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Properties of Definite Bethe–Salpeter Eigenvalue
Problems

Meiyue Shao and Chao Yang

Abstract The Bethe–Salpeter eigenvalue problem is solved in condense matter
physics to estimate the absorption spectrum of solids. It is a structured eigenvalue
problem. Its special structure appears in other approaches for studying electron ex-
citation in molecules or solids also. When the Bethe–Salpeter Hamiltonian matrix
is definite, the corresponding eigenvalue problem can be reduced to a symmetric
eigenvalue problem. However, its special structure leads to a number of interest-
ing spectral properties. We describe these properties that are crucial for developing
efficient and reliable numerical algorithms for solving this class of problems.

1 Introduction

Discretization of the Bethe–Salpeter equation (BSE) [15] leads to an eigenvalue
problem Hz = λ z, where the coefficient matrix H has the form

H =

[
A B
−B −A

]
. (1)

The matrix A and B in (1) satisfy

A∗ = A, B∗ = B. (2)

Here A∗ and A are the conjugate transpose and complex conjugate of A, respectively.
In this paper, we call H a Bethe–Salpeter Hamiltonian matrix, or, in short, a BSE
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Hamiltonian. In condense matter physics, the Bethe–Salpeter eigenvalue problem
is derived from a Dyson’s equation for a 2-particle Green’s function used to de-
scribe excitation events that involve two particles simultaneously. It is a special case
of the J-symmetric eigenvalue problem [3]. This type of eigenvalue problem also
appears in linear response (LR) time-dependent density functional theory, and the
random phase approximation theory. In these approaches, H is sometimes called a
Casida Hamiltonian, a linear response Hamiltonian, or a random phase approxima-
tion (RPA) Hamiltonian.

The dimension of A and B can be quite large, because it scales as O(N2), where
N is number of degrees of freedom required to represent a three-dimensional single
particle wavefunction. As a result, efficient numerical algorithms must be developed
to solve the Bethe–Salpeter eigenvalue problem. To gain computational efficiency,
these methods should take advantage of the special structure of the Hamiltonian in
(1).

Let

Cn =

[
In 0
0 −In

]
, Ω =

[
A B
B A

]
. (3)

Then H = CnΩ , with both Cn and Ω Hermitian. In most physics problems, the
condition

Ω � 0 (4)

holds, that is, the matrix Ω is positive definite. We call H a definite Bethe–Salpeter
Hamiltonian matrix when (4) is satisfied. It has been shown in [16] that, in general,
solving a Bethe–Salpeter eigenvalue problem is equivalent to solving a real Hamil-
tonian eigenvalue problem. However, a definite Bethe–Salpeter eigenvalue problem,
which is of most interest in practice, has many additional properties. In this paper
we restrict ourselves to this special case, i.e., we assume that the condition (4) holds.

There are several ways to reformulate the definite Bethe–Salpeter eigenvalue
problem. One equivalent formulation of Hz = λ z yields a generalized eigenvalue
problem (GEP) Cnz= λ−1Ωz. As Ω is positive definite, Cnz= λ−1Ωz is a Hermitian–
definite GEP and hence has real eigenvalues. Another equivalent formulation is
(Ω −λCn)z = 0, where Ω −λCn is a definite pencil [7, 20] with a definitizing shift
λ0 = 0. In addition, the eigenvalue problem H2z = λ 2z can be written as a prod-
uct eigenvalue problem (CnΩCn)Ωz = λ 2z in which both CnΩCn and Ω are posi-
tive definite. These formulations suggest that a definite Bethe–Salpeter eigenvalue
problem can be transformed to symmetric eigenvalue problems. As a result, we can
analyze various properties of the Bethe–Salpeter eigenvalue problem by combining
existing theories of symmetric eigenvalue problems (see, e.g., [14, 20]) with the
special structure of H.

In this paper, we describe several spectral properties of a definite BSE Hamil-
tonian. These properties include the orthogonality of eigenvectors, the Courant–
Fischer type of min–max characterization of the eigenvalues, the Cauchy type in-
terlacing properties, and the Weyl type inequalities for establishing bounds on a
structurely perturbed definite BSE Hamiltonian. Most properties take into account
the special structure of the BSE Hamiltonian. Although the derivations are relatively
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straightforward, these properties are important for developing efficient and reliable
algorithms for solving the definite Bethe–Salpeter eigenvalue problem.

The rest of this paper is organized as follows. In Section 2, we analyze the spec-
tral decomposition of H and derive two types of orthogonality conditions on the
eigenvectors. Variational properties based on these two types of orthogonality con-
ditions are established in Section 3. Finally, we provide several eigenvalue pertur-
bation bounds in Section 4.

2 Preliminaries

2.1 Spectral decomposition

As a highly structured matrix, a definite BSE Hamiltonian admits a structured spec-
tral decomposition as stated in the following theorem.

Theorem 1 ([16, Theorem 3]). A definite Bethe–Salpeter Hamiltonian matrix is
diagonalizable and has real spectrum. Furthermore, it admits a spectral decompo-
sition of the form

H =

[
X Y
Y X

][
Λ 0
0 −Λ

][
X −Y
−Y X

]∗
, (5)

where Λ = diag{λ1, . . . ,λn} � 0, and[
X −Y
−Y X

]∗ [X Y
Y X

]
= I2n. (6)

As the eigenvalues of a definite BSE Hamiltonian appear in pairs ±λ , we denote
by λ

+
i (U) (λ−i (U)) the ith smallest positive (largest negative) eigenvalue of a matrix

U with real spectrum. When the matrix is omitted, λ
+
i (or λ

−
i ) represents λ

+
i (H)

(or λ
−
i (H)), where H is a definite BSE Hamiltonian. Thus the eigenvalues of H are

labeled as
λ
−
n ≤ ·· · ≤ λ

−
1 < λ

+
1 ≤ ·· · ≤ λ

+
n .

To represent the structure of the eigenvectors of H, we introduce the notation

φ(U,V ) :=
[
U V
V U

]
,

where U and V are matrices of the same size. The structure is preserved under
summation, real scaling, complex conjugation, transposition, as well as matrix mul-
tiplication

φ(U1,V1)φ(U2,V2) = φ(U1U2 +V 1V2,V1U2 +U1V2).

The equations (5) and (6) can be rewritten as
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CnΩ = φ(X ,Y )Cnφ(Λ ,0)φ(X ,−Y )∗, φ(X ,−Y )∗φ(X ,Y ) = I2n.

The converse of Theorem 1 is also true in the following sense: If (5) holds, then H
is a definite BSE Hamiltonian because

H =Cn
[
φ(X ,−Y )φ(Λ ,0)φ(X ,−Y )∗

]
.

As a result, H−1 =Cn
[
φ(X ,−Y )φ(Λ−1,0)φ(X ,−Y )∗

]
is also a definite BSE Hamil-

tonian.

2.2 Orthogonality on the eigenvectors

From the spectral decomposition of a definite BSE Hamiltonian H, we immediately
obtain two types of orthogonality conditions on the eigenvectors of H.

First, the fact Ω = φ(X ,−Y )φ(Λ ,0)φ(X ,−Y )∗ implies that

φ(X ,Y )∗Ωφ(X ,Y ) = φ(Λ ,0).

Therefore, the eigenvectors of H are orthogonal with respect to the Ω -inner product
defined by 〈u,v〉

Ω
:= v∗Ωu. The eigenvectors can be normalized as

φ(X̃ ,Ỹ )∗Ωφ(X̃ ,Ỹ ) = I2n.

through a diagonal scaling φ(X̃ ,Ỹ ) = φ(X ,Y )φ(Λ−1/2,0).
Second, it follows directly from (6) that

φ(X ,Y )∗Cnφ(X ,Y ) =Cn.

This indicates that the eigenvectors of H are also orthogonal with respect to the C-
inner product defined by 〈u,v〉C := v∗Cnu, which is an indefinite scalar product [20].
Furthermore, the positive (negative) eigenvalues of H are also the C-positive (C-
negative) eigenvalues of the definite pencil Ω −λCn.1

These two types of orthogonal properties can be used to construct structure pre-
serving projections that play a key role in Krylov subspace based eigensolvers. Sup-
pose that φ(Xk,Yk) ∈ C2n×2k is orthonormal with respect to the Ω -inner product.
Then projection using φ(Xk,Yk) yields a 2k×2k Hermitian matrix of the form

Hk :=φ(Xk,Yk)
∗
ΩHφ(Xk,Yk) = φ(Xk,Yk)

∗
ΩCnΩφ(Xk,Yk)=:Cnφ(Ak,Bk). (7)

It can be easily shown that the eigenvalues of the projected Hermitian matrix Hk
also occur in pairs ±θ , as Hk admits a structured spectral decomposition Hk =

1 A vector v is called C-positive, C-negative, C-neutral, respectively, if v∗Cnv > 0, v∗Cnv < 0,
v∗Cnv = 0. An eigenvalue of Ω−λCn is called C-positive (C-negative) if its associated eigenvector
is C-positive (C-negative).
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φ(Uk,Vk)Ckφ(Θk,0)φ(Uk,Vk)
∗, where φ(Uk,Vk)

∗φ(Uk,Vk) = I2k. Furthermore, the
matrix φ(Xk,Yk)φ(Uk,Vk) is again orthonormal with respect to the Ω -inner product.
Thus we regard (7) as a structure preserving projection. But we remark that Θk is
not always positive definite here as Hk can sometimes be singular.

Similarly, if φ(Xk,Yk) ∈ C2n×2k is orthonormal with respect to the C-inner prod-
uct, that is, φ(Xk,Yk)

∗Cnφ(Xk,Yk) =Ck. Then

Hk :=Ckφ(Xk,Yk)
∗CnHφ(Xk,Yk) =Ck

[
φ(Xk,Yk)

∗
Ωφ(Xk,Yk)

]
(8)

is a 2k×2k definite BSE Hamiltonian. Therefore the projection (8) in C-inner prod-
uct can also be regarded as structure preserving.

3 Variational properties

3.1 Min–max principles

The ith smallest eigenvalues of the Hermitian–definite pencil Cn−µΩ , denoted by
µi, can be characterized by the Courant–Fischer min–max principle

µi = min
dim(V )=i

max
z∈V
z 6=0

z∗Cnz
z∗Ωz

(9)

= max
dim(V )=2n−i+1

min
z∈V
z 6=0

z∗Cnz
z∗Ωz

, (10)

where V is a linear subspace of C2n. Notice that

λ
+
i =

1
µ2n−i+1

> 0, (1≤ i≤ n).

Taking the reciprocal of (9) and (10) yields Theorem 2 below. The theorem is also
a direct consequence of the Wielandt min–max principle discussed in [10, Theo-
rem 2.2] for the definite pencil Ω −λCn.

Theorem 2. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix as de-
fined in (1). Then

λ
+
i = max

dim(V )=2n−i+1
min
z∈V

z∗Cnz>0

z∗Ωz
z∗Cnz

(11)

= min
dim(V )=i

max
z∈V

z∗Cnz>0

z∗Ωz
z∗Cnz

(12)

for 1≤ i≤ n.
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An important special case is i = 1, for which we have the following Corollary 1.

Corollary 1 ([19]). The smallest positive eigenvalue of a definite Bethe–Salpeter
Hamiltonian matrix H =CnΩ satisfies

λ
+
1 = min

x∗x−y∗y6=0
ρ(x,y), (13)

where

ρ(x,y) =

[
x
y

]∗ [A B
B A

][
x
y

]
|x∗x− y∗y|

. (14)

is the Thouless functional.

Thanks to this result, the computation of λ
+
1 can be converted to minimizing the

Thouless functional (14). Thus optimization based eigensolvers, such as the David-
son algorithm [6] and the LOBPCG algorithm [8], can be adopted to compute λ

+
1 .

Finally, we remark that, from a computational point of view, the use of (12)
requires additional care, because for an arbitrarily chosen subspace V ⊂ C2n the
quantity

sup
z∈V

z∗Cnz>0

z∗Ωz
z∗Cnz

= sup
z∈V

z∗Cnz=1

z∗Ωz

can easily become +∞ when V contains C-neutral vectors.

3.2 Trace minimization principles

In many applications, only a few smallest positive eigenvalues of H are of practi-
cal interest. The computation of these interior eigenvalues requires additional care
since interior eigenvalues are in general much more difficult to compute compared
to external ones. Recently, (13) has been extended to a trace minimization principle
for real BSE Hamiltonians [1], so that several eigenvalues can be computed simul-
taneously using a blocked algorithm [2, 9]. In the following, we present two trace
minimization principles, corresponding to the two types of structured preserving
projections discussed in Section 2.2.

Theorem 3. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix as de-
fined in (1). Then

−
( 1

λ
+
1

+ · · ·+ 1
λ
+
k

)
= min

φ(X ,Y )∗Ωφ(X ,Y )=I2k
trace(X∗X−Y ∗Y ) (15)

holds for 1≤ k ≤ n.

Proof. We rewrite the eigenvalue problem Hz = λ z as Cnz = λ−1Ωz. Then by the
trace minimization principle for Hermitian–definite GEP, we obtain
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−
( 1

λ
+
1

+ · · ·+ 1
λ
+
k

)
= min

Z∗ΩZ=Ik
trace(Z∗CnZ).

Notice that

S1 :=
{[

X
Y

]
∈ C2n×k : φ(X ,Y )∗Ωφ(X ,Y ) = I2k

}
is a subset of

S2 :=
{

Z ∈ C2n×k : Z∗ΩZ = Ik

}
.

We have
min

Z∈S2
trace(Z∗CnZ)≤ min

Z∈S1
trace(Z∗CnZ).

The equality is attainable, since the minimizer in S2 can be chosen as the eigenvec-
tors of H, which is also in S1. As a result, (15) follows directly from the fact that
[X∗,Y ∗]Cn[X∗,Y ∗]∗ = X∗X−Y ∗Y . ut

Theorem 4. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix as de-
fined in (1). Then

λ
+
1 + · · ·+λ

+
k = min

φ(X ,Y )∗Cnφ(X ,Y )=Ck
trace(X∗AX +X∗BY +Y ∗BX +Y ∗AY ) (16)

holds for 1≤ k ≤ n.

Proof. As the eigenvalues of H are also the eigenvalues of the definite pencil Ω −
λCn, by the trace minimization property of definite pencils (see, for example, [9,
Theorem 2.4]), we obtain

λ
+
1 + · · ·+λ

+
k = min

Z∗CnZ=Ik
trace(Z∗ΩZ)

=
1
2

min
Z∗CnZ=Ck

trace(Z∗ΩZ).

The rest of the proof is nearly identical to that of Theorem 3. Because

S1 :=
{[

X
Y

]
∈ C2n×k : φ(X ,Y )∗Cnφ(X ,Y ) =Ck

}
is a subset of

S2 :=
{

Z ∈ C2n×k : Z∗CnZ =Ck

}
,

we have
min

Z∈S2
trace(Z∗ΩZ)≤ min

Z∈S1
trace(Z∗ΩZ).

The equality is attainable by choosing the corresponding eigenvectors of H, which
belong to both S1 and S2. ut

Theorems 3 and 4 can both be used to derive structure preserving optimization
based eigensolvers. We shall discuss the computation of eigenvalues in separate
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publications. We also refer the readers to [10] for more general variational princi-
ples.

3.3 Interlacing properties

We have already seen that the two types of orthogonality conditions on the eigenvec-
tors of H can both be used to construct structure preserving projections that can be
used for eigenvalue computations. In this subsection we point out some difference
on the location of the Ritz values.

When the Ω -inner product is used for projection, we have the following Cauchy
type interlacing property.

Theorem 5. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix as de-
fined in (1). Suppose that φ(X ,Y )∗Ωφ(X ,Y ) = I2k, where 1≤ k≤ n. Then the eigen-
values of φ(X ,Y )∗ΩHφ(X ,Y ) are real and appear in pairs ±θ . Moreover2

λ
+
i
(
φ(X ,Y )∗ΩHφ(X ,Y )

)
≤ λ

+
n+i−k(H), (1≤ i≤ k). (17)

Proof. The first half of the theorem follows from the discussions in Section 2.2. We
only show the interlacing property. Notice that U :=Ω 1/2φ(X ,Y ) has orthonormal
columns in the standard inner product, that is, U∗U = I2k. By the Cauchy interlacing
theorem, we have

λ
+
i
(
φ(X ,Y )∗ΩHφ(X ,Y )

)
= λ

+
i
(
U∗Ω 1/2CnΩ

1/2U
)

≤ λ
+
n+i−k

(
Ω

1/2CnΩ
1/2)

= λ
+
n+i−k

(
H
)
. ut

In contrast to the standard Cauchy interlacing theorem, there is no nontrivial
lower bound on the Ritz value λ

+
i

(
φ(X ,Y )∗ΩHφ(X ,Y )

)
here. In fact, the projected

matrix φ(X ,Y )∗ΩHφ(X ,Y ) can even be zero. For instance,

A = In, B = 0, X =
1√
2

Ik
Ik
0

 , Y =
1√
2

 Ik
−Ik
0


is an example for such an extreme case (assuming 2k ≤ n).

For projection based on the C-inner product, we establish Theorem 6 below. Sim-
ilar to Theorem 5, Ritz values are only bounded in one direction. However, in this
case, it is possible to provide a meaningful (though complicated) upper bound for
the Ritz value. We refer the readers to [1, Theorem 4.1] for the case of real BSE.
Further investigation in this direction is beyond the scope of this paper.

2 In the case when φ(X ,Y )∗ΩHφ(X ,Y ) is singular, we assign half of the zero eigenvalues with the
positive sign in the notation λ

+
i

(
φ(X ,Y )∗ΩHφ(X ,Y )

)
.
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Theorem 6. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix as de-
fined in (1). Suppose that φ(X ,Y )∗Cnφ(X ,Y ) =Ck, where 1≤ k≤ n. Then the eigen-
values of Ckφ(X ,Y )∗CnHφ(X ,Y ) appear in pairs ±θ . Moreover

λ
+
i
(
Ckφ(X ,Y )∗CnHφ(X ,Y )

)
≥ λ

+
i (H), (1≤ i≤ k). (18)

Proof. Notice that the eigenvalues of Ck
(
φ(X ,Y )∗Ωφ(X ,Y )

)
can also be regarded

as the eigenvalues of the definite pencil φ(X ,Y )∗(Ω −λCn)φ(X ,Y ). Then the con-
clusion follows from the Cauchy interlacing property of definite pencils [9, Theo-
rem 2.3]. ut

From a computational perspective, (18) provides more useful information than (17),
because the Ritz value λ

+
i

(
Ckφ(X ,Y )∗CnHφ(X ,Y )

)
is bounded in terms of the

corresponding eigenvalue λ
+
i (H) to be approximated. The inequality (17) gives

an upper bound of the Ritz value. But we have less control over the location of
λ
+
i

(
φ(X ,Y )∗ΩHφ(X ,Y )

)
.

Finally, we remark that the trace minimization principle (16) can also be derived
by the interlacing property (18).

4 Eigenvalue perturbation bounds

4.1 Weyl type inequalities

In the perturbation theory of symmetric eigenvalue problems, Weyl’s inequality im-
plies that the eigenvalues of a Hermitian matrix are well conditioned when a Her-
mitian perturbation is introduced. In the following we establish similar results for
definite Bethe–Salpeter eigenvalue problems.

Theorem 7. Let H and H +∆H be definite Bethe–Salpeter Hamiltonian matrices.
Then ∣∣∣∣λ+

i (H +∆H)−λ
+
i (H)

λ
+
i (H)

∣∣∣∣≤ κ2(H)
‖∆H‖2

‖H‖2
, (1≤ i≤ n),

where κ2(H) = ‖H‖2‖H−1‖2.

Proof. Let ∆Ω =Cn∆H. Then Ω +∆Ω is positive definite. We rewrite Hz = λ z as
the GEP Cnz = λ−1Ωz. It follows from the Weyl inequality on Hermitian–definite
GEP [12, Theorem 2.1] that∣∣∣∣ 1

λ
+
i (H)

− 1
λ
+
i (H +∆H)

∣∣∣∣≤ ‖Ω−1‖2‖∆Ω‖2

λ
+
i (H +∆H)

.

By simple arithmetic manipulations, we arrive at∣∣∣∣λ+
i (H +∆H)−λ

+
i (H)

λ
+
i (H)

∣∣∣∣≤ κ2(Ω)
‖∆Ω‖2

‖Ω‖2
= κ2(H)

‖∆H‖2

‖H‖2
. ut
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Theorem 7 characterizes the sensitivity of the eigenvalues of H when a structured
perturbation is introduced—the relative condition number of λ

+
i (H) is bounded by

κ2(H). When the perturbation is also a definite BSE Hamiltonian, the eigenvalues
are perturbed monotonically. We have the following result.

Theorem 8. Let H, ∆H ∈C2n×2n be definite Bethe–Salpeter Hamiltonian matrices.
Then

λ
+
i (H +∆H)≥ λ

+
i (H)+λ

+
1 (∆H), (1≤ i≤ n).

Proof. Let ∆Ω =Cn∆H. Then by Theorem 2 we have

λ
+
i (H +∆H) = max

dim(V )=2n−i+1
min
z∈V

z∗Cnz>0

(
z∗Ωz
z∗Cnz

+
z∗∆Ωz
z∗Cnz

)

≥ max
dim(V )=2n−i+1

min
z∈V

z∗Cnz>0

(
z∗Ωz
z∗Cnz

+λ
+
1 (∆H)

)
= λ

+
i (H)+λ

+
1 (∆H). ut

A special perturbation in the context of Bethe–Salpeter eigenvalue problems is
to drop the off-diagonal blocks in H. Such a perturbation is known as the Tamm–
Dancoff approximation (TDA) [5, 18]. Similar to the monotonic perturbation behav-
ior above, it has been shown in [16] that TDA overestimates all positive eigenvalues
of H. In the following, we present a simpler proof of this property than the one given
in [16].

Theorem 9 ([16, Theorem 4]). Let H be a definite Bethe–Salpeter Hamiltonian
matrix as defined in (1). Then

λ
+
i (H)≤ λ

+
i (A), (1≤ i≤ n).

Proof. Notice that H2 = (CnΩCn)Ω with both CnΩCn and Ω positive definite. By
the arithmetic–geometric inequality on positive definite matrices [4, Section 3.4],
we obtain

λ
+
i (H) =

√
λ
+
2i

(
(CnΩCn)Ω

)
≤ λ

+
2i

(
CnΩCn +Ω

2

)
= λ

+
2i

([
A 0
0 A

])
= λ

+
i (A). ut

Combining Theorems 7 and 9, we obtain the following corollary. It characterizes
to what extent existing results in the literature obtained from TDA are reliable.

Corollary 2. If H is a Bethe–Salpeter Hamiltonian matrix as defined in (1), then

0≤
λ
+
i (A)−λ

+
i (H)

λ
+
i (H)

≤ κ2(H)
‖B‖2

‖H‖2
, (1≤ i≤ n).
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4.2 Residual bounds

Another type of perturbation bounds on eigenvalues measures the accuracy of ap-
proximate eigenvalues in terms of the residual norm. These bounds are of interest
in eigenvalue computations. In the following we discuss several residual bounds for
the definite Bethe–Salpeter eigenvalue problem.

Theorem 10. Let H =CnΩ be a definite Bethe–Salpeter Hamiltonian matrix. Sup-
pose that X, Y ∈ Cn×k satisfy

φ(X ,Y )∗Ωφ(X ,Y ) = I2k, φ(X ,Y )∗Cnφ(X ,Y ) =
[
Θ 0
0 −Θ

]−1

,

for some k between 1 and n, where Θ = diag{θ1, . . . ,θk} � 0. Then there exists a
BSE Hamiltonian ∆H =Cn∆Ω =Cnφ(∆A,∆B) such that

(H +∆H)φ(X ,Y ) = φ(X ,Y )
[
Θ 0
0 −Θ

]
. (19)

and
‖∆H‖2 ≤ 2‖H‖1/2

2 ‖R‖2, (20)

where

R = Hφ(X ,Y )−φ(X ,Y )
[
Θ 0
0 −Θ

]
.

Proof. It follows from the definition of R that

φ(X ,Y )∗CnR = I2k−φ(X ,Y )∗Cnφ(X ,Y )
[
Θ 0
0 −Θ

]
= 0.

Let
∆Ω =CnRφ(X ,Y )∗Ω +Ωφ(X ,Y )R∗Cn.

Then ∆Ω is Hermitian. Since Θ is real, we have

R=Cnφ(A,B)φ(X ,Y )−φ(X ,Y )Cnφ(Θ ,0) =Cnφ(AX +BY−XΘ ,AY +BX +YΘ),

indicating that

Ωφ(X ,Y )R∗Cn = φ(A,B)φ(X ,Y )φ(AX +BY −XΘ ,AY +BX +YΘ)∗

has the block structure φ(·, ·). Thus ∆H :=Cn∆Ω is a BSE Hamiltonian. It can be
easily verified that (19) is satisfied. Finally,

‖∆H‖2 = ‖∆Ω‖2 ≤ 2‖Ω 1/2‖2‖Ω 1/2
φ(X ,Y )‖2‖R∗‖2 = 2‖H‖1/2

2 ‖R‖2. ut

Roughly speaking, (20) implies that for definite BSE, Rayleigh–Ritz based al-
gorithms that produce small residual norms are backward stable. When κ2(H) is of
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modest size, backward stability implies forward stability according to Theorem 7.
The following theorem provides a slightly better estimate compared to simply com-
bining Theorems 7 and 10.

Theorem 11. Under the same assumption of Theorem 10, there exist k positive
eigenvalues of H, λ j1 ≤ ·· · ≤ λ jk , such that

|θi−λ ji | ≤ ‖H‖
1/2
2 ‖R‖2, (1≤ i≤ k).

Proof. Notice that U :=Ω 1/2φ(X ,Y ) has orthonormal columns (in the standard in-
ner product), and

Ω
1/2R = Ω

1/2CnΩ
1/2U−U

[
Θ 0
0 −Θ

]
.

By the residual bound for standard Hermitian eigenvalue problems (see [14, The-
orem 11.5.1] or [17, Section IV.4.4]), we obtain that there are 2k eigenvalues of
Ω 1/2CnΩ 1/2, λ̃− jk ≤ ·· · ≤ λ̃− j1 ≤ λ̃ j1 ≤ ·· · ≤ λ̃ jk , such that

max
{
|θi + λ̃− ji |, |θi− λ̃ ji |

}
≤ ‖Ω‖1/2

2 ‖R‖2 = ‖H‖1/2
2 ‖R‖2, (1≤ i≤ k).

Note that at least one of the inequalities λ̃ j1 > 0 and λ̃− j1 < 0 holds. As the eigenval-
ues of Ω 1/2CnΩ 1/2 are identical to those of H, the conclusion follows immediately
by choosing

λ ji =

{
λ̃ ji , if λ̃ j1 > 0,
−λ̃− ji , otherwise,

(1≤ i≤ k). ut

Finally, we end this section by a Temple–Kato type quadratic residual bound
as stated in Theorem 12. The quadratic residual bound explains the fact that the
accuracy of a computed eigenvalues is in general much higher compared to that
of the corresponding eigenpair. Such a behavior has been reported for real Bethe–
Salpeter eigenvalue problem in [9]. It is certainly possible to extend Theorem 12 to
a subspace manner using techniques in [11, 13].

Theorem 12. Let (θ , ẑ) be an approximate eigenpair of a definite BSE Hamiltonian
H =CnΩ satisfying

ẑ∗Ω ẑ
ẑ∗Cnẑ

= θ .

Then the eigenvalue of H closest to θ , denoted by λ , satisfies

∣∣θ−1−λ
−1∣∣≤ ‖H−1‖2‖Hẑ−θ ẑ‖2

2
gap(θ)ẑ∗Ω ẑ

,

where
gap(θ) := min

λi(H)6=θ

∣∣θ−1−λi(H)−1∣∣.
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Proof. The theorem is a direct consequence of [14, Theorem 11.7.1] on the equiva-
lent Hermitian eigenvalue problem

(
Ω−1/2CnΩ−1/2

)(
Ω 1/2z

)
= λ

(
Ω 1/2z

)
. ut

5 Summary

The Bethe–Salpeter eigenvalue problem is an important class of structured eigen-
value problems arising from several physics and chemistry applications. The most
important case, the definite Bethe–Salpeter eigenvalue problem, has a number of
interesting properties. We identified two types of orthogonality conditions on the
eigenvectors, and discussed several properties of the corresponding structure pre-
serving projections. Although most of our theoretical results can be derived by ex-
tending similar results for general symmetric eigenvalue problems to this class of
problems, they play an important role in developing and analyzing structure pre-
serving algorithms for solving this type of problems. Numerical algorithms will be
discussed in a separate publication.
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