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How Tall Is Tall? Compositionality, Statistics, and Gradable Adjectives
Lauren A. Schmidt1 (lschmidt@mit.edu), Noah D. Goodman1 (ndg@mit.edu),
David Barner2 (barner@ucsd.edu), and Joshua B. Tenenbaum1 (jbt@mit.edu)

1Department of Brain and Cognitive Sciences, MIT;
2Department of Psychology, University of California, San Diego

Abstract

What is tall? Like many words, tall is fundamentally com-
positional in meaning — whether an item is tall depends on
the statistical properties of the set of items it is being com-
pared to. Despite preliminary evidence to this effect, no math-
ematical models of how tall operates in a given context have
ever been empirically evaluated. We compare a number of sta-
tistical models to adults and children in judging which items
are tall in various contexts, including both threshold-based and
categorization-based models. We find that non-parametric sta-
tistical models of gradable adjectives best describes the judg-
ments of people across a wide variety of contexts.
Keywords: psychology; language understanding; Bayesian
modeling

Introduction
Skyscrapers, giraffes, and basketball players all belong to a
single category, despite having almost nothing in common.
In fact, the one property that they do share — being tall —
is not true of all three when considered together. Basketball
players are short relative to skyscrapers, and even compared
to giraffes. So how do we – or better yet, 3-year-old children
– ever figure out what these things have in common? For that
matter, what do tall things have in common?

The answer to this problem has two components, the first
of which is old, and was most famously defended by Frege
(1892). This is the observation that noun phrases – and ex-
pressions of language more generally – are subject to compo-
sitionality: the meanings of complex expressions are a func-
tion of their syntax and the meanings of their constituent parts
(see Fodor & Lepore, 2002, for discussion). In the case of
an expression like tall boy, the interpretation of tall is deter-
mined in part by the meaning of the noun it modifies – i.e.,
boy. Tall, a subsective adjective, picks out a subset of things
referred to by the noun it modifies (‖tall‖ ⊆ ‖boy‖) unlike
intersective adjectives, like Californian, which pick out the
intersection between two sets (‖Cali f ornian‖∩‖boy‖). As a
result, it makes sense to ask whether someone is tall for a boy,
but not whether he is Californian for a boy. Tall is interpreted
relative to the class of things denoted by the noun it modifies,
or the comparison set.

The compositional nature of tall explains why it can be
true of both humans and towers. However, it does not explain
how we know which humans and which towers are tall for
their respective kinds. What, precisely, does it mean to be tall
for a building?

Past work from both psychology and linguistics falls short
of answering this question. Whereas theories of concepts
have traditionally been concerned with determining how
mental representations encode properties of things in the

world (e.g., via definitions, prototypes, inferential roles, or
causal histories), previous studies have restricted these in-
vestigations almost entirely to nominal categories (e.g., nat-
ural kinds, artifact kinds), or to stable perceptual properties
(e.g., color, shape, texture). Although previous studies sug-
gest that young children are sensitive to the statistics of sets
when using gradable adjectives like tall and high (e.g., Smith,
Cooney, & McCord, 1986; Barner & Snedeker, 2008) none of
these studies has characterized what type of statistical func-
tion is used by children in understanding these terms. Con-
siderable attention has been paid to the formal semantics of
gradable adjectives (Cresswell, 1976; Kennedy, 1999; Klein,
1991), but these accounts do not specify how speakers iden-
tify things in the world as tall, short, big, or small.

Although no previous study has investigated how classes of
things are divided into gradable categories like big and tall,
some suggestions have been made. For example, things may
count as tall if they are taller than average, or taller than most
things in a class (Barner & Snedeker, 2008).

In this paper we compare the performance of a number
of possible models of tall to the tallness judgments of peo-
ple. These models include both models with an absolute stan-
dard of comparison (included as a baseline for model perfor-
mance), and those which perform simple statistical functions
to determine the standard of comparison for a given set of
items. We additionally explore an alternative model of tall
that combines statistics and categorization, using Bayesian
methods to probabilistically cluster items (e.g., buildings)
into subcategories (e.g., tall buildings) based on their heights.
The standard of comparison for such a model is the boundary
between the tallest subcategory of items and all shorter sub-
categories. Experiments 1 and 2 explore the performance of
all of these models in a number of different contexts.

Models of tall
We considered several possible models of gradable adjectives
based on the context. We describe the models with regards to
the meaning of tall, but each of the models applies directly to
any gradeable adjective.

For all model definitions, let C be the set of objects in the
context, and h : C → R be the height function from objects to
their height1.

Each model below defines a probability P(x is tall|C). That
is, each gives an alternative way to answer the question “is
object x tall, given the context?”

1To apply to another gradeable adjective, replace the height func-
tion h with an appropriate function mapping from items to the scale
of the adjective.
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Figure 1: A distribution of rectangular items of different heights is
shown at the top. The graphs below show the probability that each
item is tall, according to each model. Model name and parameter
setting specified to right of each graph. (Cluster model shown uses
typical hyperparameter settings.)

We considered two families of models. The first family is
a wide class in which a height threshold is computed from the
context, and tallness decisions are made based on this thresh-
old. To the best of our knowledge, all previous proposals for
the meaning of gradeable adjectives fall into this family.

The second class treats tallness judgement as a categoriza-
tion problem and invokes the machinery of probabilistic clus-
tering.

Threshold-based models
Threshold-based models compute a threshold statistic from
the heights of the objects in the context, and make tallness
judgements by comparing to this threshold.

We include normally-distrubuted noise on the threshold2 in
order to permit vague use of “tall.” Let T be a threshold func-
tion mapping from context sets C to a positive real number.
The probability of item x being tall is the cumulative prob-
ability that a normal random variate with mean T (C) is less
than h(x):

P(x is tall|C) =
1
2

[
1+ erf

(
h(x)−T (C)

ε
√

2

)]
,

where erf is the error function, and ε a noise-width parameter.
We consider a number of possible threshold functions:

• Absolute height (AH): all items taller than a fixed reference
height are tall: T (C) = k, with k a fixed parameter.

• Absolute number (AN): the tallest k items are tall. Let
x1, ...,xN be an ordering of C by height (i.e. h(xi) ≤ h(x j)
if i < j). Then: T (C) = h(xk).
2This noise may result from within- or between-subjects factors.

• Unique percent number (UAN): as in AN, but computed
based on only one object of each height.

• Percent number (PN): the tallest k% of the items are tall:
T (C) = h(xbk·Nc).

• Unique percent number (UPN): as in PN, but computed
based on only one object of each height.

• Relative height by range (RH-R): any item within the top
k% of the range of heights is tall. If we write Mx =
maxx∈Ch(x) and Mn = minx∈Ch(x), then: T (C) = Mx− k ·
(Mx−Mn).

• Relative height by standard deviation (RH-SD): any item
with a height greater than k standard deviations above the
mean is tall. If we write x̄ and σ for the mean and standard
deviation of heights of object in C, then: T (C) = x̄+ k ·σ.

• Maximum margin (MM)3: items taller than
the biggest gap in heights are tall: T (C) =
h(argmaxx∈Cminy∈Cs.t. h(y)<h(x)|h(x)−h(y)|).

Category-based models
Category-based models classify an element as tall if it is in
the “tall category.” The same psychological mechanism used
for other categorization tasks can be used to determine which
subset of the items are in the tall category, but subject to the
constraint that the tallest item (i.e. argmaxx∈Ch(x)) is in the
tall category. For example, the max-margin threshold model,
described above, can be seen as a primitive category-based
model: it first separates the items into clusters (determined
by the largest gap in heights), then sets the threshold in order
to divide these clusters.

Next consider a more sophisticated category-based model,
related to the infinite Gaussian mixture model (Rasmussen,
2000), a modern version of Anderson’s rational model of cat-
egorization (Anderson, 1991); we’ll refer to this as the Clus-
ter model (CLUS). Let Q be a partition of C into clusters of
contiguous items based on height, and write qx for the par-
tition containing x. First, an item is tall if it is in the same
cluster as the tallest item (call this cluster qtall). The shortest
item is required to be in a separate category from the tallest
item, based on the idea that people expect the items in any
given context to range from “short” to “tall” within that con-
text.

Thus the probability that a particular item is tall is given
by:

P(x is tall|C) = ∑
Q

P(x ∈ qtall|Q)P(Q|C)

The posterior probability of a particular partition is:

P(Q|C) ∝ P(C|Q)P(Q)

= P(Q)

(
∏
x∈C

P(x|µqx ,σqx)

)(
∏
q∈Q

P(µq)P(σq)

)
,

with the remaining probabilities determined by the model
setup (see Rasmussen, 2000, for details): P(x|µqx ,σqx) is

3The noise parameter for the MM model is set to 0 to serve as a
simple heuristic clustering model.
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Gaussian, P(µq) is Gaussian, P(σq) is Gamma, and P(Q) is
given by the Chinese restaurant process.

Intuitively, Bayesian inference using this model looks for
clusters of items based on height. The model parameters set
prior expectations about the mean and variance of these clus-
ters, as well as the number of items in the clusters, but strong
evidence can overcome these prior expectations.4

For each possible partition of items into clusters, only the
tallest cluster of items is considered the ”tall category”; all
other items are not tall. To find the overall probability that
an item is tall, we weight whether it is tall in each possible
partition of items by the posterior probability of items being
partitioned in that manner. The posterior probability is based
on both prior expectations and the heights of the items.

Model predictions
Figure 1 shows several different sample contexts C, and ex-
amples of model probability that each item is tall, for all of
the models described above.

In the case of an approximately uniform distribution of
items, Figure 1(a), all models show a sigmoid-like drop-off
in probability in approximately the same place (with the ex-
ception of the MM model, which is a step function for reasons
described above). Though all the items apparently fall into a
single cluster here, the prior expectations of the CLUS model
about the size of clusters, together with the requirement that
the shortest item not be tall, lead the Cluster-based model to
also show a sigmoid-like drop-off in determining which items
are tall.

Figure 1(b) and (c) show two more distributions, with 2 or
3 apparent clusters of items respectively. Some of the thresh-
old models separate the two clusters and make the same pre-
dictions in Figure 1(b) as the CLUS model, but others show
the same sigmoid-like drop-off as before. In Figure 1(c),
the CLUS model treats the items in each of the three clus-
ters uniformly and distinctly from each of the other clus-
ters, while all the other models show very different predic-
tions. Note that varying either the parameter settings (which
changes the location of the drop-off) or the noise parameter
setting (which changes how gradual or sudden the drop-off is)
for the threshold-based models can cause their predictions to
change greatly for individual items, though they will always
have a sigmoidal drop-off.

The major differences in threshold models are also appar-
ent across the distributions, including some limitations: AH
is entirely insensitive to context; AN is sensitive only to the
height-ordering, not the actual heights; MM is determined
solely by the largest gap in heights. Meanwhile the relative
height models are more flexible, extracting useful statistics of
the height distribution. In Experiment 1 we will use these dif-
ferences to seek double-dissociations ruling out the less flex-
ible models as an explanation of human judgements.

4Four model hyperparameters were varied in the following stud-
ies, one controlling the CRP prior, and three controlling the Normal-
Gamma conjugate prior distribution for the cluster mean and vari-
ance.

Experiment 1
In Experiment 1, we compared the performance of the mod-
els and people in judging which items were tall given distri-
butions of items of different heights.

Adult subjects judged which items were tall in a wide va-
riety of distributions of items. We generated distributions by
sampling randomly or at regular intervals from one or two
Gaussian, uniform, or other statistical distributions (such as
an exponential distribution). The means, variances, and num-
ber of items within each of the resulting clusters of items var-
ied. Representative distributions are shown in Figure 2(a).

181 adults participated. Each adult saw one distribution
of items, all presented at the same time. Items were shown
in a frame, like one of those in Figure 2(a), but they were
shuffled into a pseudo-random order instead of being sorted
by height. We labeled each set of items with a novel name
like “pimwits,” and then asked adults to specify which ones
were the tall pimwits.

All models ran on the distributions with a wide variety of
parameter settings.

Results For each distribution, we compared a given
model’s probability that each item was tall to the percent
of adults who labeled that item tall using a measure called
mean difference, which measured the average error per item.
The method of calculating the mean difference is illustrated
in Figure 2(c).

We selected the best parameter setting for each model by
averaging the mean differences between the adult judgments
and the model probabilities across all distributions. Figure 2
shows a histogram of the MD across all distributions for each
of these best models. The models are ranked in order of aver-
age performance.

The Relative Height by Standard Deviation, Relative
Height by Range, and Cluster models all perform approxi-
mately equally well. The Unique Percent Number and Per-
cent Number models perform only slightly worse overall;
however, there are some distributions where both of these
models perform very poorly, as shown in Figure 3(a). For
these two distributions we can see a strong double dissoci-
ation in performance; on the left, the PN model predicts far
too many items are tall, and on the right, far too few (UPN has
the same problem in many cases, since it reduces to the same
model as PN whenever the distribution values are unique).
Because of this double dissociation, the PN threshold param-
eter cannot be adjusted in either direction to better predict all
the adult results, and it systematically fails to capture human
judgments about what is tall.

Figure 3(b)-(d) also shows similar double dissociations for
the AN, MM, and AH models. Figure 2 demonstrates these
models’ increasingly poor performance on the overall distri-
bution set. Because all of these models fail in both direc-
tions – sometimes calling too few items tall and sometimes
too many – these models also cannot be account for human
judgments of tallness. This failure of the two absolute stan-
dard of comparison models (AN and AH) is consistent with
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Figure 2: (a) A number of representative distributions used as stimuli in Experiment 1 (subjects saw these and other sets of objects in
randomized order instead of sorted by height, as shown here). (b) Histograms demonstrating the performance of each model in Experiment 1,
where success is measured along the x-axis in terms of mean difference (see (c) for explanation of measure), with a performance of 0 being
best and 1 being worst (for these histograms, all results worse than 0.5 are binned at 0.5). Each histogram represents the mean difference
measure of one model across all distributions, with the number of distributions receiving each score measured on the y-axis. The model
name and the average mean difference score for that model is shown at the top of each histogram. The models are sorted from best to
worst performance overall. (c) An illustration of how mean difference is calculated for one distribution. For each item in the distribution,
the distance between people’s judgments (blue) and the model’s predictions (red) is calculated (black lines) and the mean difference is the
average of all these distances.

previous empirical evidence that people are sensitive to con-
text in making judgments of tallness. The failure of the Max-
imum Margin model indicates that people are not performing
this simple clustering heuristic in judging the tall items.

Also of interest is the one distribution where the RH-SD
model did significantly more poorly than its general perfor-
mance (see Figure 3(e)). Here, there are many items that are
taller than 0.4 standard deviations above the mean height (the
optimal RH-SD threshold overall), and the RH-SD model la-
bels them all tall. Adult judgments fall off far more quickly,
and there are many items that very few people think are tall
and the RH-SD model predicts are tall with 100% probability.
Despite this large divergence between model and human per-
formance, however, this model does not show a similar but
opposite pattern of picking far too few items on any of the
distributions in Experiment 1. Experiment 2 further investi-
gates this model’s performance given similar distributions in
Experiment 2.

Overall, in Experiment 1, many of the models failed to
match human judgments of tallness. However, all of the mod-
els that depend on the height of objects in a given distribution
(RH-R, RH-SD, and CLUS) performed well overall. This
suggests that, in assessing which items in a given context are
tall, people are juding tallness in a way that can be modeled
by a statistical function based on the heights of the objects in
the category. In Experiment 2, we further explore which of
these three models best describes human judgments.

Experiment 2
We attempted to find distributions where the three best mod-
els from Experiment 1 made significantly different predic-
tions.

We designed a set of distributions with a large number of
items taller than the best previous RH-SD threshold (0.4 stan-

dard deviations above the mean), as in the distribution in Fig-
ure 3(e), such that the best previous RH-SD model would
make different predictions from the best RH-R and CLUS
models. Additionally, this set has several distributions with
very distinct clusters of objects, causing the CLUS model to
make somewhat different predictions from the more gradual
sigmoidal fall-off of the threshold models.

We created six distributions, three of which were designed
with a mid-height cluster of objects that people found to be
ambiguous in terms of tallness, and three which were not.
Two of the distributions used are pictured in Figure 4. The
distributions were each divided two “clumps” of items – the
clearly short items, divided into 1–3 clusters, and the taller
items, divided into either one broad cluster or two very dis-
tinct clusters (the shorter of which was the ambiguously tall
cluster). All the clusters were sampled from a Gaussian dis-
tribution. Across all six distributions, the mean and variance
of the short clump remained the same, and likewise for the
tall clump. All the items in the tall clump were greater than
0.4 standard deviations above the mean of the overall distri-
bution.

A total of 107 adults judged the tallness of the items in
these distributions, each adult viewing only 1 distribution.
They viewed the distributions on a computer screen and were
asked to identify each of the tall pimwits.

Results Figure 4(a) compares the performance of the three
models to human judgments for two of the distributions. The
performance of both the best parameter fit for just the six Ex-
periment 2 disttributions is shown, as well as the performance
of the best models overall (for the combination of all Experi-
ment 1 and Experiment 2 distributions).

The best parameters for the RH-R and CLUS models are
similar for the Experiment 2 distributions and for all the
distributions together, and the performances of these mod-
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distribution on the right. In (e) we see that RH-SD also performed
poorly in one of these directions for one distribution.

els are very similar in both cases; the best RH-R thresh-
old is k = 27% for Experiment 2 (with a noise parameter of
ε = 0.01) and k = 29% overall (with a noise parameter of
ε = 0.05). The CLUS hyperparameters were also similar for
the best Experiment 2 and best overall performance.

In strong contrast, the parameter values and the perfor-
mance for the RH-SD model are far different for the distribu-
tions in Experiment 2 than the combined distribution set. The
best overall model (k = 0.4,ε = 2.5) predicts with certainty
that all the items in the tall clump are tall, whereas people
are uncertain about the middle cluster of items. The RH-SD
parameters can be adjusted to better match the human judg-
ments for Experiment 2 (k = 1.0,ε = 75), but these parameter
results do poorly on the overall set of distributions, as shown
in the histograms in Figure 4(b). These histograms also show
the good performance overall of the best RH-R and CLUS
models from Experiment 2.

Both the RH-R and the CLUS models fit the human judg-
ments reasonably closely, and it is not clear which model pro-

vides the best fit. There are, however, differences in their
predictions. The CLUS model does show an almost equal
set of probabilities for the mid-height cluster items being tall;
the RH-R model shows a more sigmoidal fall-off for these
items. Additionally, the RH-R model predicts a sharper fall-
off in tallness judgments for the tallest cluster of items than
the CLUS model does. And, with the best overall parame-
ters, the RH-R model predicts a greater-than-zero probabil-
ity of some of the short clump of items being labeled tall,
though no humans rated any of these items tall. If the RH-R
noise parameter is adjusted such that the predictions for the
mid-cluster items are even flatter, then the sigmoidal curve
becomes more apparent in both the shorter and taller items.
The CLUS model, by contrast, does not predict any of the
short clump items as tall without drastic parameter variation.
Though these results are suggestive about differences in the
models, we do not have a definitive answer as to which of
the two models best fit human judgments, which, given the
current amount of data, are well approximated by both.

Overall, the results of Experiment 2 show clearly that the
RH-SD model, an intuitive parametric model based on the
mean and standard deviation of a distribution, cannot ac-
count for how people make judgments about gradable ad-
jectives. The qualitatively different predictions of the two
non-parametric models, RH-R and CLUS, suggest that future
work will help us understand which of these two models is
the strategy used by people, though on average both models
predict the Experiment 2 data well.

Conclusion
The success of the RH-R model and the CLUS model in Ex-
periments 1 and 2 suggests that people do perform a statistical
computation upon the comparison set when using the word
tall. However, this computation is not based on a simple para-
metric statistical criterion as in the RH-SD model, but some
more nonparametric function that is meaningful for a wider
range of distributions.

Though a parametric model such as RH-SD may seem in-
tuitively appealing, people regularly encounter sets of items
that do not follow a parametric distribution. Such contexts
include cases where the objects under consideration do not
belong to one natural type, e.g., “the things on the table”.
In these situations, the distribution of object heights may be
highly nonuniform or multimodal, and non-parametric mod-
els can accomodate this in ways that parametric models can-
not.

The RH-R model is simpler than the CLUS model, in the
sense that it has two free parameters where the CLUS model
has four. However, there are two reasons why the CLUS
model is a compelling model from a cognitive perspective.
First, it seems to capture a crucial idea of linguistic composi-
tionality: we use noun phrases to pick out complex subcate-
gories that are not lexicalized as single nouns but that never-
theless correspond to interesting chunks of the world. Sec-
ond, this model relies on well-established, domain-general
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Figure 4: (a) Two sample distributions from Experiment 2 are shown at the top, with the performance of the three models shown below. For
each model, the best parameter settings for just Experiment 2 and the best parameter settings for all the distributions of both experiments are
compared. The best RH-R and CLUS models are very similar for overall results vs. for just the Experiment 2 distributions. The best RH-SD
model overall, however, is very different from the best RH-SD model for just the Expt 2 distributions – so much so that the best overall model
does not capture adult judgments for the Experiment 2 distributions well at all. (b) The best Experiment 2 RH-R and CLUS models also
perform very well overall, but that is not the case for the best Experiment 2 RH-SD model. The histograms show the mean differences for the
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mechanisms for categorization. If these strategies also ap-
ply to understanding gradable adjectives, this would not entail
positing any truly new cognitive complexity.

Future work will further explore the different predictions of
the RH-R model and the CLUS model to answer the question
of which non-parametric method people are employing when
they use gradable adjectives. Once the best model has been
found for tall, this work can be extended to related questions
of language compositionality — does the best model also ap-
ply to how people use other gradable adjectives, such as big,
small, short, and loud, and are the best parameters similar?
What about intensifiers like very — can the very tall boys
be identified by applying either the Cluster model or range-
based thresholding to the class of tall boys? Additionally,
there are quantifiers such as most or several that apply to an
ordered scale of set-sizes, and like gradable adjectives, can
have flexible, context-sensitive meanings that seem to draw
on both compositionality and statistics (Halberda, Taing, &
Lidz, 2008). Can a model of gradable adjectives give insight
into how those words are used? Further work remains in order
to determine the extent to which the model applies to other
words with compositional meaning besides tall.

Also of interest is the developmental progression of grad-
able adjective understanding. While work by Barner and
Snedeker (2008) suggests that children use tall as a statisti-
cal categorization function from an early age, it remains to be
seen whether they start out with the same model of gradable
adjectives that they eventually use as adults, or whether they
learn the structure of the meaning of tall based on experience.

While much work remains to be done, the knowledge that a
statistical, non-parametric model predicts human usage of tall

marks a step forward in our understanding of how people use
gradable adjectives and, more broadly, how word meanings
can compose to form phrases.
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