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Abstract

Due to the grow of modern dataset size and the desire to harness computing power of

multiple machines, there is a recent surge of interest in the design of distributed machine learning

algorithms. There are many algorithms in this research area. First order methods use gradient

information for update in each iteration. Second order methods employ second order information

to harness the computer power of each worker and reduce the cost of communication. Zeroth

order methods use estimated gradient information to solve the problem where the gradient is

not available. However, since distributed algorithms require communication between workers

and server, they are sensitive to Byzantine attackers who can send falsified data to prevent the

convergence of algorithms or lead the algorithms to converge to value of the attackers’ choice.

Some recent work proposed interesting first order algorithms that can deal with the scenario when

up to half of the workers are compromised.

In this thesis, we investigate different order algorithms that can deal with Byzantine attackers.

Firstly, we discuss the robust first order distributed algorithms in distributed network. A

commonly used algorithm is distributed gradient descent algorithm. But most existing algorithms

assume that there are no attack in the network. However, in practice, there is a risk that the some

workers are compromised. We provide a novel first order algorithm that can deal with an arbitrary

number of Byzantine attackers. The main idea is to ask the parameter server to randomly select a

small clean dataset and compute noisy gradient using this small dataset. This noisy gradient will

then be used as a ground truth to filter out information sent by compromised workers. We show

that the proposed algorithm converges to the neighborhood of the population minimizer regardless

the number of Byzantine attackers. We also proposed an algorithm that deal with arbitrary number

of Byzantine attackers when we know the upper number of the Byzantine attackers. We show this

algorithm can have a better convergence rate than the former one. We further provide numerical

examples to show that the proposed algorithm can benefit from the presence of good workers and

achieve better performance than existing algorithms.
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Secondly, we discuss the robust second order distributed algorithms that can deal with

Byzantine attackers. We propose two robust second-order algorithms. The main idea of the first

algorithm, named median-based approximate Newton’s method (MNM), is to ask the parameter

server to aggregate gradient information and approximate Newton’s direction from all workers

by geometric median. We show that MNM can converge when up to half of the workers are

Byzantine attackers. To deal with the case with an arbitrary number of attackers, we then propose

a comparison-based approximate Newton’s method (CNM). The main idea of CNM is to ask

the server to randomly select a small clean dataset and compute noisy gradient and Newton’s

direction using this small dataset. These noisy information will then be used as an approximation

of the ground truth to filter out bad information from Byzantine attackers. We show that CNM can

converge to the neighborhood of the population minimizer even when more than half of the workers

are Byzantine workers. We further provide numerical examples to illustrate the performance of the

proposed algorithms.

Finally, we discuss the robust zeroth order distributed algorithm in decentralized distributed

network. We propose a zeroth order adversarial robust alternating direction method of multipliers

(ZOAR-ADMM) that can deal with Byzantine attackers for the zeroth-order methods in a

consensus network. The main idea of the algorithm is to ask each worker store a local deviation

statistics of distance between neighbor’s model parameter and its own model parameter for every

neighbor. These information will then be used to filter out bad model parameter from Byzantine

attackers. We show that this algorithm can converge to the sample minimizer and the function can

converge to the optimal value. We further provide numerical examples to illustrate the performance

of the proposed algorithm.
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Chapter 1

Introduction

In our daily life, machine learning is everywhere. Virtual personal assistants, like Siri, Alexa, will

find information when we ask over voice. In virtual personal assitants, machine learning will help

to collect and refine the information on the basis of your previous involvement. Traffic prediction is

also an example of machine learning. When we use GPS navigation services, our current locations

and velocities are being saved at a central server for managing traffic. This data is then used to

build a map of current traffic. This helps in preventing the traffic jam.

In machine learning, optimization is the core part. Most machine learning problems reduce

to optimization problems. In machine learning problem, when solving a problem for some set of

data, people formulates the problem by selecting an appropriate family of models and massages

the data into a format amenable to modeling. Then the model is typically trained by solving a core

optimization problem that optimizes the variables or parameters of the model with respect to the

selected loss function and possibly some regularization function.

1.1 Centralized and distributed optimization methods

In this section, we first introduce the optimization problem. Suppose that the data X ∈ X ⊂ Rn

is generated randomly from a unknown distribution D parameterized by unknown vector θ taken

value from a set Θ ⊂ Rd. Our goal of optimization problem is to infer the unknown parameter θ
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from data samples. In particular, consider a loss function f : X × Θ → R, with f(x, θ) being the

risk induced by data point x under the model parameter θ. We aim to find the model parameter θ∗

that minimizes the population risk F (θ):

θ∗ ∈ arg min
θ∈Θ

F (θ) , E[f(X, θ)]. (1.1)

When we know the distribution of X , the population risk can be evaluated exactly and θ∗ can

be computed by solving the above problem (1.1). However, in a typical machine learning problem,

the distribution is unknown. To handle this, one normally approximates the population risk F (θ)

from the observed data samples. In particular, we assume that there exist N independently and

identically distributed (i.i.d.) data samples Xi, with i = 1, 2, · · · , N , from the distribution D.

Instead of minimizing the population risk (1.1) directly, we minimize the empirical risk

min
θ∈Θ

1

N

N∑
i=1

f(Xi, θ). (1.2)

In centralized optimization method, N data are all stored in central location, and computing is

done at a central location. The central location stores all the data and controls all the processing

when solving optimization problem (1.2).

Nowadays, a lot of challenges will arise when using centralized optimization method.

Firstly, as the amount of data keeps growing at a fast pace both in size and coordinate, it

is challenging to fit all N data in one machine [36, 37, 55]. For example, automatic speech

receoginition (ASR) can transcrible speech into correspoding text, which have been used in

Apple Siri, Google Assistant. Using ASR, we need to solve an optimization problem to obtain

high-performance models. The key is having access to lots of data: thousands of hours of speech.

People always uses SWB2000 as the dataset when studying ASR, but SWB2000 has over 30

million training samples and 32,000 classes. The datasize so large that the data cannot be stored in

a typical database, or even a single computer.
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Secondly, in certain scenarios, data is naturally collected at different locations, and it is too

costly to move all data to a centralized location [21]. For example, consider there is a model

to treat patient, and the performance is roughly propotional to the number of patients trained on.

Patient data are readily available at different hospitals, but unfortunately,sharing these data between

hospitals is hampered by ethical, administrative, legal, and political barriers. In this example, we

cannot share patient data, so we should consider to train model on local data in distributed method.

Thirdly, distributed optimization algorithms are useful to harness the computing power of

multiple machines. When the data size is very large, even all data could be filled into one

central location, the burden of computing is still very high, and it will slow the computing speed.

Distributed optimization algorithm can reduce this burden by harnessing the computing power of

multiple machines. Nowadays, there are many high performance computing systems built around

multi-core processors, GPU-accelerators and computer clusters, which use multiple machines.

Due to these factors, decentralized optimization problem attract significant research interest [4,

6, 14, 15, 18, 22, 26, 29, 30, 32, 33, 42, 44, 53].

In a distributed optimization setup, there are two kinds of network: decentralized network and

fully decentralized network.

Figure 1.1: Dentralized network Figure 1.2: Fully decentralized network

In Figure 1.1, we can see the structure of a decentralized network in optimization problem. The

decentralized network is built with one server and many workers. The information communication

3



are happens between server and workers, and there are no information communication between

workers directly. For example, server will broadcast parameter and order to all workers, then

workers finish the work by themselves then respond to the server.

Figure 1.2 shows a fully decentralized network in optimization problem. The fully

decentralized network works among several machines, instead of relying on a single central

server. Workers will communicate with its neighbor workers. For example, a market economy

is a decentralised economic system because it does not function via a central, economic plan but

instead, acts through the distributed, local interactions in the market.

1.2 Zeroth, first and second order distributed optimization

methods

When considering distributed optimization methods to solve empirical risk in (1.2), we will

consider a decentralized optimization model in Figure 1.3, there are one server and m workers

in the system. These N data samples are distributed into these m workers, and the server machine

can communicate with all workers synchronously. Let Sj be the set of data samples that the j-th

worker receives from the server. In a system with data shuffling, Sj changes over iterations, while

in a system without shuffling, Sj is fixed. There are mainly three kinds of distributed optimization

Figure 1.3: Distributed optimization model

methods: zeroth, first and second order distributed optimization methods.
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1.2.1 First order distributed optimization methods

First order distributed optimizaiton methods employ the gradient information to find the local

minimum of the loss function. Various distibuted first-order methods, which use gradient

information and are often easy to implement, have been proposed in many existing works.

Distributed stochastic gradient descent (SGD) [4,32] is a drastic simplification when comparing

with gradient descent. Instead of computing the gradient from all data exactly, each iteration the

server estimates this gradient on the basis of a single randomly picked data. This stochastic process

depends on the examples randomly picked at each iteration. Since the examples are randomly

drawn from the ground truth distribution. The stochastic gradient descent directly optimizes the

expected risk. However, because of the noisy approximation of the true gradient, the stepsize need

to be decayed, then the convergence speed of stochastic gradient descent is limited. Therefore,

SGD requires a large number of communication rounds which could be costly.

Distributed variance reduced SGD [11, 26, 34] reduces the variance of SGD, then the stepsize

does not have to decay. In distributed variance reduced SGD, there is an update frequency m, the

algorithm computes the average of all gradient based on model parameter everym iterations. When

updating the model parameter in iteration t, the direction is computed from the gradient of a single

random picked data at iteration t, the average recorded before t and the gradient of a single random

picked data at iteration at iteration when the recorded happens.

Batch gradient descent (BGD) solves the convergence speed problem in SGD in another way.

Each worker solves (1.2) using distributed gradient descent. In particular, at iteration t, each worker

j ∈ [1,m] calculates∇f (j)
(θt−1) based on local data

∇f (j)
(θt−1) =

1

|Sj|
∑
i∈Sj

∇f(Xi, θt−1), (1.3)

and sends it back to the server, where |Sj| is the size of data in j-th worker. After receiving
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information from all workers, the server updates the parameter using

θt = θt−1 − η
m∑
i=1

wi∇f
(j)

(θt−1) (1.4)

where wi = |Si|/N and sends the updated parameter θt to workers. Here η is the step size. This

process continues until a certain stop criteria is satisfied. In this algorithm, the stepsize will not

need to be decayed, which can improve the convergence speed.

Distributed coordinate descent method [36,37] is also proposed to solve the problem when the

coordinate is very large. In this method, they initially partition the coordinates {1, 2, ..., d} into

c sets and assign each set to a single worker. Each worker owns the coordinates belonging to its

partition for the duration of the iterative process. Also, these coordinates are stored locally. The

data matrix describing the problem is also partitioned in such a way. Now, at each iteration, each

computer, independently from the others, chooses a random subset of τ coordinates from those they

own, and computes and applies updates to these coordinates. Hence, once all computers are done,

cτ coordinates will have been updated. The resulting vector, stored as c vectors of size s = d/c

each, in a distributed way, is the new iterate. This process is repeated until convergence.

In these methods, workers will compute gradient information and dual information from a

small size of data and sends these information to its neighbor or server for updating. Since each

worker only compute based on a small size of data, the first-order methods significantly reduce the

amount of local computation.

1.2.2 Second order distributed optimization methods

In distributed optimization problems, workers must communicate with its neighbors or its server.

These first order distributed optimization methods may require a far greater number of iterations

for communication. Some algorithms also require synchronization in every iteration for parameter

updating. In order to mitigate the negative impact of the large number of iterations for distributed

optimization, communication-efficient second-order methods have also been proposed [17, 35, 38,
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40, 48, 55].

Shamir et al. [38] proposed DANE algorithm to minimize a cost function consisting of local

loss function, local gradient and global gradient on each worker. The method performs two

distributed averaging computations per iteration, and outputs a predictor which, under suitable

parameter choices, converges to the optimum. DANE maintains an agreed-upon iterate model

parameter, which is synchronized among all machines at the end of each iteration. In each iteration,

we first compute the gradient at the current iterate, by averaging the local gradients. Each machine

then performs a separate local optimization, based on its own local objective function and the

computed global gradient, to obtain a local iterate model parameter. These local iterates are

averaged to obtain the centralized iterate model parameter.

DiSCO in [55] contains an outer-loop and an inner loop. The outer-loop employs an inexact

damped Newton method to minimize loss function. But the number of steps needed to reach the

superlinear convergence zone still depends on the condition number. To solve this problem, DiSCO

uses the machinery of self-concordant functions, where the iteration complexity of the inexact

damped Newton method has a much weaker dependence on the condition number. The inner

loop, DiSCO employs a distributed preconditioned conjugate gradient (PCG) method to compute

an inexact Newton step. In each iteration in inner loop, the server carries out the classical PCG

algorithm and each worker computes the local gradients and Hessians and perform matrix-vector

multiplication and send it to the server.

GIANT [48] requires the exact global gradient and approximate Newton direction.

Figure 1.4: Information flow of GIANT algorithm in [48]. 1©: ∇f (j)
(θt−1); 2©: ∇f(θt−1); 3© :

H−1
j,t−1∇f(θt−1); 4© : θt. In this figure we only draw the information flow between machine j and

the server, all other machines have similar information flow.
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Global improved approximate Newton method (GIANT) solves (1.2) using approximate

Newton’s method by two-steps computing and communication between the server and workers.

Figure 1.4 illustrates information flow between the server and workers during iteration t. In

particular, at iteration t, each worker j ∈ [1,m] first calculates∇f (j)
(θt−1) based on local data:

∇f (j)
(θt−1) =

1

|Sj|
∑
i∈Sj

∇f(Xi, θt−1), (1.5)

and sends it to the server, where |Sj| is the size of data in the j-th worker and we assume the size

of data in each worker is equal. After receiving information from all workers, the server computes

the gradient information using

∇f(θt−1) =
1

m

m∑
j=1

∇f (j)
(θt−1), (1.6)

and broadcasts the ∇f(θt−1) to workers. After receiving ∇f(θt−1), each worker j ∈ [1,m]

calculates H−1
j,t−1∇f(θt−1) based on local data and∇f(θt−1) where

Hj,t−1 = ∇2f
(j)

(θt−1) =
1

|Sj|
∑
i∈Sj

∇2f(Xi, θ) (1.7)

and sends it back to the server. After receiving Newton’s direction information from all workers,

the server updates model parameter by

θt = θt−1 −
1

m

m∑
j=1

H−1
j,t−1∇f(θt−1), (1.8)

where they use 1
m

∑m
j=1 H

−1
j,t−1∇f(θt−1) to approximate the true Newton direction

( 1
N

∑N
i=1∇2f(Xi, θt−1))−1∇f(θt−1), since the inverse of all data Hessian matrix cannot be

computed through distributed setup. After updating, the server broadcasts the updated parameters

to the workers. This process continues until a certain stop criteria is satisfied. Algorithm 1.1

summarizes steps involves in the GIANT algorithm.
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Algorithm 1.1 GIANT algorithm [48]
Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers;
3: Computes∇f(θt−1) = 1

m

∑m
j=1∇f

(j)
(θt−1);

4: Broadcasts the current gradient estimator∇f(θt−1) to all workers;
5: Waits to receive estimators from the m workers;
6:Updates θt = θt−1 − η 1

m

∑m
j=1H

−1
j,t−1∇f(θt−1);

until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes
the gradient∇f (j)

(θt−1), sends it back;
2: Receives gradient estimator∇f(θt−1), computes the parameterH−1

j,t−1∇f(θt−1), sends it back;

ADN in [17] is built on an adaptive block-separable approximation of the objective function.

Based on the block-separable approximation, the objective function is divided into local objective

function model. Then each worker compute the direction locally parallel and server will average

it to get a global direction. After each iteration, ADN will adjust parameter in model based on the

agrrement between the model function and the ojective function for the current iteration. By this

adjustment, the Hessian approximation will be more closer to the true Hessian matrix.

1.2.3 Zeroth order distributed optimization methods

In both first and second order distributed optimization methods, we assume the function is

differentiable, but in some situations, for example, when only black-box procedures are available

for computing, we do not have access to the gradient of the object loss function. Zeroth-order

optimization use the approximate gardient to update the parameter.

Tang’s method [43] cosider the distributed optimization methods in a two direction network.

Each worker will compute the maps to approximate gradient by difference quotients along d

orthogonal directions. During communication, workers will send model parameter information

to its neighbors’. Then each worker will weights it neighbors’ model information to updates the
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local variable.

ZOO-ADMM in [27] adopts a random gradient estimator to estimate the gradient. By replacing

the gradient in the Online-ADMM, [27] proposes an extension of O-ADMM, which is call

ZOO-ADMM.

[54] considered distributed zero-order methods for constrained convex optimization. It is

somewhat different from Tang’s method and ZOO-ADMM. Instead of establishing a gradient-free

method based on Euclidean projection, [54] carries Bregman non-Euclidean structure for solving

the distributed convex optimization over time-varying network. It uses Bregman divergence instead

of using the classical Euclidean norm, leading to the non-Euclidean projection feature of the

proposed algorithms. As a result, the classical distributed zeroth-order projection algorithm is

generalized to the non-Euclidean circumstance.

1.3 Byzantine attack

Most of the existing works in distributed optimization assume that workers behave honestly and

follow the protocol. However, in practice, by using distributed optimization methods, there is a

risk that some of the workers might be compromised. Byzantine attack to distributed optimization

was first studied in [24]. When Byzantine attack happens, compromised workers will send wrong

information during communication with its neighbor or its server. Compromised workers can

prevent the convergence of the optimization algorithms or lead the algorithms to converge to a

value chosen by these attackers by modifying or falsifying intermediate results during the execution

of optimization algorithms. In Figure 1.5, we use distributed gradient descent as an example to

illustrate this. In this figure, we consider gradient descent in one iteration, the gradient information

computed by honest workers are toward right, but a single attacker sends wrong information, which

is toward left, to the server. When server averages the received information, it will go to the wrong

direction, then the algorithm cannot converge.

There have been some interesting recent works to design distributed machine learning
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Figure 1.5: Example of attack in averagement.

algorithms [2, 3, 12, 13, 16, 18, 30, 41, 49–53] that can deal with Byzantine attacks. The main idea

of these works is to compare information received from all workers, and compute a quantity that

is robust to attackers for algorithm update.

The algorithm in [13] uses the geometric median mean of gradient information received from

workers for parameter update. This algorithm employs the idea of Batch Gradient Descent. In

Batch Gradient Descent, the parameter server sends the current model parameter estimate to all

working machines, then each working machine computes the gradient based on all locally available

data, and then sends the gradient back to the parameter server. Finally, the parameter server

averages the received gradients and performs a gradient descent step. Since taking the average has

no ability to defend against Byzantine attackers. The parameter server in this algorithm aggregates

the local gradients reported by the working machines by three steps: (1) it partitions all the received

local gradients into k batches, where k is smaller than the number of workers and computes the

mean for each batch, (2) it computes the geometric median of the k batch means, and (3) it performs

a gradient descent step using the geometric median. By adjusting value k, this method can trade the

balance between the number of Byzantine attackers algorithm can tolerate and the accuracy of this

algorithm. When k = m, the aggregate method is gometric meidan. When k = 1, the aggregate

method is average, which has best accuray but cannot defend against Byzantine attacker at all.

The algorithm Krum in [3] uses a different way to aggregate gradient from all workers. In

this algorithm, the server will collect all gradient vector from all workers, then for each received

gradient gi, it computes si =
∑

i→j ‖gi− gj‖2, where gj belongs to the m− p− 2 closest vector of
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gi and m is the number of workers and p is the number of compromised workers, finally the server

choose gi which has the smallest score si as the estimated gradient for parameter updating.

Alistarh et al. [2] proposed a Byzantine-resilient SGD algorithm, in which at each iteration

the server combines the current and past gradient information from each worker to compute next

update, to solve convex problem with high dimension. For worker i, the server will collect and

store the received gradient information g(k)
i , where k is the number of iteration, then the server

will compute Bi =
∑k

t=1 g
(t)
i /k and Ai =

∑k
t=1〈g

(t)
i , θt − θ1〉/k in each iteration, and the server

will use the median Bmed and Amed as the ground truth to check Bi and Ai in each iteration. If

the server discover some worker is Byzantine attacker, the the server will remove it from future

consideration. By this algorithm, the server can find good worker, then update parameter based on

the those.

Xie et al. [49] studied the dimensional Byzantine-resilient algorithms, where Byzantine values

can happen in all workers but for each dimension, the number of Byzantine valued must be

less than the number of correct ones. The server receives all gradients {g1, ..., gm} and sorts

values in dimension j, it compute Trmeanj = 1
m−2p

∑m−b
k=b+1 gk,j, then it sort the values by

{|g1,j/Trmeanj−Trmeanj|, ..., |gm,j/Trmeanj−Trmeanj|} and average the firstm−b number

of g1,j/Trmeanj values as the update gradient value in dimension j. For high dimension, the server

applies it in coordinate-wise manner. Then using it to update parameter.

Yin et al. [51] proposed a median-based algorithm that uses only one communication round

to perform parameter updates. In each parallel iteration of the algorithms, the master machine

broadcasts the current model parameter to all worker machines. The honest workers compute the

gradients of their local loss functions and then send the gradients back to the master machine.

The Byzantine workers may send any messages of their choices. The master server then performs

a gradient descent update on the model parameter, using either the coordinate-wise median or

trimmed mean of the received gradients, where the coordinate-wise median is a vector with its k-th

coordinate being the one-dimensional median for each k ∈ [d].

Chen et al. [12] proposed DRACO algorithm that uses ideas from coding theory to determine
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which machines are under attack. In DRACO, each worker is allocated a subset of the data set,

which is redundant. Each workers computes redundant gradients, encodes them, and sends the

resulting vector to the parameter server. These received vectors then pass through a decoder that

detects where the adversaries are through the encoded redundant gradient information and removes

their effects from the updates. The output of the decoder is the true sum of the gradients. The

parameter applies the updates to the parameter model and we then continue to the next iteration.

Su et al. [41] proposed an approximate gradient descent algorithm that employs iterative

filtering for robust gradient aggregation in high dimensional estimation. The parameter will collect

all gradient information and using an iterative filtering algorithm to find the updating direction.

The iterative filter will construct a cost function with parameter (W,U) by the received information

and finding the saddle point (W ∗, U∗), then using it iteratively to find the direction along which all

data points are spread out the most, and filters away data points which have large residual errors

projected along this direction. Finally, the server will use this direction to update parameter.

These algorithms in [2,3,12,13,16,41,49,51,52] can successfully converge to the neighborhood

of the population minimizer even if up to half of all workers are compromised. However, once

more than half of the workers are compromised, the algorithms in these interesting work will not

converge.

As machine learning algorithms are increasingly deployed in security and safety critical

applications, it is important to consider the robustness of these algorithms in adversarial

environments where we need to make less or no assumption about the attackers (including the

assumption that less than half of the workers are attackers in the distributed learning) [20].

These attacks may be achieved by a variety of ways including but not limited to: vulnerable

communication channels, poisoned datasets, or virus. In 2006, 65% of companies surveyed in the

CSI/FBI Computer Crime and Security Survey [19] reported that they had been attacked by virus.

Once captured by virus, these devices can be used to attack the network from inside. For example,

Xie et al. [50] considered the case that the number of Byzantine worker is arbitrarily large and

proposes an algorithm named Zeno. The server will have nr number i.i.d. samples draw from the
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unknown distribution. Then we can denote fr(θ) = 1
nr
f(θ;xi), For any update gradient estimator

u, based on the current parameter θ, learning rate eta, and a constant weight ρ > 0, Zeno defines

its stochastic descendant score as follows:

Score(u; θ) = fr(θ)− fr(θ − ρu)− ‖u‖. (1.9)

This score composed of two parts: the estimated descendant of the loss function, and the magnitude

of the update. The score increases when the estimated descendant of the loss function fr(θ)−fr(θ−

ρu) increases. The score decreases when the magnitude of the update ‖u‖ increases. Intuitively,

the larger descendant suggests faster convergence, and the smaller magnitude suggests a smaller

step size. Even if a gradient is Byzantine, a smaller step size makes it less harmful and easier to

be cancelled by the correct gradients. With this score, the server will first sorts the gradient by a

stochastic descendant score then averages the m − b gradients with highest score, in which m is

the total number of workers and b is an important parameter in the algorithm. The algorithm must

have at least one good worker, it cannot solve the problem when server is isolated. Furthermore, in

order to properly set the parameter b, Zeno must know an upper bound on the number of Byzantine

workers. In addition, if b is selected to be larger than the true number of attackers, the algorithm

may not benefit from all good workers.

1.4 Main contributions

In this research thesis, we propose robust distributed first, second order and zeroth order algorithms

that can converge to the neighborhood of the population minimizer when there are compromised

workers.
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1.4.1 First order distributed optimization method

The main idea for our proposed robust distributed gradient descent algorthm is to ask the server

to randomly select a small subset of clean data and compute a noisy gradient based on this

small dataset. Even though the computed gradient is very noisy, it can be used as a proxy of

the ground truth to filter out information from attackers. In particular, once the server receives

gradient information from workers, it compares the gradient information from each worker with

the noisy gradient it has computed. If the distance between the gradient from worker and the noisy

gradient computed by itself is small, the server accepts the gradient information from that worker

as authentic. After the comparison step, the server then computes the average of all accepted

gradient and its own noisy gradient as the final estimated gradient for updating. We prove that

the algorithm can converge to the neighborhood of the population minimizer regardless of the

number of compromised workers. We show this result by proving that the distance between the

estimated gradient and the true gradient can be universally bounded. In the analysis, we consider

two different scenarios. In the first scenario, we do not assume any knowledge about the number of

attackers. We provide a convergence proof in this case with minimal assumption about attackers. In

the second scenario, we assume that the number of attackers is bounded from above by a constant

p. We note that, here p is an upper bound of the number of attackers, it is not the exact number of

attackers. Hence, this additional knowledge is not too restrictive. With this additional knowledge,

we provide a modified algorithm that has a tighter convergence bound. The results in this part have

been published in [8, 9].

1.4.2 Second order distributed optimization method

For robust distributed second order algorthm, we proposed two algorithms to defend against

Byzantine workers. The first method, named median-based approximate Newton’s method

(MNM), can converge to the neighborhood of the population minimizer when less than half of

the workers are Byzantine attackers. The main idea is to use geometric median to aggregate

information from workers. The geometric median enables the server to mitigate the impact of
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attackers when up to half of the workers are Byzantine attackers. Using these, we prove that the

algorithm can converge to the neighborhood of the population minimizer when q, the number of

Byzantine attackers, is less than m/2 with m being the total number of workers. We show this

result by proving that the distance between the approximate Newton’s direction and true Newton’s

direction can be universally bounded. However, once q > m/2, MNM fail to converge.

The second method, named comparison-based approximate Newton’s Method (CNM), can

converge to the neighborhood of the population minimizer server regardless whether q is larger

or smaller than m/2. Compared with MNM, CNM requires additional computation at the server.

The main idea is similiar to proposed robust distributed gradient descent algorithm, instead of

only compute noisy gradient, it also compute the noisy Newton direction as an approximation

of the ground truth to filter out information from attackers during two times communication in

each iteration. We prove that CNM can converge to the neighborhood of population minimizer

regardless number of Byzantine attackers. The results in this part have been published in [10].

1.4.3 Zeroth order distributed optimization method

For robusted distributed zeroth order algorithm, we propose a new robust zeroth-order information

based distributed optimization algorithm that is robust to Byzantine attacks. We name the method

as zeroth-order adversarially robust alternating direction method of multipliers (ZOAR-ADMM).

At each iteration, each worker will first receive model parameter from its neighbors. Then each

worker will test received parameter information by computing the distance from the received

parameter to the model parameter computed using local data, and then sum all such distances

obtained in history to build a deviation statistic for all neighbor workers. If the deviation statistic

computed for its neighbor worker is smaller than a specially designed threshold, the worker

will accept the model parameter from that neighbor. If the deviation statistic is larger than the

threshold, the worker will reject the model parameter and decide that worker to be an attacker.

After testing, each worker will first update dual variable by using accepted model parameter,

then compute temporary model parameter based on accepting parameter and using deterministic
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gradient approximation from its own data and update new model parameter then broadcast it to its

neighbors. By this method, we prove that the algorithm can solve the optimization problem and the

objective function can converge to the minimum value. We show this result by first investigating

how the distance between model parameter and optimal value is affected by the attack vector

generated by the attackers, and then carefully analyzing how the proposed testing method can

mitigate these effects and eventually proving that the value of objective function of the proposed

algorithm will converge to the optimal value despite the presence of Byzantine attackers. The

results in this part have been submitted in [7].
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Chapter 2

Distributed Gradient Descent Algorithm

Robust to an Arbitrary Number of

Byzantine Attackers

2.1 Introduction

In this chapter, we focus on first order methods. In particular, we aim to design gradient descent

methods that are robust to Byzantine attackers, and analyze their convergence rates. We consider

two different scenarios. In the first scenario, we do not assume any knowledge about the number of

attackers. We provide a convergence proof in this case with minimal assumption about attackers. In

the second scenario, we assume that the number of attackers is bounded from above by a constant

p. We note that, here p is an upper bound of the number of attackers, it is not the exact number of

attackers. Hence, this additional knowledge is not too restrictive. With this additional knowledge,

we provide a modified algorithm that has a tighter convergence bound.

This chapter is organized as follows. In Section 2.2, we describe the model. In Section 2.3,

we describe the proposed robust gradient descent algorithm. In Section 2.4, we analyze the

convergence property of the proposed algorithm. In Section 2.5, we provide numerical examples
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to validate the theoretic analysis and show that we can benefit from the good workers to obtain

a better convergence accuracy. Finally, we offer several concluding remarks in Section 2.6. The

proofs are collected in Appendix.

2.2 Model

In this chapter, we assume that F (θ) discrible in introduction satisfies the following typical

assumption.

Assumption 1. The population risk function F : Θ → R is L-strongly convex, and differentiable

over Θ with M -Lipschitz gradient. That is for all θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ) + 〈∇F (θ), θ′ − θ〉+ h ‖ θ′ − θ ‖2 /2, (2.1)

and

‖ ∇F (θ′)−∇F (θ) ‖≤M ‖ θ′ − θ ‖,

in which ‖ · ‖ is the `2 norm and 0 < h ≤M.

We consider a system with Byzantine workers, in which an unknown subset of workers might

be comprised. Furthermore, the set of compromised workers might change over time. If a worker is

compromised, instead of the gradient calculated from local data, it can send arbitrary information

to the server. Now, we will have a distributed optimization model similiar to figure 1.3, but the

receiving information may not be correct. From figure 2.1, we let Bt denote the set of compromised

workers at iteration t, the server receives data g(j)(θt−1) from j-th worker with

g(j)(θt−1) =

 ∇f
(j)

(θt−1) j /∈ Bt

? j ∈ Bt
, (2.2)

in which ? denotes an arbitrary vector chosen by the attacker.
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Figure 2.1: Distributed optimization model with Byantine attacker

We assume there are up to p Byzantine attackers in the system. Note that, in this chapter, p is

not the exact number of attackers, it is merely an upper bound on the number of attackers. In this

case with Byzantine attackers, if one continues to use the classic batch gradient as in (1.4), the

algorithm will fail to converge even if there is only one attacker [3, 13]. As discussed above, [3,

13] designed algorithms that converge to the neighborhood of the population minimizer if the

number of compromised machines p is less than m/2 (i.e., more than half of the machines are not

compromised).

The goal of the chapter is to design a robust batch gradient descent algorithm that can tolerate

any number of Byzantine attackers.

2.3 Algorithm

In this section, we describe our algorithm that can deal with an arbitrary number of Byzantine

attackers under two scenarios: p being unknown and knowing the value of p.

2.3.1 Unknown p

In the first scenario, we do not have any knowledge about p. Main steps of the algorithm under

the first scenario is listed in Table 2.1. The main idea of our algorithm is to ask the server to

randomly select a small set of data points S0 at very beginning, where |S0| ≤ minj∈[1,m] |Sj|. Once

S0 is selected, it is fixed throughout the algorithm. Then at each iteration t, the server calculates a
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Algorithm 2.1 Proposed algorithm with unknown p
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ.
repeat

randomly selects S0;
1: Broadcasts the current model parameter estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers, where g(j)(θt−1) denote the value received
from worker j;
3: Computes∇f (0)

(θt−1) using S0;
4: Compares g(j)(θt−1) with∇f (0)

(θt−1). If ‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖,
the server accepts it and sets it to be q(l)

t (θt−1);
5: Assume the acceptable value are in Vt, then G(θt−1) ←

∑
l∈Vt wlq

(l)
t (θt−1) +

w0∇f
(0)

(θt−1);
6:Updates θt ← θt−1 − ηG(θt−1);

until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes the gradient∇f (j)

(θt−1);
2: If worker j is honest, it sends ∇f (j)

(θt−1) back to the server; If worker j is compromised, it
sends the value determined by the attacker;

noisy gradient using data points in S0:

∇f (0)
(θt−1) =

1

|S0|
∑
i∈S0

∇f(Xi, θt−1).

Different choices of the size of S0 will strike a tradeoff between convergence speed and

computational complexity.

The server then compares g(j)(θt−1) received from worker j with ∇f (0)
(θt−1). The server will

accept g(j)(θt−1) as authentic value and use it for further processing, if

‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖, (2.3)

where ξ is a constant. The choice of ξ will impact the proposed scheme. Roughly speaking,

choosing a smaller ξ can limit the effect of an attack, but it may also reject more correct information

from honest workers. On the other hand, a larger ξ can increase the probability of data from honest
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workers being accepted, but it will also increase the probability of accepting information from

attackers. We will discuss how to choose this parameter in the analysis.

Assuming there are |Vt| values (which is a random variable) being accepted after the

comparison step at iteration t, we denote these values by q
(1)
t (θt−1), ..., q(|Vt|)

t (θt−1). Then the

server updates the parameters as θt = θt−1 − ηG(θt−1), where

G(θt−1) =
∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1), (2.4)

where wl = |Sl|∑
i∈Vt

|Si|+|S0| .

2.3.2 Known p

In the second scenario, we assume that we know p. We again note that here p is an upper bound of

the number of attackers, it is not the exact number of attackers. Hence, this additional knowledge

is not too restrictive. With this additional knowledge, we modify the algorithm at the server side

above slightly. The worker side remains the same. This modification will allow us to prove a tighter

bound in the convergence analysis section. Main steps of the modified algorithm at the server side

is listed in Table 2.2. The main difference with the algorithm in Table 2.1 is that we now sort the

gradient information accepted by the server in an increasing order by ‖q(i)(θt)−∇f
(0)

(θt)‖, then

keep the first m − p gradient value in a set (as we know the number p). We call this set Ut at

iteration t. Using this notation, the gradient used for updating at the server can be written as

G(θt−1) =
∑
j∈Ut

wjq
(j)
t (θt−1) + w0∇f

(0)
(θt−1),

where wj =
|Sj |∑

i∈Ut
|Si|+|S0| .
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Algorithm 2.2 Proposed algorithm with known p
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ.
repeat

randomly selects S0;
1: Broadcasts the current model parameter estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers, where g(j)(θt−1) denote the value received
from worker j;
3: Computes∇f (0)

(θt−1) using S0;
4: Compares g(j)(θt−1) with∇f (0)

(θt−1). If ‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖,
the server accepts it and sets it to be q(l)

t (θt−1);
5: After accepting, the server collectsm−p gradient information which are closest to its own.
Then G(θt−1)←

∑
j∈Ut wjq

(j)
t (θt−1) + w0∇f

(0)
(θt−1).

6:Updates θt ← θt−1 − ηG(θt−1).
until ‖θt − θ∗‖ ≤ ε.

2.4 Convergence analysis

In this section, we analyze the convergence property of the proposed algorithm. We consider two

different scenarios: 1) In scenario 1, we do not have any knowledge about p; 2) In scenario 2, we

assume that we know the value of p.

In this section, we will prove results that hold simultaneously for all θ ∈ Θ with a high

probability. Hence, in the following, we will drop subscript t − 1. Before presenting detailed

analysis, here we describe the high level ideas. It is well known that if ∇F (θ) is available, then

the gradient descent algorithm will converge to θ∗ exponentially fast. The main idea of our proof

is to show that, regardless of the number of attackers, the distance between G(θ) and ∇F (θ)

is universally bounded in Θ in both scenarios. Hence, G(θ) is a good estimate of ∇F (θ). As

the result, we can then show that the proposed algorithm converges to the neighborhood of the

population minimizer.

2.4.1 Scenario 1: no assumption on p

In this scenario, we assume that we do not know even the upperbound on the number of bad

workers. We first show that ‖G(θ) − ∇F (θ)‖ is universally bounded in Θ regardless the number
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of attackers.

Lemma 2.1. For an arbitrary number of attackers, the distance between G(θ) and ∇F (θ) is

bounded as

‖G(θ)−∇F (θ)‖ ≤ (1 + ξ)‖∇F (θ)−∇f (0)
(θ)‖+ ξ‖∇F (θ)‖, ∀θ. (2.5)

Proof. Please see Appendix A.1.

We next need to bound the two terms in the right hand side of (2.5). The term ‖∇F (θ)‖ =

‖∇F (θ)−∇F (θ∗)‖ can be bounded using the M -Lipschitz gradient assumption in Assumption 1.

In the following, we show that the term ‖∇F (θ) − ∇f (0)
(θ)‖ can also be bounded. For this, we

need to present several assumptions and intermediate results. These assumptions are similar to

those used in [13], [41, 51], and proofs of some lemmas follow closely that of [13].

Assumption 2. There exist positive constants σ1 and α1 such that for any unit vector v ∈ B,

〈∇f(X, θ∗), v〉 is sub-exponential with σ1 and α1, that is,

sup
v∈B

E[exp(λ〈∇f(X, θ∗), v〉)] ≤ eσ
2
1λ

2/2,∀|λ| ≤ 1/α1,

where B denotes the unit sphere {v : ‖v‖2 = 1}.

With this assumption, we first have the following lemma that shows 1
|S0|
∑

i∈S0 ∇f(Xi, θ
∗)

concentrates around∇F (θ∗).

Lemma 2.2. Under Assumption 2, for any δ ∈ (0, 1), let

∆1 =
√

2σ1

√
(d log 6 + log(3/δ))/|S0|, (2.6)

and if ∆1 ≤ σ2
1/α1, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
≤ δ

3
.
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Proof. Please see Appendix A.2.

Second, we define gradient difference h(x, θ) , ∇f(x, θ) − ∇f(x, θ∗) and assume that for

every θ, h(x, θ) normalized by ‖ θ − θ∗ ‖ is also sub-exponential.

Assumption 3. There exist positive constants σ2 and α2 such that for any θ ∈ Θ with θ 6= θ∗ and

any unit vector v ∈ B, 〈h(X, θ) − E[h(X, θ)], v〉/ ‖ θ − θ∗ ‖ is sub-exponential with σ2 and α2,

that is,

sup
θ∈Θ,v∈B

E
[
exp

(
λ〈h(X, θ)− E[h(X, θ)], v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2, ∀|λ| ≤ 1

α2

.

This allows us to show that 1
|S0|
∑

i∈S0 h(Xi, θ) concentrates on E[h(X, θ)] for every fixed θ.

Assumption 2 and 3 ensure that random gradient∇f(θ) has good concentration properties, i.e.,

an average of |S0| i.i.d random gradients 1
|S0|
∑

i∈S0 ∇f(Xi, θ) sharply concentrates on∇F (θ) for

every fixed θ.

Lemma 2.3. If Assumption 3 holds, for any δ ∈ (0, 1) and any fixed θ ∈ Θ, let ∆′1 =
√

2σ2

√
(d log 6 + log(3/δ))/|S0|, and if ∆′1 ≤ σ2

2/α2, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θ)− E[h(X, θ)]

∥∥∥∥∥ ≥ 2∆′1‖θ − θ∗‖

}
≤ δ

3
.

Proof. Please see Appendix A.3.

Assumption 4. For any δ ∈ (0, 1), there exists an M ′ = M ′(δ) such that

Pr
{

sup
θ,θ′∈Θ:θ 6=θ′

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤M ′
}
≥ 1− δ

3
.

Assumption 4 ensures that∇f(X, θ) is M ′-Lipschitz with high probability.

With these assumptions and intermediate lemmas, we are ready to state our universal bound for

‖∇F (θ)−∇f (0)
(θ)‖.
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Proposition 2.1. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖ θ− θ∗ ‖≤ r
√
d} for some r > 0.

For any δ1 ∈ (0, 1),

Pr{∀θ : ‖∇F (θ)−∇f (0)
(θ)‖ ≤ 8∆2‖θ − θ∗‖+ 4∆1} ≥ 1− δ1, (2.7)

in which ∆1 =
√

2σ1

√
(d log 6 + log(3/δ1))/|S0| and ∆2 =

√
2σ2

√
(τ1 + τ2)/|S0|, with τ1 =

d log 18 + d log((M ∨M ′)/σ2), and τ2 = 0.5d log(|S0|/d) + log(3/δ1) + log(
2rσ2

2

√
|S0|

α2σ1
).

Proof. (Outline): The proof relies on the typical ε-net argument. Let Θε = {θ1, ..., θNε} be an

ε-cover of Θ, i.e., for fix any θ ∈ Θ, there exists a θj ∈ Θε such that ‖ θ − θj ‖≤ ε. By triangle

inequality,

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ ‖∇F (θ)−∇F (θj)‖

+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥
+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥ .
Then first term can be upper bounded using Assumption 1. The second term can be bounded using

Assumption 4, and the third term can be bounded using Lemma 2.3. We can then employ union

bound over Θε to finish the argument. Please see Appendix A.4 for details.

Combining Lemma 2.1 and Proposition 2.1, we know that G(θ) is a good approximation of

∇F (θ). Using this fact, we have the following convergence result.

Theorem 1. If Assumptions 1-4 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0, choose

0 < η < L/M2, then regardless of the number of attackers with probability at least 1− δ1 that

‖θt − θ∗‖ ≤ (1− ρ1)t‖θ0 − θ∗‖+ (4η∆1 + 4ηξ∆1)/ρ1,
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in which

ρ1 = 1−
(√

1 + η2M2 − ηh+ 8∆2η + ηξ(8∆2 +M)
)
. (2.8)

Proof. Please see Appendix A.5.

This theorem shows that under an event that happens with a high probability, the estimated θ

can converge to the neighborhood of θ∗ exponentially fast. However, the convergence accuracy

bound is not tighter than the bound one could obtain if the algorithm uses gradient descent

calculated from S0 only. This is because we are working with an adversarial setup, for which

we need to derive a bound that holds in the worst-case scenario. When there is no assumption on p,

the worst-case scenario is when all workers are under attack, which corresponds to the case where

the server can only trust the data from S0 only but it still using data from these Byzantine workers

since these data pass the comparison test. Our numerical results in Section 3.5 will illustrate that

the actual performance of the proposed algorithm is better than the case with using data from

S0 only and it can benefit from the presence of honest workers even when more than half of the

workers are Byzantine workers.

2.4.2 Scenario 2: known p.

In this section, we assume that we know an upper bound on the number of Byzantine workers. Note

that p is not the exact number of Byzantine workers, it is merely an upper bound. Furthermore, p

could be larger than m/2. Hence, this is not a too restrictive assumption. With this additional

knowledge, we can derive a tighter convergence result. To proceed, we use Ht to denote the set of

honest workers whose gradient information are accepted by the server at iteration t, andAt denote

the set of attackers whose information are accepted by the server at iteration t. The values of these

two sets are unknown. We only know that |At| ≤ p. Let k = |Ht| + |At|. Using this notation, the

gradient used for updating at the server can be written as

G(θt) =
∑

j∈Ht∩Ut

wj∇f
(j)

(θt) + w0∇f
(0)

(θt) +
∑

j∈At∩Ut

wjg
(j)(θt),
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in which Ut is defined in Section 3.3.

Similar to Section 2.4.1, we will prove results that hold simultaneously for all θ ∈ Θ with

a high probability. We will show that all gradient information from all honest workers have a

high probability to be accepted, hence we will drop the subscript t from Ht to H. By exploiting

the knowledge of p, we provide a tighter bound on ‖G(θ) − ∇F (θ)‖ than the one presented in

Lemma 2.1.

Lemma 2.4. If there are up to p attackers, at iteration t, the distance between G(θ) and∇F (θ) is

bounded as

‖G(θ)−∇F (θ)‖ ≤
∑

j∈H∩Ut |Sj|+ |S0|∑
j∈Ut |Sj|+ |S0|

‖Ct(θ)−∇F (θ)‖

+
∑

j∈At∩Ut

wj‖g(j)(θ)−∇F (θ)‖, (2.9)

where Ct(θ) =
∑

j∈H∩Ut βj∇f
(j)

(θ) +β0∇f
(0)

(θ) , βj =
|Sj |∑

i∈H∩Ut
|Si|+|S0| and wj =

|Sj |∑
i∈Ut

|Si|+|S0| .

Proof. Please see Appendix A.6.

Before further simplifying (2.9), we present several supporting lemmas.

The following lemma shows that, by choosing ξ properly, the gradient information from an

honest user will be accepted by the server with a high probability.

Lemma 2.5. Suppose we set ξ as c|S0|−1/4 and |S0| sufficiently large, then for each honest worker

j and δ1 ∈ (0, 1)

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ξ‖∇f (0)
(θ)‖,∀θ ∈ Θ (2.10)

holds with probability (1− δ1)2 − δ1.

Proof. Please refer to Appendix A.7.

From Lemma 2.5, we can see that data sent by a honest worker has a high probability to

pass the comparison test in the server. We can define event Υ1 such that information from all |H|
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good workers satisfies (2.10). Using union bound, we know that information from these |H| honest

workers will all be accepted with Pr{Υ1} ≥ 1−δ3,where δ3 = 1−{[(1−δ1)2−δ1]|H|−(|H|−1)}.

We now bound the first term in (2.9), namely ‖Ct(θ)−∇F (θ)‖ at iteration t. Towards this

goal, consider a set NCt = {C1
t , C2

t , C3
t , ...}, each of which represents one possibility of choosing

|H ∩ Ut| workers from |H| at iteration t. We have |NCt| =
( |H|
|H∩Ut|

)
.

Proposition 2.2. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖ θ−θ∗ ‖≤ r
√
d} for some positive

parameter r, at iteration t, for any δ2 ∈ (0, 1)

Pr{∀θ : ‖Ct(θ)−∇F (θ)‖ ≤ 8∆6‖θ − θ∗‖+ 4∆5} ≥ 1− δ2,

in which

∆5 =
√

2σ1

√
(d log 6 + log(3|NCt|/δ2))/|St|, (2.11)

∆6 =
√

2σ2

√
(τ1 + τ2)/|St|, (2.12)

with τ1 = d log 18 +d log((M ∨M ′)/σ2), τ2 = 0.5d log

(
maxClt∈NCt

(
∑
j∈Cl

|Sj |+|S0|)

d

)
+ log(3/δ2) +

log(
2rσ2

2

√
|St|

α2σ1
), and |St| = minClt∈NCt(

∑
j∈Clt
|Sj|+ |S0|).

Proof.

‖Ct(θ)−∇F (θ)‖ ≤ sup
Clt∈NCt

‖Ql
t(θ)−∇F (θ)‖, (2.13)

where

Ql
t(θ) =

∑
j∈Clt

βj∇f
(j)

(θ) + β0∇f
(0)

(θ), (2.14)

where βj =
|Sj |∑

i∈Clt
|Si|+|S0|. Then by union bound, at iteration t, we need to proof

Pr{∀θ :
∥∥Ql

t(θ)−∇F (θ)
∥∥ ≤ 8∆6‖θ − θ∗‖+ 4∆5} ≥ 1− δ2

|NCt|
.

The remaining proof is similar to the proof of Proposition 2.1 and hence is omitted for brevity.
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For the second term in (2.9), each Byzantine gradient information in Ut must follow the

inequality

‖g(θ)−∇F (θ)‖ ≤ max
j∈H

∥∥∥∇f (j)
(θ)−∇F (θ)

∥∥∥ . (2.15)

Using this fact, we have the following proposition.

Proposition 2.3. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖ θ−θ∗ ‖≤ r
√
d} for some positive

parameter r. For any δ2 ∈ (0, 1)

Pr{∀θ : max
j∈H

∥∥∥∇f (j)
(θ)−∇F (θ)

∥∥∥ ≤ 8∆8‖θ − θ∗‖+ 4∆7} ≥ 1− δ2,

in which

∆7 =
√

2σ1

√
(d log 6 + log(3|H|/δ2))(min

j∈H
|Sj|), (2.16)

and

∆8 =
√

2σ2

√
(τ3 + τ4)/min

j∈H
|Sj|, (2.17)

with τ3 = d log 18 + d log((M ∨ M ′)/σ2), and τ4 = 0.5d log
(

maxj∈H |Sj |
d

)
+ log(3/δ2) +

log(
2rσ2

2

√
minj∈H |Sj |
α2σ1

).

Proof. The proof is similar to the proof of Proposition 2.2 and hence is omitted for brevity.

Using these two propositions, we now further bound (2.9) from above by examining the

worst-case scenario with regards to Ut. At iteration t, the right-hand side of (2.9) has a high

probability to be bounded by

8∆6‖θ − θ∗‖+ 4∆5 + 8(∆8 −∆6)‖θ − θ∗‖
∑

j∈B∩Ut |Sj|∑
j∈Ut |Sj|+ |S0|

+

4(∆7 −∆5)

∑
j∈B∩Ut |Sj|∑

j∈Ut |Sj|+ |S0|

(2.18)

When |H ∩ Ut| ≥ 1, we can find ∆8 ≥ ∆6 and ∆7 ≥ ∆5, as ∆8 and ∆7 have a smaller

denominator. Hence, the coefficient of (
∑

j∈B∩Ut |Sj|)/(
∑

j∈Ut |Sj| + |S0|) in the second term
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and third term of (2.18) are non-negative. As the result, (2.18) is a nondecreasing function of

(
∑

j∈B∩Ut |Sj|)/(
∑

j∈Ut |Sj|+ |S0|). We now consider two different cases with fixed denominator.

Case 1): p < m/2. In this case, p < m−p, hence max{
∑

j∈B∩Ut |Sj|} with setting |B∩Ut| = p

will maximize (2.18) and also maximize the right-hand side of (2.9) in iteration t. This implies that,

when p < m/2, the worst-case scenario is that there are p Byzantine workers and these gradients

are all in Ut all the time.

Case 2): p ≥ m/2. In this case, since |B∩Ut| ≤ m−p andm−p ≤ p, max{
∑

j∈B∩Ut |Sj|}with

setting |B∩Ut| = m−p−1 will maximize (2.18) as argued above. We need to consider additional

value when max{
∑

j∈B∩Ut |Sj|} with |B ∩ Ut| = m− p, which means m− p gradient information

in Ut are all from Byzantine workers. In this case ∆8 < ∆6 and ∆7 < ∆5, since we assume

minj∈H |Sj| ≥ |S0|. The obtained bound with max{
∑

j∈B∩Ut |Sj|} by setting |B ∩ Ut| = m− p is

larger than the bound obtained by setting |B ∩ Ut| = m− p− 1 in (2.18). This implies that, when

p ≥ m/2, the worst-case occurs when all m − p gradient information in Ut are from Byzantine

workers.

From the discussion above, we know that with a high probability, the gradient information

from all honest works will be accepted. Furthermore, regardless of the true number of attackers,

the right-hand side of (2.9) is bounded by the scenario where min{m − p, p} number of gradient

in Ut are from Byzantine workers all the time.

With these supporting lemmas and propositions, we are ready for our main convergence result

under 2 cases.

Theorem 2. If there are up to p attackers, Assumptions 1- 4 hold and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d}

for some r > 0, choose 0 < η < L/M2, we have

‖θt − θ∗‖ ≤ (1− ρ2)t‖θ0 − θ∗‖+ (ηγ1)/ρ2, (2.19)
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hold simultaneously for all θt with probability at least 1− 2δ2 − δ3. Here

ρ2 = 1−
(√

1 + η2M2 − ηh+ ηγ2

)
, (2.20)

γ1 = 4(1− wmax)∆5 + 4wmax∆7, (2.21)

and

γ2 = 8(1− wmax)∆6 + 8wmax∆8, (2.22)

with wmax = max{(
∑

j∈B∩Ut |Sj|)/(
∑

j∈Ut |Sj| + |S0|)} and |B ∩ Ut| = min{m − p, p} and

|Ut| = m− p.

Proof. Please see Appendix A.8.

Theorem 2 shows that under the event which would happen with highly probability, the

estimated θ can converge to the neighborhood of θ∗ exponentially fast.

From the discussion above, since
∑

j∈H∩U |Sj| + |S0| is greater or equal to |S0|, ∆6 ≤ ∆2.

Then, γ2 ≤ (8∆2 + 8ξ∆2 + ξM) and ρ2 ≥ ρ1, Hence, the convergence performance benefits from

knowing an upperbound on the number of Byzantine workers.

2.5 Numerical results

In this section, we provide numerical examples, with both synthesized data and real data, to

illustrate the analytical results.

2.5.1 Synthesized data

We first use synthesized data. In this example, we focus on linear regression, in which

Yi = XT
i θ
∗ + εi, i = 1, 2, · · · , N,
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where Xi ∈ Rd, θ∗ is a d× 1 vector and εi is the noise. We set X = [X1, · · · , XN ] as d×N data

matrix.

In the simulation, we set the dimension d = 20, the total number of data N = 100000, the

number of workers m = 100, and evenly distribute data among these machines. We set εi
i.i.d.∼

N (0, 1). Here N (µ, σ2) denotes Gaussian variables with mean µ and variance σ2. Furthermore,

we set |S0| = 1000, ξ = 1.5|S0|−
1
4 = 0.2667. We use N (0, 4) to independently generate each

entry of θ∗. After θ∗ is generated, we fix it. The data matrix X is generated randomly by Gaussian

distribution with µ = 0 and fixed known maximal and minimal eigenvalues of the correlation

matrix XTX. Let λmax(·) and λmin(·) denote the maximal and minimal eigenvalue of XTX

respectively. In the following figures, we use λmax(XTX) = 200 and λmin(XTX) = 2 to generate

the data matrix X, then generate Yi using the linear relationship mentioned above. We illustrate

our results with two different attacks: 1) Inverse attack, in which each attacker first calculates

the gradient information ∇f (j)
(θt−1) based on the its local data but sends the inversed version

−∇f (j)
(θt−1) to the server; and 2) Random attack, in which the attacker randomly generates

gradient value. In our simulation, we compare three algorithms: 1) Gradient descent using only

data from S0, i.e., the server ignores information from all workers; 2) Algorithm proposed in [13];

and 3) The proposed algorithm described in Table 2.1.
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Figure 2.2: Synthesized data: 90 Inverse attack. Median-mean algorithm in [13]
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Figure 2.3: Synthesized data: 48 Inverse attack. Median-mean algorithm in [13]

Figures 2.2 and 2.3 plot the value of the loss function vs iteration with 90 and 48 inverse attacks

respectively. When the attacker number is 48, which is less than half of the total number, all three

algorithms can converge. However, from Figure 2.2, it is clear that the algorithm in [13] does

not converge as the number of attackers is more than half of the total number of machines. The

proposed algorithm, however, still converges in the presence of 90 attackers. Furthermore, even

though there are only 10 honest workers and the server does not know the identities of these honest

workers, the proposed algorithm can still benefit from these workers, as the proposed algorithm

outperforms the algorithm that only relies on information from S0.
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Figure 2.4: Synthesized data: 90 Random attack. Median-mean algorithm in [13]
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Figure 2.5: Synthesized data: 48 Random attack. Median-mean algorithm in [13]

Figures 2.4 and 2.5 plot the value of the loss function vs iteration with 90 and 48 random attacks

respectively. Similar to the scenario with inverse attack, all three algorithms can converge when

there are less than half of the total number attackers. However, when there are 90 attackers, our

algorithm outperforms the algorithm that uses S0 only, while the algorithm in [13] diverges.
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Figure 2.6: Synthesized data: 60 Random attack.

Figures 2.6 and 2.7 plot the value of the loss function vs iteration with 60 random and 60

inverse attacks respectively for the cases with and without knowledge of p. For the case with

knowledge about p, we set p = 75. From Figures 2.6, we can see that the proposed algorithm

without knowing p has a lower convergence accuracy and convergence rate when comparing with
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Figure 2.7: Synthesized data: 60 Inverse attack.

the proposed algorithm knowing p. The main reason is that, when facing random attack, some

attack vectors can pass the comparison test. In Figure 2.7, since the attacks are inverse attack, the

proposed algorithm can successfully reject all the information from attackers, then the proposed

algorithm without knowing p has more data to update the parameter.
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Figure 2.8: Synthesized data: Different ξ.

In Figure 2.8, we show the effect of different ξs on the convergence speed on testing with 90

inverse attack by using the proposed algorithm without knowledge of p. With ξ = 0.55348, the

comparison step (2.3) can successfully reject attack data with large amplitude, and our proposed
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algorithm still benefit from the good workers (even though their identities are unknown). With

ξ = 2.1339, the comparison step (2.3) can not reject inverse attack, then our proposed algorithm

will diverge. With ξ = 0.088914, the comparison step (2.3) rejects all the accepted data since ξ

is too small, then our proposed algorithm has the same performance as using S0 only. Hence, the

convergence speed in our proposed algorithm can be improved by choosing an appropriate ξ.

Table 2.1 lists the running time for three algorithms under 60 inverse attacks, and we measure

the number of iterations needed for the loss function to reach 1.9. In Table 2.1, the simulations are

produced under the same testing environment. From Table 2.1, we can see that, compared with the

case of using data from S0 only, the proposed algorithms have a higher complexity per iteration,

but they reduce the number of iterations. Both proposed algorithms have a better performance than

the gradient descent using |S0| only, since they can benefit from the gradient information received

from workers, even though the server does not know whether the workers are honest or not.

Table 2.1: Running time comparison

loss function 1.9 time/iter iteration time
algorithm without p 1.0904× 10−4 140 0.0153
algorithm with p 1.5575× 10−4 174 0.0271
GD using S0 only 9.5889× 10−5 300 0.0288

2.5.2 Real data

Now we test our algorithms on real datasets MNIST [25] and CIFAR-10 [23], and compare our

algorithms with various existing work [3,13,50]. MNIST is a widely used computer vision dataset

that consists of 70,000 28×28 pixel images of handwritten digits 0 to 9. We use the handwritten

images of 3 and 5, which are the most difficult to distinguish in this dataset, to build a logistic

regression model. After picking all 3 and 5 images from the dataset, the total number of images

is 13454. It is divided into a training subset of size 12000 and a testing subset of size 1454. The

CIFAR-10 dataset consists of 60,000 32x32 images in 10 classes. For CIFAR-10 dataset, we pick

the images of car and plane, and build a training subset of size 10000 and a testing subset of 2000.
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For these two datasets, we set the number of workers to be 50 and we random pick 200 images from

both subset to build S0, and set the step size to be 0.01 for MNIST and 0.005 for CIFAR-10. Similar

to the synthesized data scenario, we illustrate our results with two different attacks, namely inverse

attack and random attack, and compare the performance of five algorithms: Zeno [50], where we

set the cutoff number (a design parameter in Zeno) to be 5, Krum [3], median-mean [13], proposed

algorithm without known p and the algorithm that server using only data S0. The following figures

show how the testing accuracy varies with training iteration.
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Figure 2.9: MNIST: 20 Random attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.10: MNIST: 30 Random attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.11: CIFAR-10: 20 Random attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.12: CIFAR-10: 30 Random attack. Zeno [50], Krum [3], Median-mean algorithm [13]

Figures 2.9, 2.10, 2.11, and 2.12 illustrate the impact of 20 and 30 random attacks on different

algorithms respectively. Figures 2.9, 2.10 are generated using MNIST, while Figures 2.11, and 2.12

are generated using CIFAR-10. Figure 2.9 and 2.11 show that all algorithms have high accuracy

when there are 20 attacks. Gradient descent using S0 only have the lowest accuracy since it uses a

small size of data for training. The proposed algorithm has the best performance even though less

than half of the workers are attackers. Figure 2.10 and 2.12 show the algorithm using median-mean

and Krum fail to predict if there are 30 attackers. Our proposed algorithm and Zeno still show high

accuracy, and outperform the algorithm that only relies on information from S0. Furthermore, the
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proposed algorithm has better performance than Zeno.
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Figure 2.13: MNIST: 20 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.14: MNIST: 30 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]

We plot the impact of different number of inverse attacks on real data in Figures 2.13, 2.14, 2.15,

and 2.16 using MNIST and CFAIR10 respectively. All algorithms can converge when there are 20

inverse attacks. However, as the number of attackers is very close to half of the total number, the

algorithm in [13] converges very slowly. Again, the proposed algorithm has the best performance

even though less than half of the workers are attackers. Furthermore, if there are 30 Byzantine

workers, Krum and median-mean algorithm cannot properly work. The algorithm that only based

on information from S0 still performs well, since it does not use the information from all workers.
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Figure 2.15: CIFAR-10: 20 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.16: CIFAR-10: 30 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]

Our proposed algorithm and Zeno can still work well. They can benefit from the 20 good workers,

and outperform the scheme with S0 only. Our proposed algorithm also outperforms Zeno.

In Figures 2.14 and 2.17, we plot the impact of choosing different cutoff values in Zeno. In

Figure 2.17, the cutoff value is 20, Zeno and our proposed algorithm both use all good gradient

information, so both algorithms have similar performance. In Figure 2.14, the cutoff value is 5.

Although there are 20 good workers, Zeno can only benefit from 5 good workers, but our proposed

algorithm can still benefit from all good workers and has a better performance.

Figures 2.18 and 2.19 illustrate the testing accuracy v.s. training time under 20 and 30 inverse
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Figure 2.17: MNIST: 30 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.18: MNIST: 20 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]

attacks with different algorithms. All algorithms can converge when there are 20 inverse attacks.

Since algorithms have higher complexity, some algorithms converges slower than the gradient

descent using |S0| only. But our proposed algorithm has a better performance in general.

Figure 2.20 plots the value of the accuracy for t = 1, · · · , 250 with 3 different ξs on testing

with 30 inverse attacks by using the proposed algorithm without p. Similar to the scenario with

synthesized data, the choice of ξ has an impact on the accuracy of the algorithm. In particular, if ξ

is too large, our algorithm will have a low accuracy since the the comparison step (2.3) will accept

more data but it may fail to reject wrong information. However, when setting an appropriate ξ, our
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Figure 2.19: MNIST: 30 Inverse attack. Zeno [50], Krum [3], Median-mean algorithm [13]
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Figure 2.20: MNIST: Different ξ.

algorithm can have a better accuracy.

Figure 2.21 plots the accuracy of three algorithms: the proposed algorithm without knowing p,

the proposed algorithm known p and the algorithm using S0 only. We consider the p = 40 while the

actual number of Byzantine worker is 30. From Figure 2.21, we can see that the proposed algorithm

without knowing p has a higher accuracy and convergence rate than the proposed algorithm

knowing p, since the algorithm knowing p discards some correct gradient information and use

less gradient information to update. Both proposed algorithms have a better performance than the

gradient descent using S0 only, since they can benefit from the gradient information received from
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Figure 2.21: MNIST: 30 Random attack.

workers.

In Figure 2.22, we plot the accuracy of three algorithms: the proposed algorithm, the algorithm

using S0 only and the gradient descent algorithm using all data. We consider the case when there is

no Byzantine attacker in the system. From Figure 2.22, we can see that the proposed algorithm have

similar performance when comparing with gradient descent using all data. Proposed algorithm and

gradient descent using all data have a better performance than the gradient descent using S0 only,

since they can benefit from the gradient information received from workers.

Figure 2.23 plots the accuracy of proposed algorithms and the algorithm using S0 only with

three different size of S0. We consider that there are 20 random attacks. From Figure 2.23, we can

see that the algorithms using different size of S0 only show different performance, but proposed

algorithms showing similar performance since after comparison testing, proposed algorithms can

benefit from the gradient information received from workers.

2.6 Conclusion

In this chapter, we have proposed a robust gradient descent algorithm that can tolerant an

arbitrary number of Byzantine attackers. We have shown that the proposed algorithm converges

regardless the number of Byzantine attackers and have provided numerical examples to illustrate
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Figure 2.22: MNIST: No attack.
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Figure 2.23: MNIST: 20 Random attack.
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the performance of the proposed algorithm. In terms of future work, we hope to extend the analysis

to scenarios with non-convex cost functions.

46



Chapter 3

Distributed Approximate Newton’s

Algorithm Robust to Byzantine Attackers

3.1 Introduction

First-order methods significantly reduce the amount of local computation. But first-order methods

may require a far greater number of iterations for communication. Some algorithms also require

synchronization in every iteration for parameter updating. In order to mitigate the negative

impact of the large number of iterations for distributed optimization, we will propose two robust

approximate Newton’s algrothms in this chapter.

The first method, named median-based approximate Newton’s method (MNM), can converge

to the neighborhood of the population minimizer when less than half of the workers are Byzantine

attackers. The main idea is to use geometric median, which enables the server to mitigate the impact

of attackers when up to half of the workers are Byzantine attackers, to aggregate information from

workers.

The second method, named comparison-based approximate Newton’s Method (CNM), can

converge to the neighborhood of the population minimizer server regardless whether q is larger

or smaller than m/2. Compared with MNM, CNM requires additional computation at the server.
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The main idea is to ask server to randomly collect a small clean dataset and compute noisy value

as an approximation of the ground truth to filter out information from attackers.

In this chapter, we analyze the two proposed approximate Newton’s method to tolerate

Byzantine attackers, and show that that these methods can converge to the neighborhood of the

population minimizer server. This chapter is organized as follows. In Section 3.2, we describe

the model. In Section 3.3, we describe the proposed algorithms. In Section 3.4, we analyze the

convergence property of the proposed algorithms. In Section 3.5, we provide numerical examples

to validate the theoretic analysis. Finally, we offer several concluding remarks in Section 3.6. The

proofs are collected in Appendix.

3.2 Model

We consider the same population optimizaiton problem in (1.1) and emprical optimization problem

in (1.2). And our goal is the same goal as in Chapter 2, to infer the model parameter θ∗ ∈ Rd of

the unknown distribution.

In this chapter, we assume the population risk function F (θ) satisfy Assumption 1.

We will again consider a system with Byzantine workers. Furthermore, the set of compromised

workers might change over time. In each iteration, if a worker is compromised, it can send arbitrary

information to the server when sending gradient information and Newton’s direction. We will again

let Bt denote the set of compromised workers at iteration t. When receiving gradient information,

the server receives data g(j)
1 (θt−1) from the j-th worker with

g
(j)
1 (θt−1) =

 ∇f
(j)

(θt−1) j /∈ Bt

? j ∈ Bt
, (3.1)

in which ? denotes an arbitrary vector chosen by the attacker. After receiving g(j)
1 from workers,
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the server computes and broadcasts

g(θt−1) = Aggre1(g
(1)
1 (θt−1), ..., g

(m)
1 (θt−1)), (3.2)

in which Aggre1(·) depends on how the server aggregates gradient information from workers.

Each worker then computes Newton’s direction based on g(θt−1). After workers send Newton’s

direction, the server receives data g(j)
2 (θt−1) from j-th worker

g
(j)
2 (θt−1) =

 H−1
j,t−1g(θt−1) j /∈ Bt

? j ∈ Bt
. (3.3)

The server finally computes the final update direction using

G(θt−1) = Aggre2(g
(1)
2 (θt−1), ..., g

(m)
2 (θt−1)), (3.4)

in which in which Aggre2(·) depends on how the server processes g(j)
2 (θt−1) from workers.

Note that if both Aggre1(·) and Aggre2(·) are mean functions, the algorithm is the same as the

GIANT algorithm [48]. But from Introduction 1.3, the GIANT algorithm is not robust to adversary

attacks. The goal of this chapter is to design robust Newton’s method algorithms, by designing

proper Aggre1(·) and Aggre2(·), that can tolerate Byzantine attacks.

3.3 Algorithm

In this section, we describe two algorithms that can handle different number of Byzantine attackers.

Let q be the number of attackers in the system. We will first describe our algorithm that can deal

with q < m/2, i.e., up to half of the total number of workers are Byzantine attackers. We then

describe our algorithm to deal with an arbitrary number of Byzantine attackers, i.e., there is no

restrict on q. This algorithm requires additional computations at the server.
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Algorithm 3.1 Median-based Approximate Newton’s Method (MNM) Algorithm
Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers; g(j)(θt−1) denote the value received from
worker j;
3: Computes g(θt−1) = med{g(1)

1 (θt−1), ..., g
(m)
1 (θt−1)};

4: Broadcasts the current gradient estimator g(θt−1) to all workers;
5: Waits to receive estimators from the m workers; g(j)

2 (θt−1) denote the value received from
worker j;
6: Computes G(θt−1) = med{g(1)

2 (θt−1), ..., g
(m)
2 (θt−1)};

7: Updates θt = θt−1 − ηG(θt−1);
until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes the gradient∇f (j)

(θt−1);
2: If worker j is honest, it sends∇f (j)

(θt−1); If not, it sends the value determined by the attacker;
3: Receives gradient estimator g(θt−1), computes the parameter H−1

j,t−1g(θt−1) ;
4: If worker j is honest, it sends H−1

i,t−1g(θt−1) back to the server; If not, it sends the value
determined by the attacker;

3.3.1 Case with q < m/2

In the first scenario, we consider the case where there are at most q < m/2 Byzantine attackers.

We propose a median-based approximate Newton’s method (MNM). Main steps of the algorithm

are listed in Algorithm 3.1.

Instead of computing the average, the main idea of our algorithm is to use geometric median of

the received information as the aggregation function aggre1(·) and aggre2(·). In particular, after

receiving the gradient information from workers, the server computes

g(θt−1) = med{g(1)
1 (θt−1), ..., g

(m)
1 (θt−1)}, (3.5)

in which med{·} is the geometric median of the vectors. Geometric median is a generalization of

median in one-dimension to multiple dimensions, and has been widely used in robust statistics. In

particular, let xi ∈ Rd, i = 1, · · · , n, then the geometric median of the set {x1, x2, ..., xn} is define
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as

med{x1, x2, ..., xn} := arg min
x

n∑
i=1

‖xi − x‖. (3.6)

Then the server broadcasts value g(θt−1) to all workers. After receiving the Newton’s direction

information, the server compute the final Newton’s direction information by geometric median

again,

G(θt−1) = med{g(1)
2 (θt−1), ..., g

(m)
2 (θt−1)}. (3.7)

Finally, the server uses G(θt−1) to update parameter θt−1,

θt = θt−1 − ηG(θt−1). (3.8)

3.3.2 Case with an arbitrary number of Byzantine attackers

The MNM algorithm described in Section 3.3.1 will converge if q < m/2, which will be shown

in Section 3.3. However, it will fail to converge once q > m/2. In this subsection, we propose

another algorithm, named comparison-based approximate Newton (CNM) method, that converges

for an arbitrary value of q, regardless whether q is larger or smaller than m/2. Compared with the

MNM algorithm, the CNM algorithm needs additional computation at the server side. In particular,

we assume that the server keep a small set of clear data to compute a noisy gradient and a noisy

Newton’s direction. These information, which are noisy version of the ground truth, will help the

server make decision to whether accept information from each worker or not. Main steps of the

algorithm are listed in Algorithm 3.2.

More specifically, in our algorithm, the server will randomly select a small set of data points S0

at the very beginning, where |S0| ≤ |Sj| and j ∈ [1,m]. Once S0 is selected, it is fixed throughout

the algorithm. Then at each iteration t, the server calculates a noisy gradient using data points in

S0:

∇f (0)
(θt−1) =

1

|S0|
∑
j∈S0

∇f(Xj, θt−1). (3.9)
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Algorithm 3.2 Comparison-based approximate Newton’s Method (CNM) Algorithm
Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers; g(j)(θt−1) denote the value received from
worker j;
3: Accepts g(j)

1 (θt−1) which pass test ‖g(j)
1 (θt−1)−∇f (0)

(θt−1)‖ ≤ ξ1‖∇f
(0)

(θt−1)‖, consider
them in set A(1).
4: Computes g(θt−1) = 1

1+|A(1)|(
∑

i∈A(1) g
(i)
1 (θt−1) +∇f (0)

(θt−1));
4: Broadcasts the current gradient estimator g(θt−1) to all workers;
5: Accepts g(j)

2 (θt−1) which pass test ‖g(j)
2 (θt−1)− H̃−1

0 g(θt−1)‖ ≤ ξ2‖H̃−1
0 g(θt−1)‖, consider

them in set A(2).
6: Computes G(θt−1) = 1

1+|A(2)|(
∑

i∈A(2) g
(i)
2 (θt−1) + H̃−1

0 g(θt−1));
7: Update model parameter θt = θt−1 −G(θt−1) ;

until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes the gradient∇f (j)

(θt−1);
2: If worker j is honest, it sends∇f (j)

(θt−1); If not, it sends the value determined by the attacker;
3: Receives gradient estimator g(θt−1), computes the parameter H̃−1

j,t−1g(θt−1);
4: If worker j is honest, it sends H̃−1

i,t−1g(θt−1) back
to the server; If not, it sends the value determined by the attacker;

After computing ∇f (0)
(θt−1), the server compares g(j)

1 (θt−1) received from worker j with

∇f (0)
(θt−1). The server will accept g(j)

1 (θt−1) as authentic value and use it for further processing,

if

‖g(j)
1 (θt−1)−∇f (0)

(θt−1)‖ ≤ ξ1‖∇f
(0)

(θt−1)‖ (3.10)

where ξ1 is a constant. The server will collect all accepted g(j)
1 (θt−1) in setA(1). The main enabling

observation is that, even though ∇f (0)
(θt−1) is noisy, it is an approximation of the ground truth

and hence can be used to filter out bad information from Byzantine workers as done in (3.10).

Then the server computes g(θt−1) based on the accepted gradient information in set A(1):

g(θt−1) =
1

1 + |A(1)|

∑
i∈A(1)

g
(i)
1 (θt−1) +∇f (0)

(θt−1)

 .
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The server will broadcast g(θt−1) to all workers, each of which will compute H̃−1
j,t−1g(θt−1), where

H̃j,t−1 = Hj,t−1 +µI with µ ≥ 0 and I being the identity matrix. Here µI is added to make sure the

matrix is invertible. The server also computes a noisy Newton’s direction H̃−1
0 g(θt−1), in which

H̃0 is computed using data points in S0:

H̃0 =
1

|S0|
∑
i∈S0

∇2f(Xi, θt−1) + µI. (3.11)

Then the server compares g(j)
2 (θt−1) received from worker j with H̃−1

0 g(θt−1). If the following

condition is satisfied

‖g(j)
2 (θt−1)− H̃−1

0 g(θt−1)‖ ≤ ξ2‖H̃−1
0 g(θt−1)‖ (3.12)

the server will collect g(j)
2 (θt−1) in set A(2). Here, ξ2 is a constant. Then the server computes the

final update direction:

G(θt−1) =
1

1 + |A(2)|

∑
i∈A(2)

g
(i)
2 (θt−1) +H−1

0 g(θt−1)

 . (3.13)

3.4 Convergence analysis

In this section, we analyze the convergence property of the proposed algorithms.

3.4.1 Convergence of MNM algorithm

In this section, we will prove results that hold simultaneously for all θ ∈ Θ with a high probability.

Hence, in the following, we will drop subscript t − 1. Before presenting detailed analysis, here

we describe the high level ideas. If H−1∇F (θ) is available, where H = ∇2F (θ), the Newton’s

method will converge to θ∗. The main idea of our proof is to show that the distance between G(θ)

computed in (3.7) and H−1∇F (θ) is universally bounded in Θ when the number of attackers is at
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most m/2. Hence, G(θ) is a good estimate of H−1∇F (θ). As the result, we can then show that the

proposed algorithm converge to the neighborhood of the population minimizer.

We first show that ‖G(θ) − H−1∇F (θ)‖ is universally bounded in Θ. To start with, we first

write

‖H−1∇F (θ)−G(θ)‖

= ‖H−1∇F (θ)−med{g(1)
2 (θ), ..., g

(m)
2 (θ)}‖

= ‖Z(θ)−H−1g(θ) +H−1∇F (θ)‖

≤ ‖Z(θ)‖+ ‖H−1(g(θ)−∇F (θ))‖,

≤ ‖Z(θ)‖+ ‖H−1J(θ)‖, (3.14)

where

Z(θ)=med{H−1g(θ)− g(1)
2 (θ), ..., H−1g(θ)− g(m)

2 (θ)}

=med{Z1(θ), ..., Zm(θ)}, (3.15)

and

J(θ) = med{∇F (θ)− g(1)
1 (θ), ...,∇F (θ)− g(m)

1 (θ)}

= med{J1(θ), ..., Jm(θ)}. (3.16)

To further bound the terms in (3.14), we need to use Assumption 2-4 in Chapter 2 and new

assumption presented below.

We also assume data in each worker j ∈ [1,m] has following assumption.

Assumption 5. For any δ ∈ (0, 1/|Sj|), there exists an M ′ = M ′(δ) and h′ = h′(δ) such that

Pr

{
∀θ, θ′ ∈ Θ, h′ ≤ ‖∇f(X, θ)−∇f(X, θ′)‖

‖θ − θ′‖
≤M ′

}
≥ 1− δ

3
.
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Assumption 5 ensures that∇f(X, θ) in each worker is M ′-Lipschitz and f(X, θ) is h′ strongly

convex with high probability.

Now, we make another standard assumption in analyzing Newton’s method for population risk.

Assumption 6. The Hessian matrix ∇2F (θ) is L-Lipschitz continuous,i.e, there exists an L such

that for θ, θ′ ∈ Θ

‖∇2F (θ)−∇2F (θ)‖2 ≤ L‖θ − θ′‖,

in which ‖ · ‖2 is the matrix spectral norm.

From (3.15), we need to bound the geometric median Z(θ) of Z1(θ), ..., Zm(θ). We will use

the following property of the geometric median from [31].

Lemma 3.1. [31] Let x1, x2, ..., xn be n points in a Hilbert space. Let x∗ denote the geometric

median of these points. For any α ∈ (0, 1/2), and given r > 0, if
∑n

i=1 1{‖xi‖≤r} ≥ (1− α)n, then

‖x∗‖ ≤ Cαr, (3.17)

where

Cα =
2(1− α)

1− 2α
. (3.18)

From Lemma 3.1, we can see that, if majority of points are inside the Euclidean ball of radius

r centered at origin, then the geometric median must be inside the Euclidean ball of radius Cαr. To

use this lemma, we need to show more than half of information received by the server are bounded

by some quantity.

We first have the following lemma regarding the spectral norm of Hi −H .

Lemma 3.2. If Assumption 5 holds, for any δ ∈ (0, 1), with probability at least 1 − δ
3
, |Sj| data

satisfy

h′ ≤ ‖∇2f(X, θ)‖2 ≤M ′, (3.19)
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for any δ′3 ∈ (0, 1), let

∆3 =

√
14(M ∨M ′)2 log(2d/δ′3)

3|Si|
, (3.20)

then

Pr {‖Hi −H‖2 ≤ ∆3} ≥ 1− δ2. (3.21)

with δ2 = δ′3 + δ
3

and δ2 ∈ (0, 1).

Proof. Please see Appendix B.1 for detail.

Now, with these lemmas and assumptions, when worker i is honest, we can show the bound for

Zi.

Proposition 3.1. Suppose Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some

r > 0. For any δ3 ∈ (0, 1), α ∈ (q/m, 1/2) and δ4 = δ2 + e−mD(α−q/m‖δ3),

Pr

{
∀θ : ‖Zi(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
‖θ − θ∗‖+

4Cα∆3∆1

hh′

}
≥ 1− δ4. (3.22)

where ∆1 =
√

2σ1

√
(d log 6 + log(6/δ3))/|Si|, ∆2 =

√
2σ2

√
(τ1 + τ2)/|Si|, with τ1 = d log 18+

d log(M∨M ′/σ2), τ2 = 0.5d log(|Si|/d)+log(6/δ3)+log(
2rσ2

2

√
|Si|

α2σ1
), Cα = 2(1−α)

1−2α
andD(δ′‖δ) =

δ′ log δ′

δ
+ (1− δ′) log 1−δ′

1−δ .

Proof. Please see Appendix B.2 for details.

Now we have already shown that for honest workers, the local Newton’s direction received at

the server is uniformly close to the true Newton’s direction. Now using Lemma 3.1, we can show

the median Z(θ) is bounded.

Proposition 3.2. Suppose Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some

r > 0. For any α ∈ (q/m, 1/2) and 0 < δ4 < α− q/m,

Pr

{
∀θ : ‖Z(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα‖θ − θ∗‖+

4C2
α∆3∆1

hh′

}
≥ 1− e−mD(α−q/m‖δ4). (3.23)
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Proof. Please see Appendix B.3.

With Proposition 3.2, we are ready to show that G(θ) is a good approximation of H−1∇F (θ)

from (3.14), and show the convergence of the proposed MNM algorithm.

Theorem 3. If Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0, then

for any 0 < η ≤ 1, α ∈ (q/m, 1/2), 0 < δ3 < α − q/m and 0 < δ4 < α − q/m with probability

at least 1− e−mD(α−q/m‖δ3) − e−mD(α−q/m‖δ4) that

‖θt − θ∗‖ ≤ ρ‖θt−1 − θ∗‖+
ηL‖θt−1 − θ∗‖2

2h
+

4

hh′
C2
α∆3∆1 + η

4

h
Cα∆1,

where

ρ = 1− η + η
8

hh′
C2
α∆3∆2 + η

8

h
Cα∆2 + ηCα

∆3M

hh′
(3.24)

Proof. Please see Appendix B.4.

This theorem shows that under an event that happens with a high probability, the estimated

θ can converge to the neighborhood of θ∗ with a linear-quadratic rate. Since we consider θ∗ ∈

arg minθ∈Θ F (θ), there is always a gap between estimator θ and θ∗. This gap is due to the

approximation error introduced by solving (1.2), instead of (1.1).

3.4.2 Convergence of CNM algorithm

In this section, we prove the convergence of CNM algorithm regardless the number of Byzantine

attackers. In other words, q could be larger than m/2. Towards this goal, we will show that the

distance between G(θ) defined in (3.13) and H−1∇F (θ) is universally bounded in Θ regardless

the number of attackers. As the result, G(θ) is a good estimate of H−1∇F (θ). Finally, we will

show that the proposed algorithm converge to the neighborhood of minimizer of the population

risk.
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Lemma 3.3. For an arbitrary number of attackers, the distance between G(θ) and H−1∇F (θ) is

bounded by

‖H−1∇F (θ)−G(θ)‖

< (1 + ξ2)‖H̃−1
0 ‖2‖g(θ)−∇F (θ)‖

+ ξ2‖H̃−1
0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)− H̃−1

0 ∇F (θ)‖.

(3.25)

Proof. Please see Appendix B.5.

Now, in order to bound the distance between G(θ) and H−1∇F (θ), we need to bound the three

terms in the right hand side of (3.25).

For the second term, from Assumption 1, we have ‖∇F (θ)‖ = ‖∇F (θ)−∇F (θ∗)‖ ≤M‖θ−

θ∗‖, since∇F (θ∗) = 0.

For the third term, we have ‖(H−1 − H̃−1
0 )∇F (θ)‖ = ‖(I − H̃−1

0 H)H−1∇F (θ)‖ ≤ ‖I −

H̃−1
0 H‖2‖H−1‖2‖∇F (θ)‖.

Then, we use the following lemma to bound ‖I− H̃−1
0 H‖2.

Lemma 3.4. If ‖H0 −H‖2 ≤ β and β < h(h+µ)
3h+2µ

,

‖I− H̃−1
0 H‖2 ≤

µ

h+ µ
+

2β

h+ µ− β
< 1. (3.26)

Proof. Please see Appendix B.6.

From this lemma, we have that ‖I − H̃−1
0 H‖2 is bounded by a constant value smaller than 1,

when ‖H0 −H‖2 is bounded.

Proposition 3.3. Suppose Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some
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r > 0, and ∆3 <
h(h+µ)
3h+2µ

. For any δ ∈ (0, 1), δ′3 ∈ (0, 1), δ2 ∈ (0, 1) and δ2 = δ
3

+ δ′3

Pr

{
∀θ : ‖(H−1 − H̃−1

0 )∇F (θ)‖ ≤ ∆4M

h
‖θ − θ∗‖

}
≥ 1− δ2, (3.27)

with

∆4 =
µ

h+ µ
+

2∆3

h+ µ−∆3

, (3.28)

and

∆3 =

√
14M2 log(2d/δ′3)

3|S0|
. (3.29)

Proof. Please see Appendix B.7.

Using these intermediate results, we have the following convergence result.

Theorem 4. If Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0,

µ ≥ 0 and |S0| is sufficiently large, then for arbitrary number of attackers with probability at least

1− δ5 − δ2 that

‖θt − θ∗‖ ≤
L

2h
‖θt−1 − θ∗‖2 + γ1‖θt−1 − θ∗‖+ ηγ2. (3.30)

where ∆4 = µ
h+µ

+ 2∆3

h+µ−∆3
, and

γ1 =

[
(8∆2 + ξ1(8∆2 +M))

1 + ξ2

h′ + µ
+

ξ2M

h′ + µ
+

∆4

h

]
, (3.31)

and

γ2 = (4∆1 + ξ14∆1)
1 + ξ2

h′ + µ
. (3.32)

Proof. Please see Appendix B.8.

This theorem shows that, with high probability, the estimated θ can converge to the

neighborhood of θ∗ with a linear-quadratic rate when there are arbitrary number of Byzantine

attackers. Since we consider θ∗ ∈ arg minθ∈Θ F (θ), we can only use empirical risk to approximate

population risk, there is always a gap between estimator θ and θ∗.
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3.5 Numerical results

In this section, we provide numerical examples, with both synthesized data and real data, to

illustrate the performance of the proposed algorithms.

3.5.1 Synthesized data

We first use synthesized data. In this example, we focus on linear regression, in which

Yi = XT
i θ
∗ + εi, i = 1, 2, · · · , N,

where Xi ∈ Rd, θ∗ is a d× 1 vector and εi is the noise. We set X = [X1, · · · , XN ] as d×N data

matrix.

In the simulation, we set the dimension d = 20, the total number of data N = 50000. We use

N (0, 9) to independently generate each entry of θ∗. HereN (ν, σ2) denotes Gaussian variables with

mean ν and variance σ2. After θ∗ is generated, we fix it. The data matrix X is generated randomly

by Gaussian distribution with ν = 0 and fixed known maximal and minimal eigenvalues of the

correlation matrix XTX. Let λmax(·) and λmin(·) denote the maximal and minimal eigenvalue of

XTX respectively. In the following figures, we use λmax(XTX) = 200 and λmin(XTX) = 2

to generate the data matrix X. We set εi as i.i.d. N (0, 1) random variable. Finally, we generate Yi

using the linear relationship mentioned above. In the simulation, we set the number of workersm =

50, and evenly distribute data among these machines. Furthermore, for robust gradient descent

in [9] and proposed algorithm CNM, we set |S0| = 1000, ξ = 1.5|S0|−
1
4 = 0.2667, ξ1 = 0.2667

and ξ2 = 0.2667. For the GIANT algorithm in [48] and proposed MNM, we set η = 1. For CNM,

we set µ = 0.001. We illustrate our results with 4 different cases: 1) 20 Inverse attack, in which

each attacker first calculates the gradient and Newton’s direction based on its local data but sends

the inverse version of gradient information or vector information to the server; 2) 45 Inverse attack;

3) 20 Random attack, in which the attacker randomly generates gradient value; and 4) 45 Random

attack. In our simulation, we compare four algorithms: 1) MNM in Table 3.1; 2) CNM described
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in Table 3.2; 3) Algorithm proposed in [9]; and 4) The GIANT algorithm proposed in [48]. The

algorithm proposed in [9] is a first-order method which is robust to Byzantine attackers.
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Figure 3.1: Synthesized data: 20 Inverse attack. Robust gradient method in [9], GIANT in [48]
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Figure 3.2: Synthesized data: 20 Random attack. Robust gradient method in [9], GIANT in [48]

Figures 3.1 and 3.2 plot the value of the norm of distance between estimated and the true

parameter vs iteration with 20 inverse attacks and 20 random attacks respectively. From Figures 3.1

and 3.2, GIANT method does not converge, since computing average cannot defend Byzantine

attacks, but the proposed MNM, CNM and robust gradient method can still converge. Furthermore,

the proposed two algorithms still perform better than the robust gradient method in [9] in iteration,

since our proposed algorithms compute Hessian matrix on each worker, which generate more
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information in each communication iteration.
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Figure 3.3: Synthesized data: 45 Inverse attack. Robust gradient method in [9], GIANT in [48]
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Figure 3.4: Synthesized data: 45 Random attack. Robust gradient method in [9], GIANT in [48]

Figures 3.3 and 3.4 plot the value of the norm of distance between the estimated and the

true parameter vs iteration with 45 inverse attacks and 45 random attacks. From Figures 3.3

and 3.4, we can observe that GIANT and MNM do not converge, as more than half of the workers

are compromised. However the proposed CNM and robust gradient method can still converge.

Furthermore, the proposed CNM can benefit from Newton’s direction information and outperforms

the robust gradient method in [9] in iteration.
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3.5.2 Real data

Now we test our algorithms on real datasets MNIST [25] and compare our algorithms with various

existing gradient method work [9] and GIANT. MNIST is a widely used computer vision dataset

that consists of 70,000 28×28 pixel images of handwritten digits 0 to 9. We use the handwritten

images of 3 and 5, which are the most difficult to distinguish in this dataset, to build a logistic

regression model. After picking all 3 and 5 images from the dataset, the total number of images

is 13454. It is divided into a training subset of size 12000 and a testing subset of size 1454. For

the dataset, we set the number of workers to be 50. For algorithm in [9] and algorithm CNM,

we random pick 200 images from both subsets to build S0, For the proposed MNM and GIANT

in [48], we set the learning rate η = 1. For CNM, we set µ = 0.0001. Similar to the synthesized

data scenario, we illustrate our results with four cases, namely 20 inverse attack, 20 random attack,

45 inverse attack and 45 random attack, and compare the performance of four algorithms. The

following figures show how the testing accuracy varies with training iteration.
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Figure 3.5: MNIST: 20 Inverse attack. Robust gradient method in [9], GIANT in [48]

Figures 3.5 and 3.6 illustrate the impact of two cases on different algorithms using MNIST

respectively. Figures 3.5 and 3.6 show the GIANT fails to predict if there are 20 attackers.

Our proposed algorithm and robust gradient descent still show high accuracy. Furthermore, the

proposed MNM has a better performance than robust gradient descent in [9].
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Figure 3.6: MNIST: 20 Randome attack. Robust gradient method in [9], GIANT in [48]
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Figure 3.7: MNIST: 45 Inverse attack. Robust gradient method in [9], GIANT in [48]

We plot the impact of 45 attacker case on real data in Figures 3.7 and 3.8 using MNIST

respectively. When there are 45 attackers, which is more than half of the total number of workers,

MNM and GIANT can not properly work. CNM and robust gradient descent [9] still perform

well, since these algorithm are generated to defend arbitrary number of attackers. Our proposed

algorithms outperform the scheme using robust gradient descent in iteration.
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Figure 3.8: MNIST: 45 Random attack. Robust gradient method in [9], GIANT in [48]

3.6 Conclusion

In this chapter, we have proposed two robust distributed approximate Newton’s method that

can tolerant Byzantine attackers. We have shown that the proposed algorithms can converges

to the neighborhood of true parameter and have provided numerical examples to illustrate the

performance of the proposed algorithm.
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Chapter 4

Distirbuted Zeroth-order ADMM Robust to

Byzantine Attackers

4.1 Introduction

In this chapter, we focus on problems in which the first-order gradient information is difficult

to obtain. In particular, we propose a new robust zeroth-order information based distributed

optimization algorithm that is robust to Byzantine attacks. We name the method as zeroth-order

adversarial robust alternating direction method of multipliers (ZOAR-ADMM). In the proposed

method, at each iteration, each worker will first receive model parameter from its neighbors.

Then each worker will test received parameter information by computing the distance from the

received parameter to the model parameter computed using local data, and then sum all such

distances obtained in history to build a deviation statistic for all neighbor workers. If the deviation

statistic computed for its neighbor worker is smaller than a specially designed threshold, the worker

will accept the model parameter from that neighbor. If the deviation statistic is larger than the

threshold, the worker will reject the model parameter and decide that worker to be an attacker.

After testing, each worker will first update dual variable by using accepted model parameter,

then compute temporary model parameter based on accepting parameter and using deterministic
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gradient approximation from its own data and update new model parameter then broadcast it to its

neighbors. By this method, we prove that the algorithm can solve the optimization problem and the

objective function can converge to the minimum value. We show this result by first investigating

how the distance between model parameter and optimal value is affected by the attack vector

generated by the attackers, and then carefully analyzing how the proposed testing method can

mitigate these effects and eventually proving that the value of objective function of the proposed

algorithm will converge to the optimal value despite the presence of Byzantine attackers.

This chapter is organized as follows. In Section 4.2, we describe the model. In Section 4.3,

we describe the proposed algorithm. In Section 4.4, we analyze the convergence property of

the proposed algorithm. In Section 4.5, we provide numerical examples to validate the theoretic

analysis. Finally, we offer several concluding remarks in Section 4.6. The proofs are collected in

Appendix.

4.2 Model

In this section, we introduce our model. For an unknown distribution D, our goal is to infer the

model parameter θ∗ ∈ Θ of the unknown distribution. It is popular to formulate this inference

problem as an optimization problem

θ∗ ∈ arg min
θ∈Θ

F (θ) = E{f(X, θ)}, (4.1)

in which X is the data generated by the unknown distribution D, f : X × Θ → R is the loss

function, Θ ∈ Rd is a closed convex set of all possible model parameters, and the expectation is

over the distribution D. F (θ) is called population risk function.

Since the expectation in (4.1) is over the unknown distribution D, the population risk function

F (θ) is unknown and hence we cannot solve (4.1) directly. Instead, one typically aims to minimize
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the empirical risk:

min
θ∈Θ

1

N

N∑
s=1

f(Xs, θ), (4.2)

which usesN data samplesXs, s = 1, . . . , N generated by the unknown distributionD. By solving

(4.2), we obtain an estimate of the true model parameter θ∗. When the number of data points N

is large, we can employ distributed optimization methods. In particular, we consider a network

consisting of n workers bidirectionally connected with E edges. We can describe the network

as a symmetric directed graph Gd = {V ,A}, where V is the set of workers with |V| = n and

A is the set of directed edges with |A| = 2E. In a distributed setup, a connected network of

workers collaboratively minimize the sum of their local loss functions over a common optimization

variable. Each worker generates local updates individually and communicates with its neighbors to

reach a common minimizer in a consensus network. Then we can have a distirbuted optimization

problem with population risk,

min
θi,φij

n∑
i=1

F i(θi), s.t.θi = φij, θj = φij,∀(i, j) ∈ A. (4.3)

where F i(θi) = E{f(X, θi)}, where f(X, θi) repesents the loss function based on the data

generated by the unknown distribution D and the model parameter θi. θi ∈ Rd is the local

optimization variable at worker i and φij ∈ Rd is an auxiliary variable imposing the consensus

constraint on neighbor workers i and j. Again, since we do not know the distributionD, we cannot

solve (4.3) directly. Instead we can focus on the distributed optimization problem for empirical risk

function formulated as follows

min
θi,φij

n∑
i=1

f
(i)

(θi), s.t.θi = φij, θj = φij,∀(i, j) ∈ A. (4.4)

where f
(i)

(θi) = 1
|Si|
∑

s∈Si f(Xs, θi) with Si being the set of data samples at worker i.

Define θ ∈ Rnd as a vector concatenating all θi, φ ∈ R2Ed as a vector concatenating all φij ,
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then (4.4) can be written in a matrix form as

min
θ,φ

f(θ) + Γ(φ), (4.5)

s.t. Aθ +Bφ = 0,

where f(θ) =
∑n

i=1 f
(i)

(θi) and Γ(φ) = 0. Here A = [A1;A2];A1, A2 ∈ R2Ed×nd are both

composed of 2E × n blocks of d × d matrices. If (i, j) ∈ A and φij is the qth block of φ, then

the (q, i)th block of A1 and the (q, j)th block of A2 are d × d identity matrices Id; otherwise the

corresponding blocks are d × d zero matrices 0d. Also, we have B = [−I2Ed;−I2Ed] with I2Ed

being a 2Ed× 2Ed identity matrix.

In this chapter, we assume that F (θ) and θ satisfy the following assumptions.

Assumption 7. F (θ) is mF -strongly convex and F (θ) has MF -Lipschitz gradients on θ ∈ Θ for

any θ.

Assumption 8. The constrain set Θ is convex and compact, there exists some constant R such that

‖θ − θ′‖ ≤ R for any θ, θ′ ∈ Θ.

These assumptions are common assumptions in existing works for optimization problem [5,

28].

The iterative updates of the distributed ADMM to solve problem (4.4) is given in [39]. In

particular, consider the augmented Lagrangian of (4.5), we will have

L(θ, φ, ν) = f(θ) + 〈ν,Aθ +Bφ〉+
c

2
‖Aθ +Bφ‖2. (4.6)

By using ADMM method, the updates are

∇f(θk+1) + ATνk+1 + cATB(φk − φk+1) = 0, (4.7)

BTνk+1 = 0, (4.8)

νk+1 − νk − c(Aθk+1 +Bφk+1) = 0. (4.9)
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By letting ν = [β; γ] with β, γ ∈ R2Ed and recalling B = [−I2Ed;−I2Ed], we will have γ = −β.

By choosing φ0 = 1
2
MT

+θ
0, the ADMM form will be reduced to the following form:

θ − update : ∇f(θk+1) +M−β
k+1 − c

2
M+M

T
+θ

k (4.10)

+
c

2
M+M

T
+θ

k+1 = 0, (4.11)

β − update : βk+1 − βk − c

2
MT
−θ

k+1 = 0, (4.12)

where β ∈ R2Ed, the matrices M+ = AT1 + AT2 and M− = AT1 − AT2 . Let W ∈ Rnd×nd be a block

diagonal matrix with its (i, i)th block being the degree of agent i multiplying Id and other blocks

being 0d, L+ = 1
2
M+M

T
+ , L− = 1

2
M−M

T
− , and W = 1

2
(L+ + L−). By defining a new multiplier

α = M−β ∈ Rnd, the algorithm reduces to the following form:

θ − update : ∇f(θk+1) + αk + 2cWθk+1 = cLk+1
+ θk, (4.13)

α− update : αk+1 − αk − cLk+1
− θk+1 = 0. (4.14)

Note θ = [θ1, ...θn], α = [α1, ..., αn] ∈ Rnd, and there is an optimal solution θ∗ ∈ Θ. These

matrices are related to the underlying network topology. From above, we can find thatW is a block

diagonal matrix with its (i, i)th being the number of neighbor of worker i. L− is the Laplacian

matrix, and L+ is the nonnegative Laplacian matrix.

Figure 4.1: Information flow of ADMM algorithm in [39].

Using the matrices defined above, the matrices form iterative updates in (4.14) can be
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distributed to each worker. For example, Figure 4.1 illustrates information flow of 5 workers in

the network by using this algorithm. In iteration k, worker i will receive all model parameter

θkj , j ∈ Ni from its neighbors, then it will first calculate αki based on received information:

αki = αk−1
i + c|Ni|θki − c

∑
j∈Ni

θkj . (4.15)

Then it will update θk+1
i by solving

∇f (i)
(θk+1
i ) + αki + 2c|Ni|θk+1

i = c|Ni|θki + c
∑
j∈Ni

θkj , (4.16)

based on received model information θkj and local data. After updating θk+1
i , worker iwill broadcast

it to its all neighbors. Algorithm 4.1 (from [39]) summarizes these steps.

In this chapter, we consider two problems based on Algorithm 4.1. First, we consider a system

with Byzantine attackers, in which an unknown subset of workers might be compromised. In each

iteration, compromised worker i can send arbitrary information to its neighbors which can be

defined as: zi = θi + ei. In particular, let B denote the set of compromised workers, then ei has the

following form

ei =

 0 i /∈ B

? i ∈ B
(4.17)

in which ? denotes an arbitrary vector chosen by the attacker. Secondly, We also consider the

system where gradient or subgradient information is hard to be explicitly evaluated. Instead, we

will use a deterministic estimator gi(θi) to estimate∇f (i)
(θi), which approximates each coordinate

of the gradient and then sums them up [1]:

gi(θi) =
1

m

∑
s∈Si

d∑
l=1

f(Xs, θi + uvl)− f(Xs, θi − uvl)
2u

vl.

Here u is a scalar, whose value will be specified in the algorithm analysis, and vl is a standard basis
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vector with 1 at its lth coordinate.

Then the corresponding algorithm becomes

gi(θ
k+1
i ) + αki + 2c|Ni|θk+1

i = c|Ni|zki + c
∑
j∈Ni

zkj , (4.18)

αk+1
i = αki + c|Ni|zk+1

i − c
∑
j∈Ni

zk+1
j . (4.19)

For a clearer presentation, we will use following equivalent form of the updates in analysis when

there are Byzantine attackers:

θ − update : g(θk+1) + αk + 2cW k+1θk+1 = cLk+1
+ zk, (4.20)

α− update : αk+1 − αk − cLk+1
− zk+1 = 0, (4.21)

where g(θ) =
∑n

i=1 gi(θi). Compared with (4.14), θk is replaced by zk and θk+1 is replaced by

zk+1. The goal of this chapter is to design robust zeroth-order algorithms, by designing proper tests

for each worker that can tolerate Byzantine attacks. For g(θ) generated by deterministic estrimator,

we will use g(θ) to estimate ∇f(θ). For ∇f(θ), we have following assumption, which are similar

to those used in [13], [41, 51],

We also assume data in each worker has following assumption.

Assumption 9. For any δ ∈ (0, 1/m), there exists an Mf = Mf (δ) and mf = mf (δ) such that

Pr

{
∀θ, θ′ ∈ Θ,mf ≤

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤Mf

}
≥ 1− δ

3
. (4.22)

Assumption 9 ensures that ∇f(X, θ) in each worker is Mf -Lipschitz and f(X, θ) is mf

strongly convex with high probability.
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Algorithm 4.1 ADMM [39]

Initialize θ1 = 0, c, α0 = 0, T .
for k = 1 to T do

For the worker i:
1: Recieves the model parameter θkj from its neighbor;
2: Computes αki = αk−1

i + c|Ni|θki − c
∑

j∈Ni θ
k
j

3: Solves∇fi(θk+1
i ) + αki + 2c|Ni|θk+1

i = c|Ni|θki + c
∑

j∈Ni θ
k
j

to gets updated θk+1
i and communicates it with its neighbors;

end for

Algorithm 4.2 ZOAR-ADMM

Initialize θ1 = 0, c, α0 = 0, T, U .
for k = 1 to T do

For the worker i:
1: Recieves the model parameter θkj from its neighbor;
if
∑k

t=1 ‖θti − θtj‖ > U then
2: worker i detects that worker j is an attacker, rejects θkj and removes worker j from N k

i ;
else

2: worker i accepts θkj ;
end if
3: Computes αki = αk−1

i + c|N k
i |θki − c

∑
j∈N ki

θkj
4: Solves gi(θk+1

i ) + αki + 2c|N k
i |θk+1

i = c|N k
i |θki + c

∑
j∈N ki

θkj
to gets updated θk+1

i and communicates it with its neighbors;
end for

4.3 Algorithm

In this section, we describe our algorithm in distributed network that can tolerate Byzantine attacks

in ADMM updates.

If there is no network, each worker will compute model parameter by itself, then in each

iteration, different workers will have different model parameter. But in a network, workers will

communicate with its neighbor, then each worker can know the model parameter deviation between

itself and its neighbor. The main idea of our algorithm is to use this model parameter deviation to

detect Byzantine attackers. As we will show in Lemma 4.4, for the case where all the workers are

honest, the deviation statistic
∑k

t=1

∑
(i,j)∈A ‖θti − θtj‖ will be bounded by a quantity value U no

matter what the value k is. From this property, this bound can serve as the standard threshold for
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each worker to decide whether its neighbor is honest or not. We will discuss how to choose U in

Lemma 4.4 in the analysis. Inspired by this bound, in our algorithm, each worker maintains the

local deviation statistic
∑k

t=1 ‖θti − θtj‖ for every neighboring worker j, and compares it with U

to test if neighboring worker j is providing a reasonable value or not. The local deviation statistic

from an honest worker will always smaller than U , no matter how many iterations have passed.

In particular, in iteration k, worker i tests all the model information θkj from its neighbor j, j ∈

Ni. If the local deviation statistic
∑k

t=1 ‖θti − θtj‖ from neighbor j is larger than U , neighbor j

will be considered as a Byzantine attacker. The model parameter sent by a Byzantine attacker will

be rejected forever and worker i will not send information to worker j. Worker j will be removed

from set Ni and worker i will be removed from set Nj . Then worker i and worker j will have new

neighbor set N k
i and N k

j . After testing all neighbors, worker i updates αki first:

αki = αk−1
i + c|N k

i |θki − c
∑
j∈N ki

θkj . (4.23)

Then worker i will update θi by solving

gi(θi) + αki + 2c|N k
i |θi = c|N k

i |θki + c
∑
j∈N ki

θkj , (4.24)

where we use deterministic gradient estimator gi(θi) using its own local m data:

gi(θi) =
1

m

∑
s∈Si

d∑
l=1

f(Xs, θi + ukvl)− f(Xs, θi − ukvl)
2uk

vl, (4.25)

here uk = 1
dk2

is a scalar and vl is a standard basis vector with 1 at it lth coordinate. After worker i

update θi, it will communicate its value with its neighbors.

Main steps of the algorithm are list in Algorithm 4.2.

74



4.4 Convergence Analysis

In this section, we analyze the convergence property of ZOAR-ADMM in the consensus network

with Byzantine attackers.

Before presenting detailed analysis, here we introduce some notations for the network and

describe the high level ideas. On iteration k, when we describe the network, we let Qk = LD
1
2LT ,

where LDLT =
Lk−
2

is the singular value decomposition of the positive semidefinite matrix Lk−
2
, and

Lk− represents the Laplacian matrix of the network at iteration k. We will define a new auxiliary

sequence rk =
∑k

s=0Q
s(θs + es) to represent the accumulation of the network constraint in

optimization problem over iterations. In addition, we define matrix p and matrix G as

pk =

 rk

θk

 , Gk+1 =

 cI 0

0 cLk+1
+ /2

 . (4.26)

We also define two constants that will be used in the analysis:

∆1 =
√

2σ1

√
(d log 6 + log(3/δ))/m, (4.27)

∆2 =
√

2σ2

√
(τ1 + τ2)/m (4.28)

with τ1 = d log 18 + d log(MF ∨Mf/σ2), τ2 = 0.5d log(m/d) + log(6/δ) + log(
2rσ2

2

√
m

α2σ1
).

In our analysis, we will first study the properties of the zeroth-order gradient estimation at an

honest worker. We will then analyze the impacts of attacks on each iteration of ADMM. Finally,

we will show that our proposed algorithm can reduce the error caused by Byzantine attackers and

the function value will converge to the function value based on the optimal parameter.

4.4.1 Bound of zeroth-order gradient estimation

In this section, we will derive an upper bound on the gradient estimate at an honest worker. This

bound will be used in the subsequent analysis.
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Recall that we have f(θ) =
∑n

i=1 f
(i)

(θi). To consider the difference between zeroth-order

gradient estimation and the true unknown gradient of f(θ), we denote h(θ) = ∇f(θ) − g(θ). For

h(θ), we have

Lemma 4.1. ([1]) Under Assumptions 7-9, in iteration k, for any δ ∈ (0, 1), with probability at

least 1− δ/3, the deterministic estimator g(θk) satisfies

‖g(θk)−∇f(θk)‖2 ≤
nM2

f d
2u2

k

4m
. (4.29)

Lemma 4.1 illustrates that there is a bound for the distance between zeroth-order estimate and

the true gradient. From this lemma and assumptions mentioned above, we have the following upper

bound on ‖gi(θ)‖.

Lemma 4.2. Under Assumptions 2-3, 7-9, in iteration k, for any δ ∈ (0, 1), with probability at

least (1− δ), the deterministic estimator gi(θki ) satisfies

‖gi(θki )‖ ≤ Vk +Mf‖θki − θ∗‖, (4.30)

where Vk =
M2
f d

2u2k
m

+ ∆1.

Proof. Please see Appendix C.1 for details.

4.4.2 Impact of Byzantine attackers in ADMM

In this section, we analyze the impact of Byzantine attacks on the iterations of ADMM. To facilitate

the analysis of the algorithm, we show that the algorithm has the following equivalent form.

Lemma 4.3. The algorithm satisfies

g(θk+1) = 2cW k+1ek+1 − cLk+1
+ (zk+1 − zk)− 2cQrk+1,

where W k+1 =
Lk+1
+ +Lk+1

−
2

and Q is a matrix that makes 2Qrk+1 =
∑k+1

s=0 L
s
−(θs + es)
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Proof. Please see Appendix C.2 for details.

Using this lemma, we are ready to show that, if each node blindly accepts information from

neighboring workers, Byzantine attackers can change the distance between θk and θ∗ by changing

the model parameter during information transmission.

Theorem 5. If Assumptions 2-3, 7-9 hold, by choosing uk = 1
dk2

for k iteration, for any δ ∈ (0, 1),

with optimal value

p =

 0

θ∗

 , (4.31)

then with probability at least (1− δ)n, we have

‖pk+1 − p‖2
Gk+1 ≤

1

1 + ρ

(
‖pk − p‖2

Gk+1 + ∆(k + 1)
)
, (4.32)

where

∆(k + 1) = c
σ2
max(L

k+1
+ )

2σmin(Lk+1
− )
‖ek‖2 +

√
nMfR√
mk2

+ ∆1R

+c2σ2
max(L

k+1
+ )‖ek‖2 + c2σ2

max(L
k+1
− )‖ek+1‖2

+c〈ek+1, 2Qrk+1〉+ 2(µ− 1)nV 2
k+1 + 8∆2R

2, (4.33)

and

ρ = min

{
(µ− 1)σ2

min(Lk+1
− )

2µσ2
max(L

k+1
+ )σmax(L0

−)
,

mf

cσ2
max(L+)

2
+ µ

c
2M2

fσ
−2
min(Lk+1

− )σmax(L0
−)

}
> 0.(4.34)

Proof. Please see Appendix C.3 for details.

From this theorem, we can see that when there is no attacker, i.e., ‖ek‖ = ‖ek+1‖ = 0, then

∆(k+ 1) decreases and goes to 2(µ− 1)∆2
1 + ∆1R+ 8∆2R

2 as k →∞, which is generated from

the approximation of population risk function by using empirical risk function. We can find the

sequence ‖pk − p‖2
Gk

converges linearly to the neighbor of optimal p with a rate of 1
1+ρ

when there
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is no attacker in the network. However, when there are attackers, this theorem shows how the error

values ‖ek‖ introduced by the attackers affect the term ∆(k + 1), and these errors will accumulate

after each iteration. These error values can be any value decided by the Byzantine attackers. The

bound will become larger and larger, the ADMM algorithm will not converge.

To provide further insights on how attackers can impact the algorithm, we analyze how the

convergence rate is related to the value of ρ. In the no attacker case, by maximizing ρ, we can have

a better convergence result. Then we will show how to maximal ρ.

Proposition 4.1. If the algorithm parameter c is chosen as

c =
2Mf

√
σmax(L0

−)
√
µ

σmax(L
k+1
+ )σmin(Lk+1

− )
, (4.35)

and

µ = 1 +
K2
Lσmax(L

0
−)

K2
f

−
KLσmax(L

0
−)

2Kf

√
8

σmax(L0
−)

+ 4
K2
L

K2
f

,

then we have

ρ =
1

2Kf

√
8

σmax(L0
−)K2

Lk+1

+
4

K2
f

− 1

2K2
f

(4.36)

maximizes the value of ρ in iteration k + 1, where KLk+1 =
σmax(Lk+1

+ )

σmin(Lk+1
− )

and Kf =
Mf

mf
.

Proof. Please see Appendix C.4 for details.

The minimum non-zero singular value of the signed Laplacian matrix L− and the maximum

singular value of signless Laplacian matrix L+ are related to network connectedness but former is

less. Roughly speaking, larger L+ and L− mean stronger connectedness, and a larger KL means

weaker connectedness. From this proposition, we can observe that the value of ρ is related to KL.

The value of ρ decreases as KL increases. This proposition suggests that another way that the

Byzantine attacker can influence the result is to reduce the network connectedness, which makes

the convergence arbitrarily slow.

In summary, Theorem 5 and Proposition 4.1 provide useful insights the impact the adversary
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attacks. In particular, when we consider the defending method as in the proposed ZOAR-ADMM,

we are going to identify the Byzantine attackers and remove them from the network. Then in

the network, the attackers may have two difference methods for attacking: 1) From insights in

Theorem 5, the attacker may choose to change the model parameter but only make small changes so

that changed model parameter pass the test to accumulate the wrong information; 2) From insights

in Proposition 4.1, the attacker may choose to make large changes to the value so it does not pass

the test, which will break the network and change the value of ρ and impact the convergence.

4.4.3 Convergence analysis of ZOAR-ADMM

Using the insights obtained in Section 4.4.2, in this section, we will prove the convergence of

ZOAR-ADMM when there are Byzantine attackers in the network.

In Section 4.3, we mention that, when there is no Byzantine attackers, the deviation statistic∑k
t=1 ‖Qθt‖ will be bounded by some value no matter what the value k. The following lemma

shows how to find such a bound.

Lemma 4.4. Consider a network without attacker, starting from θ0 = 0 and ut = 1
dt2

, for any

δ ∈ (0, 1), with probability at least (1− δ
3
)n, we have

1

T

T∑
t=1

‖Qθt‖≤ 1

4T

(
σmax(L

0
+)R2 +

4C

σmin(L0
−)c2

+ 4

)
+

R

2cT

√
nMfπ

2

12
√
m

, (4.37)

where C = nV 2
1 +M2

fR
2.

Proof. Please see Appendix C.5 for details.

Using this lemma, we can set the bound for testing asU = 1
2
√

2

(
σmax(L

0
+)R2 + 4C

σmin(L0
−)c2

+ 4
)

+

R
c

√
nMfπ

2

12
√

2m
. When there is no attacker, from Lemma 4.4,

∑T
t=1 ‖Qθt‖ ≤ U/

√
2. Note that∑T

t=1 ‖Qθt‖ = 1√
2

∑T
t=1

∑
(i,j)∈A ‖θti − θtj‖, thus, we will have 1√

2

∑T
t=1 ‖θti − θtj‖ ≤

U/
√

2,∀(i, j) ∈ A. Then we can design our attacker testing method in the following way: in

each iteration k, each worker i maintains the local deviation statsitics
∑k

t=1 ‖θti − θtj‖ for every
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neighbor worker j ∈ Ni. For an honest worker, this deviation statsitics will not exceed U . If this

value is greater than U , then worker j will be regarded as a Byzantine attacker by worker i, since if

in one iteration, this value is greater than U , then after this iteration, the value will still be greater,

so worker i will reject the information from worker j forever.

Next, we show that the proposed ZOAR-ADMM algorithm can converge to the optimal value

in a consensus network. Considering after T iteration, the whole consensus network has been

attacked to several small consensus networks. Assume first n̂ ≤ n workers are in one consensus

network. Then consider the initial network between these workers, we will have L̂+, L̂− for such

network and f̂(θ) =
∑n̂

i=1 f
(i)

(θi). Then we have the following theorem showing the proposed

algorithm can work in a consensus network.

Theorem 6. If Assumptions 2-3, 7-9 hold, there exists optimal p =

 r

θ∗

 , with r = 0 and

θ̂T =
∑T
k=1 θ

k

T
, with uk = 1

dk2
and for any δ ∈ (0, 1), with probability (1− δ)n̂, it holds

f̂(θ̂T )− f̂(θ∗) ≤ 1

T

(
‖p̂0 − p‖2

Ĝ1 + c
σ2
max(L̂

T
+)

σ2
min(L̂T−)

8E2U2 +
π2

6

n̂
√
n̂MfR

2n
√
m

)
. (4.38)

Proof. Please see Appendix C.6 for detail.

This theorem shows that, when the whole network is separated by Byzantine attackers into

several smaller network, ZOAR-ADMM can work in each small consensus network. Now we

consider the convergence of ZOAR-ADMM in the whole network. Consider different network in

whole algorithm, for signless Laplacian matrix, we have ‖xk − x∗‖2
Lk+
2

= 1
4

∑m
i=1

∑
j∈Ni ‖xi −

x∗ + xj − x∗‖2. Now consider the whole network, define fall(x) =
∑
f(x) =

∑n
i=1 fi(xi), which

consider the whole network, then we get the following theorem for whole network.

Theorem 7. If Assumptions 2-3, 7-9 holds, there exists optimal p =

 r

θ∗

 , with r = 0 and
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θ̂T =
∑T
k=1 θ

k

T
, with uk = 1

dk2
and for any δ ∈ (0, 1), with probability (1− δ)n, it holds

f(θ̂T )− f(θ∗) =
∑

f̂(θ̂T )− f̂(θ∗) (4.39)

≤ 1

T

(
‖p0 − p‖2

G1 + c
σ2
max(L

T
+)

σ2
min(LT−)

8E2U2 +
π2

6

√
nMfR

2
√
m

)
. (4.40)

Proof. Please see Appendix C.7 for details.

This theorem shows that the algorithm achieves a sub-linear convergence rate of O( 1
T

). The

upper bound in (4.40) introduces two additional terms. The first term comes from the method for

defending against Byzantine attackers and the second term comes from the estimate gradient by

using zeroth-order approximation.

4.5 Numerical results

In this section, we provide numerical examples, with both synthesized data and real data, to

illustrate the performance of the proposed algorithm.

4.5.1 Synthesized data

We first use synthesized data. In this example, we focus on linear regression, in which

Yi = HT
i x
∗ + εi, i = 1, 2, · · · , N,

where Hi ∈ Rd, x∗ is a d× 1 vector and εi is the noise. We set H = [H1, · · · , HN ] as d×N data

matrix.

In the simulation, we set the dimension d = 10, the total number of data N = 50000. We

useN (0, 9) to independently generate true model parameter x∗, whereN (ν, σ2) denotes Gaussian

variables with mean ν and variance σ2. After x∗ is generated, we fix it. The data matrix H is

generated randomly by Gaussian distribution with ν = 0 and fixed known maximal and minimal
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eigenvalues of the correlation matrix HTH. Let λmax(·) and λmin(·) denote the maximal and

minimal eigenvalue of HTH respectively. In the following figures, we use λmax(HTH) = 100

and λmin(HTH) = 1 to generate the data matrix H. We set the white noise εi as i.i.d. N (0, 1)

random variable. Finally, we generate Yi using the linear relationship mentioned above. In the

synthesized data simulation, we set the number of workers n = 100, and data are evenly distributed

in each worker. The original network is generated by a connected Erdos-Renyi graphER(100, 0.2),

meaning that 100 workers connect with each other with probability 0.2. We first randomly select

20 workers to be attackers. We illustrate our results with 2 different cases: 1) 20 Inverse attack,

in which each attacker first calculates the gradient based on its local data but sends the inverse

version of gradient information or vector information to the server; 2) 20 Random attack, in which

the attacker randomly generates gradient value. In our simulation, we compare 2 algorithms: 1)

The proposed ZOAR-ADMM as presented in Algorithm 4.2; 2) The DS-ADMM in [28] which

considers zeroth-order ADMM with two times communication in each iteration.
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Figure 4.2: Optimality gap comparison using synthesized data: 20 Random attack.

Figures 4.2 and 4.3 plot the value of the average optimality gap vs iteration with 20 inverse

attacks and 20 random attacks respectively, where the average optimality gap is defined as:

1
n

∑n
j=1[
∑n

i=1 fi(x
k
j )−

∑n
i=1 fi(x

∗)]. From Figures 4.2 and 4.3, we can see that DS-ADMM method

does not converge, since computing average cannot defend Byzantine attacks. On the other hand,

the proposed ZOAR-ADMM can still converge, since it helps workers to detect the Byzantine
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Figure 4.3: Optimality gap comparison using synthesized data: 20 Inverse attack.

attackers and converge under the trusted sub network.
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Figure 4.4: Node disagreement comparison using synthesized data: 20 Random attack.

Figures 4.4 and 4.5 plot the value of ‖Q0xk‖2 vs iteration with 20 random attacks and 20

inverse attacks. As we discussed above, ‖Q0xk‖2 can be used to show the node disagreement.

From Figures 4.4 and 4.5, we can observe that DS-ADMM has a large disagreement, since the

attackers successfully make the algorithm fail. However the proposed ZOAR-ADMM has a small

disagreement.
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Figure 4.5: Node disagreement comparison using synthesized data: 20 Inverse attack.

4.5.2 Real data

Now we test our algorithms on real datasets MNIST [25] and compare our algorithms with the

existing zeroth order method in [28]. MNIST is a widely used computer vision dataset that consists

of 70,000 28×28 pixel images of handwritten digits 0 to 9. We use the handwritten images of 3

and 5, which are the most difficult to distinguish in this dataset, to build a logistic regression

model. After picking all 3 and 5 images from the dataset, the total number of images is 13454. It

is divided into a training subset of size 12000 and a testing subset of size 1454. For the dataset,

we set the number of workers to be 50, and generate network by a connected Erdos-Renyi graph

ER(50, 0.2). We then randomly select 20 workers from these 50 workers to be attackers. Similar to

the synthesized data scenario, we illustrate our results with two cases, namely 20 inverse attack, 20

random attack, and compare the performance of two algorithms by comparing the testing accuracy

and node disagreement. When testing accuracy, we consider x = 1
50

∑50
i=1 xi to be the output

testing model parameter and testing with testing data. The following figures show the result.

Figures 4.6 and 4.7 illustrate the impact of two cases on different algorithms using MNIST

respectively. Figures 4.6 and 4.7 show that the DS-ADMM fails to predict if there are 20 attackers.

On the other hand, the proposed ZOAR-ADMM algorithm still show high accuracy.

We then plot the impact of 20 attackers case on real data with value of ‖Q0xk‖2 to show
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Figure 4.6: Accuracy comparison using MNIST: 20 Inverse attack.
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Figure 4.7: Accuracy comparison using MNIST: 20 Random attack.

node disagreement in Figures 4.8 and 4.9 using MNIST respectively. When there are 20 attackers,

DS-ADMM has large disagreement, it cannot properly work. Our proposed ZOAR-ADMM has

a low disagreement. As the iterations increase, the simulation result shows that our proposed

ZOAR-ADMM has better accuracy and lower disagreement.

Figure 4.10 plots the average test error vs iterations when there are 20 inverse attackers.

Figure 4.10 shows the number of honest worker that our proposed algorithm may misjudge when

there are exist 30 honest workers and 20 attackers. Our algorithm can successfully defend all

Byzantine attackers, but it may misjudge 1 or 2 honest workers in 30 honest workers.
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Figure 4.8: Node disagreement comparison using MNIST: 20 Inverse attack.
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Figure 4.9: Node disagreement comparison using MNIST: 20 Random attack.

4.6 Conclusion

In this chapter, we have proposed a robust zeroth-order ADMM named ZOAR-ADMM algorithm

that can tolerant Byzantine attackers in a distributed network. We have analyzed the effect of

Byzantine attacks, and have proved that the proposed algorithm can converge to optimal value. We

also have provided numerical examples to illustrate the performance of the proposed algorithm.
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Figure 4.10: Testing error using MNIST: 20 Inverse attack.
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Chapter 5

Conclusion

This dissertation discusses three different distributed network scenarios where might be attacked

by Byzantine attackers and alogrithms to defend against it.

Firstly, we have proposed robust distributed gradient descent algorthm to defend againts

Byzantine attackers in distributed network. We prove that the algorithm can converge to the

neighborhood of the population minimizer regardless of the number of compromised workers by

proving that the distance between the estimated gradient and the true gradient can be universally

bounded.

Secondly, we have analyzed ditributed network which uses second order information. For

robust distributed second order algorithm, we have proposed two algorithms to defend against

Byzantine attackers. The two algorithms are Median-based approximate Newton’s method (MNM)

and comparison-based approximate Newton’s Method (CNM).For MNM, we have proved that the

algorithm can converge to the neighborhood of the population minimizer when q, the number of

Byzantine attackers, is less thanm/2 with m being the total number of workers. For CNM, we have

proved that the algorithm can converge to the neighborhood of population minimizer regardless

number of Byzantine attackers.

Finally, we have designed and analyzed a new robust zeroth-order information based distributed

optimization algorithm that is robust to Byzantine attacks in decentralized distirbuted network. We
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name the method as zeroth-order adversarially robust alternating direction method of multipliers

(ZOAR-ADMM). We have proved that the algorithm can solve the optimization problem and the

objective function can converge to the minimum value. We show this result by first investigating

how the distance between model parameter and optimal value is affected by the attack vector

generated by the attackers, and then carefully analyzing how the algorithm can mitigate these

effects and eventually proving that the value of objective function of the proposed algorithm will

converge to the optimal value despite the presence of Byzantine attackers.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Lemma 2.1

‖G(θ)−∇F (θ)‖

=

∥∥∥∥∥∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1)−∇F (θ)

∥∥∥∥∥
=

∥∥∥∥∥∑
l∈Vt

wl(q
(l)
t (θt−1)−∇f (0)

(θt−1)) +∇f (0)
(θ)−∇F (θ)

∥∥∥∥∥
≤
∑
l∈Vt

wl‖q(l)
t (θ)−∇f (0)

(θ)‖+ ‖∇f (0)
(θ)−∇F (θ)‖

≤
∑
l∈Vt

wlξ‖∇f
(0)

(θ)‖+ ‖∇f (0)
(θ)−∇F (θ)‖

≤
∑
l∈Vt

wlξ‖∇f
(0)

(θ)−∇F (θ)‖+
∑
l∈Vt

wlξ‖∇F (θ)‖+ ‖∇f (0)
(θ)−∇F (θ)‖

≤ (1 + ξ)‖∇f (0)
(θ)−∇F (θ)‖+ ξ‖∇F (θ)‖. (A.1)
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A.2 Proof of Lemma 2.2

Let V = {v1, v2, ..., vN1/2
} denote an 1

2
-cover of unit sphere B, i.e., for fix any v ∈ B, there exists

a vj ∈ V such that ‖ v − vj ‖≤ 1
2
. From [46], we have logN1/2 ≤ d log 6 , and

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≤ 2 sup
v∈V

{
1

|S0|
∑
i∈S0

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
. (A.2)

By assumption 2 and the condition ∆1 ≤ σ2
1/α1, it follows from concentration inequalities for

sub-exponential random variables [47] that

Pr

{
1

|S0|
∑
i∈S0

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉 ≥ ∆1

}
≤ exp(−|S0|∆2

1/(2σ
2
1)). (A.3)

By union bound and (A.2), we have

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
≤ exp(−|S0|∆2

1/(2σ
2
1) + d log 6). (A.4)

Setting ∆1 =
√

2σ1

√
(d log 6 + log(3/δ))(|S0|) in (A.4), we obtain the desired result.

A.3 Proof of Lemma 2.3

Define a set V using the same way in Appendix B. We have

‖ 1
|S0|
∑

i∈S0 h(Xi, θ)− E[h(X, θ)]‖
‖θ − θ∗‖

≤ 2 sup
v∈V

{
1

|S0|
∑
i∈S0

〈h(Xi, θ)− E[h(X, θ)], v〉
‖ θ − θ∗ ‖

}
. (A.5)

By assumption 3 and the condition ∆′1 ≤ σ2
2/α2, it follows from concentration inequalities for

sub-exponential random variables [47] that

Pr

{
1

|S0|
∑
i∈S0

〈h(Xi, θ)− E[h(X, θ)], v〉
‖ θ − θ∗ ‖

≥ ∆′1

}
≤ exp(−|S0|(∆′1)2/(2σ2

2)). (A.6)
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By union bound and (A.5),

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θ)− E[h(X, θ)]

∥∥∥∥∥ ≥ 2∆′1 ‖θ − θ∗‖

}
≤ exp(−|S0|(∆′1)2/(2σ2

2) + d log 6).

By setting ∆′1 =
√

2σ2

√
(d log 6 + log(3/δ))(|S0|), the proof is complete.

A.4 Proof of Proposition 2.1

Suppose assumption 2, assumption 3 and assumption 4 hold, δ1 ∈ (0, 1) and Θ ⊂ {θ :‖ θ− θ∗ ‖≤

r
√
d} for some positive parameter r.let

τ =
α2σ1

2σ2
2

√
d

|S0|
, u∗ =

⌈
r
√
d

τ

⌉
, (A.7)

We define Θu for any positive integer 1 ≤ u ≤ u∗. Θu , {θ :‖ θ − θ∗ ‖≤ τu}. Suppose that

θ1, ..., θNε is an ε-cover of Θτ , where ε is given by

ε =
σ2τu

M ∨M ′

√
d

|S0|
. (A.8)

Then logNε ≤ d log(3τu/ε). Fix any θ ∈ Θu, there exists a 1 ≤ j ≤ Nε that ‖ θ − θj ‖≤ ε. By

triangle’s inequality,

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ ‖∇F (θ)−∇F (θj)‖

+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥
+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥ . (A.9)

By assumption 1,

‖∇F (θ)−∇F (θj)‖ ≤M‖θ − θj‖ ≤Mε. (A.10)
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Define event

ε1 =

{
sup

θ,θ′∈Θ:θ 6=θ′

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤M ′
}
. (A.11)

By assumption 4, Pr{ε1} ≥ 1− δ1
3

, and on event ε1,

sup
θ∈Θτ

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥ ≤M ′ ‖ θ − θj ‖≤M ′ε.

By triangle’s inequality,

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θj)− E[h(X, θj)]

∥∥∥∥∥ .
Define event

ε2 =

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
, (A.12)

and event

Fu =

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θj)− E[h(X, θj)]

∥∥∥∥∥ ≥ 2τu∆2

}
, (A.13)

where

∆1 =
√

2σ1

√
d log 6 + log(3/δ1)

|S0|
, (A.14)

∆2 =
√

2σ2

√
(τ1 + τ2)(|S0|), with

τ1 = d log 18 + d log((M ∨M ′)/σ2), (A.15)

τ2 =
1

2
d log(|S0|/d) + log(3/δ1) + log

(
2rσ2

2

√
|S0|

α2σ1

)
.
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Since ∆1 ≤ σ2
1/α1, by Lemma 2.2, Pr{ε2} ≤ δ1/3. Similarly, by Lemma 2.3, Pr{Fu} ≤ δ1/(3u

∗).

In conclusion, it follows that on event ε1 ∩ εc2 ∩ F cu,

sup
θ∈Θτ

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥
≤ (M +M ′)ε+ 2∆1 + 2∆2τ ≤ 4∆2τu+ 2∆1,

(A.16)

where the last inequality holds due to (M ∨M ′)ε ≤ ∆2τu. Let

ε = ε1 ∩ εc2 ∩ (∩u∗τ=1F cu). (A.17)

It follows from the union bound, Pr{ε} ≥ 1− δ1. On event ε, for all θ ∈ Θu∗ , there exist a u such

that (u− 1)τ ≤ ‖θ − θ∗‖ ≤ uτ . For u ≥ 2, u ≤ 2(u− 1), then

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 8∆2 ‖θ − θ∗‖+ 2∆1.

For u = 1, since ∆1 ≥ σ1

√
d/|S0| and ∆2 ≤ σ2

2/α2, by using τ in (A.7), we get

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 4∆1.

Then on event ε, we have

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 8∆2 ‖θ − θ∗‖+ 4∆1.

As ∆1 ≤ σ2
1/α1 and ∆2 ≤ σ2

2/α2, then

Pr{∀θ : ‖∇F (θ)−∇f (0)
(θ)‖ ≤ 8∆2‖θ − θ∗‖+ 4∆1} ≥ 1− δ1, (A.18)

is proved by the assumption Θ ⊂ Θr.
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A.5 Proof of Theorem 1

Under proposition 2.1, fix any t ≥ 1,

‖θt − θ∗‖

=

∥∥∥∥∥θt−1 − η

[∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1)

]
− θ∗

∥∥∥∥∥
=

∥∥∥∥∥θt−1 − η∇F (θt−1)− θ∗ + η(∇F (θt−1)−∇f (0)
(θt−1)) + η

[∑
l∈Vt

wl(f
(0)

(θt−1)− q(l)
t (θt−1))

]∥∥∥∥∥
≤ ‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)

(θt−1)‖+ η
∑
l∈Vt

wl

∥∥∥f (0)
(θt−1)− q(l)

t (θt−1)
∥∥∥

≤ ‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)
(θt−1)‖+ ηξ

∑
l∈Vt

wl‖f
(0)

t (θt−1)‖

≤ ‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)

t (θt−1)‖

+ηξ
∑
l∈Vt

wl(‖f
(0)

t (θt−1)−∇F (θt−1)‖+ ‖∇F (θt−1)−∇F (θ∗)‖)

≤
(√

1 + η2M2 − ηL+ 8∆2η + ηξ(8∆2 +M)
)
‖θt−1 − θ∗‖+ (η4∆1 + ηξ4∆1). (A.19)

Then

‖θt − θ∗‖ ≤ (1− ρ1)t‖θ0 − θ∗‖+ (4η∆1 + 4ηξ∆1)/ρ1, (A.20)

where

ρ1 = 1−
(√

1 + η2M2 − ηL+ 8∆2η + ηξ(8∆2 +M)
)
.
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A.6 Proof of Lemma 2.4

‖G(θ)−∇F (θ)‖

=

∥∥∥∥∥
( ∑
j∈H∩Ut

wj∇f
(j)

(θ) + w0∇f
(0)

(θ) +
∑

j∈A∩Ut

wjg
(j)(θ)

)
−∇F (θ)

∥∥∥∥∥
≤
∑

j∈H∩Ut |Sj|+ |S0|∑
j∈Ut |Sj|+ |S0|

‖Ct(θ)−∇F (θ)‖+

∥∥∥∥∥(
∑

j∈At∩Ut

wjg
(j)(θ)−

∑
j∈At∩Ut |Sj|∑

j∈Ut |Sj|+ |S0|
∇F (θ))

∥∥∥∥∥
≤
∑

j∈H∩Ut |Sj|+ |S0|∑
j∈Ut |Sj|+ |S0|

‖Ct(θ)−∇F (θ)‖+
∑

j∈At∩Ut

wj‖g(j)(θ)−∇F (θ)‖.

A.7 Proof of Lemma 2.5

By triangle inequality,

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ‖∇f (j)
(θ)−∇F (θ)‖+ ‖∇F (θ)−∇f (0)

(θ)‖. (A.21)

From Proposition 2.1, we know that ‖∇F (θ) −∇f (0)
(θ)‖ can be universally bounded. Using

the same arguments, we have that ‖∇F (θ)−∇f (j)
(θ)‖ is universally bounded. In particular, under

the same assumption as that of Proposition 2.1, for any δ1 ∈ (0, 1)

Pr{∀θ : ‖∇F (θ)−∇f (j)
(θ)‖ ≤ 8∆4‖θ − θ∗‖+ 4∆3} ≥ 1− δ1, (A.22)

in which

∆3 =
√

2σ1

√
(d log 6 + log(3/δ1))/|Sj|, (A.23)

and ∆4 =
√

2σ2

√
(τ1 + τ2)/|Sj|, with τ1 = d log 18 + d log((M ∨ M ′)/σ2), and τ2 =

0.5d log(|Sj|/d) + log(3/δ1) + log(
2rσ2

2

√
|Sj |

α2σ1
).

Combining Proposition 2.1 and equation (A.22), we know that for each good worker,

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ 8(∆2 + ∆4)‖θ − θ∗‖+ 4(∆1 + ∆3),∀θ ∈ Θ (A.24)
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with a probability larger than (1− δ1)2.

In the following, we provide a lower bound on ξ‖∇f (0)
(θ)‖. By triangle inequality,

ξ‖∇f (0)
(θ)‖ ≥ ξ‖∇F (θ)‖ − ξ‖∇F (θ)−∇f (0)

(θ)‖. (A.25)

The second term of (A.25) can be bounded using Proposition 2.1. Next we bound the first term

of (A.25). Using Assumption 1, we have

F (θ∗) ≥ F (θ)+ < ∇F (θ), θ∗ − θ > +
L

2
‖ θ∗ − θ ‖2

≥ F (θ)− ‖∇F (θ)‖‖θ∗ − θ‖+
L

2
‖ θ∗ − θ ‖2 . (A.26)

Since F (θ∗) ≤ F (θ),

−‖∇F (θ)‖‖θ∗ − θ‖+
L

2
‖ θ∗ − θ ‖2≤ 0, (A.27)

hence,

‖∇F (θ)‖ ≥ L

2
‖θ − θ∗‖. (A.28)

Plugging (A.28) and Proposition 2.1 to (A.25), we have ∀θ ∈ Θ

ξ‖∇f (0)
(θ)‖ ≥ Lξ

2
‖θ − θ∗‖ − 8ξ∆2‖θ − θ∗‖ − 4ξ∆1. (A.29)

with probability larger than 1 − δ1. Then we need to choose value of ξ to guarantee that the

right-hand side of (A.29) will be larger than the right-hand side of (A.24).

8(∆2 + ∆4)‖θ − θ∗‖+ 4(∆1 + ∆3) ≤ 16∆2‖θ − θ∗‖+ 8∆1. (A.30)
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Since ξ ≤ 1,

(16 + 8ξ)∆2‖θ − θ∗‖+ (8 + 4ξ)∆1

≤ 24∆2‖θ − θ∗‖+ 12∆1 ≤
Lξ

2
‖θ − θ∗‖. (A.31)

Since |S0|−1/4 converges more slowly than
√

log(|S0|)
|S0| , we set ξ = c|S0|−1/4, then we can choose

c = (48∆2‖θ − θ∗‖+ 24∆1)|S0|1/4/(L‖θ − θ∗‖), when ‖θ − θ∗‖ 6= 0. As the result,

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ξ‖∇f (0)
(θ)‖,∀θ ∈ Θ (A.32)

holds with probability (1− δ1)2 − δ1.

A.8 Proof of Theorem 2

From Assumption 1, Proposition 2.1, Proposition 2.2 and Lemma 2.4 , fix any t ≥ 1, the norm of

difference between Gt(θ) and ∇F (θ) is

‖G(θ)−∇F (θ)‖

≤
∑

j∈H∩Ut |Sj|+ |S0|∑
j∈Ut |Sj|+ |S0|

‖Ct(θ)−∇F (θ)‖+
∑

j∈At∩Ut

wj‖∇g(j)(θ)−∇F (θ)‖

≤ γ2‖θ − θ∗‖+ γ1, (A.33)

where

γ1 = 4(1− wmax)∆5 + 4wmax∆7, (A.34)

and

γ2 = 8(1− wmax)∆6 + 8wmax∆8. (A.35)
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with wmax = max{(
∑

j∈B∩Ut |Sj|)/(
∑

j∈Ut |Sj| + |S0|)} and |B ∩ Ut| = min{m − p, p} and

|Ut| = m− p. Fix any t ≥ 1,

‖θt − θ∗‖ = ‖θt−1 − ηG(θt−1)− θ∗‖

≤ ‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖G(θt−1)−∇F (θt−1)‖

≤
(√

1 + η2M2 − ηL+ ηγ2

)
‖θt−1 − θ∗‖+ ηγ1. (A.36)

Then,

‖θt − θ∗‖ ≤ (1− ρ2)t‖θ0 − θ∗‖+ (ηγ1)/ρ2, (A.37)

where ρ2 = 1−
(√

1 + η2M2 − ηL+ ηγ2

)
.
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Appendix B

Appendix of Chapter 3

B.1 Proof of Lemma 3.2

When Assumption 5 holds, from union bound theorem, for any δ ∈ (0, 1), with probability at least

1− δ
3
, |Sj| data satisfy

h′ ≤ ‖∇2f(X, θ)‖2 ≤M ′, (B.1)

When ‖∇2f(X, θ)‖2 ≤M ′, we have

Hi −H =
∑
j∈Si

1

|Si|
(∇2f(Xj, θ)−H), (B.2)

and

∥∥∥∥ 1

|Si|
(∇2f(Xj, θ)−H)

∥∥∥∥
2

≤ 1

|Si|
(‖∇2f(Xj, θ)‖2 + ‖H‖2)

≤ 2(M ∨M ′)

|Si|
. (B.3)

Before proceed further, we define matrix variance statistic v(Y ) of a random Hermitian matrix
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with zero mean Y as

v(Y ) = ‖V ar(Y )‖2 = ‖E[(Y − E[Y ])2]‖2 = ‖E[Y 2]‖2.

Using this definition, we have

v(Hi −H) =

∥∥∥∥∥∑
j∈Si

E

[
1

|Si|
(∇2f(Xj, θ)−H)2

]∥∥∥∥∥
2

=

∥∥∥∥∥∑
j∈Si

1

|Si|2
E
[
(∇2f(Xj, θ)−H)2

]∥∥∥∥∥
2

≤

∥∥∥∥∥∑
j∈Si

1

|Si|2
E[∇2f(Xj, θ)

2]

∥∥∥∥∥
2

≤ 1

|Si|
E
∥∥∇2f(Xj, θ)

2
∥∥

2

=
1

|Si|
E
∥∥∇2f(Xj, θ)

∥∥2

2

≤ (M ∨M ′)2

|Si|
. (B.4)

Since H = E[Hi], for 0 ≤ γ ≤ 2(M ∨M ′), we can use Matrix Bernstein inequality from [45] to

get

Pr {‖Hi −H‖2 ≥ γ}

≤ 2d exp

(
−γ2/2

v(Hi −H) + 2(M ∨M ′)γ/3|Si|

)
≤ 2d exp

(
−γ2/2

(M ∨M ′)2/|Si|+ 2(M ∨M ′)γ/3|Si|

)
≤ 2d exp

(
−3γ2|Si|

14(M ∨M ′)2

)
. (B.5)

By picking ∆3 = γ =
√

14(M∨M ′)2 log(2d/δ′3)

3|Si| , we achieve

Pr {‖Hi −H‖2 ≥ ∆3} ≤ δ′3. (B.6)

101



when ‖∇2f(X, θ)‖2 ≤M ′.

From union bound theorem, suppose Assumption 4 holds, let δ2 = δ
3

+ δ′3 and δ2 ∈ (0, 1), we

have

Pr {‖Hi −H‖2 ≤ ∆3} ≥ 1− δ2. (B.7)

B.2 Proof of Proposition 3.1

Suppose Assumptions 1-3 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0. From (3.15), for

an honest worker i, we have

Zi(θ) = (H−1 −H−1
i )g(θ)

= H−1(Hi −H)H−1
i g(θ)

= H−1(Hi −H)H−1
i (J(θ) +∇F (θ)). (B.8)

Using the properties of the spectral norm, we have

‖Zi(θ)‖ ≤ ‖H−1‖2‖Hi −H‖2‖H−1
i ‖2(‖J(θ)‖+ ‖∇F (θ)‖).

Following similar steps in [9, 13], we can show that, for any α ∈ (q/m, 1/2) and 0 < δ3 <

α− q/m, we have

Pr{‖J(θ)‖ ≤ 8Cα∆2‖θ − θ∗‖+ 4Cα∆1} ≥ 1− e−mD(α−q/m‖δ3) (B.9)

where ∆1 =
√

2σ1

√
(d log 6 + log(6/δ3))/|Si|, ∆2 =

√
2σ2

√
(τ1 + τ2)/|Si|,with τ1 = d log 18+

d log(M/σ2), τ2 = 0.5d log(|Si|/d) + log(6/δ3) + log(
2rσ2

2

√
|Si|

α2σ1
), Cα = 2(1−α)

1−2α
and D(δ′‖δ) =

δ′ log δ′

δ
+ (1− δ′) log 1−δ′

1−δ .
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Combining it with Assumption 1, Assumption 4, Lemma 3.2, we have the following bound

Pr

{
∀θ : ‖Zi(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
‖θ − θ∗‖+

4Cα∆3∆1

hh′

}
≥ 1− δ4, (B.10)

with 1− δ4 = 1− δ2 − e−mD(α−q/m‖δ3).

B.3 Proof of Proposition 3.2

Suppose Assumptions 1-3 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0. From

Proposition 3.1, we have the bound ‖Zi(θ)‖ for honest worker i.

From Lemma 3.1, in order to bound the geometric median Z(θ) of Z1(θ), ..., Zm(θ), we need

to have more than half of the workers to be honest.

Then we can define a good event E2,α,ξ1,ξ2 =
{∑m

i=1 1{Cα‖Zi(θ)‖2≤ξ3‖θ−θ∗‖+ξ4} ≥ m(1− α) + q
}

,

where

ξ3 =

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα,

and

ξ4 =
4C2

α∆3∆1

hh′
.

From proposition 3.1, for all 1 ≤ i ≤ m, correct Zi satisfied

Pr {Cα‖Zi(θ)‖ ≤ ξ3‖θ − θ∗‖+ ξ4} ≥ 1− δ4, (B.11)

for any α ∈ (q/m, 1/2) and 0 < δ4 < α− q/m. Then following similar steps as in [13], we have

Pr{E2,α,ξ1,ξ2} ≥ 1− e−mD(α−q/m‖δ4). (B.12)
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Then using Lemma 3.1, we obtain an bound for norm of geometric median Z(θ),

Pr

{
∀θ : ‖Z(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα‖θ − θ∗‖+

4C2
α∆3∆1

hh′

}
≥ 1− e−mD(α−q/m‖δ4). (B.13)

B.4 Proof of Theorem 3

Suppose Assumptions 1-3,5,6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0. Following

similar steps in [9,13], we have the following bound for any α ∈ (q/m, 1/2) and 0 < δ3 < α−q/m,

Pr{‖J(θ)‖ ≤ 8Cα∆2‖θ − θ∗‖+ 4Cα∆1} ≥ 1− e−mD(α−q/m‖δ3) (B.14)

From (3.14), combined with Proposition 3.2, we have

‖H−1∇F (θ)−G(θ)‖

≤ ‖Z(θ)‖+ ‖H−1J(θ)‖

≤
(

8

hh′
C2
α∆3∆2 +

8

h
Cα∆2 + Cα

∆3M

hh′

)
‖θ − θ∗‖+

4

hh′
C2
α∆3∆1 +

4

h
Cα∆1. (B.15)
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Then for any 0 < η ≤ 1,α ∈ (q/m, 1/2), 0 < δ3 < α − q/m and 0 < δ4 < α − q/m with

probability at least 1− e−mD(α−q/m‖δ3) − e−mD(α−q/m‖δ4), for any t ≥ 1,

‖θt − θ∗‖

=‖θt−1 − ηG(θt−1)− θ∗‖

=‖θt−1 − ηH−1
t−1∇F (θt−1)− θ∗ + ηH−1

t−1∇F (θt−1)− ηG(θt−1)‖

=‖θt−1 − ηH−1
t−1∇F (θt−1)− θ∗ + ηZ(θt−1)− ηH−1

t−1g(θt−1) + ηH−1
t−1∇F (θt−1)‖

≤‖θt−1 − ηH−1
t−1∇F (θt−1)− θ∗‖+ η‖Z(θt−1)‖+ ‖ηH−1

t−1J(θt−1)‖

≤
(

1− η + η
8

hh′
C2
α∆3∆2 + η

8

h
Cα∆2 + ηCα

∆3M

hh′

)
‖θt−1 − θ∗‖

+
ηL‖θt−1 − θ∗‖2

2h
+ η

4

hh′
C2
α∆3∆1 + η

4

h
Cα∆1. (B.16)

B.5 Proof of Lemma 3.3

‖H−1∇F (θ)−G(θ)‖

=

∥∥∥∥∥∥H−1∇F (θ)− 1

1 + |A(2)|
(
∑
i∈A(2)

g
(i)
2 (θ) +H−1

0 g(θ))

∥∥∥∥∥∥
≤ 1

1 + |A(2)|

∥∥∥∥∥∥(
∑
i∈A(2)

(g
(i)
2 (θ)−H−1

0 g(θ)))

∥∥∥∥∥∥+ ‖H−1∇F (θ)−H−1
0 g(θ)‖

≤ξ2
|A(2)|

1 + |A(2)|
‖H−1

0 g(θ)‖+ ‖H−1
0 g(θ)−H−1

0 ∇F (θ)‖+ ‖H−1∇F (θ)−H−1
0 ∇F (θ)‖

<(1 + ξ2)‖H−1
0 ‖2‖g(θ)−∇F (θ)‖+ ξ2‖H−1

0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)−H−1
0 ∇F (θ)‖.
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B.6 Proof of Lemma 3.4

If ‖H0 −H‖2 ≤ β and β < h(h+µ)
3h+2µ

, we have

‖I− H̃−1
0 H‖2

= ‖I− (H + µI)−1H + (H + µI)−1H − H̃−1
0 H‖2

≤ µ

h+ µ
+ ‖(H̃−1

0 − (H + µ)−1)H‖2. (B.17)

Consider H̃−1
0 , let A = H + µI and ∆0 = H0 − H ,noting that ‖A−1∆0‖2 ≤ ‖A−1‖2‖∆0‖2 ≤

1
h+µ

h(h+µ)
3h+2µ

< 1, we have

H̃−1
0 = (H + µI +H0 −H)−1

= (A+ ∆0)−1

= (A(I + A−1∆0))−1

= (I + A−1∆0)−1A−1

= A−1 +
∞∑
r=1

(−1)r(A−1∆0)rA−1. (B.18)
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Then, we can have

‖(H̃−1
0 − (H + µI)−1)H‖2

= ‖
∞∑
r=1

(−1)r(A−1∆0)rA−1(A− µI)‖2

= ‖
∞∑
r=1

(−1)r(A−1∆0)r(I− µA−1)‖2

≤
∞∑
r=1

‖A−1‖r2‖∆0‖r2‖I− µA−1‖2

≤
∞∑
r=1

βr

(h+ µ)r
(1 +

µ

h+ µ
)

≤ 2β

h+ µ

∞∑
r=0

βr

(h+ µ)r

=
2β

h+ µ− β
. (B.19)

Then, we have

‖I− H̃−1
0 H‖2 ≤

µ

h+ µ
+

2β

h+ µ− β
< 1, (B.20)

when β < h(h+µ)
3h+2µ

.

B.7 Proof of Proposition 3.3

From Lemma 3.4, we have the bound for ‖I− H̃−1
0 H‖2, if ‖H0−H‖2 ≤ β and β < h(h+µ)

3h+2µ
. From

Lemma 3.2, we have showned when Assumption 4 holds, that for any δ ∈ (0, 1), δ2 ∈ (0, 1), δ′3 ∈

(0, 1) and δ2 = δ′3 + δ/3 with probability at least 1 − δ2, ‖H0 − H‖2 ≤
√

14M2 log(2d/δ′3)

3|S0| . Then

if ‖S0‖ is sufficiently large, we have ∆3 =
√

14M2 log(2d/δ′3)

3|S0| < h(h+µ)
3h+2µ

, and we have the following
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bound for any δ2 ∈ (0, 1) with probability at least 1− δ2

‖(H−1 − H̃−1
0 )∇F (θ)‖

= ‖(I− H̃−1
0 H)H−1∇F (θ)‖

≤ ‖I− H̃−1
0 H‖2‖H−1‖2‖∇F (θ)−∇F (θ∗)‖

≤
(

µ

h+ µ
+

2∆3

h+ µ−∆3

)
M

h
‖θ − θ∗‖. (B.21)

B.8 Proof of Theorem 4

If Assumptions 1-3, 5, 6 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r
√
d} for some r > 0 and ∆3 <

h(h+µ)
3h+2µ

for the first term in Lemma 3.3, we already have the following bound from [9], regardless of the

number of attackers, that with probability at least 1− δ5

‖g(θ)−∇F (θ)‖ ≤ (8∆2 + ξ1(8∆2 +M)) ‖θt−1 − θ∗‖+ (4∆1 + ξ14∆1),

in which ∆1 =
√

2σ1

√
(d log 6 + log(3/δ5))/|S0| and ∆2 =

√
2σ2

√
(τ1 + τ2)/|S0|, with τ1 =

d log 18 + d log((M ∨M ′)/σ2), and τ2 = 0.5d log(n/d) + log(3/δ5) + log(
2rσ2

2

√
|S0|

α2σ1
).

Combine it with Assumption 1 and Proposition 3.3 and Lemma 3.3, fix any t ≥ 1, for any

δ2 ∈ (0, 1), and δ5 ∈ (0, 1), with probability at least 1 − δ2 − δ5, the norm of difference between

Gt(θ) and ∇F (θ) is

‖H−1∇F (θ)−G(θ)‖

< (1 + ξ2)‖H̃−1
0 ‖2‖g(θ)−∇F (θ)‖+ ξ2‖H̃−1

0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)− H̃−1
0 ∇F (θ)‖

≤ γ1‖θ − θ∗‖+ γ2, (B.22)
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where ∆4 = µ
h+µ

+ 2∆3

h+µ−∆3
,

γ1 =

[
(8∆2 + ξ1(8∆2 +M))

1 + ξ2

h′ + µ
+

ξ2M

h′ + µ
+

∆4M

h

]
, (B.23)

and

γ2 = (4∆1 + ξ14∆1)
1 + ξ2

h′ + µ
. (B.24)

Fix any t ≥ 1,

‖θt − θ∗‖

= ‖θt−1 −G(θt−1)− θ∗‖

≤ ‖θt−1 −H−1∇F (θt−1)− θ∗‖+ ‖G(θt−1)−H−1∇F (θt−1)‖

≤ L

2h
‖θt−1 − θ∗‖2 + γ1‖θt−1 − θ∗‖+ ηγ2. (B.25)
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Appendix C

Appendix of Chapter 4

C.1 Proof of Lemma 4.2

To bound the zeroth-order estimate, we first need to bound the distance between the empirical

gradient and the population gradient.

From [13], under Assumption 2, for any δ ∈ (0, 1),with high probability we have the following

bound for the optimal parameter θ∗.

Pr
{∥∥∥∇f (i)

(θ∗)−∇F (θ∗)
∥∥∥ ≥ 2∆1

}
≤ δ

3
.

Then for any θ, when Assumptions 2-3, 7-9 hold, for any δ ∈ (0, 1), from [13], we have

Pr{∀θ : ‖∇F (θ)−∇f (i)
(θ)‖ ≤ 8∆2‖θ − θ∗‖+ 4∆1} ≥ 1− δ.

From this inequality, we know that by increasing the number of data samples in each worker,

∆1 and ∆2 will decrease to zero, then we know the gradient of emprical risk is a good apprixmation

of gradient of the population risk.
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Then for the zeroth-order gradient estimation, we have

‖gi(θki )‖ ≤ ‖gi(θki )−∇f
(i)

(θki )‖+ ‖∇f (i)
(θki )−∇f

(i)
(θ∗)‖+ ‖∇f (i)

(θ∗)−∇F (θ∗)‖

≤
M2

f d
2u2

k

m
+Mf‖θi − θ∗‖+ ∆1. (C.1)

C.2 Proof of Lemma 4.3

Using the second step of the algorithm, we have

αk+1 = αk + cL−(θk+1 + ek+1). (C.2)

Then sum and telescope from iteration 0 to k, and assume α0 = 0, we have

αk = c
k∑
s=0

Ls−(θs + es). (C.3)

Then consider the first step of the algorthm, we have

g(θk+1) = −2cW k+1θk+1 + cLk+1
+ zk − c

k∑
s=0

Ls−(θs + es). (C.4)

Then we have

g(θk+1) + c
k∑
s=0

Ls−(θs + es) = −2cW k+1θk+1 + cLk+1
+ zk. (C.5)

By adding cLk+1
− (θk+1 + ek+1) on both size and rearrange the equation, we obtain

g(θk+1) = 2cW k+1ek+1 − cLk+1
+ (zk+1 − zk)− 2cQrk+1. (C.6)
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C.3 Proof of Theorem 5

We have

mF‖θk+1 − θ∗‖2 ≤ 〈θk+1 − θ∗,
n∑
i=1

∇F i(θk+1
i )〉

= 〈θk+1 − θ∗, g(θk+1)〉+ 〈θk+1 − θ∗, h(θk+1)〉

+ 〈θk+1 − θ∗,
n∑
i=1

∇F i(θk+1
i )−∇f(θk+1)〉. (C.7)
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For the first part, we have

〈θk+1 − θ∗, g(θk+1)〉

≤ −c〈θk+1 − θ∗, Lk+1
+ (zk+1 − zk)〉+ c〈θk+1 − θ∗, Lk+1

+ ek+1〉

+c〈θk+1 − θ∗, Lk+1
− ek+1〉 − c〈θk+1 − θ∗, 2Q(rk+1)〉

= c〈θk+1 − θ∗, Lk+1
+ (θk − θk+1)〉+ c〈θk+1 − θ∗, Lk+1

+ (zk − θk)〉

+c〈θk+1 − θ∗, Lk+1
− (zk+1 − θk+1)〉+ c〈θk+1 − θ∗,−2Qrk+1〉

= c〈θk+1 − θ∗, Lk+1
+ (θk − θk+1)〉+ c〈θk+1 − θ∗, Lk+1

+ (zk − θk)〉

+c〈zk+1 − θ∗, 2Q(0− rk+1)〉+ c〈ek+1, 2Qrk+1〉

+c〈θk+1 − θ∗, Lk+1
− (zk+1 − θk+1)〉

= c〈θk+1 − θ∗, Lk+1
+ (θk − θk+1)〉+ c〈θk+1 − θ∗, Lk+1

+ (zk − θk)〉

+c〈rk+1 − rk, 2(0− rk+1)〉+ c〈ek+1, 2Qrk+1〉

+c〈θk+1 − θ∗, Lk+1
− (zk+1 − θk+1)〉

= ‖pk − p‖2
Gk+1 − ‖pk+1 − p‖2

Gk+1 − ‖pk+1 − pk‖2
Gk+1

+c〈θk+1 − θ∗, Lk+1
+ (zk − θk)〉+ c〈ek+1, 2Qrk+1〉

+c〈θk+1 − θ∗, Lk+1
− (zk+1 − θk+1)〉

≤ ‖pk − p‖2
Gk+1 − ‖pk+1 − p‖2

Gk+1 − ‖pk+1 − pk‖2
Gk+1 − c‖Qk+1θk+1‖2

−c‖Qk+1ek+1‖2 + 2c〈θk+1 − θ∗, L+

2
(zk − θk)〉+ c〈ek+1, 2Qrk+1〉

≤ ‖pk − p‖2
Gk+1 − ‖pk+1 − p‖2

Gk+1 − ‖pk+1 − pk‖2
Gk+1

−cσmin(Lk+1
− )

2
‖θk+1 − θ∗‖2 − c‖Qk+1ek+1‖2 + cβ‖zk − θk‖2

+
c

β
‖L

k+1
+

2
(θk+1 − θ∗)‖2 + c〈ek+1, 2Qrk+1〉

= ‖pk − p‖2
Gk+1 − ‖pk+1 − p‖2

Gk+1 − ‖pk+1 − pk‖2
Gk+1

+c
σ2
max(L

k+1
+ )

2σmin(Lk+1
− )
‖ek‖2 + c〈ek+1, 2Qrk+1〉. (C.8)
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The last equality comes from setting β =
σ2
max(Lk+1

+ )

2σmin(Lk+1
− )

. Now we need to show

‖pk+1 − pk‖2
Gk+1 +mf‖θk+1 − θ∗‖2 + c2σ2

max(L
k+1
+ )‖ek‖2

+c2σ2
max(L

k+1
− )‖ek+1‖2 ≥ δ‖pk+1 − p‖2

Gk+1 (C.9)

which is equivalent to

c‖rk+1 − rk‖+ c‖θk+1 − θk‖2
Lk+1
+
2

+mf‖θk+1 − θ∗‖2

≥ δc‖rk+1 − r∗‖2 + c‖θk+1 − θ∗‖2
Lk+1
+
2

. (C.10)

First, we have

c‖θk+1 − θ∗‖2
Lk+1
+
2

≤ cσ2
max(L

k+1
+ )

2
‖θk+1 − θ∗‖2. (C.11)

For the other part, we have

‖rk+1 − r∗‖2 ≤ σmax(L−)

2
‖
k+1∑
s=0

θs − θ∗‖2. (C.12)

We have 2M2
f ‖θk+1−θ∗‖2 +2nV 2

k+1 ≥ ‖g(θk+1)‖2. By using inequality ‖a+ b‖2 +(µ−1)‖a‖2 ≥

(1− 1
µ
)‖b‖2, which holds for any µ > 1, we have

2c2σ2
max(L

k+1
+ )‖θk+1 − θk‖2

Lk+1
+
2

+ c2σ2
max(L

k+1
+ )‖ek‖2

+c2σ2
max(L

k+1
− )‖ek+1‖2 + (µ− 1)2M2

f ‖θk+1 − θ∗‖2 + 2(µ− 1)nV 2
k+1

≥ ‖cLk+1
+ (zk+1 − zk)− 2cW k+1ek+1‖2 + (µ− 1)‖g(θk+1)− g(θ∗)‖2

≥ (1− 1

µ
)‖cLk+1

− (
k+1∑
s=0

θs − θ∗)‖2

≥ (1− 1

µ
)c2σ2

min(Lk+1
− )‖

k+1∑
s=0

θs − θ∗‖2. (C.13)
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Combining these two parts, we can have ρ as following to achieve the inequality:

ρ = min

{
(µ− 1)σ2

min(Lk+1
− )

2µσ2
max(L

k+1
+ )σmax(L0

−)
,

mf

cσ2
max(L+)

2
+ µ

c
2M2

fσ
−2
min(Lk+1

− )σmax(L0
−)

}
. (C.14)

Then we have

‖pk+1 − p‖2
Gk+1 ≤

1

1 + ρ

(
‖pk − p‖2

Gk+1 + c
σ2
max(L

k+1
+ )

2σmin(Lk+1
− )
‖ek‖2 + c〈ek+1, 2Qrk+1〉

+〈θk+1 − θ∗, h(θk+1)〉+ c2σ2
max(L

k+1
+ )‖ek‖2

+c2σ2
max(L

k+1
− )‖ek+1‖2 + 2(µ− 1)nV 2

k+1

+〈θk+1 − θ∗,
n∑
i=1

∇F i(θk+1
i )−∇f(θk+1)〉

)
. (C.15)

For h(θ), we have

‖g(θk)−∇f(θk)‖2 ≤
nM2

f d
2u2

k

4m
. (C.16)

For last term, we have

Pr{∀θ : ‖∇F (θ)−∇f (i)
(θ)‖ ≤ 8∆2‖θ − θ∗‖+ 4∆1} ≥ 1− δ.

Then combining them, we get obtain the result in theorem.

C.4 Proof of Proposition 4.1

Since we have

ρ = min

{
(µ− 1)σ2

min(Lk+1
− )

2µσ2
max(L

k+1
+ )σmax(L0

−)
,

mf

cσ2
max(L+)

2
+ µ

c
2M2

fσ
−2
min(Lk+1

− )σmax(L0
−)

}
,
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only the second term is related to parameter c. In order to maximize δ, the parameter c is chosen as

c =
2Mf

√
σmax(L0

−)
√
µ

σmax(L
k+1
+ )σmin(Lk+1

− )
. (C.17)

Then the first term and second term are monotonically increasing and decreasing with parameter

µ > 1 respectively. So we choose the value of µ to make the first term and second term equal:

µ = 1 +
K2
Lσmax(L

0
−)

K2
f

−
KLσmax(L

0
−)

2Kf

√
8

σmax(L0
−)

+ 4
K2
L

K2
f

. (C.18)

Then we have

ρ =
1

2Kf

√
8

σmax(L0
−)K2

Lk+1

+
4

K2
f

− 1

2K2
f

(C.19)

maximizes the value of δ in iteration k + 1, where KLk+1 =
σmax(Lk+1

+ )

σmin(Lk+1
− )

and Kf =
Mf

mf
.

C.5 Proof of Lemma 4.4

When proving this lemma, we consider the optimal model parameter θ̂∗ for the empirical risk

distributed problem,

min
θi,φij

n∑
i=1

f
(i)

(θi), s.t.θi = φij, θj = φij,∀(i, j) ∈ A. (C.20)

Consider a network without attacks, we have

f(θk+1)− f(θ̂∗)

c
+ 〈2Qr, θk+1〉

≤ 1

c
〈θk+1 − θ̂∗,∇f(θk+1)〉+ 〈2Qr, θk+1〉

=
1

c
〈θk+1 − θ̂∗, g(θk+1)〉+ 〈2Qr, θk+1〉+

1

c
〈θk+1 − θ̂∗,∇f(θk+1)− g(θk+1)〉

≤ 〈θk+1 − θ̂∗,−L+(θk+1 − θk)〉+ 〈rk+1 − rk,−2(rk+1 − r)〉

+
1

c
〈θk+1 − θ̂∗,∇f(θk+1)− g(θk+1)〉. (C.21)
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Telescope and sum for k = 0 to T , we have

1

c

T∑
k=1

f(θk)− f(θ̂∗) + 〈2Qr, θk〉

≤ ‖θ0 − θ̂∗‖2
L+
2

+ ‖r0 − r‖2 +
R

c

T∑
k=1

〈θk+1 − θ̂∗,∇f(θk+1)− g(θk+1)〉

≤ ‖θ0 − θ̂∗‖2
L+
2

+ ‖r0 − r‖2 +
R

c

T∑
k=1

‖∇f(θk+1)− g(θk+1)‖. (C.22)

Define θ̂T =
∑T
k=1 θ

k

T
, by Jensen’s inequality, we have

f(θ̂T )− f(θ̂∗) + 2cr′Qθ̂T ≤
c

T
‖p0 − p‖2

G +
R

T

T∑
k=1

√
nMfduk
2
√
m

. (C.23)

Since for vector y ∈ Rnd and σmin(yy′) = 1, we have this property such that ∀θ ∈ Rnd, yT θ ≥ ‖θ‖.

Then let r = r̂∗ + y and y has property that σmin(yy′) = 1, then

f(θ̂T )− f(θ∗) + 2cr̂∗
′
Qθ̂T + 2cy′Qθ̂T

≤ c

T
(‖θ0 − θ∗‖2

L+
2

+ ‖r0 − r̂∗ − y‖2) +
R

T

T∑
k=1

√
nMfduk
2
√
m

. (C.24)

Since (θ̂∗, r̂∗) is a primal dual optimal solution, by the saddle point inequality, we have

f(θ̂T )− f(θ̂∗) + 2cr̂∗
′
Qθ̂T ≥ 0. (C.25)

Then we have

2c

T

T∑
k=1

‖Qθk‖ ≤ c

T
(‖θ0 − θ̂∗‖2

L+
2

+ ‖r0 − r̂∗ − y‖2) +
R

T

T∑
k=1

Mfduk
2
√
m

, (C.26)

117



which leads to

1

T

T∑
k=1

‖Qθk‖ ≤ 1

2T
(‖θ0 − θ̂∗‖2

L+
2

+ 2‖r0 − r̂∗‖2 + 2) +
R

2cT

T∑
k=1

Mfduk
2
√
m

. (C.27)

Choosing uk = 1
dk2

, starting point θ0 = 0 and thus r0 = 0, since Qr̂∗ + 1
c
g(θ̂∗) = 0, we have

1

T

T∑
k=1

‖Qθk‖ ≤ 1

4T

(
σmax(L+)R2 +

2‖g(θ̂∗)‖2

σmin(L−)c2
+ 4

)
+

R

2cT

√
nMfπ

2

12
√
m

≤ 1

4T

(
σmax(L+)R2 +

4(nV 2
T +M2

fR
2)

σmin(L−)c2
+ 4

)
+

R

2cT

√
nMfπ

2

12
√
m

. (C.28)

C.6 Proof of Theorem 6

Consider the network with attacks, in iteration k, we will have

f̂(θk+1)− f̂(θ∗)

c
+ 2r′Q̂θk+1

≤ 1

c
(‖p̂k − p‖2

Gk+1 − ‖p̂k+1 − p‖2
Gk+1)− ‖Q̂k+1ek+1‖2 +

σ2
max(L̂+

k+1
)

2σmin(L̂−
k+1

)
‖ek‖2

+〈ek+1, 2Q̂(r̂k+1 − r)〉+
1

c
〈θk+1 − θ∗,∇f̂(θk+1)− ĝ(θk+1)〉

≤ 1

c
(‖p̂k − p‖2

Ĝk+1 − ‖p̂k+1 − p‖2
Gk+1)− ‖Q̂k+1ek+1‖2 +

σ2
max(L̂+

k+1
)

2σmin(L̂−
k+1

)
‖ek‖2

+‖2Q̂ek+1‖(
√

2EU + ‖r‖) +
1

c
〈θk+1 − θ∗,∇f̂(θk+1)− ĝ(θk+1)〉. (C.29)
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Telescope and sum from k = 0 to T − 1, we will get

T∑
k=1

f̂(θk)− f̂(θ∗) + 2cr′Q̂θk

≤ ‖p̂0 − p‖2
G1 − ‖p̂T − p‖2

ĜT+1 + c
σ2
max(L̂+

T
)− σ2

min(L̂−
T

)

σ2
min(L̂−

T
)

T∑
k=1

‖Q̂kek‖2

+2c
T∑
k=0

‖Q̂ek‖(
√

2EU + ‖r‖) +
T∑
k=1

〈θk − θ∗,∇f̂(θk)− ĝ(θk)〉

≤ ‖p̂0 − p‖2
G1 − ‖p̂T − p‖2

ĜT+1 + c
σ2
max(L̂+

T
)− σ2

min(L̂−
T

)

σ2
min(L̂−

T
)

8E2U2

+c4
√

2EU(
√

2EU + ‖r‖) +
π2

6

n̂
√
n̂MfR

2n
√
m

≤ ‖p̂0 − p‖2
G1 − ‖p̂T − p‖2

ĜT+1 + c
σ2
max(L̂+

T
)

σ2
min(L̂−

T
)
8E2U2

+c4
√

2EU‖r‖+
π2

6

n̂
√
n̂MfR

2n
√
m

. (C.30)

Choosing r = 0, and θ̂T =
∑T
k=1 θ

k

T
, by Jensen’s inequality we will obtain

f̂(θ̂T )− f̂(θ∗) ≤ 1

T

(
‖p̂0 − p‖2

Ĝ1 + c
σ2
max(L̂+

T
)

σ2
min(L̂−

T
)
8E2U2 +

π2

6

n̂
√
n̂MfR

2n
√
m

)
. (C.31)
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C.7 Proof of Theorem 7

Since the eigenvalue of a block diagonal matrix is equal to the eigenvalue of each matrix block, we

have

f(θ̂T )− f(θ∗)

=
∑

f̂(θ̂T )− f(θ∗)

≤ 1

T

(∑
‖p̂0 − p‖2

Ĝ1 + c
∑ σ2

max(L̂+

T
)

σ2
min(L̂−

T
)
8E2U2 +

∑ π2

6

n̂
√
n̂MfR

2n
√
m

)

≤ 1

T

(
‖p0 − p‖2

G1 + c
σ2
max(L

T
+)

σ2
min(LT−)

8E2U2 +
π2

6

√
nMfR

2
√
m

)
. (C.32)
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