ("self-
‘adjoint.") |

Now we return to the CPI' theorems
(1) Since F is of positive class, if F = O for space-like points, it will be
zero everywhere,

(2) For any invariant function of a_sihgle /~vector and a space-like argument:

F(%) = F(-%)

The latter statement is easily proven by choosing a Lorentz frame in which t = 0,

- - ‘
Then it is always possible to rotate coordinates so that § -y — § o The theorem
also holds for two vectors; but not for three, Tt will not be true for time-like

arguments,

We will now prove the equivalence of the CPT inversion and microcausality.
(A more general discussion is given by R. Jost, Helv, Phys. Acta 30, 409 (1957) ).

In the present case, the CPT theorem gives:
< *’ i I ] “
s S w (B D

<B(-x°)A(-x)>° = Fpy( £)

o [CCLEDDUES M ST
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The last line only follows if the CPT theorem holds.5 Note that the arguments, % ,

are the same for the two functions, since

(=x?) = (=) zgx=x' .

The CPT equality is not an identity even if B = A®; but only if B= A, Ele cannot

use /OAA* = IOA*. 4 o even though both are rea—l] | : /

We can show the equivalence of the CPT relation, which iss
Fpp (8) = Fp, (8)

to & relation for ths commutator,

| Microcausalitys

~N

A gystem will satisf’y a microcausality condition ifs

| E(x)p B(x"ﬂ =0 for (E;i) > 0, /%Nj |

We will actually only need the much weaker ! assumption that

[ﬁunuj>  '<2§)>0

‘Nowz-'

oog

Fp (8) - Fon (-%)

< E\(x), B(x_“D >o

o~
80

0 for (E°E)>0 ),
However, Fg, (S) = Fgy (=%) on this space-like region, so if
G, (8) =F,p (‘§) - F (g)o

then G, is a function of positive class, zero on & .space-like surface, and hence

is zero everywhere. Thusv,, for 11 B ¢



UCRL-8213
Lecture 11 .
Fp (5) = By, (B)
Thus microcausality is equivalent to the CPT theorem,
FOOTNOTES
1 We can integrate’the equations of motion to obtain
B A(x +a) = e~1aF  p(x) olaf ‘
- from which the result follows immediately, since ’ 0;> s 0, if ;} is
the vacuum,

2 If the metric is not positive definite, g , > < k) will not in general represent
; the unit operator, even if k is a complete, orthogonal set of eigenvectors, since
‘ﬁﬂﬁéthey would not be normalized to + 1. In general, the unit operator would be

Z LK.ZS._LI - Z \k> YL(k) kl R

k <k|k> k <
It should be pointed out that “expectation value" as used in the text only has
the conventional mbaning if the metric is positive definite, Otherw1399 the
matrix elemen < l & \ > mst be divided by the norm of the state <o| >

3 Since <0(A*(o)[k> = <k|A(o)| >
4 Tn the more generel case, we have:

Cola@]x) ¢ x|ax0)]o) = | @Ky N ).

s ‘

As we have seen in the long note; lecture 10, the CPT inversioh may be elther
identified with the operators exclusively, as is done by Pauli; or partly with
the opefators-and partly with the state vectorss‘as was done in the note., The
latter has the advantage that operator functions of the field operators need not

be changed in the inversion, It would also be possible to change only the state
. ( . Y

S s
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vectors. Then we Qould have:

<'A(x) B(xf)}o’, = (¥, | A 3G | “Po' )

However, if we assume that the vacuum is unique, the CPT inversion can at most

lééd'tp a trivial phase change from the original vacuum} 3?0 o Thus:

e By, e (A B Yoo

,j'
<
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Remark on the stronger physical requirement of microcausalitys

The statement

E(;), B(x!)] =0 (5-€) >0

can be formulated in terms of the vacuum expectation values, ors:

B, BT Al eoB(x 1) ees D =0,

(Wightman)

We now generalize the previous discussion to the caée of a single spinor
field (which anticommutes.) [Eér several fields, one can always find by suitable
transformations that they can be made to anticommute, See the paper of Lﬁderég

We will not assume C or P invariance, but only the continuous Lorentz
transformations and the assumption of the vacuum as the lowest state., Then

we can build up quantities like
(kek)y  (kow),  (kek)¥ys (koa?yég oas

Then we find:t

I AN RCIADE a2 i“ﬂk%iflﬁk?

k TN (2m)3

)

iy (Tex) o 17, I
+ % P?Y+' 0}*(

fd%?
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Do
where
Y= Y=y .

From this follows thats

0 o

0 (9

¥y gl:fl(ﬂ+m) €52 (/0 (ﬂ ax.
(o}

2
g @) CF o 0

S’

—GI

and we have functions of the positive class as before. The () superscript means

that either I or 1I may be inserted throughout the equation. Thus:
v N P I I
- (@) T ) 3 = i(zs 5) Fyg )+ 1655 (9)
+ X2 FII (%) + 1%, 6IL (¢®) :

5 Yy «p

There is a reality condition on these quantities, since:

Q/F (x* ) (x) >o* = <|’q (x)‘\’p*(x') 2

Then we find?

*() 0O *() ()
9% = Pyw s T¥F = NE

We must again obtain an equivalence between CPT gnd microcauselity. We set
AX = (5 =2) F L (- 6l (-
Fp e 0 D =0 (58 Bl (<9 + 106} (D)

v e )FII (-%) + 1550 L (%)
g
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or:

Fpk ), ={- (¥33) Tgy (9 + 108y (9

-7, (¥ -3%) F%ﬁ, (€) +iK5'G§_)IY (E’)} |
<8

Againg

SUNGIES SON® (.0
1 fgw‘V
| =f5 (8, + 18) &N b

o) ® 20 @ ek O

R, 9 =r) o . oY, 9=

We cannot get any connection between thé F's without a further assumption (either

CPT or microcausality).

< {Yx(X)D\F/Q (xﬂ)} >° 2 0 if (E'E) >0,

We assume:

Thens> \
) (9 =5l (9=l (9
| ir (8-€)>o0,
oy () =6f), () =al)y (3 |
Thus:

@ =r ®
ol @=cl, @

everywhere,
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The CPT relation iss

Fperfet By = B @ T @)D, = G K@D,

‘This gives the same relation as does microcausalityo4
This is all that can be obtained, since we don't assume any specific in-

variance. If one assumes P invariance, for example, the II parts vanish.

.N6w9 if we consider the vacuum expectation value of two 9D“s, the Lorentz

5

invariance leads to the form:

<‘f(X) (X)> {{(f 72) B () + 1 Gy (8)

+ a’5(zré—?€ L(€) + 1y 6 \u(z)} }

where

T, = ouct, o =1,

If we change the order of the operétorss

==<Yﬁ (x“)\rd‘(x) >o = K(K —%) F\H, (=8) + 1 GW( -5)

5 (752) Flﬁ,( 9+ 17 ¢t (- E)} C"l} » ;

since C; 065, CKS§¢ are antisymmetric, and C¥. , C‘{?' Z;{} are symmetric
matrices ( and from this, C~1, 350‘19 Z;g; c-1 are antisymetric and B C™ -1
¥ ,K%} ¢l are symmetric).

If we now apply microcausality:

<{/g§x);r,g (x“)} Do =0 for (£:8)>0
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=B

and CPT gives;6

QPF (xﬂ)\p‘x(x)>‘i = @; (x)\yF' §x8)>o = <q’)8 (xﬂ)q)c((x) >o lo
In each case, we find an identity with the exception of Fiﬁ,, which must vanish.,
Thus, only
o

to satisfy either condition,

If we consider states of only positive norm;, we find other relations. To
get such relations; we must have ¢ ¥ rather than ?‘, so that if we multiply by

Wh and take the trace, we find:

-

(=1) f Tr (?ﬂk)b’4 =k >0

so that7

I S0,
Py’

FOOTNOTES

1 The most general relation would be:
M= ,.Z<> | Y (0) | x> x [F0) [0 = ERL RPN
where A is summed over the 16 independent 4 x 4 matrices. Now, the Lorentz

invariance gives relations like:

o 0 o = 5406,
and since this term must transform as part of a four-vector
| f/‘u(k) = kuF (k)

where Fi(k) = F'()\). The other terms are obtained similarly, except that
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L /L ;K;n is entisymmetric and no antisymmetric tensor can be formed

from k,A“so
P

The k,'s give the most general form, since the Lorentz invariance

requires that:

l}f(?\) = g(A),

L
[?()) = g“(ﬂi] and the 5Q~ gives no more generality.

S, o
2 Using the adjoint relation and k* = k, kz z - k4 .

3 We use the same arguments as in the scalar case, For the F's, we obtain

(@ 5%) [Fgf -9-R} (5) ]

but this is equivalent to the 4 equations

7%2 I:F\,,:\[,, -9 -FE ()] =0,

Thus, the F's can only differ by a constant, which is of no significance

in'the commutation relation. A similar result holds for FIIo

Q% () )= =) G 0F e D 0) g

dexe(!

[(E%pr (- §)+1Gw'¢( 5)

N
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Tt (0’37:%— ) g (=3) + iy, Gep (= %ﬂ 7,
=4
I
I =)
+ 4, G ( %)}aﬁ
:<‘i_’/9 (x“)‘}@(x))oo
5 The C enters to give the proper transformation properties. Since
§c =-YC,
then

transforms as does Q€,%g + The C is removed by multiplication by C'l, to get

the stated relation.

LY ) ) = -055), <q/ (0, x) > ()
= -(r ),m[ {465{%) Fhy (-8 + 1eGhy (-8 -1 (8 52) By (-9)

-+ 17 GW(E)} C"J o Sﬁg/g

= [ws)[ {-(55-%) Fyy (=5) + LGy (<5) =00 ?5“1] %’5Lﬁ
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[ {‘o’ )Fv_, (=-“E)+1G\,,I\‘, (-‘s")«-?r(a’ )Fw(?)
+ 1% Gy (%)} 5 0'1}
<f
- _[ {("5%) R (<9 & 1065 (8) + 7505 &) K (-%)

+ 17,6LY (.:g)} c-l}
RS ~f

We have:

a%k
_k%ib‘@/w“ ©] x > < | p,(o)l 0> (zrwyg o | ﬁ(x k>/)W

+}

Thus if we multiply by (‘KA) ﬁc,( and sum on = also, to get the trace, we find

,,4__[@ (o)}>

k,“,dk (2.")

v

(2m)3

Tr i(¥k) Y /ow+ o

= =4k

Pov



ey -y

o TN ey

UCRL-8213
Lecture 13

UNIVERSITY OF CALIFORNIA

Radiation Laboratory
Berkeley, California

Contract No, W-7405-eng-48

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI

Lecture 13
R. J. Riddell, Jr.

June 10, 1958

Printed for the U. S. Atomic Energy Commission



UCRL=-8213
Lecture 13

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R. J., Riddell, Jr.
Radiation Laboratory -
University of California
Berkeley, California
Spring 1958

LECTURE 13

Generalization to more fields:
If we have several spinor fields which anticommute (as can always

be accomplished), we obtain very similar conditions to the single=field

case:

() o= () g () = _.()
’OWZ (N /0%5 (A, Q‘Pﬁ (A) a-ﬁﬁ\’ o)

0 _ () QO =c_ ()
Fwa (g)”Fﬂtp &), Gwﬁ (3)-G¢,w (8) .

These are the conditions both for weak microcausality and for CPI, The

reality condition relates different quantities:

Ao (5

In the paper of Jost, one finds the generalization to more than two
factors in the expectation value. In such caées9 the CPT and microcausality

always connect factors likes
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2w
' (1)
P e ) Dy =1 G o § -

We will probably come back to this in a different connection. To develop
the theory would requiré the theory of analytic functions of several complex
variables. We may give an explicit proof for some interaction hamiltonians

later, Jost does not use the positive definite metric.

Inequalities:

I
The various quantities /0 soce Satisfy certain inequalities. First we
let g=Y:

Then,
I I II II

= (o |
/O\p 3 Wq;sloq‘}@ 901‘,:‘79

A

are all real, In addition, if the metric is positive definite, we have seen

that:
/OAA . >0 (scalars)
I
. /0 - 0 (spinors)
' Yy

In addition, there are other relations. Consider:

%gﬁ %dk/*<k lwo(* (o) | (> M°</3<) Iqng (0) , 1> =_1 dAk"koZM ,

(2m?

(see note No. 7, Lecture 12)

I
which defmes-ZM o We see that le = /Oq) ‘{7 o

Now, if M2 = 1, the eigenvalues of M are = 1, so:

I I
225
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Also:

ko (zl‘l'ZM )Z 0 k (EIFZM)ZO R

<la+mlo
(1 =-M) ’

M:_;i__. (Yok);M2=l=_.Jj_(kok)Bl o

Vo

Sinces

If:

Now: T | .
T 280 D G10] ) -t fimg g

(¥ok) II i I
+iy ° - +1Y o = s
5 Lvo ,

5 WY
If we now multiply this equation by [s% (Y;Magoi , we fina®
kZa_Lka'-Ig
o M 3y o WV
803
I I
o Evif .

This relation was derived by Lehmamn,

Now we may generalize:
M= AY + B L (Yok) + C L (Yek) Y
5 Vx iy 5

MR = A2-+ B2-+ 02 =1,

If we proceed as above, we get:z'

<
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AL T o

for all A, B, C,
We will get the best result if we maximize the bracket:3

II
(o)

I
o C =

II 1
A 22090 , B :cngf= .

1
Vi
her
wnere o = 1
V(}”)% oH2+ 6?2 .
: A

Thus we find that

IT

=\ IIy2 1,2 2
,/?<(ZM)maxo; \[(/o )5+ (o) -5(0—)

</>IV

so¢&

o I2 1
(/011)2+ )+ @)

This result was not obtained by Lehmann since he assumed reflection invariance.

The spinor equations of Girsey:

We now begin a new discussion, in which we will write the spinor equations
in a form which plays a role in the theory of the neutrino. We will consider,
however, the proton-neutron system in the non-electric approximation. We assume

m = M =M o
P N

Then:
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We now introduce two new fields, which satisfy:

M AT 5
0%y
rﬂ._,;-m%’
ATy

The system of (7(,§) has a certain group associated with 1t:4

9(' . 2" Z,X.c
% 13 b5g
wheres

25 lp] %=
5

Ia

A second group is:

L o % X
. _ + .
vg — ai‘xrﬁg;—costx,g -=isin°<x5g
e

This is equivalent to the transformation in L])P, LPN of:6

R X Yy ., (Baryon conservation)
The former group is the 1isospin group.
The connection between /'s and ‘{ 3 1837

1=%u+vﬂ#+i[u+y)¢]°
5" p 2 5 "N

(4]

Ssra-vov - ifa-
Pa-v)y 2[u ngJ
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-
If we choose the representation for Yﬁ as -
0 -1
l 0 1
Y = E = 1
5 0 =1 -1 0
Then: | lP
| [ (1+Y)</) \P
0
%
lPA*
0 P
| 1-7,) -1 3
[ ( q) qJ - 0
tP 0
Thus we find:
P P " #N
A = LA A =1y
1 1 2 2 3 2 4 1.
®N N . P P
T =+il € =-il § =¢ 5=y
1 4 2 3 3. 3. 4 4

It is of interest to write down the vacuum expectation values.

sz(x)gﬁ (x“)>o :<§/g (X)EK(XQ)Z =
=<’>L°<(x)i/g (x“)>o ;<’)E/g ,(X)Xx(xn)>o
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-5 52 wa @)

ando8

+3 x"‘@"‘“)}, = =X %ﬁ(x»)}) =ny, ;(m JORE

The group is isomorphic to the spinor group of three dimensional rotations,

FOOTNOTES

1
(2, TN 1D Gy @ 1) 7 o, s
Vs
a* o I I . 11
—y Tr {:[i (vok) /OtptT) +1- %\P +1Y5(Y k)/ow$

Yy V)
S
@3 Vi YY

The new terms lead to

: 11 N = II
'rr{iv5(b’1<)/c>w_q7 (-q;*iz;% ko/ow_)

{iz’ oL <=‘l“‘ ~=-i-‘=-=(Y k)x5>} V—;i OZP q)

and the other traces all vanish,
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We must require AR B:2 += 02 = 1, o(then enters as a Lagrange multiplier.

We must show that the equations remain invariant with regard to this group,

First, we develop the equation for ¥ °: ,

Y ‘
rox, S 9%, 9%, o A
7 L, nf
- = ¥, ¥Clae-myryc?tzsnpyycl
Pl 1%, T,
/L
_ -1
= = mY C { ==-==m‘d’7(‘ °

Here, we have used the facts that C'"lg YSC_]f are antisymmetric, ‘O}C'l

is symmetric, x = real, x4 = pure imaginary, plus the equation for 5 .

We note that the equations are not C invariant,

[ (] ] C
‘g = ag-@- b‘(sg ’)(‘ = a%+bY5X
so that: c
7
v 2% _ay 25 _pry 2%
M 9x/u a/L gx/u— 5 /*ax/
=amn Y5?C +bmnm Z

) ]
A similar development holds for X o
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FOOTNOTES

3

= = COB <><omY5 ¥ + i sinoce b;ﬁmb; g

D
}N

) 9
and similarly for T

See below, for the representation ‘(5 = (1 0) o
"~ We have

v, 4% 2-33 i v
£ 5, )7&-*-(1+r5)3x/* > [(1+x)¢]

[To ]

=1
[
i+
o
L=
) [¢]
]
o«
(o)
i
=
=
it
o(
<

But:

S0

c + -1y
[a* jr5)4)1«] = -y QEVIeNY

. a1 v 1
=Y )Yc 4’ ==~ (z7) (lPNYAC )

== (1% Y5)QJNC“1 =

Thus:
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FOOTNOTES

7 (Ccnt ° )

8

X iy 2 y°
Y, % =40 -v) ml+3 ALY Fy y

11 o i ¢
-3 (1 Ys) mLPP+2(1 +Y5) m‘}l'v

¢
=m {%—(l - ‘0’5)‘,’?-1—% [(1 - XS)(PI\;I } .

But:
=il -w)P 1@+

803

Y —a—lgﬂmfge

M
e 2
A similar development holds for the g equation,
We need:
: c
-4 (1 - - -
o3 Q- -3 [(1 r5)4’N]

8l

2 [¢]
Q- v5)tPP -3 <1H’5)\PN
T=1y, @ Ys)x4+ 2LpN (1+ Y5)72

— —1-_— i—-c _
T=3¢, @ +Y5)+-2-LPN (1 Yﬁ)o

Thus, for example:
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FOOTNOTES

8 (Cont.)

<§;(x)§5; (X'>o = “% 1- 5o<o<“ @ (x)w > . "—)/5)/5’ Vi

N ¢ N c
stary) U@y e a-v),,

3%(1,5;«) [, x_& ._m)iA(s)] (1-Y)
P ox, RS 5 £

+4 1+ Xs)o(xn

2 -
{ - (% LE m)i A+_(s)J it (1 Ys)ﬁ“/?

= +

/- 04/5
<§<(x)?/ (x“)>o = “‘;:%9"‘,;2‘ i4,(s) |

- {:‘%“/*5'2‘ = m)i A (s) =& (¥ 52— + mig (s

We also find:
T =200 -7 -30° @)

Alsos

- <§d(X)X/(X“>O = {;&(1 - )'5) (“/45;{2/: -m) (1= Y5)

- a+y) (Gl o) @r¥)e 46
2 s

= =m)’#5 iA+(S)e
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Another possibility for introducing new fields is to set

m g

Yﬁ 3;; ¥

d
T, 3;; g = m¥ .

These show an invariance under the group of transformations:

LA a v + brsc’li?_
oz =a¢~br5c’lﬁ
ior =iy
.q!v = e 51‘! ¢' = € 5¢
_ iar icy
¥' o= Ve 5 5, - Ee 5 .

The connection with wP’. WN is now:l

g

5+ - 3 [+ vy |

V= 30-r) % - 50

1
.<
A9
=
=
[ |

Here, the vacuum expectation values satisfy:
SR Tlxt) >y = <T(x) v (x') > = < g(x) By(x) >, -

R ACEACO N 3%“ (1 &, (s))

and
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<) Ty(x1) 5y = <) ylx) >y = = <Tyl) Bylx) >, -
= =< ﬁé(x) wbéx') >o' = qzﬁ [} A, (s)} .

Remark: There is an interesting problem here. One might ask for the most
general expressions for the vacuum.expectation values, with the Lorentz.and
isospin groups présento First, one can replace one A4 by F and the second
by G (the free particle Dirac equation would connect them). This theory is

0. This would not be the most general

il

gauge invariant since < ¥ ¥ >o
possibility. Pauli does not know the most general result compatible with the
group. A particular case is that in which there is only one spinor, V¥, (4 = 0).

Derivatives can'also appear, though they will be restricted.

The system of Gursey is slightly different to that just given. The
relation is
.= X -= .
g ¥ | Ty k4
where the sign of X related to @ is just a convention. The Y5 is the

_essential difference.

There is a little more symmetry in the Qursey choice, since

/x\V X [ X

= a + 1oqr,5c"l _
3 3 3
iar, =iay,
g' = e 5§ , X' = e 5X .
However,
3 . . .
7‘“3)—{— E = mT5X ’ YH&_X = "mT5§ °

2 23
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[.The signs of the two equations must be different, to keep the second order
equation correct. |
Also:

3 ,c _ c 0 .o _ c
ru 3;: 3 = -m Ys X", Tu 3;; X° = m T5 £ .

Gursey has a particular way of writing these equations that is not
fundamental, but is instructive. He introduces matrices for 1V , and chooses
75 diagonal:

*

.dfl -\V)'I'

et
]

(¢]
it

*

v, v, A

The Dirac equation is obtained, using

) - 9
=% - °%
and
v— N’l
¥ =0 o ,

where, for ordinary 2 x 2 matrices (not qrnumbers),

¥ = Det. {¥] x vt
Also:
F' ¥*
[ A
y = + .
“Wz Wl

With reépect to the groups:
po- qu
where U 1is the most general unitary transformation of two variables.2 For

the first transformation

Det U = 1,
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~ while for the second

U = .
Replacing

X e X

= .ee 3
bY_géipé.from.célﬁmn véctor to matrix, we fiﬁd:3

| | 'D7§* = imX

DX' = -im=
wnd T » ZU = IRe®

X » XU = XRe @

~where R is the rotation group (Det =vl)°
[ Pauli doesn't like this too Well,]
The existence of the group, isomorphicrto baryon conservation and
isospin conservation, is the important thing.

' ia . ! —~ ia . B -
W? = VYp e Wy = ¥y e ,_(baryon conservation)

The transformation R does not commte with C or P, but it does with CP.

In the case of weak interactions we can write it in such a way that only one
field (X or &) occurs. This was introduced first in the case of the free
neutrino. The equation of a four-component neutrino has the full group.

However, if it is a Majorana two-component neutrino, then only the second

1

group is preserved as compatible with

o=y

ior
Vo= e %y
“"c= elars‘yc o
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FOCTNOTES
1 We have:
v . 3, °
0g _ l.. 2 _ i N
1 i 1¢
= s@-rmyy - 3 [ rmoy
) = mv¥ .

Similarly for the V¥ equation.
The invariance under the first group comes from the fact that the &, V
satisfy C invariant equations (the lack of a ‘r5 as compared to Gursey

accounts for this), so that:

v dv  _ a°
ru&;—arpgj?; bT5Tu3§:

m[aﬁsbr5fzfc:’ = m@g' .

We find:
* *
) -
3-—-}? ‘ru=%§—m*rp= f-g—?;—* LIV T ~m\lr*'ru= -mVy
] ) M
and
¥ 137 3 S c
‘rua—x—- = v C = ~8’}Z—Y}J.C = -mV¥y C = mV¥y .
") - K M
2 For the first group of transformations we have:
Xl
X (l + T
2 = —-—-———-5) X and
0 2

0
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2 (Cont.)
T
xl
X' :
2
(x + 7 (2 + 7)) (1 +79
- 5 . . 5 : ]
0 5 ‘ Xt 5 XX + Db - 5 T5X
0]
(1 + )
- 2° (ax + bXx%
) :
Alsq: ,
(1 + . 1+ 1+
Orrs) o L 20T e o BT
2 2 5 2
Thus we have;
] Vc o) "* * c
X,l Xl axl + le ~-b Xl+a Xl
1 'C c * * c
X2 X2 a.)(2+bx2 =b X2+a X2
c *
Xl Xl a -b
c "*
X2 X.2 b a
so that, s.ince-l:a.’2 + fbla = 1, det U = 1.
For the second group,
iar
X’ = e 5X °
Now
c

]

(X'_)c [(c.os o + i sin qer5)X ]

= cos a@.X® « i sina [75 x ]c

i

(cosa + isina rs)Xc
iorg

= e Xc
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Thus
¢! ey
. v
x1 X1 ia x:L Xl
= e »
¢! ¢
1
X2 X2 X2 X2
3
In this representation,
1 0 0 1 0 iok
5 0 =1 b 1 .0 k -iork 0
where the "elements" are 2 x 2 matrices. Thus;
4 X
i o + 1ig- 2 g = in '
i 3t k Bxk ¢ - x
L/ 2
and
. E X
13 5,2 o Y
i ot k E';Ek" =
_ g2 Xh
[ . ¥\ . * (
T §1 X‘3
,]:. 9 - 1 ?‘ o = nm
1% k 3% . * w °
2 4
If we choose the usual representstion, 7T_ = o_, T = -0 3 Y =0
_ X X y Yy Z Z

\

so if we multiply the equation by oy, we get:

. % *
‘ 13 X
_]___6 + ig 5 (44 ' = ma ?
1 3t k‘ESEK' y x | y %
£ Xy
or s S ;g: _xh*
ix * 10k~-5§k- = m °
* *



.,_,8,
3 (Cont.)
"Thus, since , *
* * :
. 5 by 23
() - -
the equations satisfy:
’ -
D = = imX .

The development is similar for the X equation,

UCRL-8213
Tecture 14
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w0 Notes by R, J, Riddell, Jr.

K I " Radiation Laboratory
Lot L S University of California -
E fL?.i;fif' o .. ., Berkeley, California

Here."charge" means more than

.-
.

Different definltlons can be made

H)

I8

et for the leptonlc chargeso One partlcular choice isox

Qeg; ‘: —g- dV ( BJP 9 \‘IU—] EP

it

.. "LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
A IN QUANTUM MECHANICS® BY W, PAULI |

. -5@ ( For the weak 1nteractlon59 the symmetry can be no more than CP

L,

v
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ﬂ-'”p‘-v;.37lﬂv The experiments are not yet good enough to prove the cP invarianceo-

Z‘ { '*L“ Nows there are 1nterest1ng postulates whioh can be ‘made about the weak

The symmetries‘
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e where '\{) is the proton fleldo'f(p » the electron;.’ and {/ % “the newtrino, -t s %
. B . e . . .‘V . ) } C '." , ' R "
The leptonic charge 1s thenn co \ PRI R .-r o LT

PN .

. & .
s PR . .
N

+1 negeton T neu'ﬁrinos
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antimneutrlnos
‘ L A WUE Iy 2R
B ot T wo\, . o .
. v ‘ ) ' b ' :'
o ST e . ) i Ca Y . .
(o X N nucleons R

P—)N+e v (bound)

N P‘-f—'ez;ﬂ-""?/'- . (free or bound)

. N . o ‘ “ s
v 3 Cn _I“ "'.‘:-,\ "
P+ 77ﬁN"+ e, . (Cowan and Reines exper:unent)
- ! ’ i '.1' ', g

N+vﬁP+e=.ﬂ'ffﬂgﬁﬂ“'~“‘.Q}i5

S ' We only have strong sources. for negaton decay9 not positon (neutrons)o‘f"
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[ S
N Iy N
"
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. .
a 7 .
t o
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N AT
H - .
h
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. ~
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' v‘ Co $
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. | R
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is invariant. On the other 'hand, if . '+~
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Th159 thepg—ls another plece OI ev1dence for lepton conservatlono
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w13l
is not relevant. This WOULd only determine whethnr positive energy parts

appear above or beiow., In either cases

s g 0
Se ]
—
L \° ¢
e but in the first choice E
/::E; .D\ .
> l ' )
R
SR /
0 T/,

while in the second,

C/a N

- o 0
-yl
R
0 mcr/
Now, we had
s o Tk r
H, o= L (e (vff ¢\ o

Cint, Zi k“Pp i.PN) ,\(]‘Ja 1 <RA.J,/ + L11)‘i/_ -

0 (\3 ) + Dm(_y71> + hoeol

i

T If m,,® Oy the free particle neutrino equations admit a group (canonicel

‘transformation) s
¢

._. .H ] N B l..(“o ) » *
, —al) + W WS W oo ptyd
(1) LS AR S A AR LI LY

'where_ \I aiz 4 Ibl 2 = 1. [?he:\% mekes the transformation canonicélzj
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In terms of R and L

o

S

: ; “WR_w R | cyR - 1, L : ¢ L
(J)‘J»_) zawv.mb((py ) $ ((Hd J ;:BLPV «ﬁ-b(dJ )’

=, R & aR - 0 - 3 L #®, L |
R N B e Y I (TR

&

UMY

Thus the transformation is izsomorphic te the unitary groupl_(arduplication'.
.. of rotations in three dimensions),

- New if we consider transformations of QQ/é then H will be invariant

int.

1f we also change the coupling constants at the same time, in such a way that

o

S B/ ' PN o i :
C { g% =p% ] ] , * #\

/R\ a b\/GR L a b) ¢,
/

-‘\‘\?Rn/ \ZDII ,:ia_ \\%/}9 \\1\3; \(b a/ Lo,

Then H, .. will be invariant,*
) . hedd b O ) D ’% G )
We note that L . transforms as R o o ‘ _
P . c.* : - D T - o .;,'_lv
3 . L . ..
RN o R / o . L

There is also-a second groups

(11) Ugv z e L?v = (cosx + 1Y sin=)y,
. e B -L-P ei(}‘.\gs .
| W e
Thuss -
A RS o B Lt 5o L
{ = e:a_r_ i ° t1) = e
'})z/ L‘j}/ ’ '+‘V L&}v ?
. ands, v
0 3ek Y . e
L
~y9 1/

The latter relation is important, since it indicates that the Majorana

abbreviation is compatible with this group (I1)., It is not compatible
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e @Y e o e T T

with the first group (I).

A

To provide invariance for Hin* we must transform ths C's as:

C e\ /c

- The most general canonical transformation is one that combines I and II,

[fauli doesn“ﬁ Tfeel that it is natural to combine these two groups, -

If there is a natural divisor to a group, he feels that it should be split

) experimentso

off:]

i

Let us now cnnglde¢ the prnblem of detarmlnlng the H from the

in this spaceo

j'aq appnar in H,

ij

Ws can dlssrlm

 Ws have the following as the invariants of the unitary'group'o3

B

13

only occurs

There are

nt,

In any partlcular experiment we w1ll generally make averages

. L , . :
. over uhp Hilbert spaceo The aR9 a will correspond to projection operators

Tne transition probability can only depend on such ccmbinapions

o4, We camnot distinguish between a neutrino or an anti- -

\'JO

nnutr1109 nor can we dlstingulsh the polarization of the neutrlno aloneo

nate between the R and L states,

R # #

= Cri%; ' Pralpy
L é' ¢ "+ ‘n' *
SRS £ 5 ML 6 &
=C D +D G
‘Ri'L] RiLj .

in double beta-decay- processes,

certain relations among these invariants:
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. Ai; - Agl y ' Aii - Ali 20
an 4 _ =
R R 'R
2 4 e A
, ij R & R
a LRy by b

13 . s S

o R L

B, | 2 < A A o,
P13 ] = Tan Ty

:iu It is bften convenient to introduce the combinationsa'
SR TR R L
K .o=4@A, +A ) L =3(-A "+4 ")
ij %id iy 8 BRAE € BT
I..=%(B,, 4+ B ) 3 = 1(-B *;;_B ) ‘
1J B 31 13 2 ij ji
- [Epe { ) is a convention in I and %}
Thuss - .
K. =K _ oL =L s I =TI . J =ad
tH I S & N - S & A ij Bt

Thete hés been a lot of confusion about_tﬁe:C9P9 and T invarian&e;
l »IOne could not empirically determine more than the unitary invariants,
| though it was customary to use certain.“nbrmal forms, " :The experiments_uv
’always depend only on tﬁese invariant combinations, This settles certaiﬁ
controversies iﬁ a simple way. One H that can be obtained from énother by ;
such transformations in equivalent as far as the exﬁerimedt is concerned.,
For instance:

A consequence of lepton conservation is
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DR D =0 | ~ Normal form
" ors v
Bi“ = Q and AijAkg = AiQ'Akj | C .Invariagt condiiion
- FOOTNOTES

“l}:'@$R'tranéforms ACGOrding to
SR R, PAg R

. where . R'\\ o | )
R Y, R & b L

‘ = |, ¢R and :
b\ M
. while
: i L. L
P =07
=) 72
" where "

i

. a b . S | : . T
\\cb* a* ' - ‘ . e

, . . Ll o
Clearly, U¥ = U = and det U= 1,

“VRIn terms of the two component Q?I/introduced previously, we may write the -

, neutrino part of int. és _ B - » s
| R L | o |
C +c @
Rigpz’

L LiFv

wheres-

= (C D

Crs Rt Pri) | B 2 ES ¥ Wi ¥
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FOOTNOTES o f L
2 (Cont,)
.:Then ._
| UR@ , and H -

" will be invariant if

0y = Cog@* =C_ " .

If Qé write the transformafion on the column vectors inetead9 they will
" transform as the complex eonjugate matrix rather than the adjoint, This
is tﬁe-éituation in the text., ‘ L | ' : . o o
Slnce the free particie equatlons are invariant under the unitary group; |

—
i AN
S tbe momentum, energy, and T;- -p carried by the neutrino will not differen=

‘. tlate between a neutrino of LHV 9 for example, and (ku o- Thus if we keepv

. Hin‘ invariants the experiments will conly give information concerning‘

Vo

_'the quantltles formed from the coupllng constants whleh are 1nvar1ant under

riAthe group. - These 1nvar1ants are easily constructed u31ng the two component

‘ notationo If wse considers

CQ g CUél 9

" thens
) B9 o #
C =1C
" wheres ‘
, , % _ }
Cn‘*g | sand U s U
- D
7. ) '

‘ Thusz

N A REL IS EN N

{2
®
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3 {Cont,) -
so that
. . C '/\3 3 - . . . & = A R
'Ri\““Rj = invariant = "
. * ' . | L
C. C._. = invariant = A
"Li O Lj _ ij
" We have seen that L | transforms as | 5 however, -
B CL /. - oA\ Pr '
"‘sa aléog. , ,
¢ D D 6 = invariaﬁt = B,
Ri Lj Ri Lj ‘ 1§,

} B *[:ge note that group (I) also has

Crs DRj = GRj DRi % invariant, but this is not invariant pn@er.

growp (1T,
) ’

These relations follow simply from the two component notation, since for

X

. B ) |
. any vector, W (in a positive metric):

;T S I ; S 3 2
@iﬂ P (T ) = 5@19 ogj,l

4
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LECTURE ON ®CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W, PAULI

Notes by R, J. Riddell? Jr;
Radiation Laboratory
University of California .
B.arkele;)r,9 California
. »Sbring 1958 -

' We will now cohsider the normal fofms and inﬁarianﬁ conditions for various
”cénsérVation laws, The'norh&l form;can bé reached if the c§rre3ponéing iﬁ&afiénﬁ L
 dondition is satisfied. We have already 5een the coﬁditions fbr lepton con=
.A' servéti6n9 wﬁich may be fulfilled, There is as yet no disagreement with eXw

. periment. Nows

Parity conservation (certainly violated)s:

’ L - R
L =20 or A =4 ' o -
v 45 LLEE T B o '
s ands - : e
' Invariant cond

- (The +and = are not equivalent.,)
: Y-The’naw
Ri L1 ~ RL

ors: Normal form.

Charge conjugation invariance (certainly violated):

L R“ . ]
A A and Re(I ~J )= 0
i3 1j iy kg ’ _ :
o : Inv, cond.
T 'K~j = Re L, 0

-
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Normal forms
6,56 ",D =D % ImC D =ReC'=ReD =0,
UL T YRy 0 L:i.mRi".- m:i_’v iwei:e,i‘; L -
* Thus, for the invariantss
K, =K, L =L , : L
SR E 1) P S o - ‘ . \
.. o R ‘- . ' iu » iok .
, U VO~ S I R - Jd o= L d e 0 < 0
; . Tims reversal invariance {no disagreement with experiment; T ~CP)s -
= - ; .
A, A B ~are all real,
L B A %1 H &1 I : . o _ v ‘ S
T o ' Y . Invariant conditions . . .
‘ o o . : , R
‘ Im{(I,.d )=0
i x¢
T v J o" o B ¥
‘ GR.Q GL.p DR QvDL a;e a1+;rea1° . -
_ | Normal form. L
‘ "G, C', D, D? are all real ‘ £
Majorana abbreviation: -
. c - ’ . ‘ s v
R (x} = U(x) -~ . Normal form, . ; v ‘
. [fll electromagnetic forces must be zero, but m is not necessarily zerég
. Nowgvthe combinations
o
L Y

will have an interaction with matter, while

LPG(X) - Plx)

will not, (Thus £ha latter éannot be said to exist in this connection.)

i
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=, .Li)’ e
This then leads to a two state theorys

c,=D_ , C

R hid

L PL°.

The invariantis can cnly be used if m = 0.5 Then we finds

_ The Majorane condition is gompatible with parity. There is no disagree=-
. ment with experiment then, but if leptons are . conserved there will bes
If we consider more restricted two component theories, we can be more

specific., We consider:

L © Remodel: - ‘Aﬂ;L =B =0 Inv, cond,
o ' A 1y -
= = Normal: 0
7 CL DL 0 | ormal form

The experimentally observed polarization of electrons indicates that the couplings

‘, in-this model must be S, T, {P).

. Lemodels - A =B =0 - Invo.condo"

C =p =0 " Normal form.

- In this case, the interactions must be V, A.® Tn both cases the Ma jorana
zondition is fulfiiled.
From these alone, lepton charge conservation does not follow. It is

something news

e K

{No disagroement)

. LK
13 i1 3

These developments are found in the papers of Pursey and Luders in Nuovo cimento.

et g AT T SRR oy

S S L v e o=

g i e L, B e S Rl L3 3 e TRy Wy T T s
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We pass now to the spectrum, tb see‘what information can be obtéinedo
We give the results @f the pertinent aalcﬁlationso The beta speéﬁrum is
giveﬁ aég |

N {(E J4E = .. /(E)F(i‘z E)Ef(ltbo—m)dE )
a2

N .‘4 .'v . 1 e » zr e

L . . : . !

‘ :wh‘ez»‘a. the ﬁpic)er' sign correspends to negatons, and the Tower 1o ﬁositon\s‘o
:' ; E@ZpEe) is thgﬁouﬁlomb correction, while (1 tb ine/Eé) ig the Fisrz term
: (193”) and ¥ is' the r'e'ievan't matrix element, The statistical factofs /fz 5.
: was computed independentliy of Ferm by F, Perr1n9 who correctly gorvlcluded‘ o
R that- my~v Do We find a detailed account in the Handbook of Beta and Gamma
Spectroscopy, edited by Sieghehn (see expecially the art.lcles of Go S Wugl‘
' jand M. Eo Bose). | |

“We will give tho resu_;t fo; nonqelativmtic ﬁucleons o DO coulomb

,’correcuicna (F (Z E = l)o and allowed twanswlonso

A A2 dakiburt it 40k 25 0t gt d R ot s n et Xt A e b e -

. For the Ferm.cu;y'pe of transitions; (S, V) A I = 0. For Gamow-Teller | -
S . (T9 A) AT = 0y £ 1, with 050 forbidden, - The pseudo-scalar only appears :

'in the relativistic correction %o nucleons, (P “escapes.") ‘

Now, one findss

e CR 2
E . l MF| @(ss-‘_ K\W_) * ! MGo ° i : (KTT+ KAA)
e T _ "  2
b= 2 EMFl ReK_ + IMG;T},l' Re K

~—

. where the K's are invariant KiQHSo The most important féctor in the spectrum
ij , : ‘

is /o(E Yo

To computa /x(E ), we need:
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Ll is

ik e e ikl o LA B s e e b LD LoD

. =

where 4.0, iz the element of solid angle between f;e; and i)_; , and EO+ m.,

. 50 that

otebtd Gkt # b AWt 2h Tl
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~1)i5e

dp B{E + -E - E
P (o+m_y. . = Ey)

S 2 2
[an
oy, dfip, dp Py,

will be the change of energy in the nuclear configuration, so that Eo W;‘Lll _

be the maximum energy avaiiable to E . Nows
4 .

EdE =2 pdp . dE_ =
4B = p.ApP, EdE_, pwdpv 3

=

. , _: \\\(‘ _ 2@ 2
.’_/‘QmpeEepyE_ﬂ peE% /tFO-% m, Ee) my

(B +m,-E).

if m_,= O3

' 2
/{-)/\) peEe(EOv‘:" Ee) °

 Thus we find a gquadratic dependence near Ee = Eo ° If m,, # 'O?v thexn'e':'

will be a region for which

EcmEe« my

and here:

I— -
: /o ~ paEa m_u\l va(Eo = Ea) o

- If mv;f 0 , there isvalso‘ another factor in the spectrum's '

“1<C41

{See J. Ro Pruitt, Phys, Rev, 73, 1219 (1948), )
Langer - Muffat, Ibi’hys . Rev, 88, 689 (1952) find for the neutrino mass:

mv < 25 e,v,

e g £ e N igee TpTs (e s g AT P TS i N BT TR NSy B ot Ty e AL B AYEEN W o sy vy i G £ T, 0 W8 s
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- FOOTNOTES

Otherwise the free neutrino equation is not invariant under the unitary

The A35 experiment,, and electron capture in Eul52 seem to indicate that

the R-model is ruled out.
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We now
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LECTURE ON "CONTINUQUS GROUPS AND REFLECTIONS
I QUANTUM MECHANICS" BY W. PAULI

Notes by R, J. Riddell, Jrs
Radiation Laboratory
University of California

Berkeley, California .

Spring 1958

set m = 0, and the specfrum'for ﬁ=decay is given bys
onE) . (5) T Qtbo2)
"NAE )JdE = = LE 1%Zb- dE
- (27ﬁ3 /O e | Ee _ e
where:

b¥

[

The "b" terms
pseudoscalar,

ilimit'fqr its

-

. ’) ) ] 2
= EpE =p =
Pe ePy™ peEe(Eo Ee) S

’ MFlz'(Kss_+ Ky) + ) Yo, 1‘2 (KTT; KAA)’

]

13}

2 2 o
M R M Re K .
2 J F’ eKSV*‘, GOT(S € ’I‘A} R

are the Fierz termsol These are for allowed transitions. The
P, escapes detection in>this 1imit since the non-relativistic

nuclear matrix element is zero., The Fermi terms are obtained

- from 35,V and the Gamow-Teller from  T3Ao The Fierz terms were given in a

paper: Zs. f. Phys. 104, 553 (1937). These would influence the shape of the

" spectrum for small energies, The experiments indicate that such terms are

either gzero or very smallé Thus Re stjz Re KTA = 0, If thereis T (or PC)

invariance, the Re can be omitted, so that KSV =K =0,

TA
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We mﬁst now consider other ;?mexperimentso We will only give the resﬁlts h

of perturbation calculations in terms of the invariants, This is not only

agreeable, but practically useful,

“Pelarization (of electron)

We defines

.where 1 and 2 correspoﬁd to spins aligned parallel and anti;parallel to . Z,

o I
. the direction of motion, One findsz.for= ﬁ g

E m 5
© (1tbg) ,
e
' [whereé
2 2
G - - M - L o
0% 2 | MF} . )"F\ GOTQ\ Ty Ty

" Experimentally one finds G = ~1,0 £ 0,1 both for Fermi and G,T, :
‘ although the error is large, G = -~ 1 is not in disagreement with the experiments.
" Then for G.T, 3
| ' - + = +
LTT LAA KTT KAA ’
or : :
| L R

App = - Ay 20 5

since A,y 20, Thus we find:

b8
=

Do Lpp = = Kpp s Ly = Ky

In the same way for Fermi:
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m Lo ULy T Kgg T Ky s

L R |
= AVV =0
and: ' '

L =X , L =k .,
SS ss v W

: _Acedfding to these formulas, both P and C are violated, since from Lecture

O,

P requires L;; = 0, and C requires L,. = _,‘Lji so that »Lil

1 ij

The Coulomb corrections require a more detailed discussion, but one

.0

" still finds that C,P are both violated.
. Much more can be said. We have already obtained inequalities of the

JSchwarz types

\ A, . \2:5 A.. A, o {for either R or L ).
] 1! 11 JJ '
There followég
' L L R R
ASi = AT1 & AAi = AVi =0 for all 1.
Loy ® = Mgy o by = = Bpy 5 by S Ky 0 Ly THyy o

,Thusg

i

Ko ® = Tpa o Far S hyp o

i
=
>
o
il

. \eo

Therefore, since K

S = L
i3 "t 7 iy T Tii

i}
1}
o -

X L =
TA TA

We also find for the pairs TV, SV, SA, TA s

K..=L, ,=0,
ij ij

Finally, the only terms which can be different from zero ares:

= K . , iz K .
L ’ 1S'I‘ sr

AV AV

PR T AR Y[ 202 TEES T e T Whad” 1Y 5% P L PR T ,n-\.\\\}ﬁ\"-umm N

18,

et T T 5 e s it T e

P,
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. L - . 2 M R $ St e oo ¥
We have not yet used lepton conservasion or T invariance, bus only G = -3,

‘Thus the system of p s3ible wouplings dacomposes inin 2 classés:

(Sy T (P) Y
Pr;m the a]lowei spectfag we Lanhot dls ngﬁish'themo'
.>~ The choice G = < 1 would imply a two component theory for the leutfihco
fhis develbpmentg however? will not pc—:‘rm*u cne t onnlude that the
twozuomponenf mcdel must be true Ve can make two ﬂholceso,

© R-model: . a1 A Y=o, . K, =-1. .

f '

. This model is compatible with the precediné‘evidence for .S,T,

IPamOdelg . ' . L all A = O 3 - ‘- Kij on 4 L .

po
Lo

'+ This is compatible with A,V, On the other hand, the polarization experiments.

1

are K TA . LTA soooy DUL they are aloo zerc. This gives a different aépeet

‘of the situabion.,

We can now conclude for the B's that

B =
o 5370
since
|\2L- "R L Lo
l B, | = A, A, . ’
ij ii 33
There are still other experiments to be considered, These include the
¥ '

ﬁ asymmetry in ejection from nuclei with alignéd spins, If © is the

angle betweeh_ ;; and the nuclear spin »f , the distribution of electrons_

is given by3

1+ Xcos 8
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where:
\
- ,_fT.E,,/;,._-' Pe A
7 - -
S (1t gt
[
ands
S 2 :
=T, I Mo, (Lpp = Laa?
N A L VR | 2 Re (L - L)
' IT* '1+1 | FlI| G.T, ‘ ST VA"

where I, I are the initial and final nuclear spin states, <:TI;> /1
* is the polarization of the nucleus, and pe/Ee is of order v/¢c , = -

For pure G.T., we get the same evidence as before:

A=~ 1,
The quanﬁity A is given by:
e It = I.1
= - -
)II‘PI*‘I =l ’
é.__égm. Iv=1I+1
I+1
FOOTNOTES

It might be of interest to indicate how they arise., In computing the SpectrUmg
one needs the square of the matrix element of_'.Hint between the initial

and final states, since the transition probability is

(1

' 02
o 2T
w o "‘/‘f‘l Hin‘t o \ f)\ /D (E)

where /%E) = density of final states. We must average over initial states

and sum over final states which are not distinguished in /?mdecay spectra,



UCRL-8213 -
Lecture 19
wlB%e

FOOTNOTES

Thus we sum over all neutrino siates and over positive energy electron states.

Now, in the non-relativistic limit for the nuclear matrix element, only .

oy = VoY, ¥
e = By 1) = Fp V)

Mo WYy eSS (L < Y
Pprlyy ¥ ® “1 Tk N

i

2 DY = ’— I S
(L))P,,‘m Y JJN) = (PP”,kaN) |

v

are different from zero. In terms of the two large components; we thus haves

P L)

? , o * é‘P)l

l M
- G.T,

1Terms *nmolv1“g MF cannot interfere w1th ones involving MC T, 5 since the
" nuclear states must be dlfferent in the two cases, Let us now consider the -
Ferm1 tran81ulonsv1n a simple case for whlch CR = CL and DR = DL = 0,

Then on appropriate averaging and summing we gets

Tl [ 91775 ] 2 oo

_— % % *' . -
) y P (W
(QW GS f CV‘ Lg/ Y4 'v+(qe)‘;

. Now (¢g)§ = 3L@Js’and'the projection operator for poSitive enérgies_is/

=

- ? , ‘ o : '
g_'mcx°‘"gf:m'kfd (see Lecture 5, p. 6),

and on taking the sums, we obtain:
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FOOUTNOTES
1 (Cort.) . . ~ N
el o 1 [y Ekremrny
NI Vv 4 oo 4)

- R Zhr p
® - ck+ Am v w
‘ +(CSCV + GVCS ) Tr { 2 DZ,} »

=2, [kKSS-F KVV)-f 2 Re Kgy 9?;)

" Thus wévobtaih the form 1ndicateéo The treatment is similar in the mare generai
.casen‘ Fo}‘pbéitronsy the projection operétor would chénge end the opposite
bsign would occur in the second fermo_ |

In this case, it iévnecessary to discriminate between the‘néutfino spin
’sfateso.vFor:simplicityg let us consider é Fermi‘traﬁsition, with only R_type
‘ heﬁfrinos; These'will'iﬁfroduce a projection operator (1 - ¥ )/2 (see Leco 17)
In édditiong we must introduce 0,5 since P is given in terms of the

expectation value of e Then we must obtain:

x) (-»iﬂ)zr("‘P*F’m"‘))
200 -

o R R
Tr { g (0, *C ) (»—--=2) (c "+ o
L 2

S v

since (miwixz) = j{ o On evaluating the trace, we obtain
L Tz ‘ o : _

R¥ R_R# P

, N o
- - ) -8 = 8
B (Gs O Cv ¢y E Eq LVV)“

whiéh is the indicated form. The othef terms are treated 31m11arlyo

This result is oﬁféined similarly to the preceding, The principal difference
is that the nuclear elements must be considered for their I dependence,
Onvcarrying out the Tr as previdusly for summinngver electron end neutrino

states, we are left with a form for a pure G.T. transition like:
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ZOOTNOTES .
'3 (Cont.) |
’ o 2 #* g % ® ‘ .
£ K, i)]‘,, f\k,va’i f“’a- i) ~
.*’\v(llnto Ve Ep e B ] Ty | ) , -
. . ilp.im :
‘ PICHE S S P
Dok . W “kim
Using the rotational invariance of the system, the result can only depend
' on cos 8, sb_that only (pe)qvmay enter. The sum over kA may be‘readily'i
carried out ﬁsing the genéral,expressions for the metrix elements of a vector
" to.give the desired result.
- . L‘.}'-
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LECTURE_20

The first experiments in Coéo, which is a pure G.T., give the asymmetry.
In 0058, which is mixed, one anticipated seeing the effect of the second term,
but it was not found, presumably because'lMF,<'<\ MGoToJ o In the /?—'Y angular
correlation experiments, however, such a term was observed. In this case, if
€ 1is angle between the momentum of the photon, 3&, and the.electron, 'Bé, and
+1 for right circﬁlar polarized ¥'s

T =
-1 for left circular pqlarized'Y's,

then for electric dipole radiation and allowed f9-decay, we obtain an angular

distribution of the form

1+ ¥cos B
where:
P C
\(= "T E’e' me
e + 1. _€e
(l - b Ee )

and:

' 1 I'+1 2, '
c% = 3 =) % D) 7\;[vle(}‘,']L,l Ly - Loa)

-
+
—
N
+

- Sivl\ MFI o] MGoTol © 2 Re (L, - Ly,)

The second term has been observed in Sc46 at Pasadena. If one assumes the
two component theory, then this relation can be used to get the ratio

| ] /

M .
GoTo‘
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From the polarization experiments, we deduced that

. Re (Lg, = Lyy) = = Re (K + Kia)

We can get a further relation if we invokes

fe

(1) Time reversal: This leads to Kij = real,

and

(2) Lepton conservation: We then obtainl

KAVF = \'KAA"KVV
\|KSS°KTT °

Although all 6f'£hé'¢ohcepts developed up to now are consistent with

g

the experiments, this déés not constitute a proof of their validity.

There are also some strange, heuristic principles which have been
'infrodﬁced, and aithough they are not understood, they seem to work. These
can Bé tracéd back ﬁo a paper of B, Steck and J, H, D, Jensen:v Zs, f;vPhyso
141, 175 (1955), This paper was written before the parity violation was
known, and was based on the lack of Fierz terms in / decay .

Th@:considered the transformations:

b s w0 = v,

e

and introduced the principle that Hint should be invariant. This leads

o

to a vanishing of the Fierz terms, since one can then either have'[%sT,(éﬂ

i

is irrelevangg This principle is not easy to understand, since it is not a

or (V,A) in H-nio’ but not both, K%n overall sign change on transformation

principle of nature. The mass mg is an obstacle since the free particle
equation is not invariant under the W% transformation. This paper anticipated

the }4=decay, since it‘was predicted that /ﬂ = 3/4 or O for this thebryg even
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with parity conservation. The Yang-Lee neutrino was given by invariance

under

alone., This gives the parity violation. When combined with Steck-Jensen,
T . _ o
. - T
this gives lPe. = = qugo
These principles were considered further by Salam, Sekurai, and Feynman
and Gell-Mann,
If we assume invarience under _,XBlP, we find that to obtain non-

zero results:

1+ ¥ 1-7Y
5 5y
( 2 )42 [%’T’%? ( 2 )Q{V
1 + Y

2)Y.

S, T

The first choice is the R-model, and the second, the L-model. Recent experi-
ments seem to pick V,A rather than S,T,P,

Thus, we seem to have:

Hop, = G200 ) v, Y0 + hee.

The sign is difficult. If electromagnetic effects are not considered, the
choice is only a convention, The connection between R,L, and the electric
charge is the question,

That the coupling constants are equal does not follow in this formu-
lation. (See Sakurai) This is not in a universal form., Pauli feels that
we don't understand the transformation because we don‘t understand the source

of the weak interactions,.
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For further work, see:
Feynman and Gell-Mann: VPhys. Rev. 109, 193 (1958).
_ Sekurai:  Nuovo cimento 7, 649 (1958). _ | , 7
Another way of looking at the situation (perhaps equivalent to the first)
begins with the possibility of eliminating 2 components in the Dirac equation
by gqing to a second order equation (see H. A, Kramers: Quantum Mechanics -

German ed. 1938, p. 280, English ed. (ter Haar) 1957, p. 272.)

‘We find that the Dirac equation can be written:
v 2 L R - R
( M 3X/J.) \Pe + m\Pe (A)e

.

. - . R
Then, we find, on elimination:

2 L _ L R
(O - m%) Zmw o+ (0, 52w
O -m lPe A L T
2 R _ ‘ R 2 L
(O - n") tPe =me 4+ (L 9—-;/‘) W, .

Thus, if we assume that the derivative terms vanish, the equations split,

L
and if wh = 0 , only (Pe will be coupleds
e

L

(- nd) LPeL': mw,

There is a remark by Heisenberg which is of interest here., He considers

what a theory might be like if it were truly Ys invariant. Then for all

¥
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fields satisfying

(¥ +m $) =
¥ x,

we would also have fields with

Y -
(3@ 5;;; - n1¢) =0 .,

The real world, however, would only incorporate half of these.

FOOTNOTES
1 These follow from the invariant condition
A = A
ij Akf iq Akj ’
and
L L R R
=hpy =Ay FA; FO0

2

These are readily obtained. From the Dirac equation,

(% 57?‘;4) Yo +mf, = W,

we get the first equations by multiplying by (l'f');)/Z, where

= » and the second is used to

/A

1-, 1+ 7,
R L 27 7%
w_ = 56() ) W = w °
e 2 e e 2 e
4
If the first equation is multiplied by Y. 3o

eliminate the terms in WeR , we gets

2 L

2 L L R
—§~)‘P - m.lPe /(gf}-lu + mw,

which gives the indicated result, since (¥ =2-) (¥ 2-) = [,
M 9?}4 M 3X7A



. .y

e e

UCRL-8213
Lecture 21

UNIVERSITY OF CALIFORNIA

Radiation Laboratory
Berkeley, California

Contract No.. W-7405-eng-48

'

LECTURE ON "CONTINUOUS GROUPS AND REF LECTIONS
- INQUANTUM MECHANICS'" BY W. PAULI

Lecture 21
R. J. Riddell, Jr.

August 8, 1958

Printed for the U. S. . Atomic Energy Commission



UCRL-8213

Lecture 21
LECTURE ON "CONTINUQUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W, PAULI
Notes by R, J, Riddell, Jr.
i Radiation Laboratory
: ' University of California
Berkeley, California -
Spring 1958
/ LECTURE_21
g=meson decays:
For . meson decay, we have several choices:
A) o >e.+ TV + v L have equal leptonic charge.
B) - —e_+ V +7 JM=se_ have opposite lepton charges,

e_,~ are the same - (from £ decay) .
c) f= DO+ V + VvV : No leptonic charge conservation.

The various possible interactions ares

% ((peefiq)#) Ci(q_)ve’ilky) + ci"(w_u@’ib’s \Pv')] + h.c.

As Hint °

Be Mk,

> (Q‘Jee’i%) Eli@_uc&iwv) + Cig(@- j’efim; va)j + h.c.

T o Yy c 1, T c
C: Hy . % Wee'i%) ci(tyvefi%)-:-ci (4’7,9?'54)7/)] + h.c.

It is convenient to introduce the abbreviations:

K., = C.C. + G, 'C, K, . = kos
ij = vivj i%7j ’ iy ~ i
3¢ | B #*
.= C, + . e = p,,
13 Cle Ci CJ g gij SIRET
These are not invariants here.
The computations of: Kinoshita and Sirlins Phys. Rev. 107, 533 (1957)

Bouchiat and Michel: Phys. Rev. 106, 171 (1957)

give the'spectrum for both cases A and B. One finds:
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N(E ) dE = —= mE.p)';j(E'v)”ci;E v“,’
© e 3(em? /ee TTel e T )
where:
o "l m 2
= - 5. - - 2o
p(E) = 3(E, - B) +2f (T B - E, 5 E )
m
+3>?-ﬁ9 (E, -E) ,
e
2 2
m* 4+ m
E :_.&.__._2_9
o
2T
and

p
18

(kgg * kpp') + 40+ k) + bk
)= )
P 3(kw+ kAA + 2kTT)

M= g = k) = 200, = k,)

,o is the famous Michel parameter, If FiS 0, N(E ) disappears at the limit
, e

of the spectrum Eg = Ege

The 2-component models (Case A):

Both models give pure V,A interaction.

LA : ~ R _ !
. : L.g: + G
Lu Ci = Ci or Ci = Ci +' Ci

Thens -

o

int.

(R) R (T R fl .
H % Cy (wee'id/)u) [ (a q)v) Oi(a (p_uil

(L)

int,

=]
]

L Ly L
0 @88 [(aL b) o @)
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R- L . .
where a , a& are R;L projection operators. They satisfy:
Ry - .L L -
a Lp.u_ lk‘/a 9 a LP'U 4’2/& o
We also find that
R R R : L
a @ = 67 a a® =6 a
S,T,P S,T,P ? V;A V,A ’
and similarly for aLBG Thus, in case Ag
s, T, P =0, - ,

and only V, A are not = O, For the R-model: Iﬁj = “kij s while for the

L-models ¢,, =k, £ o Thuss

k -~ k k
Hi:-nt-o % W zre(c A \(5) 4;4) {va YPWV + hece

where K =R or L, From: the Steck - Jensen transformation, if wevreplace

¢ — 7‘%’ and require 1nvar1ance, we find:

R_ +.R L__.L
'CV = < CA and CV = +-CA °

Further, for pure VsA the Michel formula gives

£ 3/4 -
The experiménts give a value slightly less even if radiative corrections are
included, but the disagreement is within the efrorso
Case B, Here, there is definite disagreement with the 2-component model.
Independently of the modelg‘only S,A,P are possible, since
YL(LP ) > (QJ_U)F} = 0. This requires that 09, be skew—symmetric,
Symmetric terms will vanish, This eliminates V,T,
If we also require the R or L model;, only S,P are left,2 and

for them
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C1 =% C;,
where 1i,j = S,P., Then:

==k : R

lg = =y
gij” kij : L

The Steck = Jensen requirement gives further:

R CSL = F CPL .
The two component model, with only S,P, gives = 0 , and so is in disagree=-
ment with the experiments. If we.do not require the model we can say little,
The value, ¢ = 3/4 , was predicted by Steck - Jensen,-and is'iﬁdependent
of thé 2-comﬁonent modelo. |
The asymmetry experiments for IS decay are éiso in géod égreementfwith
the model., If we let © = angle between the spin of the ’/.and momentum of

the ejected electron, the distribution of electrons is given bys:

1t a cos 6
wheres . ' ‘ v ' 5
oo Pe : 4 lme )
ap (E) —KEE: {Eof- E + 285G E ~-E 3 }
E) = 6 Re ﬂSP— 8 Re fVA- 14!TT
5%z - + ’
£) 6(Re’€VA ,VTT),
§ gives the polarization of the/u meson; 0 <'f <1l.:

In Case A for either the R or the L model:
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=5~
-k -
AA.
%:3/49 ;='§ .li.vv___——-r—a-
: r— R
i kTR,
=, Re £y, £, Re kyy
T T f k..t k - Koo + K °
vV AA 'A') AA

The Steck - Jensen condition in addition givess
ﬂ =0 , QE =x1,
In the actual experiments, © is not measured, but rather 8“ , the
angle between the momentum of the /UpiﬁL , and Eé is measured.
The distribution is:
1tae (Eo) cos & .
For Iu+s
a ~ =-1/3 .
The spin of the /Lis not directly measured, so a =%t o' since on the basis
of rotational invariance alone, the forom 7r decay can be polarized either
in the direction of or oppositely to the direction of'/4 . If we believe the
2-component theory, then ] CA l = | CV | is not in disagreement with the

experiment,

FOOTNOTES :

1 This arises from:

[

(Poopb)=(Cb)ed)

4]

- (¥ o e&«ky)
== (O W) ) ey, - ,

2 For example, with the R model, we have:
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2 (Cont.,) 7 .

R . ' _ R
( (¢ ) ®a v, )

(©a'y,) & ',

R R |
(¢, Ca 6a ¥,)
since CaR is skew symmetric, because both C and cxg are,

R o This is true only for S,T,P;

e.a

Thus, for © to contribute, a'®; = 6

A similar discussiqn holds for L.
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LECTURE 22
The Majorana form for the neutrino.

In the Majorana theory:

For the /1—decay, this requires thatl
1 T

CV = CA = CT = CT =0,

For suéh a system, the canonical commutation relations are modified. We have:
‘ > * a0 - (3) (2 _='
{%(xu b @} = s s @3
and using the projection operators k

1=

o

U
-

&

we obtain:

{‘PMR @), LPF*R (2'% - ab(FRl' 3(3) -2
{P: @, ¥

{wj @),

iq/c((z)’ 1) (;C)')} = E 8(3) R~ 3, (not zero)

=
*
=l
By
)
i
©
sl
(v )]
S
[N
L
M

_e
*
=+
[
—=)
g
O

However,
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since: o f
pe=8y =¥,
where:
E=_v40-1 , E=E EE*=1 ,
Also:2

I M

and so we obtain:

I
o
=
=
)
—~
“y
i
Nﬂ

R > . L ?gl
o o® o,y (2

ae, 57 @ -2

In the Majorana theory one cannot obtain an ordinary vector, but only

ot @, dﬁ(wg

=<

-a pseudo-vector:

=1y Vs

Since
"R R L L
Xga. = -8 s Yya = a T
we find for the R~model:
i =i, ¢
& /

while for the L-model

In particularB:
R P A R T
Now:
‘PR* \?R - ljJL (])L*
and ‘
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so that we see that o -is already written as a commutator, as it should be.,

jo = [LPR*’WRJ ”[‘PL* ;lPL] o |

Lepton charge = ¥ Q1/= %()—jodv- 5

Thus:

If we write

we will have the same for electrons:
(lept.) -
‘Qe =% S—X}Pe

[?he sign is not definite. If we choose the minus sign, R carries a minus

o

4)6:} av

charge, while L carries a plus.ch'ax"geo The situéfion is reveréed for the
plus siggﬂ

- The Majorana form plus lepton conservation is‘entirely equivalent to
the two-component theory. There is still the right-left freedo_mo This
situation was stated by Touschek: Nuovo cimento 5, 1281 (l957)§

In g decay; we set:

Qlepto - Qelepto FQ, .
We can get a Majorana theory with no lepton conservation by mixing the R
and L,

We might now ask: What is the gauge group associated with lepton charge
conservation? -

jo< t

If Q, has minus sign: ‘Pe“ =e (g 3 qej‘= e’ Y.,

‘ ) ™ 7 X ffs
If Q has plus sign: ¢e =e" Py 3 l#v = e 4@/0
 These are then the gauge transformations. for lepton charge. - The _75

is needed in the lpv equation, since R and L must be separated:
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L . . R ./ L . s L .
R -] _ 1%
‘P-u —€ LPV LP'I/ e (P'V )
In the /A decay:
A, M= > e + v+ (Corresponds to experiments)
B, Ju- T en + T +Y | .
The gauge groups are given by:
! i ! ix i Tix ¥
Ao d) = eluwe ; Lp - e lp ; w - e 1 5 °

1 i ! -i
B. ¥ =e Y, s %4'= e Q(%L; G,

The transformations are always given by:
' it ix@
d) - e + Q ‘.Pe

~and if « is infinitesmal:

[Q’,vl.l)ej —LPe' ; _ E}, q)e*_] = + \Pe*

RUF] srel s [aw)] TR

The preceding method of writing the current is instructive, since J

is a pseudovector while Jj_, is a vector., This lepton conservation must bring
Je

a parity violation, since the sum of an ordihary and a pseudo quan£ity'is
conserved. This is the case in F_ decay. In the P ﬁeson case the situation
is different since we have two neutrinos and there is cénservation-for H
plus e, and for the 's separately. Thus we can't be sure that P is
violated here,.

Finally, we might mention the ‘1r decay. If we believe in a two-

component theory and lepton conservation, then in the decay

'IT-?/A+7/,
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the M and ¥ have opposite lepton charges, and so for T decay, the neutrino
must be an antiparticle, since the muon is a particle. Experiments of the
asymnetry and polarization of the‘electfons in M deday.taken.togéther indicate
that the /A’ has right handed polarization. We conclude that the 7 is also
right handed in the decay: | o |

Mo ™+ Vo
Sincevthe v in /ﬂ decay seeﬁs to behleft handed there'is no disagreement

with assuming that the neutrinos in -T decay are the same as in ﬁ) decay.

FOOTNOTES

1 This follows from

Eg =C ¢zf = Clby

so that:
(b, &, ¢) = - (b, 0609,
and so CG& must be skew symmetric, thus eliminating V, T; or }%A,

¥ . T. Since 'Wy = 1pbf s all three cases are alike.

5
2 From Lecture 16 (q/R)c = (QJC)L o
Thuss
B = o
Finally:

{¢°<R(?c), 5, 0F) }

R 8(3) (? - '}z')

Rp» L 3
{q{x (%), \I)S (x 1}

- E,ﬁ‘ ab(x

(3)

) (3?"‘ 32'),

(aRE )‘)<

f

~J
since E = E . The other case is similar,
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.- FOOTNOTES

-:Eﬁf?%ﬂ ,§§F3+J”¥

- (P* (aR " aL) 7(4)’5‘(4 (aR + aL') Y

ot e a)) Y5 (@4 M)y

WL L

Rogetyt

oy

Now:

I
<

R R -1 L L % L,
W), b, = (& )xﬁ bp B W) =% (¥ )
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Some further remarks on weak interactions. _ /i

The T decay has been discussed extensively. In principle, we might
haves

(1) T e +V

@) mqout+tv
The former has not been observed, and one has a limit for the rates:

R /Ry < 1070
This is not easy to understand., One can introduce intermediate states for the
decays:
T~ = n AP e + V
T o p+n — Uo + ¥ ’
{3y +

where the first is a strong inteyaction, and the second a weak one. A pseudo-
scalar (P) interaction is ruled out since it gives predominantly (1), while
an axial vector (A) interaction gives (2). Thus A is better, but one still

finds too much of (1). The calculated ratio is:

2 2 2.2 _
——Rl . ‘ me (mTr - me ) ~) . 10“4
R ) m ? (m 2 mz)2 : :
2 s L M

This is larger than the experimental limit.
This difficulty is an open problem. It is not entirely excluded that
there is a direct interaction, 17 MY but probably there would be other

difficulties. The nature of the masses may be involved in solving the problem.
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’ rf2u> A
m, is probably of électroﬁagnetiq nature, and thelmechanical mass may be zero
(non-electromagnetic approXimétiono)o The mass of the M. seems to be partly
non_eiectromagne‘tico It is possible that the difficulty here is related‘to the
difference in the origin of the maséeso' fhere are as yet ﬁnpublished reports
of Feynman, and of Ruderman and Gétto on the problem. |

One must also compare the decays-in |

M —o>e +¥+V

T—=>u + ¥ +V
Again the ratio is less than 10”50 This is also difficult to explain,
J. G. Taylor [Nuovo cimento 6, 1226 (1957ﬂ has found that if the 7 is |

coupled to nucleons by

e g%:g URLA MRS

then the ratio is 107> . The coupling

is disfavored by a larger ratio. Pauli doesn’t believe that perturbation theory
‘is permitted for the first stage bf the intermediate state calculations. Although
the part of the .calculations dependent on the strong intéractionS'drops out in

the ratios, hyperons, for example, could upset the calculations.

Brief remarks on /\ decay.
(See J. J. Sakuréi: Phys. RéQO.;Q§9 491 (1957). ) -
The production of A "s is believed to follow a strong interaction like
T+ PN+ K, | -
while;the decay proceeds via |
AC=p +T
in which.parity is VJ;.olafed° The spin‘of the A is 4, and its isospin is zero.

The angular dependence of the decay {asymmetry) is given by:
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3=

il
| Pl

I(e) v 1+ (P

where
_ 2 Rev(ASAP*)
\As\z+ lAPliz

This is a purely phenomenological formula in which AS and AP are the

v

°

amplitudes of the emitted S and P states for the 4r's. The experiments
give (from Berkeley and Venice conference)
‘ o , -
=<0 > = (0441 011) 0,

where n is a unit vector perpendicular to the plane of productibné

- -5]
2= [;?inc x Ik
= — —=
} [?inc g]' °

Here, the asymmetry is better with gradient coupling. Fof

‘ .—..].-_. 8_23: 0 4 .
Hing = My, 9X t’bp (gv-l— gy YS.) 1%/"4 Ll)A,

one finds

2 2 >
M -M E(E)+ M

s ~2 |2 2 2 :
E(P)+M [ (M -M) 4+ (M + M | .
BB + 1] " - 1) o+ 200 %y

Here, A is given by g, =&.° . For cosA=T1,

%zt 0,89,

A non-gradient coupling,

H = + g
int ~ P LPp(gs % Y5)(e\
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gives
2p7r E (p”) + ME] cos)

{EP(PW) + ij + p'rr

and for cos ) = ¥ 1,

o =t 0,10 .
This disagrees with the experiments. It is'interesting'that the gradient coupling
flts better°
It is very 51gn1flcant that the neutrino does not occnr>here, se that

it cannot be the cause of parity v1olat10n° The orlglnal P v1olat10n observed

was in the K decay. The Dalitz anelysis showed that P was violated there
(Phil, Mago 4_4, 1068 (1953) Rys. Rem.%, 1046 (1954) ). The & and ’U have the

same 11fet1me and mass, and 1dent1fy1ng them we get a parity violatlono

General formalism of the expectation value of two fields.

We will now return to the general theory of the expectation value of
two fields. There'is”en eid probiem ef the connection between spin and statistics:
Integral spin is connected to Bose statistics; half-integral, to Fermi statistics,
The question was treated by fauli in many papere, with the'strese-en free particles.
It is better to consider interacting particles, and this case was taken up again
by Liuders and Zumino. The postulate of" mlcrocausallty was also made in that
field operators at spacelike p031t10ns were assumed to elther commute or anti-
commute, There is one further p01nt,‘ If we permit any arbltrary kind of metric,
then the connection between spin and statistics would not follow° Feynman has
shown that with a very 1ndef1n1te metric, one can have spin . partlcles of Bose
statistics, Thus the positive metric plays a role. To obtain the connection

between spin and statistics, we require:
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(1) Inhomogeneous Lorentz group.
(2) Vacuum is the state of lowest energy.
(3) Microcausality.
(4) Positive definite metric,
In addition, Luders and Zumino postulate:
(5) The vacuum cannot be identically annihilated.

This seems to Paulil a little artificial.
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The lLuders-~Zumino method for the connection between spin and statistics.

As stated previously, we assume:
(1) Lorentz invariance under the inhomogeneous Lorentz group. No reflection
assumption is made,
(2) The vacuum is the state of lowest energy. Then:
(AG) (x)y = F (8),
where F(E) is a function of the positive class. A* is the adjoint field to

A, and €= x- x' . As previously

F(E) = (21T)"3 jdl*k & (ko)‘o(—kok) eik"?
= fd)p(?t) iA+(X;7\)s
where G'(ko) ={) k, <0
1 ko > 0 o

Then F(-¥) = F(%) for spacelike ¥ , and thus

Caams )y = aar(x))

for spacelike \§ . The connection is now essentially derived from a postulate
that microcausality holds.

(3) Microcausality requires either

@  [a6, )] =0

or € spacelike.

®  {am, A*(x“)} > =0



UCRL-8213
Lecture 24
D }

The question is, which one holds? We will show that (a) holds, while (b) leads
to a contradiction.

For hermitian fields (self-adjoint), the proof is simple. For non-
hermitian fields it is not. In thé héfmiti;n\case, (a) holds as a consequence
of (1) and (2) (see Lecture 11). That (b) does not hold follows from the
positive definite character of the metric.

(4) If (a) and (b) both holds
<A(x)'A(x“)2 = 0, for spacelike t-.
In a pbsitive.definite metric, this would require that
A(x)|o>zo0.
This is not allowed under thevLﬁders-Zumino postulate #5. For an indefinite

metric, the proof is not so trivial, and is still an open question,

For a non=hermitian field; we have either

(a) <Ex<x) e (xt)] >y = <E&(x)g A(x'j> [, m] %
(b) < {A(x) A*(x')} > = <@(x), A(x')} > <@*(;), A*{x')}% =0

for spacelike € . This can be carried back to the hermitian case, via:

1]
o

RE e a)
vel (4 -1a)
T Tl U

-where Ay, Az.are hermitian, This is not quite the-same as Luders-Zumino.
They require gauge invariance instead of the additional postulate -about
[},é] and [}*, Ai] . It then follows directly that <iA(X)A(X') ;%-=

= <<h* (x)g*(x“)><D =0, for all § . Then one can use (3) in the original

form.

i
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i
The reason for the Lilders-Zumino argument is that they wanted to consider
the péssibility that Ay‘commutes and A2 comﬁutes, but  A1 and A2 anti-
commute with each other., Liiders showed that a trivial transformation can always
bring oﬁé to the commuting form.

The most interesting point seems to be the entering of the positive

definite metric. Whether it can be eliminated is not known.

Let us now consider spinors. We begin a Majorana field, Now:l

3 0 - =1 g -1
LB @ 5= Bae (P 0 Y, “”%’M%o g (¥

since:

EY* =

in

LPC

where g(¥) is a function of the positive class. We make postulate (4), that

(O (g) 20,

Now we definea2

E(o H)(o)] ><k’<p*(0)]0> kf))\)

ki kgt dky (2m)°

and we f’indz3

4 2 Y Pr @)

11

15
125

+1 g_:@;(xwk(x) >, = %ﬁ- F(-) .

Thus, since F(¥) = F(-¥) for a spacelike ¢ , we see that (b) holds in this
case, (a) and (b) both holding leads to a contradiction with the positive
definite metric, since we would get
i (x) O EbOo
AILPLY 1
In the non-Majorana case, we must either postulate gauge invariance,

so that
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<<P Y, ) > <LP(x) (¥) >, =0,

or make ‘the analogous assumption to the scalar case-above° We then get to the

‘Majorana fields bys

g

I

11

T (W),

<
g

1 C
“V‘E—I(‘wa)o

I1

o FOOTNOTES -
From Lecture 12, we haves '

<3O Ll/’g (x) > = ({3%FI+ 1.67 + Xslf-;%— Fily stI? c'ﬂ

and from Lecture 4:

s !
=

-1
= == CX 0
E A

Thuég for the FI term, we haves

-1
- (CXA%C )Fﬁ
If/u: Ly, we get - 4, while if/u# 4
Tr (CY Y, C 1) Tr(w/r\ff c c""l) =~ Tr (Y cJC“’l)‘
A A 4 4/
~— -
. =-Tr (X;%}() =0

Similarly, we find that all other terms vanish.
See Lecture 12, |

3 We had:

= -1/ ' 0 .—.].:
KARCEAOD S SRS 1-3@,5: g(%)



T
.

3 (Cont.)

Now:

5
FOOTNOTES

- : -1
<‘J78(X”)LPﬁ* (x) >o = <kl’)s(x ) WX(X) >O Eecs

=5, (4L 4,0

Hel

== 2 -
7% g( =%)
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An essentidl point in the preceding development was the requirement
of a positive.definite metric, To illustrate, we will consider some "anormal®
cases of an indefinite metric. For example, we can obtain Bose statistics and
Spin_%gvor Fermi statistics and spin zero. The case of an indefinite metric
has beén frééfed in.an interesting way by Feynman: Phys. Rev. Zé9>749 (1949) .
This is very short. The discussion was shown to be essentially complete by
Pauli: Prog., Theor. Phys. 5, 526 (1950).

We consider first "anormal® scalar fields. For free particles:

A(x) = _\-J;_ Zk\/%—?@' {a(ﬁ) e’ikox + b* (k) eniko}j

{}1 | {bgb*} -1

where:

‘and all other anticommutators are zero., Evidently b* cannot be the hermitian

conjugate to b. Rather, b¥ = = bH , Where bt = hermitian conjugate. The
states will now have norms of oscillating sign, according to the number of

b particles present. 'Yl 'v(m--l)ENb o The vacuum is defined by

a|0> :b’-0> = 0,
<b_‘b*>o=-1e

This last sign is the important one, as it leads to the Fermi statistics.

Thus:
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Now we find for ﬁhe free fields:
{A(x)9 A*(x"? =14 (x = x')
while the commutator is given by the.zll function,
- For non-free fields, we set:  o . )

A (x') > = F(s) .

If we now require microcausality for the anticommutator, it is necessary thats

sinces

M AG) N = - F(s)

<@(X)9 A*(x“)} >o = F(S) - F(fs*)%.{

and this will be zero for spacelike points (s = real.)

It is interesting to decompose A into its self-adjoint parts:

S ' 11
A(x)=v—%~°—(AI+iA) AT = Al
o I : ' *
A*(x) = v%e af -3 AI ) , AT o Il

Let us assume gauge invariance. Then:

From

Thus:

<A(:£5A(x“) % = <A*(x)A*(x“) % =0 .
this follows that

<AI(x)AI(x“) - a ea S=0,
(ol ) + 4 on ) Y= 0

GRS IR RS N =¥

If we now require microcausality, for anticommutators, we get:

<AI(X)AI(XH)>O - <AII(X)AII(X")>O N <AI(x“)AI(x) 5, +<AH(xﬂ)AII(x)‘ /
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3=
= G(s) + G(s) + G(s*) +G(s*) = 0 for ¢ spacelike, where

<:AI(X)AI(X“);>O = G(s) .
I I IT II
Thus,G(s) £ 0, and <:A (x)A (x“);>o = <:A (x)A (x“):>0 =0

for all ¥ . For the cross terms; microcausality gives:
I II II I I IT II I
L - 1 - 1 1
@G D, - AT@EE) D, ~AEA @ )+ ATENE Y

= - F(s) = F(s) + F(s*) + F(s*) = 0 for ¥ spacelike,
This is automatically satisfied.
The relations for gauge invariance are in the liders-Zumino paper, and

they can be satisfied for an indefinite metric; as is seen by the specific example

of Feynman.

The spinor case is quite analogous. For free particless

1 ‘ - r o ik.x
) === = = da@u, &) e
e W % UT F
¥ o T, =ikox
+b, (k) V. (x) e J}
In the "anormal" case, we choose
*o 1

=]

The vacuum is given by:

a I O;} =

8038

*Ejrs br*J =1 .
b|o> =0

<brbr’*2=”,l -

and again the b

states have oscillating norm.

¥*
Again b = =

b
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The commutation relation alone does not lead to the indefinite metric, but we
must include the definition of the vacuum,YSince otherwise we ‘could reverse the
meaning of b and b* as annihilation and creation operators.
Nows _
= 2
sz (Y& -ma

and for free particles, we find:

Normal - N » Anormal

- _ . + . _ . + \
<q\J°<(X)‘Pﬁ,(X')>O z - 1S¢xlg (x - x') —--1»S°<F(x-x)
<:¢’(X')¢ (x) ;> =-1i3 F_ (x - x") = +1i Sxg (x - x')

{“P (x), lJ)(x )} = -1 8(x - x") 4

—
N
11}
]
n
R
o™
)
N—

1~

<[d)<x>¢<x>j D, = - Sug PN JEEELWCEEY
For non-free spinors, we set:
Normal ' v v Anormal
= (90 By 1) > =M-F(s> +6(s) o =¥ F F(s) + )
Fx) g ) > = ¥ 55 Flo) + 0le) =y £ F(s) - G(s)

i

{w (x), b () >, =0 L0, b, )] D, =

where T is spacelike in the last line. We can again separate the fields into
their Majorana parts, with the same results as in the Luders-Zumino paper. In

the anormal case, it is necessary to define charge conjugation with an opposite

signs
-1

$® =P
$e=-cy

*
The latter is necessary since \p is no longer the hermitian conjugate° The

decomposition into Majorana parts is carried out using

pr= g
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e -0 .

One can then easily obtain:
3#
oI 1
P (x) ¢ (x? ;} =0
SR @ g e )

*II II, _
<Y, ORACED S

These are the relations from which one obtains a contradiction with a positive
definite metric. They can be fulfilled with an indefinite metric,
Pauli does not see whether other metrics exist which retain the spin

and statistics connection.
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Generalization of the CPT theorem to higher spins.
The generalization of the CPT theorem to higher spins has a certain
mathematical interest,
We must consider the irreducible representations of 3 dimensional rotations
and of the Lorentz group. The 3D rotations have irreducible representations
of degree 2j + 1, where Jj =0, 4; 1, oo » We must distinguish between

infinitesim]l and finite transformations. The former

In 3D, we have:

EJlQng =17, .

The 4D rotation group splits into the direct product of two 3D groups.
In the 4D case, we have the operatorsl

Ly = = Lyg 1k =1, 2, 35 4o

Liky the angular momentum operator, is a 6-vector., If we define:

M eh(ly™ L)) M= d(lyy - L)

= -1-— + = . .
My = 3yt Ly Ny =Ly L24)

= 1 = A
My e 2(1‘12‘#— L34) Ny = 5Ly, - Lsz,) °

Thens

E/Il,, Mg = 1M, .
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{éig Né] =N, e
e 5

Thus the 4D group is nothing.essehtially new, The principal difference between

i
(@]

~

the Lorentz group and the 4D rotations appeérs‘in the reality conditions,
In 3D or 4D rotations, the J's (or L's) will be hermitian. H
For Lorentsz trarisformationsp the Lik (i, k ='1, 2, 3) will be hermitian,
while L LiA wili be antihermitian, This has the consequence that the
representations of the Lorentz group of finite degree (2j + 1) are non-unitary.
Mﬁe consider the 4D rotations. They’will be characterized by two numbers
(m; n), and the degree of a representation will be (2m +1)(2n +1), We do

not consider reflections. We find the representations:

Iype Degree
Scalar (0,0) 1
Spinor (%,0) and (0,%) v 2

(Space reflections permute m and n)
Vector (},%) 4
Self-dual Tensor (1,0) and (0,1) 3
(The 34 element is, apart from a factor, equal to the 12 element.
I d ~ i ->
In the case of light E +i Hy E = i H correspond to self-=dual
tensors (plane waves) ).
Symmetric tensor, zero spur (1,1) 9
If we consider the multiplication of 2 quantities, we observe that the
direct product is irreducible:
(mls ni) x (m29 n2) = :§;°E n (m,n)
) b
wheres

lmrl_mmzlﬁms(ml+ m,)
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ny - n, 's.nv s(nl + nz)o

If we consider now the 3D subgroup, we see that since the LiA operators
distinguish between M and N ; in the subgroup m and n will be equivalent.
Thus, we will have the irreducible representations in 3D of

[m»n|§j§m+n
aﬁd the m and n will be mixed. The values of j give a distinctioﬁ between
the Fermi and the Bose classes., It is only important that Jj is an integer

or half an odd integer, but not m or n separately. Thus:

11

Fermionss m* n = integer + %
Bosons: m ¥ n = integer.

Pauli found it usefull to divide the representations into two further parts:

Fermions |1 (&) . m=int., n = int. + %
1 (b) m = int. + 4, n = int,
2(a) m = int., n = int,
Boson:
2(p) ‘ m= int. + 4, n = int. + ¥ .

Thus we have 4 classes., It is not essential that we deal with the irreducible
representations.
The multiplication of these classes corresponds to the "4—group" of
mathematics; i.e.
1(2) x 2(b) = 1(b)
and so on,

Now, we‘assign the characters to these classes for the CPT transformation:

2(a) 2(b)
2 = (nl)2m = (ml)2n
+1 =1

’ 1(a) 1(b)
| 2 i (<1)* 4 -1 (<)%
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The factor "i" is introduced in this choicelto allow for the possibility of realityn
conditions on the fields., Such conditions will be of the form: 2
(u (n,m) )* = v (myn).

Reality conditions will then be preserved under the transformations with the .
"i" present. The reality conditions are important, for example, in constructing
a vector from spinors.

If we apply this transformation particularly to the case u'(%,o)* =
u (0,4) , this is equivalent to ' = 1‘75¢)°

In the Feynman case of spinors with Bose quantization, the reality conditions

are abandoned, and the i's do not appear. There, the character is simplys:

(-1)*",
and (m,n)* is not the Hermitian conjugate, but the adjoint to (m,n).
Now the connection between spin and statistics enters. At first glance,
the above relations do not seem to be satisfied for products of fermions. Con=--

sider a product:

T (mn)
k Kk -
and
> =
n s n m = o
k=1 X =1 "k

Then we obtain for the character of the product:

0V 0,

whereas the character as given above should be
. 2n | .
- (-1) (1) N odd (fermion)

(ml)zn' N even (bosoh)
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Thus they don't agree. We have an extra factors

N-1
(-1) N odd,

(mi)N N even.,
\2V v N(N-1)
If N = even = 2V, we have (i) = (1) = (-1)72 , and we get the same-
result for N = odd. Thus, the definition of the character is not true for C-numbers,
but for g-numbers which are quantized according to Fermi statistics for half an
odd integer spins and with Bose statistics for integral spin the definition is

N(N-1)/2
( % factor represents the sign associated with

consistent, since the (-1)
the anticommutation of the fermion fields.

Thus we must add the rule of inversion to the usual multiplication law,
and we must assume that all products are symmetrized or antisymmetrized according
to the Bose or Fermi statistics. Thus, for example, a vector would be constructed

ass

ul('%‘so) ug_(os?ﬁf) = uz(oz%) 111(%“90)

and the transformation would include an extra (-1) because of the inversion,

FOOTNOTES

1 W. Pauli, Phys. Rev. 58, 716 (1940).

2 This follows from the fact that, if u(n,m) transforms according to an operator A

u'(n,m) = Af(n,m; n',m*) uln',m*),

then with a suitable ordering of (n,m), u'(m,n)¥* transforms according to A¥.
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In addition to the field quantities; we also have the coordinates, and
derivatives with respect to coordinates. The transformation laws also hold for

them. Thus:

The transformations which have been 6btained are the ones used for CPT,
It is not essential whether the quantities used are irreducible or néto Thus we
find thét any Lorentz invariant equation will remain invariant under a CPT in-
versional

In the above development we have used the local character of the fields,
If one introduces form factors (non-local interactions)pxthe situation is not
so simple, |

The connection between spin and statistics enters the development with

the symmetrization of products of fields. In the Feynman anormal case with an

indefinite metric CPT also holds, but not in the form given here.

Representation Theory

Let us now consider the representations of the various groups associated
with fieldse: 3D rotation59 homogeneous and inhomogeneous; and Lorentz trans-
formations; This discussion will be a summary of a series of lectures which

were given at CERN,
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We will first consider the infinitesmal transformations. (This means that

the Lie algebra will be involved.) For an n-dimensional rotation group, we

will introduce the operétors which generate the infinitesmal rotations:

= - = _ﬁ,__x_i,_ Au= 1, cooy N
e)# = - e 7() o, X3 ﬂlu n

Then we finds

%W e(’"] B A e I L T T
.The particular relation for the "e" operators is special, buf the commutation
relations aésociated with the Lie ring are general. The latter may of course
be derived using the special choice for e.

In addition to ﬁhe rotations, we may wish to include the inhomogeneous

- group (translations). A particular choice is:

o=

The general commutation relations are then:

Yd) , eﬁﬂ = S)/Adv - 3,4,

[d) , d/:J = o.

- There is always a particular representation in which the d's are zero.
We can define:
= = n°J ° = 4
?#v eTW' i hv 3 dp i ?ﬂ |
The iAW ,ph are then hermitian for a unitary representation of the continuous
group. There is an important theorem due to Lie: From the representations of

the Lie ring, we get the representations of the entire group. For the repre-

sentations, an important concept is that of invariance.



UCRL-8213
Lecture 27

3=
One may take two points of view.
(1) Abstract - The commutator is considered as an abstract product.
(2) The operators, a, are related to matrices, A, in which
a—A
[a,,b]—?AB - BA,
Then we get the Jacobi identity:

[a, {bw]] + [bS, Exsé]j + [cg [a,lﬂ] = 0,

We see that, in the original abstract approach to the Lie ring quantities such as

A2, B, ... are not defined,

An invariant is a quantity which commutes with all elements of the ring,

1

3D rotations.

We set le = J3,ooo

Then:

IJP Jz] =13y, ..

For the homogeneous group,

2 2 2 2
JE = + :
Jl + J2 J3

is an invariant, since it commutes with le J29 and J3°
In the inhomogeneous group, we have the relations:

By a] = [pa32) = w5 o5 [0 5] 200 e
2

The invariants are

P2 P2+P2+P2
I - 3

S5 =

ped = lel-+ p2J2 + ijBO
4D rotations.

We’set:
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Jog =M 5 Iy =My, I =My

o= J _ =
A 1 J42. Nar Y43 3

ey
[}
=

e
1}

(These are not the same as the relations in lecture 26.)

Thens
.2 2
F=%Z.JV ;—%—(l-\)'lz-l-ﬁ)
PV a
G=J,.d__+3 I +J J =HN
41723 42 31 43 12
: - = =
are invariants. The M;N can be decomposed as:
' . -2
=1 +1) T=4 @-1.
Then:s
[gi, Lé] =0
LY Ké] =1 Ky oo

[}1, L;] =il ...
For the Lorentz group, the reality conditions lead to
= -
N —>41i N
Then Nt is hermitian and the invariants are:

F:—%(ﬁzsﬁz) o

1G=gt= (HH),
i
This change in reality conditions leads to the result that the unitary representa- ’
tions of the Lorentz group are of infinite degree.

Finally, we have the inhomogeneous Lorentz group:

N i eoo N N = soo
[Pls ]] 1p09 K_pzs ﬂ [Pls 2~J Q: |
K?O, N;] 1pgs ooe [?O’ NH] Oy oee

1]
i
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The invariants of the inhomogeneous group include:
= - =p2 -,
P=-pp, =p° -3 .
We will introduce

= pJ
Vi Plapt Byt B,

and using a dual notation to define:

) s

Y=o i (v

234° V314" V124° V3:1

wr = =
and
[w/ﬁwvj £0 for u# v
The second invariant is -thuss:
W = w,w = -z v v _
vy 6 kg K p

- J, | .

In the rest system (P > 0),

_’

=0 =4im

p 9 p4

so the first invariant is:
P= mg o

For the second, we haves

s igou3507) = m(3p35 I315 Ip O)

Hences
-> - -3 o
W = im x (Angular momentum in rest system).

and
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~w=ns(s +1), - & = 5(s +1)
where S is the spin, and m # O,
If P = 0, there are two cases:
(a) W=0, Then: w = Ap,, 5 and ) is essentially the spin.
A =% (BJ\Z)

=% 3
P Jo

There are two such répresentations according to the £ ., They correspond to right
and left.

(b) W= 0., W then has continuous eigenvalues. (Wigner.)

FOOTNOTES

1 For a fuller account of the above developments, see:

Niels Bohr and the Development of Physics, W. Pauli, ed., p.30 ff,

2 J2 is no longer an invariant., For example:

{J?., pﬂ = 21 [;;2.13 - J2p3] .
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We give the explicit representations of J, p. We defines
J.tiJ =4 tip = o
1 27 7 Pp Tt PpER

Thens

[JB, J+] :J+‘; [JB, J_j ==dJd_ 3 P+g J_ :233 .
[J;sp__]’-E_,s p+] =203 [39 pj {pyJ] =tp, .

In the homogeneous group (3D),
J2 =3 (j +1) where 3 =0, %, 1, «..
We can choose J3 diagonal. Thens

(m\JB‘im”)=mSmmu -j<2m<j

(m"fg_"m")#o only if m" =m' £ 1 ,
where f dis either J or p. Then one finds:
(3,m) B, | 3, m)

.(j,vm J jym)"‘m
| %] CIRIF)

(3+m)(j -m+ 1) = £, m)P+] j, m=1)

(j’plj)

(j, m iJ+, jom = 1)

(js m)p, [j, m+‘1)

1]

VG -m)(§ +m +1)

R s
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Also:s

(jgm]pﬂj'wkl, m) = (5| p|J+1) VG +n +1G -m +1)
Gsmlp )i+ m-=Glp|i+D) VE-n+2({-n+1) |
(i, m lpml j+l,m+1) =« (j )p) i+ V@ +m+2)(G+m +1)
(3, m| lj=hm):ﬁlﬂj=l)VG+mijml

8

Gmlp | d-Ln-D=-G[p|i-D VG +0Grn-1)

(i, ml Pn|‘j -1, m+1) = (j lp |j - 1) VQj -m)(j -m +1)
(These had already been guessed before quantum mechanics.)

Up to this point, the commutation relations among the J's and between
J's and p's have been used. The relations among the p's were not 9mployedo If
these are also taken into account, we get a complete representation of the in-

homogeneous group. We defines

Gle]s+DG+1|p|d @i+3)i+1)

11

8(3)

Thens

Glpli-DG-1]{p|d) @ +D@-1)=6(G-1

{?<= 1) = d} .

Then one gets, using simple algebra,

i : j - g3 A 12
1. (3, m, EP+ ,p;] ,J, m) = 2m ¢(J+'i; +.f(3) + (3 ’P IJ);{

S22 2 2 541 )
2. | @ =P +P, +P, =¢(j)m+¢(j> 1)

2 2j + 1 i
o 2 .

+|(.J ]p,j) ) i3 +1)
3, TP sc= ( |p]3) 3G +1)

(Pauli has not found these in the literature.)
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Now there are various cases:

@ c=0.  (lp[d=o0 g(3) = #(5 - 1) = const.

2
P

p2

(25 +3)(25 + 1)

|Gle s+ |%=

There is still the question of the range of j. One must prove that the lowest
value of j is zero. If we assume that j 2 jo, where jo # 0, then we get a
contradiction in equation 1, since if jo # 0, lm # O is allowed also, How-
ever, if jo =0, only m= 0 and we cannot conclude that g (-1) # 0.

(b)  The situation is different if C # O. Thens

N 2
~=¢(J)+¢(3+_1)+ _ c _ =0
2 +1 i+ 1)
and s
() =g -1) =¢% (F-—2— )
g(3) - #(; P G 12
SO
C2 2

#(3) + 5 = const. = (B) ,

(3 +1)
as one finds from substituting into the expression for the eigenvalue for p2 o
If we now attempt to obtain the minimum j = jO s we sets
(’ -l)‘:Oo
AS R

Thus:

or:
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Thus as an immediate result of this algebra the angular momentum parallel to
the momentum is quantized. ‘As j — o, @(j) increases monotonically, and so

¢ is not zero for any other j. Vjo can be either an integer or half an odd

integer.

Lorentz grougl

Now we haves .

J =%
Ok i 4k
and:
=G 7.3
( 23% "31° 12)
P4 ‘ Py —> -
TERCRUE SRS .[ﬁi’ Nz] =1,

The invariants ares
F=i (P -1

G = (M.N)

1

The development is again pure algebra., There are again two possibilities.

(1) Principal series.

=32.1-47 G=gv
2F jo 1l =< . G do
V is real, jo =0, 1, 2, ceo
.21 N
or JO =2", 59 000
There is a special case: vjo =0, G=0.

F=-1-F~¢ -1,

A1l representations of the 3D rotations for J > jo are

contained in this series.
(2) Complementary series (or "critical strip" - Pauli) .

G=j,=0

Jo
2F = - 1 + % | 0<x 21,



UCRL-8213
Lecture 28
-5

This representation is not contained in 1 .

The principal series are oscillating and bounded in the group manifold.
The complementary series are not boundgd in the group manifold.

Every function of the group manifold can be expanded in the representation.
There is a theorem due to Weyl:

The Lorentz group is not finite and a complete set is given by only a
part of the unitary representation; one can discard thé other. The principal
series is all that is needed. This only holds for finite transformations, not
for the Lié ring and infinitesmal transformations. The physicist usually obtains
only (1), while the purely algebraic method does not distinguish (1) and (2).

There is a connection with the hydrogen spectrum. In it there is more
degeneracy than in a general central force field. The principle quantum number
defines a set of j's which give the same eigenvalues. The degree Qf degeneracy
is 2n? (spin = 2x). It was shown by Hulthen, Fock, and Bargmann that the com~
mutation relations are the same in the discrete spectrum as in the 4D rotation
group. In the continuous spectrum the equivalence is with the Lorentz group,
although only the (n, n) states are realized in the hydrogen atom. In the

continuous group only case (1) is realized: jo =0, G =0,

FOOTNOTES

1 Gelf and Neumark, Journal of Phys. U.S.S.R. 10, pp. 93-4.





