
UC Berkeley
UC Berkeley Previously Published Works

Title

Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin 
discretizations on unstructured meshes

Permalink

https://escholarship.org/uc/item/8fv7s4zr

Authors

Pan, Y
Persson, P-O

Publication Date

2022

DOI

10.1016/j.jcp.2021.110775

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fv7s4zr
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Abstract

We present a geometric multigrid solver for the Compact Discontinuous Galerkin

method through building a hierarchy of coarser meshes using a simple agglom-

eration method which handles arbitrary element shapes and dimensions. The

method is easily extendable to other discontinuous Galerkin discretizations, in-

cluding the Local DG method and the Interior Penalty method. We demonstrate

excellent solver performance for Poisson’s equation, provided a flux formulation

is used for the operator coarsening and a suitable switch function chosen for the

numerical fluxes.

Keywords: discontinuous Galerkin, agglomeration, geometric multigrid

1. Introduction

The discontinuous Galerkin (DG) method with high-order approximations

are becoming increasingly popular for the solution of systems of conservation

laws, due to their natural ability to stabilize convection-dominated problem on
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arbitrary unstructured meshes with high-order accuracy. The resulting semi-

discrete systems are often integrated in time using explicit solvers, however, for

many real-world problems it is widely believed that implicit solvers will be re-

quired. This poses many challenges, since the Jacobian matrices are expensive

to compute and store, and specialized solvers are required to solve the corre-

sponding linear systems that arise.

One of the most important solver techniques employed, at least for elliptic

or diffusion-dominated problems, is the multigrid method [3]. The method has

been used extensively for DG methods [9, 17, 21, 15, 10, 19], where it can

naturally be applied as a p-multigrid solver where the grid hierarchy is formed

by varying the polynomial degrees in each element. It can also be used in the

more traditional h-multigrid setting, where the hierarchy is based on meshes of

varying coarseness, or as a combined hp-multigrid method which combines both

these techniques [14]. For fully unstructured meshes, it is in general difficult

to coarsen a given mesh in order to produce the mesh hierarchies needed for

a full h-multigrid. This is one of the motivations for using so-called Algebraic

Multigrid methods [23, 11, 1].

An alternative approach for coarsening an unstructured mesh is agglomer-

ation, that is, merging neighboring elements into larger ones successively. The

technique is not widely used for continuous Galerkin finite element methods,

because of the difficulties in defining continuous approximation spaces on the

resulting polyhedral elements. However, the technique has been used success-

fully for finite volume methods [12, 5, 20], where it is easier to update the

element-averages after coarsening. This is also true for high-order discontinu-

ous Galerkin methods, since they are straight-forward to implement on meshes

of arbitrarily shaped elements [8, 7].

In this paper, we propose an agglomeration-based h-multigrid method for
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Poisson’s equation based on the CDG method [16]. This is a variant of the LDG

method [6], with important benefits such as element-wise compact stencils and

improved stability properties. However, our method should be straight-forward

to use with the LDG method, or any other discretization such as Interior Penalty

or the BR2 methods [2].

We perform the element agglomeration with a simple approach which ex-

tends to arbitrary elements and dimensions. While the resulting hierarchy

might not be optimal for the multigrid performance, our numerical experiments

demonstrate that the method is quite insensitive to the shape of the agglomer-

ated elements. We also show the importance of choosing a good switch function

for the numerical fluxes in the CDG method.

The paper is organized as follows. In Section 2, we describe the CDG dis-

cretization and in particular write it in the so-called flux formulation which is

needed for the operator coarsening in the multigrid method. Next, we outline

the (heuristic) geometric element agglomeration algorithm in Section 3, and the

details of the multigrid method in Section 4. Our numerical results in Section

5 show a number of important properties of our scheme, and demonstrate its

performance.

2. Discontinuous Galerkin formulation

2.1. Problem definition

For our notation, quantities that have a spatial dimension, such as the spatial

gradient of a function, are bolded whilst scalar functions are not. We consider
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here Poisson’s equation as our model elliptic problem

∇2u = f in Ω,

u = gD on ΓD,

∇u · n = gN on ΓN ,

(1)

in a domain Ω ⊂ Rd, where d ∈ {1, 2, 3} is the dimension of the system. ΓD,ΓN

respectively denote parts of the boundary ∂Ω on which Dirichlet and Neumann

boundary conditions are imposed, with n denoting the unit outward normal on

∂Ω. Here, f(x) is an arbitrary given function in L2(Ω) and we further assume

that the length of ΩD is strictly greater than zero.

2.2. DG formulation for elliptic problems

To apply a DG method to the above model problem, we rewrite Equation

1 as a first order system of equations by introducing the variable q = ∇u and

rewriting the Laplacian operator as the divergence of q,

∇ · q = f in Ω,

q = ∇u in Ω,

u = gD on ΓD,

q · n = gN on ΓN .

(2)

In this work, we consider discretizations where meshes Th = {K} of Ω may

consist of arbitrarily shaped elements, with the only restriction being elements

must not self intersect. We define the broken spaces V (Th) and Σ(Th) as the

union of Sobolev spaces H1(K) and [H1(K)]d restricted to each element K.

Specifically,
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V = {v ∈ L2(Ω) : v|K ∈ H1(K), ∀K ∈ Th} (3)

Σ = {τ ∈ [L2(Ω)]d : τ |K ∈ [H1(K)]d, ∀K ∈ Th} (4)

We also introduce the finite element spaces Vh ⊂ V and Σh ⊂ Σ as

Vh = {v ∈ L2(Ω) : v|K ∈ Pp(K), ∀K ∈ Th} (5)

Σh = {τ ∈ [L2(Ω)]d : τ |K ∈ [Pp(K)]d, ∀K ∈ Th} (6)

where Pp(K) denotes the space of polynomial functions of order at most p ≥ 1

on each element K.

We obtain a weak DG formulation by multiplying the system of equations

with test functions v, τ before integrating by parts. From this our formulation

can be expressed as finding uh ∈ Vh, qh ∈ Σh such that for all K ∈ Th = {K},

we have

∫
K

(qh + uh∇) · τdx =

∫
∂K

ûτ · nds ∀τ ∈ [Pp(K)]d,∫
K

qh · ∇v dx =

∫
∂K

vq̂ · nds+

∫
K

fv dx ∀v ∈ Pp(K).

(7)

The numerical fluxes û, q̂ approximate the quantities to u and to q = ∇u

on the boundaries of each element K. For the CDG method, numerical fluxes

are expressed as a function of the fields uh and qh, in addition to the specified

boundary conditions on ∂Ω as follows.

To specify the numerical fluxes, we define a switch function SK′

K ∈ {−1, 1}

on each internal boundary separating element K from its neighbour K ′, which

satisfies the property SK′

K = −SK
K′ . One example is the natural switch function,

where given any enumeration of the elements {N (K)}, for any two elements
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K,K ′, the switch SK′

K > 0 if N (K) > N (K ′). Given a switch function, the

numerical fluxes are defined as:

• In Equation 7, û is defined by standard upwinding based on the switch

function

û =


uh if SK′

K > 0

u′h if SK′

K < 0

(8)

where u′h is the numerical solution to u in Equation 7 on the neighbouring

element K ′ on boundary ∂K.

• On every inter-element boundary f separating two elements K, K̃, where

SK̃
K < 0, define a “boundary gradient” qfh using a slight modification of

Equation 7

∫
K

(qfh + uh∇) · τdx =

∫
∂K\f

uhτ · nds+

∫
f

ũhτ · nds (9)

where tilde on ũh, q̃h denotes numerical solutions to the respective fields

defined on K̃. The flux q̂ on f is then defined simply by restricting qfh to

the boundary f .

• On a boundary f of element K that coincides with ∂Ω, we similarly define

a “boundary gradient”

∫
K

(qfh + uh∇) · τdx =

∫
∂K

uτ · nds (10)

The numerical fluxes are defined using the defined “boundary gradient”

in addition to the specified boundary conditions,

q̂ = qfh − CD(uh − gD)n, û = gD on ∂ΩD

q̂ = gNn, û = uh on ∂ΩN

(11)
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where the parameter CD > 0 is included for additional stabilisation. For

our applications, we choose CD = γ/havg, where γ > 0 is a constant, and

havg is mean height of elements K on the boundary ∂ΩD. The choice of

γ and its effect on multigrid convergence is discussed in Section 5.1.

We briefly note the similarity of the CDG method to the LDG method, with

the only distinction being in the definition of fluxes q̂. For a more detailed

treatment on the CDG method and its properties we turn the reader to [16].

2.3. Discrete formulation

Discretising Equation 7 we obtain a linear system

Mqh +Guh = r

D̃qh +N q̂ = f

(12)

where M denotes the system mass matrix, G the discrete gradient operator,

and r the Dirichlet vector, defined as

G(uh) =
∑
K

(∫
K

uh∇ · τdx−
∫
∂K\∂ΩD

ûτ · nds

)

r =

∫
∂ΩD

gDτ · nds
(13)

The operators D̃, N , and the vector f are defined as

D̃(qh) =
∑
K

∫
K

qh · ∇vdx

N(q̂) = −
∑
K

∫
∂K\∂ΩN

vq̂ · nds

f =
∑
K

∫
K

fvdx−
∫
∂ΩN

vgNds−
∫
∂ΩD

vCDgDds

(14)

Following [16], it is possible to write q̂ in terms of the variables uh and qh

as a consequence of Equation 11. Similarly, following Equation 13, it is possible
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to write the variable qh simply as a variable of the unknown uh. All together

this allows us to write the Poisson system discretely as a single linear system

Auh = b (15)

where the matrix A is compact, meaning a block (i, j) has non-zero entries if

and only if elements Ki,Kj are immediate neighbours. This is known as the

primal form of the CDG method.

For construction of a multigrid solver however, following [10], direct coars-

ening of the primal operator A can lead to decreased performance of the solver.

A flux form of the CDG system can instead be defined as follows

M G

D C


qh
uh

 =

r
s

 (16)

where D = −GT is the discrete divergence operator, and A = C−DM−1G, s =

f − DM−1r. Unlike the matrix A, the matrix C is not compact in that it

may contain non-zero entries in a block (i, j) where elements Ki,Kj are not

immediate neighbours.

The CDG method is closely related to the LDG method in that the only

difference in the flux formulations of the two lie in the bottom right hand entry

of the flux operator; for LDG the C matrix is equal to the zero matrix. The

C matrix in the CDG method cancels out the non-compact entries from the

term DM−1G, rendering the resulting matrix A to be compact. This therefore

implies that in general it is unnecessary to store the non-compact entries of the

matrix C as they may be implicitly inferred.
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Figure 1: Example mesh partitions. The left partition is invalid as one subset is not connected.
The middle partition is valid and agglomerated into the polygonal mesh on the right.

3. Mesh hierarchy

For h-multilevel solvers, a hierarchy of successively coarser mesh discretiza-

tions are constructed on which the matrix equation Ax = b is solved approxi-

mately on each level of the hierarchy. While for structured meshes coarsening

algorithms such as quadtree/octree are widely used to construct mesh hierar-

chies, it is in general difficult to construct such hierarchies for unstructured

meshes.

3.1. Element agglomeration

In this work, we focus on mesh hierarchy construction via agglomeration.

A valid mesh agglomerate is defined in this work as a partition of the set of

elements Th = {K} such that the union of elements within each subset of the

partition form a connected domain. This choice of hierarchy constructed is

based on the observation that in general for a DG formulation, the lack of C0

continuity required in standard continuous finite elements allows for the easy

definition of modal basis functions on arbitrarily shaped polyhedra.

To define a mesh hierarchy, elements within each partition are agglomerated

to form a single polygonal element, which are then all collected as the set of

elements for the next level of the mesh hierarchy. This process can be performed

recursively until the final level of the hierarchy contains only a single polygonal

element defined by the boundaries of the computational domain Ω.
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Algorithm 1: Recursive mesh agglomeration

Input mesh with elements E0

Hierarchy storage E = {E0}

Elevel = E0

while length(Elevel) > 1 do

Elevel+1 = Find set partition of Elevel

Append Elevel+1 to E

Elevel = Elevel+1

end while

return E

The problem of finding mesh partitions is well studied in literature, including

popular domain decomposition methods in the software package METIS [13]. In

this work however we use a simple greedy heuristic to demonstrate the generality

of the method for mesh partitions of arbitrary shape and quality.

3.2. Greedy agglomeration

We describe a mesh agglomeration algorithm through use of a simple greedy

heuristic, outlined in Algorithm 2. To construct a new mesh at a lower level,

we assign to each element of the input mesh an integer weight corresponding to

the number of neighbour elements in the mesh not yet processed. Elements are

loaded into a priority queue and processed in ascending order according to the

integer weights. To process an element, we identify the vertex of the element

adjacent to the most unprocessed elements left in the priority queue, breaking

ties at random. All the unprocessed elements touching the identified vertex are

marked as processed, and agglomerated into a subset of the mesh partition,

the union of which serves as an polyhedral element in the new mesh, termed a

block. The priority queue is updated to reflect the removal the corresponding

elements, and the algorithm repeated until no elements are left remaining in the

10



Figure 2: Schematic of agglomeration algorithm. Top row from left to right: Input mesh
at level 0 of hierarchy, element with fewest number of neighbours and its vertex touching
most unprocessed neighbours are chosen, all unprocessed elements touching chosen vertex are
grouped to form 8 sided polygonal element for next level in hierarchy. Bottom row from left to
right: Mesh at level 1 or hierarchy, all elements touching vertex are merged to form 16 sided
polygonal element leaving the unshaded element with 0 unprocessed neighbours, unprocessed
element with 0 unprocessed neighbour elements is merged into neighbouring agglomerate
polygon.

priority queue. This process is shown in the first row of Figure 2.

In the case where an unprocessed element neighbours fewer than two unpro-

cessed elements left in the priority queue, we instead append the element to the

smallest adjacent block, breaking ties at random. The priority queue is then

updated to reflect the successful processing of the element. This special case is

shown in the bottom row of Figure 2.

Due to the use of a priority queue, which is inserted into and the minimum

extracted from n times respectively, where n denotes the number of vertices in

the mesh, the overall computational cost of the algorithm scales as O(n log n).

The memory cost of the algorithm however scales only as O(n), as only a single

integer indicating the number of unprocessed neighbours to each vertex is stored

in the priority queue.

3.3. Basis functions and quadrature

To define basis functions on the generated polyhedral blocks at each level
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Algorithm 2: Greedy mesh agglomeration

Input mesh M with vertices {vi} and elements {ei}
Create priority queue P = {(ei, N(ei)),∀ei ∈M}, N(ei) = #neighbours of ei
Create empty array N to store new elements
while length(P ) > 0 do

Pop emin with smallest N(emin) from P
if N(emin) ≥ 2 then

Find vertex vmax of emin adjacent to the most elements in P
Create set E = {ej ∈ P, ej adjacent to vmax} ∪ {emin}
for ej in E do

Remove ej from P
Update all neighbours ek of ej in P , N(ek) = N(ek)− 1

end for
Combine all elements in E to form new element, append to N

else
Create Nadj = { elements nj ∈ N with subelement ek adjacent to emin}
Find nmin, element in N with fewest subelements ek
Append emin to nmin

Update all neighbours ek of emin in P , N(ek) = N(ek)− 1
end if

end while
return N

in the hierarchy, we adopt a modal basis set of polynomials on each block due

to the difficulty of assigning nodal basis functions on arbitrary polyhedra. For

instance the linear set of basis functions of this form would be simply 1, x, y

in two dimensions. To numerically integrate on each of the blocks, we use the

fact that each of the blocks are constructed by taking a union of a subset of

elements {Kn1
, ...,Knj

} from the input mesh. This allows quadrature on polyg-

onal elements to be computed by summing contributions from each sub-element

of the block, which can be calculated using preexisting quadrature defined on

the input mesh. Thus no additional computational expense due to quadrature

is required at each coarser level of the mesh hierarchy.
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3.4. Solution transfer

We define restriction and interpolation operators to transfer residuals and

states between neighbouring levels in the mesh hierarchy. For the purposes of

our preconditioning strategy, we focus only on residual restriction and the case

of state prolongation but do not consider the case of state restriction.

The prolongation operator from level l + 1 to level l acts as

Ll
l+1v

l+1
h = vlh. (17)

As the basis functions for each polygonal block are chosen to be the same modal

polynomials at each level, the operator can be chosen to be simple injection

[4]. Following [18] this has an equivalent variational formulation, which can be

defined using an L2 projection.

The restriction operator is defined as the adjoint of the prolongation operator

Ll
l+1

(Rl+1
l ulh, v

l+1
h )l+1 = (ulh, L

l
l+1v

l+1
h )l (18)

for all ulh, v
l+1
h piecewise polynomial functions defined on levels l, l + 1 respec-

tively. Equivalently using the L2 weak formulation the restriction operator can

be written as

M l+1Rl+1
l = (M lLl

l+1)T (19)

where M l,M l+1 denote mass matrices for the corresponding superscript levels.

3.5. Operator coarsening

Coarsening a general operator Al defined on level l to level l+1 is performed

using the well known RAT method [22]. Specifically, to apply an operator Al to

a vector vl+1 on level l+ 1 of the mesh hierarchy: (1) the vector is interpolated
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onto level l using the interpolation operator Ll
l+1, (2) the operator Al is applied

to the interpolated vector, (3) the resulting vector is restricted back to level l+1

using the restriction operator Rl+1
l . This procedure is equivalent to writing a

coarsened operator on mesh hierarchy level l + 1 as

Al+1 = Rl+1
l AlL

l
l+1 (20)

4. Multigrid preconditioning

Our plan is to utilise a multi-level h-multigrid solver as a right preconditioner

for an iterative Krylov solver to solve the system in Equation 15. We use a

right preconditioner instead of left since its residual is identical to the true

residual. While the system matrix for Poisson’s problem is symmetric positive

definite, allowing for use of the conjugate gradient method, we instead opt for

the GMRES algorithm as it is extendable to other problems. Furthermore, in

our numerical experiments we find that convergence is generally obtained in well

under 50 iterations, enabling us to consider convergence behaviour without any

effects from restarts.

4.1. Flux coarsening/Primal coarsening

Following the discussion in [10], direct coarsening of the operator obtained

from the primal formulation of the CDG system results in a decline in multigrid

performance. Instead, each operator in the flux formulation should be individ-

ually coarsened and the Schur complement taken at each level to reform the

coarse primal formulation. Coarsening of the flux formulation operator from

14



level l to level l + 1 can be written as

Ml+1 Gl+1

Dl+1 Cl+1

 =

Rl+1
l 0

0 Rl+1
l


Ml Gl

Dl Cl


Ll

l+1 0

0 Ll
l+1


Al+1 = Cl+1 −Dl+1M

−1
l+1Gl+1

(21)

We verify the decline in multigrid performance from directly coarsening the pri-

mal operator in Section 5.1, as opposed to coarsening using the flux formulation.

4.2. CDG switch functions

While the CDG method has been shown to be stable and retains compactness

in the primal form irrespective of the choice of switch function, it can however

affect the sparsity of the matrix C in Equation 16 of the flux formulation and

which can in turn affect the performance of multigrid flux operator coarsening.

In particular, for each element Kn separated from an element Ki by a single

element Kj , the (Ki,Kn) block of the C matrix is nonzero if the two conditions

are satisfied:

1. the switch on the edge separating Ki,Kj is S
Kj

Ki
= 1,

2. the switch on the edge separating Kj ,Kn is SKn

Kj
= −1.

This implies for optimal coarsening of the operator C, for each partition of

elements Th, all subsets of the partition must be closed under second neighbours

that satisfy the above two properties. This is however in general impossible to

satisfy for an arbitrary input mesh unless the partition consists only of one

subset equal to the entire mesh.

In practice, a consistent switch function may be used to minimise the num-

ber of second neighbour interactions in C not accounted for in the operator

coarsening step. A consistent switch function is one where for each element K
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Figure 3: Effect of CDG switch function on sparsity of C in Equation 16. On the left, ar-
row pointing from dark element Kd to blank element Kw implies switch function SKw

Kd
= 1.

Middle figure shows arrow pointing from blank element Kw to shaded element Kd, denot-
ing that SKw

Kd
= −1. On the right, shaded element Kd interacts with second neighbour

elements shown in light grey Kg1 ,Kg2 as a result of the given switch, implying that blocks
(Kd,Kg1 ), (Kd,Kg2 ) of the matrix C to be nonzero.

with the set of neighbours {Ki}

|
∑
Ki

SKi

K | < |{Ki}| (22)

That is, there must be at least one inter-element boundary separating elements

K,K ′ where the switch SK′

K = −1, and another where the switch SK′

K = 1. The

effect on performance of the multigrid preconditioner due to choice of switch

function is demonstrated in Section 5.3.

4.3. Multigrid V-cycle

For the h-multigrid solver, we use a single V-cycle wherein a hierarchy of

meshes constructed via agglomeration is traversed using the L2 projection op-

erators outlined in Section 3.4. At each level, various iterations of a smoother

are applied, except at the coarsest level where, the problem is solved directly.
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Algorithm 3: Multigrid V-cycle

Input matrix A(0), vector b(0), set x(0) = 0

Input mesh hierarchy E = {E0, E1, ..., En}

for k = 1 : n− 1 do

Project to current level bk = Rk
k−1(bk−1 −Ak−1xk−1)

Construct smoother Ãk from Ak

for i = npre do

Apply smoother, xk = xk + αÃ−1
k (bk −Akxk)

end for

end for

Solve Anxn = bn directly

for k = n− 1 : 1 do

Project to current level xk = xk + Lk
k+1x

k+1

Construct smoother Ãk from Ak

for i = npre do

Apply smoother, xk = xk + αÃ−1
k (bk −Akxk)

end for

end for

return x(0)

Commonly used smoother include block Jacobi, block Gauss-Seidel, or in-

complete LU factorisations. In this work we focus on block Jacobi smoothers

with a damping factor α = 2
3 , as they are simple to parallelise for large systems.

4.4. hp-multigrid

In this manuscript, we consider explicitly only the case of linear basis func-

tions in the Discontinuous Galerkin discretisation. For problems with higher

polynomial degree basis functions, we would first employ standard p-multigrid

[9, 17] on the fine mesh to project down to p = 1 basis functions, and then
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followed by our agglomeration method. For simplicity and to only highlight the

h-multigrid procedure, we only consider p = 1 in our examples.

5. Numerical results

In this section we present numerical results to evaluate the performance

of the multigrid preconditioner. Unless otherwise stated, a consistent switch

function is used for flux definition in the CDG discretization. Our initial solution

vector is always set as the zero vector, and we iterate until we reach a tolerance

of 10−8 in the relative norm |Auh − b|/|b|. In all examples, we agglomerate

elements in the mesh until the lowest level in the h-multigrid hierarchy consists

of only one element using the greedy algorithm described above.

Following the discussion in Section 4.4, for all the following examples, we

consider only linear order basis functions for both basis functions defined on the

initial mesh and on all subsequent meshes in the h-multigrid hierarchy. Within

the multigrid V-cycle we choose the number of pre-smoothing steps npre = 0,

and the number of post-smoothing steps npost = 3. We choose a GMRES restart

parameter of 50, as in all the following examples we converge in fewer iterations

and so convergence is not impacted by any restarts. We also do not consider

true computational time in this study, and report only the number of iterations

required for convergence.

5.1. Flux vs primal coarsening and choice of Dirichlet parameter

We start by solving Poisson’s problem on the domain Ω = [0, 1]2 using a

uniform square n × n mesh. We impose Neumann conditions on the vertical

boundaries at x = 0, 1, in addition to Dirichlet boundary conditions on the

horizontal boundaries at y = 0, 1. We build the h-multigrid hierarchy using

Algorithm 2, which is shown in the top row of Figure 5.
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Figure 4: h-multigrid convergence for flux vs. primal coarsening on a square n × n mesh.
Different plot markers indicate varying Dirichlet parameters CD: , , ,
denote values of CD = 101/havg , 102/havg , 103/havg , 104/havg , respectively.

Figure 4 shows the number of iterations to convergence for the square mesh

under h-refinement, in addition to varying values of the Dirichlet penalty param-

eter CD. A deterioration in performance under primal coarsening as havg → 0

is seen as in [10], whereas performance under flux coarsening does not suffer

similar problems

Increased performance is also gained through using larger values of CD, a

result the choice of block Jacobi as the smoother in the h-multigrid solver.

As only the magnitude of values in the blocks on the diagonal of matrix C in

Equation 16 scale with the value of CD, an increase in CD implies an increase to

the values in the blocks on the diagonal of A in Equation 15 relative to values

in blocks off the diagonal of A. Based on these observations, going forward

for the remainder of our tests, we focus on flux coarsening using a value of

CD = 104/havg.

5.1.1. Hierarchy element shapes

We investigate the effect of irregular element shapes in the h-multigrid hi-

erarchy on performance by considering once more a domain Ω = [0, 1]2, with

Neumann conditions on the boundaries at x = 0, 1, and Dirichlet conditions
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Figure 5: Regular and irregular mesh hierarchies. Mesh hierarchies shown from left to right
correspond to level = 0,1,2 of a 8x8 square mesh respectively.

on the boundaries at y = 0, 1. We compare the number of iterations to con-

vergence using two different mesh hierarchies as shown in Figure 5, one with

regular quadrilateral shaped elements at each level in the h-multigrid and the

other with highly irregularly shaped elements that are in general non-convex.

The plot in Figure 5.1.1 show the number of iterations to convergence using

the regular and irregular shaped elements respectively. While a decrease in

performance is observed in using irregularly shaped elements in the h-multigrid

hierarchy, the decrease is independent of element size havg.

5.2. NACA airfoil

To investigate the effect of non-uniform element sizes and also of meshes

which are not simply connected, we consider the example of Poisson’s problem

on a rectangular domain around a NACA airfoil. Figure 7 shows the h-multigrid

hierarchy of the coarsest input mesh consisting of 605 elements, shown in the top

left of the figure. Dirichlet conditions are applied on the boundary at the airfoil

and at the two horizontal boundaries, while Neumann conditions are applied at

the two vertical boundaries.
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Figure 6: Comparison of multigrid performance with varying mesh hierarchy element shapes
on a square n× n mesh. denotes the number of iterations on a regular mesh hierarchy,

denotes the number of iterations on a non-regular mesh hierarchy.

Figure 7: Multigrid hierarchy for airfoil mesh.
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Figure 8: GMRES convergence for Poisson’s problem on airfoil mesh. shows the number
of iterations using a consistent switch function, shows the number of iterations using a
natural switch function.

5.2.1. Switch function

Figure 8 shows the number of iterations to convergence for the airfoil prob-

lem using a consistent switch function, and a natural switch function based on

random element enumeration. The performance of the multigrid preconditioner

is shown to clearly deteriorate with a poorly chosen switch function. Using a

consistent switch function, the presence of non simply connected elements in

the mesh hierarchy does not seem to have a large effect on the performance of

the multigrid preconditioner.

5.3. Convection-Diffusion

Finally, we consider the more general example of a convection-diffusion equa-

tion on the airfoil mesh:

βv · ∇u+ ∆u = f. (23)

We employ zero Dirichlet boundary conditions everywhere, we set f = 1, and

the velocity field v = (1, 0). The resulting convergence in the GMRES iterations

is shown in Figure 9, for a range of values of β under refinement.

We see that the performance of the preconditioner is largely unaffected for
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Figure 9: GMRES convergence for convection-diffusion equation on airfoil mesh. The number
of iterations are shown for β = 100 by , β = 10 by , β = 1 by , β = 0.1 by
and β = 0 by .

small values of β, but quickly deteriorates with higher magnitudes of β. This is

expected as it changes the structure of the problem. We note however that this

can be fixed by using other existing smoothers for convection such as line-based

solvers [9], or ILU/Gauss-Seidel with good element ordering [17].

6. Conclusions

We have developed an algorithm for constructing suitable mesh hierarchies

for the geometric multigrid method via use of simple element agglomeration.

The merged elements will in general be polyhedral, which are easily supported

using a discontinuous Galerkin discretization. While the method should per-

form well with any choice of numerical fluxes, we have used the Compact DG

method and showed that in this case a consistent switch function gives bet-

ter multigrid performance. The resulting solver gives excellent performance

for Poisson’s equation on fully unstructured meshes, as well as for convection-

diffusion with moderate magnitudes of the convective component. Future work

include extension to other equations, parallelization, and numerical examples in

3D.
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