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Simple Summary: This review provides a general overview of neurological genetic disorders that
can emerge in adulthood. The goal is not to present an exhaustive list of adult-onset neurogenetic
disorders, but instead to present a framework to help physicians recognize patterns of neurological
disease that suggest a genetic cause. We discuss broad categories of neurological disease and the
most common genetic etiologies in each category. We review common diagnostic approaches and
pitfalls of current strategies. Whole-exome and whole-genome sequencing are emerging as more
comprehensive tests for genetic disease, but it is still not clear how they should be applied to adult
patients with complex neurological disease. This review highlights the need for more research to
understand the diagnostic utility of genetic testing strategies and for increased collaboration between
neurologists and geneticists.

Abstract: Neurogenetic diseases affect individuals across the lifespan, but accurate diagnosis remains
elusive for many patients. Adults with neurogenetic disorders often undergo a long diagnostic
odyssey, with multiple specialist evaluations and countless investigations without a satisfactory diag-
nostic outcome. Reasons for these diagnostic challenges include: (1) clinical features of neurogenetic
syndromes are diverse and under-recognized, particularly those of adult-onset, (2) neurogenetic
syndromes may manifest with symptoms that span multiple neurological and medical subspecialties,
and (3) a positive family history may not be present or readily apparent. Furthermore, there is a large
gap in the understanding of how to apply genetic diagnostic tools in adult patients, as most of the
published literature focuses on the pediatric population. Despite these challenges, accurate genetic
diagnosis is imperative to provide affected individuals and their families guidance on prognosis,
recurrence risk, and, for an increasing number of disorders, offer targeted treatment. Here, we
provide a framework for recognizing adult neurogenetic syndromes, describe the current diagnostic
approach, and highlight studies using next-generation sequencing in different neurological disease
cohorts. We also discuss diagnostic pitfalls, barriers to achieving a definitive diagnosis, and emerging
technology that may increase the diagnostic yield of testing.

Keywords: neurogenetic disease; whole genome sequencing; whole exome sequencing; complex
neurological disease; adult-onset; genetic analysis; next generation sequencing; personalized medicine

1. Introduction

Patients with neurogenetic diseases can be first seen by the neurology generalist, or in
any neurology subspecialty clinic, as they may embody atypical presentations of acquired
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neurological disease that involve multiple neurological domains. A major challenge in the
diagnosis of neurogenetic disease is a lack of access to neurogenetic clinical expertise for
many patients [1,2]. In addition to clinical barriers to diagnosis of neurogenetic disease, the
costs of genetic testing, particularly whole-exome sequencing (WES) and whole-genome
sequencing (WGS) are often not covered by insurance for adult patients [3–6]. Moreover,
there is phenotypic heterogeneity in these diseases, as mutations in the same gene can cause
distinct clinical syndromes in different individuals. For example, SCN2A mutations that
lead to gain of function or loss of function of the encoded sodium voltage-gated channel
Nav1.2 can manifest as a spectrum of phenotypes, such as seizure disorders [7], intellectual
disability [8], autism spectrum disorder [9], episodic ataxia [10], and schizophrenia [11],
with different phenotypic combinations, including one report of overlap of all phenotypes
in the same individual [12]. As another example, the hexanucleotide (GGGGCC) repeat
expansion in the non-coding region C9orf72 can cause both frontotemporal dementia
(FTD) and/or amyotrophic lateral sclerosis (ALS) [13,14]. Likewise, genetic allelic or locus
heterogeneity can be appreciated when the same clinical syndrome can result from different
pathological variants in the same gene or different genes. For example, mutations in
TBP (spinocerebellar ataxia type 17; SCA17), ATN1 (dentatorubral-pallidoluysian atrophy;
DRPLA), JPH3 (Huntington disease-like 2; HDL2), C9orf72 (Frontotemporal dementia
and/or Amyotrophic lateral sclerosis; FTD/ALS1), and FXN (Friedreich ataxia) can all
cause Huntington’s disease-like syndromes [15].

Features that should alert the clinician to consider a neurogenetic evaluation include
(1) family history of similarly afflicted individuals, (2) atypical onset of disease, (3) involve-
ment of multiple neurological domains or systemic features, and (4) subacute or chronic,
progressive, and unrelenting course. The presence of consanguinity may also be helpful in
assessing the utility of genetic testing for autosomal recessive (AR) disorders, and some
neurogenetic disorders are found more frequently in certain ethnic groups. However, a lack
of family history does not preclude a neurogenetic diagnosis due to several factors, includ-
ing de novo mutations, repeat expansion disorders or incomplete penetrance of disorders.
Furthermore, multiple family members affected with distinct neurological disorders may
also represent a red flag given that many genes associated with neurological disorders
can present with multiple phenotypes. For example, mutations in VCP can be variably
associated with Charcot-Marie-Tooth disease (CMT), FTD, ALS, and/or inclusion body
myopathy with early-onset Paget disease in different members of the same family [16–18].

In a study of 1411 patients with unexplained adult-onset neurological disorders,
multi-gene panel testing for 7 different categories of neurological disease (ataxia and
spasticity, leukoencephalopathy, movement disorders, neurodegeneration with brain iron
accumulation, paroxysmal episodic disorders, progressive myoclonic epilepsy, and ALS)
revealed a diagnostic yield of 10% [19]. The category with the highest diagnostic yield
was the ataxia and spasticity group, followed by the paroxysmal episodic disorders and
leukoencephalopathy panels [19]. WES, which can capture all exons of all known genes, and
WGS, which analyzes the entire human genome with the potential to detect copy number
variants, non-coding variants, and repeat expansions, are predicted to further increase the
diagnostic yield of adult-onset neurogenetic disorders. Periodic re-analysis of WES and
WGS can further increase the diagnostic yield as new disease-causing genes and variants
are identified [20–22]. Already, WES and WGS have demonstrated increased diagnostic
yield in pediatric neurogenetic conditions [23–25] and likely will demonstrate a higher
yield in adult neurogenetic disorders, though this is yet to be definitively determined.

2. Neurogenetic Syndromes
2.1. Movement Disorders: Parkinson’s Disease, Dystonia, Ataxia, Spastic Paraparesis

Many neurogenetic disorders affect movement beginning in adulthood. The literature
suggests that WES/WGS has a diagnostic yield that is comparable to or higher than targeted
sequencing of relevant genes using gene panels in hereditary movement disorders such as
Parkinson’s disease (PD), dystonia (DYT), and ataxia/spastic paraplegia [26].



Biology 2023, 12, 1459 3 of 19

Monogenic PD represents a small fraction of PD cases, but most pathogenic variants are
associated with early-onset PD before 40 years of age. With WES, 11.3% [27] to 14% [28,29]
of patients with early-onset PD can be found to have a pathogenic variant compared with
targeted panels with a yield ranging from 0% [30] to 4.3% [31], with targeted panels yielding
a much lower rate due to the use of gene panels lacking the most updated complement of
PD-associated genes.

Hereditary DYT most often begins in childhood but can emerge in adolescence and
adulthood. In a study examining genetic testing of both pediatric and adult patients with
DYT, 12% of individuals were found to have pathogenic or likely pathogenic variants
identified with WGS, with earlier age of onset, younger age at testing, and a combined DYT
phenotype with other movement disorders more likely to yield a genetic diagnosis [32].

Hereditary ataxias are a heterogeneous and complex group of disorders character-
ized by cerebellar ataxia and oculomotor abnormalities, often leading to gait impairment,
and speech and swallowing difficulties. Additional features of spinocerebellar ataxias
(SCAs) include retinopathy, optic atrophy, peripheral neuropathy, extrapyramidal symp-
toms, epilepsy, and cognitive dysfunction. Ataxic syndromes are a major reservoir for
neurogenetic disease. The prevalence of autosomal dominant (AD) cerebellar ataxias is
estimated to be about 2.7 per 100,000 and 3.3 per 100,000 for AR cerebellar ataxias [33].
Most SCAs have a typical age of onset in adulthood, usually in the third or fourth decade.
The more common SCAs (SCA1, SCA2, SCA3, SCA6, SCA7, SCA17, DRPLA) are classically
caused by CAG trinucleotide repeat expansions. SCA3 (Machado–Joseph disease) is the
most common AD ataxia and Friedreich ataxia is the most frequent AR ataxia [33]. More
recently, intronic repeat expansions in RFC1 (cerebellar ataxia, neuropathy, and vestibular
areflexia syndrome, CANVAS) [34] and FGF14 (SCA27B) [35] have been identified as more
significant causes of adult-onset ataxia than previously appreciated. Fragile X-associated
tremor/ataxia syndrome (FXTAS) is an X-linked late-onset degenerative disorder in Fragile
X disease premutation carriers of a CGG repeat expansion in FMR1.

Hereditary spastic paraplegias (HSP) are a group of disorders characterized by a
gradual worsening of stiffness and spasticity beginning in the legs due to corticospinal
tract degeneration. The prevalence of AD and AR HSP are both about 1.8 per 100,000,
with spastic paraplegia, type 4 (SPG4), and SPG11 being the most common types of AD
and AR HSP, respectively [33]. Estimates of prevalence rates do not include X-linked or
other inherited forms of these conditions and, although rare, potentially underestimate
the prevalence of genetic hereditary ataxias and HSP. Classically, HSP has been divided
into two major categories, the pure (uncomplicated) phenotype of spastic paraplegia alone
or the complex (complicated) phenotype associated with additional neurological and
extra-neurological manifestations such as cognitive impairment, peripheral neuropathy,
cerebellar signs, and eye signs. While clinically useful, this classification has limited value
in guiding the molecular screening of HSP as the same mutation can lead to both pure and
complex forms of HSP. Moreover, WES and WGS diagnostic approaches have revealed
genetic overlap between HSP and other neurogenetic conditions, more commonly inherited
ataxias, neuropathies, and motor neuron diseases, found to be associated with genes
originally described in HSP patients [36]. In this case, both the site and type of the mutation
might have distinct pathogenic effects on the gene product, which might explain some of
the underlying differences in their clinical presentation.

2.2. Epilepsy and Intellectual Disability

Epilepsy is one of the most common neurological diseases globally, with genetic
factors thought to play a role in a significant number of these patients. In a cross-sectional
study of 2008 adult patients who underwent a multigene epilepsy test, 10.9% received
a diagnostic finding [37]. Genetic epilepsies were identified in adults with child-onset
epilepsy, with the most common variants in SCN1A, KCNT1, and STXBP1, as well as adults
with adult-onset seizures with gene variants in FLNA and LGI1, which are associated with
reduced penetrance and variable expressivity [37].
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For adults presenting with epilepsy of unknown etiology, features that make mono-
genic epilepsy more likely include seizure onset in infancy [37], comorbid intellectual
disability (ID) or developmental delay (DD) [37–39], and pharmacoresistant epilepsy [37].
Genetic testing in an adult cohort of patients with epilepsy revealed pathogenic variants
could be missed in smaller gene panels, particularly in patients with early DD and late
seizure onset [40]. In a large systematic review examining the diagnostic yield of different
genetic testing modalities in all patients with epilepsy, WGS returned the highest yield
(48%) compared to WES (24%), multigene panels (19%), and chromosomal microarray
(9%) [41]. While most genetic epilepsies are associated with generalized seizures, several
genes have been identified as causative of focal epilepsies, such as NPRL2, NPRL3 [42], and
DEPDC5 [43], genes involved in regulating the mammalian target of rapamycin (mTOR)
pathway, as well as FLNA (focal seizures due to unilateral or bilateral periventricular
nodular heterotopia) and LGI1 (focal seizures with auditory features). Epilepsy can also be
a common manifestation of mitochondrial disease due to mutations in mitochondrial DNA
and nuclear-encoded genes that affect mitochondrial function and maintenance, such as
POLG [44].

2.3. Neuromuscular Disorders

Hereditary neuropathies, comprising CMT, also known as hereditary motor/sensory
neuropathy (HMSN), distal hereditary motor neuropathy (HMN), hereditary sensory and
autonomic neuropathy (HSAN), hereditary neuropathy with liability to pressure palsies
(HNPP), and hereditary brachial plexus neuropathy (HBPN), often become clinically appar-
ent or begin in adulthood. Neuropathies can also present as the initial or prominent feature
in complex neurogenetic diseases such as familial amyloid polyneuropathies, hereditary
ataxias with neuropathy, and complicated HSP. Acquired neuropathy may be superim-
posed on an inherited neuropathy since those with underlying inherited neuropathy are
more susceptible to injury from other causes of nerve injury [45]. Genetic overlap and
phenotypic diversity of hereditary neuropathies are complex, including phenotypic overlap
with axonal CMT, ataxias, distal myopathies, and HSP, making the selection of genes for
testing difficult, but genome-wide sequencing is poised to change the diagnostic approach
for these disorders.

The group of inherited neuropathies collectively known as CMT is the most common
inherited neuromuscular disease, with a prevalence in the general population varying
widely by region and race/ethnicity from 9.4–82 per 100,000 [46]. The classic form of
CMT is characterized by slow and progressive distal weakness, sensory loss, and foot
deformities, particularly pes cavus and hammertoes. Patients with CMT often do not have
sensory or pain symptoms, so clinical presentation, and thus diagnosis, can be delayed
until adulthood.

The classification of CMT, which previously prioritized electrophysiologic categories
of motor nerve conduction velocities (demyelinating = CMT1, axonal = CMT2, dominant
intermediate = DI-CMT), is now evolving to a multi-tiered classification including inheri-
tance pattern, phenotype, and genetic designation [47]. Nerve conduction studies remain
helpful in distinguishing between subtypes of different genetic causes of CMT, non-CMT
inherited neuropathies and acquired chronic neuropathies.

CMT has heterogeneous modes of inheritance and genetic causes, with mutations in
PMP22, GJB1, MPZ, and MFN2 representing over 90% of genetically defined CMT1 [48].
Peripheral myelin protein 22 is a critical membrane glycoprotein component in compact
myelin, and PMP22 duplication and deletion copy number variants (CNVs) are the most
common cause of inherited demyelinating neuropathy, accounting for approximately 78%
of cases [48]. Furthermore, a CNV on chromosome 17p12 in the intronic region upstream
of PMP22 has also been described as causative for CMT1A [49], likely through regulation
of PMP22 transcript expression [50]. Testing for this region is not included in typical
neuropathy gene panels, and identification of this variant would be missed on WES.
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While PMP22 duplication variants are typically associated with CMT1A, PMP22
deletions, leading to PMP22 haploinsufficiency, are associated with HNPP, characterized
by recurrent, painless, focal sensory motor neuropathies triggered by mechanical stress
on the peripheral nerves. HNPP usually begins in the second or third decade but can
present much later. It is less common than CMT1A with a prevalence estimated at 1–7 per
100,000 [51,52], but prevalence rates could be much higher given milder presentations and
likely under-diagnosis [53].

CMT2, characterized by axonal neuropathy, typically begins later, usually in the
second or third decade of life. X-linked CMT, typically due to GJB1 mutations, can present
with frequent falls in early adulthood with weakness, muscle atrophy, and areflexia, with
females exhibiting later onset. Even in a cohort of unexplained axonal neuropathies in
the middle-aged and elderly, 18.3% of patients had disease-causing variants identified by
WES [54].

As the number of CMT genes corresponding to the different subtypes continues
to expand, the likelihood of identifying a causative genetic variant is increasing. In a
retrospective, single-center study, gene panel testing of 108 patients with CMT identified
17 patients (15.7%) with pathogenic or likely pathogenic variants [55]. In a nationwide
laboratory study in Japan, the combination of microarray, gene panel sequencing, and WES
of 2598 cases identified pathogenic or likely pathogenic variants in 798 patients (30.7%) [56].

Regarding muscle disorders, myotonic dystrophies (DM) are the most common muscu-
lar dystrophies in adults, characterized by progressive muscle weakness, myotonia, cardiac
conduction abnormalities, and non-muscular features that can include cataracts, sleep,
cognitive, behavioral, and gastrointestinal disease. The prevalence of DM is estimated to
be 10 per 100,000, with DM1 estimated to be 4 times more prevalent than DM2 [57]. DM1
and DM2 are both repeat expansion disorders in non-coding regions; DM1 is caused by
CTG repeat expansion in the 3′-untranslated region of DMPK and DM2 is caused by CCTG
repeat expansion in intron 1 of CNBP. Both disorders are inherited as an autosomal domi-
nant trait and show a wide phenotypic variability, mostly related to the meiotic and mitotic
instability in tissues which characterizes related CTG and CCTG pathological expansions.

Other hereditary muscular dystrophies that have a wide age range of muscle weak-
ness onset include dystrophinopathies (Duchenne and Becker muscular dystrophy, allelic
variations due to mutations in DMD), facioscapulohumeral muscular dystrophy (due to
hypomethylation of DUX4 arising from either a combination of D4Z4 contraction with
a permissive haplotype or a mutation in SMCHD1), and limb-girdle and distal muscular
dystrophies (associated with mutations in multiple genes). Oculopharyngeal muscular
dystrophy (OPMD) is caused by GCN repeat expansion in PABPN1 and presents with
asymmetric ptosis and dysphagia that only manifests in adulthood, usually presenting
in the fourth to sixth decade. Collagen VI-related dystrophies, like Bethlem muscular
dystrophy, are often diagnosed in adulthood.

MNDs, exemplified by ALS, affect an estimated 5 per 100,000 individuals [58], with the
most common genetic etiology, a hexanucleotide repeat expansion in C9orf72, accounting
for 10% of patients with clinical ALS that can also be associated with FTD. Pathogenic
variants in SOD1, FUS, and TARDBP, among many others, can also lead to ALS. Spinal and
bulbar muscular atrophy (also known as Kennedy’s disease) is due to an X-linked recessive
CAG repeat expansion in the AR gene.

Phenotypic classification is helpful but cannot fully predict the genetic basis of neu-
romuscular disorders, as defects in one gene can cause different phenotypes (phenotypic
heterogeneity), and the same phenotype can be caused by pathogenic variants in different
genes (locus/genetic heterogeneity). Inherited diseases of muscle are frequently observed
in neurometabolic and mitochondrial disease, for which they most often present with
exercise-induced weakness and/or muscle pain.
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2.4. Cognitive Neurodegenerative Disease

Although Alzheimer’s disease (ALZ) has a strong genetic component, most patients
with ALZ are thought to have a polygenic mechanism of disease. Approximately 95%
of all ALZ is late-onset (>65 years of age), with about 5% representing early-onset ALZ
(<65 years of age) [59]. While early-onset ALZ is more likely to have a monogenic cause, it
is not synonymous with genetic ALZ. Mendelian AD ALZ (caused by mutations in APP,
PSEN1, or PSEN2) is rare, explaining only 5–10% of early-onset ALZ cases [59].

FTD, characterized by frontotemporal lobar degeneration that affects personality,
behavior, and language has an estimated prevalence of 15–22 per 100,000 [60]. FTD is
highly heritable, with 42% of patients with a positive family history of dementia [61]. The
most common genetic cause of FTD is the hexanucleotide (GGGGGCC) repeat expansion in
the non-coding region of the C9orf72 gene, which accounts for up to 12% of familial and 3%
of sporadic FTD and can also be associated with ALS [62]. Mutations in MAPT and GRN
are also commonly found in familial FTD and similarly account for ~3% of sporadic FTD.

The incidence of prion disease is estimated to be about 0.2 per 100,000 annually, with
genetic prion disease related to PRNP mutations accounting for 10% of this number [63].
Genetic prion disease is characterized by 3 clinical syndromes: Genetic Creutzfeldt–
Jakob disease with rapidly progressive dementia; Gerstmann–Straussler–Scheinker disease
with predominantly ataxia, and fatal familial insomnia with dysautonomia and severe
sleep disturbance.

2.5. Leukodystrophies and Other Diseases of White Matter

Inherited disorders affecting cerebral white matter can be hypomyelinating or de-
myelinating, with differences detectable on MR imaging. Symptoms of some forms of
leukodystrophies have onset during infancy or childhood; however, attenuated phenotypes
of such forms may present in adulthood (metachromatic leukodystrophy, Krabbe disease,
Alexander disease), whereas, on the other hand, other forms of inherited leukodystrophies
are typically characterized by an adult-onset (vanishing white matter disease, X-linked
adrenoleukodystrophy) [64]. The most common symptoms include lower extremity weak-
ness, cognitive dysfunction, mood, and behavior changes. Gait ataxia, sensory symptoms
with autonomic dysfunction, as well as extrapyramidal movement disorders and seizures,
can be accompanying features. Extra-neurological symptoms include cataracts, optic
nerve atrophy, endocrine dysfunction, polyneuropathy, hypodontia, cutaneous signs, and
gastrointestinal dysfunction.

The frequency of leukodystrophies is estimated to range from 2–13.3 per 100,000 [65,66].
A diagnostic algorithm proposed by Köhler et al. includes (1) identifying clinical syndromes
or MRI findings suggestive of leukodystrophy, (2) excluding acquired vasculopathies, toxic,
inflammatory, neoplastic, and degenerative causes of white matter disease, (3) acquiring ad-
ditional information such as family history and using pattern recognition of clinical presen-
tation, (4) performing biochemical testing, WES/WGS, and considering brain biopsy [67].
WES may increase the diagnostic yield of suspected adult-onset leukodystrophies from
~50% to 72% [68], arguing for the use of WES as a first-line diagnostic test.

The major differential diagnosis of leukoencephalopathies includes the inherited cere-
bral vasculopathies, such as cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), caused by NOTCH3 mutations. A num-
ber of other genetic syndromes of cerebral small vessel disease with variable anatomic
distributions of pathological cerebrovascular (ischemic and hemorrhagic) findings on imag-
ing exist, including cerebral autosomal recessive arteriopathy with subcortical infarcts
and leukoencephalopathy (CARASIL), cathepsin-A-related arteriopathy with strokes and
leukoencephalopathy (CARASAL), COL4A1-related disease, pontine autosomal domi-
nant microangiopathy and leukoencephalopathy (PADMAL), Fabry disease, HTRA1 het-
erozygotes, pseudoxanthoma elasticum, hereditary cerebral hemorrhage with amyloidosis
(HCHWA), and retinal vasculopathy with cerebral leukodystrophy and systemic manifes-
tations (RVFL-S), among others. Clinical clues to monogenic stroke syndromes include
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recurrent stroke, age at onset younger than 50 years old, lack of stroke risk factors, positive
family history, and characteristic neuroimaging findings, most commonly symmetrical
and progressive periventricular and subcortical white matter hyperintensities [69]. Other
neurological features such as cognitive impairment, migraines, and mood disturbances
may accompany cerebrovascular disease in these disorders, and systemic findings such as
skin abnormalities, cardiac disease, diabetes, and kidney disease may help indicate specific
disease categories.

2.6. Neurometabolic Diseases

NMDs are a heterogeneous group of genetic disorders with alterations in cellular
metabolism, often due to enzyme deficiency that causes substrate accumulation leading to
toxic effects, or lack of downstream product synthesis, such as neurotransmitter synthesis
disorders. Due to the mechanism of NMDs, there are often targeted therapies and strate-
gies to reduce the deleterious effects of toxic accumulation and/or supplement deficient
enzymes or substrates that can improve the clinical course of NMDs, making it critical to
identify these diseases as early as possible.

More common NMDs will be mentioned here; for more comprehensive reviews of treat-
able adult-onset NMDs, see [70,71]. Broad categories of NMD that can present in adulthood
include urea cycle disorders (such as ornithine transcarbamylase deficiency), late-onset
forms of lysosomal storage disorders (such as Niemann–Pick disease type C, Fabry disease,
and Pompe disease), peroxisomal disorders (such as X-linked adrenoleukodystrophy),
mineral metabolism disorders (such as Wilson disease), remethylation disorders (such as
disorders of intracellular cobalamin metabolism, the most common of which is cobalamin
C deficiency) and heme synthesis disorders (such as the hepatic porphyrias). Clinical
features of these disorders are variable and can manifest with overlapping phenotypes.
The most common neurological signs in adult patients diagnosed with inherited metabolic
disorders are extrapyramidal/cerebellar signs, cognitive dysfunction, and myelopathy [71].
Peripheral neuropathy, epilepsy, psychosis, myopathy, and optic neuropathy can also be
isolated manifestations of NMD or develop in combination [70,71].

Inherited mitochondrial disorders are a subset of NMD with a prevalence rate in adults
of 20 per 100,000 [72]. Most mitochondrial disorders are attributable to mitochondrial DNA
mutations compared to about 15% of patients with mitochondrial disorders who have
nuclear mitochondrial mutations [72]. Classical mitochondrial syndromes presenting in
adulthood include subacute, painless, and progressive vision loss (as in Leber hereditary op-
tic neuropathy, LHON), stroke-like episodes associated with headache (as in mitochondrial
myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, MELAS), myoclonic
epilepsy (as in myoclonic epilepsy associated with ragged-red fibers MERRF), neuropathy
and ataxia alongside retinal deterioration (as in neuropathy, ataxia, and retinitis pigmen-
tosa, NARP), ophthalmoplegia with cardiomyopathy (as in Kearns–Sayre syndrome, KSS)
and bilateral, symmetric ptosis and ophthalmoplegia (as in chronic progressive external
ophthalmoplegia, CPEO). Mitochondrial myopathies in general manifest with fatiguability,
exercise-induced myalgia, exercise intolerance, and lactic acidemia. Additional features
such as young onset sensorineural hearing loss, optic neuropathy, cerebellar ataxia, sensory
ataxia, peripheral neuropathy, migraine, cognitive impairment, spasticity, and extrapyra-
midal movement disorders can be features of mitochondrial disease, whose presence and
predominance in the phenotype can depend on the underlying mutation.

The time course of NMD can be variable and be acute, episodic, or slowly progressive.
Features include a positive family history, parental consanguinity, a very chronic course,
or atypical features of a common etiology. Additionally, changes in basal metabolism like
systemic illness, exercise, or fasting states can precipitate acute neurological symptoms.
Oftentimes, there is accompanying multi-organ dysfunction associated with these cases,
while additional audiological, ophthalmological, and imaging assessments can be helpful.
Organomegaly (splenomegaly, hepatomegaly) can point to abnormal storage of substrates
or metabolites.
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A proposed diagnostic algorithm for identifying genetic NMD in adults incorporates
clinical symptoms with recognition of specific MR imaging patterns, then expanded pheno-
typic testing with brain and abdominal imaging, EMG/NCS, hearing, and ophthalmological
assessment, followed by targeted biochemical testing [70].

2.7. Episodic Neurologic Syndromes-Paroxysmal Movement Disorders, Episodic Ataxia,
Hemiplegic Migraine

Episodic neurologic syndromes are relatively common and can be challenging to
diagnose. While genetic episodic neurologic syndromes are rare, they may become more
apparent as more genes and mutations are described. Symptoms may also not be recognized
as significant until they have progressed in severity and resulted in chronic or permanent
neurological damage.

Most paroxysmal movement disorders present in childhood, though paroxysmal eye
movements, paroxysmal kinesigenic dyskinesia (PKD), and paroxysmal exercise-induced
dyskinesia (PED) can present in adolescence or early adulthood. PKD is a rare condition
with an estimated prevalence of 0.7 per 100,000 [73] that is characterized by brief (<1 min)
attacks of chorea and/or dystonia triggered by sudden voluntary movements, while PED
attacks are triggered by prolonged exercise and last for minutes to hours. Some genes
that cause paroxysmal disorders are involved in ion channel function, however, not all
paroxysmal disorder-associated genes are directly involved in synaptic transmission (e.g.,
PRRT2, SLC2A1).

Episodic ataxias (EAs) are also rare disorders with an estimated prevalence of less than
1 per 100,000 [74]. The onset of EAs is typically in childhood, though late onset even up to
the fifth or sixth decade has been reported with EA type 2. Attacks of ataxia along with
dysarthria, tremor, diplopia, nystagmus, dystonia, hemiplegia, headache, and tinnitus may
last for a few seconds up to several days. Episodes can be triggered by alcohol, caffeine,
systemic illness, stress, startle, or strong emotions. Over time, a mild progressive cerebellar
ataxia may develop.

Hemiplegic migraine is characterized by attacks of headache with aura symptoms and
unilateral motor weakness lasting up to 72 h. The prevalence of hemiplegic migraine is
estimated to be 10 per 100,000 [75]. Familial hemiplegic migraine is autosomal dominantly
inherited with mutations found in three ion transporter genes, CACNA1A (which has
phenotypic overlap with EA type 2), ATP1A2, and SCN1A.

Rarely, inherited muscle channelopathies like hypokalemic periodic paralysis and
hyperkalemic periodic paralysis can begin with attacks in early adulthood. This heteroge-
neous group of disorders is characterized by episodic attacks of muscle weakness occurring
with variable frequency and lasting for minutes to hours, but sometimes up to days. Some
patients eventually develop a chronic progressive myopathy. Common triggers include low
temperature and emotional stress, with potassium-rich food, post-exercise rest triggering
hyperkalemic periodic paralysis and excessive salt intake, a lack of exercise, and alcohol
consumption precipitate hypokalemic periodic paralysis.

3. Current State and Challenges of Neurogenetic Testing

The most common neurogenetic testing options include chromosomal microarray
(CMA), gene panels, repeat expansion testing, biochemical testing, and WES. An illustra-
tive example of the current approach to neurogenetic testing is shown in Figure 1. The
most common, widely available first-line genetic testing strategies for the diagnosis of
neurogenetic disorders are shown in Table 1.
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Figure 1. Example of the current state of genetic testing for each phenotype in an adult with complex
neurological phenotypes (case based on [12]). The typical diagnostic odyssey entails multiple genetic
tests before a neurogenetic disorder can be identified and molecularly confirmed. Access to whole-
exome sequencing can often be restricted by insurance/payor coverage policies, limiting testing to gene
panels (dotted line) instead of or prior to WES, as illustrated for ASD. Priority should always be to
identify treatable genetic disorders, as illustrated by pursuing biochemical and gene panel testing for
neurometabolic disorders before other testing for treatment-resistant SSD. Note that WES, in addition to
covering only coding regions in the genome, is unable to capture variant types such as repeat expansions
and large copy number variants, whereas WGS is able to capture all variant types and be analyzed for
all phenotypes. WGS could present a “one-stop shop” test for adult neurogenetic disorders as cost and
feasibility improve. Abbreviations: ASD, autism spectrum disorder; EE, epileptic encephalopathy; NDD,
neurodevelopmental disorder; SCA, spinocerebellar ataxia; SSD, schizophrenia spectrum disorder; WES,
whole-exome sequencing; WGS, whole-genome sequencing.

Table 1. Recommended first-line genetic testing by neurological symptom.

Clinical Presentation First-Line Genetic Testing
Strategy Distinctive Clinical Features Other Considerations

Parkinsonism Gene panel Early-onset < 40 years old

Dystonia Gene panel Early age of onset, combined
dystonia phenotype

Chorea Repeat Expansion Testing Panel
+/− Sequencing Panel

Rule out Huntington disease and
mimics

Ataxia Repeat Expansion Testing Panel
+/− Sequencing Panel

Repeat expansion should be
prioritized if pure SCA (most
commonly SCA3, FXTAS); if

complex, consider gene panel first

Spastic Paraparesis Gene panel

Epilepsy Gene panel

Seizure onset in infancy, comorbid
intellectual disability or

developmental delay,
pharmacoresistent epilepsy

Neuropathy Gene panel Distal motor and/or sensory
neuropathy

Consider sequence evaluation of
PMP22 upstream regulatory

elements
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Table 1. Cont.

Clinical Presentation First-Line Genetic Testing
Strategy Distinctive Clinical Features Other Considerations

CANVAS Single gene testing Persistent cough Novel repeat motifs identified,
limited availability of testing

Muscle disorder Gene panel

If findings strongly suggest a
specific muscular dystrophy (e.g.,

DM, FSHD, OPMD) consider
repeat expansion testing

Motor Neuron Disease Repeat Expansion Testing Panel
+/− Sequencing Panel Association with FTD

Repeat expansion should be
prioritized, as most common

diagnoses are ALS, SBMA,
Friedreich ataxia

Dementia Gene panel Early-onset < 65 years old If FTD, then prioritize repeat
expansion (C9orf72)

Leukodystrophy Gene panel

Cerebral ischemia Gene panel

Recurrent stroke, early-onset < 50
years old, lack of typical vascular
risk factors, symmetric imaging

findings

Episodic Neurological Syndrome Gene panel

Abbreviations: ALS, amyotrophic lateral sclerosis; CANVAS, cerebellar ataxia with neuropathy and vestibular
areflexia syndrome; DM, myotonic dystrophy; FTD, frontotemporal dementia; FSHD, facioscapulohumeral
muscular dystrophy; FXTAS, fragile X-associated tremor/ataxia syndrome; OPMD, oculopharyngeal muscular
dystrophy; SBMA, spinal bulbar muscular atrophy; SCA, spinocerebellar ataxia.

3.1. Chromosomal Microarray

CMA is a probe-based technology that detects CNVs (deletions and duplications)
across the genome. The American College of Medical Genetics and Genomics (ACMG)
recommends CMA as a first line of testing in determining a genetic cause for unexplained
ID, DD, or autism spectrum disorder, as well as in patients with congenital anomalies [76].
While CMA can be a powerful diagnostic tool when used appropriately, the test is limited
to the detection of large deletions or duplications, and CNVs smaller than 100–200 Kb are
not well-detected. CMA also does not detect point mutations, structural chromosomal
rearrangements, or other variant types.

3.2. Gene Panel Testing

Gene panel testing simultaneously sequences a curated collection of genes that are known
to cause certain diseases or phenotypes. This type of testing is particularly helpful when a
patient’s phenotype(s) or suspected condition is associated with variants in many genes. Gene
panels can be updated as new conditions are described and new genes are linked to specific
phenotypes, but this requires repeat testing over time. Moreover, the genes included in a
panel are not standardized across clinical testing laboratories [77]. This lack of standardization
may lead to missed testing of genes that would have provided a diagnosis, thus extending
the patient’s diagnostic odyssey. The opposite may also happen where genes that are not yet
known to cause the suspected condition are included in the panel and result in inconclusive or
conflicting outcomes. Additionally, the differences in gene panels between laboratories may
cause confusion and uncertainty when choosing a test, especially for non-expert clinicians,
and can lead to differences in standards of patient care.

3.3. Repeat Expansion Testing

Repeat expansion disorders (REDs) have distinguishing clinical features, but a high
index of suspicion is needed to direct testing for repeat expansions. The age of onset
of clinical symptoms is often negatively correlated to the sizes of the repeat expansions
(e.g., SCA17, DRPLA, SCA2, SCA3, OPMD), with lower repeat expansions associated with
disease onset in the 60s and 70s. In addition, lower repeat expansions or intermediate
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alleles may give rise to reduced penetrance for a number of neurodegenerative diseases,
including SCA17 [78], OPMD [79], FXTAS [80], ALS [81], SCA3 [82], and Huntington’s
disease [83]. However, as a highly specialized test, there are limitations to repeat expansion
testing. By targeting specific conditions, RED testing is often done as a single gene test or,
in rarer cases, as a small panel test. For example, diagnosis of DM1 typically requires PCR,
with an additional Southern blot analysis needed to detect larger expansions. Diagnosis of
DM2 often requires PCR repeat-primed assay in addition to these. The detection of repeat
expansions is limited in WES, but REDs could be screened for using bioinformatic methods
for repeat expansions with WGS [84,85].

Testing for certain REDs is significantly limited by the availability of laboratories that
can perform these tests, reducing the accessibility of repeat expansion testing. For example,
Friedreich ataxia (FXN), CANVAS, and SCA27B present unique diagnostic challenges, as
they are most often caused by intronic repeat expansions that require dedicated validation
of assays. The biallelic AAGGG intronic repeat expansion in RFC1 associated with CANVAS
and the deep intronic GAA repeat expansion in FGF14 associated with SCA27B are absent
from most commercial repeat expansion panels for ataxia, despite emerging evidence
demonstrating their prevalence as some of the more common causes of undiagnosed
cerebellar ataxia [86,87] and late-onset cerebellar ataxia [35,88]. RFC1-related disease is also
increasingly being recognized as a cause of idiopathic chronic sensory neuropathy [89,90]
in adults.

3.4. Biochemical Testing

When there is a suspicion for an NMD, biochemical testing often includes serum,
urine, or CSF testing to examine the accumulation or depletion of metabolites in enzy-
matic pathways affected by genetic mutations, or to directly measure levels or activity of
specific enzymes. For example, Gaucher disease, an inherited lysosomal storage disor-
der, can be tested for by measuring levels of the beta-glucosidase enzyme in leukocytes.
Specific tests can screen for various types of metabolic disorders, including lysosomal
or glycogen storage disorders, mitochondrial diseases, peroxisomal disorders, and metal
metabolism disorders, among others. Molecular genetic testing can also be used for di-
agnosing metabolic disorders and determining carrier status and is often done as single
gene tests or panel tests. Molecular testing can offer an expedited route to the diagnosis
of NMDs, but negative molecular testing does not exclude these diagnoses and may still
necessitate specialized biochemical testing. Testing for mitochondrial disorders can be
more complex, as mitochondrial mutations may be confined to certain tissues in the body
(known as heteroplasmy) and may not be detected if an unaffected tissue is tested. For
example, mitochondrial myopathies are often diagnosed by mitochondrial genome analysis
from muscle biopsy of an affected muscle group but may not be diagnosed by testing on a
blood sample or other tissue.

3.5. Whole-Exome Sequencing

WES is the largest, most comprehensive genetic test currently available through
clinical testing. By sequencing all protein-coding regions of DNA, this phenotype-driven
test analyzes thousands of genes in addition to those found on gene panels. This also
provides optional reporting of secondary findings for medically actionable conditions as
defined by ACMG guidelines [91]. The additional coverage can be particularly helpful in
complex cases, as WES is commonly used when first-line genetic testing is inconclusive.
However, as a large-scale test, it is not uncommon for a larger number of identified variants
of uncertain significance that require further clarification of their clinical impacts. This
problem is often remedied by pairing the test with parental or other family member testing
for segregation of the identified variants but is less utilized for adult patients as parental
samples are often not easily available.
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4. The Future of Neurogenetic Testing

Accurate and efficient diagnosis of neurogenetic disorders is required for clinically
relevant precision management of affected patients, including genetically targeted therapies
for an increasing number of Mendelian disorders [92,93] and enabling patients to enroll in
clinical trials relevant to their disease. Standard-of-care genetic testing in most individuals
with complex neurological conditions comprises multiple steps in a lengthy and costly
diagnostic odyssey [94]. Even when covered by insurance, this can delay genetic diagnosis
by years.

Whole-Genome Testing

Although many studies examine the utility and cost-saving potential of WES and WGS
in pediatric patients [23,95–97], particularly those with neurological and psychiatric disorders,
primary literature on the use of WES and WGS in adults is limited [19,95,98–100]. The diagnostic
utility of WES has already shifted the paradigm of genetic testing in pediatric patient
populations, with WES used as a first-tier genetic test in children with certain conditions,
rather than a test of last resort [24,25,101,102]. WGS (approaching 100% of the genome) is
expected to usurp WES (1% of the genome) as the clinical diagnostic methodology of choice
for pediatric patients in the near future [103–106]. Whether the results of pediatric studies
would translate to adult patient populations is unknown. Most undiagnosed adults with
complex neurological disorders present with symptoms beginning in adulthood, pointing
to different genetic mechanisms and diagnoses. WGS enables the analysis of all known
disease-causing genes, as well as the detection of variants missed by WES, such as intergenic
and intronic variants, balanced chromosomal rearrangements, structural variants, copy
number variants, and repeat expansions, the latter particularly relevant for adult-onset
neurogenetic disorders, such as ALS, FXTAS, SCAs, and muscular dystrophies [107]. WGS
could potentially shorten the diagnostic odyssey and save significant testing costs for
many patients by eliminating the need for multiple, separate, and successive genetic tests
with a large cumulative cost; an illustrative example is shown in Figure 1. Additional
information on clinical utility can also be reported from WGS data, including medically
actionable secondary findings [91], pharmacogenomic variants [108], and carrier status for
recessive or X-linked disorders. WGS could potentially offer these opportunities without
additional test costs, ultimately also saving healthcare costs. In a study of 382 patients
with undiagnosed diseases, 98 (25.7%) obtained a genetic diagnosis through WES or WGS,
including 17 through WGS after non-diagnostic WES [109].

5. Barriers to Neurogenetic Testing

Unfortunately, payors have lagged behind in recognizing the importance and impact
of genetic diagnosis, not only for the patient, but also for their family members [6], and
coverage is variable by condition and insurer [110]. Genetic testing remains unaffordable
for most patients when it is not covered, with cost concerns being a strong determinant
of willingness to undergo testing [111–114]. In the United States, insurance payor policies
on reimbursement and coverage of WES and WGS cite evidence for medical necessity and
coverage of WES/WGS in primarily pediatric indications, and lack the same for adult
indications, leading to the exclusion of coverage for most adult patients. In the absence
of reimbursement or coverage for testing, patient willingness to pay depends on factors
beyond clinical utility including personal utility [115]. Personal utility crosses the social,
affective, cognitive, and behavioral domains, which are further delineated into fifteen
elements that encompass outcomes such as mental preparation, value of information, and
change in social support [116,117]. The National Institutes of Health supports developing
and applying patient-reported outcome measures to understand patient perspectives and
experiences to delineate the full impact of genomic testing [115,117–122].

Patients have historically come to genetics services near the end of a diagnostic odyssey,
rather than at the beginning of one [105]. This results in patients who are looking for many
kinds of answers: what condition they have (or what it is not), how this affects their current and
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future family members, and how they may need to adapt their identity or psychological well-
being to new information. Important aspects that affect the personal utility of genetic testing
include the type of genetic testing result, the specific indication of a patient and the potential
differential diagnosis, and ultimately whether a patient has a desire for an answer versus the
goal to narrow down the differential or rule out genetic diagnosis. Ultimately, personal utility
highlights important facets of the lived experience of genetic conditions that are integral when
evaluating healthcare outcomes alongside clinical utility and other measures.

While the discussion about the theoretical superiority of WGS over WES has ramped
up over the past several years (e.g., [123]), the translation of the hypothetical advantages of
WGS into reality has led to the recognition of some of the limitations of “traditional” short-
read sequencing and bioinformatic tools available to interpret genomic data. This has led to
the development of superior and complementary technologies and tools to overcome some
of the technical barriers to realizing the promise of WGS, including long-read sequencing
technology, optical genome mapping, multi-omics approaches, and the development of
many new bioinformatic tools to allow for interrogation of CNVs, repeat expansions, and
non-coding regions [84,124–131].

Even with the advent of new genetic diagnostic tools, most patients have limited
access to neurological care [132,133] and/or medical genetics services [2,134,135], and
concentrated expertise in rare diseases limits the scope of expedient and accurate diagnosis
of adult patients with neurogenetic diseases. Collaboration between neurologists and
geneticists is needed to better incorporate clinical and genetic data.

6. Conclusions

There is currently scant data to guide adult patients with suspected neurogenetic dis-
orders and their clinicians in making decisions about which genetic testing strategy would
bring optimal clinical value to them. The rapid expansion of known pathogenic variants
since the advent of WES and WGS has transformed our understanding of neurogenetic
disease and disrupted the existing classification schema of these disorders. Increasingly,
deep clinical phenotyping in combination with algorithmic approaches of standard neuro-
genetic testing is not sufficient to achieve accurate genetic diagnoses. Despite the growing
impact of genetic testing on clinical practice, most physicians are uncomfortable with the
use of medical genetics and genomics, limiting their ability to counsel patients [136–140].
Ongoing collaboration between neurology experts in rare diseases and geneticists is needed
to define future guidelines for the diagnosis of rare neurogenetic diseases. Future studies
are needed to determine whether a traditional, sequential testing strategy or costlier up-
front, but more efficient WES or WGS yields the greatest diagnostic, clinical, and personal
utility for adults with complex neurological phenotypes. Studies of this nature in adult
populations are urgently needed to enable payor policy changes that will ensure equitable,
evidence-based access to the latest genomic technologies for adult patients, as has been
widely implemented for pediatric populations.
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