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ABSTRACT 

The coupling between longitudinal and axially symmetric transverse per-

turbationsis studied self-consistently by considering a beam of K-V distri-

bution. The analysis is carried out within the context of linearized 

Vlasov-Maxwell equations and electrostatic approximation. It is shown that 

the coupl ing affects both the longitudinal and transverse modes signifi­

cantly in the high density and low frequency region. In the medium and low. 

dens ity reg ion, th e separate treatment of 1 ongi tudi na 1 and transverse modes 

tends to be a good approximation. A new class of "coupling modes" is found 

which would not exist if the transverse motions of particles are neglected. 

The effect of resistive wall impedance on beam stability is also studied. 

It is found that the longitudinal impedance can cause a few transverse modes 

also to be weakly unstable. 
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of High Energy and Nuclear Physics, High Energy Physics Division, U. S. Dept. 
of Energy, under Contract No. DE-AC03-76SF00098. 
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1. INTRODUCTION 

In recent years, there has been a growing research activity in the study 

of using a heavy ion beam as a possible drive~ for inertial confinement 

f 
. 1,2,3,4 

USlon • One of the main concerns in real izing the idea of heavy 

ion fusion is beam stability in transporting currents up to kilo-ampere range 

for distances of the order of kilometers. In spite of the fact that the 

stability of a charged particle beam has been studied over decades and major 

instabilities have been explored, one would still question the adequacy of 

existing theories when attempting to apply those theories to the beam in a 

proposed heavy ion fusion accelerator, which has a current several orders of 

magnitude higher than that in a conventional accelerator or storage ring. 

For example, in a customary stability analysis of a continuous beam in 

an accelerator or storage ring, longitudinal and transverse effects are 

treated separate1y5, a procedure which is valid because space charge 

forces are relatively weak and characteristic frequencies differ by orders 

of magnitude. In present day RF 1inacs, space charge effects are large and 

the frequencies in all degrees of freedom are comparable, but deterioration 

of beam quality is dominated by the effects of mismatches and nonlinear 

coupling in the first few drift tubes. A new situation arises when using an 

induction 1inac for heavy ion fusion and in the final transport lines to a 

reactor. Space charge forces are large and all frequencies are of the order 

of the plasma frequency, so that one might expect a significant coupling of 

longitudinal and transverse effects. The purpose of this paper: is to pre-

sent a first attempt to explore this regime. 
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The problem posed here is clearly a three or two dimensional stability 

analysis. Some three dimensional calculations have been carried out 

before6 ,7, but the considerations were limited to laminar beams or rotating , 

laminar beams or beams with very small radial motion of particles. These 

kind of beam models appear too simple for the present problem. In a strongl y 

focused beam, as in the one which will be accelerated and transported ,in a 

heavy ion fusion driver, most particles have appreciable betatron oscilla-

tions in the radial direction. A previous analysis by Gluckstern has shown 

that the betatron oscillations of beam particles dO support some transverse 

modes not found in a laminar or nearly laminar beam8 • Our concern here 

will be concentrated on the coupling effect between those transverse modes 

and longitudinal modes. 

We shall consider a simple model of an infinitely long, nonrelativistic 

beam of circular cross section under a constant linear external focusing 

force. The equi 1 ibrium configuration in phase space is assumed to have a K-V 

distribution9 in the transverse direction and no velocity spread in the 

longitudinal direction. We also assume that the beam is surrounded by a 

circular pipe with arbitrary wall impedance. Our considerations will be 

limited to the linearized analysis of the stability of axially symmetric 

modes under electrostatic perturbation. In Section II, an integro-

differential equation will be formulated from the Vlasov and Poisson equa­

tions. In Section III, the dispersion relation will be derived by expanding 

,the perturbed electric potential into Legendre polynomials to solve the 

integro-differential equation. Numerical results will be presented 

in ·1)ect ion I V. 
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II. THEORETICAL MODEL 

we consider an infinitely long, nonrelativistic beam of circ~lar cross 

section with radius a and constant particle density n. Each individual 

particle has electric charge q and mass m. The beam is assumed to be 

surrounded by a conducting pipe of radius b and arbitrary wall impedance. 

The equi librium state is maintained by a constant 1 inear external transverse 

focusing force which can be represented as 2 
ffiv r o 

in a cylindrical 

coordinate system of (r,IP,z). One can identify Vo as the betatron fre­

quency of a particle in the absence of the beam's self-field. By taking both 

the external focusing force and the self-field of the beam into account, one 

finds the relation, 

2 
v 

2 
2L = Vo - 2 (II-1) 

between the effect ive betatron frequency of particles, v, and the pl asma 

frequency, Ulp = ~4'1rnq2/m. For simplicity, we assume that the equi lib­

rium phase space configuration of particles is described by a distribution 

function of the form: 

(11-2) 
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where and are particles· transverse and longi-

tudinal speeds respectively, Vo is a constant; o(x) is the delta 

function. A straightforward calculation can show that the above distribution 

function satisfies the Vlasov equation, and the density profile obtained by 

integrating the above distribution function over velocity sp~ce is a constant 

equal to n for r < a. Also indicated in Eq. (I1-2) is that all the beam 

particles have the same transverse and longitudinal energies. In fact, the 

transverse distribution in Eq. (II-2) is just the axially symmetric case of 

the distribution function proposed by Kapchinskij and Vladimirskij9 (abbr. 

K-V) years ago. 

To make the mathematical calculation tractable, we shall consider 

electrostatic perturbations only and limit our analysis to the following 

1 inearized Vl asov and Poisson equations: 

af1 d~ af1 -+-.-= 
-+ -+ ax dt av 

( II -3) 

and 

2 
'iJ ~l = - ( I I -4) 

where (J is the electric potential and f is the distribution function; the 

subscripts 0 and 1 indicate the equilibrium and the perturbed quantities 

respectively. Also, to avoid complexity, we shall consider only azimuthally 

symmetric perturbations. Thus, on-ty the coupling between radial and axial 

perturbations will be discussed. 
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Assuming that all perturbed quantities vary according to 

~ ~ - ~ k ) i (wt - kz) f 1{x, v, t) = f{r, v, , w e (II-5) 

and 

~ (~ t) __ ~(r)ei(wt - kz) 'PI x, v (II -6) 

then by substituting Eq. (11-2) into Eq. (II-3) and integrating both sides 

of Eq. (11-3) along the unperturbed particle orbit, we obtain that 

f(r, ~, k, w) = 

00 

- v 2nq J ' 
TIm r 

o 

00 

- i kn q J ¢ ( r') 
nm [

2 22 211 -i(w-kvzh 
o v

1 
- \I (a - r )J e dT, (I 1-7) 

o 

In the above equation, T = t-t' is the duration between the present time t, 

and any past time, tl; r' and are the unperturbed particle orbit 

in the transverse phase space. In terms of T, r' and vr are as 

follows: 

,2 2 1 
[ ( V) 2 

r (T) = r co s \I T + --::; 
. 2 rv1 . 2 

s 1 n \IT - - S 1 n \IT co s~ 
\I 

6 

] 

1/2 

( II -8) 



and 

I (T) dr'(T} 
vr = dT (I 1-9) 

where 

-1 r ( V) 
~ = cos ~. (11-10 ) 

We note that the conditions, rl (0) = rand vrl.(O) = vr ' are implicitly 

contained in (11-8). 

Substituting Eqs. (II-5), (II-6) and (II-7) into Eq. (I 1-4) and using the 

relation 

00 00 2Tf 00 J f h(vr , v")dvrdV,, = J J h [Vr(V1 , <», V"(V1 ' <»} 1 dV1 de , 
_00 -00 

( I 1-11) 

o o 

one then is able to obtain the following integro-differential equation for 

(J for r.:. a by performing the integrations over v
1 

and v : 
z 

f 2Tf de fOO 
o 0 

f 
o o 

dTTe -istT 

00 

-istT dTst e 
[ 

. 2 T rSin(2VT)COSe] a~(p) 
Sln v - 2 

2~a2_r2 . Clp 

2 

+ we" ' (r - a) foo d'Sin(2vT)e-ifl'r 

o 

7 
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wh er e Q = w - k v 0 ' (I I-B) 

222 R = a cos vT , (11-14) 

and 2 a
2 

2 ~ 2 2 -
p = - (1 - COS2VT) + r COS2vT- r a - r cos6sin2vr. 

2 
(II -15) 

Equation (II-12), with k = 0, is the same as the one investigated by 

Gluckstern for stability of transverse modes. 

To carry the analysis further, we need to match the solution of 

Eq. (II-12) to the electric potential exterior to the beam at the edge of the 

beam, r = a. Instead of pursuing the solution of Eq. (II-12) at this 

moment, we shall find the exterior electric potential here and leave the 

tedious procedure of solving Eq. (11-12) to the next section. 

Assuming the space between the beam surface and pipe wall is vacuum and 

the electric potential in that region is ~o(r) ei(wt-kz), vie find that 

~o(r) must satisfy the following Laplace equation: 

1 ~ (r abo) _ k2~o = 0 • 
r ar ar 

(11-16) 

To include the wall impedance effects, we impose the boundary condition 

(II-l7) 

on the solution of Eq. (II-16), where Z is the wall impedance in units of 

Zo = 377 ohms and c is the speed of light. One can easily show that the 

solution of Eq. (II-16), subject to the above boundary condition, is 
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~o(r) = ,\ {IO(kr)KO(kb) - Io(kb)Ko(kr) -

C;D [IO(kr)«kb) - I~(kb)KO(kr)]}, ( II-18) 

where Io(x) and Ko(x) are the zero order modified Bessel functions 

of first and se~ond kind respectively, A is a constant to be determined by 

the boundary condition at r = a; primes denote the derivatives with res-

pect to the arguments. 

I II. DISPERSION RELATION 

Equation (II-12), in general, can not be solved for ~(r) with a finite 

series 
. 2 ln r , except for the case of k = 0, for which Gluckstern ob-

tained a solution in terms of finite Legendre polynomials as P1 (1 - 2r2/a~) 

+ P1+1(1 - 2r2/a 2) for transverse modes. The functional forms of these 

transverse modes suggest an expansion of ~(r) in Legendre polynomials of 

the same argument for the solution of Eq. (II-12) in order to study how 

the~e modes interact with longitudinal modes and with each other. We there-

fore assume th at 

00 

(J (r) = 2: (III-1) 

1=0 

for r < a. Substituting the above expansiem into Eq. (11-12), with the aid 

of the recursion relations of Legendre polynomials and the identity 

lLxP1(X) - P
1

_1(x) - (1+ 1)(1 + x)P1 (x)] 

1-1 

= (1 + x) 2: (_1)1+j-1(j+1)2 [P j +
1

(X) + Pj(X)] 

j=o 

9 
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one can show that the left hand side of Eq. (II-12) is equal to 

[ 

2G G· ] 2 
4 ~=o ( 5/, + 1) 2 (5/, + 1) A + (k a ) ( 5/, + 5/,+

1
) P ( ° , 1 

) (1 - ~ \ ( 1 II - 3) -7 ~ 5/,+1 "2 25/,+1 25/,+3· 5/, a2 ) , 

where 

00 

A5/, = L (-1) 5/,+j G
j 

j=5/, 

(I II-4) 

and pJO,l)(x) is the Jacobi polynomial which is related to Legendre 

polynomi al s by 

and 

p~(O,I)(x) , [p~(X) + P~+l(X)J/(l+X) , 

P~(x) : [(t+ I)PiO,I) (x) + ~pi~il)(X)]/(U+ 1) • 

(I II-5) 

(III-6) 

The quantities, A5/,' defined in Eq. (111-4) are the expansion coefficients 

- -of ~ in Gluckstern's modes. Thus, in terms of A5/,' 0 can be expressed 

as the following 

where 
00 

Ao = L (_I)5/, G 5/, = 0 (a) 

5/,=0 

is the perturbed potenti al at the edge of the beam. 

10 
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The algebra involved in manipulating the right hand side of Eq. (11-12) 

is tedious; we therefore summarized some intermediate steps in the Appendix 

and record the result as follows: 

where 

= 

B~(a) = ifm e-iavT p~ (cos2vr)d(vT) 

a 

1 
a· , 

11 

(III-g) 

for R, = a , 

for R, = 2m, (111-10) 

(I II-ll) 



and 

W - 'kv o 
a=--~ (1II-12) 

It is evident that the first term in expression (III-g) represents the per-

turbed volume charge density and the second term represents the perturbed 

surface charge, density. 

Equati ng the perturbed vol ume charge density to the express ion in 

(111-3) and using the orthogonality relations of Jacobi polynomials, we find 

a recursion relation for A~: 

(I II-13) 

for ~ ~ 1, 

where (III-14) 

and (I II-15) 

This recursion relation implicitly reduces the number of unknowns in the 

coefficients A~ from infinity down to two, say, AO and AI. 

We now are ready to match the exterior and interior solutions to obtain 

the desired dispersion relation. The first matching condition requires that 

the potential be continuous at the edge of the beam, that is 

12 
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(III-16) 

The second condi tion requires that the jump of the derivatives of the poten-

ti als at the beam surface must be equal to the surface charge density; i.e., 

-
a6 0 _.2P.. (I II-I7) 
ar ar r:;:;a 

Substituting the expansion of Eq. (III-I) into the above condition and apply-

ing the recursion relation of AR. in conjunction with the relations 

aBo ( a) = 1 an d 

(III-18) 

Equation (III-I7) is simplified to 

(III-l9) 

Dividing Eq. (III-19) by Eq. (III-16), yields 

(I II-20) 
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Applying the recursion relation (III-B) iteratively to the above equation, 

~e obtain the dispersion relation in a fo~m of infinite determinants or con-

tinuous fractions as the following: 

a [ ab~~r ) ] r=a 
t>o(a) 

Wo WI a a 

a (W I + W2+ U2) W2 a 

a W2 (W2+ W3+ U3) W3 
Wo a a W3 (W3+ W4+ U4) 

= W 
0 (W + W + U ) WI a a - - - - -o I I 

WI (WI + W2+ U2) W2 a - - - - -

a W2 (W 2+ W3+ U3) W3 - - - - -

0 a W3 (W3+ w4+ U4) 

(III-21) 

where the frequency, w, and the axial wave number, k, are contained in 

the quantities UR, and W~ defined in Eqs. (III-14) and (III-IS). 

Equation (III-21) is indeed a very complicated algebraic relation. In 

order to perform a practical numerical calculation, it is necessary to trun-

cate the determinants at certain finite rank. Nevertheless, by taking the 

limits of some relevant parameters, a few special cases can still be studied 

an a 1 yt i ca 11 y. 

14 
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First, if k = 0 then Eq. (III-l3) becomes U. = 0 and the perturbed 
J 

potential takes the simple form of Pj (l- 2r2/a
2

) + P j _ l (l- 2//a
2

). 

Thus, Gluckstern's results are recovered as expected. 

Next, we anticipate that Eq. (III-21) includes the dispersion relation 

for a col d beam. Recall that the temperature of the beam pl asma is charac-

terized by the effective betatron frequency, \I, and a value of zero for \I 

corresponds to a col d beam. One can eas ily prove that when \I approaches 

zero, the quantitiesU2 and w2 have the following limits: 

and 

1 im 
\I~O 

1 im 
\I~ 

( II 1-22) 

(I II-2 3) 

Substituting the above limits into Eq. (III-l3), yields a recursion relation 

(k a) A 2+ 1 . ( ka) 2 . [ 2 
4( 22 + 1) +. 4( 22 + 1) (III-24) 

for 2> 1. Comparing Eq. (III-24) with the recursion relation of Bessel 

functions, we find that 

lim 
v+O 

( I II-2 5) 

where h is an arbi trary constant independent of 2 and ka. We then infer 

that when \I approaches zero, Eq. (III-20) . becomes 

15 



( 
~) II (ka) 

= k 1 - Q2 I 0 ( k a) (III-26) 

Upon substituting the exterior solution in Eq. (I 1-18) into the left hand 

side of the above equation, one immediately recognizes that Eq. (111-26) is 

just the cold beam dispersion relation derived by Hahn10 and Ramo11 

years ago. In the long wavelength 1 imitof kb« 1, Eq. (III-26) has the 

familiar solution 

(ka)2 2 fi (~) iVoZ] 
2 wp L n a - bck • (I 11-27) 

Fi nally, by check ing the regime of 0 < kb «1 and v:/:. 0, we should 

perceive some effects of the betatron oscillations. For ka < kb «1, a 

good approximation for Eq. (111-21) is 

a (111-28) 

Solving Eq. (III-28) for the Doppler shifted frequency Q , we have 

( I II-2 9) 

When v is zero, the above equation is identical to Eq. (III-27). For non-

zero v, we see that due to the. transverse motion of particles, the cold 
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beam result is modified by the first term on the right hand side of 

Eq. (III-29). Also, in the long wavelength region, another class of modes 

owing to the betatron oscillation of particles can be found by the following 

observations: 

lim aBt{a) = 

(Q/ \I)~ 

0, 

o 

if t·i s odd, 

(III-30) 

P
t 

(cosx)dx , if t is even. 

In this case, the dispersion relation, Eq. (III-21) , admits a set of 

solutions 

(III-3i) , 

where t is a positive even integer. For this kind of mode, the perturbed 

potential almost vanishes at the edge of the beam, i.e. A = ~(a) = o -0o (a) ~ O. We stress that this class of modes would not be found if we 

cons ider the long itudina 1 and transverse perturbations separately or if we 

neglect the betatron oscillations of particles. 

IV. NUMERICAL RESULTS 

As mentioned before, the infinite determinants in Eq. (111-21) have to 

be truncated at certain finite rank for a practical numerical computation. 

The rank of truncation will depend on the desired accuracy and the number of 

modes to be examined. With the aid of the limit considerations at the end 

of last section, one can estimate the number of modes that can be found at 

17 



any part icu 1 ar truncat ion. However, the re 1 at ion between the accuracy of 

the roots and the rank of truncation is much ,less apparent. 

We know that when ka = 0, only the transverse modes described by 

U. = 0 wi 11 ex i st. Therefore, if one wi shes to study the interact ion 
J 

between the longitudinal modes and the transverse modes contained in u = n 

0, then the truncated determinants have to include Un; that is one has 

to truncate the infinite determinants at rank of n at least. In principle, 

one could truncate the determinants at a rank much higher than n in order 

to achieve better accuracy in computing the roots. However, the larger the 

determinants used in the computation, the higher the number of roots that 

will be found in the dispersion relation and the smaller the intervals 

between roots will be, so that the identification of the many roots becomes 

more difficult. 

When finite determinants are used in Eq. (111-21), the dispersion 

relation is then reduced to a finite order algebraic equation and hence the 

number of roots or modes can be definitely counted. In general, if n x n 

determinants were employed in Eq. (111-21), one can obtain n(n+2) roots for 

even n or (n+l)2- roots for odd n. Among these roots, n (n+l) 

originate from the solutions of the equations Uj = 0 for j = 1,2, ••• ,n, 

one root of the longitudinal mode described in Eq. (III-26) and the 

remaining belong to the class described by Eq. (III-31). Since there is no 

strong necesssity to distinguish the roots among ~ solutions of u~ = 0, 

we shall use the symbol \ to represent the whole family of solutions of 

Ut = O. The ordinary longitudinal mode in Eq. (111-26) will be referred to 

as the Ll 

deSignated as 

mode and the "COUp 1 i ng modes II in Eq. (II 1-31) wi 11 be 

L. 
J 

modes, for j ~ 2, in the order of their first 

appearance in the (2j-l) x (2j-l) determinants used in the dispersion 

relation. 

18 



In the present work, we limit our interest to examining how the longi-

tudinal perturbations affect the T1, T2 and T3 modes. We there-

fore have to truncate the determinants at the rank equal or hi gher than 

three, where the appropri ate rank is chosen based on compromi sing the pre­

cision and the simplicity of computation. After comparing the results from 

different sizes of determinants used in the computation, we found that within 

the interesting ranges of relevant parameters, the 4x4 truncation can provide 

a reasonable accuracy without causing confusion. For this reason, the 

numerical results presented in the following are all computed according to 

the 4x4 truncations of the infinite determinants in Eq. (III-2l). The use 

of 4x4 determinants in the computation also introduces four roots of T4 

modes. However, those roots always have poor accuracy; we therefore ignored 

them. If a more precise calculation of T4 is needed, we then have to 

use SxS or 6x6 truncation. 

There are four parameters involved in the dispersion relation: the 

ratio between the radius of the surrounding pipe and the radius of the beam, 

bla, the axial wavelength parameter, ka, the tune depression, vIvo, 

and the wall impedance parameter, t = wZ/ck. We only consider the case of 

bla = loS in order to narrow down the parameter space. For this relatively 

low value of bla, the interesting range of ka would be from 0 up to 1; 

we therefore examined four different axial wavelength cases of k a = 0.0, 

o.S, 1.0 and loS. The wall impedances considered are of perfect conductor 

and resistive types for}, = 0.0, 0.1, 0.2 and 0.3,which are within the 

range corresponds to conditions anticipated in a 1 inear induction 

acce 1 erator. For each one of the sixteen combinations of the above 

mentioned axial wavelengths and wall impedances, we have calculated the 

ratio of the Doppler shifted frequency to the zero current betatron 
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frequency, Q/ Vo = (w-k v 0) I vo ' for the fu 11 range of tune depress ions; 

i.e. from vivo = 0 to vivo = 1. 

Numerical results for ka ~ 0 are organized into the figures and tables. 

Since all the interesting results appear in the high tune depression region, 

we therefore only present the results in that region. Zero impedance cases 

are shown in Figs. 1 to 3 and examples of resistive impedance results are 

given in Tables 1 and 2. 

The following is a summary of our numerical results: 

A. Perfect Conduct i ng Wall: ( d' = 0) 

By comparing the Doppler shifted frequencies, Q = w-kvo ' obtained 

from different cases, we found that the transverse modes, T1' T2 and 

T3 , except for the lower T 2 and at the crossing of Tl and T3 , 

are not significantly affected by the longitudinal perturbations. The 

growth rate of the well known instability in the confluent region of the two 

lower T 3 modes remains roughly the same as for k = 0, but the merging 

point is shifted from v = .375 Vo for ka = 0 to v = .39 Vo for 

ka = 1.0 and to v = .4 Vo for ka = 1.5 as can be seen in the figures. 

The frequencies, Q, of the ordinary longitudinal mode Ll and the 

"coupl ing mode" all van ish at At v = 0, the mode 

approaches the cold beam limit in Eq. (III-26), while the L2 mode joins 

with some of the T2 and T3 modes to fall to zero again. We notice 

that in the IRe(Q/vo)1 versus vIvo plots, the maximum of Q for the 

Ll mode occurs at v > 0 rather than at v = O. This fact is due to the 

first term on the right hand side of Eq. (III-29) which indicates the 

effects of particles' transverse motion on the Ll mode. 

20 



Pronounced 1 ongitudina l-tr ansverse coupl i ng appears in the high density 

and low frequency region, which is clearly shown in the figures. The first 

direct impact between longitudinal and transverse modes happens when the 

frequency of T2 approaches the frequency of the Ll mode, which 

occurs at v = .44 Vo for ka = 1.0 and v = .51 Vo for ka = 1.5. A 
, 

more dramatic interaction appears when T2 and L 2 ~odes merge together. 

In these confluent regions, the frequencies are complex conjugate pairs and 

so we expect that some modes are unstable. The general characterist ics of 

the confluence are that both the span and the maximum growth rates increase 

with increasing ka. 

In addition to the mixing of T modes and L modes, a very weak 

instability is also found when T3 crosses Tl . When k = 0, Tl 

and T3 are independent modes and the frequencies are real at crossing. 

B. Resistive Wall Impedance 

It is found that the wall impedance affects modes Ll and Tl 

most. The familiar mode, Ll' is unstable in the familiar way and T1, 

the envelope oscillation mode is weakly unstable. Effects of wall impedance 

on T2 and T3 modes are hardly perceptible. For complex values of 

~, the coefficients of the dispersion relation are not all real-va'lued, so 

that all the confluences are broken and there are no more complex conjugate 

pairs of frequencies. However, the confluence breaking seems to be a weak 

effect as can be seen in Table 1. Qualitatively, the confluence regions 

differ very little from those in the lero wall imp~dance results. 
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V. CO NCLUSIO N 

We have examined the stability properties of a monoenergetic, nonrela­

tivistic heavy ion beam of axially symmetric K-V distribution. Our study is 

limited to the linear analysis of the azimuthally symmetric electrostatic 

perturbations. Although the model considered here is simple, the coupled 

Vlasov-Poisson equations have been solved rigorously and the results should 

give a qualitative indication of the coupling between longitudinal and 

transver~e modes. 

It is found that aside from the ordinary longitudinal mode and the pre­

viously found transverse modes, there also exists a class of "coupling modes" 

due to the interaction between the transversely oscillating particles and the 

longitudinal perturbed electric potential. In the high density region, both 

these "coupling modes" and the ordinary longitudinal mode interact with the 

lower transverse modes to create instabilities. However, for the situations 

with ka ~ 1, the dominant instabilities still originate from some 

previously known unstable transverse modes. In the medium and low density 

regions, there is no direct interaction between longitudinal and transverse 

modes and the influences of these two classes of modes on each other is 

insignificant. Thus, except for the very high density regime, the separate 

consideration of longitudinal and transverse modes tends to be a very good 

approximation. When conSidering the effect of a resistive wall impedance, 

we found that only the modes which involve an average axial field over the 

beam or surface motions are influenced. 

The effects of various velocity spreads are sti 11 being pursued. A 

Lorentzian longitudinal velocity distribution of beam particles, i.e., 

f{vz ) = 6./U.2 
+ {v z-vo)2 J, introduces a damping rate of 6./ kl, as 
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," 

it does for simpler problems. Then, in order to have damping of instabili-

ties, we need 

where 

t:. 
-) 
v -o 

_0_ 1m ~ v ) 
kvo . (vo (V-I) 

is taken from zero energy spread results. More realis-

tic velocity spreads are being investigated. 
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APPENDIX 

The calculations on the right hand side of Eq. (II-I2) for the perturbed 

charge density will be carried out in this appendix. The right hand side of 

Eq. (II-I2) can be written as 

where 

and 

. 2 
lw 

'If V 

P 
2 JOO -iQT [ . 2 d TQ e s 1 n v T -

o 

rsin(2vT)cos~ J 
2~ a2 

- / o 

We consider 12 first. Using the equality 

R, 

L (2j + 1) [1 - (_I)R,+j ] Pj(x) 

j=O 
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(A-4) 
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and the expansion of ~(r) in Eq. (Ill-I), we can derive from Eq. (A-3) the 

foll owing 

2 -iw 
P 

12 = 2 2 
1T V a 

. where 

00 

21T 

o 

1) f'd Tn e-inT ® , 
o 

0' SlnvT- . --2 dn [ . 2 rsin{2vT)coss ] p ~ 2
p2

) 

2~ a2 _ r2 J a 

(A-6 ) 

(A-7) 

and p is a function of S as shown in Eq. (I 1-15). For r.::. a, we can 

define a quantity n, such that 

r . - = s ln n a (A-B) 

The argument of the Legendre polynomial in Eq. (A-7) then can be expressed 

in terms of n as 

2 2 
1 - + = cos{2n)cos{2vT) + sin(2n)sin{2vT)coss • 

a 
(A-g) 

,With the aid of the above equality and the addition theorem of Legendre 

polynomials,we are able.to perform the integration in Eq. (A-7) to obtain 

(A-lO) 
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where 2r2 
S = 1 - - = cos 2n 

a2 
(A-ll) 

T = COS(2vT) , (A-12) 

and P~(X) is the Associated Legendre polynomial -which is related to 

the Legendre Polynomi al s by 

and 

Applying the above two relations together with the identity 

to Eq. (A-lO), one obtains, after some algebra, that 

<ED : (1 : 5) 1(21 : t ) [Pj(5) + Pj+1(5)] h(T) -Pj+1(T)] 

+ (2j
j
+ 1) h(5) + Pj_1(5)] r/ T) - Pj-1(T)]1 

= "7":( 2O;-:-/---:'+"""'"';1n"'") I (j + 1) P 1°,1) (5) r P) - P j +1 (T)} jP j~i 1) (5 {p P) 
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where p(O,I) (x) is the Jacobi polynomial as introduced in Eq. (III-5). JI, 

Substitution of Eq. (A-16) into Eq. ('A-6) yields 

2 00 

~ I2 = - 2 2 
a \I 

(0,1) [. ] 
-jP j - 1 (s) Bj _1 (a)-B j (a) 

( A-I7) 

where a and BQ, (a) have been defined in Eqs. (III-lO) and (III-12). Using 

Eq. (III-4) and the transcription: 

for any FJI, and Hj' the equation (A-I?) can be s impl ified to 

2w 2 
I - P 2 - 2 2 

a \I 
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To deal with the integrations in II' we can first use the relation 

(A-8) and the addi tion theorem of Legendre polynomials to obtain 

co 

b(p)da = 21f LGl£ (cos2v-r)P£(s) • 

£=0 

(A-20) 

Then, by substituting the above result into Eq. (A-2), we have 

co 'co 

11 = k2 2 L Gl£(s) J -re- i Q-r P£ (cos2v-r)d-r wp 
£=0 0 

k2 2 
co 

L d 
= 

wp 
Gl£(s) a; B£(a) v 

£=0 

k2 2 ~ [GtB~(a) Gt+1B~+I(a)] (0.1)( _ 2r2) wp 
( £ + 1) 2 £ + r + = 2 2£+3 P£ 1 2' 

v a 
£=0 

(A-21) 

, 
where B (a) has been defined in Eq. (I II-l1). 

£ 
For the i n te gr at ion i n 13 , we note that 

(A-22) 

From this, it follows that 
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and 

1 - ist-r-{ Joo } 
= vi r/J [R ( T = 0) ] - ia· e - if> (R )d ( v T ) 

o 

= -v~-2 t G~[ P~(-l'f - ia jOOe-iQT 

£ =0 0 

1 
=-2-

a v 

2 

13 = wp 2 6 (r - a) 
av 

00 L (-if G£[i - aB£(a)] . 

J/, =0 

(A-23) 

(A-24) 

Finally, by substituting Eqs. (A-19), (A-i) and (A-24) into (A-i), we 

obta in the express ions in (I II-9). 
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mode 

L2 

L1 
w ...... 

T1 

T2 

T2 

T3 

T3 

T3 

TABLE 1 

Absolute values of real and imaginary parts of 0./vo (Re and 1m) for ka = 1.0, 
bla 1.5, vIvo = 0.25 and various wall impedances. The confluence of L2 and T2 
modes is broken by nonzero wall impedance. 

} = 0.0 } = 0.1 1= 0.2 3' = 0.3 

Re 1m Re 1m Re 1m Re 1m 

0.09884 0.10235 0.09884 0.10234 0.09884 0.10234 0.09884 0.10234 

0.54502 0.00000 0.54763 0.02995 0.55516 0.05846 0.56683 0.08440 

1.45589 0.00000 1.45589 0.00002 1.45589 0.00005 1.45590 0.00007 

0.09884 0.10235 0.09884 0.10235 0.09884 0.10236 0.09884 0.10236 

1.76675 0.00000 1. 76675 0.00000 1. 76675 0.00000 1.76675 0.00000 

0.63343 0.20693 0.63343 0.20693 0.63343 0.20693 0.63343 0.20693 

0.63343 0.20693 0.63343 0.20693 0.63343 0.20693 0.63343 0.20693 

2.15894 0.00000 2.15894 0.00000 2.15894 0.00000 2.15894 0.00000 

_"', . -;.. ,.'s . 
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mode 

L2 

L1 

w T1 
N 

T2 

T2 

T3 

T3 

T3 

TABLE 2 

Absolute values of real and imaginary parts of [llvo (Re and 1m) for ka = 1.0, 
bla = 1.5, vIvo = 0.55 and various wall impedances. 

l' = 0.0 j= = 0.1 r = 0.2 ~= 0.3 

Re 1m Re 1m Re 1m Re 1m 

0.08742 0.00000 0.08742 0.00000 0.08742 0.00000 0.08742 0.00000 

0.52093 0.00000 0.52279 0.02269 0.52818 0.04444 0.53662 0.06448 

1.62119 0.00000 1.62120 0.00023 1.62123 0.00045 1.62129 0.00067 

0.82364 0.00000 0.82364 0.00001 0.82364 0.00001 0.82364 0.00002 

2.59381 0.00000 2.59381 0.00000 2.59382 0.00000 2.59382 0.00000 

1.20489 0.00000 1.20489 0.00000 1.20849 0.00000 1.20489 0.00000 

1.92841 0.00000 1.92841 0.00000· 1. 92841 0.00000 1. 92841 0.00000 

3.63098 0.00000 3.63098 0.00000 3.63098 0.00000 3.63098 0.00000 

·0 



Figure Captions: 

Fig. l(a): 

Fig. l(b): 

Fig. 2(a): 

Fig. 2(b): 

Fig. 3(a): 

Absolute value of the real part of Qlvo for various modes as 

a function of vivo for ka = 0.5, b/a = 1.5 and zero wall 

impedance. 

Absolute value of the imaginary part of Qlvo for various 

modes as a function of vivo for ka = 0.5, b/a = 1.5 and zero 

wall impedance. 

Absolute value of the real part of Qlvo for various modes as 

a function of vivo for ka = 1.0, bl a = 1.5 and zero wall 

impedance. 

Absolute value of the - imaginary part of Qlvo for various 

modes as a function of vivo for ka = 1.0, b/a = 1.5 and zero 

wa 11 impedance. 

Absolute value of the real part of Qlvo for various modes as 

a functi.on of vivo for ka = 1.5, b/a = 1.5 and zero wall 

impedance. 

Fig. 3(b): Absolute value of the imaginary part of Qlvo for various mode 

as a function of vivo for ka = 1.5, b/a = 1.5 and zero wall 

impedance.: The kink ·in the L2 mode at vivo = 0.13 is due 
4 

to a confl~ence of L2 and T4 modes • 

. -.:. " 
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