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ABSTRACT 

Eigenstrain is a distributed strain field considered in mechanics that is particularly helpful in 
evaluating residual stress fields in the finite element method, and estimating the stress intensity 
factor due to residual stress in cracked components. The objective of this paper is to provide a 
solution for a simple eigenstrain problem in a two-dimensional rectangular domain that can serve 
as a benchmark for validation of fracture mechanics analysis methods. The solution provides 
residual stress fields and the stress intensity factor for a single edge crack as a function of crack 
size. Documenting the benchmark provides opportunities to demonstrate the correlation of 
different means to determine the stress intensity factor and to highlight details in implementing 
stress intensity factor calculations. 

Keywords: Eigenstrain, residual stress, finite element analysis, stress intensity factor, weight 
function 

1. INTRODUCTION 

Residual stresses are known to have an important influence on fatigue life [1]. Significant 

research efforts have been devoted to prediction of residual stresses from processes that enhance 

fatigue performance of materials by introducing compressive residual stresses [2–4]. One of the 

leading methods to analyze residual stresses is the eigenstrain method [5], which reconstructs the 

complete residual stress field based on an elastic finite element analysis that includes the initial 

permanent strain (i.e., the eigenstrain field) causing the residual stress. The eigenstrain field is 

determined using process modeling or experimental measurements. Because fatigue failure 
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comprises the initiation and propagation of cracks, the stress intensity factor of fracture 

mechanics (and the related J-integral) is important in fatigue life prediction.  

Calculation of the stress intensity factor is a conventional technology, but care is required 

when assessing the combined effects of applied loads and residual stresses. Stress intensity 

factors for applied loads are typically computed using available handbook solutions for simple 

cases, or using finite element or boundary element methods for complex cases. For residual 

stresses, stress intensity factors can be determined using the weight function method for simple 

cases, or the more general finite element or boundary element methods for complex cases. The 

principle of superposition is typically used to combine the effects of residual stresses and cyclic 

applied loads when assessing fatigue and fracture behavior. 

1.1 The eigenstrain method 

The term eigenstrain was initially suggested by Mura [6], and eigenstrain methods have 

been discussed by several authors in the context of assessing residual stress fields. According to 

DeWald and Hill [7], eigenstrain can be considered an inelastic strain distribution that causes a 

given residual stress field. It is an incompatible strain field that does not satisfy geometric 

(strain) compatibility, and leads to a total strain field that satisfies mechanical equilibrium 

through an induced residual stress field. A previous study demonstrates the use of eigenstrain 

methods to simplify the estimation of stress fields from compressive residual stress surface 

treatments [7,8]. In that work, a simplified eigenstrain field was determined from limited residual 

stress measurement data, and finite element models where used to determine the full residual 

stress field from the eigenstrain. Coratella et al. [9] provide a recent validation of that earlier 

work in aerospace aluminum alloy (7050-T7451) samples with residual stresses from laser shock 

peening (LSP). Luckhood, Jun, and Korsunsky [10] have used the eigenstrain method to analyze 
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residual stresses measured in friction stir welds. Kartal et al. [11] illustrate the use of eigenstrain 

for determination of microscale residual stresses near an inclusion in a nickel alloy. A closely 

related approach is to use non-linear process models, rather than measurements, to approximate 

the eigenstrain field produced by a given process. For example, Achintha and Nowell [12], and 

Hu and Grandhi [13], have used non-linear (finite element) process models for LSP to determine 

the stabilized plastic strain fields imparted by LSP in simple geometries, and then used the 

plastic strain fields as input to an eigenstrain analysis to predict residual stress fields from LSP in 

parts with complex geometry. While the process models are time-consuming, and the residual 

stress fields they determine are specific to the geometry assessed in the process model, the 

eigenstrain analysis is linear, which allows complex geometries and large parts to be assessed 

rapidly. While the literature has a number of publications describing eigenstrain methods, there 

is a lack of published work on the use of eigenstrain analysis to assess the role of residual stress 

in fracture mechanics calculations.  

1.2 The weight function method 

Stress intensity factors for residual stresses and applied loads are determined using the 

principles of solid mechanics. The weight function method is a powerful technique that allows 

the stress intensity factor in a specific geometry to be found for a known, but arbitrary, stress 

distribution acting to open (considering Mode I) the crack. The weight function method has been 

discussed extensively in the literature, having been initially envisioned by Bueckner [14] and 

summarized in the more recent book by Wu and Carlsson [15]. There are analytical weight 

function expressions available that allow for stress intensity factor determinations in a variety of 

simple geometries (such as panels with center or edge cracks, and cracks at holes). The initial 

work by Bueckner [14], and subsequent works by Rice [16], Paris et al [17], and Parker and 
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Bowie [18] show that the stress intensity factor due to an arbitrary loading can be determined by 

an integration over the crack length of the product of the weight function and the stress field 

acting to open the crack. The method applies whether the stress field is due to applied loads, 

residual stress, or their combination. Considering an edge crack, the stress intensity factor K as a 

function of crack length a is found from 

𝐾(𝑎) =  𝜎 𝑥 𝑚 𝑎, 𝑥 𝑑𝑥
!

!
 (1) 

where x is a coordinate along the crack line, with origin at the crack mouth, σ(x) is the stress 

acting at the crack line, and m(a, x) is a weight function.  

Several authors have published weight functions that enable stress intensity factor 

calculations for a range of geometry and crack type. Wu and Carlsson [15] provided weight 

functions for several one-dimensional (edge or middle) crack configurations in two-dimensional 

bodies, and offer valuable supporting technical background regarding weight function methods. 

Shen and Glinka [19] studied weight functions for stress intensity factor calculations in surface 

semi-elliptical cracks in finite thickness plates. They validated their expressions against stress 

intensity factors determined using finite element methods, assuming bending (linear), quadratic, 

and cubic variations of stress with depth from the plate surface. The validations showed that the 

weight function provided reasonable stress intensity factor accuracy for the various stress fields, 

with differences from finite element results of less than 5% for a range of crack depths 

(0 ≤ 𝑎/𝑡 ≤ 0.8) and crack aspect ratio (0.2 ≤ 𝑎/𝑐 ≤ 1), where a is the crack depth, t is the plate 

thickness, and 2c is the crack surface length. Zheng et al. [20] did similar work, developing 

weight functions for surface semi-elliptical cracks on the inner diameter of a thick-walled 

cylinder, and validating their results against stress intensity factors from finite element data.  
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The objective of this paper is to provide a benchmark solution including the residual 

stress and the stress intensity factor for an edge cracked plate containing a known eigenstrain 

field. The solution uses the finite element method, and assumes two-dimensional plane stress. 

The given eigenstrain field is imposed using an isotropic thermal strain, and crack propagation is 

simulated by releasing nodes along the crack line. A second finite element model is developed 

using the principle of superposition of crack face tractions to demonstrate its validity and 

equivalence for the stress intensity factor calculation. In addition, we assess the performance of 

the weight function method for the numerical calculation of the stress intensity factor in this 

particular scenario relative to the results from the finite element method. The reference solution 

here should serve as a useful reference point when validating fracture mechanics calculations for 

residual stress bearing bodies. 

2. METHODS 

2.1 Problem description 

We consider the geometry and loading in Figure 1a. The problem domain consists of a 

thin plate in two-dimensional space, having width W = 1 and height H = 2W. A central square 

area of side 0.5W contains a known equibiaxial eigenstrain field ε*, given by 

𝜀∗ =  
𝜀∗!!
𝜀∗!!
𝜀∗!"

=   
0.001
0.001
0.000

 (2) 

where the asterisk denotes an eigenstrain field, as suggested by Mura [6]. This field is a 

simplification of one described in earlier work [21] that was induced by applying LSP to a thin 

plate, in a small square region. Measurements of residual stress, and interesting results of fatigue 

and fracture tests presented in [22] provided motivation for using this eigenstrain field in the 

present work. The coordinate system shown in Figure 1a has its origin at the left edge of the 
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plate at mid height. The plate has an edge crack of size a. The key elements of the problem are to 

find the stress in the uncracked plate, and then to determine the stress intensity factor (SIF) for 

cracks of size a/W ≤ 0.9.  

2.2 Problem solution by a finite element model 

Finite element simulations are carried out using a commercial code [23]. The eigenstrain 

field is applied through the use of an isotropic thermal strain. Only half the structure was 

modeled using one symmetry boundary condition because the geometry and loading are 

symmetric. The right lower corner node was constrained in the x direction to prevent rigid body 

motion. The half model with the boundary conditions and the area of application of the 

eigenstrain field is shown in Figure 1b. Two different materials (with the same elastic properties, 

but different thermal expansion coefficients) were used in the model to apply the eigenstrain 

field. A material having thermal expansion coefficients equal to zero is defined for the plate, 

excluding the square area that contains the eigenstrain field. The material in the central square 

area has thermal expansion coefficients equivalent to the eigenstrain of Eq. (2). Both materials 

are elastic with modulus of elasticity E = 1, and Poisson ratio 0.3. A unit temperature increase in 

the whole model results in the appropriate eigenstrain field. The edge crack was introduced by 

changing the nodes restrained on the crack plane, with nodes unrestrained for x < a and 

restrained for x ≥ a. The SIF is determined by the commercial code using the domain integral 

technique, which is described below. 

The J-integral is a well-accepted fracture mechanics parameter related to the energy 

release associated with crack growth. It is a measure of the intensity of deformation at a notch or 

crack tip, and it is related to the stress intensity factors if the material response is linear [24]. As 
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described in the commercial code documentation, the J-integral is defined in two dimensions (in 

the context of quasi-static analysis) as 

J =  lim
!→!

𝒏 ∙𝑯 ∙ 𝒒𝑑𝛤,
!

 (3) 

where Γ is a contour beginning on the bottom crack surface and ending on the top surface, as 

shown in Figure 2a. The vector q is a unit vector in the virtual crack extension direction, and n is 

the outward normal to Γ. H is a second order tensor given (in index notation) by 

𝐻!" = 𝑈𝛿!" −  𝜎!"
𝜕𝑢!
𝜕𝑥!

 (4) 

where U is the elastic strain energy density for elastic materials (for elastic-plastic or elastic 

viscoplastic material behavior, U is defined as the elastic strain energy density plus the plastic 

dissipation), δij is the Kronecker-delta, σ is the stress tensor, and u is the displacement vector. 

Using the divergence theorem, the contour (line) integral can be converted into a domain (area) 

integral, given by 

𝐽 =  −  
𝜕
𝜕𝒙 ∙ 𝑯 ∙ 𝒒 𝑑𝛤

!
−  𝒕 ∙  

𝜕𝒖
𝜕𝒙!!!!!

 ∙  𝒒𝑑𝛤 (5) 

where t = m . 𝝈  is the surface traction on the crack surfaces C+ and C-, m is the outward normal 

to the domain enclosed by the closed contour C + C+ + Γ + C-, and 𝒒 is a sufficiently smooth 

weighting function within the region enclosed by the same closed contour. These parameters are 

shown in Figure 2b. The domains are defined in the commercial code as rings/layers of elements 

surrounding the crack tip. The first domain consists of elements directly connected to the crack-

tip nodes. The subsequent domain adds the ring of elements that share nodes with the elements 

from the first domain. Following this scheme, each subsequent domain includes the prior domain 
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and the next ring of elements that share nodes with the elements in the previous domain. 

Typically, the J-integral is evaluated on a number of domains, and valid results are independent 

of domain except for very small domains, which are prone to error, or large domains that may be 

influenced by far field boundaries [24]. 

The stress intensity factors KI, KII, and KIII are related to the J-integral through 

𝐽 =  
1
8𝜋𝑲

𝑻 ∙  𝑩!! ∙𝑲 (6) 

where K = [KI  KII KIII]T are the stress intensity factors and B is a pre-logarithmic energy factor 

matrix. This equation is simplified for homogeneous isotropic materials, and becomes 

𝐽 =  
1
𝐸

 𝐾!! +  𝐾!!! +  
1
2𝐺 𝐾!!!

! (7) 

where 𝐸 = 𝐸 for plane stress and 𝐸 = 𝐸/(1− 𝑣!) for plane strain. In this model, the SIF (KI) 

was determined as an output of the commercial code, being calculated through the use of the 

domain integral.  

It is important to recognize that previous research has shown that the presence of residual 

stresses and eigenstrain in a body can lead to erroneous path dependence of the domain integral 

[25]. In this case, further care is needed to determine a single value of J from the results obtained 

on various domains (e.g., often ad hoc schemes). Lei et al. [26] presented a methodology to 

provide domain-independent values of the domain integral in two-dimensional bodies with the 

presence of residual stresses. This methodology was further extended to three-dimensional 

modeling by Meith and Hill [27]. In the current work, the domain integral was computed using 

the built-in capabilities of the commercial code [23], and the domain dependence of the SIF was 

explored by computing the domain integral of 15 domains. 
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The finite element mesh had two-dimensional, eight-node biquadratic, plane stress 

quadrilateral elements. The elements at the crack line were square and uniform, with side length 

equal to 0.0025W, which provided a highly refined mesh along the crack line. This degree of 

mesh refinement was sufficient to ensure that values of the SIF were converged to better than 

0.5%. A first step in the analysis determined the stress field in the uncracked body. In subsequent 

steps, 72 crack sizes were studied, starting from a/W = 0.0125 and increasing in increments of 

0.0125 up to a/W = 0.9. The crack sizes a/W = 0.25 and a/W = 0.75 have the crack tip exactly on 

the interface between different materials. 

2.3 Superposition principle 

For linear elastic materials, the stress intensity factors are additive for the same mode of 

loading [28], on account of the principle of superposition. This principle can be useful for 

calculating stress intensity factors for complex configurations, since the solution can be built by 

superposing simple cases for which solutions might be available and well established in the 

literature. For the particular problem in this study, the principle of superposition can be used to 

confirm the results obtained from the finite element model with the eigenstrain input. One way of 

applying this principle to the current problem is shown in Figure 3, which is similar to figures in 

the early literature on fracture mechanics [14,17]. Figure 3a shows the plate with the eigenstrain 

field, but with no crack. The stress intensity factor for this case is readily known to be zero. 

Figure 3b shows the configuration described in section 2.1, containing the eigenstrain field and 

an edge crack. In the uncracked body, the eigenstrain causes a normal stress field, σyy at the 

crack line (y = 0). If this resulting stress profile is applied at the crack line in the configuration 

shown in Figure 3c, then the stress intensity factor will be the same as in the eigenstrain bearing 

body, according to the principle of superposition. In other words, applying the stress profile from 
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configuration (a) at the crack faces in configuration (c) has the same effect as applying the 

eigenstrain field for the stress intensity factor calculation. A finite element model for the 

configuration in Figure 3c was created using the same mesh used for the eigenstrain model, but 

using no thermal strain. The stress profile was applied at the crack faces as a distributed pressure, 

and the resulting stress intensity factor was evaluated for the range of crack sizes. This allows 

verification of the stress intensity factor calculations for cases of distributed strain and crack face 

tractions, both of which require special techniques for domain integral calculations [29]. 

2.4 The weight function method for stress intensity factor calculation 

The weight function method described by Wu and Carlsson [15] was used to calculate the 

stress intensity factor for the geometry and loading considered in this paper. This method has a 

remarkable computational efficiency without compromising solution accuracy. One of the inputs 

to the weight function method is the stress field along the crack line in the uncracked plate. This 

stress field is obtained from the finite element model of the uncracked body. The other input 

required is the crack size of interest. 

The weight function corresponds to a single edge crack in a finite width plate, as shown 

in Figure 4. We use the expression from Wu and Carlsson [30] 

𝑚 𝑎, 𝑥 =  
1
2𝜋𝑎

𝛽! 𝑎
!

!!!

. (1−
𝑥
𝑎)

!!!! (8) 

which is a function of the crack size a, and the coordinate along the crack line x. The parameters 

βi (i = 1,2,3,4,5) are functions of the normalized crack size, a/W, and Table 1 provides summary 

values of βi for a range of crack size, which were computed according to [30]. 

The stress intensity factor for an arbitrary crack face loading is calculated using Eq. (1). 

From the finite element model, the crack line stress at the nodes is available as a set of data 
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points. For a desired crack size, the weight function can be determined (using Eq. (8)) as a 

function of the coordinate x, given the values of βi. The SIF for the desired crack size is then 

determined by numerical integration using adaptive Gauss-Kronrod quadrature [31]. The 

quadrature is useful given the expected discontinuous behavior of the stress field along the crack 

line in the uncracked body, and the singularity of m(x,a) as x approaches a. 

 

3. RESULTS 

3.1 Results from the eigenstrain FE model 

The stress profile along the crack line (y = 0) from the eigenstrain model of the uncracked 

body is shown in Figure 5. This stress profile serves as an input for the calculation of the stress 

intensity factor using the weight function method, along with the desired crack sizes. The same 

stress profile was also used in the equivalent finite element model of Figure 3c, as a traction field 

applied to the crack face.  

Stress intensity factor results from the eigenstrain model for representative crack sizes are 

shown in Figure 6 as a function of the domain size. The stress intensity factor values are 

normalized by S W0.5, where S = 0.001E (where 0.001 is the maximum value of the eigenstrain 

field), which scales the stress field. The normalized stress intensity factor is expected to reach a 

plateau with domain size when the domain integral calculation is correct, so that the SIF is 

domain independent. Figure 6 shows the results for crack sizes in the plate material up to a/W = 

0.25 (first discontinuity) and one crack size in the eigenstrain area, a/W = 0.275. For a crack size 

of a/W = 0.1, the SIF is domain independent, and a useful SIF is determined. For a/W = 0.25, the 

crack tip is at the eigenstrain discontinuity, the SIF is domain dependent, and the values are not 

useful. For this crack size, the contour integral domain always includes the discontinuity. For the 
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crack sizes close to the discontinuity (a/W = 0.225 and 0.275), the SIF is domain independent 

until the domain includes the discontinuity. The same trend was observed for longer crack sizes, 

near the second discontinuity (a/W ≈ 0.75).  

The normalized SIF as a function of a/W for the eigenstrain FE model is shown in Figure 

7 (along with the results from the weight function and the equivalent FE model (Figure 3c) that 

are discussed below). The dashed line is broken around the discontinuity points (a/W = 0.25 and 

0.75) because of the lack of data due to the domain dependence of the SIF. The SIF increases 

monotonically up to a crack size of a/W = 0.25, which corresponds to the first discontinuity in 

the stress profile. After the discontinuity, the normalized SIF decreases monotonically until the 

crack reaches the second discontinuity in the stress field. After this point, the normalized SIF 

increases and approaches zero as a/W approaches unity. The characteristics of the SIF trend with 

crack size are reasonable given the mathematical (integral) relationship between the SIF and the 

stress field (Eq. (1)). 

3.2 Results from the equivalent FE model 

Stress intensity factor results versus domain size from the equivalent FE model (Figure 

3c) are shown in Figure 8 for the same crack sizes as in Figure 6 for the eigenstrain model. The 

SIF values for the equivalent model are domain independent for all crack sizes.  

The normalized SIF as a function of crack size obtained from the equivalent FE model is 

compared to the SIF from the eigenstrain FE model in Figure 7. The results from both FE models 

have a very good agreement for all crack sizes, which demonstrates the validity of superposition. 

The equivalent model provides good SIF values at all crack sizes, particularly near the 

discontinuity. 

3.3 Results from the weight function method 
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The SIF calculated from the weight function method as a function of crack size is shown 

with results from the finite element models in Figure 7. The weight function and finite element 

results are very similar, having discontinuities in slope at the same points as the stress profile 

discontinuities (a/W = 0.25 and 0.75). For longer crack sizes, a/W > 0.7, the difference between 

the SIF from the FE models and the weight function increases significantly. Figure 9 shows the 

relative difference of the SIF results from the equivalent model and weight function relative to 

the eigenstrain model results (benchmark FE model). This model represents the benchmark since 

the stress resultant from this model is used as an input in the equivalent model and also the 

weight function approach. The relative difference between the weight function and eigenstrain 

FE model is very small up to a/W = 0.25, and increases after each discontinuity point, but 

remains under 2% for a/W < 0.7 and is less than 4.2% for the whole range of crack size. Errors in 

the weight function SIF values are larger for large cracks (a/W > 0.75), and this is discussed 

below. 

  

4. DISCUSSION 

According to release notes for the commercial code [32], as of 2011 the code includes the 

effect of residual stress fields in contour integral evaluation, so as to provide domain independent 

contour integral values. However, as illustrated here, the software does not provide domain 

independent values of the SIF when the domain includes a discontinuity in material property 

(i.e., thermal expansion coefficients). An alternative way to model the current eigenstrain 

problem is by using continuous material properties throughout the whole rectangular domain 

(i.e., single material with appropriate thermal expansion coefficients), but discontinuous 

temperature (i.e., T = 1 in the area of non-zero eigenstrain, T = 0 elsewhere). This provides 
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nearly the same eigenstrain distribution (excepting a small effect that arises because a sharp 

discontinuity in temperature cannot be expressed exactly, since nodal temperature gradients are 

limited by node spacing). This alternate eigenstrain model was evaluated using the same mesh 

and crack sizes as before, and domain independent values of the SIF were observed for all crack 

sizes. The results are shown in Figure 10, and agree with the previous results obtained from the 

eigenstrain FE model and the equivalent FE model. When the crack tip is at the first 

discontinuity, a/W = 0.25, the new SIF is somewhat lower than the value obtained from the 

equivalent model, but when the crack tip is at the second discontinuity, a/W = 0.75, the two 

models give nearly identical results. The difference in SIF for two identical eigenstrain fields, 

one with spatially varying temperature and the other with spatially varying thermal expansion 

coefficient, is unexpected (and undocumented) and potentially problematic for a typical user. 

The discontinuities in the stress field at x/W = 0.25 and 0.75 in Figure 5 were expected 

because of the discontinuities in the eigenstrain input. The applied eigenstrain field produces 

compressive residual stresses in the central square area. Outside this area, tensile stresses 

develop to provide for mechanical equilibrium. This is a result from the deformation of the 

surrounding material to accommodate the eigenstrain. It is important to recognize that the stress 

field shown in Figure 5 is the total residual stress (σTOT), which can be considered as a 

superposition of the stress due to the eigenstrain only (σ*), and the residual stress arising to 

satisfy equilibrium (σEQ) [7]. This relationship can be expressed as 

𝜎!"! =  𝜎∗ +  𝜎!" (9) 

The stress σ* can be calculated using the stress-strain relationship 𝜎∗ = −𝐸𝜀∗. Figure 11 shows 

the yy component of stress separated using Eq. (9). The stress from eigenstrain σ* is zero outside 

the central square area, and constant inside it, due to the discontinuous behavior of the 
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eigenstrain. The stress arising to satisfy equilibrium (σEQ) is continuous and nearly constant with 

position across the plate. The concept of the superposition of the stress is very useful when 

deriving eigenstrains from a particular residual stress distribution, as discussed by DeWald and 

Hill [7]. 

It is interesting to discuss the choice of the configurations in Figure 3 used for the 

principle of superposition. Anderson [28] shows an example of a semielliptical surface crack 

under constant internal pressure p. For that case, it is shown that having p acting on the crack 

face is equivalent (with respect to the SIF) to having p acting on the boundary, according to the 

superposition principle. In other words, crack-face tractions can be replaced by boundary 

tractions, and vice versa, such that the SIF stays the same. However, it is important to recognize 

that this is true for a constant stress, but not for a more complex stress profile. In this paper, the 

stress profile generated at the crack line due to the eigenstrain field is a self-equilibrating stress, 

and its resultant is zero (i.e., integrating the stress on the cross section results in zero). Because 

of this, crack face tractions are used in Figure 3c, instead of applying the tractions at the 

boundary. If boundary tractions were used, the stress at the crack line would be close to zero, 

according to St Venant’s principle, and the SIF would also be nearly zero. To further consider 

this issue, consider the rectangular domain of Figure 1b with a discontinuous boundary traction 

at the top (y = 1) that has a value of 0.001E for x < 0.1W, and 0 for x ≥0.1W. Figure 12 shows 

the applied boundary traction, along with the resulting stress at the crack line obtained from a 

finite element model. Both stress profiles provide the same resultant force, but are fundamentally 

different. Introducing an edge crack of size a/W = 0.1 and calculating the normalized SIF (in the 

same manner as described before) results in 2.2729E-01. Working the contrary problem, 

applying the same discontinuous traction on the crack face, and then computing the normalized 
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SIF results in 6.5597E-01. The difference between the two SIFs is very large, about 65%, which 

reinforces the notion that crack line stresses must be used to produce accurate SIF results.  

The weight function method is known to become unstable for long cracks, and this 

becomes clear for normalized crack sizes greater than 0.75 in Figure 7 where the error in stress 

intensity factor increases. Wu and Carlsson [30] show the stress intensity factor results for a 

rectangular plate with a self-equilibrating fourth power stress at the crack line, and the accuracy 

is estimated to be better than 1% for a/W < 0.6. For a bending stress distribution and parabolic 

stress distribution, the accuracy was estimated to be better than 1% for a/W < 0.8. For a plate 

subjected to residual stress due to plastic bending at limit load, the accuracy was 1% up to a/W < 

0.5. But, for all of these examples, the accuracy is not reported for longer cracks, and clearly the 

accuracy of the stress intensity factor depends on the specific crack-face traction distribution.  

The calculation of the SIF using the weight function method requires some care and 

attention to detail. The integration method used to solve Eq. (1) has a significant influence on the 

results, and needs to be selected based on the behavior of the stress and weight function fields 

along the crack line. Another important aspect to consider is the number of significant figures in 

the stress profile. The results from the weight function shown in Figure 7 were obtained using 

the input stress profile with full machine (15 digits) precision. Figure 13 shows the results of the 

weight function method using only six significant figures for the stress profile. It is clear that the 

results for long crack sizes are highly affected by the precision of the input stress profile, and 

effort should always be devoted to extract the highest number of significant figures available 

from the finite element model results.  

The results in Figure 9 are worth further discussing. The relative difference in SIF 

between the equivalent model and the eigenstrain model is seen to be very small for the whole 
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range of crack sizes, which confirmed the principle of superposition. For the weight function, the 

results up to the first discontinuity point in the stress field (a/W = 0.25) agree very well with the 

results from the eigenstrain model, and the absolute value of the relative difference remains 

under 0.1%. After the first discontinuity point, this relative difference experiences a quick 

increase, and varies around 1%. It further increases after the second discontinuity point (a/W = 

0.75), and reaches an absolute maximum of 4.2% at a/W = 0.9. It is important to point out that 

the weight function used in this paper was derived based on the assumption that the crack face 

displacement in plane stress can be represented by 

𝑢! 𝑎, 𝑥 =  
𝜎𝑎/𝑊 1− 𝑥/𝑎

2 𝐸
 𝐹!(𝑎/𝑊)(1−

𝑥
𝑎)

!!!
!

!!!

 (10) 

where Fj(a/W) are functions of crack size that are determined by combinations of conditions on 

the crack behavior that depend on the type of crack (see [30]). The crack face displacement can 

be extracted from the eigenstrain FE model for selected crack sizes. Parker [33] showed that the 

crack face profile can also be calculated through an integration of the product of the weight 

function and the SIF, given by 

𝑢! 𝑎, 𝑥 =  
1
𝐸

𝑚(𝛼, 𝑥) ∙ 𝐾 𝛼 𝑑𝛼
!

!
 (11) 

Comparing the crack face displacement profile obtained from the eigenstrain FE model and 

calculated using Eq. (11) is useful to evaluate the ability of the weight function to accurately 

predict crack face displacement in a discontinuous residual stress field. To illustrate, the crack 

face displacement was extracted from the eigenstrain FE model for two selected crack sizes (a/W 

= 0.25 and 0.60), and Eq. (11) was used to numerically calculate the displacement using Gauss-

Kronrod quadrature [31]. The two crack sizes represent short and long cracks, and provide 
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information about the effect of crack size. The calculations used the SIF results from the FE 

model. Figure 14 shows the crack face displacement extracted from the eigenstrain FE model 

along with the calculated values using Eq. (11) as a function of normalized position along the 

crack face x/a. The results of Eq. (11) agree well with the displacement extracted from the 

eigenstrain FE model for both crack sizes, showing that the weight function can be used to 

accurately predict crack face displacement in a discontinuous residual stress field.  

5. CONCLUSION 

In this study, the objective was to provide a benchmark solution to a simple eigenstrain 

problem in a two-dimensional rectangular domain. The finite element method was used to model 

an edge cracked plate containing a known eigenstrain field, and obtain the stress in the uncracked 

body and the stress intensity factor as a function of crack size. A second finite element model 

was constructed to assess the validity of the principle of superposition, using crack face tractions, 

relative to the SIF calculation for this specific problem. The results from both FE models were 

found to be equivalent, which confirmed the validity of superposition and using only crack face 

traction to compute the SIF. In addition, results for the weight function method, using the 

formulation provided by Wu and Carlsson [15], were generally consistent with the finite element 

results, being in very good agreement up to a crack size of a/W = 0.7. At larger crack sizes, the 

weight function stress intensity factor results diverged from the FE results, but remained less 

than 4.2% for a/W < 0.9. The benchmark problem and solution are useful as a starting point for 

fracture mechanics calculations in residual stress bearing bodies using the eigenstrain approach, 

and lie at the intersection of linear elastic fracture mechanics and residual stress analysis. 
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TABLES 

 

a/W β1 β2 β3 β4 β5 

0.01 2.0000 0.9765 1.1420 -0.3504 -0.0912 
0.05 2.0000 1.0927 1.1506 -0.3662 -0.0819 
0.10 2.0000 1.4187 1.1377 -0.3549 -0.0763 
0.15 2.0000 1.9056 1.1562 -0.3428 -0.0692 
0.20 2.0000 2.5366 1.2379 -0.3475 -0.0561 
0.25 2.0000 3.3108 1.4029 -0.3699 -0.0386 
0.30 2.0000 4.2381 1.6796 -0.4095 -0.0188 
0.35 2.0000 5.3370 2.1189 -0.4784 0.0045 
0.40 2.0000 6.6359 2.8049 -0.6106 0.0394 
0.45 2.0000 8.1770 3.8670 -0.8666 0.1021 
0.50 2.0000 10.0222 5.4999 -1.3401 0.2178 
0.55 2.0000 12.2627 8.0053 -2.1744 0.4247 
0.60 2.0000 15.0359 11.8785 -3.6068 0.7858 
0.65 2.0000 18.5559 17.9948 -6.0778 1.4211 
0.70 2.0000 23.1752 28.0304 -10.4966 2.5867 
0.75 2.0000 29.5188 45.5064 -18.9278 4.8833 
0.80 2.0000 38.8127 78.7526 -36.5960 9.8713 
0.85 2.0000 53.8458 151.2114 -79.0143 22.2693 
0.90 2.0000 82.6872 350.9948 -207.0899 60.8586 

Table 1 – βi for a single edge crack in a finite width plate. 
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FIGURES 

 

 

 

 

 

(a) (b) 

Figure 1 – (a) Problem geometry and eigenstrain application area, (b) half-model with boundary conditions 

 

 
 

(a) (b) 

Figure 2 – (a) Parameters for fracture mechanics contour integral, (b) parameters for domain integral (adapted 
from [24]) 
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(a) (b) (c) 

Figure 3 – Applied principle of superposition. (a) uncracked plate with eigenstrain field; (b) plate with eigenstrain 
field and edge crack; (c) plate with edge crack and crack face stress field 

 

 
Figure 4 – Edge crack in a finite width plate (adapted from [15]) 
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Figure 5 – Residual stress at the crack line (σyy) 

 

 
Figure 6 – Normalized SIF as a function of domain size from eigenstrain FE model 
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Figure 7 – Normalized SIF as a function of crack size from weight function and finite element models 

 

 
Figure 8 – Normalized SIF as a function of domain size from equivalent FE model 
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Figure 9 – Relative difference (in SIF) to eigenstrain FE model (benchmark) 

 

 
Figure 10 – Normalized SIF as a function of crack size from discontinuous temperature FE model and previous FE 

models 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

a/W

R
el

at
iv

e 
di

ffe
re

nc
e 

to
 b

en
ch

m
ar

k 
FE

 m
od

el
, %

 

 
Equivalent model
Weight function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a/W

-0.4

-0.2

0

0.2

0.4

0.6

0.8

K
/(

S
*W

0
.5

)

Eigenstrain model
Equivalent model
Discontinuous temp. model



Ribeiro and Hill p. 28 

 
Figure 11 – Superposition of the residual stress distribution 

 

 
Figure 12 – Applied boundary traction and resulting crack line stress 
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Figure 13 – Effect of number of significant figures of input stress in the SIF from weight function 

 

  
(a) (b) 

Figure 14 – Crack face displacement for (a) a/W = 0.25, (b) a/W = 0.6 
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