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Continuous Groups and Reflections in Quantum Theory 

Interesting subjects: 

a. Lorentz gr. 

b. Canonical gr. 

c. Linear Canonical transformations (Symplectic Gr.) 

For (a), the spinors will be interesting, and the more recent appli-

cations concern the neutrinos. Also: 

Majorana spinors 

Charge conjugation - discrete gr. 

Space reflections (parity) - discrete gr. 

We will discuss the 2 x 2 matrices introduced by Gursey. 

Then comes: 

Isotopic spin 

Quantization questions 

Vacuum expectation values 

Weak interactions 

Analytic continuation (Wightman) 

C P T theorem. 

We will use free particles but only as examples, preparatory to the 

the interacting case. 
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Elementary properties of 2 x 2 matrices 

We will have, in general, 

A= 

and now consider: 

Now: 

1 
but~ 

D _ det A = A A 
11 22 

- -1 
A= D A o 

~ 

w =- w, 

A 
12 

2. 
()) = -1, 
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-1 
uJ g:: - (A)o 

Thus the inverse can be specified as .a rational construct of A if D ~ Oo 

2 
Also: 

N 
A(;.)A - DW 

Remark on canonical transforms 

Consider the pairs of variables 

(X ~ X 1 •• o » X ) 
1 2 2n 

and we will treat the linear canon transforms of these variables. 

Define: -I 0 , .. 
0 

0 0 -I 0 
.,(\_ 

... 
= I 0 . , . 

A canonical transform will leave ~ invariant: 

Let: X - X s -i k u 

Then: sn.s = .IL 



-3-

UCRL-8213 
Lecture 1 

.-.J 

(If we had required orthogonality instead, we would omit the ...fL and get S S = L) 

Now considerg 
x.' = X s 
~ K l(i 

i 

yi = YK s 
l(i 

andg 
x sns y = 

Thus the form is invariant. 

If we specialize to n = 1, then the condition is equivalent to D = 1. 

Thus a linear canonical transform is equivalent to a unimodular transform. 

For n ~ 1, D is still necessary, but not sufficient for the canonical form. 

This is clear by taking the det of eqn. det S = det ~. This only proves 

D = ~ 1. The Liouville theorem says D = +1, and it can be proved independent 

of continuity arguments. There is a difference in the orthogonal group 

(reflections). 

S"Qinors 

Let us now introduceg 

o- =G ~) a- ::: G -~) 1 2 

Except for an "i", these are the quaternions. 

0"1 o-2 .... iOj, 0 0 .; 
0"'.2=1 
~ 

The relations are retained under a unitary transform. 

o- = c _:) 3 

Here g W = - i a- • 
2 

In other representations, however, uv is invariant so the relation is only 

specially true. We also 

()"' = (1 0) 
0 

0 1 

introduceg 

and o-
4 

= io-
0 

0"'2= 
4 

-1. 



Other relationsg 

[Note: 

Thusg 

o-lo-2 =~o-o-2 1 

-4-

' 0 0 (I 

a-. J. 
,...... --1 = - v.J(). w J. 

1'-.J - -1 
CY -tJ~ W 

i j_ 

while 

1 
Unitary Transforms. 

= 1, 2~ 3 

U corresponds to the rotation gr. in 3-dimensions •. 

Now consider: 

u (<X) = e 
iO{. o­

i = cos~ + i<t: sin ex. 
J. 

iO<. It'. 
(Expanding e J. and using ~i2 = 1). 

~ u (e><.l) u (~)o Here: 

Thus 

(The 

u (<X + d.. ) 
1 2 

we have the one-dimension rotation group 

connection with coordinates will come in 

about the 

later.) 

i 

icx o-0 -i o<. 0: 
u is of course unitaryg u u+ = e J. e J. 

U+ 0 0 = cos 0< - J. sJ.n o<.·O':: J. 

If we want·to rotate about an arbitrar~ axis~ '!1:4 

U = e 
ico<(£,:t) 

• 0 (? ~) = cos ~ + J. sJ.n ex. n ·cr-

Thusg .. Det U = 1 

since ~.t is invariant on rotations. 5 
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axis. 

::: 1. 

To get Det u 

"' 
1~ we can introduce an arbitrary phase fac~org 

Ui = e 
if u 

Ifg I det u 12 ::: 1 

det u = e i,B 



.. 
•• 
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The most general U is: 

U = e io<(fl·'t) + if 

FOOTNOTES 

,....; -1 

G -:) ell A~) (_: 1. c.JAW = 
Al2 A22 

= c -1) cA~ :ll) = 
0 -A 

22 12 

Butg 

-1 ~11A22-A12~1 All:22-~2A21) VJ AW A= 
0 

tv ell ~2) G -1) CAll 2. AWA = 
A21 A22 0 ~2 

3. We have, as eqns. of motion: 

:) 

(-:22 
21 

- D -

A2l) 
A22 

. 
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-A12) 
All 

Q.E.D. 

=....!\. 
i~ 

' q .... 
~ ~J 8P. 

and: 
i 

dxi = 
dt 

::: .ILK. S"'. fx¥­
~ "~ m 

~ 

~xv • m 
1XQ :: 



.3. (Cant) 

But: 

....... -1 _{\.... = 

• • _[)_,.. 

,..J 

-6-

FOOTNOTES 

s-1 JL -1 5.:..1 

s-1_n_ 5-1 

so: _()_ = s .n. s 

~ ...., )2 )2 (n·ll'- = (n o- + n a- + n o-
x X y Y Z Z 

2 - 2 2 ( .) = n -1- n + n + n_.ny (]" a: + a- CJ'- · + 
X ·Y z x-- ~· 

11 
0 

5o Or: 

=JL. 

0 0 0 ' 
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= 1 

u = 
i sin o< (nx - iny )) 

cos~ - i sin oc:.•n z 

,_ 

• i 
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Connection between the rotation group and Lorentz group with 

transformations of 2 complex variables. 

The Lorentz group is a representation of the unimodular group of 

2 x 2 complex ~atric~s. 

Consider: 

s' 
<X 

= A fo< = complex 

This will be isomorphic to the Lorentz group. Det A = 1. The subgroup 

of unitary transforms: A A~ = A+ A a 1 is isomorphic to the 

)-dimensional rotations. 

The connection is most simply illustrated by considering a null-vector: 

2 t2 0 r - = 
Then we define:1 

X - iy t - z 52 = = 
t + z X+ iy 51 

-g2 * X -t" iy t - z - -- -
51 * t -r z X- iy 

Then: 

ctl*g2 
if 

X- iy = X+ iy: c~ ~ 
1 2 

* * t + z = c~ 5 t- z = c:r2 ~2 1 1 

} 
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Now, we introduce the matrix 

=. (t + z: 

X x_+ iy 

(Note that 5* is treated as a column vector; 5, a row.) 

Evidently: 2 

det X = 0 

which gives 

If-we now let 

~· = 5A 

then 3 

x• = A+- X A, 

UCRL-8213 
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and to.each transform, A, of the !'s we get a transform on the X's. 

The det is invariant if . J det AI = 1, so this corresponds to a Lorentz 

transformation, main-taining J l J
2 

· t
2 = const. We use: 

det X1 = det X • ) det A 12 

~hough X here is a null-vector, the relation is true in any case~ 

We may generalize to a non-zero vector by choosing: 

±Y(_*)')) 
0(. . ~ f 

where the ± choice gives a time-like or a space-like vector. 

Then:4 

Now: 
t = t tr X 



' ' . ) 
. ... ~ 

... __ , 
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so that the Trace-inv. unitarity restriction on A gives the sub-group of 

spatial-rotations. Note that if C > 0, t > 0; C < C, t < o. 

From the definition of X. , we find: 
""? ..., « CX.tS . ft 

1 X ~ "5 cr ~ (where X..<:><p = 2 ~<>< !I) 

k = o, 1, 2, 3. 

0: = 1,. 0. • 
Now, under a Lorentz transform · 

and we readily find': 6 

A (J A'+ 
K - o- 1 LiK (A)' 

(or 1, ... ,4) 

k = 1,.~.,4 

which thus relates A to L7. The transformation preserves the dets. of the ~·s. 

I 

If we now consider: A and the related L (A) as well as B and the 

related L (B) then: 

BA is related to L (B A) = L (B) • L (A). 

this follows from: 

-s" 
I 

A sB A = 5 = 

Where we let B operate and then A. Then we get: 

X 11 = 'A' L (A) = )( L- (B) L (A) = XL (B A). 

Also: 

a-- L (B) L (A) = (B <r B+) Lkj (A) 
i iK, kj K , 

BAa- A"r B,_ 
= j 

Q.E.D. 

So far .• we have proven that: 



-I 
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0 
1 To e·;ery unitary A:~· thera is associated a 3-D rot. 

2° To every unimodular A:~ there is associated a Lorentz 

transform. 

~-'ht.~ relations are not unique, however:~ ~inca by continuous transforms we 

can change 

This leaves the X 9 s unchanged.; 
I< 

Consider a continuous rotation about X :. . 3 

o-
3 

This corresponds 

~1 
I 

= 

and if ()( = -rr 

"5 

where:asg 

1 

=(: _:) s' 
iO< a- -

= e 3 5 

to a rotation by 2D<. Thus: 

io.:. 
(:; 

I 

= 

~2 
i -icx 

~1 :1 = e $2 

- sl I 

~ 52 ·- -'g 
2 

= 2icx 
9 ~2 = ~2 

-2io<. 
.., e x~21 = X 

21 

i(· 

Ltit us now .identify ~ 11 a. 2-component spino:r, -vii th ~ 
~· 

and tp 1Ji th 'S • Then we write: 

The momentum vector is~ 

p t= 

K 

P cr 
K K 

(p9 Pr) 
~_., 

= P•O"- Po·l 

:B\1:.rthe;::', -we -will define: 

(a null-vector) 

(p a- ) qJ _ ¢ x canst~ 
K k 



•.' ,f ... ··oil·' 

- A • 
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Now if: ~ 1 - At 4' (since 4J ,...,~*) , 

then: 8 

¢' = (p I cr ) til I : 
~ l( T 
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In 3-D rotations, A+ = A-1, so that~ and ¢ transform in the same 

way. In the complete Lorentz case, however, they are different. 

We may recall that 

If: ¢ = w~~L (this is just one particular way to construct ¢) 

.Then: 

¢' 
. 9 

s~nce det A = 1. 

FOOTNOTES 

1. Since 

(x -1- iy) (x - iy) (t + z) (t - z) = o. 
* X- iy t - z X- iy S Sl 

= = 2 
t -t z X+ iy X+ iy '51 'g 2* 

or: 
cs-2~1 * c '5 ~ * X - iy = X+ iy = 1 2 

where C is a real constant (normalization) 

Then: 

* 
t - z = ~* (x - iy). = C * 

!>1 52 ~2 

Note that~ if · t > 0 ~ C > 0 and if t < 0 ~ C < 0. 

j 



.__ ... . . 
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FOOTNOTES 

2. 

X=c 

.3. 

·'V + 
=A * ~*'t- A = A X A 

O'(.'t s'lr s'S ~~ o<'lf 'l'b 'Sf 
4. Since the s parts or Y(_ parts have det x = 0, we get: 

UCRL-821.3 
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5. Here~ again~ 5 * is on the right because of its role as a column vector. 

6 • -v I - -e A 0' A+ s* - -e 1'<- -e * 1 
I\. - .::, K - svi::. iK 

k. 

and since L doesn 1 t operate on the s , and: 5 is arbitrary we get the stated 

result. 

7. He can.get~.anoi;her such relation from 

X = I( o- (1 - 2 ~ ) I 
k K k4 

which is evident from the explicit form of X. Now: 

V I 

X. = X a-
K K 

( 1 - 2 '& 114) = A -r X A = A+ X (J (1 - 2 'i) ) A 
" K K k4 
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FOOTNOTES 

7. (Cont.) . 

Thus: X.L cr (l - 2 S ) 
l. ik K K 4 

so: 
L ()" (l - 2 ~ ) 

iK. K 1<4 
A 

L L a- (l - 2 'h ) = A+ c;- L (l - 2 b ) A 
~ k4- i iQ i4 

$ o-,, (l - 2 ~ 
4

) = A-t-o- L (l - 2 S ). A 
Ke ,.. K i i~ · i4 

and finally: 

UCRL-8213 · 
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If we have a 3-D rotation, A-t- = A-1 and the relation is the same as on 

page 3. 

8. We' use X 1X 1 
- XL XL 

i i - j ji K Ki 

- X XL L 
- j K ji ,U 

• • L L = <?; 
ji Ki j K 

9. . The requirement for a Lorentz transform is only the J det A\ = 1. 

However, if det A 'f. 1-, we can always choose A1 = e1¢ A such that 

det A1 = 1. This leaves X unchanged and so only serves to make A 

unique in this 'respect. 
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Now, we will obtain th.e Dirac equation: 

(pko-k) liJ = conpt. ¢ = - m¢ 

(The canst. m has the meaning of a_rest-mass) 

(-p + p.O.) 'lJ • - m ¢ 
0 

so if we also choose: 

(p + p.O.) ¢ = m I.V 
0 

we find: 

UCRL-8213 
Lecture 3 

(Klein-Gordon Equation) 

~n this we have used: 

(-p + p.t) (p + p.O-) = ~p 2-r (p)2 
0 0 0 ' 

which follows from the commutation relations for the ~'s for any vector p:J 

Added remark: 

Here, we have obtained the K.G. equation from the first two equations. 

We could have gone the other way just as well. If electromagnetic fields 

ar.e prese,nt this method is readily generalized. Pauli doesn't see any 

advantage to this approach. Kramers developed it in his 2nd volume of quantum 

theory on Electrons and Radiation. 

To get the coordinate space equation, we will introduce 



.. . . 

Then we have: 

-2-

¢+im'V =o 
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, These equations can be written more symmetrically if we .introduce: 

't'o = a- = 1 
0 

[!ote that "t'1 '7:2 ~ -i 7:3H •• J . 
Then: 

) tjJ = -m ¢ 
·. 

('C' p )¢ = - i ('C' .,.g.. )¢ = -m <p • 
k k k o'~ 

From the relation: 

we see immediately that 

T -1 
o- = tAJ't' w 

k k • 

since det CJ-. = -1 
~ 

i - 1, 2, 3 and det o-
0 

= -+ 1. 

Reflections 

There is a fundamental connection between the two kinds of spinors 

tjJ ' ¢ and reflections in space. We assert that CJJ ~ ¢ , ¢ -t l\J corresponds 
: . 

to a reflection. So far we have only considered a continuous group, but now 

we will consider the discrete group, P (parity)~ 



\;. 

. . 

I 
X. --X. 

J. J. 

x =x 
0 0 

-.3-

i = 1, 2, .3 
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Lecture .3 

From the Dirac equations, it is clear that if 4J ~ ¢ , ·¢ ~ jJ.J and the 

coordinates transform as above, than the equations are invariant. Now: 1 

X' : 

= X (as denoted by Gursey) 

and if: 

x' = Jtx A 

then: 

·· ( -1) I -1 -1 ( + )-1 
X =A X A 

In the subgroup of the pure rotations 

x-l or X all transform alike. 

of" -1 A = A and so we see that X and 

• I d. d. I 11 l The transformatJ.on ljJ = 1J' 1J = -r is invariant with respect to the 

.3-D rotations. 2 Thus, as long as we are dealing with theories which are P 

invariant it is natural to introduce the 4-component spinors as is done by 

Dirac. If the invariance is not present, then it is no longer natural. 

The· Pirac spinors: 

we now introduce: 

= !::>(. 

4 



I .1:.:. ~ • '~ 

so: (o\' ~j J 

0<0 = G . :) = 1 

-4-

= 2\ ij 

• 

The pair of equations are then combined to: 

or: 

(A) 
"\ ljJ -4 ~ 

.!t...= + C)( • -
0
- lJJ + i m A' ljJ = 0 

.;)t a-;-. r- • 
Taking the complex conjugate, we get~ 

(B) 
JlfJ* ~<jJ* ~ * 
"Tt + di' · e><- i m ljJ f = 0 

From (A) and (B) we readily construct: 

~· Jo ~ 
"]T + div j = 0 where 

111 * j
0 

= const. :t: ~ 

~j ( ,_,J*;j rll) = const. 'i" -- 'i" 

UCRL-8213 
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G 
0 
~ 0 if the ljJ 's are c-numbers, but it is not necessary if the ·~ 1 s 

are q-numbers :J 
We can now introduce the Y's: 

~ ~ 
v . ~ J.."'h' o = -J.!O< = -.r 

and then we can write (x =it): 
4 

and if we let:3 

= 4J*)' 
- 4 



·:; ._ 

.. 

then we get: 

Now we see easily that 

and 

-

'lr -
k 

= 0 • 

-5-

~ m = 0. 

UCRL-8213 
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* [_The ~ is more useful for studying the Lore?tz properties, while !p is 

more useful for studying the reality.propertiesj 

Another important matrix is: 

and we can extend the commutation relations as: 

t'(i, '(~ - 2 <(; •• 
l.J 

i = 1, ••• , 5. 

L!he origin of the 1, ••• , 5 is a 5-dimensional theory, and will not be 

discussed here] 

In our representation: 

(1 0) '( = 
5 

0 -1 

Charge conjugation: 

The equations suggest defining: 

* -w!V 

+ w~ * 

/ 



. ··~ 
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Then: 

¢c . c 
0 + J.m!p = 

UCRL-8213· 
Lecture 3 

We will show that in the presence of an electromagnetic field, the change 

will correspond to e -t - e. 

Remark: 

Ma.j or ana spin or:. 

Then: 

* ('t'p )wtp ·-mlp =o. 
k k 

These forms can only hold for non-electromagnetic particles, though m need 

not be zero. The equation is not gauge invariant and so cannot represent 

charged particles. 

FOOINOTES 

1 The relation between X' and x-1 is clear from the cofactors involved. 

2 
It is not surprising that the full Lorentz transformations do not leave 

things invariant since the definition of P on the coordinates is manifestly 

non-covariant. 

3 We choose - * ~ = ~ Y since the anti-commutator of y 1s then reestablishes 
4 

the symmetry between x
1

, x
2

, x
3 

and x
4 

which was lost on complex conjugation. 
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Now, from the Dirac equations we find the relation1 

ajo --t 

Jt + div j = 0 

whereg 

UCRL-8213 
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Though we have used the free particle equations to get the current, the 

latter are considerably more general than that. Pauli also considers that 

postulating the relations from is a justification for the definition 

of the P operation, since theng 
~ ~ 
j' ... - j j u = j 

0 0 

The transformation is still not the most general one, since we could 

also have chosen as well: 

I d! iO( q; = 'f'e 

it>< 
¢u = ¢ e 

where ~ will first be considered as constant, The equations are invariant 

under such a change also. The transformation is a gauge transformation 

and all charged particles allow this change, leaving the equations of motion 

invariant. 2 For neutral particles, the arbitrariness is not so clear, 

since then the transformation is not allowed, Here it would be necessary 

to consid€r the interactions to fix the phase, however, as the free particle 

equations will not suffice. 
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From experience, we believe that baryons (nucleons, hyperons) are conserved. 

In addition, leptonic charge may also be, though the evidence here is less cer= 

tain. Pauli feels that the former and charge conservation are certain. The 

lepton case may be related to a discrete .group rather than a continuous one, 

in which case the conservation would not be _rigorous. 

Charge conjugation (again): 

we' had: 3 ¢c * c * = - uJtp 4> =+w¢ 

Now, in 4-component system, we might write: 

rpc = E lfJ * 

where 

so that: 

= 

' = t/J * 
.3 

Ma.jorana introduced this concept of charge conjugation, and it was later 

generalized by Racah and Kramers. 

Now: With our present choice of C, we would find that it does not 

commute with P ( [P, CJ 'fo) 

it will. Thus we set:4 

¢,p • ill = ~ '1" 

1\Jp = i ¢ 

~ith the old phases, 

For E, we note that 

"""" E = E 

but if we make a different choice of phase 9 

c ¢* \\) = -iw 

= Oo This result is of importance~ 

' 



' <) 
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These properties of E are essential. [Also, here, E+ = E, E2 = 1_:} 

The "essential" features are seen in considering the transformations of E. 

We let: 

g;' = Ui.p, uu = 1 

which can also be considered as change of representation of the '( 1s: 5 

'( ,.. U'( u-1 
k k 

Then we find: 
,.....-

Ea = U E U 

and 

' 
Now: 

Y ::-E-lY E. 
4 4 . 

We would have started with these requirements on E, and then the essential 

properties will come out. The latter relations come from: 

Now: 

since 

( o w) ( o -io-~ ( o w\ 
= ~w o ia-1 oJ ~~ o) 

w 'Aw-l = - w'Aw = A-l (det A) 

wo-
1
w ::: 

.,..../ 
() 

i 

det o- = ~1 , 
i 

-1 
(J = r:r. 

i ~ 



-4-

Thus: 
,....., 

= 0 .. 
J. 

For "6 , we have: 
4 

which proves the result.6 

We might also proceed from: 

tpc = E ~* = c-ltp = - ~c-1 

UCRL-8213 
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~hen, again, E has simpler reality conditions and C, simpler 

transformation properties~ 

Properties of C: 

and' 

If we look at: 

From c, we find: 

~c = C ~ = - \jJC. 

-J 
· C: -C 

y T - -C'f c-1 
k - k 

c, c '(' ' CYO: are 
5 5 k 

C Yk' C¥ are 
ke 

"0 = t (ok~rR - -y t ) . 
kQ. R k 

k = 1, • 0.' 4. 

= c y c-1 

5 

anti-symmetric (6) 

symmetric (10) 

J 



' . 

External Electromagnetic Fields 

Rule: 

A = i A 4 - 0 

Then the equations become: 

-5-

X ;:: i X 
4- 0 

(-~0 + i e A' ¢ - (;. (;;~- i e ~ ¢ + i m ljJ = o 

If we do the same charge conjugation as before, we getg 

We will then find that the equations are invariant if 
i 

e 

UCRL~8213 
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e ~ -e~ or 

AJU ~ -A~. Thus ~e can truly call the transformation charge conjugation. 

FOOTNOTES 

1 

(
_i_ + d- . _Q_~~ i \, + i m ¢ = 0 
i7t 0~1 

* X lp 

X ¢ 

Adding complex conjugate equation~ we get the desired result. 
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2 In fact, this invariance leads directly to charge conservation. 

3 ¢c = \11* 
1 2 

4 We have, 

so 

5 

• .A 
¢ = e~ lf.J 

p 
¢c ,1l il.' 

=-W 1 e 

-* i~ I l\Jc = 0 ¢ e 

(¢p)c i'A c i(~ +-A1
)

1
_,¢* 

:e ~ :e I.A./ 

(¢c)P = -~(~*)P ei~'- = -tAJ~i(A' -~)LJ¢*-

(li,P)C i/,¢C i( ~ +- ~I) ,\)* 
'r :e =-eve 1 

ifl I 
e 

i(A' -..1) -= we · tp* 

Thus, we need: 

y 

k 

2iil 
e = -1 

A' is arbitrary. 

i). 
e 

f = u~ 

0 
'k 

. 
0 • 

+ . = - ~ 

+- 7r 
~ =- 2 

*' tjJ 
* dJ* = u ! 

= u o- ·u-1 

k 

, ' 

) 
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5 (Cant.) 

6 

Now: 

c We want to maintain the Dirac equations for ..p the same as for 'P., 

however, so we would have: 

tp c i = U tjJ c = U E lJJ* 

Thus: 

E' u* = U E 

E' = U E (U~~)-1 = 

Also: 

We could have proceeded by: 

,...., 
U E U 

= u E u . u* Ei- u+ = 1 
·\~ 

1 

ljJ c = E 4J* 

Then~ from the Dirac equation: 

* olJi -- t>\lJ* m y;* 0 -6? . 0 0 y + = ()X4 4 

Ansatz: 

c E tJJ"~ -~~ 
E-1 ~c 

~ = 4J = 
Thus: 

= 0 

and 
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6 (Cont.) 

To make this agree with the ljJ equation, we must have: 

y = E ?f E-l 0' = - E Y E-l 
4 4 

Thus: 
,_, ...., 

: ~1 ~ E 
_, 

- E-1 y "'( If = .E. 
4 4 

Since 
r-J 

satisfy the relations the "f. same commutation as 
1 

E must be unitary. Now: 

-y = E' 1 i-1 o = - 'E ~ 'E-1 

4 4 

0 

0 • 

r-J -1 EE :e>< E = C<E But taking transpose: 

0 0 

If we let <::>< = 1: 1. Then: 

Also 

__,__, ,.._~ ~ ~ ~ 
'¥ E = E Y = 't E so '6 E = ± 't E 

.......... + E = - E, 

~ 

"'(. '0. E = ':t 1(. Y. E 
J 1 J 1 

~ 

'lrj Y4 E :: + oj 2r4 E 

~ 

'lr5 E = + ~ E 
______, 
YJ. 't:5 E = :t ¥ Y E 

j 5 ----'t 5 ° 4 E : + ¥5 '6'4 E 

the 

UCRL-8213 
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y.' 
1 

. 
" 
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For ~ = -1 , we find 10 independent anti-symmetric and 6 symmetric 

matrices. Since this is not possible for 4 x 4 matrices~ ~~- 1. 

If we choose o<. = +1 1 the situation is reversed so 

E = E 

Since: 

(antisymmetric) 

we find 
--.1 

c - - c . 
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·Remark on the signs of the transformations: : 
' 

c ~ 
As we saw, the phase in the · ¢ equation is arbitrary and Pauli 

"' = (0 ·. -1) ., wants to ··go back to ¢c = -en 'ljr*, 'ljrc = en ¢*; VJ 

1· 0 . 

E = ( ~ :) C-l = -T4 E = (: ~) (: :) = (: ~) = 

-----
'lire E·'ljr* 

-1-. w. 'ir*l3 'ir* r 4 = = c 'ljr = = '1-": 

~ 

i 
~ t 13 

~ 
id 13 a: = r4 ' : = r4 ' r = ' :. 

! 

Now, in four-component language, the Dirac equation is: 

1 
'l!r + m 'l!r + i j.l._ • 2 F ik r i r k 'l!r = o 

now 

,v 

•C = c . 

Here, we have added the Pauli term of the "anomalous" ITJB.gnetic moment in the 

1 . 
-~ ·-:.-, -~ ---·~;L-·--2-EI~i-rit~~--have ~----"--- .. · 

\ 

/ 

The Fik are the fields; 

i ~ . F ik . r i r k = 

F 41. = i E1, •••. 

. . . . 1 
The anomalous moment term is: 

, . 
. '.r 



/ 

where: 

Thus we can also;write: 

( 
0 + 

dx 
0 

-34= UCRL-8213 
Lecture 5 

~ ~ l cl .. 'i . + i :'Z . if ? w = o 

In the limit of small velocities, we get an .additional magnetic moment beyond 

the "normal" e.-fl The latter, anomalous part, gives the entire magnetic 

moment for the neutron while the proton.has a large part also. (The correction 

for the electron is very small.) 

More on charge conjugation: 

If ''' ~ ,,,c, then ,,,c ti f' th Di ti '1' if ~ ~ ~ ~ sa s ~es e same rae equa on as ~ 

either ~ e ~ -e l 
l ~ ~ -~ 

or 

[We find' -1 ~ ( ) -E ~ E ; see footnote 1 

In the Majorana theory (two component~:) : 

'ljrc = W 

c Thus, for 'ljr , 'ljr to satisfy the same equation, it is necessary that e = 0 = ~ 
.~----· 

(no electromagnetic interactions) •. This theory has been used to describe the 

neutrinos recently. [we note tnat m = 0 does not follow directly fr.om the 

Majorana theory.] 

( ~ . 



,.\. 

/ . 

··.;, 

We have been using a particular representation of 
I 
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[ These signs disagree with the previous choice for cl, but to get the sign . 

~for r 
5 

right, this choice for cl is necessary. J 
Another representation is that using (Majorana representation 

r 1' r2' r 3 = real ( Sylno) 

r4 ~ pure imaginary (anti-sym.) 

This is not unique. For example, we can perlZJUte the r'.s chosen 

or we might also multiply the r's by -1. 

. .1 2 These Majorana r's may be obtained by a unitary transformation, for examp e: 

u 1 

(: -:) ...:,/ uct -1 
= 12' 

a = u 

and then: 
.-· .. 

(:1 :J 1(0 
:2) (a' 

o\ 
al = ' a2 = ' a:; = a3) -0'2 0 

t3 i (:2 , a2) = ! 
0 

In the Majorana representation, . E = 1; We= w* ; c = Thus in the 

c * abbreviated two-component theory w = w = w . [No change will appear in 

the form of the current.] 

. c' 
The change w -+W corresponds to either the same particle in the 

opposite field or a particle With the opposite charge in the same field. Now 

to give physical meaning to the transformation it will be necessary to have: 



,, 

/ 

= 

' 

~ 
-j 0 
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If the v's are 1ordinary numbers, it is not possible to get a reversal since: 

* * v "' = 
"' "' = 

and the sign has not changed. To continue, it is necessary to introduce the 

"hole" theory or second quantiz!3-tion. 

In the first quantized theory, the charge density is ~ 0 while 

the energy density is not. This is not satisfactory since there will be no 

lowest state, and so we proceed differently in the second quantized theorJ. 

The technique was developed by Jordan and Wigner using the anticommutation 

relations (exclusion principle). [It is certainly necessary to have spinors; 

whether one needs explicit Bose fields also is not yet clear.] 

Second quantization: 

* We introduce a, a where: 

2 * 2 a = (a ) = 0 * * aa +a a= ;L 
! 

* * If we set N= a a; 1- N = a a 

N(l - N) = 0 . (Exclusion principle) 

Then a representation is: 

* ·(ol. a = 
o\ · \ (o

0 

o
1

), 
! ; N = 

o I 
I 

1 - N = (: :) 

I 

* It is interesting to note that there is complete symmetry between a, a • 

Thus the theory is symmetric between N, 1 - N. 

L Notation: Anti commutator 

Commutator 

~A, B \ 

[A, B] 
= A B 

+ B A J 
- B A = A B 

Here·; we have quantized according to the exclusion princip1e since N takes 

only the values 0, 1. 



. •,' 

'., ' 

' . -~ .• 

... 

... 

,'.0 
.,. 
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If we now consider a set of' a'sJ we choose: 

. [a ' a * \ 5 
r- . s rs 

; .! 

1 tar*' '*} l a , a as . = .0 .. r s 
. . 

'·' 

".a:···., con·esponds to absm~pt).on 

. ' 
"a·*" · corresponds to emission since; 

·-,' ,-· 
a 1Jr( • ~ • 1 . o :) 

r r 
E: 1jr (. £,, 0 ... ) , 

r r 

.. . ,.. ·.-... 
a 'II( ' . 0 .. ) = 0' .. 

r r i 

,; 
I '-)(· 

a ~( ·. l' ) ;:: 0 
r r 

. n , 

)(-

a 0 ~: 
,, 

' . .l. .,t •.• ·- -- •' 
r- ,, .. f - ~- -- r. w( r ' ) r \II( r 

) 

,. 

·The 

''.!_, 

,:·and. 

E 's depend ·on the choice of ordering the r.'s, since 
r 

·2 
E 

··. 

1 

ET(N1,.,, ., N r' 

r ·... t Nk 
' .. ) . ( -l)k=l 

... If we chang~ the. ord~~ of the states, the E's will be changed though it would 

only correspond to a unitary transformation. No physical results can depend 

··on the ordering . 
. ·.· 

. ~ 

.. 
We now i.ntroduce the complete se't of eigenfunctions· in a box V: 

1)r (x) := .-l r;. 
p --(V'r=l,2 

1 a/i;) "or(k') ;J(k'x) + br*(l?) v;(k') e-i(k'·x)j 

where~ 

k·x 
-) 

x - mt , (l) ' -

* ( 0~ v) the We have separated \jl' into two parts a, b u, because of double·-

1· •• 

valued nature of CD, 
3 We now have left the two possible spin choices (r:::l, 2) ... 

' 

The u' s and v' s satisfy; .. 
' . ' 

' ~ -~ ~ . . 
.. :· ~. .• '' 

.. · 

. '· 



' .. 

. ; 

:'' 

't·.·. '. 

.·· 

-~. 

·. 
or:. 

·;·-., 

. -~ 

-< 
~,'' 

We cari easily verl:fy 
.. . . -~·· . ~ 

., t-... ~ 
'.: ~ 

l --7 :.--"7 ' 
~a . k 

'4· 
tha·t: 

' 

+ 

0 

o. m ) r( ;~, .. 
I--' + (l) ,y -k, = 

0 r· 

vr(Rl *' , u 6
( _]{) 0'. 

0 

0. 

1jCR'L -8 21 ~­
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.. 
·.·' 

,· 
'• 

I''' 

'· 

,:,· 

· .. while we choose the normalization of the . u' s so thg,t: 

. ' 

'· ... 
'' 

,1 
_,. 

I 1' 

., .. 

. , 
., •' 

·4..' 

2 

·.~ . 

r >:\·*" "'·~ ' u (k) . u ~ ( k) 

v~(k) * · v5 (k) = 

:l. I.· 

0 
rs 

' . 
0 . 
rs 

+ 

·;.,i .. E .: · 
' i ·' ,, .

ri' r_ ·4_' =· ·i 'a .. 
. 'i ·' 

1 
2 

' ' 

., ,. 

- .. ·· 

~im) 
(!), 

.. ' . ' . 
' .. ~ 

,,; 

'-• '• 

-~ 

a 

',•' 

.. ' 

•;i' 

}··. 

'l, ' ' 

•': 

F12•= 

(

l 0 \ 

0 l) 
: .. -

\;, 

· . Foot.note , 2 cont" 

" ~ 

·.·~~: 

"), ... 

: .... <- .r 
.... :_"':;. 

" . ' ~­
\:' t:j 
-·:'> .•. ·. ', 



. ~· 

'~ r 

'! .... 

I·' 

., 

2 ( Cont). 

·'.-.:·· 

_, .. t .. 

'.( 

~~ 

a 

'· 

::: 

'E'1US: 

n., 
.. L 

1 
2-

1 
2 

,.' 

(~: lu 

' 1 (
-~_a· . 

0 

rJ 
-) 

a·. 
·.-J·. 
--~' iv; 

' 0 \ 

-o1J 

0 \ 
\ 

~I 

o I 
'I 

_; ',j 

... . 

lJ \.:: T~. L .. (• ·:~ I 3 
Lc (_ 1 ·,_; t'v ~i 

,. 

' ' 

,,.,: 

('3 
\ 0 

·' •·· 

' '0 '')' 
, ~a·~ ~. 

' ' 

• 4 f. • ·,, • -~ 

a ·\.-
'. 

,. ' 

. ', 

l") 
,L 

0 ) 

J ... 

r' { '"', ' j,,J• r ~ ·, 

... . ~ . 

.·.< 

and we get Pauli's choice by changing the sign of e.ll a's, t3 

'' ~ . 

. .3 : Note that the : · ( *) ' appears on the operator .9.ssoCiated wi. th the negative· 

., :·.·.,frequency~ vrhile that ,.,i thout one goes vr:i.th posii:i ve frequency. •rb.:h; is 

·.! * 
. also true for , l This 1s closely :-elated to the "bole theory·'! of 

· Dira6,. since- a *-is rel.ated to a.nnihilation a.nd . a is 
··' 

related to 

4. 
Proof: 

\ '. . / 

{-.--') _,k· ' +" ,a . 

r( ---') Multiplying L by .v =k), 

.. , 

and 
6. '!' .• 

and. .. adding, 'l>Te· get- i 

·'·. 

•.I.,' 

I' 

r* s · · while, using L for· u , . u .we get nothing of interest; 'but we r.riay choose.: 
,•;. 

r .. ~k' u ~ ,1 and. U·s,,~lr) -.. orthonormB.L f 

. ;;_ .··· 

·,, 

,!; 

',·. r' 

··,·. 

,- . 
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'' 
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·.' 
' 

r,_•. 

•!_,· 

·I,'• 

. " ·.· . 
•' 

. ' ~- ' 

,. 

,I' 
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· .. LECTURE 6 ; -

-'. ~ ,, 
He can :ir.·.trcC.uce projection operators. ( Ca.s::.mi~) via: 

' .. 

··'· 
I. ,( .. 

. .. 

I 1,-f 

.. "'i;-::\ 
P· ~k; PV .. 

= 2: 
r=1,2 

= z 
IY'=l~, 2 

-~ .... 

. r / k\ r( ;:\k * v P ~--~ : v-cr = J .. 
f" 

~- , 
'';:From the· orthogone,li t.y relat.ions ~ ...... , 

'.' ,i' 

_, 

·•. 
' .... . ' -~ 

' · · AJ.so:, 
-., 

.,·I 
. . 

': .. 

,., 

1 + ·~ ·p p + P . 

'. 

= 1 ~ ." 

= 

•' •J. 

·R' 

•! 

·, 
ucm: .... s2i.3 
Lecture 6 .· 

.• or 

~ :' •.:-t •.. , 

'· f 
.-... 

. ' 

., 

•, ,, 

·,' 

'•1. 

.· 
t•} I ., 
I; 

P 1 s ax·e a.lsJ qonstrue:ted ·from v' ~ ·· thPy ·are so1ut.:ions· '""f ~-' ,f .... ' ' . • '- v:' 

'; 

·the· Dirac eqw:rtSoris: 
. ,··,, 

l. 

and ·we can· thus write·~~~ 

·± 1 (a-4 ·-·-. an 

t 
; 

.. 

..o 
'. 

k +, f3 m ± ~L 
... '\• 

. ~ -

Specifi ca.llY', · "re c·8.n also o'bt:~.ln ~ · 

p'"('k.j ur{k~) = 
'.•. ·. 

0 ''a.nd· 

0 

), 

;.• .. 
'· 

. ·. ~ . 

,.,, 

'' . 

·,, ,. • • : ~ ! 

. ;.'• 

. -
'\ 

. ( 

... ,. 

. :, 

,. ' 



' 1 
~ 

j. 
l 

.1 
l 

·'· ,. 
·I 
ti' 
5 
J 
~ 
:~ 
:,, 
''-

,, 
, I , 

l 

.. , 

' 

'' 

'. 

• I 

} 

I "• 

.. ~. ; 
., 

· .. ( 

•:. 

.:, ... 
~ . : 

i. 

' 
'•' 

; .. , ~ 

Remark en ch8.rge C:'2.!1i~~t.ion:_. 
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' -~,' I 

, .. 

:'1;- 'r' Our ·choi'ce of Vy, u giYes a patt.icul.ar connection 'of .·the cbitrge 
... 

, .. conjuga.tiono 
., { .t. c' 

1jr ' = * E '¥ ' 0 

' 
\ _: I .i 

Nowwe 'can choose the v' s as .the; charge'conjuga:tion states 'to the 

•· .' 

.. [Rerei the 

· !ma t1~en ~ 3 

. ·' 

.. ··' 

k c s are · the same. ' ' J 

a. ·r ·b 
- ·.' l' 

a, 
·r 

/ 

. 
\·~ { I 

., 
'i 

: -~·- ; 

. r( ::-+.k.. c 
u ) -

·, 

~. ; 

; .. 

.. _.,,.· 
u 1 s~~ · 

1 'I • 

. ··1.~ 

'co:mnrutators and the vacuum expectation values of free fields 0 we. have~ ... ·.·· · .. 
!_.,, ... ,. fa* a. 1. ( r:' sJ = 0 :;· rs. ''• 

·,, 

'.' 
, while ali others are z'ero" 

,1 ' ' • \ r ~ -·~' ' P 

We.cangenerali~e the use of''these relations by 

. -.. ' 

' I ~. 

'/.considering the. vacuum as the state of lowest energy. Then · a.'l b 'must be'. 

' . · :, considered to be ·. abso.ryticn opera:~ors ~ ., . ~~ . 

-:). 

···' 

.,. 

,., 

;..,, 

Definition of _the vacui:an~ 

a 
r 

I o)_·· 0 .. 
..... : 

• ~, -t • 

1'hus for any se{ · of'. ·ope.ra:tor~ ~ :: · ·--. 
'·o ~~- o 

... *' .a a· .. ., . s ;.· r 
'• •' {)' 

Thus, from the ·anticommutator:. 

(. "\ 't 

,•. 
· .. 

''· 
·' 
. '; .. ' 

'··.-. ' 
:~ . . \. 

~- . . ·-. 

·.; 
·,, .. ·'- ;( . . ,, 

·I ,,,. , ' ',, ' 

' .. 

• =.· :~ 

0 
i~ ' 

'.'<· 

,.-j 

">, • 

·:.-

.',• ... 

·.: 

',_,' 

, .. ' 

·.:· 

• i 

'' '( ... , 

' ,., 

,.· 



.... 

l' ~ 

'' 

' .. : 

.... '. 

' .. ---.. 

·,.;;!· 

'; 

',. 

':··;· 

·.;;, 

We will 
.... ~ 

.I 

~ee 

/. 

., a, 
s 

tbat·then. · I 'o) · 

I o '> 
./ 

.,. 

= 5 
rs· 

·a 
rs 

corre spond.s · to t.he c··ta.te 

Let W3 now d.efi.ne the energy·~·momenturn u.=vector o 

.'' 
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,• 

.} .. 

' ' '., 

.~ .... !' 

·, ·.t .·~ 

, we :~ill mak~ use of' the Heisertberg rule re:lai·,J::cg oper~.tors in a 6=number : 

·theory to those in a. qu·numbe.r theory~ 

* ·w ·p 

· .. Th:i.s rule :tn9Jn::s, e:X:pressions in the :fields !!lore sy.mm8i;r:i.~~ 
I' 

iliiportant · for . the e:'..lrr~:.mt· as -w:Ul be seen o . . :: 

',· ,' 

* 

;·. 

' ' ., ''j 
q=T.!U:rn~,er::<>: '.,· · 

·,, 
~-~. ~ ~; / :, : 

~ : 

~·'i .. 
•' 

,· ' 

., 

·~' ,. 

·f· 

. 5 -~- ) ·' . } '' ' .. 

: ·~ { 
•', 

·, 

r=1.1.2 
[ 

1 ,' * m ·-· (a, a. · 
2 . r r 

1 * + f'b . 'b 
2 ·· r .r 

.- .... 

'' .... 

using the. orthogonality rc-lati.O!l.S :1:P the :J 1.s 9 v'so 

··~ . 

', 

we rind~ 

a. 
r· 

N + 
r .• 

(ol * ·a ··a. 
r r 

f ; .. ' 
jO) 

p 
0 

= 
r.=l,,2 

·.··L: 
. ..,..; 
.k 

'b 
:r :r '' .f. , ·r 

. (_o·l .. br br *· ·r ·o ) 

\.'. 

d' JNpk) ·.C N =nt,·· 
r· lJ. 

lu· .:. · .· .. 
·.:..• 

' f' 

I • 

; ·'·.·· •(•'. 

[Pauli feels that 'the i:nt:fnity ·a,sgo,~ia.'f~d. ·~·dtb' • t.1H:-:"( ;:i). ·ts'' ;a rea.l C:O(: j Btii · 

indicates t.'b .. at the f'ornJB..l:Lsm is :no~ y~,t; ent.irei·~r sat,t·sf'a.ctor.ro ::Tt1e fac-t; th£d; 

t 0 1 . . '1 ~ f .. ' .. . ~ ) "':t''·i :.> --~"t :.~,:u,..,l"''• .. ~·-~-,0 o'r-1' -y'' "'+ ' par ~1c es a.re r.ever E.~~;.:;;;;y:- .ree aces :ecn; g1:ve ·a. ~::.ur ....... ·.1.c~.1. . "·-"·.!':'' ..... ,r ... ,v.l. _ . "' ., 3 

•· .. ,_· 
"·'••·· 

: ~ ... , . 

. I~ ' ... 

•.';: 

'' . 

.. ·' 
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' ' 

,. 

.s. 

.:·. 

. ' 

. ' . i,'• 
" ~: . 

··.·:' 

' .'.: ~ ! . : 

'• 

( 1 .•. •• · __ :. 

'., I > ~ 

either. One begins t.o doubt· all vo.l:um~ · i~tegral:::. J 
For the momentum~ 

'' . ,, 
,I I' F '= 

1 '·_ :···" 

'1 '·* d · · t. ·w.· 
2i - ()x 

·, 
..z .. k 
lt 

{ N +(k) 
( r ' 

*'" ijl' ) ;• 

·,. .. __ 

.; .. 
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I' 

·,, ,,' 

1 { 
·'.I. 

In' this case_. t.he ( .::1) isn't s'.lch a. problem, since we ca.n · sum k twer the 
.: 

{t 

· ~ ;. a.rigles first and then over 
~ 
k In' this ~ilay, the sum is set := ~Now~:· 

··:. 

'. t''•··· 

/' 'J·>·: 
f p ') 

o· 

, I 
.. · ·pk 

J·." 

. p' 
' k <<= 

l 
'i 

J· 

.• 

* • •df ) 
. ' 

. where'' x4' ·- i to 
. ' 4 

, From the ·'coma:rutatic:J. relations~ · 

. .... l N + 
r 

[ 
N-

r ' 
·\· 

:= 

= 

'! ; ' and -'for any· operator; 

·. { 

.< 

'·' ' 

f, 

N +, a *] == r r 
' • r ' • 

]
. = 

' .. 

. ,• 

'* a 
r 

·b 
r 

', ~. 

J. 

we have as a 'general property of the: 'p " 
~ . 'k () 

r:J 
I ' \'~ 

'. 

···v. 
. ,• 

·• 

"'l ~. 

' ' -~ , 

t .· .• .,~~- ~-

f, 

-•'If 

,·~ ;""' 

,_,..,. 

: . . J'f... 

,. . .~:-· 

··'•: 

HereJ ·we'nn.ist restrict; ·f to be a1'1 impli.cit, :f'unct.ioil of~ ~.9 and. eX:plicit . 
. . ', . 5 

function 'of the field operators onlyo . ·, ,· 

,., 
.:.'' 

·.Again using' the H€.dsenberg r:ule( we find~ 
·' !. , .. .i.: 

= . ~ . ·. Cl: ··y k ·~ 
. ' .t. 

; ·.·. 'b 
·and using the ch8.rge conjugation .. ·:' 

' ·~. 

:~-. ,t', 

.Jr 'k··q,. ). 
''-. ·t. 

•' 

". , .. 

I [' , '.' .~ . '? 

..... 

.· . 
'~. . ~' . ' ·t -~ 

,, 

. ll' 

-·~ 
... ~- ' .. 

;, 

' .' 

. ,. 

'' 

·,, 

'.' ~ 



'·, .·. 'J, 

. t 
; ... 

,. \, 

~ '. ·. 

... 

·,·' '' 
.'· 

I ' 

·. 

''· 

'. . '· ' 

· .. ~·· v- 'we 
:. 'k·· .. 

anci·. ,·. 

. c 
J ·-k 

·•' 

[rThis is more: sati.sf'ying than the c .. ;m.imber re.sult"J ·· 
·i 

·,1 

" . 

., 
''· .• .. 

·'Thus. the 

In addition: 

e. 

e L; 

r=1,2 

. , 

1 * .· *· - { 'Ill' ' ·,iri = , w.' <L.r )' 2 '•; '!', • 

a. us describe particJes o:f + ·charge, whi.le' the 
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'., 

' ,. . ~ 

• ~ j 

""·'' 

: t 

. b ~·$ descrl.be 

~- ! . ~ ,. ·.• 

·',_ .. 
'\ 

)r 

'r.' '' 
( ~'·'_. 

'l . r.-.t 

l' •• · 

. ~-·r.: . 

·:~ 

·'• 
. . particles of charge·" 'T'hus \lire have' rea.ched 'our goai of' c:harge· conjuge:tron~· 

. '·- . , ·-·. "' 

•. l.·. 

·.·, 

.·\· 

~ .. ··in '·which the vacuum is the lc.west energy s-:'.;a:te o 'l'liis v.r6u.J.d. not be so si.mple ' • .. 
'J 

Fe;y-nman suggests. th9.t 'we· wov.ld need t6 
.! ·;' 

';.fork with stat~s o:f:' negative probab:i.lity i:f we r.ad chosen commutator&o''' 
.', . 

'. :~ 

. ; ··~ 

1· 
.suppose: 

::\.' 
·Then: 

' ~' < ' ' • 

.... 1 

·., 

...... · 

2 ,. ~· .. 
· Since 

·' 
' ' . ~ . 

"· .. 

and 

, .. , 

P+ _·: · r· (,-+k-l ~·= 
pc a·, ' · 

~ > . 4' ·-1: .. ' ,· 
p .. · f {k). 

Pa . rr . 

" 

FOOTNOI'ES 

1·.··. 
•''·'. ' . . . r(·. o-+, . 

E cruP. k) 

:·,. 
'<I d• 

,. 
, ' 

., 

·'' ': .... 

"' . 
.. ,, 
·t' 

.... 
' . ·· .... ,? .. , 

·' 

:. ~.\ 

. eel ·11 ;+- ~.~:·:r;'~)(2t· .. ;·it '+ t3:·m ±' m} ·=',(k2 .:t- m2 'L m~\.~~-0 
l' 

. . ·• ' . .-

.... 

•· 

( -~· • :'--7 
a n k + 

. • 

:~ . 

•· 
.. 0~ ~ 

~; . 
' . . 

.,_ . ~ ~ ~ ! 

'' 

'· . ~ 

'~ i . . ~ . 

'·' 

,.-. 
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i' 
I 
i 
i 
I 

'· 

);,_., 

,, .,'' 

: '~ ;:_• -""··. 

·."t. • .','··· 

_;· 

'\' ,! 

·' 

' ~· . 

~ ·, ' '. 
. ~l .. 

';''; ~- ._j., 

,, 
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{ a/(lt') ur(k)'e"i koX 

kxJ 
* = E '¥ = 

... 
L. 
-) '·, 
k r=l', 2. 

'l 

l. . '•· 

-~ . / 

(:: 
,•. 

'· f ~r *oc<i<J 
: r ~c :v (k; -i 

.e. 

a. c(k) ur(~)c 
r . , ... + 

Here, we. be.ve used. ·the properties: 

· from which ' 

'. •' ~ ' 

~en, since 

' 
: : ~: 

-y·· E; ~=1. 

+ 

--....1 

+ (3m 

= 
'•, 

~ 1' -) ..; 

= E a E. 

0 

'·· 

i 
e 

,.-; 

·_,JI, 

'·,. 

koxJ 
. l 

• • f' . ~.: i ' 

'· .. :;' 

:':.i 
, .. 

• j·i~ ~>-~>.' ._!' 
. ~ - \ 

~- ;: .'. 

··"but 

-.; .. 

'···· 

so i:f'. 

(d 0' it .= 

the same ,way for ... u~(kJ'C ~ ·: \, 

), /T(~ C 
(l) v kJ. = ·o 

4 . . 
· F'or example~· ,, 

.. ·,, 
. f. 

f'· 

., \ a 
r 
* a :~ 

.r . 

I ' *' . ·'*' ~ 
.a · a ·a.·: a a a . 

r -' .r r <'' . : .. r., r: .. r• , 

'\ 

' ~ ' . 

,· .. , , t. 
_.r •• 

~- ~ ~ ... 
~- ~- ' ' 

I./ .• 

<.:. 

1· ..• 

We. pro'ceea' In 

:.~ ... 

. · .. 
·.·· 

~,,.·:···. 
• •.• ·11}. "\ 2 

0. " ' sin'ce . a . ~ ' '0 .1~ " ; . 

.. =.· 'a-~. . r:. 

~~- ... --.r \.''·· .. 
.'· 

l [ ... 

'· 

·•(' 

t. ~· . 
,I 'l ..-... 

a 
r 

,•' G 

', ::.,[ f 

... : (. 
,,_. 

., 

. .. ~. 

·.· 

:·,. 

.,•,•, , 
t:. 

..:· 

~: . . .,., 

~·~·1. 

'·· 

i' ,· 

..... :· 

.. / i 

..:, 
I' .·r.·r • (' , . .;· ., 

·, 

_.,_. 

.• ~ -l 

:;,. 

..,..· 

., 
'· 
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.5 The relation follows immediately for 1\f, 1\r- e.nd then is readily generalized 

' · .. :·to arbitrary functions. using power' series 0 

:'··. 

. l 
~I. 

:_, But we vill see· -that· 
-.. 

' . 
= =i s(.x ~~) 

., 

-:. 

~-]--· . 
'" 

,~., 

,,_. 

- ··. 

, . ' ~ 
< ." I 

, ... 
,,''l. 

Now, Pk will be inva,riant from the equations of motion so we may choose 

-,' 
. ;!., 

r ~ . -: •I : 

: ~ \ 

•;': 
'I ~~-

the times all to be the sameo Then'we will also see.that~ 

'so:. 

= 

s(3t, o) = 

'•, 

... '("i' ~ 
Y D ~ 1 (XJ 

4- ' ·• 

-..... 

-~· ... ~ . •·'. 

(' 

I--

·.-

. ' 
''· 

'.·I 

1 
i 

.'> 

. ' Also ,for 

- .~ . ' 
. ,.· 
' .. '• f' 

J\ '.· '.- •. 

/" ,\ _:' : .. -~ . 
( I ' ~ ' . t ·, 

,, ~ . ~ . 

* * : 

r "' ~ .: '. 
'' and we' 8{~aif!. find on integrat{ng by parts: 

-·, 
'· ' -~ ' 

<.' >' f· 

. ,.: ' ' '* ·1 'dl!f 
--- i-~-

--~-

J'• • .... 

. '• I ~ 

.. .. ..,. 

-' \' , .. • ... ,_, 

-_, { . 
'\ 

~! ' 

These resul~;·. ~-e .;~~es~a~,-;.:~d;cordtrig --~o .. ;~he _definition. of Pk-':; ·. 
-~ ' .. , .. '1 . ..... i:. .~ \ ', ' 

-~'I '\ ,... • , • _I \ I!> ~ 

a.s the infinitesimal translatio'n'·ge~e-rator;;,since then:·, P .. -must satisfy ___ ·_ 
'' 'l, r I !.'..: f ,; • .... < ,; 

--.such a relation a ,. 
,,) 

.I. 

'·' .... · ... -:-

. i 
,':i 

I'·,.' 

·, ... 

,.:.. 

'' .. · 

. ,~ .. ' 

' ·. . .. ~ :I., 

'·f 
'~ ~ ' ' 
/ .. > '• ,-, 

"11-. ,. 

. ~ . ' 

. .: .... :, . 

'·';.·.· . ' ·~ 

' l ~ • 

·,,. 

.f..'····) .; ·.,, 

'. ~· .. · ... /· .. 
., 

. . • . , ... ,, .. :,· .. 
·, . 

r ',;,-•~ 

., 

,-''' . .. . -~- : 

·,_I 

.. S'. 

··i 
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·• • ',' ProC)f~ 

,, 

,,, 

'"··. •. 

·.'. 

... ''Now:·, 

, ... ' ·~·~J '~, ~,. ; I ,\-'1 ~ '-? 

~·c = c-~- ~· 
M·'/ ,:,_1' 

1 l..,;, 

' . ',! 
t': ,,., 

,\ ',' •,o 

...• -·, .. ·- .)~ .·. '> •. · •. '. l, •.. ,, '· 
~._t: .~ 

so 

* 1Jrc 

. =1 c 

= 

.·· .· 1 <. 
l r. 
r 

••. ,-..,J. 

...... 

,. 

·.\ . ... -
"··. 

. •t ... "'' 
!·· .. 

tl, ,. ·~ ' 

• -~' ~ ~ f ~ :·. ' . 
·' 

y c 
k. 

. ',...! ·,,J 

r c k . 

/· .: ':: :'• .. :·~·:· ther;efor~.: 
.!f •~'·' ~- -t't> 

·- ·.· ... ... 
·,, • ~ 'h· J •• 

,, ,., / :,'· ,,.,Then': 
'";...: 

.~r-. 

': ·~ "· . : ~ . '"' .. 

'· 
·' 

·:..l_, ·, .. ... · 
~ f. 

:!' .. t 
~ .. 

. ' ~ ,~.· , ·: 
'·! .• ·,r 

-··· 
~ .:-·· t > < 

' . ~ .1~ 

·, .•. 

~ " ... 
'.l' '. 

· .. ~ 
. ·. ~. 

' , ·.~ . 

!. 

·:. k 

'· 

= 

r >, 

= c r k 

.; 

i 
2 

·., 

.·· 

·~· . 

·, -~ 

. '.~ . ,.· .. ,, 
1· 

•.· '. 

'!· 

• .... ~ ~ . 

1-il",..-: 

·,·' 

'· 

'FOOTNOTES 
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!' ., .1• 
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·~' 
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) . 
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;,....,; 
c = c 

(. 
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.. =1 ~ 
c . ·r k C· 1Jr:) · 
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f. 
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"Uni:versity of Ca.l.if'orn:Ls. 

Berkeley .. ; Ce.lifm~ia 
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Si)rlng 195B 

·!· 

' ' n 

; -~· ·.~: A.l'lticommu~.:,tor_~~Va.cuurl!._E!Eec~at.io~_Y.a~:_ . 
;' 

. . ~ ., 
He will·now ¢!.efi!le: 

-~ "1 ' 

r/ 
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l: . 

' . ' 

.; 

·· ... ,. 
''t 

!':·· 

,.; i' '·. 
·.·· "'. 

'~'·.· 

l' ,..·, ;· •••• ' 

,•· 

·, ,·' 

-r~ . 

./ 

,, 
,( 

·, ~ 
,1, ( x) ,· 
'I' p~ .. 

;v (x')·'l.· 
(J ' ' •• j 

~i 8 (:X·.~·· x'' ) 
po .. !.' .,.. 

. · ~ ~.' ... 
f t;. 

' .- ;,. · . . i.; 

,· • I" . 

It is· ·~a.sy tq calculat~ ·this . ~Ja;q.tl¥y 
~~~~ -~ ·J·, ;· ;<. 

-.·: , ... 

,:L [T~e ( ~i) i~ ~urely ~on~r~ntione.L} 
',i 

the a.ssumption of free fields.· . . ~~ 

'., 
1 · 1 .

8
)· ..... 

···(S + i 
2' . at3' 

.-,, 

'j\ 

\. 

_ ... :. 

. ' 
·' 

··." J:y .. 
•t ' 

-~-

-.... :.!: 

' ~ .. ~ · .. .• r .. 

',· 
. ~ ·:,•r· ·' r· 

_I'.!., 

:. ~ ,J 

/; i ~ 

: ~ . 

... ··· . 

'I 

·.I 

,;._ 

. (. ~· ( x•\ <V r~-)~· 
. ft' . ' ·a' /0 

. \.~ ~ . -~ ',• \j ~ .l .... /. ''' 

~-- ·, 
. ,'I. ·, 

. ' . ~ . . .: t, .. . 

~· . •' .... 
'· , These' functions -are all functions. of, 

1;: ·:~ 

:r.. = .x' .. on~y ·a.s' a. re'sult 'of tJ1e ·b:va!'ia.ri'qe~': 

·'·· 

' ;· 

.. : 

under the transla:tion group •... Tha:t 'the f.l.irtic~mmuta.to:r ls a)c.:.numbe~ ·:i.s,'a, 
:"' 't 

'\\ 
consequence .. of· the e.ssumption. of T:rce ·pa.rt:I.<;l~s o 

\ ,' Now; since' 
, I ' , .. · :~ ' . ~·,, 1 . : . ~; .. ' • '! 

s '-:.-·as·· :f'tmct1ons or:> ·x a,re gi -Jen L by' • 1jr is'~ 
. "'.' - ~-

'i 
' ~ ,! 

·.·.~~~. 
( 'V -~ ·+ 6 dx· 

,. 
'\ .·r 

('';_ 

·.;···. 

·•.:. 

' ·~. i . ' 

··· .. · .. 
. ~;·_ ~ '~' 

~ ~ • .. 

!• 
• ":I 

. ~ .' 

·,while .-·· ,I .·_ ... / 
•' '~-

•'. '· 

1 ..... ·'' ' . ·~.I 
· ... : ... '·. 

: -~ . 
'r 1/-

·,· 

.i'.· 

,;·· ·. 
. •; -~ '. 

".:. 
·_: -·~-

'' \ '. \ 

.\· .. 

., ., 
' 

'' 

'.' . ;' 

where the indicates i3.n 

t = t'' 
1 

we have: .... 
I.( 

, ·J•'or 

ol I '·~, 
": 

/,' \, . , ........ · . .' 

-~ ., 

. .. 

... ., 

-~' 
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equation, plus the boundary condition, we ma.y readily find: 
' '. 

i [ e i(k'·X - rnt) ' ' -i(it.;t .. ~t) 1 
e . ·. . 

• • I • 

I ' .~ ~-· 

t::.("it, :t)-
.' ' -~ 

. . ~: ' ~~ 

j 
. i_ 

d3k 
i 

,.-? ~' 

.1 k·x 
6(~, t) ·-

(2-rr)3 
e sin ro t , • 

(I) 

We will also define: 

· .. 
, ' · · · .. _ , and we see that: 

·- ·'. 

: ~ •' 

'_t, 

.. ·. 

; 

.• ; •• -1 : 
,. ' ' 

·.,.,··. 

. ' '. '~ 

,.-.... ·' 

. ~- . 
·, 

:. ~- ' 

•, 

' ; . ·. 6(~, t) = a6{"t, -t) 

t 

·. --.:.,· 

·, j. 

. '. 

There are some properties which will play a role later, and which . · 

we will· later generalize •. We may also write: 

< ~i-

1 s d4
k 

1 k·x i !::. . = 
(21t)3 

e:(k ) e 8(k·k + 
0 ., 

whe~e-· 

r: 1 k > 0 . €(k ) 0 
= 

·''·· ; 0 
: 1 k L 0 

0 
·;···· 

If we carry out the integration on k first, we readily 
0 ·:J. 

.. 

agreement with the previous 

\g{ z) o{ f ( z) )d z = 
J . ' 

result. In this we use: 

g(z )·, ... , .. 
y: 0 ' 

Z"o; · jr•( 7o) I · 
' ... · .. 

m2)·· 

see that '6 is'. in 

where f(?o) = 0 •. [The seemingly "hannless" factor 

for a large change in the x-space, and yj.ce~v~rsa~J 

€(k ) in k-space makes 
. 0 •.. 

.· ,· . 

·,;_. 



I ~. 

. ~.-

, . 
• ,..1. ~' 

. \ 

. ' 

··,.·.·· 

. '' 

Similarly: 

1' ·s 4 
1 i k·x 

t:.. =. ~-3 .. d k e 
. '.(2rc) --- · 

2 
+ m). 
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~·· . 

,")"· 

Let. us no~.; consider the combination. t:.1 r;·· 

+ it:., which'occurs ·in tb~ · 

,"" ·' 

..... . ~. ·. 

• ·""I", 

. '. 

'.1 :. 

. vacuum expectati.on ·values: 
.•' 

,· ·;:. 

~- 1 (s1 + i s) 
2 

1 . d 
-· 2·Cr 'dx 

1'' . . ' 4 
6 . t i 6 has important anal::rti.c properties 0. Vle define: 

. :';; 

' 

where: 

; (i· 

2 i 6 
+ = 

2 

·j 4 ' d. k . 2 

(;03 

= 

·If' we consider thE: 3-dimensicnal forms, we get: 

. 1,.· 

2i 6 .+ 
e i k·x -i (.1) t 

e 

k 
0 

k 
0 

' . 

> 0 

L. 0 

~.:~':and, carrying c~ut the ?ngule.r integrations:. 

2i ''+ = (:? ! ' J \;: I ',"" '·, 
•·\· 

'. 
.·~ I • ~ '·; • 

( ""i., 

·,:t 

,I 

0 

=i (J.) t 
sin kr e 

. ' 

' '·; 

···2 ··.' 
+. m .) 

. 0 

., 

' This integral is not properly. defined,· since it is not properly: behe.ved .as 
·.: i . '' \. 

"il' '·One devic~ for deflning,the integral to take the· limit~ 
·"' t • ' 

' l ,.·, .• ••• ~ l : .. . ' 5 .... :. :.. '€ a).' : 
. . · . "o. x_.. e. ·, . dk. 

' ~ . .... ~ ' ·,. . ' '. '· 

Um 
:--." 

€ ~ 0 

\. . 

'· · [We could. also consider the integl-ai as. a. ·contour integral and then choose 

C in. an appropriate way.] 

... i-·' 
t··'. 

. ,I 

! • 

·.·. 
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- •. 

~+ is evidently a ·:functio:::t of only one vs:riabl·:'!.- Thfs is e. consequer:.ce 

' 1 
of the Lorentz inva:ria:-!ceo (6, IS~ a.re imnltiant also •. The · e:(k ) , is;-­

- 0 
- . 

. always invariant for time··1ike points, though it is not for space~1:i.ke. O~!~S ;·) 

We define: 
·-, 

,, . · ...... ' 

2 
s = 

' ' and t~hen; 

2 i ,6,+; 

. -.,. 
= 

2 
r 

1 
" ( 2n ) c. 

m 

4 1( s 

2 
t 

2 
s 

. -
X•X. 

. ,_>£) 
,"'t 

\ kdk 
sin k .J ;-,. s p 

-j k2 
0 + me , 

:''\-

~ ~ 

Hl 
( 1) (i m s) 0 

For· space~like points, we use the Lorentz ~tnvariance a.nd. then for t == o .• 
. 2 
r 

'2 ~--
= .s . , since we ma.y alwa~ys c}+oose a reference~ f·rame in· wh:tch t' = ·0. ,·_For 

. '· 

,, 
.-',.! 

I'<: • 

·' 

., .J· 

·· .. ' 

. ~.~·' 

·, 

:.-,. 

'. 

'·' 

time.,;iike points, the situation is not so simple; We choose: 

spar~e-like 

s . forward light cone 

ba.ckvmrd light; cone, 
' l~-

. -Now, since the integrand contains only positive frequencies, we must cons:!.der 

the integrals.as analytic functions of s (Wightman). This result is more 

'general than the assumption of -free particles. ' l Since !i~ t;l have both 

'- ·positive 'a.l'J.d negative f:tequen~i~sj 'they do. not satisfy the a.nalytidty :z 
' -, 

:r:equirement •. \ !f /\+ were· t~ van:i.nh ·:ro:r. spncc=1Ji~c.'pot~ts .. fox; e.>:ample,· 
. ~ '. 

'the. analyticity requ1res it to .vanish every"Where. 

t ,· ... 
-.;'. 

:-~' 

f ,.' 

·'' 



.-

,. 
. :. 

·.~·- ' 

: ''I .. 

~; .. 

1 

•. 
. . ~ . ' 

...· .. 

"'.;. 

Here,· 

,-, .. 

.:using: 

= 
.. 

1 
\T 

FOOTNOTES 

L. 
r=l,2 

~: E; 
k r'=l,2 

+ ·b *(k' v r(k'~e..;i_.k~:x J [. * (·~, )( ). 
r KJ p ' ·' a.r' k .Yi+o'cr 

r! \ -)(· , j_ k I •X I .J·j ·_ v
0

, (kJ e 

. · .. ,. -{ ~ (it), a 
1 
*(k')} .. = 

-, r . r .. 
... ~~ . ,, ' . . . 

0 ' 
·rr' 

t 
. 

[ar(k~) -· 
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' 

u·ru~) i 'k•X 
e •• . p· ,, 

" : 
' ~t ~--

'· --.· ... , 
u r'(~•)* ~-i-1<'~x'·l 

cr' 

(The i.s -really a Kronecker 5 ,_ since we are using a 

I 

. '~ ...... 
·:_.· 

1 
v 

\ r{k~ · · r(k-)*· i k:(x -~ x' ). '. 
= ~ l: 

r::ol,2 k Lu ,KJ u . .e p ... 0' ' ' . 

~: ' . : .· . r,:;-)..k 
+ V I,KJ p . 

<' 
If' ~-.re no~-i set . t I t., we get: 

t- • . . ~! 

' ~~-. . ~ 

-') ·-~ 

: l 'lip( x), ~i ( x)' ) \. l 
(y4)pa 1: 

i k·x. ) (' -- {o 
J v "' ,• (j k) 

J· 

-{ u r(k) u r(k)* v :r:c-k) ··r k)* ~ . r l.: '+ v ( ... ·k . = 0 0' 

r=l,2 p ·. (J p ; . a. per 
,, 

~ 

This' can only be· done 1.rhen • .t :::: t 1 
• - -~-

'' 

But; .'in a volume, v, ,·'•._ 
I ! 

-·o(3)(x\ 

so: 

'· ,. .. · .. , 

. . 
:·· \v • \ 

'_, .. 
' ~~ ..... 

' ' 

' .. 

... ' 

.·, ... ,. ~ 

t._ 
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' .. ~. 

'I 

' ~- ~ : . 

) . 
-I . -. t / :, . i ~: (X) . 

' ~.. p ' 

·. 
(r. ")-- ._o( ___ 3 >(;t-.-~_:Xn) 
- ~~ po ' '. 

i-' 

,.._. .. ':'. 

.... ;. ~ 

'f ~ ,/ \ .. ~ 
'• ·: -~ . . .. ~ 

; The ·co~cteness relation is 

. ',.,":--~. ',',··:-- ';.,·.,.,; ' .. ·-
··• ' 

+'· p . : ~-
pu 

arid' since -~ 

~ •. I 

so.- ... ,. 
, ~ ~ r 

"' !. 

·I· 

·,. 

p~' 
pa 

from: 

. -· 

= 

' 'd 

dt 

1 
po 

,• 

+ 
' 

·, I, 

... 

·, 

'f'rom which the result follows 

:. 

. l . \, 
<.i 

:~ 
II 
' . 
" 
'·' 

·.t) J' -:m .. ·~ 
' 

.. , 

= 

•' ... 
,. 

·-

·.\.-": !ol.'\ -, 

;. .· 

·~ .. 

. ~ ' 
. ~: .•. 

.. : -· 

' !: . 

o)·. = 0 (from "m"~:>-term) ·: . ' ' ~ 

.. ' 
1· 

.. ' 

From the d:i.fferential equa~ion 
\'· 
,\ .... 

= 

= 

•· 

j. '_~~ 9-"'k 
. Jl ' 

., 
f' j, 

o· \t -•, 
' '" .. 

t··-~ 
-' .. . 
'l-1 

[
,'f' ·(kJ 

+ ' 

-i 
~~---7.----

c~:rt)~w· 

,J 0 
• I' ' ,t . 

. l ~ ' 
quicklyo;; 

. } 

'.f 

e ~i(k~;i +rot) J 
' . 

.. ,. 

. . . ~~~ ~: 

( · ~ .... ) J.koX 
a:.:.1.1J,.}. e. " ~ 

'., 
0 A o ·'· 

... 

· .. 

, .. 
• ! 

< c'' 

':,i 

. ' ~ . 

·' . ' 

-· 

. ' 

, .. 

',. 
~' ·{ "1,· 
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" 
...... i· • 

. '· 
·7 
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·' 
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' "' l ; ·.· 1. .. . ·; . l ' 

S . j_ndeed satisfies see that 
:., 

~(x'')} '\ 
/o 

. -.{ 

'· ... , 
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= 
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We will now define functions of positive class. We will restrict 

the discussion to Lorentz invariant functions. Then: 

= 9(k ) p( =k •k) 
0 

i k•X e 

The 9 insures the presence of only positive frequencies, but F will only 
) 

be Lorentz invariant if 

p(-k·k) = 0 for k•k )> 0. (space-like) 

· ·We have 

where 

2 
m • 

We can obtain F+ from 6 + by introducing a "spectrum" of rest masses. 

ThEm: r dA p(A) il\(x; A). 

0 

[It is important that only m2 appears.] Clearly: 

if F(x) is in the positive class, 

then F(-x) is in the negative class, 

* and F (x) is in the negative class, 

* so F (-x) is in the positive class. 
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Novr, we go back to the problem of the analytic continuation. 'YJe 

have seen that for functions of positive class, the functj_on will be analytic 

under the change: 

t -> t - i 9 ' e >· o , 

since .i k 0 t -i kat - k 0 9 
e ~ e x e 

The integral will then still exist, and hence such functions can be continued 

into the lower half plane. Functions of negative class can be continued 

into the upper half plane, and those of mixed class cannot be continued · 

at all. 

Side remark: We are here reminded of the canonical ensemble, since there 

we als.o have -EjkT e . Thus e 1 
-) -. kT Pauli doesn't know of any deeper 

significance here. The analytic continuation may have physical s~gnificance, 

though he doesn't know what it is. 

The continuation may be done in an invariant -vray: 

where 

( e ·e ) ~ o , (Forward cone), 

and then 

i k.x i k•x + k·8 e ~ e 

Now, ( k • e ) <( 0 , since k. 9 ko 9 0 , and 

In this case, the cano~ical ensemble is extended to a distribution in 

momentum as well as energy. 
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Now, let us consider the analytic continuation. The singular points 

of S and H (l)(s) are those for: 
1 

t = r; t = -r : s = o. 

If we follow t and 

't- ~trut.e-

s, we will obtain the continuation of 6+ • 
.2. 

5- pll:L/1_e_ 

0 

s d 2 2
7 

= y r - t (space-like). 

Near the singularity, we choose 
i9 

t = r - € e , to remain in the lower half 

plane. Then 

2 2 - t2 I'V 2 r 
i9 

s = r ""'-' € e 0 L 9L.1( 

s = \,F e i9/2 

Thus, in the forward light cone s + i Vt
2 2 7 

r For the backward cone 

we find1 

s = . 2 2 ~-, 
- ~ t - r • 

For negative class functions, we take the conjugate definition. For the 

mixed case, we can do nothing. 

Now 

We now wish to apply this analysis to 6 
+ 

2i 6 = 
+ 

' 
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and 

~ 1 - . 
2• 

Jl(z) 
z z 

= 2 2
2 ·2! 

N1 (z) = 2 ( z - log -:rr 2 + 

+ . .. J 
r) J 1(z) 2 

:rrz + 

UCRL-8213 
Lecture 8 

F1 ( z) 

where r is Euler's constant, and F1(z) is an odd function of z. with 

no singularities in the finite z plane. Everything is uniquely defined except 

z for the log 2 term. We find2 

H (l)(z) 
1 

where 

= ( 1 - 4n - ~) i( z) :rr 1 + • 2 
1-

:rr f <fn ~ + 

z = i( 2:rrn + ¢) r e , 0 =: ¢ L2:rr n is an arbitrary 

integer, determined by the Riemann sheet which z is on. 

Thus; the only unknown quantity is n. To determine it, we see that 

if x is space-like, z = ir, so 

Now for space-like surfaces, 6 = 0 and so 

so that n = 0. 

2i 6. 
+ 

1 
= !::!. = pure real, 

Now, in the forward light cone, s = i I s / , and so z = - Is / , 

tJ = :rr • Thus we have 

H (l)(z) 
1 

so3 

2i 6 = + 

+ 

m. 
. { i Jl <m Is I ) 

4:rr 1 s 1 

1 :rr F1(-m I s I )) I s I + -2 

+ Nl(m lsi ) J 
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Similarly, in the backward cone s .... i I s \ , 

m 
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z= lsi, and 

Now we can obtain the D. and ~ by taking the real arid imaginary 

parts of 2i D.+ = ~ + i D.. This must be done with care, since the ~ 
2 s 

singularity must be defined. The D.) s ) will generally occur in integrals 

over s2, and thus we will set: 

t-plane 
2 

s -plane 

7 0 

where we have chosen t in the way that preserves the analyticity of D.+. 

1 Thus, at the pole in the backward light-cone singularity, we get . 2 the 

2 usual integral around the pole. On the other hand, if we integrate s in 

1 the increasing direction, we obtain - 2 , since we integrate clockwise. Thus 

we find 

12 = p ( 12 ) - e:(t)·i 1f B(s2) 
' s s 

where P indicates that a principal value is meant for the integration. 

4 Thus we obtain 

m 
Is I 

2 ~ 0 
s -

[Here, we have obtained the "famous" e ( t). J 
Now, if we go back to the F+(s), we find for the singular parts5 

2 in s : 
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,... .. : ... 

fbts ·5 p( A.) • A. d).., = 2 
1 

+ 2 r p(A)dl>. + 
0 

convergent parts. 
0 s 

If we divide F + into its real and imaginary parts: . 

o<) we find: 6 

4 1C F = 

+ ~ s p(A.)A. d~ + {1( s2)] 
0 

[rn renor.malization theory one assumes that 

oa 

52 
m 

0 

is convergent, .though 

'divergencese 7] 

1 
t-plane 

t = -r + e e-ie 

o ~ e ~ 1( 

2 Since 

00 

~ p(A.)d>.. = c.O , and one then subtracts the 

FOOTNOTES 

2 s -plane 

2 -ito/ 
s ~ 2r ee 



4 

5 

6 

2i D. 
+ 
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FOOTNOTES· 

+ 
1 

I s I 

i 2 -
1( 

1 

l s I 

2i 6+ = ~ H ( l)( ims) 
- '+1tS 1 

r-J ~ (- 2i e( t) 5( s2
)) • 

riD. p(l.) i Ll+(x; 1.) 

c::.o 

= J iD. p(l.) [- &'s H1 (l)(ims)] 

But: 

= 

UCRL-8213 
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1 2 
41( 2 

1tS 

H (l)(ims) = 
1 ( 

2 ism 2 ) i - log s x -
2 

- . + regular parts 
1t 1t~ ms 

so 

2 (m = A.) • 

1 sl2 J log s + 
4

1t2 

This comes immediately on expanding J 1 in the expression for t:., and then 

using the linearity of the relation between 6+ and F+. 

7 See, for example, H. Lehmann, Nuovo Cimento 11, 342 (1954). 
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Now, we have seen that 

= 

= 
1 

- 5iS 

oa 

i k•x e 

5 p(A) F Hl(l) (i ~ 
0 

s)dA 
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There is a possible generalization of this form if we allow an indefinite 

metric. There could be a complex value of the mass and the analyticity would 

( '\2 __ m2) be preserved. ,.. 

k = m K 
fJ. fJ. 

We may set: 

K K = ~ 1 
fJ. fJ. 

where K has the ordinary reality properties. We may add a finite number 
ll 

of terms of this type and still preserve the analyticity th~orem of Wightman, 

since H1(l) is an analytic function of m. If we have a specific F+, 

we have terms added of the form 

F +(s) = - ; { A(m) &is H1 ( l) ( ims) + B(m) a::: HPJ ( ir/s)} 

* If F+ has a reality condition, we may find B =A , though in general this 

1 would not be necessary. 
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Let us now go back to the case of free particles. We recall that 

-where 

Now we wish to consider two kinds of operations: Charge conjugation and 

reflections. 
I 

Charge conjugation: 

Now 

-c w = c 'It 

and + c c = 1, From these relations we find that 

and 

(*t' G(x') *a c(x) >o = ( *t'(x') *a(x) >o 
. . 

These follow from the properties of the C and s: 2 

These relations may be generalized to the case of a mass spectrum as: 

<va(x) if~(x') ) 0 " - { (r ~ )all F( s) + Ball G(s)} 

/: 0 * * "'*t'(x') wa(x) )
0 

= (r 'dx )at3 F(s ) + Bat' G(s ) 
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Here s appears as the variable in the second equation, since as a function 

of x- x', the function is of negative class. Thus, for the analytic 

* continuation to apply, s rather than s appears. Here, even with this 

generalization of the commutation relations, the charge conjugation invariance 

holds. The minus sign in the first relation is conventional. In general 

there will be no relation 'between (va(x) f~(x') >o and <i~(x') '~'a(x) )
0

, 

but here the relation is so chosen that charge conjugation invariance occurs.3 

There is a reality condition on F(s), G(s), which requires that they be 

real, for real s. 4 

Strong reflections: (Equivalent to C P T). 

We now go back to the case of a single free spinor field, of mass m. 

We define the strong reflections so that 

x' = 
I 

j J.l.(x) = ... j (-x) 
J.l. 

[under P, the space components of jJ.l. change sign, and so do they under 

T. Thus P T gives no change, while C changes the sign~] 

We will now set: 

'If' (x) = 

i•(x) = -ia -c ) ... e v -x r 
5 

The value of a cannot be determined in a gauge .invariant theory. This is 

very similar to the usual space reflections. 

[In the Majorana theory: 

a :::: :n: 
2 since 

We have a further rule to be considered. We have 

.J 



j (x) 
J.l. 
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i - ..-..J -= - ( t r t - t r t) 
2 J.l. J.l. 
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The above transformation in t will only be correct if we add a third 

operational rule for computations. 

Inversion 

() i( tA.J- -
jJJ.' x = 2 t' rJJ. t' - t' rJ.l. t') = - j (..-x) 

J.l.. 

where we have changed the order of the factors, or we read.from right to 
. ' 

left in the operations. The reason for this inversion is evident already 

in the .equations of motion: 

The total E must not change 

E > E vac. Thus: 

of 
= - dx 

J.l. 

sign (and hence 

p I = p 
J.l. J.l. 

from Lorentz invariance. Thus 

i [ PJ.l., = of' 
= dx 

J.l. 

Thus 

¥ must be invariant) because 

This can be brought about by the change of order. 

Let us consider the effect of this transformation on the vacuum 

expectation value of the product of two free field operators. According· 

to the above prescription: 
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:::; '"' (r5)(l(l 1 < *~I("'X 1 ) 'ljr(li(-X) >o (r5>~~~ 
= - .! [ r (s

1 
- i s) r ] (x' - x) 

2 5 5 a~ 

But: 

r5 s1(-x) r5 = s
1
(x) 

r
5 

S(mx) r
5 

= - S(x) 

since the r
5
's change the sign of the r term in the relation between 

s, !:::. and the (~x) changes it again. Further .6(x) is odd in x, and 

L1_ is even. Thus 

1 1 = - 2 (s . + is)~ (x ~ x') 

Thus all of the functions (anti commutators, etc.) are invariant under the 

C P T transformation. 

FOOTNOTES 
1 

References to this general question of analyticity: 

A. S. Wightman, Phys. Rev. 1£!, 860 (1956); 
Wightman and Hall, Kgl. Danske Vidensk 31, 5 ( 1957). 

2 We have 

l.,:'fac(x) W~c(x') >o = - c~t3' (Wa,(x) "'a'(x') >o ca'a ... l 

== .. C~t3' ~ (r d~' - m)t3'a' (!:::.
1 

- i t:::.)(x' .. x)Ca'a-l 

= ... l (r ~ - m'. (t:::.1 + i t:::.)(x ... x') 2 . ox 1~ 

1 1 = m 2 (s + is)~ (x- x') 
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2 (Cont.) 

and similarly for < *~c(x') ~ac(x) )>0 • Here, we have used the fact 

that 61 is even in (x- X1
) and 6 is odd. 

3 We see that 

C f (r d ) F(s*(x' .. x~.',) + o a('c:•.t,x•-x)'):l. c -l = - ~~ I di' ~ I (t t f-i t (X I . . ) (X I ('t 

But s(x 1 
.. x) := s*(x - x' ), since I s(x' - x) [ = I s(x - x') I and 

the only changes necessary are to change the future cone into the past 

in going from X 1 
• x to x- x'. Thus 

. (V~ 0 (x) V<x•) )o = - { (: tx )all F(s) + Ball G( s)} 

Note here that we assume r, t are real. 

Q.E.D. 

4 There is a reality condition on F, G. We have: 

In general, ~* will be the "adjoint" of ~' and we will have . . 

Thus, here: 



-' ' r ' r\ 

; 
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FOOTNOTES 

4 (Cont.) 

But, since x1, x2, x
3 

are real and' x4 is pure imaginary: 

= - t (y._9_ ) 
ox* (3a 

F(s*) + 8(3a G(s*)J 

= - (y.dx )~ 1 0 * F(s*) + Batl G(s*) J 

so 

F*(s) = F(s*) and G*(s) = G(s*) 

UCRL-8213 
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1 Now we consider the state vectors rather than the operators. We bear in 

mind that in constructing expectation values we have to deal with two kinds of 

state vectors, one which appears on the right and one, on the left, Thus we have: 

In the case of a positive definite metric, we choose ~* as the conjugate complex 

of i· More generally, it will represent the adjoint, 

Now, 1f ~ is the unit operator, &";: 1 

To compute expectation values, it is necessary to have a connection between the 

bras and the kets, though the eigenvalue problem can be solved independently of 

the corr~spondence. At this point, the bras and kets can be considered as completely 

different types of objects, Now, with Schwinger, we assume that they are in fact 

objects of the same type and that the same vector can be either a bra or a ket, 

* The ket vector that is identical to bra vector ~a may be denoted by 

* w_ 
b -- ( 10 .1) 

Assuming further that the order of the vectors in a scalar product is not significant 

we have 

<alb>= <."bJS:) 
We next define the "transposed operator," ~, by 



Then one easily obtains the relations 

and 

T (A B) · = 
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(10.2) 

(10. 3) 

* If we have a metric preserving transformation then U U = 1. In the general 

* * case of an indefinite metric, we still write U U = 1, but U is now meant to be 

the adjoint (rather than conjugate) and U is not unitary, but rather "pseudo-

unitary. " Then if we have: 

= u w a 

and if; 

q' = u eJ u 

the expectation values will be preserved: 

* ' sJ' fa 

I * 
fa 

* 

I * 
W a = ~ a (/ 'Ea 

ill* u * 
a 

It is possible to combine a metric preserving transformation with the transposition 

operation. That is, we may generalize the relation (10.1) by setting: 

* j_ t_ 
a a 

Then if we require: 

we find; 

f!l - u* ~. u 

and; 
A B = B A 

We have here defined a transposition operation which will be used in the definition 
of time reversal. This will avoid complex conjugation. 
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Remark: Wign.er introduced the concept of "anti-linear operator" to discuss time 

reversal. 

Anti-linear operator: 

Let us now return to the strong reflections. (The CPT inversion is 

identical to strong reflections.] 

One must always include the bra ~ket inversion in some form to get the 

time reversal, T. For CPT inversion, we have taken~ 

w'(x) = e~ r5 t(-x) 

and: 
i 

j (x) = -j (=x) 
IJ. IJ. 

In charge conjugation, 

- -1 -t c 

c t = -t c 

We want to require that CPT have the same form for charge conjugated quantities, 

so that 

t'c(x) = e~ r5 wc(-x) 

Then we find
2 a = ~· Thus we have fixed a. 

Thus we find: 

w' ( x) = i r 
5 

t(-x), 

(eia = i) 

We wish to consider now other classes of fields; specifically, we want to show 

that the transformation of quantities under CPT is already known from the continuous 

Lorentz transformation properties. 
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We have used certain assumptions in the development: 

1. The vacuum is the state of lowest energy. 

2. Spinors satisfy anticommutation relations. 

3. The theory is local in character. [The current is a local quantity. 

The momentum, P , is not local, and behaves differently.] 
J.L 

Let us consider, for instance9 a quantity like: 

where 

R(x) :; ~(t(x) ~ ¢(x) = ¢(x) ~ t(x)) 

w)l ¢ transform in the sa.me way. 

If: 

e' = rJ.L or r!J. r 5 

fY = 1 or r5 

ef. 1 
rJ.L) = 2 (rJ.L ry~ - ~ 

Now, if we introduce: 

W1 (X) = i r 
5 

w( ~x); 

¢u(x) = i r 5 ¢(=x); 

R =vector (V) axial vector(A) 

R = scalar (s), or pseudoscalar (P) 

R = antisymmetric tensor (T). 

~'(x) = i i(=x)r
5 

, 

¢'(x) = i ~(-x) r 5 ; 

and we take the inversion into account in computing R'(x); that is: 

R'(x) = ~(¢'(x) Oiv'(x) = 'ir'(x) ~¢'(x)) 
' 

then we find the rules for CPT inversion: 

(v, A) 
9 

(x) = ... (v, A) (-x) 

(s, P) 
i 

(x) = +(S, P) (=x) 

T' (x) = +T( =X) 

This is in accord with the behavior of the current or a coordinate, 



~5-

For the energy-momentum vector, however: 

p 
jJ. ' 
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so that P has the properties of part of a tensor under CPT. A scalar can be 
jJ. 

made from T Y -.) = S • 

The theorem of CPT invariance was first formulated in a clear way by 

Luders. 

NOTE: .. Pauli's Rule of Transposition and CPT 

(1) In order to understand Pauli's prescription let us first consider 

time reversal in ordinary (first quantized) quantum mechanics. We suppose that 

the operators q(t) and p(t) represent a possible solution to the equations 

of motion. That is, 

where 

[H(p(t), q(t); t), q(t) J 

[ H(p(t), q(t); t), p(t)] 

= 

= 

-i dg,( t ~ 
dt 

-i d]2(t~ dt 

In classical mechanics the "time reversed" physical process is defined by the 

equations: 

q'(t) = q( .. t) p'(t) = -p(-t) 0 

For a large class of hamiltonians this "time reversed'' process will also be a 

solution of the equations of motion. 

In quantum mechanics, the operators defined by the above equations do not 

obey the commutation relations. However it is easily verified that these relations 
\ 

are satisfied by 
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~(t) = 
T 

q (=t) = 
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T 
-p (-t) 

where here, as throughout, aT represents the transpose of ~. 

We may now inquire whether these transformed operators are also solutions 

to the (original) equations of motiono If one takes the transpose of the original 

equations of motion for q(t) and p(t) and replaces the dummy variable t by 

( -t) it.en one obtains 

= 
T 

i dq ( -t) 
dt 

- T 
= [H(p( ~t), q( -t); =t), q( -t)] 

l 

The introduction of the new variables gives 

= 
d~ (t) 

~i -~d:a::t-

The corresponding equation for pt(t) is obtained in the same way. [A superscript 

"tr" on an operator fd( £ , TJ ) means the order of the operators £ and TJ are 

to be inverted, but that these operators are not transposed; i.e., ~£, TJ)T _ 

These equations show that if 

tr( H -p, q, -t) 

then the transformed operators Pt(t) and ~(t) will satisfy the original 

equations of motion. [rt might be remarked that for the Hermitian operators 

p and q the transpose and complex conjugate operators are identical so that 

one could have used complex conjugation instead .. of transposition in this case ·J 
(2) The operation of transposing an operator is somewhat subtle. To 

examine the properties of this operation, we follow .Wigner who introduces the 

(antilinear) operator K which is required to satisfy the relations 



(Ka/Kb) = 

K ~a I a> + t3 I b} = 

K2 = 1 • 
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<a / b)* 

* I K a> + a * 
t3 \Kb) 
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The complex conjugate of an operator A, is defined as Ak K A K. One will 

observe that 

and 

( K a / Ak I K b) = \ K a J K A / b) = (a \A I b >* 

The transpose of an operator is defined as the complex conjugate of the adjoint: 

AT *k * = A = KA K 

[An equivalent form is AT= (Ak)*.J We see that 

(A B)T = [(A B)* Jk = (B* A*)k = BT AT 

and 

* (A a / b ) = 

These two properties of the transposed operator are those given in Eq. (10.2) and 

(10.3) of the text. One additional property we state as Lemma I: 

If ( c I A / c ) = ( K c I B I K c ) for all c, then 

<a jA/ b> = \Kbj Bj Ka> 

for all a and b. The proof is obtained by considering for a fixed a and b 

all c of the form / c) - a / a> + t3 I b). This lemma allows one to deduce 

from the form of a transformation of expectation values the form of the corresponding 

transformation on matrix elements. 
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In order to calculate expectation values in a new or transformed system 

it is necessary to know not only the new operators but al~o the new state vectors. 

The transformation of the operators given above must be coupled with the transQ 

formation of the state vectors to their complex conjugates. Thus if a certain 

measurement on the original system gives an expectation value of 

< e'(t) > = ~a / &(p(t), q(t)) I a) , 

then the expectation value of this measurement on the transformed system is given 

by 

< e-(t) >' = 

One readily verifies that 

i < q(t) 1 = (q( ... t)) 

and 

in accordance with the classical equations. 

It should be noticed that the operator K is not uniquely defined by 

Wigner's three conditions. A particular operator, K, will be selected if, in 

addition to Wigner' s conditions, we require for all of' the vectors j i ) of 

some complete orthogonal set the relationship } K i ) = I i>· The operator K 

is then defined by 

In this "real" representation the matrices representing A, Ak, and AT satisfy 

the simple relationships: 

and 

< i I Ak I j > = < i I A I j > * 

~ i I AT· I j > = < j ) A I i > 
' 



* 
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The definition 'lfra: = *a used in the text can be understood as an equation in 

this real representation: 

(i ' a> = (a \ i) 

Notice that an equation of this form cannot be valid in all representations; 

e.g. , consider ) i' > = eio: \ i > 
(3) The case of quantum field theory may be treated in a manner similar to 

that of the first quantized case. Suppose (v(x), ¢(x) ••• ) are a set of fields 

that satisfy the commutation relations and the equations of motion. We wish to 

determine a "new" set of fields (vN(x), ¢N(x), ••• ) that represent the CPT-inverse 

physical situation and then inquire about the conditions under which the new 

physical situation can actually exist in nature (i.e., whether it also satisfies 

the equations of motion). According to the physical meaning of the operations 

c, P, and T expectation values in the original and CPT inverse systems must be 

related by 

< Q > I 

= -<Q > = ~ do
0 

(J 
0

(x) > 
< p >I = (P~) = 

~ 
S do (T (x)) 

0 0~ 

I < J~)) > -<J~),)> = S do0 < M0~y(x)) 
where Q, p ' ~ 

and J J 
. ~ 

are the total charge, momentum, and angular momentum 

of the system. These relations must be satisfied also locally, where one is to 

compare contributions at x with those at (~x). These more restrictive 

requirements are 

< J (x) / 
~ 

I 

< T~v(x) >1 

= - (J~( .. x) > 
= < T~ V (=X)) 

= = < M~VA, (=X) > 
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[It is to be stressed that ~ change of coordinate system is contemplated here, 

although the same results could be obtained using this device. We are comparing 

two different physical situations.] The conditions on the local densities 

(i.e., J (x), T _1(x), etc.) are of form 
J.1 (J.Y 

' 

where n is the number of tensor indices on the operator ~ In order that the 

CPT inverse physics at x be related to the original physics at (=x), the 

(wN(x), ¢N(x), •.. ) must be functions of (t(=x), ¢(-x), ..• ). A linear relation-

ship between them will not be satisfactory, since, for one thing, the commutator 

equations of motion can never be satisfied. [we will require at least for some 

possible systems (e.g. free particles) that the CPT inverse fields will satisfy 

the equations of motion.] As in the first quantized case the satisfactory 

transformation involves the transpose: 

= i r
5 

'ljrT(=x) 

¢N(x) = (=l)n ¢T(-x) 
' 

where ¢ is a boson field of rank n (n tensor indices). 

= 

In addition to this transformation on the operatorsp· it is necessary to 

transform the state vectors. In particular if an expectation value in the original 

system is 

( 6'\x) > = <_a ) &' (v(x), ¢(x), •• ·~ x) j a) 

then in the transformed system it 'Will be given by ., 

i 

In the calculation of <. e'(x) ) , the complex conjugation can be. removed from the 



•, 

j 
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state vectors by using the relation < K a / A \ K b) = ( b \AT I a) 

then one obtains 

(~(x) )I :::: <a l ~( vN(x)' ¢N(x)' ••• ; x) I a> 

= <a 1 et-r<i ~ w<=x), <-l)n ¢(-x), ~~ ,; x) 1 a) 

< I ;tr 1 1 \ - a eJ ('IT (x), ¢ (x), ••• ; x) a) 

:: \a I el ( w( X) ' ¢ (X) ' 0 •• ; X) I a ) 
I I 

where 'IT ( x) is the new field as defined by Pauli, and <o/ ( v( x), ¢( x), • o., x) 

is the operator computed using Pauli's prescription a~ given in the text. 

In order to verify that the transformation we have given will actually 

generate the CPT inversion it is sufficient to show that 

I 

f1 (-x) = ( -l)n O'(x) 
' 

for all tensor operators constructed from the field operators, their derivatives, 

and the vectors x • To see this notice that for each tensor index attached to a 
fJ. 

boson field operator there is one (-1), by our definition. Also, for each 

derivative· of a field operator and for each vector x there is a minus sign 
fJ. 

associated with the change ( x) ~ ( -x) o For fermions, we have 

_1 t 

t ( -x) e' 'IT ( -x) = -t(x) r
5 
~ r

5 
t(x) 

= -(-l)m t(x) ~t(x) 

where m is the rank of the tensor e(. If the Lagrangian (and therefore all'the 

operators derived from it) isantisymmetrized with respect to all fermion fields 

~nd symmetrized with respect to boson fields then the required transposition of 

/ the order of all the operators will introduce the necessary minus sign for each 
/ 

pair of fermion fields and the required transformation properties are indeed 
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obtained. A detailed demonstration is given by Pauli in the Bohr anniversary volume. 

We may now turn to the question of whether the equations of motion are 

satisfied for the new fields 11tN(x). Thus we ask whether the equation 

(Eq. A) 

is satisfied. If in this equation we replace the dummy variables x by (-x) 

and transpose, we obtain 

0 0 0, 

which may be written 

where -g(1jr(x), ¢(x)) 

-i /x g(,' (x), ¢' (x)) 
li 

Comparing this equation 

to the kno"Wn equation of motion for functions. of t(x) and ¢(x), we see that 

Eq. (A) is satisfied if 

I 

P (t(-x), ¢(=x), ..• , (-x)') = P (t(x), ¢(x), ..• ; x) 
li li 

If P is obtained from a properly symmetrized Lorentz invariant Lagrangian, 
li 

then.· this equation is always true as a consequence of the relationship 

applied to the stress-energy. tensor TJ.i.j.x). 

The CPT transformation is peculiar in that the law.of transforma~ionwith 

regard to each tensor index is the same, independently of the particular. type of 

quantity involved. It is for this reason that the Lorentz invariance alo]le (see 

below) will guarantee .the invariance. under CPT., Under parity (P) .and time reversed 

(TC) the possibility of having pseudoscalars, etc., destroys this connection, while 
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charge conjugation alone (C) is not correlated to the tensor indices but to specific 

operators. Consequently for P, C and T separately the requirement that the new 

fields satisfy the original equations places additional restrictions on the Lagrangian. 

Besides the assumption of proper Lorentz invariance [and a tacit 

assumption regarding the local nature of the fields and the La~angian J the fact 

that the Lagrangian, and consequently all operators, is symmetrized with respect to 

boson fields and antisymmetrized with respect to fermion-fields has been used in 

the above development. Since for commuting (anticommuting) fields the anti~ 

symmetrized (symmetrized) forms would reduce to c=numbers and hence constitute a 

removeable normalization constant in the Lagrangian, the normal connection between 

spin and statistics is implicit in the symmetrization rule. Hence the usual 

connection was, in effect, assumed in the construction of our CPT transformation. 

Conversely, if we are to represent the CPT-transformation in the way that 

we ;l:Bve J then we must require the usual connection between spin and statistics. 

This is Schwinger's deduction of that connection. This proof involves showing, 

independently of the connection between spin and statisticsJ that the CPT 

transformation can only be represented in a way equivalent to the one that was 

used here and hence that no CPT transformation could have been found if the 

Lagrangian had been symmetrized differently. 

(4) It might be useful to point out that since the new fields and the old fields 

obey the same canonical commutation relations (i.e., on a space-like surface), 

they may be related by a unitary transformation: 

VN(x) = R=l v(x) R 

¢N(x) = R~l ¢(x) R 

If R is independent of the space=like surface then the commutator equations 

of motion are invariant. In terms of R the transformed expectation value is 



< e'(x) )' = <K a I &( ijrN(x), ¢N(x) K a> 
= < K a I e'(R=l ijr(x)R, R .. 1 ¢(x)R) ( K a > 
= <_ R K a { e'( \jr(x) ¢(x)) / R K a ) 

(a' I &'I a' ) 
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In this form the transformation to the new physical situation is represented by a 

change in the state vectors aloneo Pauli's transformation changes only the operators. 

If one wishes the transformation. to change only the fundamental dynamical variables 

(i~eo; .P and q) but to maintain the functional form of the derived observables 

and also the co~tation relations, then both operators and state vectors must be 

changedo 

(5) It may be of interest to sketch briefly the connection of the trans-

formations given above to the corresponding transformations in the Schrodinger 

representation. In that case, the state vectors are changed and the operators are 

left unaltered. In particular if 

then w:e may represent the expectation value in the transformed system by 
I 

~e{t) / = (uK~(=t) (' es I UK\jr(=t)> 

where U is a time independent unitary transformationo If we write f(t) = S(t)fn 

and define S"(t) = U K S(=t) K u=1, then 

z e( t) >' = < sii ( t) u K tn I O's I s n (t) u K tH> 

= \u K tn \ s"(t) ~ s"(t) I u K wn> 

= ( u K ~n I to/'n< t) I u K ~n > 
= <K Wn I u-1~'n(t) u J Kin/ 

= \ Wn J (u=l ei"n< t) u)T I tn > 

• ,. r 
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If S"(t) is equal to S(t), which is the condition here that the physics is 

" invariant under the transformation, then ~ H(t) is the same as the usual Heisenberg 

operator ~(t), and U 'is'the··sa.me as the R defined in the preceding section. 

Canonical commutation relations for a scalar field (t = t'): 

These relations do not exhibit Lorentz invariance. For a complex scalar 

field, ¢(x): 

i l ~~i') ' ¢(:it• ) ] = = 

where 

is a three dimensional 5 function. 

On strong reflections: 
I 

¢ (x) = ¢(-x) 
' 

*' * ¢ (x) = ¢ (-x) 

Again we must take account of the inversion in the commutator to find 

' 

·[~ J 1 [w<x'), 0 ¢*' (x)] * 
¢(x') i ¢( .. x'L .. 0,0' ( ... x) 

1. t ' = at = a(~t) 

= Const. x 8 ( 3) ( ;tr _ Xj 

Thus, for scalar fields we have the same invariance in the commutator under CPT 
I 

as for spinor·rields. 

1 

FOOTNOTES 

Pauli prefers the treatment of Schwinger: Phys. Rev. 82, 914 (1951), 

especially p. 925, ff.). Here the concept of the transposed operator appears. 

The concept of the conjugate complex does not so directly appear. 
.. 1 _, 

= C t ( ... x) = -1 •io: ~ -( ) 
~C e Y V &X 

5 

= io: c( ) e r5 t -x 

.. 
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LECTURE 11 

We will now:g~ne~fiJ,.ize ourresultsconcerning the vacuum·expectation values 

. of field operators fro~ free particles to interact~g oneso The only assumption 

that will be made is that.the vacuum is the state of lowest energyo We will follow 

the development of Ho Lehman (Nuovo cimento llP 342 (1954) )o 

~auli regrets that spinor fields are ignored in later papers of this groupo He 

feels that one should not make a set of assumptions or axioms if they are "empty"; 

ioeog they cannot describe our phYsical worldo Physically, a system involving only 

scalar fields is not acceptabl~ 
"· We will begin with a scalar field, but will then .pass to spinor fieldso No 

explicit ass~ption about the interacting fields will be made, aside from assuming 

that the theory is invariant under the Lo~entz translation ~oup: 

\ 

and 

A,_. (x) 9 o o o, ~t)( (x), o o o 

/ 

are ~ssumed totransform according to a representation of the Lorentz groupo 

The.equatione of motion for a scalar field give: ., " 

.i ~,A(~ 
. . 

.· . . · ... • ·, . . ' 

j 



' \ 

where: 

If we consider the eigenfunctions of l)t. g 

1 thent 

0 
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Thus we are explicitly using the concept of an energy-momentum four vector. In this 

formalism9 however9 ·it is not correct to express them in terms of the fieldso 

The eigenvalue problem9 whose solution would allow such an eXpression, is very 

important but it has not been fully treated,as yeto 

For simplicity, we will assume that the eigenvalues are real 9 although more 

generally we might have complex eigenvalues. We assumes 

(that is 9 k0 )0 is all coordinate frames). 

~or the general 9 non-real eigenvalues 9 we might write 

Now we consider the expectation value in the vacuum of the product of two 

·rields:2 

(o I A(x) B(x')J o> =I._ 8 ik•(x ... xU)· 

. ~ 
<o J A(o>.f k) < k I B(o)fo> • 

(k0·~ 0) 

\ 

. . . 
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Thus we have a function of the positive classo ~his can be generalized to a 

finite number of complex masses~ with their complex conjugates as wel~ We assume 

that this expectation value is invariant with respect to the continuous Lorentz 

group9 so that the fUnction satisfies our previous requirements about functions of 

a positive classo We now define a mass spectrum: 

where the summation (or integration) is to be carr~ed out over the 4-dimensional 

region in k of volume d~, centered on k~ o The sum must onlY depend on A , as a 

. result of its Lorentz in variance o 

\ 
. Thus: ' 

.(· A(x)B(x')) 
0 

·• · 1 ·fd4kfAB ('A) ~iko(x- xD) 111 FAB (x- x•)., 
. (2?r)3 

ora eiO 

FAB <'5> = f'ili.<s;A>fAB (A):d~ =FAB cs>g 
0 

and the theorem of Wightman holdso 
' 

We hav~ an important reality condition~) 

~f the metric ia not posltive definite; B* 9 A* are the adjoint operators to Bg~ 

Thus we see that the expectation value of a self-adjoint operator is realo 

If we choose B = A*& 
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so fAA* is realo If the metric is also positive definite, fAA* is also ~ O, 

since then: 

In the indefinite metric, these results will only be true for s~ates of positive 

norm9 4 

We define a real field to be one which is identical to its adjoint ("self­

adjointo") 

Now we return to the CPl' theorem& · 

(1) Since F is of positive class, if ~ : 0 for space-like points, it will be 

zero everywhereo 

(2) For ~ invariant function of a single 4-vector and a space-like argument: 

ws'[o· 
The latter statement is easily proven by choosing a Lorentz frame in which t = Oo 

4 --+ 
Then it is always possible to rotate coordinates so that 5 ~ - 5 o The theorem 

also holds for two vectors·$) but not for threeo It will not be true for time-like 

argumentso 

We will now prove the equivalence of the CPT inversion and microcausalityo 

(A more general discussion is given b.Y Ro Jost, Helvo pqyao Acta lQ, 409 (1957) )o 

In the present case, the CPI' theorem gives: 

<A(x)B(xe) 1
0 

11 <B9 (x' )A9 (x)) 0 

- <B(-x 9 )A(-x))o . = FBA (g) -
\, . - <A(+x)B(+x 8 ) ~ , •FAB ( ~). -

Ill • l, . . 

., 
' 

' 
'· 

f, 
/,', 

I
R:, ,, 

fi ,. 
).!; 
jl, 
i/, 
II,, 
t 
)'j 
II< 
I· 
I 

r: 
J: 
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The last line only follows if the CPT theorem holdso5 Note that the arguments, 3 , 
are the same for the two tunctions9 since 

0 

.The CPT equality is ~ot an identity even if B ~A*, but.only if B = Ao ~e cannot 

use /'AA* .~ fA*A 9 even though both are rea_9 ( 

We can show the equivalence of the CPT relation, which is: 

to a relation for the commutatoro 

M;i.crocausalityg 

A system will satisfy a 'microcausality condition if& 

for (~·~) > Oo !--~ 

We will actually only need the much weaker! assumption that 

Now; 

E F AB ( S) .., F BA (-~) 

( = 0 for ( ~ • 5) > 0 ) G 

However9 FBA ($): FBA (~~) on t,tlis space-like region, so if 

\ 

G+ ( 5) ~ FAB ('s) = FBA (3)g 

then G+ is a function of positive class9 zero on a space-like surface9 and hence 

is zero ·everywhere o Thus 9 for all "; 8 
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Thus microcausality is equivalent to the CPT theoremo 

FOOTNOTES 

1 We can integrate the equations of motion to obtain 

A(x +a)~ e-iaP A(x) eiaP o 

from which the result follows immediately9 since ~.j 0 > .~ 0 9 if J 0/ is 

the vacuumo 

2 If the metric is not positive definite9 ~ J k) ( k} will not in general represent 

the unit operator~ even if k is a complete~ orthogonal set of eigenvectors9 since 
. · .. 

~!:,)they would not "t?e ·normalized to + lo In general 9 the unit operator would be 

It should be pointed out that "expectation valuen as used in the text only has 

the conventional ~aning if the metric is positive definiteo Otherwise 9 the 

matrix elemen\/< o/ EY\o) must be divided by the norm of the state (olo> o 

3 Since <o(A*(o)l k) ~ <kiA(o)lo > *o 

4 In the more general case 9 we have3 

5 As we have sean in the long note, lecture 109 the CPT inversion may be either 

identified with the operators exclusively~ as is done by Pauli9 or partly with 

the operators and partly with the state vectors 9 as was done in the noteo The 

latter has the advantage that operator functions of the field operators need not 

be changed in the inversiono It would also be possible to change only the state 

\ 
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vectors. Then we would have: 

< A(x) B(x') >:. 

...92"" 
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Howeverj) if' we assume that the vacuum is unique, the CPI' inversion can at most 

lead to a trivial phase change from the original vacuum, j?~ • Thus: 
,•,' 

) 
v 

<A(x) B(x' >) 
,0 
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LECTURE 11 

Radiatio~ Laboratory 
University of California 

Berkeley, California 
~-,_.: .' 

,". .
1 We will now generalize our results concerning the vacuum· expectation values 

"'of field operators from free particles to interacting ones. The only assumption 

: that will be made is that . the vacuum is the state of lowest energr o We will follow 

the development of H. Lehman (Nuovo cimento lJ.9 .342 (1954) ) • 

. . . . \!auli regrets that spinor fields are ignored in later papers o~ this groupo He 

·~: ~ · ': ·;:· . feels that one should not make a set of assumptions or axioms if the7 are "empty"; 
. -~; 

: :·'', :~ i.e. 9 they cannot describe our peysical worldo Physically, a system involving only 
...... :···;" 

, . · · scalar fields is not acceptabl~ 
·,, 

We will begin vi th a scalar field, but will then .pass to apinor ·fields. No 

.. <.~ .. explicit assumption abo~t -the interacting fields will be made, aside from assuming 

; .. :-.·~·-h·:·.:::that the .. theoritis[;'-ili~iant under the Lo~entz translation. U.oupa · 
.-_: )<r;,,·" ·: .... , .·. -- . . : ·., . -

~ • • ' ••• ' ~ '.'•\' •• -: .' • • 1 .. ·· ····.' 
; : ·x:· -. . 

., ;. . .· . 
:'' :~. . ' -~' ·. {1'.\. 

v, .. 
. ~·. ·. ·- ;_ 

-A14 (x) 9 o o o , lp O< (x) , o o o ,,: .. 
; ·· . .; 

-. ~ are' assumed to transform according to a representation ot the Lorentz groupo· 
.. ~ ·' \. . . '•' . . " 

· i. ;.:· • > The . equations o£ motion for a scalar field gi vea 
.·: •.' .. ·· . . . -

•./·~ : .. ' . 
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where: 

I£ we consider the eigenfunctions of ~ ~ 

1 then& 
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Thus we are explicitly using the concept of an energy-momentum four vectoro In this 

formalism9 however~ it is not correct to express them in terms of the fieldso 

The eigenvalue problem~ whose solution would allow such an expression~ is ver,y 

important but it has not been fully treated,as yeto 

For simplicity~ we will assume that the eigenvalues are real~ although more 

generally we might have complex eigenvalueso We assumes 

(that is 9 k0 )0 is all coordinate frames)o 

[!or the general~ non-real eigenvalues 9 we might write 

Nov we consider the expectation value in the vacuum of the product of two 

·rields:2 

(o I A(x) B(x•) J·_o> = ~ 6 iko(x- x 0
) 

. . ~ 

(k0·~ 0) 
\ '· 

. . 
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Thus we have a function of the positive classo ~his can be generalized to a 

finite number of complex masses, with their complex conjugates as wel~ We assume 

that this expectation value is invariant with respect to the continuous Lorentz 

groupg so that the function satisfies our previous requirements about functions of 

a positive classo We now define a mass spectrum: 

where the summation (or integration) is to be carr~ed out over the 4-dimensional 

region in k of volume d~, centered on k~ o The sum must only depend on A , as a 

result of its Lorentz invarianceo 
\ 

Thus~ " 

(A(x)B(x•)) 
0 

s (2~)3 Jd4k f AB ( ).. ) eik• (x - x') .. F AB (x - x')" 

ors 
~ 

FAB <'S):;: J'i 6..., <5' A) fAB (A):dh. = FAB (S)~ 
0 

and the theorem of Wightman holdso 
' 

We hav~ an important reality condition:3 

(!r the metric is not positive definite; B*, A* are the adjoint operators to B,~ 

Thus we see that the expectation value of a self-adjoint operato~is realc 

If we choose B ~ A*g 
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so JOAA* is realo If the metric is also positive definite, ~AA* is also ~· O, 

since then: 

In the indefinite metric, these results will only be true for s~ates of positive 

norm9 4 

We define a rea1 field to be one which is identical to its adjoint ("self­

adjointo") 

Now we return to the CPT theorem~ 

(1) Since F is of positive class~ if ~ : 0 for space-like points, it will be 

zero everywhereo 

(2) For.~ invariant function of a single 4-vector and a space-like argument: 

woco· 
The latter statement is easily proven b,y choosing a Lorentz frame in which t = Oo 

-+ -+ 
Then it is always possible to rotate coordinates so that S ~ - S o The 'theorem 

' 
also holds for two vectors'll but not for thre~ o It will not be true for time-like 

argumentso 

We will now prove the equivalence of the CPT inversion and microcausalityo 

(A more general discussion is given by Ro Jost, Helvo Physo Acta JQ, 409 (1957) ) o. 

In the present ca.sell the CPT theorem gives: 

. I 

<A(x)B(x') l 
0 

· a <B 8 (x' )A 0 (x)) 
0 

"" <B(-x 9 )A(-x)~ = FBA ( S) -
\ - (A(+x)B(+x 6 ) ~ , • FAB (~). -

' • I . . 
·' f 

I· 
<. 
'• 
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The last line only follows if the CPT theorem holdso5 Note that the arguments~ 3 1 

are the same for the two tunctions 9 since 

0 

The CPI' equality is not an identity even if B ::: A*~ but only if B :: Ao ~e cannot 

use fAA* -~ fA*A 9 even though both are rea,9 

We can show the equivalence of the CPT relation~ which is: 

to a relation for the commutatoro 

Mi,crocausalityg 

A system will satisf,y a 'microcauaality condition if& 

for (~· ~) > Oo r---, 
We will actually only need the much weaker 1assumption that 

Now~ 

I 
I 

< ~(x)~ B(xoj fo ~ F AB ( ~) - FBA (-~) 

(:o for (~·s)>_o ljJ 

However9 FBA (s) =-FBA ( ... ~)on this space-like region, so it 

then G+ is a function or positive claSSg zero on a .space-like surfaceg and henCE! 
\ 

is zero ·everywhere o Thus 9 for all "; & 
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Thus microcausality is equivalent to the CPT theoremo 

FOOTNOTES 

1 We can integrate the equations of motion to obtain 

A(x +a)~ e-iaP A(x) eiaP o 

from which the result follows immediately9 since 

the vacuumo 

2 If the metric is not positive definite 9 ~ J k > ( k \ will not in general represent 

the unit operator» even if k is a complete 9 orthogonal set of eigenvectors9 since 

· -~ i·\~they would not be normalized to + lo In general 11 the unit operator would be 
. \ . ., 

~ " 
k 

It should be pointed out that "expectation valuett as used in the text only has 

the conventional ~aning if the metric is poSitive definite, Otherwise, the 

matrix elemen0 of &' \ o) must be divided by the norm of the state ( o! o > o 

3 Since(o!A*(o)lk) ~ <kjA(o)lo> *., 

4 In the more general case 9 we haveg 

5 As we have seen in the long note, lecture 109 the CPT inversion may be either 

identified with the operators exclusively~ as is done by Pauli9 or partly with 

the operators and partly with the state vectors 9 as was done in the noteo The 

latter has the advantage that operator functions of the field operators need not 

be changed in the inversiono It would also be possible to change only the state 
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vectors. Then we would have: 

< A(x) B(x') >: I 

= ( t ? 
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J A(x) B(xu) / fo ) 
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Howeverp if we assume that the vacuum is unique, the CPT inversion can at most 

l~ad to a triyial phase change from the original vacuump f 
0 

• Thus:· 

., 

J 
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Remark on the stronger physical requirement of microcausality: 

The statement 

(5 . '% ) > 0 

can be formulated in terms of the vacuum expectation valuesi or: 

(Wightman) 

UCRI-8213 
Lecture 12 

We now generalize the previous discussion to the case of a single spinor 

field (which anticommuteso) ~r several fields~ one can always find by suitable 

transformations that they can be made to anticommuteo See the paper of Luder~ 

We will not assume C or P invariancep but only the continuous Lorentz 

transformations and the assumption of the vacuum as the lowest stateo Then 

we can build up quantities like 

Then we find:l 

II; 

o-'Y-cy ( 

!¥ 



where 

From this follows that: 

-2-
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and we have functions of the positive class as before. The () superscript means 

that either I or II may be inserted throughout the equation. Thus: 

- ( 't'x_ (x) Lfp (x•) ), = ~ 0 ?J\;) F 'I'~ (5) + 1 G .ft (!,) 

+ '( (o ....Q..) FI! ('~) -t- iO. GI~ (s)}. 
5 0 'S ~'I' 5 o/'t' • 

ot.-f 
There is a reality condition on these quantities~ since: 

(:}: p (xo )~ (x) >o * = <!D( (x)'¥~ * (x1 ) ), 

Then we find2 

We must again obtain an equivalence between CPT and microcausality. We set 

<vfl (x' )~ (x) )
0 

= {(a 0\) 

-t o 5 ( o 
0
-; ) F~~ 

' 



or~ 

-3-

/,- > { ~ I I "'-f~(x)"' (x 0
) 0 = = (o ?l~) Fo/ljl (5) + loGff (1) 

-o5 <~ ()~ > F$:;. <s> + io5 a~\~ (5)} · 0 

0<.~ 

Again: 

r-<> (5) = Fq;v (s) () 
'1"1' fij;'f 

= f! (ll + ill) (~; ~) dA 
G-() <s> : ai'9 

2 1 
() (s) 

't'" o-ff 

F~~ (-s) = F~~ (·s*) i 
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We cannot get any connection between the F 0s without a further assumption (either 

CPT or microcausality)o 

We assumeg 

Thusg 

everywhereo 

F$~ (s) ~ F~~ (s) 

a<t (5) ~ aO (s) 
'¥'1' 'f¥' 
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The CPr relation isg 

This gives the same relation as does microcausality.4 
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This is all that can be obtained~ since we don 8t assume any specific in-

variance. If one assumes P invariance, for examplell the II parts vanish. 

Now 9 if we consider the vacuum expectation value of two ~'s~ the Lorentz 
/ 

invariance leads to the formg5 

('r.,<xl '1,8 (x' l )o = [ ~-c ~l F-r\ (5) + Hlr (5) 

+ l( 5(! 0 ~) F:;;'\'(3) t- 1¥5 G~\ (!;~ c-1] 

where 

If we change the order of the operatorsg 

-('f (' (x') tO< (x) )
0 

= [ {c 'I> 'il ~) F '\'It (- ') t- l•G,/t(-5) 

-o
5 

{ o -2) F;~ (- s) + io5 G~~ {--g)\ c-1] ~ 
a~ . 'J CXf 

since C, Clf
5

, c~5~ are antisymmetric, and C~, C ~.# ,lf,.,} are symmetric 

matrices { and from-this~ c=1, tr5c-l~ '255~ c-1 are antisynnnetric and ~c-1 , 

[.tf- , "(0 c-1 are symmetricL / 

If we now apply microcausality; 

for (5 • '5) > 0 

j 



and CPI' gives:6 

0 
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1 In each case~ we find an identity with the exception of F~~ , which must vanish. 

Thus~ only 

II 
Fo/'1' ::: 0 9 

to satisfY either conditiono 

If we consider states of only positive norm9 we find other relationso To 

get such relations~ we must have f * rather than f ~ so that if we multiply by 

'04 and take the tracel> we find: 

so that7 

(=i) -
4
1 

Tr (~ok) 0 ~: k > 0 4 0 

FOOTNOTES 

1 The most general relation would be~ 

MDC~=-I~ If~ (0) I k) <k I 't-'?'(0) I 0 = L (a )o<~< f (k) 
A A r A 

where A is summed over the 16 independent 4 x 4 matrices. Now 9 the Lorentz 

invariance gives relations like: 

~ot-.f(o fL ~0( ; 4f)i (k) ~ 

and since this term must transform as part of a four-vector 

~ (k) :: k)lF (k) 

where F0 (k) = F0 (A)o The other terms are obtained similarly9 except that 



-6-

FOOTNOTES 

1 (Cont.) 

UCRL-8213 
Lecture 12 

~ [ o A ;o ~ is antisymmetric and no antisymmetric tensor can be formed 

from k /1\u s. 
I 

The kj(u s give the most ge:p.~;!ral~ form~ since the Lorentz invariance 

requires that: 

~Af(A) : _]_ g(A)~ 
a~L 

[ f( ~) :: g 9 (AU and the _Q_ gives no more generality o 

0} . 
2 Using the adjoint relation andk* • ~~ k~ =-- k4 
3 We use the same arguments as in the scalar case. For the F 1 s~ we obtain 

(o 8~) [!f~ <=~)-F'Pl <~)] = o. 

but this is equivalent to the 4 equations 

Thus 1 the F9s can only differ by a constant, which is of no significance 
\., 

in the commutation relation. A similar result holds for F11 • 
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4 (Conto) 

=~~TI-l FrV <-Sl + l'Gf~ (-5) +- 115 U·rll F$~ (-51 

+ id'
5 
G~ (-5} ~ 

Jo<f 

=<fl (x 0 )o/~x))0 o 
5 The C enters to give the proper transformation properties. Since 

6 

then 

f~( tc)f' 
transforms as does lpc< ~ • The C is removed by multiplication by c-1 ~ to get 

the stated relation. 
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f<- 0' 
0
!) F'P~ (...:s) + l·G/f (-5) - -o

5 
( ?f ..L) F~~ (-5) 

l ~ ~s 

,_ i ~ GII (-"%)> o e-ll 
5 ~'¥ ) 5 J o<l 

= - [ {(I( a~) F'f'~ (-s) + I·Glr P~l + o 5 ( t 3 ~,) FU' (-') 

7 We have~ 

Thus if we multiply by ( '!4) fo::. and sum on 0( also~ to get the trace, we find 



/· .. 

~ r 
I 
i. ,_ 

1 

UNIVERSITY OF CALIFORNIA 

Radiation Laboratory 
Berkeley, California 

Contract No. W -7405- eng-48 

UCRL-8213 
Lecture 13 

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS 
IN QUANTUM-MECHANICS'' BY. W. PAULI 

Lecture 13 

R. J. Riddell, Jr. 

June 10, 1958 

Printed for the U. S. Atomic Energy Commission 

1-, 



LECTURE 13 

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS 
IN QUANTUM MECHANICS" BY Wo PAULI 

Notes by Ro Jo Riddell~ Jro 

Radiation Laboratory 
University of California 

Berkeley9 California 

Spring 1958 

Generalization to more fields: 

UCRL-821.3 
Lecture 1.3 

If we have several spinor fields which anticommute (as can always 

be accomplished), we obtain very similar conditions to the single-field 

case: 

F () (t?) () (~) 
'l'"i) ~ ~ F~tp ~ ' 

These are the conditions both for weak microcausality and for CPTo The 

reality condition relates different quantities: 

(]'* _=o-_ 
¢tp If¢ 

In the paper of Jost 9 one finds the generalization to more than two 

factors in the expectation valueo In such cases 9 the CPT and microcausality 

always connect factors likeg 
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We will probably come back to this in a different connectiono To develop 

the theory would require the theory of analytic functions of several complex 

variablesQ We may give an explicit proof for some interaction hamiltonians 

latero Jost does not use the positive definite metrico 

Inegualities~ 

I 
The various quanti ties f ~ o.. satisfy certain inequalities. First we 

let ¢ :: 4J 

I I II II 

t=>~tt' 'a-4JYJl1fl..flo/ j) crlt'~' 

are all realo In addition~ if the metric is positive .definite, we have seen 

that: 

(scalars) 

(spinors) 

In additionj) there are other relationse Consider: 

which defines·~ o 

M 
We see that L · !!:!: P ! 

1 I '1'4' 0 (see note Noo 7,. Lecture 12) 

Nowg if Mf e 1 9 the eigenvalues of M are Z 1~ so~ 

0 
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Also: 

Since: 

<[<1 -t- M~ ~ .. 
0 ~l ~ M2f 2 o 

If:. 

Now: 

+ i y (Y•k) t:> _ + i y <7'"
111

7i
1 

• 
II II} 

5 /4J4J 5 yT. 

If we now multiply this equation by 

so: 
I .c. I 

a- - vrf 

This relation was derived by Lehmann. 

Now we may generalize~ 

[-t (Y M) J 4 flot.. 

M:: Ao + B ...J._ (Y•k) + C _!._ (Y•k) ( 
5 VT VT 5 

If we proceed as above~ we get: 2 

1 , we find 

UCRI-8213 
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II I II 
":" L) < I ::;; (AP + B ...L o- T c ...L a-
'I M I \{X" VT 

I 

><t g 

for all A~ B~ Co 

We will get the best result if we maximize the bracket:3 

where 

II 
A ~ ot.,fJ 

Thus we find that 

=F; < (>) 
I ~ maxo 

so: 

1 II c :<X- o-
V/1 

I 2 ( (_;>) e 
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This result was not obtained by Lehmannsince he assumed reflection invarianceo 

The spinor eguation
1
s of Glirse;r& 

We now begin a new discussion~ in which we will write the spinor equations 

in a form which plays a role in the theory of the neutrino. We will consider, 

however~ the proton-neutron system in the non-electric approximation. We assume 

m 
p 

:= m 
N 

::m 0 

Theng 

} 
c14'p 

= m!p_ ~ 
o~P.N 

= mljJ 
oxfl 11~ 

0 p N 
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We now introduce two new fields, which satisfy~ 

~ a = -m"; ~ 
()~ 

The system of (z,~) has a certain group associated with it:4 

where: 

Ia I 2 
+ lb I 2 

: lo 

A second group is:5 

This is equivalent to the transformation in lJJpll 4JN of<t.
6 

lfJ ~ e io<. If o (Baryon conservation) 

The former group is the isospin group. 

The connection between lf' 0 s and '{ ~ 5 is: 7 

~ •t (lt-Y5)tJ.'p+% [ (l+-Y
5

)<J>N] 
0 

UCRL-8213 
Lecture 13 



-6-

If we choose the representation for y as 
5 

Then~ 

Thus we find: 

1 =l!J 
1 1 

"5 ~+i~ 
1 4 

*N 

p 

s = -i~ 
2 3 

*N 

E= 

c _tjJ * 
4 

tl>* 
3 

0 

0 

~ = lj)·· 
3 3 

p p 

s = (/) 
4 4 

UCRL-8213 
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1 = -i o/ 
4 1 

*N 

It is of interest to write down the vacuum expectation values. 

= 



•' 

8 and: 

o<f .:a_ 
= = '(AA ~ (i£1 (s) ) o 

r. "xt- + 

-7-

UCRL-8213 
Lecture 13 

The group is isomorphic to the spinor group of three dimensional rotationso 

FOOI'NOTES 

1 

-f l 2:. /a [4J (0) I k'\,. /k I o/
1
* (0) I ~ -k- (Yok) = 

k •dk ~.""'- co<: / ~ / vII I"' I' "I" r 

2 The new terms lead to 

k II 
= ___£ o- -
'0: tplV 

and the other traces all vanisho 
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3 2 2 2 We must require ~ + B -t- C = lo o(.then enters as a Lagrange multipliero 

4 We must show that the equations remain invariant with regard to this groupo 

First~ we develop the equation for g cg 

c c-1~ = - ~c-1 "5:: !::> =-~ 

-1- c 
;: = m ~ C { = =m ~I( o 

Here 9 we have used the facts that c-1 ~ Y
5
c-l are antisymmetric~ ~ c-1 

is synnnetric~ x ::= real 9 x4 1$5 pure imaginary~ plus the equation for "5 o 

We note that the equations are not C invarianto 

so thatg 

a 
=mY 'Y 
= 5IL 

u 
A similar development holds for ~ 0 

l 
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FOOTNOTES 

5 . ~ 
Y. ;{:L : - cos ~om~ S + i sinO(o ~om~ S 
,P ex,_ .; .; .; 

. 9 
and similarly for ~ o 

6 
See below, for the representation ¥.5 = ~ -~) . 

7 · We have 

Now;. 

so: 

But: 

C-1 v * ,......- 1 ...-.J --:1 -1 
o = - c- 1r = -Y c - y c 5 5 5 - 5 

so: 

[ (1 t o )~ J c = - y (1 t y ) c-1 q;_ * 
5 N 4 5 N 

(l - Y )Y c-1tl' * = - (1- o) ('lJ *¥ c-1 ) 
+54 N- +5 N4 

Thus~ 

UCRL-8213 
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FOOTNOTES 

7 (Conto) 

- t (1 - '( ) mtP.,p +.! (1 + Y) m'IJNc - 5 2 5 h 

But: 
c 

Y -g = - f(l - Y ) tp = .! (1 + r5) <PN 
5 5 p 2 

so~ 

~ al :-m~r-g. 
. 9 X/{ 5 

A similar development holds for the S equation. 

8 We needg 

S::: t (1- 'f5)~p- ~ [(1- y5)~NJ c 

. c 
= t (1 - -r > IP - .! (1 ;- Y > 1/.J 
- 5 p 2 5 N 

~ - t tjJ * (1 = Y )o + .! LV c* (1-t- Y ) Y 
- P 54 2N 54 

- - i -c 5 - t lp (1 -t- y ) + - 4J (1 - y ) 0 

- P 5 2 N 5 

Thus 9 for example; 

0 

UCR.I-8213 
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(1 +Y) 

5 f'l 

-+ i (1 + Y ) t (x) LV (xU) < NcN c) 
. 5 o<.~ -... u I u o 

(1 - y-5) 
11 

::: r .. t('!M _1_ = m)i 6 (s) -! (Yu _l_ + m)i L1 (;l l 1 ()xr- + r ;)x~ -1- Jo( / 

We also findg 

ry - t tp (1 = '( ) = ! ll>_ c (1 -;- t ) 0 

~ = P 5 2 N 5 

= /5 (x)'X_ (xu)'. ~ 1-(1 = t ) ( tM- _1, = m) (1 ~ Y) 
Also& t 

'<0( I Yo . 5 I. oxf 5 

~ t (1 + Y ) ( "fM ~ - m) (1 + Y } i 4 + ( s) 
5 ,-ox~ 5 

I. cXf 
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Another possibility for introducing new fields is to set 

These show an invariance under the group of transformations: 

"'' = av + b r
5 

c-1 ~ 

¢' a¢ -1 0 = - b r 5 c 

iay5 -iar 

"'' = e 'IJr ¢' = e 5 ¢ 

~· 
- iay'5 

fff• 
iay5 

::: 'IJr e = ~e 

The connection with 'llrp, VN is now: 1 

¢ 1 i 
l<l r 5HN Jc = 2 ( 1 + r 5) "'P ~ 

2 + 

1 i l (1 r5)vN r "' = 2 ( 1 - r 5) "'P = -2 

Here, the vacuum expectation values satisfy: 

< 'l!ra(x) ~~(x') >0 = < i~(x) 'l!ra(x') >0 = < ¢a(x) fff~(x') >
0 

= 

= - ro:: a~ (i .6+ (s)) 
1-l 

and 
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Remark: There is an interesting problem here. One might ask for the most 

general expressions for the vacuum expectation values, with the Lorentz and 

isospin groups present. First, one can replace one 6+ by F and the second 

by G. (the free particle Dirac equation would connect them).. This theory is 

gauge invariant since < w w > = o. This would not be the most general 
0 

possibility. Pauli does not know the most general result compatible with the 

group. A particular case is that in which there is only one spinor, w. (¢ = 0). 

Derivatives can also appear, though they will be restricted. 

The system of Gursey is slightly different to that just given. The 

relation is 

x = r ·¢ 
5 

where the sign of X related to ¢ is just a convention. 

essential difference. 

There is a little more symmetry in the Gursey choice, since 

(:) 
S I 

However, 

d s rf..L rx = 
(..L 

= a 

= 
iay-5 

e s 

m r
5 

x 

C) 
' 

-1 (.--:) + b r5 c s 

-iar 
X' = e 5x 

r J-x = -mr 11. 
(..L ox 5 s 

(..L 

is the 
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[ The signs of the two equations must be different, to keep the second order 

equation correct.] 

Also: 

Gursey has a particular way of writing these equations that is not 

fundamental, but is instructive. He introduces matrices for w , and chooses 

r5 diagonal: 

, ;t"r 
I = = 

The Dirac equation is obtain~d, using 

d .... d 
D = dt - o·~ 

and 
/'V -1 f =roy ro ' 

where, for ordinary 2 x 2 matrices (not q-numbers), 

f = Det. { W \ 
-1 

)( "' 0 

Also: 

With respect to the groups: 

i' = t u 
where U is the most general unitary transformation of two variables.2 For 

the first transformation 

Det U = 1, 



while,for the second 

u = 

Replacing 

X 

ia e 

X 

by going from column vector to matrix, we find: 3 

D :..* = i m X 

D x* = -i m ::: 

and ia -= -+ :..u = :::R e 

X xu+ XR =ia 
-+ = e 

where R is the rotation group (Det 1). 
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[ Pauli doesn't like this too well.] 

The existence of the group, isomorphic to baryon conservation and 

isospin conservation, is the important thing. 

= "' ia .,N e (baryon conservation) 

The transformation R does not commute with C or P, but it does with CP. 

In the case of weak interactions we can write it in such a way that only one 

field (X or E) occurs. This was introduced first in the case of the free 

neutrino. The equation of a four-component neutrino, ,has the full group. 

However, if it is a Majorana two=component neutrino, then only the second 

group is preserved as compatible with 

Vc = 
"' 

"'' = 
iar5 e V 

"'' c 
= 

iay-5 
e tc • 
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1 We have: 

2 

= m t 

Similarly for the t equation. 

The invariance under the first group comes from the fact thit the ¢, t 

satisfy C invariant equations (the lack of a r 
5 

as compared to Giirsey 

accounts for this), so that: 

ri-L 
at' ar at 

b r 5 rf.l. 
ate 

-rx dx - dx 
f.l. 

f.l. 
f.l. f..1 

= m [a ¢ - b r5 ¢c J = m ¢' 

We find: 

a~ 
rf.l. = 

050* 
r 4 rf.l. = 

050* 
rf.l. r 4 = -m t* r 4 rx- dx - 'dX* 

fJ. f.l. f.l. 

and 

050c -1 a ~ a~ -1 -m 'f -1 
rf.l. rx = rf.L c 'dX = dX rf.l. c = c 

fJ. fJ. f.l. 

For the first group of transformations we have: 

xl 
x2 
0 

0 

= 2 
and 

= - m t 

c 
= m t . 



2 (Cont.) 

Xl', 

X' 
2 

0 

0 

Also: 

(1 + r 
5

) c' 
2 

X = 

Thus we have; 

(1 + r5) _(1 + r 5) 
2 

X' = a 2 X + 

= 
( 1 + r 5) 

2 
(a X + b XC) 

* (i + r 5) 
XC. - * 

(1 + r 
5

) 
a 2 b r5 2 

= 
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(1 + r
2
) 

b . 2 r 5 x 

X 

c 

* * c) -b x1 + a x1 . 

* * c -b x2 + a x
2 

(X
1 X1:) (a -b:) 

x
2 

x
2 

· b a 
= 

so that, since ( a /
2 

+ / b /
2 = 1, det U = 1. 

Now 

For the second group, 

X' 
iay-5 

= e X • 

= 

[ (cos 0: + i 

c cos O:·X .. 

c 
sin o:·r 5)x ] 

i sin o: [ r 5 X J 

= (cos o: + i sin o: r 
5 

)X 0 

iay-5 c 
= e X 

c 



2 (Cont.) 

Thus 

X' 1 

X' 
2 

In this representation, 

r5 = (: _:) 

-7-

ia 
= e 

T4 = (: :) 
where the "elements" are 2 x 2 matrices. Thus: 

1 0 i 0 (::) m (::) I 'dt: + ak· a~ = 

and 

C:) -mC:) 
1 0 i 0 
Id-t - ak.·a~ = 

or 

( :::) " m (:::) 
1 0 i ,-.J 0 
I dt' - aka~ 

If we choqse the usual representation, ""' a = a ' X X 

so if we multiply the equation by a , . y we get: 

X c 
1 

X c 
2 

rk 

(1' = 
y 

( 1 d d ) c::) " m "y c::) I dt' + i aka~ a y 

or 

c;*) c x4~) ( l d i "k~) r dt' + = m 

£1 s; 

= 

-a ' y 
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c 10k) 
-iO'k 0 

,..J 

0' = a 
' z z 
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3 {Cont.) 

·Thus, since 
* * * 

g3 g4 'g3 
< E )* = = 

-g2 g1 g4 

the equations satisfy: 

-* 
D = i m X 

The development is similar for the X equationo 

-g 2 

£1 

* 

* 
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~ ' I 
,. 

' ' 

J "' •• 

LECTURE 1 t; · . 
------~~-' . •,,. - .. . ' 

'I '•' 

We now come to a discussion of the w~ak interactions" 

UCRL~8213 

.. Lecture 15 

.~ . . : 

.. :~ 

'< ·. : 

') 

For these;, the 
i" ' '· •• '<. ~ 

sYmffietry is _less . than in the strong interactions or the electromagnetic ones~~· ; 

'' 

.. 

'; 

' ' ',~·· ~ I ,l \ 

' '' I 
·~ •. : 

{· ..... . . . ~ 
/ ~ ' ··• ~ .. i ."" 

For \.he weak i~teractions9 the symmetry can be no more than CP o . The symmetri~s ·· :· 

: . . ~ 

_.·,I'"" 

\.. , .. : ._ 

' ~· . ,. I 

.. ' . _.• I 

involve~- ,· 

_,; 

. S. 

' ' Particles ---')- Antiparticles 

. . ~ . ~ " 

.... . ' 

-p 
~. 

·~o, • i ~--4 
x 8!l ..;.,,x 

.. · In the P ~ T cases_ "c~ge n. is preserved o 

' . ~ -~ ,, 
.1 • ' • 

,. 

~ _. 

·. 

T 
~·. 

·~,. ·~ 
X" ~X 

..... 
Here ."charge" means more than 

t 

: ~~ ~- • ,(- ,1' ' ' ' ' ' :I \. • , . ·. · ~·: <·. electromagnetic charge~. and includes .leptonic charge plus,_ the particle--7_ 
' . ~ ·'. 

: . antiparticle concept for nucleons 9 etco 
. ' 

' . . ·• t -._ The experiments are not yet good enough to· prov-e the CP invariance o 

·-, 
' ' Now~. there are interesting postulates'which can be made about the weak 

~·v 

\ :_ . 

,' .. ' 

'' 

.. 

: lriteractions 9 though none· 'is yet. prov~d·o . Different definitions can be made' · · 

. · 

I ., 

•. 

.I ' 

·. for the leptonic charges o: One particUlar choice is g 

. '. 
. * 
~. 

e 
,.,; ··. ·. 

,'\•, 

' 1':. 
-, 

v • ·~ 

',., 

.,} ' 

•, 

'' 

., I ;, . 
. I ~ " 

r:- · ....... 

I 
\. .. 

' . ~ ~ .. ; ·.: 

. . . r. 
. .. 

•' . 
. _ .. , .. 

. \.: 

'-· .. :~. 
' .. 

, •:' I' 

~' . 

.... ~ 

... ' 
·I 

., 
,I '. ~ < 

' . ' ., ' ......... 

'. 

,. 
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where' 'tp 
,,, ·'I ' p 

is th'e proton field'· · tj;
9 

9 the electron 7 and ~v \, 'the neutrino'o · , 
.· ~' 

The 1eptonic: charge is theni 

. ' -
! • ,, ~l::. 

•, .; .I. 
' ··' t ' ., r;: -~ ...... !'.l !~~ 

: ~- ' 

+l 

.. .. .. 

. ; .;_ 
. . . 

·~· . '. 

•. · 1 I ,, C.~ .... > •· t_ ~ 
{ . ~ ,·· .. 

:~~~~}~· 
·' ..... . ' 

0 •,' . nucleons 
,, ., . •' 

' .· 

' .. 

~ '. ' 

('·.n~ut~in~s~·· '-v-' ,, .. 

·; 

' J ~ ' 

. (anti~eutdnos) 
$. ,_ . 

\1 .·t 
. ~ . . 

;· 
I 

r' 
f .... 

·. 

~ ,· " 
~ I: ' 

I. 

-~ ' •. .; •. 

' . ' 
;· 

I,._} •. ~ 

,. .. 

.... - i .. _ ~ 

, ... 

,, 
'_f'. 

' ~ 
·' 

''. t·• ·, , .. ~ . " 
If we have conservation ·of 1eptonic charge then'possib1e reactions are '' ... 

.; 

'f 

\_ 

·,. 
7 ~ ; .• ·.;'" 

/. :~·- . 

:-·-.. . .. 
:· ~ . 

~ '\ . ~- . 

\". . ' 

: i 
t-.''!:_~ ... · ~~-r · 

-,'.. 

.,. 

·p~ N + e+ +'"Ji 

N -1 P +e=+v 

' ' 

P+-ii'-7N.+e , 
+ 

N + v .;.~ P + e=": 

,. 

1 
•.. ·.,_(bound) . . ~ 

'.' .. 
;· 

'· 

. ' 

-· · (free or bound) 
~ ... 

". 
,t 

~ ... ·, . 
...... · 

,. ,J •. 

· 1,.( Cowan and Reines ~xpe~~e:nt)' , < · :'.· 
. 1.' · ...... 
t' . ;, .• •. : ... !·- :·r·· 

·.:· 

' ,. 

,,;.'...": 
-· r, . 

'"t •. 

.\ 
. : .. :. :\. ,'; ·::_W~:: only have strong so~ces .for negat~~ decay/ ~ot positon (neutrons) o ··::, · .. · , . ·· .'-:.;~,;~:: 
'' .. · · ..• ,., ' : "· A ~heck 'on the· cons~r~ation of leptonic charge' woUld be i:ained froni · .' '. . ,,.. , :·~.;;}~ 

~~~ ,: ' ·~ ~- . '~.\. ·t. 

:· ·. .. ·"' observation of the sequence \ , 

'• ' ' . . . :. . ~ . .... , .... 
.;,.: . 
' ' 
'' 

N -7 P + e= + v 9 
t:'·. 

., , 

d .... an . ·.: 
. ·) 

'N+-1/.~. P.+·.' . " e--:·· 9 

,· 
~ \. ' 

' ~ . •' 

-~ '. ' 

.. · 
; ... \, ''. 

.• \:· 

·' 
~ ' .. 

.. 1 ·, .~ • ·f 

. -~;; . ~ . . . .,.... . ... ' 

· which would be forbidd-en if leptons are conserved o .:_There~ is an experiment: 
',I 

; -~- ' 

. . ... i. ~ 

:-:·: .. ··: 
t. '· ' ~ . 

.. 

. '. 

'.' . ~ 

~~ . ~ t. . . r. ; 

.. ' \ ,• 

.-c, 

, . 
" 

by Davis.? but it is' not goo~ enough in accura_cy o 
(· 

The absence of double 
' . '. . 1 

beta decay is of :the same charactero, .~ We ~lll assume the conservation bf 
'j.' 

lep.tonso ~ . ,• ' 
.; ~ ... 

~ 
' ' 

l .: The thing which is definitely. established l~ 'that C.9P are vio1atedo; 

Other processes of interest are: 
.. ! 

,., 
.. '• 

'! 
~~ 

. -~ . 

,. , . ." •' .... 
·' 

t: 

' t 
! 

' ' ' 

. ~· -

it 

•, 1, 

t ••• • 

. ' 

. ~., ~ 

' ' .... 

.. 
' 



.. 

.,. 

'•{-

·:, 1: 
'."'il 

·; 

.. -rr+ -7 ~ ~ +, -v 
....,.. -} u. -t- 1) 
"- I ~~ 

=122= 

or 

'' 
:-< ·, 

~l 

~Tr~)~.+v 
+ + 

-rr_ -7 r- + -,) 
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'· 

f-r:~ .e+ + ~+ -:!·~·· 
);._ -1 e_ + v -+·-z.J~ 

r ; __ 

' .. ' 

.. h 

~: .,L 

'·· 

·-~·· 

t -~ . . ..... 
· .. _., 

'.' . ' 
'· 

' ·'·. 

-.. , 
. ~- . 

~, .. 

" -~·· .. 

-., _ ..... 

:._)1 

·· ... ): 

. ' . :.~ . ~ 
i ~ ' ' .. ~ ~ . '. ·. t J . ~ • ~ ,. 

·.We can exclude the second one (experimentally),/which. g~ves the /-+ th~-
~ 1'" ·' 

_f,1 

same l~ptonic charge as :<~. 
.··,, 

~ '• I 

i, .. 
'' 

I 

'·.· ·":.. . ,.· 
j t. ··-·· ..,_1'\ 

There are also weak processes in whi~h '1/8 s do .DQ.t play a role . as welH ;· ... , ; : ; 
,.,_ 

/\ 
,,_r. •' 

·' 
•· . :· ; . 1 

"··. 

• .. ', 

. -··'··: 

\ ..... .. 
:·.· 

·-~"". ~ 

\ -·' 

1. 

•:· 
' ., ,~ . ~ -t 

. ·• ~>: 
. , .. 

·, 
"·' .... 
' .l ,_l, 

~ ..... ~ '' 
' ' 

.:-·· .... 
. , 

. 't, •. 

; . 

·,_,· 

p +11'. ·= 
0 

Nrrr 
0 0 

. K~31T 

K-721!' 

K ~7 / -1-"Tft L) 
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is not rele;;an:to ThJ.s would only determine whether positive energy parts 

appear above or beJowo In either ~aseg 

but in the f.irst choice 

while in the second 9 

Now9 we had 

H . 
into 

o\ 
) 

.......,. 
a--/, 

··If m
11 

:;;; 0.1' the free paA"ticle neutrino equations adffiit a group (ca."lonical 

·transformation) g 

(I) 

I •2 2 
where . s.j + I b I ::: 1 o ~he.·~ makes the transformation canonical~ 



i 
I 
j 

l 

l 
I 
I 

i 

!1 

' •! 
"l 

·I 

=1.35= 

In terms of R and l,g 

!til n.1,L ~a"' L+ b(d 1 c)L 
Vt::tl -· '-r V '+' 1) 

UCRL=8213 
Lecture 17 

( ~ c u ). R ~ ,, R * I ll c) R 
, . :::: b ~l .• , + a ~ 1 . .~ v ' •· "'1./ 

*Ill L a*(,IJ c)L o. 
= m•b lf"' 6;' + 'f 7} . 

. ' 

Thus the transformation is isomorphlc to the unitary gro·u.p1 (a duplication· 

. '• of rotations in three dimensions) 0 

Now if we consider transformati10ns of tp_, 9 then H. t will be invariant 
-v ~n • 

. if we also change the coupling constants at the same t:inie~ in such a way that 

ta'\ I 

oob•\ ta1 tL' r· b*l (a* 

) ;:;~ ' ·-
\ D ') \b a) \~a}' \n u a) \b ' R \ \L ,_ 

' 
• 

Then H_. ·. '..r.Ul be ~ 0 t 2 
~nvar1.an .• o 

.,r;..n·to 

(~L:) Cal ., 

We note that tra.."lsforms as 0 

~ 
L/ DR/ 

' 

There is also a second groupg 

(II) 

Thusg 

andg; 

' The latter relation is important~ since it indicates that the Majorana 

abbrevi.ati.on is c:ompatlble with th:is group (II)o It :is not compatible 

'. ., 

' ,· 

.. 
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with the first group (I) o. 

To pro'llde invariance for H, ... we must traJlSform the C 0 s as g 
l.nv.o 

efCX.. tL' ~iCX 

G: 
c- ~ 

e . 

' . \DL' '} 

The most general canonical transform9.tion is one that combines I an.d Ilo 

. . [!auli. do,esn ° t feel that. it is natural to combine these two groups o 

If there· is a natural divisor to a group 9 .he feels that it should be split 

orr] 

Let us now consider the problem of determining .the H. t from the J..n 0 

e:xperimentso In any particular experiment we will generally make averages 

over the Hilbe,rt spaceo 'The aR 9 aL w:l.ll corr·espond to projection operators 

in this spacea The transition probabi.lity can only depend on such combinations 

as appear in Hinto We ·~annat distinguish between a neutrino or an anti= · 

neutrino 9 nor can we distinguish the polarization of the neutrino aloneo 

Wa £~n dis~rL~inate between the R and L stateso 

We have the f.ollo'.Ning as the invaria...·-rts of the unl tary group a J 

B 'Ei:CD+DC 
ij .Ri Lj Ri Lj 

Bij only occurs in double beta·:decay processes o 

There are certa:ln relations among these lnvariants3 



·. 

I 

l 
j 

.5 

] 
s 
" -' 
1 
~ 
~~ 
~~ 
'l 

~ 
~ 
iJ 

~ 
~~ 
!1 ,, 
~.i 
:j 
~ 
~ 
~, 

~ 
~ 
~ 
m 
r'!i 

i ' 
hl ,, 
~I 
~ 
'II 
·~i 
·:; 

~~ 
·' 
;~ 
ol! 

~i 
·~ 

.. i 

.;~ 

:;; 
·~1 
' 

Thusg 

·-----·-- ---·-

A ~A * ~ 0 . ii ii 

I ! 2 
B" 0 I < . lJ ·-

A LA L 
i:i jj 

A R A L 
ii jj 

0 ' 

It is often convenient to introduce the combinationsg 

. · R . L 
Kij ~ f(A:lj + Aij ) 

* * I o o ~ t (B o • + B ) 
1J 1J . ji 

[ine ( )* is a convention 

* 

in 

* 

. 1 ( . R L) L ~ 2 -=A +-A 
ij ij ij 

'J 
ij 

I and JJ 
_j 
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·--·- --~ 

... . 

Klj 
"'~' K ·t ··~., L I liil I ''lo'-1 ·~· !¥ !i' ~ i 0 

J' =- J ji ' .J ji ij ji ij ji 

There has been a lot of confusion about the C 9 P 9 and T i.nvariance o 

One could no·t empirically d~?termine more than the unitary invariants 9 

though it was customary to. use certain 11normal forms o 11 The experiments 

always depend only on these invariant combinationso This settles certain 

controversies in a simple wayo One H that can be obtained from another by 

such transformations in equivalent as far as the experiment is c:oncernedo 

For inetanoea 

A consequence of' lept.on conserva.tlon is 



\ 

'' 

;. . 

od 

D ~ D "' 0 R L 

1. . R . 
' ~- transforms according to . ·v 

. OR 
T.,, ::;; t!w R 

-v 
where 

(~: \ R 

Pv ~ ( U(:); and 

while 

· where · 

Cl.early9 

. ~J 
U-l!· ;;:; U · and det U ~ L 
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Invariant condition 

(:. ~b) 
:v 

a* 

. 2 In terms of the two component lp 
71 

introduced previously 9 we may write the 

, neutrino part of H. as g 
1nto 

C ITiR+C Q)L 
Ri '.t' 71 . Li .>-v 

where~' .. , 

. ':r: . . ,:.· 

.':<' 

,:•. 

. "'" 
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=139= 
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\ Then 

·i will be invariant if 

0 

., .. , 

If we write the transformation on the column vectors instead 9 they will 

transform as the complex conjugate matrix rather than the adjointo This 

ls the· situation in the texto 

.3 Since the·free particle equations are invariant under the unitary group 9 

... 

----1 -~ 
the momentum9 energy fl and L:_ "p carried by the neutrino w.ill not differen~ 

tiate between a neutrino of LY-v R.9 for example.9 and lfl-v ROo'' Thus if we kee~' 

Ho ., invariant» the experiments will only give information concerning m...,.; 

the quantities fo~ed from the coupling constants which are invariant under 

·,the groupo· These invariants are easily constructed using the two component 

notationo If we consider g 

theng 

whereg 

Thusg 
0 '!til c c. 

* ~1 
.9 and U :;::: U 0 

. ,. 

•.'\ . ,, . ·.; 

'•' :,~ 
· .. ,· 



• ·! 

.. , . 

3 (Canto) 

so that 

c~Rl cRj* ·= 

~ * 
""Li C.Lj -

FOOTNOTES 

invariant 

inva:dant 

R ;;;.:: A 
ij 

=A L· 
ij 

We have seen that transforms as 

·so also;; . 

G D -..1~ D C .... invariant ::: B . 
Rl LJ Ri Lj ijo 

[we not~ that group (I) also has 

however~ 
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CRl DRJ? = CRJ" DR. ::::: invariant9 but this is not invariant under. 
1. 

group (II)] 

4 . 
These relations follow simply from the two component notation 9 since for 

any vector 9 ~ (:in a positive metric) g 

·, 
~ "1. .. ~ . 
... ·~ 

., 

.. .. 
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· We will now consider the normal forms and invariant conditions for various 
. . . 

conservation laws,, The· normal form can be reached if the corresponding invar:tant 

condition is satisfieda· We have already seen the conditions for lepton con= 

servation 9 which may be fulfilledo There is as yet no disagreement with ex~ 

• 0 • per llllen ... o Nowg 

Parity C.Q]l§.~ tion (certainly violated) ~ 

andg 

. ·, 

L :;; 0 
i'' J. 

* I J 
ij ~ 

or A L = AiJOR . "\. ·. 
ij. . I 
or B , •% B ~ 

ij . ,, 

. (The +and= are not equivalento) 

Then8 

C = G D :;;: 
Ri Li Ri 

Qha~~~~Qlll~~tiQD, invariance (certainly violated)g 

L R* * A j, .. A and He(I ,J ),_, 
ij :ij ij kR ' 

1m K ·-· He ]~ •··· 0 
t,j ij 

./ 

Invariant cond~ 

Normal formo 

Inv .. cond .. 



I· .. 
! .. 

:!I 
IJ 

·. 

. \.. 

' .·' 

.. '· 

'. 

Normal f'orm:~ 

* n :::n 9 Li Ri 

Thus 9 · for the invariantsg 

' . . ,. 

iCX 
e 
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Im C - Im D ~ Re C u ~ Re D ~ O. 
i i i i 

1<::>(. 
e 

'. Iim~ reve_ua1 .invariance (no disagreement with experiment) T ,-...J CP) g 

L 
are all real. 

• .. ,-
R 

A;. 
~J " A ij 

ll B 
ij 

- <.' 
,11..,·.' 

; ... 

•· 
Invariant conditions· 

are all real. · 

Normal form. . ' 

are all real 

c 
~ (x) 82 4J (x) Normal form. 

[_~.1 electromagnetic forces must be zero 9 but m is not; necessarily zero] 

Now 9 the combinationg 

c: tp (x) + 'V (x) . 

will have nn interacti<On with matter.~ while 

will not. (Thus the latter cannot be said to exist in this c:onnectiono) 

··' 
I.·.· 

i 
.• --j 



' ' 

This the.n leads to a t·w-o state theoryg 

The invariants can only be used if 

A R A L 5l 

i,j k~ 
B B 
:ik ~1e 

1 m ~ 0" Then we findg 

UCRL=8213 
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'Tht::~ 1'1aJN'ana c:ond:ition is .~RJJJl25!Jj,b1§. with parityo There is no disagree..; 

ment with e~:peri.men·t then.~ but if leptons are , conserved there· will be o 

If 'W'e consider m0re restricted two component theories 9 we ca..'l'l be more 

specifico We considerg 

A 
L 
~ B g; 0 Imro c.ondo 

ij lj 

C ~ D ::;: 0 
L L 

The experimentally ·observed polarization. of' electrons indicates that the couplings 

in·this model must be .S9 'T 9 (P)o 

L=modelg A 
R 

B ::;; RB 0 Invo condo 
ij .ij 

c =· D ~ 0 Normal formo 
R R 

In this case 9 the inte.raction.a must be Vi! Ao 2 In both cases the M'ijorana 

condition is fulf'illedo 

From these alons 9 lepton charge conservation does not followo It is 

something newg 

I 
;< 

·"' }( 
.U. 

K 
jj 

(No dtsagroomont) 

These developmEmts a1."e fm.tnd :ln the papers of Purst3Y and L'uder·s i:n Nuovo c:i.ment.o ,, 
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WE~ pass now to the spectrum9 to see what. information c:an be obtai.nedo 

We gi.ve the results ,J.f the pert.inent c;:alculationso The beta spectrum :is 

given asg 

N (E )dE ~ ~~(E ) F( 
I e e t"n-'" e ~.:; r! J 

_where the upper sign, corresp~nds to negatons 9 and the lower to posi tons o 

r F(Z~E8 ) is the:coulomb correction~ while (1 ± b ~6/Ee) is the F:1Jarz term 
. . 
(.1937); and ~ is the :r·elevant matd . .x elemento The statistical factor 9 r ~ 

·was computed independently of Fermi by Fo Perrin 9 who correctly concluded 

· that m, "'-i 0 o We find a detailed account in the Handbook of Beta and Gamma 

Spectroscopy9 edited by Siegbalm (see expecially the articles of Co Sa· Wu,, 

,and Mo Eo Rose) o 

·we will give the result for non~relativistlc nucleons 9 no coulomb 

.co~rections (r (Z 9 EE) g 1) 9 and allowed transitions o 

For the Fermi=t;ype of transitions 9 (S 9 V) IS I ~ Oo For Gammii=Teller 

(T 9 A) 6. I g: 0 9 ± 1 9 with 0 -..-:., 0 forbiddeno ·The pseudo=scalar only appears 

in the relatbristic correction to nucleons o , (P vtescapes o ") 

Now~ ·one finds g 

~ , : 

(: 2 2 ' J 
M ) ReK -t· I M I Re K 

F sv · GoTo TA 

where the K0s are invariant K 0so The most important factor in'the spectrum 
i.j 

is f (E ) o 
. e 

To comput~ / (E 
8

) ·" we need~ 

.. 



""""' 
{ ' ... 

where 

( .f' 2 2 ~ ( ) 
d Lp dp P .. dp 'b'l.E +m_.=E =E 

._) -e ~ -v 71 0 v e 1.1 
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___,., -7 
dit is the element of solid angle between p and p 9 and E + m ~-

e -v o v 

will be the change of energy i..l1. the nuclear configuration.~> so· that E will 
0 

be the max.·1mum en.ergy available to E o Nowg 
e 

E dE '~ p dp .Q 

e e e e 

I( (E + m = E , ) ., 
o 11 e 

If m ~ 08 . -u 

p /'-v p E (E = E ) 2 
./ ee o e 

· .. --: 

Thus we fir-td a quadratic depr:mdence near E
8 

··- E
0 

o If m11 i· 0 9 there · 

will.be a region for which 

and here g 

·. If m11 #- 0 9 there is also another factor in the spectrumg 

mm 
(1 = G 'E e E 11 )o 

e v 

(See Jo Ro Pruitt 9 Phy-s~ Revo .7J.i 1219 (1948).) 

Langer ... Muffat IPhys., Rev ... ~6..1, 689 (1952) find for the neutrino masss 

m < 250 fJ.,Vo v 

. . - . 
• ,, • ... .. A, < 'J 4 ·,, , ... !~ I • .,, .. .,f'~' •1·~-· 

0 
,,.~ .. ~'~j""f ).', .,.,., 'i' 
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Otherwise the free neutrino equation.is not invariant under the unitary 

groupo 

The A35 exped.rnent..., and electron capture in Eu152 seem to indicate that. 

the R-model is ruled OlJ.t.a 

' .• 

·. 

1,· 
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We now set mv:;: 0 .~ and the spectrum for r-decay is given byg 

m 
N_(E )dE ·= 
+ · e e ~ (1 ± b ·-~ ) d E 

whereg 

E e 
e 

. p(E) :;; pEp E ::: p E'(E ·- E ) 2 
·f e ee-v'Y ee o e ·9 

. . 

S:; I MF 12 (Kss + Kvv) + / HG,To 12 (KTT + KAA)y 

Re K ~ 
T~ 

The "b" terms are the Fierz termso 1 These are for allowed transitionso The 

pseudoscalar, P ~ escapes detection in this limit since the non·=relativistic 

· limit for its nuclear matrix element is zeroo The Fermi terms are obtained 

from S~ V and the Gamow·-Teller from T ~Ao The Fierz terms were given in a 

paper: Zso fo Physo 104, 553 (1937)o These would influence the shape of the 

spectrum for small energieso The experiments indicate that such terms are 

If there is T either zero or very smalL Thus Re KSV - Re KTA :: Oo 

invariance P the Re can be omitted, so that KSV "" KTA ·~· 0 " 

(or PC) 
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He must. now consider other ;?--experiments o We will only give the results 

of perturbation calculations in terms of the invariantso This is not only 

agreeab1e 9 but practically usefulo 

PolarizatiQn (of electron) 

We define: 

I ·-·I · 
l 2 

p .... ·------
:;: I + I 

1 2 

.where 1 and 2 correspond to spins aligned parallel and anti-parallel to. z~ 

th di . f . 0 f" d 2 f A'Io0 , ' e rect~on o mot1ono ne ~n s or r 

. ; 

whereg 

M \ 2 
Fl 

G 
m 

(1 ± b ''E~ ) 

(L 
ss 

e 

9 

(L ·~· L ) o TT AA 

Experimentally one finds G ~ ~loO ± Ool both for Fermi and GoTo g 

although the error is large 9 G ;;; .~ 1 is ·not in disagreement with the experiments o 
! 

Then for: GoTo 

or 
R 

A - 0 AA -

since Thus we findg 

In the same way for Fermi~ 

. ~ . . '' 



. . 

andg 

L 
ss 

K 
ss 

=1:49= 

0. 

L ~ K 
vv vv 
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According to these formulasJ both P and C are violated~ since from Lecture 18~ 

- P requires L .. ~- On and C requires L .. ;:: ~- L.. so that L .. o:< Oo 
~J , lJ Jl ll 

The Coulomb corrections require a more detailed discussion, but one 

still finds that CjP are both violatedo 

Much more can be saido We have already obtained inequalities of the 

Schwarz typeg 

\ 
2 <-_ A.. A .• A .. 

lJ ll J J 
(for either R or L )o 

There followsg 

~ 0 for all 

LSi 
:;:; ~ Kst L K L KAi L = 

KVi J -- = ·- ' 
~ 

Ti Ti Ai Vi 

Thusg 

KTA = ~ ~A 9 KAT :;;: 1AT 

* * Therefore~ since Kij >W' Kji J Lij ·- L 

' ji 

K ~ L ~ Oo 
TA TA 

We also find for the pairs TV 9 sv. SA 9 TA 

K •= L .. :;;: 0 0 

ij lJ 

Finally!, the only terms whlch cEJn be different from zero are~ 

L -~ K 
AV AV 

L :.:: ·-· K 
S'I' S'.l' 

ifl' ·' ~r: 

... 

... . 
! 

'··l 

1 

' ' I 
I 

l 
• 

,! 
.i ., 
r 

-~ ., 
I 
I 
! 
l 
! 
; 
~ 
I' 
I 
t 

l 
i 
~ 
r 
I 

l • 
" r 

r 
i 

l 
! 
i 
l: 

i 

11 

~ ,, 
' I 
' 4 

: 
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\ .. Je have not yet, used 1eptor:.. <:'.onser-va"Gi;:r:-, or T 

T~us the system of po.s;:;tb1e GO'~pli:Jgs dacomposes into 2 clas:ses: 

(A,,V) 

(S~ T~ (P) .) 

From the allowed spectra~ He c:onnot distinguish thema 

The choice G = c:. 1 would imply a two component theory for the neutrinoo 

This development 9 howe;rer~ will not perm::..t cne to oon•.Jlude that the 

two=component model .!llid§.:1 be true o vie can make tvo !.c;hoices ~ 

all A L ; 0 
ij 

I 

This model is compatible with the preceding evidence for . s;, T? 

L=modelg 
. R 

all A, o ·- 0 
~J 

K"" • ., + L 
lJ ij \ 

This is compatible with A9Vo On the other hand 9 the polarization experiments 
·, 

say more than one obtains from an arbitrary 2=component theoryo Not only 

are KTA ~- l..rA 9 o o o, but they are alSo zero o 

of the situationo 

We can now conclude for the B1s that 

B. 0 g; 0 o 

lJ ' 

since 

This gives a different aspect 

There are still other experiments to be considereda These include the 

f-t asymmetry in ejection from nuclei with aligned spins o If 8 :ts the 

~ "7 
ang]e between_ p

6 
and the nuclear spin 1 the distribution of electrons 

is given b) 

1 ·\- C>( cos 8 
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whereg 
A 

m 
(1.-:l:b e) 

E 
8 

andg 

' ' 1 

( I )-2 I M I l M I 
+ ~IP '1 0 1 F I · G.,To 

o 2 Re (L - L ) 
· ST VA 

where I~ II are.the initial and final nuclear sp:i.n stateso ('Iz) /I 

is the polarization of the nucleusJ and p /E is of order v/c ~ e e 

The 

1 

For pure GaTo we get the same evidence as before~ 

A:::.-L 

quantity A is gJ.ven byg 

' /- p I·= 1 

~! ~ 
=· 

~II' ! I+ 1 ru ~ I 

~ I p I+-1 ·-
I+ 1 

FOOTNOTES 

It might be of interest to indicate how they arise. In computing the spectrum9 

one needs the square of the matrix element of H. t between the initial 
1n o 

and final states~ since the transition probability is 

where ((E) :.:: density of final states, We must average over initial states 

and sum over final states which are not distingul.shed i.n r·~decay spec:traa 



•. 
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Thus we sum over all neutrino states and over positive energy electron stateso 

Now 9 in 'the QQD:::J:&.1,g:t_;iv1&.td:SL1imi1. for the nuclear matrix element9 ·only . 

,. 

HF ~ ("f;p~ ll\JN) ~; (typ9 'C4 ~N) 

~· I < lf C.ijk(tpP1 £-k .N) 

are different from zero" In terms of the two large components~ we thus have~ 

-· 
·Terms inv·olving ~ cannot interfere with ones involving M_ since the 

""Go To~ 

nuelear states must be different in the two caseso Let us now consider the. 

Fermi 'transitions in a s:imple case for which ·cR ·~ CL and DR c:: DL ~ Oo. 

Then on appropriate averaging and summing we get3 

I (f I Hint., I i) ( - / ~ 1 2 
' Z ~ e (cs {j!v + c1J ";. <V.) " 

. Now 

(~J * C ~~ + C * 4/ y . )P (~ ) *.] 
'' S V 11 4 + e 

o\U ~ and the projection operator for positive energies is 
4 e 

(see Lecture 59 Po 6), · 

and on taking the sums.~ we obtain~ 

; ' 

.\. 

' • 



'-. 

·,. 

'' 

2 
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FO'JT \lQ'J'ES 

Thus we obtain the form indicateda The treatment is similar in the more general 

caseo For positrons 9 the projection operator would change and the opposite 

sign would occur in the second termo 

·In this case 9 it is necessary to discriminate between the neutrino spin 

1 states a For simplicity~ let us consider a Fermi transition, with only R-type . 

' neutrinoso These will introduce a projection operator (1- ¥
5
)/2 (see Leco l?)o · 

In addition 9 we must introduce a- ~ since P is given in terms of. the z 

expectation value of 

since (=1 't 't ) ~ 2::, 
1 2 u 

(}o 
z; 

Then. we must obtain: 

l - 'lr- · ( R* R* ~ 
(-.-2) C + CV 't ) ( -i't' ~ ) t t-'::- oE__+ _f_m -OJ) 

2 s 4 . 1 2 4 2 c.J 

On evaluating the trace~ we obtain 

which is the indicated forma The other terms are treated similarlyo 

3 This result is obtained similarly to the precedingo The principal difference 

is that the nuclear elements must be considered for their I dependence. 

On carrying out the Tr as previously for summing over electron and neutrino 

states~ we are loft wJ.th a form for a pure GoTo transltlon like~ 



~ ·, :~ ~· 
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3 (Cont .. ) 

_,-

- ' . 

·. 

. . . , 

\ (f I Hinto I i) 
2 cr \ u.~ *o- ~ 1 n cr 1 t ~ !}! 1 i) * " 

'p k N P .? N 

J( (·-· ); 

"kQ 

Using the rotational invariance of the system, the result can only depend 
_,. 

on cos 9~ so that only (p"') may enter o The su."l over kre - may be readily· 
' v z 

carried out us:l..ng the general. expressions for the· metrix elements of a vector 

to give the desired resulto 

. '-

',-

'" • .. 

• fi·, 

. ' 

-. 
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The first experiments in Co60 ~ which is a pure G.T., give the asymmetry. 

In Co58, which is mixed, one anticipated seeing the effect of the second term, 

but it was not found, presumably because /' ~ j < < \ MG. T. J . In the f - Y angular 

correlation experiments, however, such a term was observed. In this case, if 

e is angle between the momentum of the photon, -'> pk' and the electron, 
~ 

Pe' and 

{

+1 

- 1 

for right circular polarized Y's 

for left circular polarized Y's, 

then for electric dipole radiation and allowed f-de~ay, we obtain an angular 

distribution of the form 

1 + -t cos e 

whereg 
c 

m 
(1 :t b E e ) 

e 

andg 

cs 

The second term has been observed in sc46 at Pasadena. If one assumes the 

two component theory, then this relation can be used to get the ratio 

I ~·/I I MG.T.I 
0 



From the polarization experiments, we deduced that 

Re (LST ~ IyA) g;; - Re (KST + KyA) 

We can get a further relation if we invokeg 

(1) Time reversalg This leads to 

and 

(2) Lepton conservatiom We then obtain
1 

real. 
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. . . 
Although all of the concepts developed up to now are consistent with 

the experiments, this does not constitute a proof of their validity. 

There are also some strange~ heuristic principles which have been 

introduced, and although they are not understood 9 they seem to work. These 

can be traced back to a paper of B. Steck and J. H. D. Jenseng Zs. f. Phys. 

141, 175 (1955). This paper was written before the parity violation was 

known, and was based on the lack of Fierz terms in f decay. 
·.' 

Thw considered the transformations~ 

o/e
1 

= 05~e' 

and introduced the principle that H. t 1n • 
should be invariant. This leads 

to a vanishing of the Fierz terms, since one can then either have· ~~T~(P] 

or (V,A) in Hint.' but not both. lAn overall sign change on transformation 

is irrelevant~ This principle is not easy to understand, since it is not a 

principle of nature. The mass me is an obstacle since the free particle 

equation is not invariant under the ~ transformation. This paper anticipated 
' 
the f =decay, since it was predicted that f = 3/4 or 0 for this theory 9 even 



\,..,. 
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with parity conservation. The Yang-Lee neutrino was given by invariance 

under 

alone. This gives the parity violation. When combined with Steak-Jensen, 

this gives tp 
9 

= t 't5~ • e e 

These principles were considered further by Salam, Sakurai, and Feynman 

and Gell-Mann. 

If we assume invarian'ce under ljJ 1 ~ '( 
5 

tp, we find that to obtain non­

zero results~ 
l+Y 

( 5)o/ 
2 e 

[s,T,~ 

The first choice is the R-model, and the second, the 1-model. Recent experi-

ments seem to pick V~A rather than S,T,P. 

Thus~ we seem to haveg 

H = G(lV '~v (1 ± o )l/J ) (lp '( u (l:t '( )tV ) + h.c. 
int o 2 I 5 1 4 I - 5 3 

The sign is difficult. If electromagnetic effects are not considered, the 

choice is only a convention. The connection between R,L, and the electric 

charge is the question. 

That the coupling constants are equal does not follow in this formu­

lation. (See Sakurai.) This is not in a universal form. Pauli feels that 

we don 9t understand the transformation because we don 1t understand the source 

of the weak interactions. 
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For further work, see: 

Feynman and Gell-Mann: Phys. Rev. lQ2, 193 (1958). 

Sakurai: Nuevo cimento 1, 649 (1958). 

UC~8213 
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Another way of looking at the situation (perhaps equivalent to the first) 

begins with the possibility of eliminating 2 components in the Dirac equation 

by going to a second order equation (see H. A. Kramers: Quantum Mechanics -

German ed. 1938, p. 280, English ed. (ter Haar) 1957, p. 272.) 

We find that the Dirac equation can be written: 

L R L 
(~ 9 x ) tJI +- m lj> 

f e e 

Th f . d 1' . t' 2 en, we 1n , on e 1m1na 1on: 

L 
= 0 e 

2 L L _a_ R 
(O - m ) 4J ;: m w + ('(Max ) W 

e e t fo e 

Thus, if we assume that the derivative terms vanish, the equations split, 

and if W R = 0 , only tiJ e 
1 

will be coupled: 
e 

2 L L ( [J _ m ) 111 _ m UJ 
1 e - e 

There is a remark by Heisenberg which is of interest here. He considers 

what a theory might be like if it were truly Y5 invariant. Then for all 

\' 



•' •' / 

·, 

fields satisfying 

-5-

('I a tjJ + m t}J) = 0 
raxP-

we would also have fields with 

('ll' a tJJ - m ~ ) = 0 
f" ()x)A 

The real world~ however~ would only incorporate half of these. 

FOOTNOTES 

1 These follow from the invariant condition 

2 

and 

A A -A A 
ij -lc.~ - i ~ -lcj 

L L R R 
AS1' = A_. = A__ = A = 0 -~1' 1 --y i Ai 

These are readily obtained. From the Dirac equation, 

UCRI,.;.8213 
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we get the first equations by multiplying by (1 ± ~)/2, where 

R 
w = e 

w 
e 

If the first equation is multiplied by Yr a~ , and the second is used to 
R JA 

eliminate the terms in ~e ~ we get: 

( d)( d) L 2 L _2_ R L 
~ d X }< a X l\) e - m o/ e : )'JA. () X W + m W f f' '-_ JA e e 

which gives the indicated result, since (~ rl-) (Yft ~) = 0 . 
fA- JA 
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u-meson decay: 
I 

Notes by R. J. Riddell 9 Jr. 

Radiation Laboratory 
University of California 

Berkeley~ California 

Spring 1958 

For~ meson decay~ we have several choices: 

A) ~- -7 e_ + 17 + -v .;U- 9 e_ have equal leptonic charge. 

B) f- _,..e_ + v -t- 77 

C) p- -; e_ + 11 +- v 

)A- 9 e_ have opposite lepton charges. 
e_~ lJ are the same - (from 1 decay). 

No leptonic charge conservation. 

The various possible interactions areg 

Ag Hint. = f (ipe e'i Lll) [ci (~ 'V e'i q; -) + ci 
6 

((jj v 6i y5l)J v~ + h.c. 

B: H. t = 2 (~ e'.~) ~i (~llc9'i <j}11) + Ci 
9 

(4J"t/ce'i '(5l}JV~ 1n • i e 1JA. 
+ h.c. 

Hint. ::: z: (tjJ 6' l/J ) [ci <~ 11 e'i tV~) + ci 
1 (~ i/ e'i'f5 ~~~ i eiJ"-

C: +- h.c. 

It is convenient to introduce the abbreviationsg 

* n D* * kij = c.cj + c. c. k .. :;;:; k 00 

1 1 J 1J J1 

(. '* + n * R .. P .. * = 

' 
:::::: ~ cicj ci cj 1J 1J J1 

These are not invariants here. 

The computations ofg Kinoshita and Sirling Phys. Rev. lQ2, 533 (1957) 

Bouchiat apd Michelg Phys. Rev. ~~ 171 (1957) 

give the spectrum for both cases A and B. One finds: 
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N(E ) dE :: l muE p ~ ¢ (E ) dE ~ 
e e 3 (2tr)3 1 e e e e 

where: 

and 

¢(E ) ::: 3 (E = E ) -1- 2 0 (~ E . - E = l 
e 0 e I 3 e o 3 

m 

m .2 
l) 
E e 

+ 31 Ee (Eo - Ee) ' 
e 

2+m2 
E = m,t e ~ 

0 2mf'-

Yl }::: (k . = k ) = 2 (k = k ) 
l SS pp VV AA 

UCRL:-8.213 
Lecture .21 

(' is the famous Michel parameter. 

of the spectrum Ee = E0 • 

If f = 0~ N(E ) disappears at the limit 
e 

The 2=component models (Case A)~ 

Both models give pure V1 A interaction. 
a . R u 

R: Ci = =Ci or Ci : Ci = Ci 



., 

-3= 

where 
R· L 

a , a are R»L projection operators. 

aRt!>,;= ~aL 

We also find that 

R 
a crs T P 

~ ~ 

and similarly for L 
a e-. 

L - R 
a 4> ""'~a v &I 

Thus» in case Ao 

and only V~ A are not : 0. For the R=modelo 

L-modelg R. j = k. . • Thus g 
1. l.J 

They satisfyg 

L 
a 

UCRr;.8213 
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/ 

f .. ::: -k .. » while for the 
l.J l.J 

where K = R or L. From the Steck = Jensen transformation, if we replace 

4Je ~ ±" Y
5

tpe and require invariance~ we find~ 

and 0 

Further~ for pure V~A the Michel formula gives 

r = 3/4 • 

The experiments give a value slightly less even if radiative corrections are 

included, but the disagreement is within the errors. 

Case B. Here~ there is definite disagreement with the 2=cbmponent model. 

Independently of the model» only SpA~P are possible, since 

This requires that c~. be skew-symmetric.1 
1. 

Symmetric terms will vanish. This eliminates V»T. 

If we also·require the R or L model~ only S~P are left~ 2 and 

for them 
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ci ' = ± ci ' 

where i~j - s,P. Then: -
e .. -- kij R 
~J 

Qij 
= 

kij L -

The Steck - Jensen requirement gives further: 

C 
L _ C L 

s = -r p 

UCRL-8213 
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The two component model, with only S~P, gives = 0 , and so is in disagree-

ment with the experiments. If we do not require the model we can say little. 

The value~ f= 3/4 ~was predicted by Steck- Jensen, and is independent 

of the 2-component model. 

The asymmetry experiments for jt decay are also in good agreement with 

the model. If we let e = angle between the spin of the f and momentum of 

the ejected electron~ the distribution of electrons is given by~ 

1 t a cos e 

whereg 

~ gives the polarization of the f meson~ 

In Case A for either the R or the L model: 

0 <t<l. 

.i 



•, 
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The Steck - Jensen condition in addition givesg 

UC~8213 
Lecture 21 

u 
In the actual experiments~ 9 is not measured 9 but rather e 9 the 

-'I' ~ 
angle between the momentum of the JU» p~ ~ and Pe is measured. 

The distribution is~ 

+ For f' g 

The spin of the f is not directly measured~ so -+ u a = - a since on the basis 

of rotational invariance alone~ the )A from 11 decay can be polarized either 

in the direction of or oppositely to the.direction of~. If we believe the 

2-component theory» then ) C A / ;;; I CV I is not in disagreement with the 

experiment. 

1 This arises fromg 

FOOTNOTES 

( ~ 11c G"i LV,) ~ ( ( C tV.) (fi !J;-v) 

= = (4J c &: tV ) 
..,; 1 v 

( (lYlJ)~:>< (4J11 )~ ) (C e'i)O(,P . 

=- t( 

2 For example~ with the R 

<'I' ,;l" ( "'" ),8 • ) [< CCl'i) "'f - ( ce'i) f~ 
model 9 we haveg 



FOOTNOTES 

2 (Cont.) 

R R = (tfil C a I:Yia !J.iv) 

since CaR is skew symmetric, because both C and CY5 are. 

UCRr.-:.8213 
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Thus~ for ~i to contribute, R R a e-'. = e'.a 
J. J. 

This is true only for S,T,P. 

A similar discussion holds for L. 
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The Maiorana form for the neutrino. 

In the Majorana theory: 

t}Jv = ~-vc 0 

For the p -decay, this requires that1 

I I 

CV = CA = CT = CT = 0 o 

UCRI,.;.8213 
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For such a systemy the canonical commutation relations are modified. We have: 

i lV-v (}t) ' tp~ * (3t i )} 

and using the projection operators 

R _ l - '(5 
a ---~ - 2 ' 

we obtain: 

~~"'R (~)' <J!p *R (il• 1 - R 
= a<:>< f , 

~: (~)' f (il·~ - L - a<><p 

~~ (it}' ~*R (~'~ :: Oo 

However, 

t <jl 0< (il) ' [J)f (;fv g = E '8(3) 
C>(f 

L l+tr 
a ::: --~5 

2 

'b(3) ('"" _,0) X- X 

8(3) (~·-"1') 

(__, ~,) X- X 
' 

(not zero) 



since: 

where: 

Also: 2 

and so we obtain: 

(~) 

-2-

c * ~ =E~ = lj)' 

E = - o c-1 , 
4 

' 

,v 

E = E E E* = 1 o 

~: (i!), ¢/ (;1•1 = (a~)"'f' '0(3) (it-il') 
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In the Majorana theory one cannot obtain an ordinary vector, but only 

a pseudo-vector: 

Since 

jf = i ~ y 5 } lfJ 0 

. . 

R R 
Y a =-a 5 . 

L L 
a-- a = a 
5 

we find for the R-model: 

while for the L-model 

jf'. = - i tjJ '(t- tP 0 

In particular3: 

· - 1 · - ti1R* thR _ ·~L* ,1,L J --J -·'f 'I'- l.jl 
0 i 4 

Now: 

and 
R *R L* L 

tjJ tV = t.P 4> 



•' 

/ 
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so that we see that j 0 is already written as a commutator~ as it should beo 

Thus: 

If we write 

Lepton charge = + Qv = t J j 0dV' 

we will have the same for electronsg 

dV 

(_The sign is not definiteo If we choose the minus sign~ R carries a minus 

charge, while L carries a plus charge. The situation is reversed for the 

plus signj 

The Majorana form plus lepton conservation is·entirely equivalent to 

the two-component theory. There is still the right-left freedom. This 

situation was stated by Touschek: Nuevo cimento 2~ 1281 (1957). 

In f decay 1 we set: 

Qlept. _ Q lept. + Q.,, • 
- e v 

We can get a Majorana theory with no lepton conservation by mixing the R 

and L. 

We might now ask: What is the gauge group associated with lepton charge 

conservation? 

If Q
11 

has minus sign g ljJi 
e 

icx. 
= e t.Ve 

icx r 
= e· 51/) 

v 

• 1 -iO(Y
5 If Q ·has plus sign: tJ; e 

1 = e1
cx. tPe ; tfi11 = e !JJ1/. 

These are then the gauge transformations for lepton charge •. The. ¥5 

is needed in the ~ equation 9 since R and L must be separated: 
11 



In the f decay: 
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L ·· i~ L 
t.l'v _,. e 1/J v 
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A. fL -7 e_ + v + 1/ 

v+-v ;;.- ~e- + 

(Corresponds to experiments) 

B. 

The gauge groups are given by: 

tlJI "0< I iOI.. I l:ioc: '( 5 A. = eJ. tjJ e ; tj)f = e tJ; • !jJ = e ·<); e ,f ' v 7/ 

I it>< I 
-i~ lV, 4!' ti<:><(5!fi B. lJJ =e tJ;; ~ - e • ... e • e e - r-' v 7/ 

The transformations are always given by: 

I -iC>< Q ,IJ i<X Q 
tj; = e l..f'e 

·and if D< is infinitesmal: 

= - tPe 

= ± tfJ R 
v 

= + ~ * e 

- "' L =+'t' • v 

The preceding method of writing the current is instructive, since j 11 

is a pseudovector while J• is a vector. e This lepton conservation must bring 

a parity violation, since the sum of an ordinary and a pseudo quantity is 

conserved. This is the case in f decay. In the f' meson case the situation 

is different since we have two neutrinos and there is conservation for ~ 

plus e, and for the ~'s separately. Thus we can't be sure that P is 

violated here. 

Finally, we might mention the 1T decay. If we believe in a two-

component theory and lepton conservation, then in the decay 



./ 
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the JA and 7/ have opposite lepton charges, and so for 1T- decay, the neutrino 

must be an antiparticle, since the muon is a particle. Experiments of the 

asymmetry and polarization of the electrons in )A decay taken together indicate 

that the ~- has right handed polarization. We conclude that the ~ is also 

right handed in the decay: 

'iT--?-+ v 0 

Since the v in f decay seems to be left handed there is no disagreement 

with assuming that the neutrinos in 1r decay are the same as in f decay. 

FOOTNOTES 

1 This follows from 

so that: 

( 4J 1.1 ~i <jJ .) = - ( ljJ 11 CE1j_ ~ 1) 

and so C~i must be skew symmetric, thus eliminating V, T; or Y5A1 

¥
5
T. Since ·~ = -~ c , all three cases are alike. 

7J 7J 
2 From Lecture 16: ( ljl R)c = ( 4J c)L 

Thus: 

Finallyg 

iljJ<><RCi!)' oJ>/ (i• y = R*t E~~ (tjJ )~ 5 

c-(3) (~ ..,., ) 
u ·x-x, 

-v 
since E = E The other case is similar. 
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.FOOTNOTES 

'' 
., 

R L R . L - ~* (a +- a ) -r4a5 -(4 (a +- a ) tP --

R L '(5 R L - q.>* (a + a ) (a + a ) lJ; --

Now: 
R R -1 L L * 

(()I*)<>< !PO<. = (E )o<.f LV f E 0( ~ ( tP ).r 
L L * 

- ~ (tJ; ) 
0(. ~ 
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Some further remarks on weak interactions. 

UCRL-8213 
Lecture 23 

The 1i decay has been discussed extensively. In principle, we might 

have: 

(1) 1T ~ e + V 

'(2) '1T -7 p +- 7J 

The former has not been observed, and one has a limit for the rates: 

This is not easy to understand. One can introduce intermediate states for the 

decays: 

1f- --7 n +'\_u -7 

-rr+ ~ p + n. 
~, \\ 

where the first is a strong inte~action, 
t::: ' 
and the second a weak one. A pseudo-

scalar (P) interaction is ruled out since it gives predominantly (1), while 

an axial vector (A) interaction gives (2). Thus A is better~ but one still 

finds too much of (1). The calculated ratio is~ 

This is larger than the experimental limit. 

This difficulty is an open problem. It is not entirely excluded that 

there is a direct interaction~ 1f ~)A- + l/ 9 but probably there would be other 

difficulties. The nature of the masses may be involved in solving the problem. 
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m is probably of electromagnetic natures and the mechanical mass may be zero e 

(non-electromagnetic approximation.). The mass of the -fl seems to be partly 

non-electromagnetic. It is possible that the difficulty here is related to the 

difference in the origin of the masses. There are as yet unpublished reports 

of Feynman~ and of Ruderman and Gatto on the problem. 

One must also compare the decays in 

7( ~ e +- -y + :v 

1f ->t fA. + y -1--V 

Again the ratio is less than 10=5. This is also difficult to explain. 

J. c. Taylor [Nuovo cimento £, 1226 (1957D has found that if the 1f' is 

coupled to nucleons by 

then the ratio is 10=5 The coupling 

gp (L\J '( ~N) 
p 5 

is disfavored by a larger ratio. Pauli doesn 1t believe that perturbation theory 

is permitted for the first stage of the intermediate state calculat~ons. Although 

the part of the calculations dependent on the strong interactions drops out in 

the ratios 9 hyperons 9 for example 9 could upset the calculations. 

Brief remarks on A decay. 

(See J. J. Sakuraig Phys. Rev. 108~ 491 (1957). ) 

The production of A 1 s is believed to follow a strong interaction like 

= o Ko 
1T +P---'~>1\ + ~ 

while the decay proceeds via 

' 
in which parity is violated. The spin of the A is t~ and its isospin is zero. 

The angular dependence of the decay (asymmetry) is given byg 
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~ 

I (e) .-v 1 + 0< (i? ) pIT 
A I Prr I 

where 

o<= 
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This is a purely phenomenological formula in which A5 and Ap are the 

amplitudes of the emitted S and P states for the ~1 s. The experiments 

give (from Berkeley and Venice conference) 
_, . 

o<<_OA > ~ (o.44 t 0.11) r: , 
where ~ is a unit vector perpendicular to the plane of production: 

Here~ the asymmetry is better with gradient coupling. For 

lru&r- I 
H = - t:\ t/J.p (gv + gv y5) int mir 17Xf 

one finds 

Here~ ~ is given by g v 
I ill = g e v 

. ~ = ± 0.89. 

A non-gradient coupling, 

For cos ~ = ± 1, 
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gives 
C<' = _ 2p7( [Er(j)1T) +- H;j cos~ 

l_Ep (p-rr) + ~J 2 +. p; 
and for cos ~ = ± 1~ 

C<.. = "t 0.10 
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This disagrees with the experiments. It is interesting that the gradient coupling 

fits better. 

It is very significant that the neutrino does not occur here~ so that 

it cannot be the cause of parity violation. The original P violation observed 

was in the K decay. The Dalitz analysis showed that P was violated there 

(Phil. Mag. M, 1068 (J953); lhos. Rev..2,4, 1046 (1954) ) • The &' and l: have the 
.. 

same lifetime and mass, and identifying them we get a parity violation. 

General formalism of the expectation value of two fields. 

We will now return to the general theory of the expectation value of 

two fields. There is an old problem of the connection between spin and statistics: 

Integral spin is connected to Bose statistics; half-integral, to Fermi statistics. 

The question was treated by Pauli in many papers~ with the' stress on free particles. 

It is better to consider interacting particles, and this case was taken up again 

by Liiders and Zumino. The postulate of microcausality was also made in that 
•. 

field operators at spacelike positions were assumed to either commute or anti-

commute. There is one further pointg · If we permit any arbitrary kind of metric, 

then the connection between spin and statistics would not follow. Feynman has 

shown that with a very indefinite metric, one can have spin t particles of Bose 

statistics. Thus the positive metric plays a role. To obtain the connection 

between spin and statistics, we requireg 
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(1) Inhomogeneous Lorentz group. 

(2) Vacuum is the state of lowest energy. 

(J) Microcausalityo 

(4) Positive definite metric. 

In addition~ Luders and Zumino postulate~ 

(5) The vacuum cannot be identically annihilated. 

This seems to Fauli a little artificial. 

UCRL=8213 
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The Luders-Zumino method for the connection between spin and statisticso 

As stated previously, we assume: 

(1) Lorentz invariance under the inhomogeneous Lorentz group. No reflection 

assumption is madeo 

(2) The vacuum is the state of lowest energyo Then: 

<:A(x) A*(x 1))6: F (~)~ 

where F(s) is a function of the positive classo A* is the adjoint field to 

A~ and ~ = x - x · 1 As previously 

ik·s 
e 

where 

.= J dApO.) i 4+(x;))~ 
e'(ko) = {0 ko < 0 

G- k0 > 0 

Then F(-5) = F(s) for spacelike s ~ and thus 

(A(xu )A* (x) ~ = <A(x)A* (xu) )o 
for spacelike 'g • The connection is now essentially derived from a postulate 

that microcausality holds. 

(3) Microcausality requires either 

(a) 

or 
(b) 

< [A(x)~ A*(xn)J )> ... 0 

< ~{x), A*(xn )} >c, = 0 
l 'S spacelike. 
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The question is 1 which one holds? We will show that (a) holds~ while (b) leads 

to a contradictiono 

For· hermitian fields (self~adjoint), the proof is simple. For non-

hermitian fields it is not. In the hermitian case~ (a) holds as a consequence 

of (1) and (2) (see Lecture ll)o That (b) does not hold follows from the 

positive definite character of the metric. 

(4) If (a) .and (b) both holdg 

( A(x) · A(x 1 ) ::6 ::: 0 ~ for spacelike '5 o 

In a positive definite metric 1 this would require that· 

A(x) j 0): 0 o 

This is not allowed under the Liiders-Zwnino postulate #5. For an indefinite 

metric, the proof is not so trivial~ and is still an open question. 

For a non-hermitian field~ we have either 

or 

(b) ( ~(x), A*(x 1 ~ :>o = <0(x), A(x'~ )
0 

= (~*(x), A*(x')] )o = 0 

for spacelike 't . This can be carried back to the hermitian case, via: 

A ::: _1_ (A_ + . A ) \[2 -"]_ J. 2 

where A1 , A2 are hermitian. This is not quite the ··same as Luqers-Zumino o 

They require gauge invariance instead of the additional postulate ·about 

form. 

and \!*, A~ • It then follows directly .that < A(x)A(x 1
) >

0 
= 

(x)A*(x 1 ) :>o = 0 ~ for all 5o Then one can use (3) in the original 

. } 
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The reason for the LUders-Zumino argument is that they wanted to consider 

the possibility that A~ commutes and A
2 

commutes, but ·~ and A anti-
. 2 

commute with each othero Liiders showed that a trivial transformation can always 

bring one to the commuting formo 

The most interesting point seems to be the entering of the positive 

definite metrico Whether it can be eliminated is not knowno 

Let us now consider spinorso We begin a Majorana fieldo Now:1 

since: 

tf c ::; E ~* = LjJ j 

where g(~) is a function of the positive classo We make postulate (4), that 

Now we defineg 2 

t ~ 
ki;ki + dki 

and we findg3 

Thus 9 since F(s) = F(-3) for a spacelike ~ ~ we see that (b) holds in this 

caseo (a) and (b) both holding leads to a contradiction with the positive 

definite metric 9 since we would get 

··tJ; (x) I 0 ) :~r 0 o 
C>( 

In the non-Majorana case 9 we must either postulate gauge invariance, 

so that 
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< t (x) ~ (y) )o = <: ~o<(x) ~ (y) )o ,= 0~ 
or ma:ke the analogous assumption to the scalar case above. We then get to the 

Majorana fields by: 

, 11 ::: . , ~ ( tj) _ l}Jc ) • 
YII v2i 

FOOTNOTES 
1 From·· Lecture 12 ~ we have g 

""-. rr .£ I I .1_ II IIt -lJ < iJ'.., (x) l)ip (x') /o = Ll" asF + l·G + tlfff F + '(5G 5. c j"'-f 

and from Lecture 4g 

I 
Thus~ for the F term~ we haveg 

= (c¥4 ~ c-l)lf 

Iff'= 4» we get= 41 while if f'f 4 

Similarly, we find that all other terms vanisho 

2 See Lecture 12o 

3 We hadg 

( lf',/ (x) ~f (xn) )o ::: Ef;
1<·4J 0( (x) l)J~ (x 0 

)) =I k g(~) 



• 
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Nowg 

FOOTNOTES 
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LECTURE 25 

An essential point in the preceding development was the requirement 

of a positive definite metric. To illustrate~ we will consider some 11anormal" 

cases of an indefinite metric. For example~ we can obtain Bose statistics and 

spin t~ .. or Fermi statistics and spin zero. The case of an indefinite metric 

has been treated in an interesting way by Feynman: Phys. Rev.']£» 749 (1949)o 

This is very short. The discussion was shown to be essentially complete by 

Pauli: Frog. Theor. Phys • .,2, 526 (1950). 

whereg 

We consider first "anormal" scalar fields. For free particles: 

A(x) - .~ ~ V;w r ikoX 'k { ~ l a(~)~ +b*(~) .-• ·~ 

L·· •• 1 . 1 cb, b·J . _ 1 
·and all other anticommutators are zero. Evidently b* cannot be the hermitian 

conjugate to b. Rather, b* = - bH 9 where bH = hermitian conjugate. The 

states will now have norms of oscillating sign, according to the number of 

b t . 1 "Yl -·(-1)"2:Nb. par 1c es present. 'L -~ - The vacuum is defined by 

alo> =bjo> ::::: o. 

Thus: 

< b b* )o =- 1. 

This last sign is the important one 9 as it leads to the Fermi statistics. 



Now we find for the free fields: 

while the commutator is given by the L1 1 function. 

For non= free fields~· we set: · 
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If we now require microcausality for the anticommutator, it is necessary that: 

since~· 

( ~(x))) A* (xu~ )
0 

= F(;} - F(s*) ~, 
and this will be zero for spacelike points (s = real.) 

It is interesting to decompose A into its self-adjoint parts; 

A(x) 

Let us a'ssume gauge in variance. Then: 
" 

<A(x)A{xU) ;>a : <A*(x)A*(xu) >a : 0 

From this follows that 

< I I II II 
A (x)A (xu) = A (x)A (xu) )

0 
= 0 » 

< I II II I 
. A (x)A (xu) + A (x)A (xu) )

0 
,= 0 ~ 

Thusg 

< · II <. II I AI(x)A (xu) /o. : = A (x)A (xu) )a ::: - F(s) 

If we now require microcausality» for anticommutators, we get: 

< I I > < II II I I II II ~ 
A (x)A (xU) 

0 
+ A (x)A (xU) >

0 
+ <A (xn)A (x) )o +<A (x 9 )A (x) / 
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= G(s) + G(s) + G(s*) +- G(s*) = 0 for 'r spacelike~ where 

= 0 

for all ~. For the cross terms~ microcausality gives; 

I II > II I "\ /. I II "-, II I ) <A (x)A (xn) 
0 

- <A (x)A (xn) /o ~'\.,.A (xn )A (x) /o + <A (x 1 )A (x) 
0 

= - F(s) - F(s) + F(s*) +- F(s*) :: 0 for s spacelike. 

This is automatically satisfied. 

The relations for gauge invariance are in the LUders-Zumino paper 1 and 

they can be satisfied for an indefinite metric~ as is seen by the specific example 

of Feynman. 

The spinor case is quite analogous. For free particlesg 

\).if (x) ~ y} 

In the "anormal" case» we choose 
* . rrP ar J ~ 1 

The vacuum is given byg 

S08 

* <b b ~ = = 1 r r /o 
* H and again the b states have oscillating norm. Again b = - b 
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The commutation relation alone does not lead to the indefinite metric, but we 

must include the definition of the vacuum, since otherwise we could reverse the 

meaning of b and b* as annihilation and creation operators. 

Now~ 

S = ( Y fx - m) 4 

and for free particles, we findg 

Normal 

< 4J~ (x) ~ (x 
1 

) )o 
+ -- iSc.:f(x-x') 

< (j]f (x')~O( (x) )o -- i so<f- (x- x') 

ttp~(:xJ, ~~ (x' )] : - i S"'<~ (x - X 
1 

) 

( [tJJa.:(x) '·tV (xu)] > (1) 
0 

= = SO<~ (x -

For non-free spinors, we set: 

Normal 

- (cJ;o..(x) lJJ~ (x') )
0 

= 't fg F(s) +- G(s) 

(4J/x) tpO((x') >
0 

= ='tfg F(s) + G(s) 

<{LV<><(x), ~f(x 1 ~ )
0 

= o_ 
1 

· 

x') 

Anormal 

<~ ]>o 
[ J 

Anormal 

.,. 
-- i S 0.: f (x - X 

1 
) 

= + i So..t9- (x - x') 

- s (1) 
- - C>(~ (x - x') 

- i S<><f(x- x 1
) --

= o ls F ( s) + G ( s ) 

= d" ~ F(s) - G(s) 

< [tP<><.(x), lf~ (xu~ >0 = 0 

where s is spacelike in the last line. We can again separate the fields into 

their Majorana parts, with the same results as in the Luders-Zumino paper. In 

the anormal case, it is necessary to define charge conjugation with an opposite 

* The latter is necessary since ~ is no longer the hermitian conjugate. The 

decomposition into Majorana parts is carried out using 

tjJ I ::: ff ( 4J + ~c) 
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l/JII 1 = -==---ffi 

One can then easily obtain& 

<II~I (x) riJRI ( ) \ 
'1':--. 'f' r x' /o :: 0 
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These are the relations from which one obtains a contradiction with a positive 

definite metric. They can be fulfilled with an indefinite metric. 

Pauli does not see whether other metrics exist which retain the spin 

and statistics connectiono 
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The generalization of the CPT theorem to higher spins has a certain 

mathematical interest. 

We must consider the irreducible representations of 3 dimensional rotations 

and of the Lorentz group. The 3D rotations have irreducible representations 

of degree 2j + 1 9 where j = 0~ ! 9 1 9 •••• We must distinguish between 

infinites~ and finite transformations. The former 

In 3D~ we haveg 

= i J 0 

3 

The 4D rotation group splits into the direct product of two 3D groupso 

1 In the 4D case~ we have the operators 

Lik 9 the angular momentum operator~ is a 6-vectoro If we defineg 

Theng 

M3 : t(L + L ) 
12 34 

N = j{L - L ) 
2 - 31 24 
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CNP N~ ;:: iN3 ~ 0. 0 

[MiP Nk] = 0 
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Thus the 4D group is nothing essentially new. The principal difference between 

the Lorentz group and the 4D rotations appears in the reality conditions. 

In 3D or 4D rotations, the J 1s (or L1s) will be hermitian. 

For Lorentz transformations~ the Lik (i~ k =·lj 2, 3) will be hermitian, 

while L L will be antihermitian. This has the consequence that the 
4i~ i4 

representations of the Lorentz group of finite degree (2j + 1) are non~unitary. 

We consider the 4D rotations. They will be characterized by two numbers 

(m~ n), and the degree of a representation will be (2m +1)(2n +1). We do 

not consider reflections. We find the representations~ 

~ 

Scalar (0~0) 

Spinor (ho) and (o~t) 

(Space reflections permute m and n) 

Vector (i,t) 

Self=dual Tensor (1~0) and (0~1) 

Degree 

1 

4 

3 

(The 34 element is~ apart from a factorj equal to the 12 element. 

~ - ~ ~ In the case of light E + i H~ E = i H correspond to self=dual 

tensors (plane waves) ). 

Symmetric tensor 9 zero spur (1 91) 9 

If we consider the multiplication of 2 quantities, we observe that the 

direct product is irreducibleg 

where: 

...... 



-3-

UCRIP-821J­
Lecture 26 

If we consider now the 3D subgroup~ we see that since the 114 operators 

distinguish between M and N ~ in the subgroup m and n will be equivalent. 

Thus~ we will have the irreducible representations in 3D of 

fm=nj~j~m+n 

and the m and n will be mixed. The values of j give a distinction between 

the Fermi and the Bose classes. It is only important that j is an integer 

or half an odd integerp but not m or n separately. Thus~ 

Fermions g m ± n = integer + t 

Bosonsg m ± ri ::: integer. 

Pauli found it usefull to divide the representations into two further partsg 

Fermiong .·~ (a) m = int. ~ n = int. -t- t 

(b) m= int. t- t» n "" int. 

~(a) m::; int. 1 n = int. 
Bosong 

2(b) m= int. + t~ n :;:: int. +t 
Thus we have 4 classes. It is not essential that we deal with the irreducible 

representations. 

The multiplication of these classes corresponds to the "4-group" of 

mathematics; i.e. 

l(a) x 2(b) = l(b) 

and so on. 

Now~ we assign the characters to these classes for the CPT.transformationg 

2(a) 2(b) 2m 2n 
:;:: (=1) ~ (-1) 

+1 

l(a) l(b) 

i -i 
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The factor 11i" is introduced in this choice to allow for the possibility of reality 

conditions on the fields. Such conditions will be of the form~ 2 

(u (n~m) )*::: v (m~n). 

Reality conditions will then be preserved under the transformations with the 

11i 11 present. The reality conditions are important~ for example, in constructing 

a vector from spinors. 

If we apply this transformation particularly to the case u'(t~o)* = 
u (Opt) ~ this is equivalent to t.p' = i Y 5 ~. 

.. 

In the Feynman case of spinors with Bose quantization, the reality conditions 

are abandoned, and the i 1s do not appear. There~ the character is simplyg 

2m 
(-1) ' 

and (m1 n)* is not the Hermitian conjugate~ but the adjoint to (m~n). 

Now the connection between spin and statistics enters. At first glance, 

the above relations do not seem to be satisfied for products of fermions. Con-

sider a productg 

1T (m. n ) 
k .k: k 

and 
N N 

n:::: 2._ nk m:;;; ~ ~· k=l k ... l 

Then we obtain for the character of the productg 

whereas the character as given above should be 

N odd (fermion) 

N even (boson) 

l 



=5-

Thus they don't agree. We have an extra factorg 

N odd. 

(-i)N N even • 
. 2V V N(N-1) 

If N = even ~ 2V$ we have (-i) = (-1) = (-1) 2 
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» and we get the same 

result for N = odd. Thus~ the definition of the character is not true for C-numbers, 

but for q-numbers which are quantized according to Fermi statistics for half an 

odd integer spins and with Bose statistics for integral spin the definition is 

( )N(N=l)/2 
consistent, since the -1 factor represents the sign associated with 

the anticommutation of the fermion fields. 

Thus we must add the rule of inversion to the usual multiplication law, 

and we must assume that all products are symmetrized or antisymmetrized according 

to the Bose or Fermi statistics. Thus~ for example~ a vector would be constructed 

as: 

and the transformation would include an extra (-1) because of the inversion. 

FOOTNOTES 

1 W. Pauli, Phys. Rev. 2a, 716 (1940). 

2 This follows from the fact that, if u(n,m) transforms according to an operator)\ 

un(n,m) = 1\(n,m; n 1 ,m 1
) u(n'»mu), 

then with a suitable ordering of (n,m), u 8 (m,n)* transforms according to A*· 
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In addition to the field quantities 9 we also have the coordinates~ and 

derivatives with respect to coordinates. The transformation laws also hold for 

them. Thusg 

::: = X o 
11 

The transformations which have been obtained are the ones used for CPT. 

It is not essential whether the quantities used are irreducible or not. Thus we 

find that any Lorentz invariant equation will remain invariant under a CPT in­

version.1 

In the above development we have used the local character of the fields. 

If one introduces form factors (non-local interactions) 9 ,the situation is not 

so simple. 

The connection between spin and statistics enters the development with 

the symmetrization of products of fields. In the Feynman anormal case with an 

indefinite metric CPT also holds~ but not in the form given here. 

Representation Theory 

Let us now consider the representations of the various groups associated 

with fieldsg 3D rotations, homogeneous and inhomogeneous; and Lorentz trans-

formations. This discussion will be a summary of a series of lectures which 

were given at CERN. 
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We will first consider the infinitesmal transformations. (This means that 

the Lie algebra will be involved.) For an n-dimensional rotation group, we 

will introduce the operators which generate the infinitesmal rotations: 

1~ ···~ n. 

Then we findg 

The particular relation for the "e" operators is special, but the commutation 

relations associated with the Lie ring are general. The latter may of course 

be derived using the special choice for e. 

In addition to the rotations~ we may wish to include the inhomogeneous 

. group (translations). A particular choice isg 

The general commutation relations are theng 

ldA, e~~~ b)/"- 'ii)Vd/' 

[d~ 9 ~ = o. 
There is always a particular representation in which the d 1s are zero. 

We can define: 

~v = - e-vf ... i ~v ; dfl = i Pf-

The ~~ ,pA are then hermitian for a unitary representation of the continuous 

group. There is an important theorem due to Lieg From the representations of 

the Lie ring~ we get the representations of the entire group. For the repre-

sentations~ an important concept is that of invariance. 
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One may take two points of view. 
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(1) Abstract - The commutator is considered as an abstract product. 

(2) The operators~ a~ are related to matrices, A, in which 

a-7A 

[a~ ~~AB = BA. 

Then we get the Jacobi identity: 

We see that 9 in the original abstract approach to the Lie ring quantities such as 

A2. B2• t d r· d , ¥ ••• are no e 1ne • 

An invariant is a quantity which commutes with all elements of the ring. 

3D rotations. 

Theng 

l: Jp J2J = i J3? 

For the homogeneous group, 

J2 = Jl2 + J 2 + J 2 
2 3 

is an invariant 1 since it commutes with J1 ~ J2 ~ and J
3

• 

In the inhomogeneous group~ we have the relations~ 

[J1 9 P;J = (P19 J2] = i p3 9 ••• ; ~l~ J1] = O, •••• 

The invariants are2 

4D rotations. 

We set: 
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J :;N ,J ::::N,J43=N3 
41 1 42 2 

(These are not the same as the relations in lecture 26.) 

Theng 

F = t -:z_ J~7/2 = t (tt + N-2 ) 
f<V 

G:;:;: J41J2.3 + 342J31 + J43Jl2 ~ M•N 

-+--'t 
are invariants. The M~N can be decomposed as~ 

K = t(i? + N) --'t ~ ~ 

L = t (M - N). 

Them 

LKij Ljl = 0 

(Kl~ K2l = i K3j 0 0 0 

(L1 ~ L;J :::: i L.3j ••• 

For the Lorentz groupj the reality conditions lead to 
--'> --'t 
N ~i N1 

...... 
Then N1 is hermitian and the invariants are: 

. ~2 . --+2 
F = t (M- ~ N ) • 

1 G = GV = (M·N') 
i 
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This change in reality conditions leads to the result that the unitary representa-

tions of the Lorentz group are of infinite degree. 

Finally~ we have the inhomogeneous Lorentz group: 

= i p
0

, ••• = o, ooo 

= OSI 000 
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The invariants of the inhomogeneous group include: 

We will introduce 

and using a dual notation to define: 

we get; 

l_wA, ~l::: i ( 'bAV '1<. = SAft wv) 

[~' Pft] :::: 0~ u..r11 p11 = 0 

and 

for f~v 

The second invariant is thus; 

:: t (pApA~ (Jfv Jf< 7J) - Jk,u Jk11 pp P:v 

In the rest system (P > 0) 9 

i m 

so the first invariant isg 

2 
P = m. o 

For the second 9 we have: 

Henceg 

I~:;: ( ) lN - i m x Angular momentwn in rest system o 

and 

UCRL-8213 
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2 
- VJ = m S(S t- 1) ~ - Jil. = S(S + 1) p . 

where S is the spin, and m ~ 0. 

If P = 0, there are two cases: 

UCRL-8213 
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(a) W: o. Them w_ = ~P ~ v v and A is essentially the spin. 

There are two such representations according to the ± • They correspond to right 

and left. 

(b) W= o. UJ then has continuous eigenvalues. (Wigner.) 

FOGrNOTES 

1 For a fuller account of the above developments, see: 

Niels Bohr and the Development of Physics, W. Pauli~ ed., p.30 ff. 

2 J2 ' 1 i ' t ~s no onger an nvar~an • For example: 

= 2i [p J - J p l 
. 2 3 2 3j 

. . 

'" 
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Then: 

We give the explicit representations of J, p. We defineg 

J ± i J = J ~ 
1 2 - j; 

+-· p = l. p = p 
1 2 - ± 

rJ$JJ =J·; L: 3 t + [J3, J_:r = = J= ; 

~+ , P_] · =r-~ PJ = 2 p ; 
3 

In the homogeneous group (3D)~ 

J2 = j (j + 1) where j = 0~ t~ 1, ••• 

We can choose J3 diagonal. Theng 

(m \ J 3 \ m ~ ) = m ?; m m o 

only if m" = m0 ± 1 ~ 

where f is either J or Po Then one finds~ 

(j » m \ J _ \ j $ m + 1) = 

(j ~m j P3\ j' m) 

(jjpjj) 

~ ( j t- m)( j - m +- 1) 
1 

= 

V(J - m)(j t- m +-1)
1 = 

.1i2 m l Pt l j 2 m - 1) · 

(j/plj) 

(j 9 m) P_ \ j, m + 1) 

(jlplj) 
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(j' m I P3 j j + 1, m) = (j / P j j + 1) \f(j +- m + l)(j - m t 1) 
1 

(j ~ m \ p+ \ j + 1~ m - 1) . = (j \ p j j + l) Y (j - m +- 2) (j - m + 1) 
1 

(j » m / P_j j + 1~ m + 1) = = (j ) p j j + 1) V (j + m t- 2) (j +- m t- 1) 
1 

(j ~ m I p31 j - 1~ m) := (j I p I j ~ 1) v-<j + m) (j - m)) 

(j ~ m \ p+ \ j ~ 1 9 m - 1) = - (j f p \ j = 1) Y (j + m)(j + m ~ 1) 

(j j m / P _,. j - 1, m + 1) = (j 1 p 1 j - 1) 1/(j - m) (j - m t-1) 
1 

, 

(These had already been guessed before quantum mechanics.) 

Up to this point~ the commutation relations. among the J 0s and between 

J 1s and p 1s have been used. The relations among the p 8s were not employed. If 

these are also taken into account 9 we get a complete representation of the in-

homogeneous group. We defineg 

Theng 

(jlp/j +-l)(j+ll plj) (2j+3)(2j+l) ~¢(j) 

(j 1 p 1 j - l)(j - 1-.j p J j) (2j + 1) (2j - 1) = ¢(j - 1) 

~(= 1) = o} . 
Then one gets, using simple algebray 

2. 

(j, m/ ~+ ,p.:_) / j, m) = 2m~(j+~~ ~~(j) + (j /P /dj 

(~) 2 2 2 2 ¢ ( ) j + 1 ¢ ( ) j p = pl + p2 + p3 = j + j - 1 --=--2j + 1 2j + 1 

+l(j I p I j) 1
2 

j (j +-l) 

3. (J·p) = c = (j \PI j) j(j +-1) 

(Pauli has not found these in the literature.) 
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Now there are various cases3 
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c = 0 (j I PI j) = o ¢(j) = ¢(j - 1) = const. 

= p2 

I (j I pI j + l) /
2 = 

(2j + J)(2j + 1) 

There is still the question of the range of j. One must prove that the lowest 

value of j is zero. If we assume that j ~ j
0

, where j
0 

F 0~ then we ~et a 

contradiction in equation 1, since if jo r o, m F 0 is allowed also. How­

ever, if j 0 = 0, only m = 0 and we cannot conclude that ¢ (- 1) ¢ 0. 

(b) The situation is different if C F 0. Then~ 

- ¢ ( j ) + ¢ ( j + 1) + c2 

2j + 1 j 2 ( j + 1) 2 
= 0 

and: 
' 

¢(j) - ¢(j - 1) = c2 ( ~ - 1 ) 
j (j + 1)2 

so: 
c2 

¢(j) + 2 = const. = (p)
2 

1 
(j + 1) 

as one finds from substituting into the expression for the eigenvalue for p2 • 

Thus: 

If we now attempt to obtain the minimum j = j 0 , we set~ 

¢(j - 1) = 0 0 

0 

2 2 2 c = j p 
0 

c =! lf j
0 
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Thus as an immediate result of this algebra the angular'momentum parallel to 
.. 

the momentum is quantized. 'As j ~ oo, ¢(j) increases monotonically, and so 

¢ is not zero for any other j. ~O can be either an integer or half an odd 

integer. 

1 Lorentz group 

Now we haveg. 

andg 

The invariants are~ 

1 
J =­

Ok i 
J 
4k 

M = (J J J ) 
23.9 31 9 12 

F = t (M.2 - N2) 

G = (M·N) 

~ 

- - i M ~ 
3 

The development is again pure algebra. There are again two possibilities. 

(1) Principal series. 

2F = j 2 - 1 - v2 
0 

7.1 is real.9 Jo ::;; o, 

or 0 ~ 1 
Jo - 2' 

G = J' • V ·o 

1, 2, 0 •• 

3 29 0 0 0 

There is a special case~ j
0 

= 0, G = 0 • 

2F. = - 1 - tf < - 1. 

All representations of the. 3D rotations for J' ..., J. are / 0 

contained in this series.· 

(2) Complementary series (or "critical strip" - Pauli) • 

G = j 0 ... o 

2F = - 1 + 0<.
2 

• 0 • 
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This representation is not contained in 1 • 

The principal series are oscillating and bounded in the group manifold. 

The complementary series are not bounded in the group manifold. 

Every function of the group manifold can be expanded in the representation. 

There is a theorem due to Weyl: 

The Lorentz group is not finite and a complete set is given by only a 

part of the unitary representation; one can discard the other. The principal 

series is all that is needed. This only holds for finite transformations~ not 

for the Lie ring and infinitesmal transformations. The physicist usually obtains 

only (1)~ while the purely algebraic method does not distinguish (1) and (2). 

There is a connection with the hydrogen spectrum. In it there is more 

degeneracy than in a general central force field. The principle quantum number 

defines a set of jUs which give the same eigenvalues. The degree of degeneracy 

is 2n2 (spin= 2x). It was shown by Hulthen~ Fock~ and Bargmann that the com-

mutation relations are the same in the discrete spectrum as in the 4D rotation 

group. In the continuous spectrum the equivalence is with the Lorentz group, 

although only the (n, n) states are realized in the hydrogen atom. In the 

continuous group only case (1) is realizedg j 0 = 0~ G = O. 

FOOTNOTES 

1 Gelf and Neumark, Journal of Phys. U.S.S.R. 10, pp. 93-4. 




