
UC Davis
UC Davis Previously Published Works

Title
How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC 
Methods

Permalink
https://escholarship.org/uc/item/8fw086j0

Journal
Systematic Biology, 65(6)

ISSN
1063-5157

Authors
May, Michael R
Moore, Brian R

Publication Date
2016-11-01

DOI
10.1093/sysbio/syw026
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fw086j0
https://escholarship.org
http://www.cdlib.org/


Points of View

Syst. Biol. 65(6):1076–1084, 2016
© The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
DOI:10.1093/sysbio/syw026
Advance Access publication April 1, 2016

How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study
of Sequential AIC Methods

MICHAEL R. MAY∗ AND BRIAN R. MOORE

Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
∗Correspondence to be sent to: University of California, 1 Shields Avenue, Davis, CA 95616, USA; E-mail: mikeryanmay@gmail.com

Received 18 November 2014; reviews returned 24 March 2016; accepted 25 March 2016
Associate Editor: Tanja Stadler

Abstract.—Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches
of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage
diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a
set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate
categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal
diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern
in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2)
the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to
fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that
MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified ≈30% of the time),
and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is
critical both to empirical researchers—in order to clarify whether these methods can make reliable inferences from empirical
datasets—and to theoretical biologists—in order to clarify the specific problems that need to be solved in order to develop
more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction;
lineage-specific diversification rates; phylogenetic model selection; speciation.]

Many evolutionary phenomena entail differential
rates of diversification (speciation rate – extinction rate);
adaptive radiation, diversity-dependent diversification,
key innovations, and mass extinction. Phylogeny-based
statistical methods have been developed to detect shifts
in diversification rate through time, such as tree-wide
shifts in diversification rate associated with episodes
of mass extinction or adaptive radiation (Morlon et al.
2011; Stadler 2010; 2011; Höhna et al. 2015; May et al.
2016), or diversity-dependent decreases in diversification
rate associated with ecological limits on speciation
(Rabosky and Lovette 2008; Morlon et al. 2010; Etienne
and Haegeman 2012; Etienne et al. 2012; Höhna 2014;
Leventhal et al. 2014). Other methods seek to identify
correlations between rates of diversification and some
other variable, such as the evolution of discrete or
continuous traits (Maddison et al. 2007; FitzJohn 2010)
or episodes of biogeographic or climatic change (Moore
and Donoghue 2009; Goldberg et al. 2011). Here, we focus
on a third class of methods that seek to detect shifts in
diversification rate along lineages of a phylogenetic tree
(Moore et al. 2004; Chan and Moore 2005; Rabosky et al.
2007; Alfaro et al. 2009; Rabosky 2014).

The detection of lineage-specific diversification rates
is often pursued using the approach proposed by Alfaro
et al. (2009): Modeling Evolutionary Diversification
Using Stepwise AIC (MEDUSA), implemented in the
R (R Development Core Team 2009) package GEIGER

(Pennell et al. 2014). The popularity of MEDUSA stems
from several advantages it offers relative to alternative
approaches: (1) rather than requiring complete species-
level phylogenies, MEDUSA allows unsampled species
to be included within unresolved terminal subclades;
(2) rather than requiring the location of diversification-
rate shifts to be specified a priori, MEDUSA agnostically
evaluates diversification-rate shifts along all branches of
the tree; (3) rather than assuming a pure-birth (Yule 1924)
model (c.f., Chan and Moore 2005), MEDUSA is based on
a more realistic birth-death model that accommodates
extinction, and; (4) in addition to inferring the location(s)
of diversification-rate shifts, MEDUSA also provides
estimates of the diversification-rate parameters for each
branch of the tree.

The statistical behavior of this popular method,
however, is unknown. This is particularly disconcerting,
as the use of the AIC for model selection has been shown
to be problematic in other phylogenetic contexts (Alfaro
and Huelsenbeck 2006; Boettiger et al. 2012), where it
is biased toward overly complex models. Additionally,
we demonstrate that the likelihood function used by
MEDUSA to fit diversification models to the phylogenetic
data is incorrect, which has the potential to impact the
accuracy of parameter estimates and the reliability of the
model-selection procedure. With these considerations in
mind, we performed an extensive simulation study to
characterize the statistical behavior of MEDUSA.
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The MEDUSA algorithm.—MEDUSA begins by fitting a
constant-rate birth-death process to an ultrametric
phylogeny (i.e., where branch lengths and node heights
are rendered proportional to time, and all species are
contemporaneous) by means of maximum likelihood
[using equation (3), detailed in the next section].
Each possible two-rate model—where a two-rate model
includes a separate set of speciation- and extinction-
rate parameters for a particular subclade of the tree—
is then evaluated. If the difference in the AIC scores
between the one-rate model and the best two-rate model
exceeds a specified threshold (�AICcrit), the two-rate
model is accepted. If the two-rate model is accepted, the
process is repeated for each possible three-rate model.
This procedure iteratively adds diversification-rate shifts
to the phylogeny until additional diversification-rate
shifts do not confer a sufficient improvement in the
AIC score (Fig. 1). We provide a more detailed
description of the MEDUSA algorithm in Section S1
of the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.61q64.

There have been several versions of the MEDUSA
algorithm that differ primarily in how they specify
�AICcrit: the first version adopted a fixed (and
conventional value) �AICcrit of 4, whereas more recent
versions of MEDUSA compute �AICcrit based on the
number of terminal lineages. In this article, we present
results using the version of MEDUSA—available in the
R package GEIGER (Pennell et al. 2014)—that we found
to exhibit the best overall statistical behavior, which is
also the version that has been used most frequently
in empirical studies (we provide results for the other
versions of the program in the Supplementary Material
available on Dryad).

The Likelihood Function in MEDUSA is Incorrect
The likelihood function computes the probability

of the data—typically a molecular phylogeny with
estimated divergence times—given the parameters of
the model. We assume the phylogeny, �, with k
terminal lineages was generated by a birth-death
process with a set of branch-specific speciation rates,
λ={�1,�2,...,�2k−2}, and a vector of branch-specific
extinction rates, μ={�1,�2,...,�2k−2}, where �i and �i
are the speciation and extinction rates for branch i,
respectively.

The likelihood of observing the data is calculated
piecewise (c.f., Rabosky et al. 2007). First, the function
computes the likelihood of the internal branches, then
computes the likelihood of the terminal lineages, and
finally combines these two likelihoods. The probability
density of observing an internal branch of length ti that
arose at time tb

i used by MEDUSA is:

P(ti |�i,�i,t
b
i )= (�i −�i)exp(−(�i −�i)ti)

1− �i
�i

exp(−(�i −�i)tb
i )

. (1)

The probability of observing terminal lineage i with
ni species, conditional on it having descendants at the
present is

P(ni | tb
i ,�i,�i) =

(
1− exp((�i −�i)tb

i )−1

exp((�i −�i)tb
i )− �i

�i

)

×
(

exp((�i −�i)tb
i )−1

exp((�i −�i)tb
i )− �i

�i

)ni−1

. (2)

Parsing the tree into T terminal lineages and I internal
branches, the likelihood for the phylogeny and species
richness data is calculated as

P(� |λ,μ)=
⎛
⎝∏

i∈T
P(ti | tb

i ,�i,�i)

⎞
⎠×

⎛
⎝∏

i∈I
P(ni | tb

i ,�i,�i)

⎞
⎠,

(3)

as proposed by Rabosky et al. (2007).
This likelihood function, however, is incorrect in a

number of ways. First, equation (1) is the probability
density of the next birth event [equation (1)], rather
than the probability density of an internal branch of
length ti. Second, it conditions on the survival of each of
the terminal lineages. Typically, likelihoods under birth-
death process models are conditioned on the survival of
the entire process to the present (i.e., the total number
of species present, N, must be greater than 0). The
rationale for the condition is simple: if the process had
not survived to the present, we would not have observed
the tree. In the context of the present likelihood function,
conditioning on the survival of every terminal lineage is
different from conditioning on the survival of the entire
process: in order for the process to survive, it is simply
necessary that at least one terminal lineage survives, not
that all terminal lineages survive.

This derivation of the likelihood function also suffers
from a more fundamental—and more difficult—issue.
Specifically, it requires that we are able to assign a set
of speciation- and extinction-rate parameters to each
lineage that arose during the evolution of the tree
(extant or otherwise). Under a birth-death process,
some lineages may go extinct before the present, and
so are unobserved. Accordingly, it is not possible
to coherently assign diversification parameters to
extinct lineages. Consequently, this likelihood function
implicitly assumes that diversification-rate shifts cannot
occur along extinct lineages. When diversification-rate
shifts occur along lineages that ultimately went extinct,
the likelihood function will be incorrect. We discuss the
provenance and derivation of these probability functions
in more detail in Appendix.

Use of the AIC to Select Diversification Models may be
Problematic

Use of the AIC to choose among models in other
phylogenetic settings is known to be problematic (e.g.,

http://dx.doi.org/10.5061/dryad.61q64
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FIGURE 1. The MEDUSA algorithm. 1) The one-rate model, M0, is first fit to the data using maximum likelihood. 2) Every possible two-rate
model is then fit to the data, and the models are ranked by their likelihood score (with the best model, M1, at the bottom). 3) Every possible
three-rate model that is consistent with the best two-rate model is then fit to the data, and the models are ranked as in the previous step. 4)
Step 3 is repeated for increasingly complex models until the most complex model has been evaluated. 5) The AIC score is computed for the best
model in each index (i.e., with 0,1,... rate shifts). 6) The �AIC value is calculated for each pair of adjacent models (as the difference in their AIC
scores). Each of the �AICi comparisons are evaluated in succession, where the more complex model is selected if the computed �AIC value
exceeds some prespecified threshold, �AICcrit . This process continues until either the most complex model is accepted or the improvement in
the AIC score is too small to exceed the �AICcrit threshold.

Alfaro and Huelsenbeck 2006; Boettiger et al. 2012).
Specifically, there is little theory to guide the
specification of an appropriate critical threshold
(�AICcrit) for preferring one model to another, and
arbitrarily specified thresholds may strongly bias the

model-selection procedure. Moreover, the AIC assumes
that the sample size (in this case, the number of sampled
lineages) is large. In practice, however, MEDUSA is
generally applied to trees with a small number of
incompletely sampled terminal lineages. Accordingly,
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the large sample size assumption of the AIC is apt to be
violated, which may compromise the ability of MEDUSA
to reliably choose the correct model.

METHODS

Simulation Study
These considerations—regarding errors in the

likelihood function and the reliability of the AIC as a
means of selecting diversification models—motivated
a simulation study to determine how well MEDUSA
recovers the correct diversification-rate model under
a variety of realistic conditions. All simulations were
performed in R (R Core Team 2013) using the packages
ape and TreeSim (Paradis et al. 2004; Stadler 2013);
trees were subsequently manipulated with custom R
scripts.

To ensure that our simulation study targeted an
empirically relevant region of parameter space, we
conducted a survey of all published studies that applied
MEDUSA to empirical trees (Table S1 available on Dryad).
From these empirical studies, we summarized relevant
metadata, including: (1) the total number of species
encompassed by the phylogeny (regardless of whether
they were actually sampled), N; (2) the number of
terminal lineages (i.e., unresolved subclades) included
in the phylogeny, k, and; (3) speciation- and extinction-
rate estimates provided by MEDUSA. We then designed
our simulation study to reflect the characteristics of
empirical MEDUSA studies (Fig. S2 available on Dryad).

We simulated constant-rate trees with a fixed
speciation rate, �=0.01, under various extinction
rates, �=�×{0,0.1,...,0.9}, and of various sizes,
N ={100,1000,10,000}. We simulated 1000 trees for
each combination of these settings, and then collapsed
each tree to various numbers of terminal lineages,
k ={10,15,20,25,30,40,100}, by retaining the oldest
k−1 nodes and assigning the pruned species to
their corresponding terminal lineages; this protocol
is equivalent to the “diversified-sampling” strategy
described by Höhna et al. (2011). We then analyzed
each tree with MEDUSA. For each analysis, we recorded:
(1) whether a rate shift was inferred, and; (2) the
parameter estimates under the preferred diversification
model. We computed the false-discovery rate as
the fraction of analyses that inferred at least one
diversification-rate shift. For analyses that correctly
selected the constant-rate model, we computed
the bias for each diversification-rate parameter
as the estimated value divided by the true value.
When MEDUSA incorrectly rejected the constant-rate
model, we computed the magnitude of the inferred
diversification-rate shift as the “derived rate” (i.e., the
net-diversification-rate estimated for the subclade that
experienced the diversification-rate shift) divided by the
“initial” net-diversification rate (i.e., estimated for the
remainder of the tree); �=rshift/rinitial. We performed
a pilot study to determine the number of replicate
simulations required to ensure precise estimates of the

false-discovery rate, which indicated that 500 replicate
simulations were sufficient to ensure negligible Monte
Carlo error (results not shown). To be conservative, we
based our inferences regarding the statistical behavior
of MEDUSA on 1000 replicate simulations for each unique
parameter combination that we explored in our study.

We also performed additional simulations to
comprehensively explore the parameter space defined by
our empirical survey, and used multiple versions of the
MEDUSA algorithm to accommodate implementation-
specific effects. Overall, the results of these simulations
are qualitatively and quantitatively similar to the
simulation study described above; we refer the reader
to the Supplementary Material available on Dryad for
detailed descriptions (and results) of these additional
simulation experiments.

RESULTS

We focus on two primary aspects of the statistical
behavior of MEDUSA: (1) the propensity to identify
spurious diversification-rate shifts (i.e., the false-discovery
rate), and; (2) the accuracy of diversification-rate
parameter estimates (i.e., the estimator bias).

MEDUSA has a High False-Discovery Rate
The overall false-discovery rate (FDR)—calculated as

the unweighted average overall of simulated trees—
is 29% (Fig. 2), which is ≈6 times higher than the
nominal significance level, �=0.05. Additionally, the
FDR increases as the proportion of the species in
unresolved terminal clades increases; in fact, when there
are no unresolved clades (i.e., k =N; Fig. 2, left panel,
right column), the false-discovery rate is approximately
5%. The FDR appears relatively insensitive to the
true extinction rate, �, although higher extinction
rates tend to have higher FDR, on average. These
patterns are consistent with violation of the large-sample
assumptions of the AIC driving the inflated false-
discovery rate: as k decreases, the sample size decreases,
exacerbating the bias toward overly complex models.

MEDUSA Provides Biased Parameter Estimates
The ability of MEDUSA to estimate parameters of the

birth-death process represents an important advantage
over competing methods. This allows users to not
only identify the number and phylogenetic distribution
of diversification-rate shifts, but also to estimate the
magnitude of corresponding changes in the speciation
and extinction rates. Accordingly, even if—as we have
demonstrated above—MEDUSA does not provide reliable
estimates of the number and location of diversification-
rate shifts, it may nevertheless prove useful for
estimating parameters of the birth-death process.
Moreover, if most of the spurious diversification-rate
shifts are inferred to involve relatively minor shifts in
diversification rate, then it might be possible to use the
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FIGURE 2. False-discovery rate. We simulated constant-rate trees with a fixed speciation rate, �=0.01, under various extinction rates,
�=�×{0,0.1,...,0.9} (y-axis), and of various sizes, N ={100,1000,10,000} (left to right panels). We simulated 1000 trees for each combination
of these settings, and then collapsed each tree to various numbers of terminal lineages, k ={10,15,20,25,30,40,100} (x-axis of each panel), by
retaining the oldest k−1 nodes and assigning the pruned species to their corresponding terminal lineages. We then analyzed each tree with
MEDUSA, and recorded the fraction of trees in which at least one diversification-rate shift was inferred (the false-discovery rate; FDR).

diversification-rate parameter estimates to distinguish
between spurious and bonafide diversification-rate
shifts. We focus on estimates of the net-diversification
rate, r=�−�, as this compound parameter is expected
to be considerably easier to estimate compared to
the speciation and extinction rates (Kubo and Iwasa
1995; Rabosky et al. 2007). Our results agree with this
expectation; estimates of the relative-extinction rate,
�/�, are more severely biased than are estimates of the
the net-diversification rate (see Supplementary Material
available on Dryad).

Our simulation study reveals that—even when
MEDUSA selects the correct (constant-rate) model—
the net-diversification rate estimate is 1.13 times the
true value, on average (Fig. 3, top row). As with
the false-discovery rate, this bias is exacerbated as k
decreases. The severity of the bias also increases as
the true extinction rate, �, increases. When MEDUSA
incorrectly selects a two-rate model, it infers a 2.7-
fold change in the net-diversification rate, on average
(Fig. 3, bottom row), with the upper 95% quantile
of diversification-rate shifts entailing 7.7-fold increases
in the net-diversification rate. Thus, when MEDUSA
incorrectly identifies a diversification-rate shift, the
magnitude of the spurious diversification-rate shifts is
apt to be large.

DISCUSSION

The Statistical Behavior of MEDUSA
Biologists are clearly interested in identifying

shifts in diversification rate across lineages, and have
enthusiastically embraced MEDUSA as an approach
for addressing this problem (Table S1 available on
Dryad). Nevertheless, our simulation study reveals that
MEDUSA is unreliable. For almost 30% of the trees that

we simulated in our study—where rates were strictly
constant across lineages of the tree—MEDUSA identified
strong support for one or more diversification-rate
shifts. This result applies to all versions of the algorithm
(see Supplementary Material available on Dryad), and
holds over a wide range of absolute parameter values
that broadly encompass the conditions encountered in
the analyses of actual empirical data sets (Table S1, Fig.
S2 available on Dryad).
MEDUSA also provides biased estimates of

diversification-rate parameters. Even when MEDUSA
correctly identified the (true) constant-rate model, the
net-diversification estimates were on average 1.13 times
their true values (Fig. 3, top row; see also Table S3
available on Dryad), and the relative-extinction rate
estimates were on average 0.20 times their true values
(Table S4 available on Dryad). Similarly, when MEDUSA
identified the (incorrect) multi-rate model, the spurious
diversification-rate shifts were inferred to involve large
rate shifts. On average, spurious diversification-rate
shifts were estimated to involve a 2.7-fold shift in
net-diversification rate (Fig. 3, bottom row; see also
Table S5 available on Dryad), with a large spread of
values (the upper 95% quantile had an average 7.7-fold
shift in net-diversification rate, Table S6 available on
Dryad). Similarly, these spurious diversification-rate
shifts were estimated to entail an average 3.1-fold shift
in relative-extinction rate (Table S7 available on Dryad),
with a correspondingly large spread of values (the
upper 95% quantile had an average 6.7-fold shift in
relative-extinction rate, Table S8 available on Dryad).

Prospects for Addressing the �AIC Threshold in MEDUSA
The high false-discovery rate exhibited by MEDUSA

stems from: (1) the use of an arbitrary �AICcrit
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FIGURE 3. Parameter estimates. We simulated constant-rate trees and analyzed them as described in Figure 2. We binned the trees into categories:
(1) where the (correct) constant-rate model was selected (top row), and; (2) where the constant-rate model was rejected (bottom row). Top row:
We computed the bias in the estimated net-diversification rate, r=�−�, as restimated/rtrue. Bottom row: We computed the magnitude of inferred
diversification-rate shifts, �, as the estimated net-diversification rate for the subclade with the shift divided by the estimated net-diversification
rate for the remainder of the tree, �=rshift/rinitial.

threshold (the improvement in model fit necessary
to justify selecting a more complex model), and;
(2) the comparison of a large number of alternative
diversification models. The earliest applications of
MEDUSA iterated over several fixed values �AICcrit
to assess the sensitivity of biological inferences to
this arbitrary threshold (c.f., Alfaro et al. 2009), but
generally interpreted results for a fixed �AICcrit of 4,
a conventional threshold value advocated by Burnham
and Anderson (2003). Recent versions of MEDUSA
address multiple-testing concerns by computing the
�AICcrit threshold based on the number of terminal
lineages, k, in the observed phylogeny, which is directly
related to the number of models being compared. The
function relating the number of lineages to �AICcrit
was derived from a simulation study performed
with completely sampled (i.e., k =N), constant-rate
birth-death trees (Pennell et al. 2014). As a result, the
false-discovery rate is acceptable when k =N (Fig. 1).

Unfortunately, the complex relationship between the
false-discovery rate and aspects of the data (N, k,
�, and �) displayed in Figure 1 makes it clear that

multiple testing is not the sole pathology, and that
there is no generic solution for specifying a value
for �AICcrit that will ensure appropriate statistical
behavior. Fortunately, Monte Carlo simulation has
proven to be an effective solution to similar problems
(c.f., Moore et al. 2004; Boettiger et al. 2012), and we are
optimistic that such a solution could be incorporated
in the MEDUSA framework. However, developing an
efficient and reliable Monte Carlo solution to this
problem is nontrivial, and is an area for future work.

Prospects for Resolving Issues with the Likelihood Function
of MEDUSA

We identified three issues with the MEDUSA likelihood
function derived by Rabosky et al. (2007). First, the
likelihood function uses an incorrect probability density
for internal branches [equation (1)]; we provide the
correct equation in the Appendix, equation (A.6).
Second, the likelihood function incorrectly conditions on
the survival of the process. In lieu of a stochastic model
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that explicitly describes diversification-rate shifts (see
below), it may be more reasonable not to condition on
survival. However, the consequences of removing this
incorrect condition—e.g., on parameter estimates—are
unknown.

The third—and more challenging—issue is the
inability to account for diversification-rate shifts
along lineages that ultimately go extinct. In order
to accommodate these unobserved diversification-rate
shifts, we must be able to compute the probability that
a diversification-rate shift occurred along an extinct
lineage, which in turn requires a model that describes
how diversification-rate shifts occur through time and
across (extant or extinct) lineages of the tree. MEDUSA,
however, does not explicitly model the occurrence of
diversification-rate shifts. Instead, MEDUSA compares a
very explicit set of diversification-rate models while
remaining agnostic about how the diversification-rate
shifts arise (i.e., the diversification-rate shifts themselves
are not described as events that occur with some
probability). In the absence of a formal stochastic model
of the diversification process, it is unclear how to
accommodate diversification-rate shifts along extinct
lineages within theMEDUSA framework. It is possible that
a Monte Carlo approach using a rate-shift model (e.g.,
where rate shifts occur as a continuous-time Markov
process along lineages, similar to the compound Poisson
process model implied by BAMM; Rabosky 2014) could
be devised to account for diversification-rate shifts
along extinct lineages, but the feasibility and general
applicability of such an approach requires further
study.

CONCLUSIONS

In summary, many of the advances that make MEDUSA
an attractive approach for detecting rate shifts appear to
be problematic. For example, the ability to accommodate
incompletely sampled trees with MEDUSA is a useful
feature of the method. In fact, most applications (82.5%)
of this method involve incomplete trees. Nevertheless,
the pathological behavior of MEDUSA is most extreme
under these conditions (Fig. 2). Likewise, the adoption
of a birth-death model is presented as an important
advantage of MEDUSA over competing methods that
do not accommodate extinction. However, (relative)
extinction-rate estimates obtained using MEDUSA are
extremely unreliable (Table S4 available on Dryad).
This finding is relevant to the general debate regarding
whether (relative) extinction rates can be reliably
estimated from phylogenies (Rabosky 2010; Pyron and
Burbrink 2013).

The primary conclusion of our simulation study—
that the MEDUSA approach is unreliable—might be
viewed as a “negative” result. After all, our findings
cast considerable doubt on the conclusions of the many
empirical studies that have used MEDUSA, and argue
strongly against the application of this approach in
future empirical studies. Nevertheless, we believe that

it is important to be aware of the limitations of a method
if it is likely to provide spurious results. Moreover,
beyond demonstrating that MEDUSA is unreliable, the
results of our simulation study provide insights into the
reasons why the method is unreliable. Understanding the
nature of these problems can focus theoretical efforts to
develop more reliable methods. Accordingly, far from
discouraging, we view the findings of this study as
cause for optimism. We are hopeful that future efforts
will resolve issues afflicting the MEDUSA framework
for identifying diversification-rate shifts that—coupled
with rigorous evaluation of these new methods—will
continue to enhance our ability to explore a broad range
of fundamental evolutionary processes.
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APPENDIX 1

The likelihood functions used by MEDUSA are based
on equations derived in Rabosky et al. (2007). For
completeness, we present those equations and the
equations from which they were derived. We note
that these probabilities are not formally derived for
a birth-death process model that allows among-
lineage rate variation. Instead, these probabilities are
derived for constant-rate birth-death processes, and
then (incorrectly) applied to a variable-rate birth-death
process by simply substituting different speciation and
extinction rates for different branches of the tree.

Rabosky et al. (2007) derived equation (1) from Nee
et al. (1994), equation (17), which is (substituting our

http://dx.doi.org/10.5061/dryad.61q64
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notation):

P(ti |n,�,�,tb
i ) = n(�−�)exp(−n(�−�)ti)

× (1− �
� exp(−(�−�)ti))n−1

(1− �
� exp(−(�−�)tb

i ))n
, (A.1)

where n is the number of species alive at time tb
i . For

the special case in which n=1 (i.e., we consider a single
branch that starts with a single species), the above
equation simplifies to

P(ti |�,�,tb
i )= (�−�)exp(−(�−�)ti)

1− �
� exp(−(�−�)tb

i )
. (A.2)

Allowing the rates of speciation and extinction on branch
i to be �i and �i produces equation (1). We note that, in its
original context, this equation describes the probability
density of times between birth events, rather than of
internal branches of particular lengths. We describe the
correct equation in the following section.

Kendall (1949) derived the probability of realizing n
species from a single species that starts at time tb

i , which
is [substituting our notation into his equation (21)]:

P(n | tb
i ,�,�) =

(
1− �

�

exp((�−�)tb
i )−1

exp((�−�)tb
i )− �

�

)

×
(

1− exp((�−�)tb
i )−1

exp((�−�)tb
i )− �

�

)

×
(

exp((�−�)tb
i )−1

exp((�−�)tb
i )− �

�

)n−1

, (A.3)

which is equivalent to equation (A17) in Raup (1985)
and equation (8.46) from Bailey (1964). Conditioning
probability (A.3) on the survival of the clade, which
happens with probability

P(n>0 | tb
i ,�,�)=

(
1− �

�

exp((�−�)tb
i )−1

exp((�−�)tb
i )− �

�

)
(A.4)

gives

P(n | tb
i ,�,�) =

(
1− exp((�−�)tb

i )−1

exp((�−�)tb
i )− �

�

)

×
(

exp((�−�)tb
i )−1

exp((�−�)tb
i )− �

�

)n−1

. (A.5)

Again, allowing rates of speciation and extinction for
clade i to be �i and �i produces equation (2).

The Probability Density of an Internal Branch
Following Stadler (2010), the probability density of a

branch of length ti is:

P(ti |�,�,tb
i )=P(1 | tb

i ,�,�)/P(1 | te
i ,�,�), (A.6)

where te
i is the time at the end of the branch, and P(1 |

t,�,�) comes from equation (A.5).
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