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Research Article—
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SUMMARY. Since 2005, H5N1 highly pathogenic avian influenza virus (HPAIV) has severely impacted the economy and public
health in the Middle East (ME) with Egypt as the most affected country. Understanding the high-risk areas and spatiotemporal distri‐
bution of the H5N1 HPAIV in poultry is prerequisite for establishing risk-based surveillance activities at a regional level in the ME. Here,
we aimed to predict the geographic range of H5N1 HPAIV outbreaks in poultry in the ME using a set of environmental variables and
to investigate the spatiotemporal clustering of outbreaks in the region. Data from the ME for the period 2005–14 were analyzed using
maximum entropy ecological niche modeling and the permutation model of the scan statistics. The predicted range of high-risk areas (P
. 0.60) for H5N1 HPAIV in poultry included parts of the ME northeastern countries, whereas the Egyptian Nile delta and valley were
estimated to be the most suitable locations for occurrence of H5N1 HPAIV outbreaks. The most important environmental predictor
that contributed to risk for H5N1 HPAIV was the precipitation of the warmest quarter (47.2%), followed by the type of global livestock
production system (18.1%). Most significant spatiotemporal clusters (P , 0.001) were detected in Egypt, Turkey, Kuwait, Saudi Arabia,
and Sudan. Results suggest that more information related to poultry holding demographics is needed to further improve prediction of
risk for H5N1 HPAIV in the ME, whereas the methodology presented here may be useful in guiding the design of surveillance
programs and in identifying areas in which underreporting may have occurred.

RESUMEN. Uso de los modelos espaciales y espacio-temporales para la vigilancia de la influenza aviar altamente patógena H5N1
en la avicultura del Medio Oriente.
Desde el año 2005, el virus de la influenza aviar altamente patógeno H5N1 (HPAIV) ha impactado severamente la economía y

la salud pública en el Oriente Medio, siendo Egipto el país más afectado. La comprensión de las zonas de alto riesgo y la
distribución espacio-temporal del virus de la influenza de alta patogenicidad H5N1 en aves comerciales es un requisito previo para
el establecimiento de actividades de vigilancia basados en el riesgo a nivel regional en el Oriente Medio. En este estudio, se intentó
predecir el alcance geográfico de los brotes del virus de la influenza de alta patogenicidad H5N1 en aves comerciales en el Oriente
Medio utilizando un conjunto de variables ambientales, para investigar la agrupación espacio-temporal de los brotes en la región.
Los datos provenientes del Oriente Medio para el período entre el año 2005 al 2014 se analizaron mediante modelos de máxima
entropía de nichos ecológicos y por el modelo de permutación de las estadísticas de rastro. El rango previsto de zonas de alto riesgo
(P . 0.60) para el virus de influenza aviar de alta patogenicidad H5N1 en la avicultura incluye partes de los países de la parte
noreste del Oriente Medio, mientras que el delta del Nilo y el valle en Egipto se estimaron que eran los lugares más adecuados para
la presentación de brotes de influenza aviar de alta patogenicidad H5N1. El predictor ambiental más importante que contribuyó al
riesgo del virus H5N1 fue la precipitación del trimestre más cálido (47.2%), seguido por el tipo de sistema de producción ganadera
global (18.1%). La mayoría de los grupos de espacio-temporales significativos (P , 0.001) fueron detectados en Egipto, Turquía,
Kuwait, Arabia Saudita y Sudán. Los resultados sugieren que se necesita más información relacionada con la demografía de las zonas
avícolas para mejorar aún más la predicción de riesgo para el virus de la influenza aviar de alta patogenicidad H5N1 en el Oriente
Medio, mientras que la metodología que aquí se presenta puede ser útil para enfocar el diseño de programas de vigilancia y en la
identificación de áreas en las que puede haber ocurrido subregistro.

Key words: H5N1, highly pathogenic avian influenza, Middle East, surveillance, maximum entropy, scan statistics

Abbreviations: AI 5 avian influenza; AUC 5 area under the curve; cAUC 5 calibrated AUC; FAO 5 Food and Agriculture
Organization of the United Nation; HPAIV5 highly pathogenic avian influenza virus; IBA5 important bird areas; Maxent5 pres-
ence-only maximum entropy ecological niche modeling; ME 5 Middle East; OIE 5 World Organization for Animal Health;
RAMSAR 5 Convention on Wetlands of International Importance; ROC 5 receiver operator characteristic; SSB 5 spatial
sorting bias

Emergence and reemergence of highly pathogenic avian influenza
virus (HPAIV) is a concern for countries and governments because
of its impact on the public health and economy. Growth of
the domestic poultry sector in response to the rapid increase in

global demand for protein, as well as climate change, increase
of international trade, and land cover fragmentation, have been
considered as important risk factors for the continuous global
increase in the incidence of emerging zoonoses such as avian
influenza (AI) viruses, including in Middle East (ME) countries
(11,27,29,36,48).ECorresponding author. E-mail: mkhamis@kisr.edu.kw

146

AVIAN DISEASES 60:146–155, 2016



The first novel emergence of H5N1 HPAIV occurred in commer-
cial domesticated geese in Guandong province in China in 1996 (60).
Since then, the ancestral strain of H5N1 HPAIV has continued to
circulate within Asia and consequently has undergone numerous
genetic changes leading to the evolution of different lineages, some-
times also referred to as clades (38). Within the ME, Turkey was
the first country to report H5N1 HPAIV, in backyard poultry, in
October 2005. Subsequently, more than 1000 cases were reported
in Egypt, Iraq, Iran, Israel, Jordan, Kuwait, Palestinian Territories,
Sudan, and Djibouti between November 2005 and April 2006. In
2007, Saudi Arabia was the last country to report a series of H5N1
outbreaks, whereas Libya reported their first single introduction in
2014 (41). Countries in the region that have never reported the dis-
ease include Bahrain, Qatar, United Arab Emirates, Eritrea, Somalia,
and Yemen. During the first Eurasian pandemic wave (2006–07), the
H5N1 HPAIV caused substantial socioeconomic losses in the ME,
with Egypt being the most affected country. As of October 2014,
Egypt reported more than 2500 outbreaks in poultry, which, at the
time, was the highest number of reported outbreaks outside South
East Asia (17). Because of that high reported incidence, Egypt has
been considered by some as the epicenter of the H5N1 HPAIV in
the ME (1,28). Control measures in the region varied among coun-
tries but mostly included a stamping out policy, quarantine, move-
ment restrictions, zoning, and vaccination (8). AI surveillance
activities included active and passive strategies, with few countries
making use of molecular techniques, whereas most made use of sero-
logic tests for detection (8). In general, intensive AI surveillance activ-
ities in the ME countries are not routinely conducted, and, instead,
are only triggered by the emergence of epidemic levels, such as those
detected in 2005–07.

Because wild birds are natural reservoirs for AI viruses and are con-
sidered the main source for disease transmission into poultry, it has
been hypothesized that early detection of AI in poultry would be
maximized by early detection of infection in wild birds (51). Conse-
quently, the European Union has established guidelines for the sur-
veillance of AI in wild birds, intended to maximize the efficiency of
surveillance efforts as an alternative to random sampling, by intensify-
ing sampling in areas, species, and at times at which the probability of
H5N1 HPAIV outbreaks was predicted to increase, and to aid in
adjusting control and prevention resources accordingly (7,20). How-
ever, this action is justified because the number of H5N1 cases in
wild birds was substantially higher than those detected in the ME
during the 2005–07 pandemic. Indeed, the total number of H5N1
HPAIV detected cases in wild birds in the ME region did not exceed
1% from the reported incidences between 2005 and 2014 (18).

The dynamics of AI virus spread and geographic distribution are
influenced by the environmental conditions of the setting
(33,39,44,55). Ecologic niche modeling offers the possibility to build
predictive distribution risk maps using disease occurrence and envi-
ronmental data (45). Such models have the ability to extract associa-
tions between presence data (e.g., disease cases) and environmental
variables, use those associations to characterize the environmental
requirements for the disease agent, and subsequently deploy those
associations to predict suitable geographic locations over non-sampled
areas (12). This modeling approach has been commonly used to pre-
dict the geographic range of species in ecology (54) but has been used
recently to model the distribution of diseases in both veterinary and
human medicine (10,26,37,40,49,51,52,53). Arrays of mathematical
algorithms currently used in ecological niche modeling include the
use of machine-learning approaches (43). Combining the outputs of
machine-learning methods with spatial clustering detection techniques

(2,9,30) might provide a robust platform for guiding the design
of surveillance systems in the ME.

Here, we tested whether a set of environmental and demographic
variables can predict the geographic distribution of H5N1 HPAIV
outbreaks reported in poultry holdings of the ME for the period
2005–14 using a presence-only maximum entropy ecological niche
modeling method (Maxent). Furthermore, we assessed the spatiotem-
poral clustering of the disease in the ME for the same period of time
using the scan statistic method. Combined results of both methodol-
ogies may shed further insights into the epidemiology of H5N1
HPAIV in the ME. Subsequently, these results may contribute to
the formulation of surveillance programs that selectively target high-
risk poultry areas, defined as highly probable suitable locations for
the introduction, transmission, and maintenance of the disease,
with specific demographic and environmental factors in the ME
region.

MATERIALS AND METHODS

Data. H5N1 HPAIV presence data. Here, the term “Middle East
(ME)” refers to countries of Southern and Western Asia and Northeast-
ern Africa excluding Afghanistan, Pakistan, and India. Thus, the study
region includes Turkey, Syria, Lebanon, Israel, Palestinian Territories,
Jordan, Iraq, Iran, the countries of the Arabian Peninsula (Saudi Arabia,
Yemen, Oman, United Arab Emirates, Qatar, Bahrain, Kuwait), Egypt,
Libya, Sudan, Djibouti, Eritrea, and Somalia. Data used for this study
were retrieved from the Food and Agriculture Organization of the United
Nation (FAO) Global Animal Disease Information System EMPRES-i
(18), which included geographic locations (Fig. 1) and dates of start of
3056 H5N1 HPAIV outbreaks reported by ME countries to the World
Organization for Animal Health (OIE) from October 2005 to October
2014 in domesticated poultry holdings. Reported outbreaks, defined as
the detection of one or more cases of the disease in an epidemiologic
unit, where an epidemiologic unit was defined as a group of domesticated
birds with a defined epidemiologic relationship that share approximately
the same likelihood of exposure to the virus (41,42), were used as a proxy
for disease presence.
Environmental data. Environmental variables (predictors) selected for

this study were climate, global land cover, global poultry density, global
livestock production system, and geographic locations of wetlands with
.20,000 birds. Climate data were obtained from the WorldClim website
(http://www.worldclim.org), a commonly used interpolated global cli-
mate data resource for ecological modeling and geographic information
systems (24). WorldClim is a set of global climate data layers (climate
grids) with a spatial resolution of 1, 5, 9, or 18 km. Variables included
in the analysis were monthly mean, minimum and maximum tempera-
ture, monthly precipitation, and altitude. Those climatic data were fur-
ther derived into a series of 19 bioclimatic variables. The WorldClim
variables are smoothed maps of mean monthly climate data obtained
from a variety of sources from 1950 through 2000. Data have been inter-
polated down to a 30 arc-second high-resolution grid, which is often
referred to as “1 km2” resolution. Owing to the large geographic range
of the current study, only bioclimatic variables with an approximate spa-
tial resolution of 9 km2 were used to maintain the computation intensity
of the model.

To provide an estimate of geographic representation of different land
cover classes in the ME, global land cover use and livestock production
systems data grids were obtained from the FAO web-based page on
geo-spatial data, GeoNetwork (16,17). Data were available at an approx-
imate spatial resolution of 5 km2 and were categorized using an inventory
of 11 and 14 classes for land cover use and livestock production systems,
respectively.

Two demographic variables that are known to be associated with AI
incidence in poultry, namely, geographic density of poultry and the geo-
graphic abundance of wild birds, were also included in the analysis. Glob-
al density of poultry was obtained from digital maps of approximate
spatial resolution of 5 km2 at FAO GeoNetwork Web page (15).
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Wetlands with more than 20,000 wild birds were obtained from the
databases of two organizations for environmental conservation, namely,
Convention on Wetlands of International Importance (RAMSAR) (56)
and important bird areas (IBA) (6), which uses certain criteria as proxy
for the location of wild water birds and has been used and described
elsewhere (25,33,34,45). Because geographic abundance of wild birds
was obtained as point data, variables were transformed into a smoothed
kernel density grid layer with 5 km2 spatial resolution and a search radius
of 10 km2 using ArcGIS version 10.1 (14). The choice of 5 km2 spatial
resolution for both variables ensured that the smoothed locations over-
lapped the geographic location of cells of the FAO poultry density grid,
and, thus, both demographic layers will indirectly represent the spatial
distribution of the population at risk. Thus, in total the number of vari-
ables evaluated in this study is equal to 28 environmental predictors,
summarized in Table 1.

Environmental data layers were converted into a common projection
and map extent using the Raster package (23) implemented in R statisti-
cal software version 3 (50). Furthermore, because the variables had differ-
ent spatial scales (bioclimatic data ~9 km2, global land cover ~250 m2,
FAO poultry density, wild birds abundance, and global livestock produc-
tion systems ,5 km2), they were aggregated and resampled to give them
the same grid size, which resulted in a scale of approximately 11 km2.
Furthermore, colinearity in the environmental data was investigated by
visually inspecting the relation between pairs of variables in scatter-plots.
Analytical methods. Maxent Model. The spatial risk for H5N1

HPAIV outbreaks was predicted using the presence-only maximum
entropy ecological niche modeling technique (Maxent) (47). The Maxent
program version 3.3.3, which was implemented as a function in the
Dismo package (22) within the R software environment, was used for
the analysis. A detailed description of the Maxent algorithm is available
elsewhere (43,47). Briefly, Maxent operates by building ecological niche

models to quantify the unknown probability of a distribution of a species
(here, the population of H5N1 HPAIV-infected individuals) in a region,
without inferring any unfounded information about the observed distri-
bution. The algorithm identifies the distribution of the reported H5N1
HPAIV outbreaks that maximizes the predictions’ entropy, which is
either the most spread out distribution, or closest to uniform, under the
null model. This is subject to a set of restrictions represented by the envi-
ronmental parameters at a given location that represent the incomplete
presence-only data information for the unknown potential locations of
suitable places for H5N1 HPAIV outbreaks, when compared with the
true distribution of the variable of interest. Those restrictions are the
expected values of each environmental predictor, which should match
its empirical average. In this study, the default convergence threshold,
regularization, and number of iteration were selected, so that all models
converged. In addition, the default logistic model was used, to ensure
that predictions gave estimates between 0 and 1 for the risk of H5N1
HPAIV outbreak per map cell. Initially, independent Maxent models
were fit for each of the 19 bioclimatic variables, as predictors for the dis-
ease in poultry, a procedure that resembles a bivariate analysis. Variables
that had greater than 10% relative contribution in the prediction were
included in the following subsequent, multivariable models, along with
the above non-climatic demographic variables.
Maxent model performance evaluation. Performance of the Maxent

model in predicting the spatial distribution of H5N1 HPAIV risk in
poultry was evaluated using the threshold independent method. The
method calculates the area under the curve (AUC) of the receiver operator
characteristic (ROC). The AUC was calculated through a ROC plot of
the sensitivity (the proportion of true predicted known presences, known
as omission error) against 1 − specificity (proportion of false predicted
known absences, known as commission error) over the whole range of
threshold values between 0 and 1. The AUC value ranges from 0.5 and

Fig. 1. Geographic locations of H5N1 highly pathogenic avian influenza outbreaks reported in poultry in the Middle East from October 2005
through October 2014.
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compared the null model (entirely random predictive model) to a maxi-
mum value of 1 (perfectly discriminating predictive model). Maxent
models with AUC . 0.75 for both training and testing data are usually
considered accurate (13). The final model was selected using jackknife
tests to calculate the contribution of each environmental variable to the
model’s prediction. Data were partitioned in two random sets (random
sampling without replacement), for training and for testing purposes,
respectively. The training set (training AUC) was used for model build-
ing, and the test set (testing AUC) was used to evaluate model accuracy
using the value of the AUC. Because of the large geographic area analyzed
in this study, a calibrated AUC (cAUC) was calculated for the final
Maxent model to evaluate the extent of the spatial sorting bias (SSB) as
suggested elsewhere (21). Here, the cAUC was used to assess the impact
of countries with larger numbers of reported outbreaks on the predica-
tions of the final Maxent model (i.e., Egypt). If the cAUC value was
close to 1, then one can conclude the absence of SSB (i.e., the large num-
ber of reported outbreaks in Egypt had a non-substantial impact on the
predictions of the final Maxent model), while, if the value was close
to zero, then SSB is present in the data. Furthermore, we repeated
the analyses above twice to validate the accuracy of the selected environ‐
mental data in predicting the probability of the spatial distribution
of H5N1 in the ME. Thus, our models all reported outbreaks in
the ME (Model A); compromised only outbreaks reported in Egypt
(Model B); and compromised outbreaks reported in the ME excluding
Egypt (Model C). We compared the magnitude of change in the AUC
values to further assess the sensitivity of the Maxent model to the re‐
porting bias suffered by the presence data. Finally, pairwise Spearman
correlation coefficients were calculated between each environmental vari-
able and the predicted suitability of the outbreaks for the final Maxent
model.

Space-time cluster analysis. Spatiotemporal clustering of H5N1 HPAIV
outbreaks in the ME was modeled using the space-time permutation
model of the scan statistic test implemented in the SaTScan software ver-
sion 9.1 (31). A description of the scan statistic test, which has been
broadly used in the assessment of animal disease clustering, is available
elsewhere (2,3,30,32,57). The model was run using only outbreak loca-
tion and starting date under the null hypothesis that outbreaks were ran-
domly distributed in space and time. The model was set to scan for areas
with high case numbers or infection rates, so that they test for clusters
with a spatial and temporal occurrence that is higher than that outside
the cluster. The maximum size of the temporal window was set to
6 months, which represents the maximum duration of surveillance activ-
ities during the onset of the first case in most Middle Eastern countries
during the 2005–07 epidemic wave. The maximum spatial extension of
clusters was set to a radius of 50 km, based on the average size of the
administrative areas in the Middle East. Finally, time aggregation was
set to 7 days, to avoid “Monday effect” (i.e., the bias introduced due to
underreporting over the weekends), because the extension of weekends
vary in ME countries, depending on cultural and religious factors, and
because identification of risk periods in terms of weeks, rather than
days, was considered sufficiently accurate for surveillance purposes. Dis-
tributions of the likelihood ratio and its corresponding P value were
obtained using Monte Carlo simulation by generating 999 replications
of the data set under the null hypothesis of random distribution of cases
in time and space. The test statistics were computed for each random rep-
lication, as well as for the HPAIV H5N1 dataset, and if the latter was in
the most extreme 5% of all test statistics calculated, then the hypothesis
test was deemed significant at P 5 0.05.

RESULTS

Prevalence of H5N1 HPAIV was substantially greater in Egypt,
followed by Sudan and Turkey, whereas prevalence in other ME
countries did not exceed 1% (Fig. 2A). Like the rest of the Eurasian
countries, most of the detected outbreaks were reported in 2006 in
ME countries (Fig. 3). However, Egypt had another high incidence
of outbreaks reported between 2010 and 2011, so that, in total,

Egypt accounted for more than 80% of the outbreaks reported in
the region (Fig. 2B).

Only four of the selected environmental variables were needed to
adequately predict the geographic distribution of H5N1 outbreaks
in the ME with an AUC higher than 0.75 and a cAUC substantially
closer to 1 than 0 (Table 1). The final Maxent models included pre-
cipitation of the warmest quarter, global livestock production sys-
tems, global poultry density, and mean temperature of the warmest
quarter (Table 2). Both global land cover and geographic abundance
of wild water birds contributed least to the prediction of the model
(relative contribution ,5%), and they did not improve the value of
the AUC or the cAUC for the test data (Table 2). However, based
on the validation procedure to assess adequacy of the environmental
variables in predicting the spatial risk of H5N1 in the ME, the results
indicate that precipitation of the warmest quarter and global poultry
density were the most important environmental predictors in Egypt,
whereas global livestock production systems and mean temperature
of the warmest quarter were the most important environmental pre-
dictors in other countries (Table 2). No substantial changes were
observed in the AUC values for any of the Maxent models (Table 2).

The predicted spatial risk (or suitability) for H5N1 in poultry in
the ME is shown in Fig. 3. Most of the ME countries were predicted
as suitable areas for H5N1 HPAIV. However, the highest risk areas
(.0.8) were primarily distributed across the Nile delta and valley
in Egypt, followed by Palestinian Territories, northwestern Syria,
and small parts of northeastern portions of the Arabian Peninsula
(.0.6). Furthermore, the risk maps for the three Maxent models
were relatively consistent in predicting the spatial risk of H5N1
HPAIV in the region (Fig. 3).

Based on the results of the final Maxent model and Spearman’s
correlation (Tables 2 and 3), geographic regions with approximate
mean precipitation greater than 0 mm, which ranged between 0
(minimum) and 65 mm (maximum) in the ME in the warmest quar-
ter of the year, were found most suitable for the risk of introduction
of H5N1 HPAIV in poultry (,0.6). Urban and mixed irrigated
hyper arid livestock production areas and geographic regions with
the lowest poultry population density were also found most suitable
(,0.7). Finally, geographic regions with approximate mean tempera-
tures lower than 35 C, which ranged between 25.4 C (minimum) and
38.9 C (maximum) in the warmest quarter of the year, were found
most suitable for H5N1 in the ME.

The results of the space-time permutation model of the scan statis-
tic analysis showed 23 most likely clusters (P , 0.001) of H5N1
HPAIV outbreaks in the ME between 2005 and 2014 (Fig. 4). Fif-
teen spatiotemporal clustering events were detected in the Nile delta
and valley in Egypt (Fig. 4A) with spatial extensions ranging between
0 and 49.5 km radius, and temporal duration ranging between 26 and
1221 days (Fig. 4B). Four clustering events were detected in Turkey,
two in Saudi Arabia, and one each in Kuwait and Sudan (Fig. 4A).
Fig. 4A also demonstrates the combined results of the final Maxent
model and space-time cluster analysis.

DISCUSSION

We used an ecological niche modeling approach based on outbreak
presence-only data to, first, estimate the potential spatial distribution
of H5N1 HPAIV outbreaks in poultry the ME and the environmen-
tal factors underlying to that pattern, and, second, to investigate the
magnitude of spatial and temporal clustering of those outbreaks in
the region. In this study, the role of environmental variables in the
development of an ecological niche for H5N1 HPAIV in poultry
was investigated independently of country boundaries by creating a
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regional scale model. Generally, our findings are consistent with ear-
lier studies aimed at predicting the ecological niche of H5N1 in the
ME region (19,58,59). During the 2005–14 period, the highest prev-
alence of H5N1 HPAIV in poultry in the ME was reported in the
Nile delta and valley of Egypt (Figs. 1 and 2A), and, therefore, Egypt
was predicted as the highest risk area for the disease (Fig. 3). How‐
ever, the inclusion of the present set of environmental variables into
the Maxent model resulted in finding the Palestinian Territories,
northwestern Syria, and small parts of northeastern Arabia (Fig. 3)
to be high-risk areas with conditions suitable for the introduction
of H5N1 HPAIV in their poultry populations. Hence, based on
the importance of the selected environmental variables in predicting
H5N1 HPAIV outbreaks, geographic regions or countries with few
or no reported outbreaks could still be predicted as high-risk areas if
the climatic conditions and demographics are suitable for the intro-
duction of the disease. Results of the presence-only Maxent approach
produced a robust ecological niche model for H5N1 HPAIV
(Table 2) and demonstrated that the environmental variables includ-
ed in this study were adequate predictors for the outbreaks in poultry
in the ME.

Out of the 19 bioclimatic variables, precipitation and mean tem-
perature of the warmest quarters were the most important bioclimatic
predictors of H5N1 HPAIV in poultry. The correlation of both cli-
matic variables (Table 3) to the predicted suitability of H5N1 in
poultry in the ME region suggests that geographic areas with precipi-
tation greater than 0 mm and lower temperatures than 35 C in the
warmest quarters are high-risk areas for virus introduction. Indeed,
Egypt, Syria, Palestinian Territories, and Israel have the lowest
temperatures with occasional minimal rainfall during the summer,
when compared with other countries of the Arabian Peninsula. This
result is consistent with the notion that regions with seasons of low
annual rainfall and low temperatures could be identified as high-risk
areas for AI virus outbreaks (19). Furthermore, human H5N1
outbreaks had been highly associated with outbreaks in poultry
due to frequent human-poultry contact, especially in Egypt (28), it
has been suggested that this is mainly attributed to human activities
influenced by climatic conditions, for example farming practices or
swimming in ponds that poultry use (35). Thus, such factors have
to be properly studied to shed further insight on the relationship
between climatic conditions and transmission patterns of H5N1
HPAIV between human and poultry (28,35).

As expected, urban and mixed irrigated hyper arid livestock pro-
duction areas were suitable locations for H5N1 introduction because
the former is common in Egypt and Sudan, whereas the latter is com-
mon in other ME countries (e.g., Arabian Peninsula). Here, hyper
arid areas are defined by the FAO as areas with zero growing days
(16) and characterized by extremely dry climate. The mixed irrigated
hyper arid system is composed of low animal density sited in large
geographic areas across the densely populated Nile delta and valley,
leading to large livestock biomass, and subsequently provides favor-
able conditions for transmission and persistence of H5N1 in poultry
(5). Backyard poultry holdings are also common in urban livestock
production systems in ME countries, which are well known as
suitable land classes for H5N1 HPAIV transmission (48,59). Further-
more, urban production systems are under intensive human surveil-
lance, and thus the number of detected outbreaks is expected to be
higher than nonurban production systems. The results of the study
here suggest that predicted risk for H5N1 HPAIV in poultry was
high near geographic regions with low poultry population density in
the ME. This is not surprising given that most poultry cases were
detected in either backyard poultry holdings, or small poultry hold-
ings with low biosecurity measures, which constitute ideal environ-
ments for the transmission and circulation of AI infection. In
addition, backyard poultry holdings are more commonly exposed to
frequent human contact than large commercial poultry farms, and,
therefore, they might constitute an ideal environment for viral trans-
mission and maintenance. This is important because it might be asso-
ciated with the high prevalence of H5N1 HPAIV human cases in
Egypt, in which most of the detected cases were in contact with back-
yard poultry (34). Thus, inclusion of information related to holding
characteristics, such as biosecurity level, size, type of production,
and species, might substantially improve the prediction of the pre-
sented model. Most important, the use of the poultry density raster
alone to guide the allocation of resources for surveillance may be mis-
leading. We believe that the main reason for the insignificant role of
global land cover in predicting the risk of H5N1 in the ME is that
both global livestock production systems and poultry density provid-
ed sufficient predictive ability (as demographic variables) to our pre-
sented model.

Our model suggested that geographic proximity of poultry hold-
ings to wetlands abundant with wild aquatic birds has no significant
role in the introduction or persistence of H5N1 HPAIV in the ME

Fig. 2. (A) Prevalence of H5N1 HPAI outbreaks (per country) in
poultry in the Middle East between 2005 and 2014. (B) Temporal
distribution of H5N1 HPAI outbreaks (per year) in poultry in the
Middle East from October 2005 through October 2014.
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region. Although the ME is seated on important wild bird migration
routes, the inland water surfaces, which are considered the most
important habitat for wild aquatic birds in the region, are scarce
when compared to the Americas, Europe, or Southeast Asia. Hence,
as suggested elsewhere (46), the ME region has indeed a much lower
risk for H5N1 HPAIV introduction from wild birds (19), which also
explains the extremely low prevalence of detected wild bird cases.
Furthermore, during the peak of the epidemic in 2005–07, ME
countries intensified their surveillance efforts on domesticated poultry
holdings, whereas few countries mobilized their resources toward wild
bird surveillance, which is arguably due to the lack of sufficient
resources, when compared, for example, with European countries.

The permutation model of the scan statistic test identified 23 sig-
nificant spatiotemporal clusters of H5N1 HPAIV outbreaks centered
mainly in Egypt, followed by Turkey, Saudi Arabia, Sudan, and
Kuwait (Fig. 4), for which the prevalence of HPAIV H5N1 cases
was higher than that expected if cases were randomly distributed
throughout the area under study. Most of the detected clusters in
the ME region were centered either in agricultural areas or in close
proximity to major cities. Furthermore, most of the cases within
each significant cluster were either detected in backyard or medium
size (,1000) poultry holdings, which are characterized by very low

to medium biosecurity measures. Results suggest strong seasonal var-
iation for the risk of H5N1 HPAIV in the ME (Fig. 4). The temporal
dimension of the clusters detected in Turkey, Kuwait, and Saudi
Arabia suggests that winter and spring are indeed the most important
periods of time for clustering of H5N1 HPAIV. However, some of
the clusters detected in Egypt, in addition to the one detected in
Sudan, suggest that summer and fall were also high-risk periods of
time for clustering of H5N1 HPAIV, which is reflected in the inflated
temporal duration of some Egyptian clusters (2–3 years).

One of the most interesting findings of the present study is that all
of the identified clusters encompassed moderate to high-risk (proba-
bilities between 0.8 and 0.4) suitable areas for H5N1 HPAIV pre-
dicted by the Maxent model. This indeed confirms the notion that
the underlying environmental and demographic variables were suit-
able for H5N1 HPAIV clustering, transmission, circulation, and per-
sistence. Those factors are mostly prominent in Egypt, which might
further explain the reason that it is the sole H5N1 HPAIV epicenter
for the Middle East. The temporal dimension of the significant spa-
tiotemporal clusters suggests that winter and spring were the most
likely periods of time for the occurrence of H5N1 HPAIV in Turkey,
Saudi Arabia, and Kuwait between 2006 and 2007. However, the
temporal overlap between the climatic predictors of the present

Fig. 3. Predicted probability distribution for the geographic risk for H5N1 HPAI in poultry in the Middle East from October 2005 through
October 2014. (A) Maxent model for all reported outbreaks data; (B) Maxent model for outbreaks data reported in Egypt only; (C) Maxent model for
all reported outbreaks data excluding Egypt.

Modeling of avian influenza in the Middle East 151



Maxent model and most of the space-time clusters detected in
the Nile delta and valley suggests that weather conditions had an
important role in the persistence of H5N1 HPAIV outbreaks in
Egypt. However, the fact that summer temperatures in the Arabian
Peninsula always exceed 35 C indicates that poultry holding
demographics (type of production system and poultry density) play

a more important role in predicting the risk of H5N1 HPAIV out-
break in poultry than climate, as suggested elsewhere (58,59). This
is because the clusters detected in Kuwait and Saudi Arabia encom-
passed outbreaks reported either in backyard or medium sized poultry
holdings located either in urban areas or in close proximity to
urban areas.

Table 1. Data sources and properties of the environmental variables used to model the probability of spatial distribution of H5N1 highly
pathogenic avian influenza outbreaks reported in the Middle East. Spatial resolution is 5 km2 for all sources.

ID Source Type
Time
period Spatial resolution

1 WorldClim Global Minimum temperature 1950–2000 9 km2

2 Climate Data Maximum temperature 9 km2

3 Mean temperature 9 km2

4 Precipitation 9 km2

5 Altitude 9 km2

6 BIO1 5 annual mean temperature 9 km2

7 BIO2 5 mean diurnal range (mean of monthly (max temp − min temp)) 9 km2

8 BIO3 5 isothermality (BIO2/BIO7 * 100) 9 km2

9 BIO4 5 temperature seasonality (standard deviation *100) 9 km2

10 BIO5 5 max temperature of warmest month 9 km2

11 BIO6 5 min temperature of coldest month 9 km2

12 BIO7 5 temperature annual range (BIO5–BIO6) 9 km2

13 BIO8 5 mean temperature of wettest quarter 9 km2

14 BIO9 5 mean temperature of driest quarter 9 km2

15 BIO10 5 mean temperature of warmest quarter 9 km2

16 BIO11 5 mean temperature of coldest quarter 9 km2

17 BIO12 5 annual precipitation 9 km2

18 BIO13 5 precipitation of wettest month 9 km2

19 BIO14 5 precipitation of driest month 9 km2

20 BIO15 5 precipitation seasonality (coefficient of variation) 9 km2

21 BIO16 5 precipitation of wettest quarter 9 km2

22 BIO17 5 precipitation of driest quarter 9 km2

23 BIO18 5 precipitation of warmest quarter 9 km2

24 BIO19 5 precipitation of coldest quarter 9 km2

25 FAO GeoNetwork Global poultry density 2005 5 km2

26 Livestock production systems with 14 discrete spatial features 2011 5 km2

27 Global land cover distribution, by dominant land cover type with 11 discrete spatial features 2007 250 m2

28 RAMSAR and IBAs Kernel density raster for wetlands with more than 20,000 wild birds 2014 5 km2

Table 2. Estimates of the relative contributions of the environmental variables to the Final Maxent models and their validation AUC values for
predicting the risk of H5N1 highly pathogenic avian influenza outbreaks in poultry in the Middle East. Model A, the use of all reported outbreaks
data; Model B, the use of outbreaks data reported in Egypt only; Model C, the use of all reported outbreaks data excluding Egypt.

Variable Percentage contribution AUC for training data AUC for test data Calibrated AUC for test data

Model A
Precipitation of the warmest quarter 47.2 0.90 0.96 0.73
Global livestock production systems 18.1
Global poultry density 16.7
Mean temperature of the warmest quarter 13.3
Wetlands abundant with wild birds 3.8
Land cover 0.9

Model B
Precipitation of the warmest quarter 36.6 0.97 0.95 0.79
Global poultry density 29.6
Mean temperature of the warmest quarter 14.8
Global livestock production systems 14.7
Wetlands abundant with wild birds 4.3
Land cover 0

Model C
Global livestock production systems 36.1 0.94 0.95 0.78
Mean temperature of the warmest quarter 26.4
Global poultry density 14.5
Precipitation of the warmest quarter 13.2
Land cover 4.5
Wetlands abundant with wild birds 2.3
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Accuracy of the environmental and demographic variables in pre-
dicting the presence of the outbreaks might be substantially improved
with sufficiently higher resolution datasets across the study region.
Using environmental data with different spatial resolutions (higher
or lower than the present study) might result in completely different
Maxent models and/or might affect the value of the percentage con-
tribution of each environmental predicator in each resulting Maxent
model (4). However, a study suggested that the ecological niche of
H5N1 HPAIV outbreaks can be adequately predicted on regional
levels using environmental data layers, similar to the current study
setting, with spatial resolution of up to 10 km2 (58). Furthermore,

tranportation of live poultry has been heavily implicated in the trans-
mission and maintanance of HPAIV in South Asia (53), and, there-
fore, the inclusion of land cover data grids for the ME with more
detailed features that represent, for example, railroads and motorways,
would substantially improve the prediction of the presented model.

Accuracy and representativeness of the information collected has an
essential impact on the epidemiological investigation of disease out-
breaks and on model prediction. A study aiming to investigate space-
time clustering of H5N1 HPAIV in wild birds has demonstrated
how the inclusion of information on the locations of negative samples
could result in different space-time clusters, when compared with the
use of information on the locations of positive samples alone (2). Fur-
thermore, it has been shown that the prediction of machine-
learning methods can be substantially improved when including AI
negative samples in such models (19). Here, information on the loca-
tions of negative samples was not available; therefore, the Maxent
model was used to simulate pseudo absence data (negative samples),
which are drawn purely at random from the study region (47). How-
ever, since pseudo absence data do not represent true absences of the
disease, it may lead to mis-predicting a known presence, which might
be a limitation of the predictions here. Although reporting of H5N1
HPAIV is mandatory for OIE member countries, this mandate does
not necessarily imply that every case or outbreak has been reported,
arguably, because of substantial differences in the surveillance capabil-
ities between the ME countries. For that reason, presence data used in

Table 3. Spearman correlation coefficients between each environ-
mental variable and the predicted suitability of H5N1 HPAI outbreaks in
poultry in the Middle East.

Geographic distribution of HPAI in
poultry

Precipitation of the warmest
quarter −0.57
FAO global livestock production
systems 0.39
FAO poultry density −0.66
Mean temperature of the warmest
quarter −0.19
Wetlands abundant with wild birds 0.12

Fig. 4. Combined results of the permutation model of the scan statistics and presence-only maximum entropy ecological niche model for H5N1
HPAIV in poultry in the Middle East from October 2005 through October 2014. (A) Locations of top 23 HPAIV H5N1 most likely spatiotemporal
clusters (P , 0.001) as detected by permutation scan statistic overlapped on the results of the Maxent model. The radius (km) of the white circles is
relative to the predicted spatial extent of a given cluster. (B) Temporal duration (in days) for the top 23 most likely spatiotemporal clusters. The
temporal extension of each cluster is ordered from up (as the 1st most likely cluster) to down (as the 23rd most likely cluster) for each country.
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the study here may have been biased toward geographic regions in ME
with higher surveillance capabilities, leading to predictions skewed
toward these countries. Furthermore, geographic regions in the ME
with poorer surveillance capabilities might have been underrepre‐
sented (i.e., inaccurately represented) in the selected environmental
layers, and therefore, the predicted risk of H5N1 HPAIV in those
countries has been diluted toward the null. That said, the use of envi-
ronmental, demographic, and spatial data with machine-learning meth‐
ods may, at least in part, compensate that bias, because predictions are
based on the correlation between predictors and disease, mostly, in
areas with a high concentration of data available, which is then used
to predict risk in areas in which incidence data may be scarce. This
notion has been confirmed by our sensitivity analysis (Table 2), in
which removing the Egyptian outbreaks did not lead to a drastic
drop in the values of AUCs, specifically the conservative cAUC, and,
interestingly, the risk map of Maxent model C continued to identify
the Egyptian part of the Nile valley as a high-risk area (Fig. 3C). Fur-
thermore, our procedure led, for example, to identifying high-risk
areas in Syria, despite the limited reporting of H5N1 HPAIV cases
available from that country. However, the resulting risk maps for the
relative probability of H5N1 HPAIV occurrence are not definitive
and need to be updated periodically. Furthermore, the model predic-
tions suggest that the reason that some ME countries did not report
cases of H5N1 HPAIV (e.g., Qatar and United Arab Emirates) might
simply be that they did not exhibit suitable environmental conditions
for the emergence of H5N1HPAIV in their poultry populations. Sub-
sequently, an additional use of the Maxent prediction here may be as a
proxy for the distinction between geographic areas in which absence
of reporting was likely due to a true absence of disease (such as those
suggested for Qatar or the United Arab Emirates) from those in
which disease may have gone underreported (such as some parts
of Syria).

In conclusion, high-risk geographic areas and periods of time,
with their underlying environmental and demographic factors, for
the introduction and circulation of H5N1 HPAIV in poultry in the
ME between 2005 and 2014 were identified. Results suggest that
more information related to poultry holding demographics is needed
to further improve the risk prediction for H5N1 HPAIV in the ME,
whereas the methodology presented here may be useful in guiding the
design of surveillance programs and in identifying areas in which
underreporting may have occurred.
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