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ABSTRACT OF THE THESIS

An Ensemble Prognostic Model for Metastatic, Castrate-Resistant Prostate Cancer

By

Yeeleng Scott Vang

Master of Science in Computer Science

University of California, Irvine, 2016

Professor Xiaohui Xie, Chair

Metastatic, castrate-resistant prostate cancer (mCRPC) is one of the most prevalent cancers

and is the third leading cause of cancer death among men. Several treatment options have

been developed to combat mCRPC, however none have produced any tangible benefits to

patients’ overall survivability. As part of a crowd-sourced algorithm development competi-

tion, participants were asked to develop new prognostic models for mCRPC patients treated

with docetaxel. Such results could potentially assist in clinical decision making for future

mCRPC patients.

In this thesis, we present a new ensemble prognostic model to perform risk prediction for

mCRPC patients treated with docetaxel. We rely on traditional survival analysis model like

the Cox Proportional Hazard model, as well as more recently developed boosting model that

incorporates smooth approximation of the concordance index for direct optimization. Our

model performs better than the the current state-of-the-art mCRPC prognostic models for

the concordance index performance measure and is competitive with these models on the

integrated time-dependent area under the receiver operating characteristic curve.
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Chapter 1

Introduction

Survival analysis is a branch of statistics used to analyze data sets where the dependent

variable is the time to an event of interest. In the clinical setting, survival analysis is often

used to study the time until death of patients in longitudinal studies. Complicating these

longitudinal studies is the problem of right censoring where patients may drop out before

the conclusion of the test or patients does not experience the event before the end of the

test, thereby resulting in an unobservable survival time for the patient. The tools to tackle

these difficulties necessitates the use of algorithms from survival analysis.

The scope of this thesis encompasses using tools from survival analysis to develop a prognostic

model for predicting risk in metastatic, castrate-resistant prostate cancer (mCRPC) patients

treated with docetaxel. Prostate cancer happens to be the third leading cause of cancer

death and is the most common cancer among men in developed countries [1]. mCRPC is

inevitably a fatal disease with current treatment options offering minimal, if any, benefit to

mCRPC patients’ overall survival outcome. We will be be answering the question of what

benefits, if any, mCRPC patients treated with docetaxel see in their overall survival. Since

the historical median survival time for mCRPC patient is less than 2 years [10], an accurate
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prognostic model indicating whether doxcetaxel provides any tangible improvement would

be of potential benefit in the decision making of treatment options.

We provide a brief description of the structure of the thesis along with our contributions in

the following section.

1.1 Thesis Outline

The thesis beings with providing relevant background information in Chapter 2. Here we

provide an overview of prostate cancer, some survival statistics, the specific mCRPC condi-

tion, and current and future treatment options. We then introduce the task description and

provide context to its motivation. We conclude this chapter with formulation of the perfor-

mance measures, give an intuitive interpretation of them, and derived their relationship to

one another.

Chapter 3 provides a survey of existing state-of-the-art prognostic models developed for

mCRPC patients risk prediction. Focus will be given to the entire development phase from

pre-processing steps to statistical models used. This will be used to highlight each algorithms

strengths and weaknesses as well as range of models used.

In Chapter 4, we provide a short introduction to the survival distribution, derive important

characterizing functions, and point out their relationship. We highlight some of the difficul-

ties working with survival data. We then introduce three models used for survival analysis

that will serve as the basis of our ensemble prognostic model.

Chapter 5 looks at some of the major steps in our model development process. We also

validate the proportional hazard assumption. We then provide information on our experi-

ment setup and present the result of our experiment. We conclude this section with a detail

2



analysis of the strength and weakness of our model compared to current state-of-the-art

models.

Chapter 6 summarizes our contribution and this thesis and also looks at some possible

direction for future research.
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Chapter 2

Overview of mCRPC and Prediction

Task

2.1 mCRPC Background

Prostate cancer is the third leading cause of cancer mortality, behind lung and colorectal,

and is the most frequently diagnosed cancer for men [1, 26, 39]. Nearly 15% of the 2 million

men diagnosed in the US with prostate cancer had metastatic disease (Stage IV) at the time

of diagnosis [2]. It has been demonstrated since 1941 that deprivation of androgen hormone

(e.g. testosterone) leads to regression of prostate cancer and alleviation of pain in patients

[27].

Androgen deprivation therapy (ADT) [7] has become the de facto initial treatment for pa-

tients with prostate cancer. ADT can involve either medical or surgical castration (e.g.

bilateral orchidectomy)[5]. The effect of castration effectively reduces the serum testos-

terone level to a very low level known as the castration level. Medical castration is usually

achieved by Gonadotropin-releasing hormone (GnRH) agonist which inhibits the pituitary
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gland from releasing luteinizing hormone necessary for testicular androgen production. A

popular treatment in the 1990’s consisted of combining GnRH agonist and androgen block-

ers, such as flutamide or bicalutamide, in a treatment called total androgen blockade (TAB)

[20] which seek to completely block androgen activity in the body.

Despite these blockage, prostate cancer is known to progress to a state called castration-

resistant prostate cancer (CRPC) between 18 to 48 months. This state is characterized by

elevated level of prostate specific antigen (PSA) in spite of very low level of testosterone.

Prostate cancer cell has been found to be able to maintain dihydrotestosterone (DHT) con-

centration in excess of serum concentrations to support cell growth and proliferation [35]

and may, in some instances, also synthesize DHT de-novo [32].

The continued progression of CRPC leads to metastatic, castrate-resistant prostate cancer

(mCRPC) which accounts for one third of all patients with metastatic disease [1, 26]. More

than 90% of mCRPC patients develops bone metastases which results in increased risk of

morbidity and mortality [13] as a result of skeletal-related events. mCRPC is inevitably

fatal with the historic median survival of patients being less than 2 years [10]. Docetaxel, an

anti-mitotic chemotherapy, is usually the standard first-line treatment option for mCRPC

patients [20]. Although secondary treatment, such as cabazitaxel, and tertiary treatment,

such as active cellular immunotherapy, exists, they have not been found to produce any

major improvement in mCRPC patient overall survivability [46].

The current focus in mCRPC treatment is shifted to inhibitors of steroid biosynthesis [20].

This involves treating patients with ketoconazole to inhibit 17α-hydroxylase, which is a key

ingredient to the production of precursors for androgen production. High doses have been

used to suppress tumor activity but no surivval benefit has been shown. It is also associated

with elevated and significant adverse events including bone fragility, hypotension, and fatal

hepatic dysfunction. The outcome observed after treatment with ketoconazole has lead to

investigation of stronger and more selective inhibitors that also has more favorable toxicity
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profile. Two such inhibitors recently approved by the US Food and Drug Administration

(FDA) are abiraterone acetate (Zytiga) and enzalutamide (Xtandi). Preliminary results

from phase I studies of these newer drugs are promising while further phase II studies are

on-going, with phase III trials in the planning stage.

2.2 Task Description

Halabi et al. [21] showed that by using the most up-to-date mCRPC patient data, better

prognostic models can be developed. They extended their study to investigate the site of

metastatic disease as being informative prognostic indicators. Their finding demonstrated

the importance of prognostic research to include current clinical trials and patient health

status in determining the best treatment choices.

The results of the Halabi study motivated the organizers at Sage Bionetworks to create

the DREAM 9.5 - Prostate Cancer DREAM Challenge [2], henceforth known as DREAM

Challenge. Organizers hoped a crowd-sourced competition could lead to new models for

predicting survival in mCRPC patients treated with docetaxel. With better models, the

goal is to allow clinical researchers to decide if docetaxel is a viable first treatment option or

not. It is this question posed by the DREAM Challenge that this thesis will address.

Participants are asked to build a prognostic model to predict a global risk prediction and

optionally 3 separate optimized risk predictions at 12, 18, and 24 months for patients in the

test data set. For the global risk prediction, a concordance index (c-index) and an integrated

time-dependent AUC(iAUC), from 6 to 30 months, using Hung and Chiang’s estimator of

cumulative AUC [28], are calculated for each model. For the time specific predictions (12,

18, 24 months), an AUC score using Hung and Chiang’s estimators are calculated for these

times. Details of these performance measures are discussed in the following subsections.
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2.3 Data Set

The data set used is provided as part of the DREAM Challenge. This data set contains 2070

patients from four mCRPC Phase III clinical trials study broken down as 476 patients from

Memorial Sloan Kettering Cancer Center (ASCENT2), 526 patients from Celgene (CEL-

GENE), 598 patients from Sanofi (EFC6546), and 470 patients from AstraZeneca (AZ). The

DREAM Challenge used the 1600 patients from the first three trials as their training data

and divided the AZ set into 157 patients for the leaderboard round and 313 patient for the

final round. AZ ground truths were not made available to the participants.

The four clinical trials were pre-processed and aggregated by the DREAM Challenge orga-

nizer and provided as one CSV table representing patient level data consisting of the depen-

dent variables and the clinical covariates such as patient demographics, lesion measure, prior

medicine, vital sign, ect. Additional raw longitudinal data is provided for possible further

exploration. The dependent variables are DEATH, as the binary survival outcome variable,

and LKADT P (last known alive day - in days) as the time to event.

One of the main issue with clinical trial data set is the issue of missing data. We consider

various methods for missing data imputation including using the mean, median, or mode

value of the covariates across the four data sets. We settle on using the training table pre-

processed by Laajala et al. [30] as part of their entry into the DREAM Challenge which is

discussed further in Section 3.3.

2.4 Performance Measures

The performance measures, concordance index and integrated time-dependent AUC, set forth

by the organizer for the DREAM Challenge are both commonly used in survival analysis in
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the context of discerning discriminatory power of prognostic models. Discrimination reflects

the ability of a prognostic model to correctly identify a clinical status and is of particular

importance for clinician as they are interested in how a predicted score is able to distinguish

between individuals labeled as high risk or a given event from those not. In the following

subsections, we provide background information for both performance measures and show

the relationship between the two.

2.4.1 Concordance Index

The concordance index (c-index) is the standard performance measure for model assessment

in survival analysis with right censoring [17, 42]. This measure was developed by Harrell [24]

and measures the separation of two survival distribution. It is given as:

c− index =
1

|E|

( ∑
(i,j)∈E

1(f(xi) < f(xj)) + 0.5 ·
∑

(i,j)∈E

1(f(xi) = f(xj))

)
(2.1)

where E is the set of validly orderable pairs, |E| is the number of pairs in E, 1 is the indicator

function whether the condition is satisfied or not, and f(xi) is the prediction of survival time

for patient i. The set of validly orderable pairs consists of pairs where the shorter survival

time is not censored. In the case of ties, they are given half weights.

Intuitively, the c-index is the fraction of all pairs of subjects whose predicted survival times

are correctly ordered among all pairs that can be ordered. The survival analysis problem

involving censored data can be cast as a ranking problem, and in this sense, c-index is a

natural measure to quantify the quality of rankings [42].
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2.4.2 Integrated Time-dependent AUC

The time-dependent area under the receiver-operating characteristic (ROC) curve, AUC(t),

is another frequently used measure for survival analysis. The time-dependent ROC, ROC(t),

follows from the standard definition of ROC curve which depends on true positive rates

(TPR) and false positive rates (FPR). To begin with, we first define the following notations.

Following the derivation of [6], let Ti and Ci denote the survival and censoring times re-

spectively for patients i = 1, . . . , n. Furthermore, let Zi = min(Ti, Ci) and δi = 1(Ti ≤ Ci)

denote the observed survival time and the indicator of death respectively. We denote Di(t)

the time-dependent outcome status for patient i at time t, for t ≥ 0. Define Di(t) = 1

if patient i is considered a case (experience death) at time t and Di(t) = 0 if patient i is

considered a control (did not experience death) at time t.

By casting the predictions from a prognostic model as a binary problem, we can extend the

definition of ROC to cover survival analysis. For the general setting, for any threshold c,

let TPR(c, t)=Pr(X > c|D(t) = 1) and FPR(c, t)=Pr(X > c|D(t) = 0). By varying c and

plotting TPR(c, t) against FPR(c, t), the ROC(t) curve can be obtained. The time-dependent

AUC at time t is defined as the area under this curve:

AUC(t) =

∫ ∞
−∞

TPR(c, t)

∣∣∣∣∂FPR(c, t)

∂c

∣∣∣∣ dc (2.2)

For survival analysis, there are several potential extensions of cross-sectional TPR and FPR,

leading to different formulation of the time-dependent AUC [6, 25]. For the DREAM Chal-

lenge, the Hung and Chieng’s estimator [28] for cumulative AUC is used and is formulated

as follows.

First define cases as cumulative if Ti ≤ t and controls as dynamic if Ti > t. Then cumulative
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TPR and dynamic FPR are respectively defined as:

TPRC(c, t) = Pr(Xi > c|Ti ≤ t) and FPRD(c, t) = Pr(Xi > c|Ti > t). (2.3)

At any fixed time t, all the patients are classified as either a case or a control on the basis

of vital status at time t. Each patient is a control for times t < Ti and then is a case for

t ≥ Ti. Cumulative specificity and dynamic sensitivity accuracy summaries are important

when interest lies in discriminating between subjects who die prior to a given time Ti and

those that survive beyond Ti [25].

Hung and Chieng then estimated these two functions using non-parametric method based

on Inverse Probability of Censoring Weighting (IPCW) as:

T̂PR
C
(c, t) =

∑n
i=1 1(Xi > c, Zi ≤ t) δi

nŜC(Zi)∑n
i=1 1(Zi ≤ t) δi

nŜC(Zi)

(2.4)

and

F̂PR
D
(c, t) =

∑n
i=1 1(Xi > c, Zi > t)∑n

i=1 1(Zi > t)
(2.5)

where ŜC(·) is the Kaplan-Meier estimator of the survival function of the censoring time C.

It can then be shown (see [28]) that an estimator of AUCC,D(t) is given by:

ÂUC
C,D

(t) =

∑n
i=1

∑n
j=1 1(Zi ≤ t)1(Zj > t)1(Xi > Xj)

δi
ŜC(Zi)ŜC(t)

n2Ŝ(t)[1− Ŝ(t)]
(2.6)

The integrated time-dependent AUC (iAUC) is the area under the time-dependent AUC for

all time t and is obtained using Simpson’s rule to numerically integrate over relevant time
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points.

2.4.3 Relationship between c-index and integrated time-dependent

AUC

Both c-index and AUC are frequently used to assess the discriminatory power of a prognostic

model [17]. In fact, Harrell’s c-index was developed specifically to estimate the concordance

probability for right censored survival analysis. A c-index of 1 indicates the model has

perfect discrimination, the same as when AUC is equal to 1. When c-index is 0.5, the model

is doing no better than random guessing (no discrimination), equivalent to when AUC is 0.5.

This implies that both measures operate over the same range and should naturally share a

relationship.

To see this relationship, we start with the definition of concordance probability. The con-

cordance probability for a pair of patients (X1, T1) and (X2, T2) is defined as:

C = Pr(X2 > X1|T2 > T1). (2.7)

Define controls as dynamic as in subsection 2.4.2 and now define cases as incident if Ti = t.

The incident TPR is then defined as:

TPRI(c, t) = Pr(Xi > c|Ti = t). (2.8)

Each patient is a control for times t < Ti and then is a case when t = Ti. Dynamic specificity

and incident sensitivity are defined by dichotomizing the risk set at time t into those observed

to die and those that survive and is therefore a natural companion to hazard models [25].
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Van et al. [44] showed that the incident/dynamic AUC(t) can be formulated as:

AUCI,D(t) =
#{j ∈ R(t);xj < xi}+ 0.5 ·#{j ∈ R(t), j 6= i;xj = xi}

|R(t)| − 1
(2.9)

where R(t) is the risk set and |R(t)| is the size of the risk set at time t.

Then Van et al. also showed that computing some weighted average proportional to |R(t)|−1

leads to:

Cτ =
∑
i∈D

[
(|R(ti)| − 1) · AUC(ti)

]/∑
i∈D

(|R(ti)| − 1)

=

∑
i∈D

(
#{j ∈ R(ti);xj < xi}+ 0.5 ·#{j ∈ R(ti), j 6= i;xj = xi}

)
∑

i∈D(|R(ti)| − 1)
.

(2.10)

This formulation is precisely Harrell’s c-index as defined in Section 2.4.1.
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Chapter 3

Related Work on mCRPC Prognostic

Models

3.1 Introduction

Prostate cancer remains the most prevalent malignancy in men with development of mCRPC

as the major cause of death in these patients [21]. Three prognostic models were developed

incorporating some prognostic markers of overall survival in pre-chemotherapy patients [4,

23, 40]. As treatment advanced to include various chemotherapy, Halabi et al. developed

a more modern prognostic model to account for these new trial design [21, 22]. Recently,

as part of a crowd-sourced DREAM Challenge, teams were invited to develop prognostic

models for patients treated with docetaxel [2] with the aim of besting the model by Halabi

et al. used as the baseline model in this competition. Along with the baseline model, the

top five performing models from the Dream Challenge are discussed in detail in the following

sections.
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3.2 Halabi et al. Model

Halabi et al. [21], the baseline model, considered eight previously defined predictors of over-

all survival for mCRPC patients. These eight covariates were the binary covariates ANAL-

GESICS and BONE,VISCERAL,LYMPH NODES, the categorical covariate ECOG C, and

the numerical covariates LDH, ALB, HB, ALP, and PSA. In their model, missing data were

imputed with the median of non-missing values across all four longitudinal Phase III clinical

trials. The model used was a penalized Cox Proportional Hazards model with LASSO-

regularization. The advantage of using the LASSO-regularization was to produce sparse

regression coefficients which can further reduce the predictor space.

3.3 Laajala et al. Model

Laajala et al. [30], the first place team in the DREAM Challenge, used the most sophisticated

pre-processing steps. They used Gaussian generalized linear model to impute missing-at-

random and structured missing data and log-transformed numerical covariates to fit a normal

distribution. They further used principal component analysis to reveal that the distribution

of patients from the ASCENT2 study did not match that of the AZ study and therefore was

excluded completely from training purpose.

Their final prognostic model was an ensemble of three highly optimized elastic-net regularized

GLM-based Cox model trained using batch data available only from the EFC6546 study,

only from the CELGENE study, and the combination of both EFC6546 and CELGENE

studies simultaneously. The final prognostic model equally weighted prediction from all

three models.
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3.4 Xiao et al. Model

Xiao et al. [47], the second place team in the DREAM Challenge, used 20 candidate co-

variates identified as informative by the Halabi study [21]. Missing data was imputed using

the Multivariate Imputation by Chained Equations (MICE) algorithm and the Nelson-Aalen

estimator. Each patients were assigned a weight based on the local density in the covariate

space. The final prognostic model was a Ridge-regularized GLM-based Cox model trained

over 100 repeated-subsampling from a random 2/3 portion of the training set and validated

on the remaining 1/3 samples.

3.5 Song and Wang Model

Song and Wang [41], the third place team in the DREAM Challenge, imputed missing data

with the median value of each covariates. They further eliminated covariates that had little

variation and those with large percentage of missing data which ultimately left them with

65 covariates. From here, they performed a round of univariate filtering based on p-value,

selecting to keep those only with p-value less than 0.05. This left them with just the AST and

LIVER covariates. Based on Halabi study, Song and Wang also included the ECOG C, LDH,

ALB, HB, PSA, and ALP covariates. No normalization or log transformation was used. Their

final prognostic model consisted of the non-regularized Cox Proportional Hazards model.

3.6 Wolfinger and Chu Model

Wolfinger and Chu [45], the fourth place team in the DREAM Challenge, imputed missing

data using the Full Conditional Specification (FCS) method. This was achieved by averaging

10 iteration of FCS. Continuous covariates were log transformed and each covariates were
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standardized to have mean zero and standard deviation one.

Wolfinger and Chu used three classes of models to generate each individual predictor com-

prising their final ensemble model. The first class of models was Cox Proportional Hazard

models and using variation in forward, backard, and stepwise covariate selections. The

second class of model is the Life regression models with fitted standard distribution for

time-to-event data. These distribution models included Weibull, Gamma, Logistic, and Log-

normal. The third class of models uses Buckley-James approach to wrap standard methods

including linear regression (lasso and elastic net), k-nearest neighbors, trees (boosting and

forests), partial least squares, and kernel methods. Their final ensemble prognostic model

consisted of 351 individual models derived with slight variation of the three classes of models

mentioned above.

3.7 Greiner et al. Model

Greiner et al. [19], the fifth place team in the DREAM Challenge, used a variety of pre-

processing steps. The first involved removing covariates that did not have values for the

AZ test data set. Categorical covariates were replaced with one-hot encoding version. Two

copies of numerical covariates were included. One copy was quantile normalized, whose

missing value was imputed using the median. The other copy was first linearly normalized

such that the minimal value is 0 and maximum value is 1. Missing value was then imputed

using the mean, followed by another quantile normalization of these values. No covariate

selection step was used.

Greiner et al.’s final model used an algorithm called Patient Specific Survival Prediction

(PSSP)[31] which is based on multi-task logistic regression (MTLR) which seeks to learn

patient-specific survival distribution. This method differs from traditional survival analy-
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sis method as it models the survival function directly by combing multiple local logistic

regression models instead of modeling hazard function as is commonly done with Cox Pro-

portional Hazard models. Essentially the model learns a logistic regression function for each

time point, then combine these functions in such a way that guarantees the resulting curve

is monotonically decreasing from a probability of 1 at t = 0.
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Chapter 4

Material and Methods of Survival

Analysis

4.1 Introduction

We begin this chapter with a short introduction to the relevant functions used in survival

analysis. The survival distribution is characterized by the following four functions.

The probability density function is given as:

f(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t+ ∆t) (4.1)

The survival function defines the probability of the event is later than time t and is defined

as:

S(t) = Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t) = 1−
t∫

0

f(s)ds (4.2)
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The survival function is non-increasing with respect to time.

A related concept is the hazard function defined as:

λ(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
(4.3)

which gives the instantaneous death rate at time t given the patient is alive up to time t.

The hazard function is not a probability as it is not bounded above by 1 [16].

The cumulative hazard function is defined as:

Λ(t) =

t∫
0

λ(s)ds = − logS(t) (4.4)

Intuitively, when the hazard function is high, the cumulative hazard increases faster and the

survival decreases faster with time.

Knowledge of f , S, λ, or Λ is enough to specify the survival distribution and the other

remaining three functions [16].

4.2 Censoring

The difficulty in modeling survival data is the problem of censoring. There are various

categories of censoring such as right censoring, left censoring, and interval censoring. Since

right censoring is the only kind present in this data set, only it is explored further in this

thesis. For other kinds of censoring, we refer readers to Kleinbaum [29].

Right censoring occurs when patients have not experienced the event of interest by the time

the study have concluded, patient are lost to follow-up, termination of treatment due to
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Figure 4.1: Lifetime curve for patients. General right censoring of patients with possible
different starting time.

negative side effects of treatment, or death due to an unrelated cause [16]. The concept

of right censoring can be explained using Figure 4.1. In this example, only patients 3 and

5 experienced the event of interest, denoted with the “X” at the right of their lifetime

curves. The remaining patients did not experience the event and were right censored either

by dropping out of the test (patient 2) or were still alive at the end of the study (patients 1

and 4). In this example, patients were able to have different start time. Censored patients

are included in the risk set up to their censor times but are excluded thereafter. The risk

set at time t(j) is defined as the set of all individuals whose survival times are at least t(j)

or larger. They play a pivotal role in the partial likelihood function defined in the following

section.
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4.3 Survival Models

4.3.1 Model #1 - Cox Proportional Hazard

The Cox Proportional Hazard (CoxPH) model is arguably the most popular survival model

in practice today. In his seminal work [11, 12], Cox introduced the proportional hazard

model:

λ(t|x1, . . . , xn) = λ0(t)eβ1x1+···+βnxn (4.5)

where λ0(t) is the baseline hazard function, and eβ1x1+···+βnxn is the relative hazard, which

summarizes the effects of the covariates.

An important property of the CoxPH model is that the baseline hazard is unspecified. This

makes the Cox model robust as estimating parameters for the CoxPH model does not require

estimating the baseline hazard function. Estimating parameters for the Cox model is done

by maximizing the partial likelihood function, which only considers probabilities for those

subjects who fail and not explicitly for those subjects who are censored [29]. The partial

likelihood is given as:

L(β|x) =
∏
j

eβ
T x(j)∑

i∈Rj
eβ

T x(i)
(4.6)

where Rj is the set of subjects at risk for failure at time t(j).

The CoxPH model has been extended to model time-varying covariates and time-varying

coefficients as well [3, 33]. This CoxPH framework has been implemented in the open-source

R package “survival” [43].
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4.3.2 Model #2 - Gradient Boosting Machine

Gradient boosting machine (GBM) is an ensemble model by additive expansion of sequential

“weak learners” [14, 15]. In the problem formulation, Friedman [14] was interested in learning

a functional mapping y = F (x; β) from data {xi, yi}Ni=1 that minimizes some loss function

L(y, F (x; β)).

More concretely, F (x) takes the form of :

F (x) =
M∑
m=0

ρmf(x; τm) (4.7)

where ρ is the weight, f is the weak learner, and τ is the parameter set. Therefore β consists

of the parameter sets {ρm, τm}Mm=1. These parameter are learned in the follow “stage-wise”

greedy process:

(1) set an initial estimator f0(x).

(2) for m ∈ 1, 2, ,M

(ρm, τm) = arg min
ρ,τ

n∑
i=1

L(yi, Fm−1(xi) + ρf(xi; τ)) (4.8)

Step (2) is approximated by GBM in the following two steps:

First, fit f(x; τm) by

τm = arg min
n∑
i=1

(gim − f(xi; τ))2 (4.9)
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where

gim = −
[∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(4.10)

Second, learn ρ by

ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρf(xi; τm)) (4.11)

Then it updates Fm(x) = Fm−1(x) + ρf(x; τ). To control overfitting, shrinking is often

introduced to give the following form of the update equation:

Fm(x) = Fm−1(x) + γρf(x; τ) where 0 ≤ γ ≤ 1 (4.12)

If regression trees are used as the weak leaner, the tree parameters, e.g. tree depth, determine

the complexity of f(x). The performance of GBM can be improved by a method called

subsampling, where a random subset of the training data is used to fit each weak learner.

This leads to a method called stochastic gradient boosting [15]. This GBM framework is

implemented in the open-source R package “gbm” [38].

Boosting Proportional Hazard Regression

Ridgeway [37] extended boosting for the Cox proportional hazard model by using the fol-

lowing negative log partial likelihood cost function:

L(y, F ) = −
n∑
i=1

δi

{
F (xi)− log

( ∑
j:tj≥ti

eF (xj)

)}
(4.13)

Eqn (4.9), (4.10), (4.11) can then be applied to learn for each weak learner. This extension
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is implemented in the “gbm” package by specifying “coxph” as the distribution to use [38].

4.3.3 Model #3 - Gradient Boosting Machine for Concordance

Index Optimization

Gradient boosting machine for concordance index (GBMCI) learning was developed by Chen

et al. [9] with the intent of optimizing a smooth approximation of the concordance index as

proposed in [48]. This led to the following approximation termed the smoothed concordance

index (SCI):

SCI =
1

|E|
∑

(i,j)∈E

1

1 + eα(F (xi)−F (xj))
(4.14)

where α controls the steepness of the sigmoid function (accordingly, the approximability of

SCI to CI), and F (x) is the prediction of survival time. Letting the loss function, L(y, F ) =

−SCI, the weak learner can be fitted using Eqn (4.9) and {gim}ni=1, where

gim =

[
dSCI

dF (xi)

]
F (x)=Fm−1(x)

=
α

|E|

{ ∑
(k,i)∈E

eα(Fm−1(xk)−Fm−1(xi))[
1 + eα(Fm−1(xk)−Fm−1(xi))

]2
−
∑

(i,j)∈E

eα(Fm−1(xi)−Fm−1(xj))[
1 + eα(Fm−1(xi)−Fm−1(xj))

]2
} (4.15)

Next,

ρm = arg min
ρ

1

|E|
∑

(i,j)∈E

1

1 + eα(Fm−1(xi)+ρf(xi;τm)−Fm−1(xj)−ρf(xj ;τm))
(4.16)

SCI is neither convex nor concave therefore a global minimum is not guaranteed. The

algorithm’s performance is dependent on initialization. The heuristic used was to set the
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initial estimation of {fo(xi)}ni=1 to the prediction from a fitted PH model and line search was

used to detect a local optimal for ρm. This framework is implemented as “gbmsci” [8] in R.

4.4 Ensemble Model

We will consider the scenario of both batch and non-batch effects.

As suggested by Laajala et al. [30], for our batch ensemble model, we train three models

separately using batch data available only for the EFC6546 study, only from the CELGENE

study, and the combination of both EFC6546 and CELGENE studies simultaneously.

The risk scores for each batch model j is base on a weighted combination of the individual

CoxPH, GBM, and GBMCI models.

Riskj = α1 ∗ CoxPH + α2 ∗GBM + α3 ∗GBMCI (4.17)

where
∑3

i=1 αi = 1 and αi ≥ 0.

For simplification, one standard set of weights were used for all three batch models. A fine

grid search was used over the combined EFC6546 and CELGENE dataset to find the optimal

weights and are given as:

α1 = 0.60, α2 = 0.20, α3 = 0.20

Our batch ensemble prognostic model weighs equally the three batch models to come up

with our final risk prediction.

Riskbatch =

∑3
j=1Riskj

3
(4.18)
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For our non-batch ensemble prognostic model, we consider both EFC6546 and CELGENE

data sets simultaneously.

Risknon−batch = α1 ∗ CoxPH + α2 ∗GBM + α3 ∗GBMCI (4.19)

where the αi weights are as given above in our batch model.
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Chapter 5

Experiment and Result

5.1 Introduction

In this section, we go over the method used to select a subset of the covariates to use for

model training and prediction. We further explain how hyperparameters were chosen for

the individual models. Finally we give background information of the experiment setup and

present the results.

5.2 Covariate Selection

Due to the large number of total clinical covariates available in the design matrix, a covariate

selection step is perform to reduced the number to a manageable size for actual model

training. Each covariate is model as a univariate survival problem using the CoxPH model

in R with the Surv package to calculate its c-index value. These concordance indices are

used to rank the covariates in descending order. The top 40 covariates are shown in Table

5.1. 40 is somewhat arbitrary as it represents a value we felt would prevent the model from

27



Rank Covariate c-index Rank Covariate c-index

1 LDH .654227 21 TARGET .541053
2 ALP .632614 22 PHOS .540026
3 HB .623218 23 CA .538559
4 HEMAT .622910 24 LIVER .536700
5 RBC .613883 25 CCRC .533530
6 AST .589591 26 MG .529337
7 PSA .587145 27 BONE .527648
8 ALB .573132 28 RegionEastEuro .526697
9 PULSE .571807 29 MHCARD .524862
10 NA. .558981 30 LYMPH NODES .524571
11 ECOG C .558148 31 MHGEN .523388
12 SYSTOLICBP .557846 32 RegionWestEuro .523202
13 ANALGESICS .557252 33 LUNGS .522093
14 DIASTOLICBP .555605 34 NEU .520842
15 LYMperLEU .555510 35 GLU .520204
16 BMI .549258 36 AGEGRP2 .520070
17 NEUperLEU .548435 37 MHVASC .519193
18 LYM .546818 38 GONADOTROPIN .518933
19 WEIGHTBL .544780 39 MHNEOPLA .518097
20 CREACL .543328 40 POT .517963

Table 5.1: Top 40 Ranked Covariates ranked in descending order of c-index

overfitting as well as what we believe is the cutoff ceiling for numbers of covariates that

would be useful to clinician in the field.

From these top 40 covariates, 10-fold cross validation was performed using the training data

and the non-batch ensemble model to further down select the number of covariates and

determine the optimal number. From Figure 5.1, the optimal model was found by using the

top 29 covariates.

5.3 Assessment of proportional hazard assumption

After obtaining the 29 covariates to be used, we perform two assessments to check for the

validity of the proportional hazard assumption. The first is a statistic test for the corre-
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Figure 5.1: Mean c-index of 10-fold cross validation as a function of number of covariates

lation between the Schoenfeld residual and ranked survival time. Schoenfeld residual can

be thought of as the observed minus the expected values of the covariates at each failure

time. Per [29], a correlation ρ of zero supports the proportional hazards assumption (the

null hypothesis). Table 5.2 clearly indicates all 29 covariates have correlation nearly zero.

The last row reported as ‘GLOBAL’ represented the entire model with all 29 covariates,

therefore a correlation value is inappropriate and shown as ‘NA’. In addition, the p-value

for all covariates are greater than 0.05 and therefore are statically insignificant, providing

further evidence in support of the proportional hazard assumption.

Aside from the statistical test, Grambsch and Therneau [18] provided a graphical means to

discern the validity of the proportional hazard assumption. An advantage of this graphical

approach is that it provides insight into the temporality and extent of non-proportionality

that otherwise is impossible to glean from a statistical test. Grambsch and Therneau showed

that these statistical tests are essentially a test of non-zero slope in the graph of Schoenfeld

residuals versus time. Figures 5.2 shows the scaled Schoenfeld residuals versus log time for

all the 29 covariates. We can see the solid line in each window is often close to being flat.

Also, the random pattern of the residual at each failure time indicates covariate effect is not

changing with respect to time, which is the definition of the proportional hazard assumption.
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Covariate ρ chi-sq p-value

LDH -3.14E-02 5.10E-01 .475
ALP 5.24E-02 1.46E+00 .226
HB 8.63E-03 4.19E-02 .838
HEMAT -2.67E-02 3.83E-01 .536
RBC 5.12E-02 1.58E+00 .208
AST -2.41E-02 3.57E-01 .550
PSA 4.26E-02 1.12E+00 .290
ALB 4.04E-02 9.65E-01 .326
PULSE 7.24E-02 2.22E+00 .136
NA. -1.42E-03 1.40E-03 .970
ECOG C 1.36E-02 1.13E-01 .737
SYSTOLICBP 2.08E-03 1.13E-01 .960
ANALGESICS -2.20E-02 2.86E-01 .593
DIASTOLICBP -.13E-05 4.62E-06 .998
LYMperLEU -4.12E-02 9.79E-01 .322
BMI 1.074E-02 6.11E-02 .805
NEUperLEU -4.53E-02 1.21E+00 .271
LYM -4.02E-02 9.11E-01 .340
WEIGHTBL -2.39E-02 3.14E-01 .575
CREACL -3.35E-03 6.08E-03 .938
TARGET -2.87E-02 4.54E-01 .501
PHOS 7.88E-03 2.95E-02 .864
CA -2.68E-02 4.48E-01 .503
LIVER -2.81E-02 4.19E-01 .517
CCRC 8.41E-03 3.98E-02 .842
MG -6.76E-03 2.32E-02 .879
BONE -5.21E-02 1.46E+00 .228
RegionEastEuro -3.86E-02 8.21E-01 .365
MHCARD -1.82E-02 1.87E-01 .665
GLOBAL NA 1.83E+01 .939

Table 5.2: Statistical test for proportional hazard assumption
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5.4 Experimental Setting

The hyperparameters of the models are determined as follows. For the CoxPH model, the

Efron approximation is used for tied death times as it is more accurate and computationally

more efficient [43]. For GBM, number of trees is 1500, tree depth is 5, bag fraction is .8, and

shrinkage is .002. For GBMCI, number of trees is 2000, tree depth is 2, bag fraction is .8, and

shrinkage is 1. Initial hyperparameter settings for GBM and GBMCI were based on [9] and

fine tuned for this data set. Risk prediction from our ensemble models are then submitted

to the DREAM Challenge website for scoring, where a random subset of the predictions are

used to calculate the score c-index and iAUC to prevent overfitting.

The non-batch ensemble model is denoted “CBCL”. The batch ensemble model is denoted

“CBCL-Batch”. All simulation was carried out with the R System for Statistical Computing

(version 3.2.1, [36]).

5.5 Results

We evaluate our models against one baseline model and the top five performing models of

the DREAM Challenge described in Sections 3.2 through 3.7. All five top performing models

from the DREAM Challenge outperformed the baseline model handily.

Each model is tested using the 313 patients from the final scoring round, with the results

for the comparative models taken directly from the published DREAM Challenge’s final

result webpage (available online at https://www.synapse.org/#!Synapse:syn2813558/

wiki/232674). Results of our model are shown in Table 5.3. As the random subsampling

of the predictions used to evaluate the scores is hidden from participants, it is impossible to

know which prediction was correct and which were not.
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Method c-index AUC(12month) AUC(18month) AUC(24month) iAUC
CBCL-Batch .7337 .8082 .7715 .7874 .7710

CBCL .7321 .7961 .7734 .7796 .7696
Laajala et al. .7307 .7918 .7674 .8388 .7915

Xiao et al. .7263 .7708 .7663 .8147 .7789
Song and Wang .7157 .7492 .7645 .8369 .7778

Wolfinger and Chu .7212 .7713 .7553 .8085 .7758
Greiner et al. .7205 .7577 .7620 .8258 .7743

Halabi (baseline) .6989 .7418 .7375 .7634 .7429

Table 5.3: Result comparison with the state-of-the-art models from DREAM Challenge.

5.6 Discussion

As can be seen from Table 5.3, our ensemble models out performs the previous generation of

models for c-index, AUC at 12 months, and AUC at 18 months. The top performing model

from the DREAM Challenge, Laajala et al., remains the best performer under AUC at 24

month and iAUC.

In terms of the c-index performance measure, even without considering batch effect, our

ensemble framework offers a 4.75% improvement over baseline and .20% improvement over

the top performing model of the DREAM Challenge. When considering batch effect, the

performance improves to 5.04% and .41% over the baseline and top performing model respec-

tively. As our model is the only one that took advantage of direct optimization of the c-index

loss function, this result is not at all surprising. This shows that our ensemble framework

generally performed well in terms of relative ranking of patient.

The time dependent AUC scores at 12 and 18 months are scored highest by our batch and

non-batch model respectively. The risk predictions from our ensemble models at these time

specific date are based on our global risk prediction. By using the proportional hazard

assumption, we assume the relative risk would remain the same irrespective of time and thus

the concordance between patients would be the same at all time points. This assumption

seems to be supported by the results at 12 and 18 months.

32



With regard to the AUC at 24 months and iAUC, the Laajala et al. model continues to

perform best. This was rather surprising as we had expected our model to perform better

given that we had better results under c-index and the clear relationship between c-index

and time dependent AUC under a certain formulation as shown in subsection 2.4.3.

Since we are not provided access to the ground truth data, we will compare our prediction

to those of Laajala et al.’s to further gauge insight into this surprising result. A plot of

our CBCL-batch model’s normalized prediction vs Laajala’s normalized prediction is shown

in Figure 5.3. The Pearson correlation is calculated as r = .5171. It is evident there is a

moderate linear correlation between the predictions of these two models from the Pearson

correlation. Whereas Laajala’s predictions tend to be spread across the normalized range

evenly, our batch model’s predictions are mostly concentrated at the lower end with few

outliers towards the middle and top end of the range.

Since ranking and concordance are invariant to affine transformation, the Spearman cor-

relation may better offer insight into the result discrepancy. The Spearman correlation is

calculated as rs = .7799. The Spearman correlation, which looks at the monotonic relation-

ship between the two predictions, shows that we have concordance at about 78% of the sets.

This provides strong evidence why the result of c-index and iAUC between our batch model

and Laajala et al.’s model are close to each other.

From the formulation of cumulative/dynamic iAUC and incident/dynamic c-index in Section

2.4, it is clear that AUC and iAUC scores would be higher than c-index as the cumulative

TPR considers all patients to be cases when t ≥ Ti instead of only when t = Ti as with

incident TPR. We believe our batch model scoring highest on the c-index measure implies

our model achieved the most accurate concordance ranking with respect to the ground truths.

As Heagerty [25] pointed out, cumulative/dynamic accuracy summaries are appropriate when

a specific time t is important, that is discriminating between subjects who die prior to a given

time t and those that survive beyond time t. Figure 5.3 shows our predictions tend to be
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concentrated at the low end of the normalized risk scale. We hypothesize this concentration

leads to more patients being mis-classified as cases earlier than what the ground truth would

dictate. This hypothesis is supported by the results from Table 5.3 where CBCL-Batch

scores highest at c-index (essentially at time 0 month) and 12 month on the AUC measure.

Then at 18 month, it is overtaken by the CBCL model and ultimately by the Laajala et al.

model at 24 month and iAUC (which measured the integrated AUC from 6 to 30 months).

5.7 Conclusion

We presented an ensemble prognostic model for the task of predicting risk for mCRPC pa-

tients. This was achieved by combining a Cox proportional hazard model, gradient boosting

machine, and gradient boosting machine with direct c-index optimization. We demonstrated

that our model outperformed all current mCRPC prognostic models on the c-index perfor-

mance measure as well as AUC at 12 and 18 month, and performed competitively on the

AUC at 24 month and iAUC measures.
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Figure 5.2: Scaled Schoenfeld residual vs log survival time

35



Figure 5.2: Scaled Schoenfeld residual vs log survival time (con’t)
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Figure 5.2: Scaled Schoenfeld residual vs log survival time (con’t)

Figure 5.3: Comparison between normalized predictions from CBCL-Batch and Lajaala et
al. models
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Chapter 6

Conclusion

This thesis proposed an ensemble prognostic model to predict risk for mCRPC patients

treated with docetaxel. Our approach outperformed the baseline and current state-of-the-

art models on the c-index metric and AUC at 12 and 18 month, and is competitive on

the iAUC metric and AUC at 24 month. This chapter summarizes our contributions and

suggests future directions for the ideas presented in this thesis.

6.1 Summary of Contribution

We utilized the concept of ensemble methods to synthesize a prognostic model for mCRPC

risk prediction. Starting with the simple Cox Proportional Hazard model, we improved on

it by incorporating gradient boosting machine and a variant of gradient boosting machine

that directly optimizes a smooth approximation of the c-index loss function. As c-index is

one of the most common metrics for assessing discriminatory power of prognostic models,

it naturally made sense to incorporate c-index as a loss function over which our model was

optimized. This allowed our ensemble model to beat the current state-of-the-art mCRPC
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prognostic models under the c-index measure and AUC at 12 and 18 month, while performing

competitively on the iAUC measure and AUC at 24 month.

6.2 Future Work

With the current framework performing as well as it is, there is still room for additional

improvement to pursue in the future. One of the major areas where we can improve on is

the covariate selection step. While the proposed method used in this thesis has the desirable

characteristic of automatic covariate selection, it only considers one individual covariate at

a time, thus neglecting any potential confounding factors. In the paper by Mayr et al.

[34], they proposed a boosting framework to estimate the optimal set of covariates that

maximizes a smooth approximation of the c-index. Essentially they minimize the empirical

risk by using gradient descent in the function space where the function space is spanned by

weak-learners, of which each weak learner is a simple linear model containing one possible

covariate. The final ensemble learner effectively constitutes an optimal combination of these

covariates. By incorporating this method into the covariate selection step, we can extend

our model to encompass an end-to-end framework based on c-index optimization and really

aim to improve over the state-of-the-art models on the c-index performance metric.

Another possible direction is to optimize the prognostic model for cumulative/dynamic AUC

directly which has not been explored. Zou et al. [49] proposed an incident/dynamic AUC

optimization framework by posing the survival time prediction problem as a binary classifi-

cation problem. They used a non-parametric estimation of the incident/dynamic AUC and

further formulated the constraints into a linear programming problem, of which is solvable

by any of the many existing efficient algorithms. As the definition of cumulative/dynamic

AUC is quite similar to incident/dynamic AUC, it seems plausible that an extension can

be made to Zou et al.’s framework to directly optimize a non-parametric estimation of
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cumulative/dynamic AUC. If this is possible, this framework could theoretically offer im-

provement over existing models on the iAUC performance metric.
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