
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Exploitative and Exploratory Attention in a Four-Armed Bandit Task

Permalink
https://escholarship.org/uc/item/8ft623fx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Walker, Adrian R.
Le Pelley, Mike E.
Beesley, Tom

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ft623fx
https://escholarship.org
http://www.cdlib.org/


 
 

Exploitative and Exploratory Attention in a Four-Armed Bandit Task 
 

Adrian R. Walker (adrian.walker@unsw.edu.au) 
School of Psychology, UNSW Sydney, Sydney NSW 2052, Australia 

 

Mike E. Le Pelley (m.lepelley@unsw.edu.au) 
School of Psychology, UNSW Sydney, Sydney NSW 2052, Australia 

 

Tom Beesley (t.beesley@unsw.edu.au) 
School of Psychology, UNSW Sydney, Sydney NSW 2052, Australia 

 

 

Abstract 

When making decisions, we are often forced to choose 

between something safe we have chosen before, and 

something unknown to us that is inherently risky, but may 

provide a better long-term outcome. This problem is known as 

the Exploitation-Exploration (EE) Trade-Off. Most previous 

studies on the EE Trade-Off have relied on response data, 

leading to some ambiguity over whether uncertainty leads to 

true exploratory behavior, or whether the pattern of 

responding simply reflects a simpler ratio choice rule (such as 

the Generalized Matching Law (Baum, 1974; Herrnstein, 

1961)). Here, we argue that the study of this issue can be 

enriched by measuring changes in attention (via eye-gaze), 

with the potential to disambiguate these two accounts. We 

find that when moving from certainty into uncertainty, the 

overall level of attention to stimuli in the task increases; a 

finding we argue is outside of the scope of ratio choice rules. 

Keywords: Reinforcement Learning; Attention; Decision-

Making; Exploitation/Exploration Trade-Off; Bandit Task. 

Introduction 

In everyday decision-making, we often have to choose 

between trying something new, or sticking with what we 

know. For example, when deciding what to eat at a 

restaurant, we can choose to order our regular “safe” meal 

(e.g., spaghetti bolognese), or try a new “risky” meal (e.g., 

steak tartare). By ordering the risky meal, we learn about 

how tasty it is. If it is tastier than our regular meal, we may 

become more likely to order it on subsequent visits. 

However, if it is worse than the regular meal, we wasted an 

opportunity to sample our regular meal. This problem is 

known as the Exploitation/Exploration Trade-Off (or “EE 

Trade-Off”) (Cohen, McClure, & Yu, 2007; Knox et al., 

2012; Mehlhorn et al., 2015).  

One common method used to study the EE Trade-Off is 

the Multi-Armed Bandit Task (e.g., Daw et al., 2006; Gittins, 

1979; Knox et al., 2012; Speekenbrink & Konstantinidis, 

2015). On each trial, participants are presented several 

“arms” and are asked to pick one arm to receive some 

reward (e.g., points). Each arm provides a different amount 

of reward, with the goal of the participant being to 

maximize the amount of reward they receive. Participants 

are not told the value of each arm at the outset, and must 

learn these values through sampling each arm. The reward  

 

 

structure is generally stochastic, with the value of each arm 

changing gradually over time (e.g., Daw et al., 2006; 

Laureiro-Martinez et al., 2015). The key measurement of 

this task is how often participants choose the arm which 

gives the highest observed pay-off. Generally, a participant 

is considered to be “exploiting” an arm if they choose the 

arm with the highest observed pay-off, while they are 

considered to be “exploring” when making any other choice 

(Knox et al., 2012).  

Explanations for Exploration 

Work by Daw et al. (2006) found evidence that exploitation 

is the “default” for human behavior, while exploration is a 

high-level decision not to exploit on a given trial. 

Subsequent research with the multi-armed bandit task has 

primarily focused on determining what parameters induce 

exploratory responding over exploitative responding.  

Two major accounts have been proposed for what causes 

people to switch from exploitation to exploration. One 

influential account that has emerged argues that 

environmental uncertainty is key in motivating exploration 

(Beesley, Nguyen, Pearson, & Le Pelley, 2015; Gold & 

Shadlen, 2007; Knox et al., 2012; Speekenbrink & 

Konstantinidis, 2015). That is, the less certain a participant 

is about the dynamics of their environment, the more likely 

they are to spend time exploring it (Mehlhorn et al., 2015). 

For example, if the quality of food at a restaurant is highly 

variable, you may explore many different meals before 

settling on a preferred one. By contrast, if the quality of 

meals is fairly consistent, you may quickly settle on a 

preferred meal. The key implication of this account is that 

exploration is an intentional attempt to reduce the amount of 

uncertainty in the environment (and thus aid informed 

decision making). 

The other major account argues that in most cases, 

exploration can be explained by ratio choice rules (Sakai & 

Fukai, 2008). In their review, Gold and Shadlen (2007) 

suggested that most exploratory behavior might adequately 

be explained by a form of Herrnstein’s (1961) Matching 

Law (See also Baum, 1974). The Matching Law states that 

the ratio of responding on each arm is equivalent to the ratio 

of reinforcement for each of those arms. That is, participants 

“match” how often they select each arm, based on the 
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perceived average reward for the selected arm compared to 

others. For example, in a two-armed bandit task, where arm 

A is reinforced 3 times as often as arm B, the Matching Law 

states that people will select arm A 3 times as often as arm 

B. Importantly, while participants still preferentially select 

the optimal arm (A), they will also switch to the other, sub-

optimal arm (B) on 25% of trials. In this case, switching 

away from the optimal arm does not represent an intentional 

attempt to lessen uncertainty in the environment, but instead 

represents participants employing a (somewhat crude) ratio 

choice rule. 

Baum (1974) provided an extension to Herrnstein’s 

(1961) “Simple” Matching Law to account for a wider array 

of choice behavior. This “Generalized Matching Law” 

included two additional parameters: bias and sensitivity, 

where bias reflects a tendency for selecting a given option 

over other available options (irrespective of the 

reinforcement rate for each option), and sensitivity 

determines how strictly a participant conforms to the choice 

ratio for their selections. The Generalized Matching Law 

has been shown to account for a wider variety of choice 

behavior than the Simple Matching Law (Baum, 1974; 

Schneider & Lickliter, 2010), and is the version applied in 

this paper.  

It is important to note that, even when employing a ratio 

choice rule like the Matching Law, participants can still 

update their knowledge of the environment by picking sub-

optimal responses (as determined by the choice rule). 

However, the crucial distinction is that exploratory choices 

occur on the basis of a ratio determined by the choice rule, 

and are not an intentional attempt to lessen uncertainty. For 

the purpose of the current paper, this type of behavior may 

be considered synonymous with the phenomenon known as 

probability matching (Sakai & Fukai, 2008; Shanks, Tunney, 

& McCarthy, 2002 – though strictly these two phenomena 

are slightly different, see Shanks et al., 2002). 
The main difference between the uncertainty account and 

the ratio choice rule account of exploration is that, in the 

former, uncertainty is a catalyst for participants to explore 

(and thus lessen the total uncertainty in the task); while in 

the latter, exploration occurs as a product of some choice 

function. One key issue in attempting to differentiate these 

two accounts is that it is difficult to increase uncertainty 

without changing the reward value of the different arms. For 

example, in the commonly used “walking bandit task” (Daw 

et al. 2006; Laureiro-Martinez et al., 2015; Speekenbrink & 

Konstantinidis, 2015), uncertainty is implemented by 

stochastically walking (slowly changing) the mean reward 

for each arm every trial. While this does serve to make the 

value of each arm uncertain, it also necessarily causes 

changes to the probability of picking each arm as given by 

ratio choice rules. Therefore, it is hard to determine whether 

an attempt to reduce the uncertainty in the task, or a 

predetermined ratio choice rule, is responsible for 

motivating exploration under these circumstances.  

While it is possible to use cognitive modeling techniques 

to examine whether uncertainty motivates exploration (e.g., 

Daw et al., 2006; Knox et al., 2012; Speekenbrink & 

Konstantinidis, 2015; Stevyers, Lee, & Wagenmakers, 

2009), the conclusions of these methods have been mixed. A 

recent study by Beesley et al. (2015) argued that attention 

may be another viable metric for assessing the EE Trade-Off. 

Beesley et al. conducted a study in which participants were 

presented with two cues and were asked to make a choice 

between two responses. One cue was informative about 

what the optimal response was on that trial, while the other 

cue was task-irrelevant. Beesley et al. measured participants’ 

attention by tracking eye-gaze on the two cues. They 

showed that when cues were perfect predictors of the 

optimal response, participants attended to the informative 

cue over the task-irrelevant cue. However, when cues were 

imperfect predictors of the optimal response (i.e., predicted 

the optimal response on only two-thirds of trials), 

participants increased their attention to both the informative 

and task-irrelevant cue, indicating greater exploration of the 

cues. Beesley et al. argued that these findings were 

synonymous with the EE trade-off. The implication, 

therefore, is that exploration can be exhibited in behavioral 

domains outside of participant choice, and that exploration 

cannot be solely explained by ratio choice rules (the 

predictions of which are restricted to the response domain 

alone). 

One limitation to the Beesley et al. task was that the 

experimenters provided participants with feedback about 

which response was optimal on each trial. Therefore, while 

participants appeared to explore the information in the task 

by altering their attentional processing, they had no 

incentive to explore different responses to find the one that 

was most optimal (as they were told which response was 

optimal regardless of their choice). Thus, the current paper 

aims to assess whether uncertainty can induce exploratory 

behavior in both participants’ attention and responses, and 

hence provide wider support for the idea that uncertainty 

drives exploration. This would imply that exploration itself 

is perhaps a more complex, intentional process, which 

would place it outside the scope of ratio choice rules alone. 

Furthermore, it would suggest that exploration can manifest 

itself across more than one aspect of behavior (choice and 

attention). We used a four-armed bandit task where we 

manipulated uncertainty both within and between subjects. 

We measured responding and gaze-time to the different 

arms during the task.  In line with our hypotheses, we found 

that participants made fewer optimal responses and spent 

longer fixating on task elements when the task had an 

element of uncertainty, suggesting that uncertainty acts as a 

catalyst for exploration.   

Method 

This experiment aimed to examine the effect of uncertainty 

on attention and responding in a four-armed bandit task. 

Participants completed a variant of the bandit task, where on 

every trial they were presented four arms and asked to pick 

two. Two of the arms conferred 30 points (the High Value 

[HV] arms) and the remaining two arms conferred 15 points 
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(the Low Value [LV] arms). After making their choice, 

participants were rewarded with the cumulative score 

associated with each arm. For example, if the participant 

selected an HV arm worth 30 points and an LV arm worth 

15 points, they received a reward of 45 points for that trial.  

The experiment was conducted in two stages. Stage 1 of 

the task had a deterministic reward structure, in which each 

arm always yielded the same amount. Stage 1 was designed 

to be simple, such that participants could quickly learn the 

structure of the task and engage in what might be considered 

an exploitative pattern of behavior. In Stage 2 of the task, 

rewards were drawn stochastically from a uniform 

distribution for each combination of arms, with the mean 

reward value set at the same value as in the first stage. 

Stages 1 and 2 were coined the Certain and Uncertain 

stages respectively. In terms of participants’ responding, we 

hypothesized that when rewards became uncertain, 

participants would make more exploratory, non-optimal 

responses, and this exploration would be greater for 

participants who experienced greater uncertainty (consistent 

with Knox et al., 2012; Speekenbrink & Konstantinidis, 

2015). In terms of gaze-time, we hypothesized that when 

rewards became uncertain in Stage 2, participants would 

increase their gaze-time to all arms in the task. Furthermore, 

we hypothesized that the greater the level of uncertainty in 

those rewards in Stage 2, the more gaze time that would be 

allocated to the arms in the task, with more gaze time to HV 

arms over LV arms (consistent with Beesley et al., 2015). 

Design 

The design of the experiment is shown in Table 1. The key 

manipulation of the amount of uncertainty present in Stage 2 

was manipulated between-subjects. Uncertainty was 

operationalized as the range of possible scores around the 

mean reward value that could be received following a trial 

(in Stage 2). For example, a reward distribution of ±3 (Low 

Uncertainty) meant that after the participant made their 

selections, they received the cumulative score of those arms 

(e.g., 45 points if they picked one HV arm and one LV arm), 

±3 points (uniformly distributed across trials). Therefore, in 

this case, the participant could receive a score from 42 to 48. 

The Low Uncertainty condition had a reward distribution of 

±3, and the High Uncertainty condition had a reward 

distribution of ±18. The crucial difference between these 

two conditions was that in the High Uncertainty condition, 

the two score distributions overlapped, such that 

participants could sometimes earn more points after a choice 

of an HV arm and an LV arm than after a choice of two HV 

arms. By comparison, for participants in the Low 

Uncertainty condition, the optimal response was always 

picking two HV arms. The dependent variables were 

proportion of HV arms picked, and gaze-time on HV and 

LV arms as a proportion of trial time. 

 

 

 

 

Table 1: Design of Experiment 1 

Uncertainty 

condition 

HV 

Reward  

LV 

Reward  

Reward uncertainty 

(Stage 2) 

Low  30 15 ±3 

High  30 15 ±18 

Participants 

Sixty-five UNSW Sydney undergraduate students were 

recruited in exchange for course credit. The two highest 

scoring participants received a $20 prize. 

Apparatus and Materials 

Participants were tested individually in a quiet room. During 

the task, participants’ eye-gaze was tracked using a 58.4cm 

widescreen Tobii eye-tracking monitor (TX-300). 

Participants were seated approximately 60cm from the 

monitor, and had their heads steadied by a chin rest. The 

eye-tracker was calibrated at the start of the task. The 

experiment was run in MATLAB using the Psychophysics 

Toolbox extension (Brainard, 1997; Kleiner, Brainard, & 

Pelli, 2007; Pelli, 1997). Participants mades all responses 

via a standard keyboard and mouse. 

The four arms in the experiment were represented as four 

colored squares of 200 by 200 pixels (visual angle of 

approximately 5°). The four colors were always red, green, 

blue, and yellow (Figure 1). Color assignment to design 

elements (i.e., HV and LV arms) was counterbalanced 

between participants (24 permutations).  

Procedure 

At the start of the experiment, participants were instructed 

that they would be playing a simple guessing game, where 

the objective of the game was to maximize the number of 

points they received. On each trial, the four colored arms 

were presented in the four quadrants of the screen. The 

location of each arm was counterbalanced between trials, 

with a full counterbalance of positions taking 24 trials. 

Participants used the mouse to select two arms. Participants 

were allowed to deselect arms they had selected by clicking 

on the arm a second time. Once the participant had selected 

two arms, a small “Submit” (120 by 60 pixels) button 

appeared in the center of the screen. If the participant 

selected more than two arms, or deselected an arm, the 

button disappeared. 

 

 
 

Figure 1: A sample screen from Experiment 1. 
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Once the submit button was clicked, the four arms and the 

cursor disappeared, and the participant was told how many 

points they had earned on that trial, as well as the total 

points accumulated so far. Points were calculated by 

aggregating the value of the two arms the participant had 

selected, with the addition of the reward uncertainty in 

Stage 2 (see Design). Participants then pressed the spacebar 

to start the next trial. The location of the cursor was reset to 

the center of the screen on each trial.  

Stage 1 consisted of 96 trials and Stage 2 144 trials. The 

start of Stage 2 was not signaled to participants in any way. 

The only difference between Stage 1 and 2 was the addition 

of the variability (stochastic noise) for rewards (see Design 

and Table 1).  

Results 

Data were collapsed into blocks of 24 trials for analysis. If a 

participant had less than 50% of trials with valid eye-

tracking data recorded, they were excluded from analysis (n 

= 10). In addition, participants who selected the HV arms 

less than 70% of the time in the final block of Stage 1 were 

inferred to have not learnt the associations adequately, and 

were also excluded (n = 7). For each exclusion, we ensured 

a complete counterbalancing of design elements by 

recruiting a new participant with the same counterbalancing 

conditions. Trials in which the participant took two standard 

deviations longer than their mean trial time were excluded 

from all analyses. 

Response data are shown in Figure 2 and were analyzed 

in three parts, Stage 1 (blocks 1 to 4), the between-stage 

transition period (blocks 4 and 5), and Stage 2 (blocks 5 to 

10), using a repeated measures ANOVA with a within-

subjects factor of block and a between-subjects factor of 

condition. Effect sizes are reported as generalized eta-

squared, η2
G (see Bakeman, 2005). In Stage 1, a significant 

effect of block was observed, F(3, 138) = 98.84, p < .001, 

η2
G = .447, with participants in both conditions increasing 

selections of HV arms as they progressed through Stage 1.  

During the transition from Stage 1 to Stage 2, a significant 

effect of block was observed, F(1, 46) = 80.4, p < .001, η2
G 

= .465, with participants decreasing their selections of HV 

arms from Stage 1 to Stage 2. A significant effect of 

condition was also observed, F(1, 46) = 18.06, p < .001, η2
G 

= .165, with participants less likely to choose the HV arms 

in the High Uncertainty group. Finally, there was a 

significant interaction between block and condition, F(1, 46) 

= 22.56, p < .001, η2
G = .197, with the proportion of HV arm 

choices showing a greater decrease in the high uncertainty 

conditions than the low uncertainty condition during the 

transition period.  

In Stage 2, a significant effect of block was observed, F(5, 

230) = 22.68, p < .001, η2
G = .165, with participants 

increasing their selections of HV arms over the course of 

Stage 2. A significant effect of condition, F(1, 46) = 24.71, 

p < .001, η2
G = .243, and a significant interaction between 

condition and block, F(5, 230) = 5.02, p < .001, η2
G = .042, 

were observed, with participants picking HV arms less 

frequently in the High Uncertainty condition, but also 

showing a greater increase in their selection of HV arms 

over the course of Stage 2, compared to participants in the 

Low Uncertainty condition. 

Gaze-time data are shown in Figure 3. Gaze-time was 

calculated as the summed time of all fixations on the 

different arms in the task. A fixation was determined to have 

occurred if a participant’s gaze did not deviate more than 75 

pixels vertically or horizontally for at least 150ms. Total 

fixation time was calculated by extending this time until the 

participant’s gaze exited the 75 pixel limit (in accordance 

with Beesley et al., 2015; Salvucci & Goldberg, 2000). 

Proportion of gaze-time was calculated as the total fixation 

on each arm divided by the total trial time. Again, these data 

were analysed using a repeated measures ANOVA, with a 

within-subjects factor of block, a within-subjects factor of 

arm value  (high and low), and a between-subjects factor of 

condition. A significant effect of block was observed in 

Stage 1, F(3, 138) = 18.85, p < .001, η2
G = .062, with 

participants decreasing their total gaze-time to arms 

throughout Stage 1. A significant effect of arm value was 

also observed, F(1, 138) = 276.77, p < .001, η2
G = 0.675, 

along with a significant interaction between block and arm 

value, F(3, 138) = 17.86, p < .001, η2
G = .066, with 

participants gazing more at HV arms than LV arms, and this 

difference increasing over the course of Stage 1.  

 

 
Figure 2: Proportion of HV arms selected in each block. 

Stage 1 occurred in Blocks 1 to 4, while Stage 2 occurred in 

Blocks 5 to 10. Error bars represent ±1 SEM.  

 

 
Figure 3: Proportion of trial time gazing at HV and LV 

arms in each block for each condition. Stage 1 occurred in 

Blocks 1 to 4, while Stage 2 occurred in Blocks 5 to 10.  

Error bars represent ±1 SEM. 
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In the transition from Stage 1 to Stage 2, there was a 

significant effect of block, F(1, 46) = 15.80, p < .001, η2
G 

= .039, with participants increasing their total gaze-time at 

the onset of uncertainty. The significant effect of arm value 

was maintained, F(1, 46) = 282.29, p < .001, η2
G = .713.  

There was no effect of condition observed on gaze-time, F(1, 

46) = 2.21, p = .144, and there was no interaction between 

block and condition, F < 1. In Stage 2, the significant effect 

of arm value was maintained, F(1, 46) = 362.42, p < .001, 

η2
G = .721, and no effect of condition was observed, F < 1. 

No effect interaction between block and condition was 

observed in Stage 2, F(5, 230) = 1.19, p = .3161. 

Discussion 

In a reinforcement learning task, participants earned points 

for combinations of responses. In Stage 1, one combination 

of responses was optimal and participants readily learnt this 

relationship. In Stage 2, we introduced variation in the 

number of points received, while keeping the mean number 

of points per response constant. When moving from the 

certainty of Stage 1 to the uncertainty of Stage 2, 

participants in both conditions reduced their rate of optimal 

responding, and this reduction was greater for participants 

who experienced greater uncertainty. Following this change 

in behavior at the outset of Stage 2, participants in both 

conditions increased their rate of optimal responding over 

the course of Stage 2.  

In the High Uncertainty condition, the choice behavior of 

participants is well predicted by the Matching Law. 

However, crucially in the Low Uncertainty condition the 

Matching Law fails to predict the drop in optimal 

responding at the onset of. If a participant in the Low 

Uncertainty condition were following the Matching Law, 

they should not show a decrease in optimal responding at 

the onset of uncertainty. This finding suggests that 

exploratory choice cannot be solely explained by the 

Matching Law, and provides support to the idea that 

uncertainty can drive exploration. The reason why 

participants in the Low Uncertainty condition chose to 

switch away from the optimal response at the onset of 

uncertainty is not immediately clear. However, one possible 

explanation is that when participants perceived that the 

nature of the task had changed (i.e., rewards were no longer 

confined to three set values), they felt compelled to explore 

the other previously discounted responses to ensure they had 

not changed in any significant way.  

In terms of the attentional data, we found support for two 

of our three hypotheses. Unsurprisingly, participants began 

to pay more attention to HV arms over LV arms over the 

course of the experiment. This is compatible with a host of 

research from the associative learning literature (See Le 

                                                           
1 All data and analyses can be accessed on the Open Science 

Framework at osf.io/y6hqp. 

Pelley et al., 2016, for a review), showing that participants 

are likely to direct their attention to the most valuable 

predictors in a task (also see Le Pelley et al., 2015). 

Furthermore, there is evidence that participants will attend 

more to arms they are intending to select prior to making 

their response (e.g., Manohar & Husain, 2013). As 

participants selected more HV arms, this likely contributed 

to participants preferentially attending to them over LV 

arms. 

Crucially, we have shown evidence that an onset of 

uncertainty is associated with an increase in attention. Once 

rewards became uncertain at the onset of Stage 2, 

participants in all conditions increased their gaze-time to all 

arms in the task. Our data are in line with the findings of 

Beesley et al. (2015), and provide support to the idea that 

uncertainty can instigate exploratory behavior in both the 

choice responses and attentional bias. We argue that these 

data are beyond the scope of ratio choice rules, which do not 

provide a natural account of attentional changes under 

conditions of uncertainty and would not predict changes in 

response rate across the course of Stage 2. While the notion 

that uncertainty increases attentional processing of stimuli is 

not novel (Pearce & Hall, 1980), very little is known about 

attentional processing in multi-armed bandit tasks like the 

one used in the current experiment. The current findings 

suggest that pursuing this line of research may be important 

to gaining a more complete understanding of human 

decision-making. 

However, we did not find evidence for gaze-time 

interacting with the level of uncertainty. If the uncertainty 

account of exploration is correct, we should have observed 

greater exploration under greater uncertainty. Instead, the 

amount of gaze-time participants paid to the arms was 

comparable under both levels of uncertainty. One possible 

reason for this is that moving from a completely certain 

environment to an environment with any level of 

uncertainty may cause attention to increase. Yu and Dayan 

(2005) showed that participants behave differently when 

uncertainty is expected (i.e., present for the entire task) 

compared to when uncertainty is unexpected (i.e., a period 

of uncertainty occurs suddenly, following a period of 

certainty). It may be the case that when unexpected 

uncertainty occurred, attention increased by a set amount in 

response (regardless of the degree of that uncertainty). Also, 

while gaze-time does appear to be affected by uncertainty, 

the effect-size in our study was much smaller in comparison 

to the effect of uncertainty on responding (η2
G = .039 

compared to η2
G = .465). This may suggest that while 

changes in response rate and changes in overt attention are 

signals of exploration under uncertain conditions, that 

uncertainty affects these behavioral markers by distinct 

mechanisms. Alternatively, these data might suggest that 

gaze-time was less sensitive to uncertainty than was 
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participants’ responding, which made it harder to detect any 

effect of the different levels of uncertainty and gaze-time. 

In summary, we have shown that the introduction of 

uncertainty into a four-armed bandit task caused a general 

increase in attending, and a decrease in optimal responding. 

This provides support for the idea that environmental 

uncertainty causes an increase in exploratory behavior, and 

challenges the idea that exploration can be explained purely 

by ratio choice rules. 
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