
UC San Diego
UC San Diego Previously Published Works

Title
Deep Learning Identifies High-Quality Fundus Photographs and Increases Accuracy in 
Automated Primary Open Angle Glaucoma Detection.

Permalink
https://escholarship.org/uc/item/8fx3x239

Journal
Translational Vision Science & Technology, 13(1)

ISSN
2164-2591

Authors
Chuter, Benton
Huynh, Justin
Bowd, Christopher
et al.

Publication Date
2024-01-29

DOI
10.1167/tvst.13.1.23
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fx3x239
https://escholarship.org/uc/item/8fx3x239#author
https://escholarship.org
http://www.cdlib.org/


Artificial Intelligence
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Purpose: To develop and evaluate a deep learning (DL) model to assess fundus
photograph quality, and quantitatively measure its impact on automated POAG
detection in independent study populations.

Methods: Imagequality ground truthwasdeterminedbymanual reviewof 2815 fundus
photographs of healthy and POAG eyes from the Diagnostic Innovations in Glaucoma
Study and African Descent and Glaucoma Evaluation Study (DIGS/ADAGES), as well as
11,350 from the Ocular Hypertension Treatment Study (OHTS). Human experts assessed
a photograph as high quality if of sufficient quality to determine POAG status and
poor quality if not. A DL quality model was trained on photographs from DIGS/ADAGES
and tested on OHTS. The effect of DL quality assessment on DL POAG detection was
measured using area under the receiver operating characteristic (AUROC).

Results: The DL quality model yielded an AUROC of 0.97 for differentiating between
high- and low-quality photographs; qualitative human review affirmed high model
performance. Diagnostic accuracy of the DL POAG model was significantly greater
(P < 0.001) in good (AUROC, 0.87; 95% CI, 0.80–0.92) compared with poor quality
photographs (AUROC, 0.77; 95% CI, 0.67–0.88).

Conclusions: The DL quality model was able to accurately assess fundus photograph
quality. Using automated quality assessment to filter out low-quality photographs
increased the accuracy of a DL POAG detection model.

Translational Relevance: Incorporating DL quality assessment into automated review
of fundus photographs can help to decrease the burden of manual review and improve
accuracy for automated DL POAG detection.

Introduction

Retinal fundus imaging plays a crucial role in the
diagnosis and management of glaucoma, a leading
cause of permanent visual impairment and blind-

ness.1–5 However, poor quality can decrease the useful-
ness of photographs in the clinical management of
glaucoma. Differences in cameras and conditions as
well as differences between patients and technicians can
lead to variable fundus photograph quality. Common
quality issues include incorrect brightness, diminished
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Figure 1. Sample images from training dataset: high-quality image (A) and low-quality images (B,C,D). Quality ratings assigned by human
reviewers to train the quality model.

contrast, improper focus, blurring, poor image center-
ing, and noise (Fig. 1).6 resulting in images that
cannot be accurately graded for POAG.6 These issues
remain prevalent, and a substantial portion of fundus
photographs captured by trained technicians are only
partially gradable or not gradable at all.8,9

Poor quality images can disrupt both manual
and automated assessment of fundus photographs,
with implications for clinical and research applica-
tions.5,7–10 To help ensure capture of sufficiently good
quality photographs, redundant images may be taken.
However, this process requires additional technician
and clinician time for image capture and review,
potentially making the cost and labor required for
telemedicine programs prohibitively high. Automated
quality assessment models could provide real-time
feedback and even help to direct image capture to
ensure that gradable images are collected. In addition
to clinical and telemedicine settings, automated quality
assessment could prove to be a useful tool in
research settings. Large, well-annotated image datasets
have become a critical resource across ophthal-
mology to build and evaluate AI-based diagnos-
tic and decision support systems. Compiling these
large datasets requires substantial resources, includ-
ing manually identifying and removing low-quality
images.11 In addition to the increased time and cost,
low-quality images may also decrease the perfor-
mance of automated review. Deep learning (DL)–
based systems to review fundus photographs have
already been deployed in clinical settings,12 and a
number of methods for photograph-based automated
glaucoma detection have been described recently.2,3,13
Given the increasing role automated review of fundus
photographs will have in both research and clini-
cal settings, standardized automated identification
of quality issues in ophthalmic images is criti-
cal to improve clinical and research workflows by
ensuring that good quality images are available for
review.

Previous work has described automated approaches
for fundus image quality assessment.14–17 These
approaches have achieved high accuracy in identi-
fying images with serious quality issues. However,
these approaches are typically designed to address
general image quality issues in a disease-agnostic way.
The goal of this work is to develop and evaluate a DL
approach for automated quality assessment specifi-
cally in the context of review of fundus photographs
for POAG. Our approach used independent, diverse
datasets collected at more than 30 clinical centers and
quantified the impact of automated quality assessment
on the performance of a previously described DL
POAG detection model.2,3 For these analyses, fundus
photograph quality was based on the ability of experts
to review them for the presence of POAG.

Methods

Data Collection

Study participants were chosen from longitudi-
nal studies investigating optic nerve structure and
function in glaucoma as well as a randomized
clinical trial evaluating the safety and efficacy of
topical ocular hypotensive medication in POAG
onset in hypertensive eyes. More specifically, this
study used fundus photographs from the Diagnos-
tic Innovations in Glaucoma Study (DIGS, clinicaltri-
als.gov identifier: NCT00221897), AfricanDescent and
Glaucoma Evaluation Study (ADAGES, clinicaltri-
als.gov identifier: NCT00221923), and Ocular Hyper-
tension Treatment Study (OHTS, clinicaltrials.gov
identifier: NCT00000125 phases I and II).18 Data from
these studies were used to create two datasets: (1)
DIGS/ADAGES used to train the quality model and
perform initial qualitative evaluation and (2) OHTS
used as an independent, external dataset for additional
quantitative evaluation.19 For all studies, recruitment
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and methodology were approved by each institution’s
institutional review board and adhered to the Decla-
ration of Helsinki and the Health Insurance Portabil-
ity and Accountability Act. As such, all participants
provided informed consent at recruitment. Details of
these studies’ methods have been extensively described
previously, but relevant aspects are briefly described in
this article.18,19

The DIGS and ADAGES studies are a collab-
orative initiative between the UCSD Hamilton
Glaucoma Center, University of Alabama at Birming-
ham Department of Ophthalmology (Birmingham,
AL), and the Columbia University Medical Center
Edward S. Harkness Eye Institute (New York, NY).
The DIGS/ADAGES studies collected stereo fundus
photographs and visual field (VF) testing semiannu-
ally as a part of their longitudinal design. Fundus
photographs were taken via film as simultaneous
stereoscopic optic nerve head (ONH) photographs.
VF testing was performed using the Humphrey Field
Analyzer II (Carl Zeiss Meditec, Dubin, CA) with a
standard 24-2 testing pattern and the Swedish Inter-
active Thresholding Algorithm. VF tests exceeding
33% for fixation losses, false-negative (FN) errors, or
false-positive (FP) errors were discarded. The mean
deviation from VF testing closest in time to image
capture, not surpassing 1 year, was calculated to
estimate VF function at the time of imaging for all
ONH images. For the images used in this study, VFs
were graded for quality in accordance with protocols
by the UCSD Visual Field Assessment Center.

OHTS began as a randomized clinical trial in 1994,
and the associated imaging and data were used to
provide an independent, external dataset to further
evaluate ourDLmodels.Written informed consent was
obtained from all participants at enrollment at each
of the 33 study centers. For inclusion in this work,
the requirement for institutional review board approval
was waived because only deidentified data were used,
following the Standards for Reporting of Diagnos-
tic Accuracy reporting guidelines. We recruited 1636
patients with ocular hypertension from 33 clinical sites
to be evaluated biannually with Humphrey 30-2 VF
testing and annually for stereoscopic optic nerve ONH
photography. Photographs taken during the OHTS
randomized clinical phase I trial from 1994 to 2002 and
the longitudinal follow-up OHTS phase II trial from
2002 to 2009 were used in this study.

Quality Grading

All photographs from DIGS/ADAGES and OHTS
datasets were preprocessed using an automated
segmentation model to localize and crop a square

image centered on the ONH, where the side length
of each crop was approximately equal to two times
the optic disc diameter. A standard window size was
chosen to give the expert graders and models a consis-
tent view of the ONH region. The 2× disc diameter
size was selected because it is the largest field of view
available across images in all datasets, given that they
were captured using a variety different camera systems,
settings, and fields of view. Although this view may
not capture diagnostic information further from the
disc, our previous work has shown high accuracy in
POAG detection using this window size.2,3 Details of
this preprocessing have been described previously.2
The cropped fundus images were then resized to 224
× 224 pixels, and an expert manually reviewed each
cropped image to confirm correct ONH centering. The
downsampled size of 224 × 224 was chosen to match
the expected input size of the ResNet50 models that
we previously used for POAG with high accuracy. Our
own empirical testing does not show an improvement
in performance when using a larger 512 × 512 resolu-
tion. An expert manually reviewed each cropped image
to confirm correct ONH centering. Cropped ONH
images were subsequently used for quality grading,
as well as for input to all subsequent DL models. For
these datasets, simultaneous stereo photos were avail-
able in some cases, sequential stereo photos (i.e., two
photos captured using a monocular fundus camera in
succession to produce a pseudo-stereo pair) in other
cases, and monocular fundus photos in the remain-
der. In the analyses described here, stereo pairs were
separated and treated as monocular fundus photos so
that all data could be included.

These ONH images were reviewed for quality by
two independent expert reviewers (C.B. and J.R.) at
the UCSD Optic Disc Reading Center. For this work,
image quality was defined in terms of gradeability for
POAG. That is, an image was annotated as high quality
or gradable it had sufficient quality to determine the
presence or absence of POAG according to the expert
reviewers. A label of low quality was assigned to images
where quality issues prevented reviewers from being
able to grade the images for POAG with confidence.
Image quality ground truth for all selected images from
both DIGS/ADAGES was determined by consensus
between two independent reviewers (Fig. 1).

POAG Grading

In DIGS/ADAGES, two independent, masked
graders reviewed film stereophotographs using a
stereoscopic viewer for the presence of POAG. For
grader disagreement, a third experienced grader
adjudicated. In preparation for analysis, photograph
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films were digitally converted by scanning 35-mm film
slides and storing them in high resolution (∼2200 ×
∼1500 pixels) with a TIFF format. Stereo image pairs
were divided into separate images of the ONH. The
combined dataset comprised 7411 stereo pairs split
into 14,822 individual ONH images, captured from
4363 eyes of 2329 participants. For this study, the data
was evaluated cross-sectionally with a binary label
(healthy vs. POAG) assigned at the image level.

In OHTS, masked readers at the independent Optic
Disc Reading Center and Visual Field Reading Center
independently assessed optic disc photographs and
VFs.20 Although all participants were required to begin
the study with normal-appearing ONHs and VFs as
determined by the OHTS Optic Disc Reading Center
and Visual Field Reading Center, if two consecu-
tive sets of photographs or three consecutive sets of
VFs demonstrated change from the baseline, the case
was reviewed by the three glaucoma specialist OHTS
Endpoint Committee members. Final POAG status
was determined by a three-member Endpoint Commit-
tee of glaucoma experts who reviewed the photographs
and VFs alongside medical history to identify POAG,
the primary endpoint, or other potential pathophys-
iologies such as ischemic optic neuropathy. However,
unanimity was required for label assignment, often
requiring multiple consensus grading sessions.20 By
design, the criteria for the development of POAG
was designed for high specificity to correctly identify
individuals without glaucoma.

DL Quality Model

The clinical and demographic information of the
study populations used in the training, validation
and independent test is presented in Table 1. The
DIGS/ADAGES dataset was used for model training,
validation, and qualitative evaluation of DL model
performance. The OHTS dataset was partitioned in
OHTSTest Set 1 andOHTSTest Set 2. These were used
as independent test datasets that had no overlap with
the training data (or each other) and were collected as
part of a separate study. These independent test sets
were selected to help provide a better estimate of model
generalizability. OHTS Test Set 1 was used to evaluate
the accuracy of the DL quality model in distinguishing
between good and poor quality images. OHTS Test Set
2 was used tomeasure the impact of DL quality predic-
tions on DL POAG detection. The DIGS/ADAGES
dataset was partitioned into training and validation
sets using a 90%–10% split. Partitioning was done by
patient and there was no overlap in the participants
included between the datasets. The training set was
used to train model weights, whereas the validation

set was used for model selection (models were evalu-
ated periodically on the validation during training and
the highest performing model was selected for further
evaluation on the test sets). The model was trained to
distinguish between high-quality (gradable) and low-
quality (ungradable) fundus photographs using the
expert quality grades described elsewhere in this article
as ground truth. The DL quality model produced
a quantitative output indicating a likelihood of low
image quality, with output near 0.0 indicating a low
likelihood of low quality and output near 1.0 indicat-
ing a high likelihood of low quality. Similar to our
previously described DL POAG model, we adopted a
ResNet50 architecture and model weights were initial-
ized based on training on a general image dataset
(ImageNet).21 We also evaluated additional architec-
tures (Xception22 and InceptionResNetV223) for use
in our DL quality model, but they achieved compara-
ble or slightly worse results, although the differences
were not statistically significant (results not shown).
During training, data augmentation was also used to
increase fundus photo variation seen by the model.
Specifically, random horizontal flipping (to simulate
other eye orientation), translation, and small image
rotations and rescalings were applied to the training
images.

Model Evaluation

Qualitative model evaluation was also performed
using manual review of DL model quality assess-
ment. The DL quality model outputs a quantita-
tive score between 0.0 and 1.0. Fundus photographs
from the DIGS/ADAGES dataset were binned into six
quality categories based on quantitative DL quality
predictions. Three experts then reviewed 100 randomly
sampled images within each category to assess the level
of quality associated with each category, with disagree-
ments resolved by the third grader. This reviewwas also
used to empirically determine an appropriate quality
threshold to distinguish between high- and low-quality
images.

The DL quality model was quantitatively evaluated
based on area under the receiver operating charac-
teristic curve (AUROC) using the independent OHTS
dataset. AUROC was computed using a bootstrap-
ping approach to account for multiple images from
the same patients and eyes.24 Fundus images from
OHTS used for this AUROC analysis were then binned
into six quality categories based on the quantitative
DL quality predictions and assessed by expert graders
for quality, in the manner described previously with
the DIGS/ADAGES images, for additional empirical
evaluation.
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Table 1. Clinical and Demographic Characteristics of the Training, Validation, and Independent Test Sets

DIGS/ADAGES OHTS

Characteristic (A) Training Set (B) Validation Set (C) Test Set 1 (D) Test Set 2

No. of participants 888 108 332 304
No. of eyes 1002 117 585 608
No. of images 2520 295 11350 12278
VF mean deviation (95% CI), dB −3.13

(−3.53 to−2.74)
−4.16

(−5.60 to−2.73)
−0.34

(−0.40 to−0.28)
−0.30

(−0.48 to−0.12)
Mean age (95% CI), years 65.01

(64.22 to 65.81)
63.73

(61.40 to 66.06)
62.21

(61.95 to 62.48)
61.6

(60.5 to 62.7)
Sex (%)
Female 519 (58.4%) 61 (56.5%) 163 (49.1%) 138 (45.4%)
Male 367 (41.3%) 47 (43.5%) 163 (49.1%) 166 (54.6%)
NA 2 (0.2%) 0 (0.0%) 6 (1.8%) 0 (0.0%)

Race (%)
American Indian/Alaska

Native
2 (0.2%) 0 (0.0%) 1 (0.3%) 0 (0.0%)

Asian 28 (3.2%) 3 (2.8%) 2 (0.6%) 0 (0.0%)
Black or African American 304 (34.2%) 47 (43.5%) 92 (27.7%) 81 (26.6%)
Pacific Islander 1 (0.1%) 0 (0.0%) 15 (4.5%) 0 (0.0%)
Unknown or not reported 29 (3.3%) 3 (2.8%) 9 (2.7%) 0 (0.0%)
White 524 (59.0%) 55 (50.9%) 213 (64.2%) 223 (73.4%)

Developed a POAG end point
by VF or photograph
No. of participants 399 (15.9%) 51 (17.3%) 86 (0.8%) 53 (0.5%)
No. of eyes 457 (18.2%) 54 (18.4%) 136 (1.2%) 72 (0.6%)
No. of images 1173 (46.6%) 137 (46.5%) 3194 (28.2%) 801 (6.6%)

Not known to develop
glaucoma
No. of participants 489 (19.5%) 57 (19.4%) 246 (2.2%) 251 (2.1%)
No. of eyes 545 (21.7) 63 (21.4%) 449 (4%) 536 (4.4%)
No. of high-quality images 2290 (90.9%) 269 (91.2%) 11265 (99.3%) 11729 (95.6%)
No. of low-quality images 230 (9.2%) 26 (8.9%) 85 (0.8%) 549 (4.5%)

DL model visualization techniques were also used
to assess the DL quality model. Gradient weighted
class activation mapping (Grad-CAM) is a technique
to identify image regions that drive model predic-
tions.25 For a given DL model and input image, Grad-
CAM outputs a coarse localization map highlight-
ing regions of the input image most influential to
the model’s prediction, in this case, low or high
quality.

In addition, a previously published DL POAG
detection model developed on the DIGS/ADAGES
dataset was used to measure the impact of DL
predicted image quality on automated POAG detec-
tion.2,3 The DL POAG detection model was applied
to the OHTS dataset and model performance was

assessed for both high and low-quality subsets of the
data.

Results

DL Quality Model Performance

Expert review of the fundus images in each dataset
resulted in good and poor quality labels assigned to
each image in the DIGS/ADAGES training set (90.9%
good, 9.1% poor), OHTS Test Set 1 (99.2% good, 0.8%
poor), and OHTS Test Set 2 (95.5% good, 4.5% poor).
Because these datasets have previously been vetted for
quality, poor quality images were relatively rare in these
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Figure 2. Performance (AUROC) of DL quality model on detection
of high- and low-quality photographs.

datasets. The DL quality model achieved an AUROC
of 0.97 (95% CI, 0.96–0.98) (Fig. 2) for detecting poor
quality images on the OHTS Test Set 1. Based on the
expert qualitative review of DL quality predictions and
Youden’s index, a quality threshold (0.10) was selected
to assign binary gradable and ungradable scores to
images.26 Using this threshold, the model achieved
accuracy of 0.97 (95% CI, 0.96–0.97), sensitivity of
0.73 (95% CI, 0.62–0.83) specificity of 0.97 (95% CI,
0.96–0.98), and precision of 0.16 (95% CI, 0.12–0.20)
for detecting gradable and ungradable photographs on
OHTS Test Set 1. Figure 2 presents the ROC curve
illustrating DL quality model performance with the
OHTS dataset.

Impact of Automated Quality Assessment on
Automated POAG Detection

The diagnostic accuracy of theDLmodel for POAG
detection performed better on good quality compared
with poor quality OHTS photographs, as determined
by the DL quality model. On OHTS Test Set 2, it
achieved an AUROC of 0.87 (95% CI, 0.80–0.92) on
good quality and 0.77 (95% CI, 0.67–0.88) on poor
quality images in detecting POAG (Fig. 2, Table 2) and
the difference was significant (P < 0.001). Sensitivity at

0.80, 0.85, 0.90, and 0.95 specificity was higher in the
good quality compared with poor quality photographs
(0.79 vs. 0.53, 0.75 vs. 0.47, 0.69 vs. 0.41, and 0.56 vs.
0.23).

Qualitative Review of DL Quality Model
Predictions

Human review of images across the quality score
range qualitatively showed that increased DL quality
score reliably corresponded to lower quality images
for both the DIGS/ADAGES and OHTS datasets
(Fig. 3). Excessive brightness, low contrast and blurri-
ness appeared to negatively affect glaucoma gradeabil-
ity (Figs. 4J, 4K, 4L).

Human experts qualitatively reviewed all 23 FN
(the model identified a photograph was good quality
when it was poor) and 336 FP (the model identi-
fied a photograph as poor quality when it was good)
examples. This review revealed consistent patterns in
FN and FP model errors. When the model predic-
tion resulted in a FN, it was often due to failures
in identifying poor cropping of the images, often in
eyes with larger discs as quality issues that preclude
grading. However, in the majority of cases the quality
model correctly identified images with poor cropping
as low quality. Qualitative review of FPs, for which
the image incorrectly identified high-quality images as
poor, demonstrated undervaluing of the significance of
obvious glaucomatous features that enabled grading in
comparison to the general image quality defects that
led to low-quality scores (Fig. 5). This factor could
also help to account for the relatively high number
of FPs compared with FNs (336 vs. 23). That is,
these images had quality issues (e.g., blurring, artifacts,
noise) and the model was recognizing them correctly.
However, the clear present and extent of glaucoma-
tous damage meant it was still gradable, despite quality
issues.

Visualizing DL Quality Model Predictions

Grad-CAMs on several sample images from the
OHTS dataset are shown in Figure 6. For low-quality
images with large, visible artifacts, the model focused

Table 2. POAG Detection Performance on Low- vs. High-quality Images From OHTS

Sensitivity @

Quality Values Set n AUC (95% CI) 80% Spec 85% Spec 90% Spec 95% Spec

High quality (0 ≤ q < 0.1) 11729 0.87 (0.80–0.92) 0.79 0.75 0.69 0.56
Low quality (q ≥ 0.1) 549 0.77 (0.67–0.88) 0.53 0.47 0.41 0.23
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Figure 3. Performance (AUROC) of POAG detection model for high- and low-quality photographs.

Figure 4. Sample images along with the quality score from the DIGS/ADAGES and OHTS datasets. Quality scores (Q in the figure) are
generated by the DL quality model and estimate the likelihood of poor quality (0.0 = predicted good quality, 1.0 = predicted poor
quality).

most strongly on those artifacts (Fig. 6, left). For low-
quality images with severe blur throughout the image,
the model broadened to larger regions of the image,
prioritizing the ONH and some peripheral regions

(Fig. 6, middle). For high-quality images, the model
concentrated on superior and inferior regions of the
neuroretinal rim area and retinal vasculature (Fig. 6,
right).
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Figure 5. Example FP and FN images for identifying the quality of
the photographs.

Discussion

The DL quality model developed in the current
study accurately identified gradable photographs,
the use of which impacted the performance of a
previously described DL POAG detection model.2,3
Automated quality assessment of fundus photographs
may improve clinical and research workflows by
quickly identifying images with sufficient quality and
detail for disease grading. Recent work in automated
fundus has also reported high performance in distin-
guishing low and high-quality fundus images, with
AUROCs of 0.95 to 0.99.14–17 Our AUROC on the
OHTS data is within this range. One important distinc-
tion to note, however, is that our ground truth is
explicitly based on gradeability for a particular disease
of interest rather than general image quality, which
is the typical approach taken in previous work. We

also directly measured the impact of applying a DL-
based quality filtering to an existing DL POAGmodel.
Our use of a DL approach to estimate image quality
based on gradeability also has an advantage over some
traditional metrics of signal quality (e.g., signal-to-
noise ratio), because it does not require a reference
standard high-quality image to measure noise and
directly addresses a central question relevant to diagno-
sis and screening—is this image gradable for glaucoma?

In recent years, numerous studies have applied DL
models to retinal fundus photographs, achieving high
accuracy for a variety of tasks such as disease detec-
tion and vessel segmentation.1–3,7,27,28 However, most
of these studies use only high-quality photographs;
quality can vary greatly in real-world situations and
significantly affect the performance of these models in
clinical practice. Beede et al29 deployed an AI-assisted
diabetic retinopathy detection model across eleven
clinics in Thailand and found poor lighting conditions
to be a major factor leading to ungradable images
and decreased performance.30 To address the issue of
quality, several investigators have proposed automated
quality assessment models for fundus images.31–33
However, the majority of these studies did not focus
on image gradeability for any specific pathologies, and
instead focused on general image quality. Further, most
of the previous studies were trained and evaluated on
photographs from the same source datasets, raising the
question of whether such approaches will generalize to
different patient populations, devices, or lighting condi-
tions from a variety of cameras. Also, although these
techniques showed high AUROC on test sets, they were
not evaluated on relevant downstream diagnostic tasks,
such as disease detection, limiting their evaluation as a
clinical tool.32 In addition, most prior work focused on

Figure 6. Grad-CAM of sample images. The red indicates areas that were of high importance to the model’s prediction. Green and blue
indicate progressively lower importance.
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applications of photographs for detection of diabetic
retinopathy, not glaucoma.

In contrast, we propose a DL quality assessment
model trained on manual labels for glaucoma grade-
ability using photographs from more than 30 clini-
cal sites. The model achieved strong performance on
quality assessment (AUROC = 0.97) on an indepen-
dent dataset. Expert review of DL quality predictions
suggests that the model is identifying commonly seen
quality issues in fundus photographs (e.g., lighting,
blur, cropping). We further evaluated the model on
the downstream task of glaucoma detection, where
good quality photographs improved automated POAG
detection performance compared with poor quality
photographs (AUROC = 0.87 vs. 0.77). This finding
suggests that the DL quality model may be an effective
prescreening tool for automated POAG detection.

Grad-CAM was used to identify areas that drove
model decisions regarding image quality. Unsurpris-
ingly, in images with obvious, localized quality issues
(i.e., imaging artifacts, blurred regions), the DL quality
model focused on those areas. In good quality images,
the model seemed to focus on the neuroretinal rim,
especially the inferior and superior regions of the
rim. This finding is similar to our previous results
showing the DL POAG model also focused on inferior
and superior rim regions2 and also corresponds with
general guidelines that are often applied to ONH
review—namely, that glaucomatous damage is first
visible in the inferior rim, followed by the superior
rim.34 This could indicate that POAG gradeability
could be maintained even in the presence of quality
issues, as long as these areas are preserved.

A strength of this study is that the DL model
was developed using DIGS/ADAGES photographs
from 3 independent study centers, and tested on the
OHTS photographs representing 33 study centers, each
with their unique cameras, technicians, and study
populations. Another strength is that the images used
to train and test the model were graded specifi-
cally for glaucoma gradeability as opposed to general
image quality. Although photographswith overall good
quality are ideal to aid in clinical decision-making, in
the case of glaucoma, it is possible to identify charac-
teristic defects in poorer quality photographs in cases
of advanced glaucoma. Furthermore, the model was
evaluated on the downstream task of glaucoma detec-
tion using a previously developed DL POAG detection
model. To the best of our knowledge, we are the first to
develop a DL quality assessment model specifically for
glaucoma gradeability.

One limitation of this study is that our glaucoma
gradeability training labels are binary labels, with
no additional information about severity or annota-

tions for specific artifacts that may affect grade-
ability. Although qualitative analysis shows that our
model is able to quantify glaucoma gradeability on
a spectrum of severity (Fig. 3) despite being trained
on binary labels, and it focuses on relevant visual
features such as the ONH, retinal vasculature, and
artifacts (Fig. 6). Future work could focus on produc-
ing more informative and explainable quality assess-
ments via ablation studies, more detailed training
labels, or complex model architectures. Another limita-
tion is the dataset imbalance of high- and low-quality
images, with good quality photographs vastly outnum-
bering the poor. The studies in which these images were
collected (DIGS/ADAGES andOHTS) took a number
of approaches to help ensure good quality images,
including patient selection, training and certification
of photographers, the capture of multiple photos per
visit, and the review and recapturing of photos in
cases of insufficient quality, among other approaches.
This circumstance is not representative of real-world
clinical data, where poor quality images can be quite
common. Even in the presence of this large imbalance,
our review of FPs and FNs as well as overall model
performance in other measures suggest that the model
itself generally performs well, although it did lead to a
low precision. Undersampling of high-quality images
or data augmentationwith artificial generation of more
low-quality images could be explored to ameliorate
this imbalance and improve the measured precision
in subsequent research. Finally, this model may have
overvalued general image quality to classify an image as
ungradable in cases where glaucomatous defects were
otherwise sufficiently severe for the image to remain
gradable by human reviewers, leading to FPs for low
image gradeability (Fig. 5).

In clinical practice, our model could be used as
a tool for real-time quality assessment of retinal
fundus images acquired from patients with suspected
glaucoma: images assessed in real time as poor quality
could be discarded and the photograph could be
retaken in the same visit, ensuring glaucoma grade-
ability of acquired images and decreasing the risk
of preventable complications and errors in clinical
workflow. In addition, because our technique was
evaluated directly on downstream glaucoma detec-
tion, it could be incorporated into a clinical pipeline
for glaucoma detection as a quality screening tool,
preceding an automated glaucoma detection model or
human reader with a large workload. When applied to
a downstream automated glaucoma detection model,
our results indicate that glaucoma detection perfor-
mance may improve. Application of this approach to
clinical research and clinical trials that use qualita-
tive assessment by an optic disc could enhance repro-
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ducibility and efficiency, because the model can both
ensure gradeability of images, improve reader perfor-
mance, and decrease reader workload. In conclu-
sion, the current results suggest that a DL model
can accurately assess glaucoma gradeability of retinal
funduscopic images from a wide variety of popula-
tions and conditions. Moreover, using the automated
assessment of quality to filter out low-quality fundus
photographs increased the accuracy of a downstream
DL POAG detection model.
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