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ABSTRACT OF THE DISSERTATION
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In this thesis, we study the geometry of Teichmiiller space of punctured Riemann surfaces.
We use L2 Hodge theory to describe the deformation theory for punctured Riemann sur-
faces, in which we defined Weil-Petersson metric, Hodge metric and Kodaira-Spencer
map. We also give a new proof of Wolpert’s curvature formula by computing the expan-
sion of volume form and the Kodaira-Spencer map. We use Wolpert’s formula to estimate
upper bound for various curvature tensor. We construct an extension of pluricanonical

form and compare it to the expansion of the Kodaira-Spencer map under Hodge metric.
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CHAPTER 1

Introduction

Moduli spaces have been studied extensively by algebraic geometers. The moduli space
of marked curves is a generalization to the moduli space of curves. Many theories on
moduli space of curves can be established on marked one with some modification. The
Weil-Petersson metric and Hodge metric are the main tools to investigate the geometry

of such moduli space.

In this thesis, we use L2 Hodge theory to describe the deformation of punctured
Riemann surfaces. We also give a new proof of Wolpert’s curvature formula by comput-
ing the expansion of volume form and the Kodaira-Spencer Map. We use this formula
to estimate upper bound for various curvature tensor. We construct an extension of
pluricanonical form and compare it to the expansion of the Kodaira-Spencer map under
Hodge metric. We believe this method can be applied to obtain more curvature formulas

for Weil-Peterson metrics and Ricci metric over different moduli spaces.

In the rest of thesis, the punctured Riemann surfaces refers to closed Riemann surfaces
with finite k£ points punctured. We always assume 2g — 2 + k& > 0 to ensure that the
Riemann surface is hyperbolic. The convention for metric, curvatures is in consistent

with [Bal06].

The Weil-Peterson metric is an Hermitian metric on the Teichmiiller space of compact
Riemann surfaces with g > 1. It is introduced by Weil based on Peterson’s pairing for
automatic forms [Wei58]. It is a Kéhlermetric [Ahl61b] and incomplete [Wol75] [Chu76).
It has negative scalar curvature, Ricci curvature,holomorphic sectional curvature and
non-positive holomorphic bisectional curvature [Ahl61a], dual-Nakano-negative and semi

Nakano-negative[LSY13]. The optimal upper bound for the holomorphic sectional curva-



ture is conjectured by Royden|[Roy74] and proved by Wolpert[Wol86] and Tromba|[Tro86].
In Wolpert’s proof, a formula is discovered to represent the curvature tensor. This for-
mula is generalized to the case the moduli space of compact Kéhler-Einstein manifolds
with with ¢; < 0 [Siu86] and for the case with ¢; # 0 [Sch93]. For the moduli of
compact Calabi-Yau manifolds with Weil-Peterson metric , a curvature formula is ob-
tained for Calabi-Yau threefolds [Str90] and later for higher dimensions [Wan03]. The
Weil-Peterson metric can also be defined over the direct image sheaf over the moduli

of compact Kéahler-Einstein manifolds with ¢; # 0 and a curvature formula is obtained

[Sch12].

For the curvature formula for moduli of the compact or punctured Riemann surfaces.
Wolpert’s method using SL(2) invariant first order differential operators considered in
[Maa49]. Schumacher generalized Siu’s method to treat the moduli space of punctured
Riemann surface[ST08]. The proof in this paper is still base on Siu’s method by con-
structing a harmonic lift. The Liu-Zhu’s method [LZ18] and Sun’s method [Sun12] leads

to an expansion formula of pluricanonical forms under Hodge metric.

The classical deformation theory [MK71] treats holomorphic family of closed complex
manifolds. Fixing one complex structure of the base smooth manifold M, a Beltrami
differential ¢ € A% (M, T°M) is used to identify another complex structure if the
deformation is small enough. In [Kur63|, Kuranishi gauge for Beltrami differential is
introduced to parametrize the complex structure. For the Teichmiiller space of compact
Riemann surface, it resembles the Bers coordinate in Teichmiiller theory. Noticing that
the L? Hodge theory for the punctured Riemann surface works similarly to the Hodge

theory of closed Riemann surfaces.

Theorem 1.0.1 (Ké&hler package for punctured Riemann surfaces). Let (S, g, K, h) be the
canonical bundle over punctured Riemann surface with the hyperbolic metric of constant

curvature -1. The following holds for any q > 0.

(a)The Hodge decomposition

LyY(S, K) = Im(d,,) ® H (S, K) ® Im(5,,).
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(b)The Hodge isomorphism
HY(S, K) = H(g)q (S, K).

(c)Let H be the projection H14(S, K) in Hodge decomposition. Then the Green oper-

ator G = ANgp|ara(s,iey (I — H) is bounded, commuting with Op,,6, and Ag,,.

(d)L* Serre duality holds
HI(S, K) = Hiy ~(S, TS)".

We are able to gives analytic coordinates for Teichmiiller space of punctured Riemann

surfaces and give the definition for Hodge metric and Weil-Peterson metric.

Theorem 1.0.2. Let S be a Riemann surface of finite type with hyperbolic metric and
{na} a basis of harmonic Beltrami differentials H*' (S, T*°S). There is a semi-universal
deformation (% ,So,U,b,p) of S with a horizontally analytic trivialization F such that
o(t) = n,t® with t € U C C is the Beltrami differential corresponding to F'.

Moreover, U is open in T and {(t,U)} for all Sy gives a holomorphic coordinate cover

of T.

Definition 1.0.3 (Weil-Petersson metric). Let (S, B, ) be an analytic family of punc-
tured Riemann surface , the Weil-Petersson hy p is a a left conjugate linear Hermitian
metric on 7,7, , defined as
e (X X) = [ (KOO C0)10%,
Sp
where X, X' € T, 7, ( , )-11 is the left conjugate linear Hermitian metric induced by

the left conjugate linear Hermitian metric h, on T'YS,, V,, is the volume form on S,.

Definition 1.0.4 (Hodge metric). Let (S, B, 7) be an analytic family of punctured Rie-

mann surface . The Hodge bundle E™ — B is the vector bundle with fiber H ?2’;)(51), K"

at p € B. The Hodge metric h™ is a right conjugate linear Hermitian metric on F,,

defined as



Wp(s, ) = / (5,8')y,mVp,

P

where (, )-m is the right conjugate linear Hermitian metric.

We apply Liu-Zhu’s method to punctured Riemann surfaces case to give an expansion
volume from V; up to order (2,2) and claim this computation any order of expansion can

be computed recursively.

Theorem 1.0.5. Let ¢(t) and p(t) be the setting as above,
p(t) = D(minz)t't + O(Jt]*),
where n;n; is a globally defined continuous function and hence

Vi = (1= 8 D(nimy ) t'0 + O(|t))Va.

Together with the expansion of Kodaira-Spencer map C;, we are able derive the
expansion of Hodge metric h;;(t) under a smooth frame {k./C;(9;)}, where k; is the

musical isomorphism.

Theorem 1.0.6. Let p(t) = t'n; € A%(S, T'0S) be a harmonic Beltrami differential.
The Hodge metric with respect to frame {k/C(0;)} coincides with the WP metric with
respect to frame {0;} and have an explicit formula for any order. For order up to 2 is

gien as below.

Lohzj(t) = / min; Vo,
So
L()&Ehgj(t) =0,
Loalh;](t) = O,

L0 hi(t) :/ i DngmVo-

So

And hence we derive the curvature formula for WP metric.

Rg/kz’(()) :/s ain; N Dk Vo .
0

4



Based on the curvature formula, we proved estimated an upper bound for Ricci curvature,
holomorphic curvature and scalar curvature, which is an analog for Wolpert’s estimates

for closed Riemann surfaces.

Theorem 1.0.7. (1) The holomorphic sectional curvature and the Ricci curvature is

bounded above by 7r(29+12+k)'

—(39—3+k)(3g—2+k)
2m(29—2+k)

(2)The scalar curvature is bounded by

Using the techniques in [LZ18], we construct another set of smooth frame { EkoKC(0;) }.
Denote Hodge metric under a smooth frame {E;ko/C(0;)} by ng (t).

Theorem 1.0.8. Let p(t) = t'n; € A?ﬁ%(S, T'0S) be a harmonic Beltrami differential.
Let s& = inagdz?, s = imygd2? € A(()é()](S, K™) be holomorphic sections and E;(s3), Ei(sh)
be extension corresponding to w. The Hodge metric with respect to frame {E(s§)} have

an ezplicit formula for any order. For order up to 2 is given as below.

However, as {E;kokC(0;)} itself is not holomorphic nor related to any holomorphic
sections. It still remains to be question that how one could utilize ﬁg to get a curvature

formula.

This thesis is organized as follows. In Chapter 2, we review some necessary concepts
and results for the study of moduli space of punctured Riemann surface. In Section
2.1, we reviews some L? Hodge theories in order to show that the L? Hodge theory for
holomorphic bundles over punctured Riemann surfaces behaves very similar to the com-
pact cases. We first review the general L? Hodge theory over complete Kahler manifolds
and gives a criteria, closedness of 0,, range, for Kéahler package to hold. Next we prove
that the criteria is met for the case for holomorphic bundle over punctured Riemann
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surfaces. In Section 2.2, we introduce an analytic coordinate of Teichmiiller space of
punctured Riemann surfaces, which resembles the coordinate of Bers’s. We introduce
three equivalent ways to describe deformation near a fixed punctured Riemann surface,
the definition introduced in Huber’s book, K-S coordinates and Beltrami differentials.
we defined Kodaira-Spencer Map, Weil-Peterson metric and Hodge metric at the end of
the section. In Chapter 3, we generalized the Wolpert’s formula to the case of punc-
tured Riemann surfaces. To compute the curvature of WP metric, one way is to use K
coordinate compute the expansion of a harmonic lift and the volume form with respect
to a deformation (S, Sy, B,b,p). In Section 3.2, we computed the expansion of the vol-
ume form up to order 2 using a method suggested in [Sunl2] which works for compact
Kéhler-Einstein cases.In Section 3.2, we recall the harmonic lift constructed by Siu[Siu86]
and computed its expansion up to order 2. In Section 3.3, we ensemble the result from
previous sections and derive the Wolpert’s formula for punctured Riemann surfaces. We
also use this formula to get a negative upper bound for the Curvature Tensor for the WP
metric. In this chapter, we construct an extension of pluricanonical form and compare
the Hoghe metric under the frame of extended pluricanonical forms. As suggested in
[Sun12], one could derive Wolpert’s formula using the expansion of Hodge metric, which
can be derived from the expansion of volume form and the extension of pluricanonical
form. However, this method could not to be directly related to the curvature formula
for WP metric. This subtlety is due to the pluricanonical form we have constructed
is not identical to the musical isomorphism of the harmonic lift defined in Section 3.2.
In Section 4.1, we construct the extension of pluricanonical form for a deformation of
punctured Riemann surfaces. In section 4.2, we discussed the relation between harmonic

lift and the extension of pluricanonical form and gives an asymptotic formula.



CHAPTER 2
L? Hodge Theory and Deformation Theory

In this chapter, we review some necessary concepts and results for the study of moduli
space of punctured Riemann surface. The main motivation is that each of these two
theories should behave similar to those for closed Riemann surfaces. The major difficulties
is the non-compactness of punctured Riemann surfaces, which is overcome by some choice

of complete metric and technically refined definition for deformation.

2.1 L? Hodge Theory

This section reviews some L? Hodge theories in order to show that the L? Hodge theory
for holomorphic bundles over punctured Riemann surfaces behaves very similar to the
compact cases. We first review the general L? Hodge theory over complete Kihler man-
ifolds and gives a criteria, closedness of 0,, range, for Kahler package to hold. Next we
prove that the criteria is met for the case for holomorphic bundle over punctured Rie-
mann surfaces. We refer [MP90] for treatments for line bundles being trivial and [Ohs15]

Chapter 2 for the general L? Hodge theory.

In this section, (M, g, E,h) means a holomorphic vector bundle E over a Kéahler
manifold M with the Chern connection, where h is an Hermitian metric on £ and g is

the Kéahlermetric on M.

Let 0, , be the differential operator acting on smooth differential forms with compact

support

Opg : APY(M, E) — APTT(M, E).

)

Its formal adjoint, denoted by 6, 411, still acts on smooth differential forms with compact



support. We omit the subscript if it is not ambiguous.

Viewing d as a densely defined differential operator acting on LY(M, E) — Ly (M, E),

there is two canonical extensions of 0 as closed operators.

Definition 2.1.1. The maximal extension 0,4, of 0 is the adjoint operator of 6 in Hilbert

space LYY(M, E). That is, o € LY?(M, E) is in domain of definition Dom(0q) if there
is o € LB (M, E) such that (v, 63), = (o, 8)5 holds for any 8 € A4+ (M, E).

Definition 2.1.2. The minimal extension O, of O is the closure of d in Hilbert space
LB9(M, E) under graph norm. That is, « € LyY(M, E) is in domain of definition
Dom(Opn) if there is a sequence of o, € AP4(M, E) converging to o in L? norm such

that Oa,, is convergent.

It is easy to check that dmin = Omaz a0d Omaz = Omin. The following result of Gaffney

[Gaf54] allow us to denote either of the operators by d,,.
Proposition 2.1.3. If M is complete as a Riemannian manifold, then Omin = Omas-

Proposition 2.1.4 (Chernoff). Let D be an elliptic operator of order one with its symbol
being uniformly bounded and let M be complete and connected. Then D is essentially

self-adjoint for any k > 1. Moreover, Dom(D*D)maz € Dom(D)maz-

This result allows us to represent the closed extension of the formal Laplace operator.
Proposition 2.1.5. Denote the formal Laplace operator by
Ag: AVU(M, E) — AV(M, E),

we have the unique closed extension Ay =~ being self-adjoint and

Moreover, the domain of definition is

Dom(Ap,) = {a € Dom(8,,) N Dom(8,,)|0ma € Dom(0y,), Omer € Dom(,,,)}-



Proof. Applying Proposition 2.1.4 to d + d, we have Ay is essentially self-adjoint. Note

8mOm + Opmdy, is self-adjoint and with the same core as Ag. So Ay = SmOm + Ombm. [

Denote Ker Az by HP?(M, E). We obtain the following version of Kodaira decom-

position.

Proposition 2.1.6 (Kodaira decomposition).

[B9(M, E) = Tm(p) ® HP(M, E) @ Tm(d,,).

Proof. Since 9,, and 9,, are adjoint to each other, we have

L5 (M, B) = Tm(J) & Ker O, (1 Ker 6y, & Tm(3,0).

On one hand, Kerd,, N Kerd,, = Ker(0,, + 6,,) C HPU(M,E).

On the other hand,

HPUM,E) € Dom(0y, + 0,,) by Proposition 2.1.4. And the identity (A o, a), =

(Omar, Omar)s + (8av, da)y implies HPI(M, E) C Ker (O, + 0.

]

In the L? cohomology theory, the following two cohomology groups are often consid-

ered.

Definition 2.1.7. Let (M, E) be a holomorphic vector bundle.

group of F is the following B
Ker 0,02

Im 3_ma$ '

HY (M, E) =

The L? reduced cohomology group is the following

Ker 0,4,

Im amaac

HY (M,E) =

(2),red

Y

where Im 0,4, means the closure under L? norm.
They coincide exactly when Oy, has a closed range.

max

The L? cohomology

Proposition 2.1.8. If dim Hé’q(M, E) < +o0, then 0791 has a closed range.

)



Proof. Note that Dom/(0,,q.) is the completion of normed space AP(M, E) equipped with
the graph norm ||a/|g. Thus .4, is a bounded operator from Dom(Omez) to Ker Opas
with graph norm || - |5 and L? norm || - ||» respectively. It has a closed image by Lemma

2.1.9 which is proved using the open mapping theorem. O]

Lemma 2.1.9. Let X,Y be Banach-Spaces andT : X —'Y a linear and bounded opera-

tor. Then T has a closed range if T X 1is of finite codimension.

Proof. We may assume 7' is injective. Let Z be a algebraic complimentary of TX in Y

equipping with a norm ||||z. Then the map

T: Xx/—Y
(x,2) = T(z)+ 2

is a bijective continuous map. It is open and closed by the open mapping theorem and

thus has a closed range. O]

If we assume g is complete and 9,, has closed range, the Hodge theory is very similar

to the compact case. We state the Kahler package as the following theorem.

Theorem 2.1.10 (Kéhler package). Let (M, g, E,h) be a holomorphic bundle over a
complete Kdihler manifold with the Chern connection. If 079 has a closed range for fized

p and all q, then following holds.

(a)The Hodge decomposition

[B9(M, E) = Im(8,,) ® HP4(M, E) @ Tm(6,,).

: : 7 ~ 174
(b)The Hodge isomorphism HP(M, E) = H,)

(c)Let H be the projection HP4(M, E) in Hodge decomposition. Then the Green op-

(M, E).

erator G = Ngp|raurmyyr (I — H) is bounded, commuting with O, ,00m,05,,

(d)The closed operator 0,, for (M, E*) also has closed range and L? Serre’s duality
holds

HII(M, E) = Hiy P (M, E*)".

10



Part (a), (b) and (c) by Proposition 2.1.6, Part(d) follows from [CS12] Theorem 2.

For the rest of the article we omit the subscript 9,, if it is not ambiguous in the

context.

Now consider the canonical bundle K over a punctured Riemann surface S of type
(g,k), M is endowed with the hyperbolic metric g of constant curvature -1. K is endowed

with the Hermitian metric h induced by g.
Proposition 2.1.11. For (S, g, K, h) defined as above,we have

1, m\ __
HI(S,K™) =0

for g > 0,m >0 and dimH(lz’?(S, K)=3g—3+k.

Proof. The q > 0 case follows from K being positive and a vanishing theorems [Ohs15]
Theorem 2.14.

For the case ¢ = 0, note that ker 91° = ker 9. So the element s in Hé’?(S, K)is a

global holomorphic sections of 2K with finite L? norm.

Let S be the closed Riemann surface such that S = S — {py,...,pr}. A small
neighborhood U of a punctured point p is called a cusp neighborhood. We note from
classical result from Fuchsian models of Riemann surfaces or from [TZ91]. There exists

a coordinate z such that z(p) =0 and g = %.

Let s = f(2)dz?, then
/ 1f(2)]?g  dz A dz < .
U

Thus f(z) = O(z71) near 0. s is a meromorphic section of S with poles at most order
1 at punctured points. By Riemann-Roch theorem, H (12’())(5, K) = 3g—3+k. This finishes
the proof. n

In particular, all the property mentioned in Proposition 2.1.10 can be applied for

HY(S, K) as well as H"(S, T1°8S).

Theorem 2.1.12 (Kéhler package for punctured Riemann surfaces). Let (S, g, K, h)
be the canonical bundle over punctured Riemann surface with the hyperbolic metric of

constant curvature -1. The following holds for any q > 0.
11



(a)The Hodge decomposition

LyY(S, K) = Tm(d,,) @ H"(S, K) © Tm(6,,,).

(b)The Hodge isomorphism

HM(S, K) = H (S, K).

(c)Let H be the projection H14(S, K) in Hodge decomposition. Then the Green oper-

ator G = Ngp|va(s iy (I — H) is bounded, commuting with Op,,6, and Ng,,.

(d)L?* Serre’s duality holds

Hl(S, K) = Hy~(S,TS)".

2.2 Deformation Theory for Punctured Riemann Surfaces

This section we introduce an analytic coordinate of Teichmiiller space of punctured Rie-
mann surfaces, which resembles the coordinate of Bers’s [Ber58]. We first introduce
three equivalent ways to describe deformation near a fixed punctured Riemann surface,
the definition introduced in Huber’s book, K-S coordinates and Beltrami differentials. |
we define Kodaira-Spencer Map, Weil-Peterson metric and Hodge metric at the end of

the section.

Recall the deformation family (M, B, ) for closed Riemann surfaces is a proper
submersion p between complex manifolds with fibers being closed Riemann surfaces.
For the punctured Riemann surfaces, the substitute for 7= being proper is the following

definition [Hub16].

Definition 2.2.1. An analytic submersion 7 : M — B admits a locally horizontally
analytic trivialization by a manifold M if there exists an open set V' C B and a diffeo-
morphism F : M x V — 71(V) commuting with 7 such that for any p in M and any

t € V, the map F), : t — F(p,t) is analytic.

Definition 2.2.2. An analytic family of Riemann surfaces is an analytic submersion
12



p: S — B of analytic manifolds such that the fibers S; are 1-dimensional and 7 locally

admits horizontally analytic trivialization.

Definition 2.2.3. a deformation (S, Sy, B,b, ) of Riemann surface S is an analytic

family (S, B, ) of Riemann surfaces with b € B, Sy = p~!(b) and Sy = S.

With these definitions and minor modification on the classical deformation theory

[MK71] Chapter 4 we get another description of a deformation of Riemann surfaces.

Definition 2.2.4. A KS coordinate cover pair (wj, s;, %), (i, ti, %;) with core over a
marked analytical manifolds (B, b) of a Riemann surface S is a pair of two coordinates,

the S-coordinate (wj, s;, %;) and the K-coordinate (z;,t;, %;) satisfying the following: :

1. There is an open set V' C B containing b such that both (w;, s;, %) and (z;,t;, %)

are smooth coordinate covers of the smooth manifold S x V.

2. K-coordinate (z;,t;,%;) is an analytic coordinate cover induced by S x V' as pro-
duction of complex analytic manifolds. That is, z; and ¢; is the pull back of some

analytic coordinate of S and V' respectively.

3. For S-coordinate (wy, $;, %), si = ti, w;(z;,t;) is holomorphic with respect to t; and
for any fixed 0/ € B, the coordinate cover (w;, % NS x b') of S x V' has analytic

transition function and thus endowed S x b’ with a complex analytic structure.

4. Let S() =5 x b and let Uz = % N So. Then ti|Ui = O, wi|Ui = Zi|Ui-

The last requirement is just for the purpose of normalization and not necessary. For
most of the times, we omit the subscript which indexing the cover and also the cover

itself if they can be implied from context.

KS coordinate pairs is defined mainly for coordinate computation purposes which
is extensively use in the following chapters. It is easy to verify that a deformation
(S, S0, B,b, ) with a specified horizontally analytic trivialization is equivalent to a pair

of KS coordinates.

13



Definition 2.2.5. Let S be a Riemann surface, a smooth section ¢ € A" (S, 7705) is

called a Beltrami differential.

Proposition 2.2.6. Let (S, Sy, B,b, ) be a deformation of a punctured Riemann surface
S. Any horizontally analytic trivialization F to p~*(U), where (U,t) is a neighborhood of
b with t(b) = 0, gives a family of Beltrami differential p(t) holomorphic with respect to t.

Proof. By picking a horizontally analytic trivialization (F, V') of (S, Sy, B,b, 7), we get
KS coordinates pairs (w, s), (2,t). one could define a global holomorphic tangent valued
(1,0) form

p(t) = (Z_j)_lgw ® 0. (2.2.1)

such that ¢(0) = 0, analytic in ¢. By choosing a sufficient small V', we can as assume

lo(t)]|oe < 1 for any ¢ in V and hence é(t) € ¢ € AY'(S,T0S). Thus ¢(t) is a Beltrami

differential for any ¢ in V. O]

For a complex manifold B, a fixed point b € B and Riemann surface .S, a smooth fam-
ily of Beltrami differential ¢, of S with ¢(0) = 0 also gives a deformation (S, S, B,b, ),

which is a consequence of the so called ”complex” Frobenius theorem [NN57].

Theorem 2.2.7 (Newlander and Nirenberg). Let M be a complex manifold with holo-

morphic coordinate (z,U) and a Beltrami differential

%

— i
¢ = 3 (2)dz 57

Let
= 0 j 0
0 0

Ti= — — @ (2)——.
SRR

If T; and T; are complex linear independent and

1
Oy — 5[% ¢] =0,

then there is a smooth solution (fi(2),..., fu(z)) such that

Tifj(z) =0

for any j and (fi,..., fn, fi,- .., fn) forms a coordinate system on U.
14



Proposition 2.2.8. Let S be a Riemann surface of finite type with hyperbolic metric and
let B C C" open with coordinate t. For any holomorphic family of Beltrami differential
©(t), there is a deformation (% ,So, U, b, p) of S with a horizontally analytic trivialization
(F,U) with U C B, the Beltrami differential correspond to which coincides ¢(t) on U.

Proof. For a coordinate (V, z) of Sy and a cover {%;} of V xU. LetT(z,t) = 0,—¢(2,1)0s,

so T and T are linearly independent for ¢ € U. By the Theorem 2.2.7, equation
Tw;(z,t) =0,

has one smooth solution, for t € U C B.

So {%;,w;} forms an analytic coordinate cover for S x U and the identity map gives

one horizontally analytic trivialization of S x U as a complex manifold, denoted by 7. [

The Teichmiiller space has been extensively in the history. We use the following

definition for general Riemann surfaces.

Definition 2.2.9. The Teichmiiller space 7 for Riemann surface S is the space pairs
(S, g) modulo a equivalence relation, where g : S — S a diffeomorphism. (S, g), (S, h)
are equivalent if hog™! : S — S is isotopic to identity. The pair (S, g) is called a marked

Riemann surface of S.

For a marked Riemann surface (.5, g), its associated Beltrami differential is

ow, =
Y= (5) ow ® 0,

1

where w = z o0 ¢~ " and z a holomorphic coordinate of S. We have a simple criteria for

(S, g) being equivalent to (.5, id).

Proposition 2.2.10. Let ¢ be the associated Beltrami differential to marked Riemann

surface (S, g). (S, g) equivalent to (S,id) if and only if p € Im(9,,).

Fixed a marked surface (5,id), to parametrize its neighborhood, one just need to

construct a family of Beltrami differential which is not in the same equivalent class. The
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previous proposition suggest to construct a holomorphic family of Beltrami differential

with Im d,, part being zero.

With Kahler package proved in Section 2.1, we can just follow the proof line by line
the proof, which is given by Kuranishi for the compact case. We just list the statements
of propositions without proof to indicate which parts should be modified. Proof for

compact case can be found in [MK71] Chapter 4.

Proposition 2.2.11. Let S be a Riemann surface with a complete Kdhler metric such
that Kdihler package 2.1.10 holds for (S, T*°S). For any deformation of S, any Beltrami
forms @(t) given by a horizontally analytic trivialization F | there exist uniquely a fam-
ily of diffeomorphisms f(t) of Sy holomorphic in t such that Beltrami differential p¢(t)

corresponding to f o F' is harmonic, that is
dpr(t) = 0.

It is easy to verify that different choice of horizontally analytic trivialization leads to
the same ¢y (). If the complete metric is the hyperbolic metric g, we can choose ¢(t) to

be harmonic which can be identified as one element in H ?2’)1 (S, THS).

Definition 2.2.12. A deformation (S, Sy, B, b, p) of Riemann surface S is called semi-
universal if for any deformation (S', S, B',V/,p’) of S there is a holomorphic map f :
B’ — B with Im(df) being unique such that (S’, S}, B',b',p’) is isomorphic to the pull
back of f.

We summarize the discussion above to give a holomorphic coordinate of 7 by con-

structing a semi-universal deformation of S.

Theorem 2.2.13. Let S be a Riemann surface of finite type with hyperbolic metric and
{na} a basis of harmonic Beltrami differentials H*' (S, T'YS). There is a semi-universal
deformation (% ,So,U,b,p) of S with a horizontally analytic trivialization F such that
o(t) = n,t® with t € U C C is the Beltrami differential corresponding to F'.

Moreover, U is open in T and {(t,U)} for all Sy gives a holomorphic coordinate cover

of T.
16



Proof. Let {n,} be a basis for H"!(Sy, T"Sy) then ¢(t) = n,t* is a harmonic Beltrami
differential for ¢t € U, where U C C is a small neighborhood of 0. Proposition 2.2.8 yields
a deformation H%(S, THS) with ¢(t) = n,t* The semi-university of (%, Sy, U,b,p)
follows from proposition 2.2.11. The coordinate neighborhood (¢,U) is a holomorphic

one is a result of Ber’s [Ber5§]. O

Definition 2.2.14 (Kodaira-Spencer map). Let (S, B, ) be an analytic family of punc-
tured Riemann surfaces with each fiber equipped with the unique hyperbolic metric of
constant curvature -1. For any point b € B, the Kodaira-Spencer map K : T B, —

H?é)l(Sb, T'9Sy) is defined as

K : TBy, — Hy) (S0, T So)

Op(t
19, t“%hzo

where ©(t) is harmonic and is given by a deformation (S, Sy, B, b, p) of S.

It can be shown that definition is independent of different choice of deformation.

Definition 2.2.15 (Weil-Petersson metric). Let (S, B, 7) be an analytic family of punc-
tured Riemann surface , the Weil-Petersson hy p is a a left conjugate linear Hermitian
metric on 7,7, ,, defined as
e (X, X = [ (000, K(0) 14,
Sp
where X, X’ € T,7,, (, )-1.1 is the left conjugate linear Hermitian metric induced by

the left conjugate linear Hermitian metric h, on T1°S,, V, is the volume form on S,,.

Definition 2.2.16 (Hodge metric). Let (S, B, 7) be an analytic family of punctured Rie-

mann surface . The Hodge bundle E™ — B is the vector bundle with fiber H?Q’g)(Sp, K")

at p € B. The Hodge metric h™ is a right conjugate linear Hermitian metric on F,,

defined as

(s, = [ (5.8 )V

P

where ( )V;m is the right conjugate linear Hermitian metric.

17



Note that T is the base space of a semi-universal analytic family (S,7,S) and K
is isomorphic by semi-university. 7 thus endow with a WP metric on its holomorphic
tangent bundle. If m = 2, by L? version of Serre Duality, E? — T is isomorphic to the
holomorphic cotangent bundle over 7 and thus the WP metric and the Hodge metric are

co-metric to each other.
For a fixed point b € T, a basis {n;} of H(Oz’)l(Sb, T%1S,), we pick a pair of KS coor-
dinates (w, s) and (z,t) corresponding to ¢(t) = t'n;. Denote 7~ 1(¢) by S;, we have the

following commuting diagram

WP
ht

TB, T B,
l
Ky
0,1 10 Sy 2,0 L0 a0
H(2) <St7T ’ St)—>H(2) (St72Kt) —>H(2) (St,QKt),
where hf{ 29¢ and h}V? is the conjugate linear musical isomorphism with respect to metric

and S, is the complex linear Serre duality at ¢.

To compute the curvature of Ay p, one method is to find an explicit expansion up to
order 2 of hy p and to compute the curvature of hg.; which will be treated in Chapter

4, one need to compute find an explicit expansion up to order 4 of hy p.

In K-coordinate (z,t), we use d; as an abbreviation for d,:. Note that
his(t) = /S (Ki(0:), K@)y 10V
0

In Chapter 3, we compute the expansion of K;(9;) and V; in K-coordinate and thus

get a curvature formula for WP metric.
Denote hf o S; by k¢, denote the dual basis of {K;(9;)} by €'. We have
kICi(0;) = 5ihi3.
Let
hit(t) = by (kJCo(05), keCo(05)) = hi (1)
The curvature tensor of Hodge metric with respect to {k:/(0;)} is

RILF = —0;(0:hfl b)) (2.2.2)
18



Compared to the curvature tensor of WP metric with respect to {0;}

R = —0;(0;hgh'7),

ijk J

we have

Rfﬂf - _ngf :
In Chapter 4, for element in H(Qg’?(SO,QKO), we construct a extension operator F; :
H(QQ’?(SO, 2K,) — H(QQ’;)(SO, 2Ky), which is a smooth family of isomorphisms. Denote the

following

hii(t) = WM (EkoKCo(05), Eikoko(05)).

It may be tempted to use formula like (2.2.2) to compute the curvature tensor. However
it will be proved in Chapter 4 that {(E:ko/Co(0;)} is a smooth et not a holomorphic frame

over BC T.
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CHAPTER 3

Wolpert’s Formula for Punctured Riemann Surfaces

In this chapter, we generalized the Wolpert’s formula to the case of punctured Riemann
surfaces. To compute the curvature of WP metric, one way is to use K coordinate com-
pute the expansion of a harmonic lift and the volume form with respect to a deformation
(S, S0, B,b,p). In Section 3.2, we computed the expansion of the volume form up to
order 2 using a method suggested in [Sun12] which works for compact Kéhler-Einstein
cases.In Section 3.2, we recall the harmonic lift constructed by Siu[Siu86] and computed
its expansion up to order 2. In Section 3.3, we ensemble the result from previous sec-
tions and derive the Wolpert’s formula for punctured Riemann surfaces. We also use this

formula to get a negative upper bound for the Curvature Tensor for the WP metric.

3.1 Expansion of the Volume Form

For a punctured Riemann surface with hyperbolic metric, to expand the volume form,
we follow the method in by [Sunl2] section 3 treating compact Ké&hler manifold with

non-flat Kahler-Einstein metric. More computation details are provided.
In K-coordinate ,we have the following notation.

Let Vo = ig(z)dz A dz be the volume form of S, ¢(t) = ¢(z,t)dzZ ® 0, a harmonic

Beltrami differential of a Riemann surface S, that is
p. = —0;log gp.

in K-coordinate.

We are slightly abusing the notation of ¢, it should be clearly from context if ¢ means

a global section or a local function.
20



Let e = dz + @dz, V; = ige A & Let p(z,t) be the real valued function such that
V, = Vel (z,t), where V; is the volume form of S;. It is easy check V; and p is defined
globally.

In S-coordinate (w,s), we have the following notation.

The columns form V; = iGdw A dw. By KE metric condition, we have Ricci form

—i001og G is equal to the negative Kahlerform —V;, that is

(log G) e = G. (3.1.1)

Since it works for any holomorphic coordinate with respect to S;, we may expect to
obtain an equation in K-coordinates, that is independent of terms like w,. Indeed we

have the following theorem.

Theorem 3.1.1. Let p and p be the setting as above, T = 0, — @0z, T = 0; — 0, then

_ 1 )
log(—sﬂzl Tp+ T(1 @@Tp) +g) = p+logg+log(l— py). (3.1.2)

We provide a proof for how we get this equation, this proof can be generalized to

higher dimension by keeping track of the simplification order in this proof.

Proof. The proof is mainly of two parts. The first is to show (3.1.1) with some modifi-
cation is independent of choice of holomorphic coordinate w of S;. This part works for
any Beltrami differentials. The second part use harmonic Beltrami differential to largely
simplify the equation.

Since w is a holomorphic coordinate with respect to ¢, we have Tw = 0. Let a = ‘3—’;’,

and b by a~! then

as = p.a+ pa,, (3.1.3)

T(b) = —bep,, (3.1.4)

oz = Qup + 20,0, + 220, (3.1.5)
Tloga =0b(1—@p)a, — @p, (3.1.6)
Tloga = ps. (3.1.7)
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T(ba,) = byp... (3.1.8)
Denote L by (1 —@p)~! and A by 1 — @, we have

8y = bLT, (3.1.9)

Applying log to both side of (3.1.1), we have
log(bLTbLT (p + log g — loga — loga)]) = p + log g — loga — log a (3.1.10)

Denote X by log(bLT[bLT (p+log g —loga —loga)]) +loga+loga. We want to show
that it is independent of a , the choice of holomorphic coordinate.

Using (3.1.6) and (3.1.7), we have

X =log(bLT[bLT (p + log g) — b*a, + bLpp, — bLpz]) + loga + loga,
Using (3.1.4) and (3.1.8) and let loga and logb cancel each other, we have
X =1og(LT[LT (p +log g) + Lo + Lg:] — ¢=[LT(p +1og g) + Bop. — Loz| — )
=log L + log(T[LTp] — ¢.[LTp| + T(LT log g) + T[L(¢p. — ¢5)]

- L[SOZT logg + @303 - @2902] - @zz)u
(3.1.11)

which in independent of w.

Denote T(LT log g) + T[L(@¢: — ¢:)] — Llp:-T'log g + @92 — @zp.] — ¢ by Y. Now

using the harmonic condition ¢, = —plog g., we have
Tlogg =logg. + @z, (3.1.12)
TL=—L*TA, (3.1.13)

Y can be simplified as the following,
Y =T[L(log g. + ¢¢.)] — Llp.Tlog g + p¢> — pz0.] — ..
= TL(log g: + pp-) — Llp.log g. + @2 — T(log g. + ¢:)] — @:=
= TL(logg.A) — Llp.log g. A — T(log g.A)] — -

(3.1.14)

=Tlogg. — ¢.10gg. — ..
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Putting X and Y back to (3.1.10), we get the desired equation.

The following proof is modified from [Sun12] using the notation in this article.

Proposition 3.1.2. Let ¢(t) is a family of harmonic Beltrami operator with expansion

o(t) = t'n;. Then

;0|t:0 - 07
pi‘t:ﬂ =0,
(3.1.15)
pik|t:0 =0,
Pz'j|t:0 = D(nm;),
where D = (Ag+1)7%.
Proof. Denote —gpzl_—lep - T(l_l@pr) + g by B(z,t). We have
B(2,0) = g,p(z,0) =0, (3.1.16)

Noting from Appendix ?? that in Riemann surface case the 0- Laplacian Ag acting
on function in local coordinate can be written as Agf = —g~' f.- [Bal06] (5.51). Using
(3.1.16), we have

Byi(0,2) = p.:(0, 2), (3.1.17)

Differentiate (3.1.2) and evaluate it at t = 0, we have

Since Az has no negative eigenvalue. we have p;(0,z) = 0 and hence 0;,B(0,z) = 0.
Similarly we have p;(0,2) = 0, pz(0,2) = 0, and py(0,z) = 0, and hence B;(0, 2) = 0,
B;1(0,2) = 0, and By(0,2) = 0.

For the p.:(0, z) case, we still have
Bﬁ(oa Z) - p1322(07 Z)
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But differentiate (3.1.2) with respect to t* and t, evaluating at t = 0, we have
Appi(2,0) = —pi;(2,0) + n:(2)n5(2)- (3.1.19)
m

we may follow this idea further to get the higher order of expansion.

Theorem 3.1.3.

Pikm |t=0 = 0,
pikmp’tzo = Oa

Pz‘k3|t:0 = O'ikDPiannja

(3.1.20)
Pikmjlt=0 = Cikm D P D Py Dny,
Pirjili=o = oixo51(DP;DP; Dy + D P; D P Dy
+ DQ; Dy + DQ;z-anni),
where Qg5(f) = —g~ ((ning)=1>)-
Proof.
B = p.: — L(¢ps. + Opz)
+ LA (—p. + Psp + Pz — 7 P2)ps (3.1.21)
+ L2 (—@: + 0.0+ ¢P. — Ppz)ps
Note that

IO(Z70) = 0701:(270) = 0.

Based on the inductive assumption that p;, ;. ,(2,0) =0, we have

Use (3.1.2), we have (1 4+ Ay)py,

..........

A direct computation shows that

sz}(z> 0) = Uzk(_nzzpzkj(z7 0) - nzpzzk5(27 O)) + pzk}z?(za O)
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Denote a local operator P;(f) = —¢g ' (n;f.)., then we have

By = Q(Uz‘kpmﬂkj(za 0) — Aéﬂik}(za 0)).
Use (3.1.2), we have
piri(2,0) = 0 DP; Dy

For expansion of order 4, we just need to consider the case p;z,;(z,0) and p;3(z,0).
As the process of taking the derivative become more and more complicated.

We denote operator of evaluating at ¢t = 0 by ¢y. The following obvious formula is
used repeatedly. For smooth function A(z,t), let

N(A) ={aeui{1,...,n,1,...,2}F|A, = 0}.

Then for smooth function A(z,t), B(z,t), we have

1w(AB), = > 1Aa- 1B, (3.1.22)

(.B)EP(V);
agN(A),BEN (B)

where P(7) is the set of 2-partition of v
For case of topigmj, (3.1.2) yields
9 10 Bikmi = L0Pikmj- (3.1.23)
From (3.1.21) and definition ¢(t) = n;t’,
L0Bikm; = t0P2zikmi — toLto(Ppzz + PPzz)ikm;
+ 10 L?1((— + Bz + Gz — ©°B2)P2)ikmj

+ 1oL (— Pz + 0P + 0P: — B°P2)P3)ikmj

(3.1.24)
= 10P2zikmj — L0(PPz2)ikmi + to(—02pz2)ikmj
= 9(=Ast0pikmi + to(Lp(p))ikm3)
= 9(—Astopikmj + Tikm PitoPrm3)-
Combining (3.1.23) and (3.1.24) gives
LoPikmj = Uz‘,kmDPi(Lo,Okmj) (3.1.25)

= Oikm DL D Py D 175
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The computation above can be applied for a containing only one conjugate index. If

a=(8,7) and ¥ € {1,...,a} and B € US5{1,...,n}*, then
LoPa = O-a(HkE(xfiDPk)Dninfy-
For the case of 1op;7, (3.1.2) yields

9 wBigi = topirgi — MR-

LoBika' = L0Pzzikjl
— 1oLto(pzz + Ppzz) kit — Tiroiito(L)ito(pzz + Ppzz)ir
+ 1L ((— ¢z + Pz + Pz — *P)p2)akgt
+w0Lo(=P: + 20 + P — G p:)pz)agi
= topzingt — to((ppz) + (@pz)z)igi
+ 10((Pz + 00z)p2)iji + to((=0 + ©P2) pz) ik
= v0P.zikj — Lo((©p2): + (Ppz)z)ugi
+ ko1 (Mi1;) 2LoPak + Tiko 7 (MiM5) Lo Pkt

Introduce a new local operator Q;;(f) = —g~*((n:n;)=/-)
toBigji = 9(—=Datopigi + oinPitoprji + o5iPjtopi + 0ot Qizpar + Qji) pra)-

Combining (3.1.27) and (3.1.28) gives

vopirji = oikoji( DP,DP; Dy + DP;D P, Dy + DQ; Dy + DQ53 D).

We summarize the expansion up to order 2 for later use in this Chapter.
Theorem 3.1.4. Let ¢(t) and p(t) be the setting as above,
p(t) = D(ga)t'? + O(|t ),
where 1;1; s a globally defined continuous function and hence

Vi = (1= 8 D(nimy )10 + O(|t))Va.
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3.2 Expansion of the Harmonic Lift

In Definition (2.2.14), we define the KS map of a point b € T by choosing a basis {n;}
of H?é;(Sb,TLOSb) and finding the corresponding holomorphic normal coordinate (¢, U)

and we have by definition
K(05)|t=0 = mi-

However, for ty # 0, to compute K(0;)|:=, is not simple, as (¢t — to,U) is not a normal

holomorphic coordinate at point t.

In [Siu86], Siu proposed a method to construct a vector field over S-coordinate, which

is also mentioned in [Sch93] and [LSY09].

Definition 3.2.1 (Siu). Let (M, B, ) be an analytic family of Kéhler manifolds, (w, s)
a holomorphic coordinate of M and ¢ a holomorphic coordinate of (B) with s = 7*t. For
the local holomorphic vector fields 01, ..., 0 ,a set of smooth vector fields v, ..., v, on

77 1(B) are called a harmonic lift if it satisfies the following.
(1) 7(vi) = Op.

(2) Opvi € Hy (M, THOM,).

Siu proved the existence of harmonic lift for the case of closed Kéhler manifolds with
KE metric and negative Chen class of canonical bundle. Schumacher gives a construction
which could be applied to the punctured Riemann surfaces, as being harmonic is a local

condition.

Theorem 3.2.2. Let (S, B, ) be an analytic family of punctured Riemann surfaces

equipped with constant negative curvature -1. Let (w, s) be a local homomorphic coordinate

of S, with s = w*t, holomorphic coordinate of B. Let Kahler metric be :Gdw Adw , then
v; = 05, + (=G 10,15 log G,

is a harmonic lift of 0. Furthermore, its Op image

aF(UZ) = —(G_lasi (log G)uj)ujdw &® 8w

is coincides with IC(0;) for any t € B.
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Our target is to find an expression of K(9;) in K coordinate so that we could combine
the result for the volume form to compute h;; in K coordinate. The expression above in

S coordinate gives us a good staring point.

Theorem 3.2.3. Denote

A; = —G(G10,(log G)u)u,

where c(z,t) = 22 we have A; is independent the choice of S-coordinate (w,s) and

LOAE = gm;,
L()@EA{ = O,
i log A; = —g(g~ " p.ar)=

O Ai = —9(9~  topaim)- + OikgMEloPi;s-

The definition of A; might seem confusing. If we use the notation to be define in
Chapter 4, then
O (v;) = hy 0 Sy o 0 (iA:dz?).
A; is also a building block in calculating expansion of h;;. To illustrate this and also
prepare for the proof of Theorem 3.2.3. We introduce and summarize some notation and

relation about KS coordinates.

T = 62’ - 9082)
L= (1 - 90(15)_17
Op =c LT,

dw = c(dz + @dz) + w;dt’,

asi = az - wiawa
G = |c|"2ge’,
V, = iGdwdw.

28



And we have

R e e R
o 0

as well as some identities

G = (log G)ww, (3.2.1)
05,0, = —ec ' L0, (3.2.2)
[0, 0] = (Lon; — 0;log ¢)0,. (3.2.3)

Applying (3.2.2), we have

Ay = G(=G10,(10g Gy + B7)u?
(3.2.4)
= (0 log GO;0, log G — 0,0;0,,1og G)c* + ge’ Ly;.

In order to get expansion of A; at ¢t = 0, one just to get expansion of 9, log G.

Let f(z,t) be a smooth function in K coordinate. Denote the expansion of f of
order (p,q) by t00.05f, where a € {1,...,n}? and 8 € {1,...,n}9. We use the following

scheme to simplify the commutation for function of form 9, f.

(1) If p # 0, use (3.2.3) to reduce recursively to the expansion of order (0, q)
Loaaagf = Loﬁa,jagawﬁjf + Loaafjag(([/@nj - 8j log C)awf>

(2) If p =0 and g # 0, use (3.2.2) to reduce recursively to the expansion of order
0,0).
Lanzan - Loaaaﬁ—iawagf - LOaaaB—E(EC_ILmawf>'

So to compute the expansion of h;; up tp order (1,1), one just need to compute the
expansion of A; up tp order (1,1), and hence the expansion of 9, log G of order up to
(1,2).

29



Direct computation using the scheme gives the following

10050 = ¢ (D7 — 1;0:),

100;0,, = ¢ (.5 — 0;log cd,),

10010y = c_l(ﬁzjl — 0;0,10g c0,; — 0jlog 0, + 0; log c0, log c0,)
10030 = 100,05 — 0j10g cLo0;0, + 1110 0w,

1000w = ¢ (Daar — om0zt + Mii0s),

LOaZEjaw = LOaikawaj - aj log ctoO0s1 0w + Uikmnjboakaw-

Acting on 0,,(log G), we have
Lp0;0, log G = 0,
1000y log G = C_2Cjz - c_zcjaz log g,
19010y log G = 0!,
100500 10g G = ¢ uop.i;,
LpO;r0, log G = 0,

L00i5;0u log G = c_lLong,;j.
Considering (3.2.4), we get

tA; = gm,
Loach{ = 0,
WA = —g(97 " pair) =,

1oOp Az = —g(gflboﬂz%fgz)z + OikgNrLoPi-

We further use the notation fi;(t) = | S A;A 972V, and get
Lo f3(t) = / 715 Vo,
So
Loa/}fig(t) = 07

Loalfgj (t) = 0.
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For expansion of order (1,1), we have
LOp [3(t) = / (L0 AitoAj + 1001 AsL005A; + 10451005 A5) g Vo
So
= —/ (9 vopair)=n; Vo
So
+/ aikNrtoPun; Vo
5 (3.2.5)
+ / (9 wopsa)=(9  topig)=Vo
So
- / (97" opzm)=m Vo
So

+ / TiiMitoP5" Vo-
So

The first and fourth integration is 0 since (gn), = 0. The third integration is simplified

below.
/(g_lbopziz)z(g_lboﬂzkﬂz%
So
(97 topm)-(—0:log glopzij T Pzzrj)idzdz

(97 vopair)-(— 0z log gopsi; + ps=x;)idzdz

J
J
= /S Lopatopzij + 9 topsa(0z10g gLops.i;) + (97 topa)zpzaiyidzdz (3.2.6)
/S —L0Pipak; + 9 LopzzpzaryidadZ

[ (D = Doy + 0D = 1D = o Ve

= /S 0 e — MEn DmimVo.

(3.2.5) reduced to

1O f35(t) = / mmmEn; — Men D + 20 amim; D Vo. (3.2.7)

So

Expansion of h;; is obtained bt the expansion of f;; and p.

Theorem 3.2.4. Let p(t) = t'n; € A?S(S, T'9S) be a harmonic Beltrami differential.
The Hodge metric with respect to frame {kCi(0;)} coincides with the WP metric with
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respect to frame {0;} and have an explicit formula for any order. For order up to 2 is

gien as below.

Lohzj(t) = / min; Vo,
So
Lg&ghgj(t) =0,
Loalh;](t) == O,

Lol (t) = / ik i1 D1 Vo.
So
Using the convention in [Bal06], R}, = —Rg/k h,; and

R5 (t) = O3l — il hgh™.

The curvature tensor formula for WP metric at t = 0 is

ngf(o):[q a1 D Vo
0

This formula coincides in format with the Wolpert’s one for moduli of closed Riemann

surface.

3.3 Properties for Weil-Petersson Curvature Tensor

It is well known that the WP metric has multiple negative curvature properties. WP
metric has negative scalar curvature, Ricci curvature,holomorphic sectional curvature and
non-positive holomorphic bisectional curvature, dual-Nakano-negative and semi Nakano-
negative. The optimal upper bound for the holomorphic sectional curvature is conjec-
tured by Royden[Roy74] and proved by Wolpert and Tromba. The same things holds
for the case of punctured Riemann surfaces. We provide the proof for the optimal upper
bound which slightly differ from Wolpert’s result since the number of punctured points

matters.

Theorem 3.3.1. For the WP metric of T(S) of punctured Riemann surfaces with genus

g and k points punctured.
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(1) The holomorphic sectional curvature and the Ricci curvature is bounded above by
-1
(29 —2+ k)
(2)The scalar curvature is bounded by

—(3g—3+4+k)(3g—2+k)
21(29 — 2+ k) '

Proof. For any point b € T, choose a unitary basis {n;} of 3‘{(2)(5},,T1 0S;). The holo-
morphic sectional curvature of direction 0; is

—Rl; = 73> D|mi|* V.
Sy

As D is a self-adjoint compact operator, its has countable eigenvalues Ao, A1, ... 0 with
Ao > A > ...and lim, oo A, = 0. Ng < 1Tas D = (14 Ay)~L Let |n;* = Y o Uk
where 1y, ; is the eigenfunction for \;. By Lemma 3.3.2, all L? harmonic functions over

Sp are constants. So v, is a constant function. We have

) / 2Dl = -2 3 [ [geaPAvh < —2 / osl*Ve.
Sy =0 /S Sy

Since the Poincaré dual of n; is could be regard as a meromorphic section of 2K with at
most k£ poles. n; must have zero by Riemann-Roch theorem. Thus the inequality here is

strict. Since |, s, YoiVo =1, we have

1 1
Area(Sy) 2729 +k—2)

Yo,i =

For the Ricci curvature, we note that the Ricci curvature of direction 0; is

39—3+k
Ric(0;,0;) = Z Rzm
. Since R - is negative, we have Ric(9;,0;) < RlY- < 7r(2g+12+k)'
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For the scalar curvature, we have
39—3+k

Scal = Z Ric(0;, 0;)
i1

39—3+k 3g—3+k
== > > /nimDnijm!zDImF%
i=1  j=1 Y5

39—3+k 3g—3+k 39—3+k

<-> > / 2Dl Ve — 37 I DIV
=1 j=1 7% i—1
39—3+k 3g—3+k 39—3+k

<

- Z Z /@Do,iwo,jvo— Z V5 Vo
=1 j=1 7% i=1

< —(B8g—3+k)(39g—2+k)
21(29 — 2 + k)

For the same reason, the second last inequality is strict.

Lemma 3.3.2. Let S be a Riemann surface wit k points punctured then

dim H;3)(S,C) = 1

and hence dim H*°(S,C) = 1.

Proof. Note that ker 9%° = ker 9°°. So the element f in H (02’)0(8, C) is a global holomor-

phic function with finite L? norm.

Let S be the closed Riemann surface such that S =S — {p1,...,pr}. A small neigh-
borhood U of a punctured point p is called a cusp neighborhood. We have a coordinate
|dz|?

z such that z(p) = 0 and g = ;- Finite L? norm yields

/ |f(2)]%igdz A dZ < oo.
U

Thus f(z) = O(1) near 0. f extends to a holomorphic function on S and thus a
constant. By Lemma 2.1.9, Kahlerpackage holds. So H?Q’S)(S, C) @ HY(S,C) =1. O
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CHAPTER 4

Extension Formula for Pluricanonical Form and a

Curvature Formula for Ricci Metric

In this chapter, we construct an extension of pluricanonical form and compare the Hoghe
metric under the frame of extended pluricanonical forms. As suggested in [Sunl2], one
could derive Wolpert’s formula using the expansion of Hodge metric, which can be derived
from the expansion of volume form and the extension of pluricanonical form. However,
this method could not to be directly related to the curvature formula for WP metric.
This subtlety is due to the pluricanonical form we have constructed is not identical to

the musical isomorphism of the harmonic lift defined in Section 3.2.

In Section 4.1, we construct the extension of pluricanonical form for a deformation of
punctured Riemann surfaces. In section 4.2, we discussed the relation between harmonic

lift and the extension of pluricanonical form and gives an asymptotic formula.

4.1 Extension of Pluricanonical Form

Let S be a punctured Riemann surface, ¢ a Beltrami differential of S, S, the correspond-

ing Riemann surface, then the map
ont - A°(S, K™) — A°(S,, K7
defined by
(d2)™ = ((dz + i d2)™

is an isomorphism. The description of holomorphic pluri-canonical form can be stated as

the following proposition.
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Proposition 4.1.1. Let S be a Riemann surface of finite type with the hyperbolic metric,
© a harmonic Beltrami differential of S , s € A*°(S, K™) a smooth pluricanonical form.

Then o7(s) is holomorphic on S, if and only if
ds = i,V'0s. (4.1.1)
Proof. Let s = fdz™, then

Vs =df — mfo.log gdz ® dz™,

i, Vs = o(f. —mfo,log g)dz ® d2"™,

Note o7'(s) = fc™™dw™. o'(s) being holomorphic on S, is equivalent to 9 (fc™™) = 0,

Op(fe™™)y = ™M L(cTf —mfTc)
=c ™ (T f —mfTe)
(4.1.2)
=" L(0:f — 9O.f +m[fd.p)
= EilcimL(aif - Spazf - mfgo@z logg),
which is equivalent to (4.1.1).

]

To solve (4.1.1) for s € A?ﬁ?(s, K™). First note that Vs has finite Ly norm. In fact,

we have
(V105 V104) = (V10105 )
= (Ags,s) + ([iR, A]s, s)
= (0s,0s) — m(s, s)
< C(s,s).
The 1st equation follows from the Bochner-Kodaira-Nakano identity and the 2nd equation

is because of the constant scalar curvature [iR, A] is —m. The 1st inequality is because

of O has closed range.

We apply 0*G to the both side of (4.1.1). Using the condition 0* ¢ = 0, we get

(1-0"Gi,V")s = Hs,
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where Hs is the harmonic part of s. Denote 9*Gi, V' by T, since ||T,|l2 < 1 when
|¢||ls small enough. we have

s=(1-T,) 'Hs,
the solution is determined by is harmonic part.

Conversely, let sg € A?;;(M, K™) be harmonic, then s = (1 —T,) 'sp is a solution to
(4.1.1). In fact, we have ds = H*(i,V'%s). For m = 1, i,V'%s = 9(i,s). For m > 2,
i, Vs lives in A(()S(M7 K™). Since H(Oz’)l(S, K™) = 0 by Proposition 1.2, i,V''s =

H*(i,V"Ys).This finishes the proof of the following proposition.

Theorem 4.1.2. Let S be a punctured Riemann surface with the hyperbolic metric. Let
¢ be a harmonic Beltrami differential and ||¢|| small enough. The solutions to (4.1.1)

are exactly s = (1 —T,,) " 'so, where sy € A(()é(;(S, K™) is a holomorphic section.

Remark 4.1.3. To obtain this solution one only needs a complete metric with bounded

scalar curvature.

Together with Proposition 4.1.1, we construct a smooth extension of a holomorphic

section.

Theorem 4.1.4. Let S be a punctured Riemann surface with the hyperbolic metric. For
a Beltrami differential ¢(t) , a harmonic Beltrami differential n = $|t=o with ||7]co
small enough and a holomorphic section sy € A?;;(S, K™), there is a smooth extension

of so with respect to Bers coordinate t

oow(s(t)) = so + Ty, s0t" + iy, s0t" + O(|£2]). (4.1.3)

4.2 Comparison between Harmonic Lift and Extension of Pluri-

canonical Form

Since L? Serre duality holds for H?z’)l(S, T'9S), the Hodge metric hy for m = 2 is the
co-metric of WP metric hy,. As discussed in the end of Section 2.2. To compute the
curvature of WP metric using ﬁg (t) is not obvious , one could still compute for the Ricci

tensor for the WP metric.
37



In this section, we first derive some useful lemmas illustrating the interplays of several
operators and their local expression. Then we work on an expansion formula for ﬁg (t)

at the end of the section.

Let S be a punctured Riemann surface with hyperbolic metric. Let ¢(t) = t'n; €
A%(S, T'98) be a harmonic Beltrami differential. Let s@ = in,gdz?, s§ = ingpgdz? €
A(()é(;(S, K™) be holomorphic sections and F(s%), Ei(s3) be the corresponding extension.

We have

(4.2.1)

We further use the notation

fab(t)—/s (Sa(t),sb(t))vo_m%, (4.2.2)

Proposition 4.2.1. The expansion of fgj of order (p,q)at t =0 is the following.
Ifp=0andqg=0
o fan(t) = / 113 Vo-
So

Ifp=10 orq=0 but (p,q) # (0,0)
Loaagfg(t) =0.
Ifp>1andqg>1
10045 f5(t) = UaUB/S 175 (ke P;D)(1 = D) (Tkea—i PeD) (n:71a),
0
where a € {1,....,n}P and B € {1,...,n}?, 0, is the permutation of .

Before the proof, we are going to deduce some lemmas.

Recall T);s = 5*G2’,7V1’Os, the linear term vanishes. We have
h™(T,s8, T,ysh) = W™ (Gi,VUs8), Hi, V' 0sh) = h™(Gi,V's3),i,V0sh),  (4.2.3)

since 9(i, V'sg) = 0 and Hgy (M, K™) = 0.
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Definition 4.2.2. Let (S, L)be an Hermitian line bundle over Riemann surface S. Let
z holomorphic coordinate of S, e holomorphic section of L. For ¢ = gogdzgaj Re €
A%(S TH0S @ L), its divergence is defined to be ddiv¢ = Tr V. In local coordinate, it
is

divy = (¢, + ploggh)dz ® e,

where 2¢ is the Hermitian metric on S, h is the Hermitian metric on L.

The simplification of (4.2.3) follows from the following three lemmas [Sun12].

Lemma 4.2.3. Let ¢ = ¢dz ® 0, € A%(S, TY0S) be a harmonic Beltrami differential,

s = fdz" € A(()é()](S, K™) be a smooth section. We have
iwvl’os = div Ay s,
where A, is a global operator defined as A;(s) =1, ® s for s € A?é;(S, K™).

Proof. Note that

Vs =df —mf(logg).dz ® dz™,
i,V'0s = o(f. — mf(log g).)dz ® d=™,
div(p®)s = (pf): +¢flog(g- (29)™™).dz ® d=™
= @(fz: =mf(logg).) + f(p- + ¢(logg).)dz @ d=".
Since div ¢ = 0, we have ¢,Vs = i,Vs. m
For ¢ = ¢dz @ e € A% (M, L), where e holomorphic section, S Riemann surface, we

have

diviy = —(vg 1dz ® 0. ®e.
Lemma 4.2.4. Let p=pdz ® 0, ® d2™ € A?ﬁ%(S, TS @ K™), then

div*divp = Agp.
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Proof.

divp = p, + (1 —m)u(logg).dz @ dz",
div*divp = —(g7" (1= + (1 = m)p(log 9).))=dz ® 0, ® d=",
*hp = igdz @ dz ® (9,)™(29) ™,
Oxhp = i(i(2g)™™)dz Adz ® dz ® (9.)™,
0" = *hd%hp = —g~ (. + (1 = m)u(log g).)0. ® dz",
Ay = (g7 (1= + (1 =m)p(log g).))-dz ® 9. © dz".

O

Lemma 4.2.5. Let A = \dz ® d2™ € A?é;(S, K™), S is a punctured Riemann surface

with hyperbolic metric, then
[Ag, diviA = (1 —m) div* A

And hence for m = 2
div DA = G div A
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Proof.
*h\ = ixdz @ (9.)™(29) "™,
Oxh\ = i(\(29)™™)zdzdz ® O,
O*\ = %h0xh\ = —g~ ' (A, — mA(log g).)dz™
Agh = (g7 (. = mA(log g).))=dzd=",

div* Agp = (g7 (g (1= — mp(log 9).))z)=dz ® 0, @ d=™

Agdivi = —(g7((Ag )z + (L —m)(Ag "):(logg).)):dz ® 9. ® d=™

[Ag, divi]A = (g7 [(Ag™)zz + (1 = m)(Ag™):(log g). — (97" (A: — mA(logg).):)]):

(
= (g7 g ez + (A —m)(Ag "):(log g)- — (97" \2)z
)

m(g~'N):(logg). +mg ' A(log g).2)])=

= (g 1(Mg 1))z + (Mg~ 1)z(log ) +mg ' A(log g).z])=

= (97" Mg 1)zz + Mg 1):(log g)- +mg " A(log g)2])=

= (g7 (m — 1)A\); = (1 — m) div* \.

(4.2.4)

The condition of hyperbolic metric with constant curvature -1 is used in the second last

row. If m = 2, then

(Ag+ 1)div: A = div® AgA.
By Proposition 2.1.11, H&’)l(M, K™) = 0 and thus Ay = G~
terms, we have div D\ = G div A.

Lemma 4.2.6.

(1+25) " (h(ne) @ m) = (1 + A5) " (03, 7w )e,

where e = ig(dz ® 0, @ dz?).

Check [LSY13] Lemma 3.5 for the proof.

We ready for the proof for Proposition 4.2.1

Proof. We have

aaéfab(t) = UaUBhH((HieaTi)ng (HJEBTJ')SS)-
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For the case |a| = || = 0, it follows directly.

For the case || > 1 and |3] = 0, (I1;c,T;)s2 is in the range of 9* which is perpendicular

to a holomorphic section s.

For the case |a| > 1 and || > 1, For simplicity, we assume o = {7, k}, 5 = {j}.
Use Lemma 4.2.3, Lemma 4.2.4 and Lemma 4.2.5 for the case m = 2, we have
(T Tisd, Tish) = b (0% div DALO* div DA;s8, 0 div DA;sh)

h(0*G div A,0" div DA;s§, div DA;sh)

W (
e (
W (A5G div A0 div DA;s3, div DA;s)) (4.2.6)
A (div* div A,9* div DA;s§, DA, sb)

(

A ((1 — D)AL0* div DA;s8, A;sb),

In a local K-coordinate, let = pe € A%(S, TYS® K?), where e = ig(dz®0, ®dz?).
We have
A5 div = Py(p)e.

Combined with Lemma 4.2.6, we continue the simplification.

(T, Tisd, Tish) = R (1 — D)Ay0* div DA;sg, A;sb),

= h((1 — D)AL0" div(D(nina)e), njmse),

. (4.2.7)
= h"((1 — D)(PxD(mina)e), njmse),
~ [ (L= D)PD(Ve
So
In general, we have by induction
aaéfab(t) = UaUBhH((HieaTi)Sga (HjeﬁTj)Sg)
) (4.2.8)
= a5 [ oty (Thea—s D)1 = D)MWy FuD) ().
So
O

Combined with the expansion of p computed in Section (3.1.3) Let S be a punctured

Riemann surface with hyperbolic metric.
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Theorem 4.2.7. Let p(t) = t'n; € A%(S, TH8S) be a harmonic Beltrami differential.
Let 53 = inggd2?, s = inygd2? € A?;;(S, K™) be holomorphic sections and Ey(s3), Ei(sh)
be extension corresponding to p. The Hodge metric with respect to frame {E(s§)} have

an explicit formula for any order. For order up to 2 is given as below.

Lohfi(t) = / e
So
LOaEBg(t) = 07
Loalﬁg(t) = 0,

Loakzilg(t) = —/ o DnrgmVo.
So
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