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Abstract 
 
The hypothesis is proposed that the central dynamics of the action-perception 
cycle has five steps: emergence from an existing macroscopic brain state of a 
pattern that predicts a future goal state; selection of a mesoscopic frame for action 
control; execution of a limb trajectory by microscopic spike activity; modification 
of microscopic cortical spike activity by sensory inputs; construction of 
mesoscopic perceptual patterns; and integration of a new macroscopic brain state. 
The basis is the circular causality between microscopic entities (neurons) and the 
mesoscopic and macroscopic entities (populations) self-organized by axosynaptic 
interactions. Self-organization of neural activity is bidirectional in all cortices. 
Upwardly the organization of mesoscopic percepts from microscopic spike input 
predominates in primary sensory areas. Downwardly the organization of spike 
outputs that direct specific limb movements is by mesoscopic fields constituting 
plans to achieve predicted goals. The mesoscopic fields in sensory and motor 
cortices emerge as frames within macroscopic activity. Part 1 describes the 
action–perception cycle and its derivative reflex arc qualitatively. Part 2 describes 
the perceptual limb of the arc from microscopic MSA to mesoscopic wave 
packets, and from these to macroscopic EEG and global ECoG fields that express 
experience-dependent knowledge in successive states. These macroscopic states 
are conceived to embed and control mesoscopic frames in premotor and motor 
cortices that are observed in local ECoG and LFP of frontoparietal areas. The 
fields sampled by ECoG and LFP are conceived as local patterns of neural 
activity in which trajectories of multiple spike activities (MSA) emerge that 
control limb movements. Mesoscopic frames are located by use of the analytic 
signal from the Hilbert transform after band pass filtering. The state variables in 
frames are measured to construct feature vectors by which to describe and classify 
frame patterns. Evidence is cited to justify use of linear analysis. The aim of the 
review is to enable researchers to conceive and identify goal-oriented states in 
brain activity for use as commands, in order to relegate the details of execution to 
adaptive control devices outside the brain.  
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1. Introduction 
 
Fundamental in brain dynamics are the transactions between levels in both 
directions in all cortices. The upward transaction predominates in sensory cortices 
from microscopic sensory-driven spike input to mesoscopic wave patterns in 
perception; the downward transaction predominates in motor cortices from 
mesoscopic wave patterns constituting goal states to microscopic spike output 
patterns.  In accordance with Haken's (1983) “slaving” principle of circular 
causality the two transactions are opposite sides of the same coin; interactions 
among neurons create patterns of activity that are called “order parameters” 
because they impose structure on the activities of the neurons creating them 
(Haken, 2006). Every area of cortex maintains background activity at all levels by 
continuous synaptic interaction regulated by brain stem neuromodulators. Input to 
sensory cortex by sensory-driven activity is identified and measured with spikes; 
output of cortex is inferred from field potentials, ECoG and LFP. In motor cortex 
the output microscopic activity is identified with action-related spikes. The input 
to cortex that guides the order parameters is inferred from the field potentials. 
These are the main targets for measurement and interpretation. Studies 
summarized in Part 1 show that macroscopic and mesoscopic patterns exist in 
time frames in which linearity and stationarity may hold to a good approximation. 
Already linear analysis (Freeman, 1975/2004; Basar, 1998; Wright and Liley, 
1996; Liley et al., 1999; Gordon, 1998; Robinson et al., 2001; Haken, 2006) has 
been used as a tool to extract the order parameters.  
 
The correlation between MSA trajectories and limb trajectories is the main focus 
of current research on BMI (e.g., Chapin, 1999; Sanchez et al., 2004; Carmena et 
al. 2005; Hochberg et al., 2006). However, microscopic spikes, mesoscopic fields 
and macroscopic EEG differ not only in the forms of state variables but also in the 
levels of their correlates over the five central steps of the action-perception cycle 
(Part 1, Section 6). While much is known about neural integrative processes by 
which percepts emerge from sensory input, little is known about neural 
differentiating processes by which concepts and goals formulate actions. From 
considerations of volume conduction and global integration in Part 1, it is clear 
that every extracellular recorded signal contains contributions from all levels, 
which can account for the fact that even a single channel can support rudimentary 
BMI. The problem addressed in Part 2 is how to formulate hypotheses about 
downward causation in speciation of motor output from goal states. Guidelines in 
the search for solutions are derived from studies of upward causation in 
generalization of perceptual states from sensory input.  
 
The most difficult experimental task is to distinguish between mesoscopic and 
macroscopic components of the field potentials. They mix in two ways, one by 
summation of their extracellular electric currents in the volume conductor, the 
other by multitasking of neurons engaged simultaneously in multiple populations. 
The key difference is in size. Macroscopic fields occupy large areas of cortex and 
can only be seen in the coordinated activity sampled by large arrays of electrodes 
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that are closely spaced yet widely distributed. Large arrays are necessary. 
Mesoscopic fields are more local, corresponding to signals from cortical modules. 
These require smaller arrays at very high density. Macroscopic fields tend to last 
longer, recur at lower theta rates, and have carrier frequencies in the beta range, 
compared with mesoscopic fields having carrier frequencies in the gamma range, 
recurrence at high theta rates, and shorter durations (Freeman, 2005a). 
Preprocessing techniques are the same for both mesoscopic and macroscopic 
signals, requiring low-pass spatial filters and wide-band pass temporal filters, 
compared with the high-pass spatial filters and narrow-band basis functions 
commonly used to isolate microscopic components.  
 
2. Use of the analytic signal to locate frames  
 
The strategy proposed here is linear decomposition of the data from multiple 
electrodes in arrays, first into broad frequency bands by band pass filtering using 
the Fourier transform and then into analytic amplitude and phase values by use of 
the Hilbert transform (Appendix 2). The hypothesis is adopted, based on studies 
of perception (Freeman, 2004a,b, 2005, 2006), that the behavioral correlates of 
wave activity are carried in frames by spatial patterns of amplitude modulation of 
self-organized oscillations that serve as carrier waves. The carrier frequencies are 
predominantly in the beta and gamma ranges, with small drift within frames and 
large jumps in instantaneous frequency between frames. The frames recur 
irregularly at rates in the theta and alpha bands. The pass band that is required for 
use of the Hilbert transform must be broad enough to include the range of 
variation of the carrier waves over successive frames in motor control but not so 
broad as to include multiple coexisting carrier waves at different frequencies. 
Optimization of multiple pass bands for a given data set can be based on 
maximizing the cross-spectral peak of shared power between the several gating 
and carrier frequency ranges (Freeman, 2004a, 2005a). The optimized pass bands 
in appear to conform to the clinical bands for beta and gamma oscillations, which 
reflect the value of long empirical experience.  
 
With the Hilbert transform the analytic amplitude, Aj(t), and the analytic phase, 
φj(t), are calculated for every channel, j = 1, …, n channels in each selected carrier 
frequency range from the same time series. The spatial pattern of amplitude at 
each digitizing time step, t, is expressed by a normalized nx1 feature vector, A(t), 
with mean length, A(t), and by a point in n-space. A(t) is adopted as the order 
parameter (Haken, 1983), because it gives direct expression to the high-order 
textured pattern of amplitude created by interactions from experience stored by 
synaptic modification in attractor landscapes in the brain. The rate of change in 
the order parameter, De(t) (from equation (A2.5) in Appendix 2) is approximated 
by the Euclidean distance in n-space between successive points in n-space with 
digitizing steps after normalization (dividing the values in each feature vector by 
the standard deviation of the n values). Large differences show wide-ranging 
trajectories in n-state space during periods of instability. Small values of De(t) 
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show clustering of points that indicate the location in n-space of an attractor, 
which when accessed gives a frame with a stable spatial pattern.  
 
These clusters are one of the two bases for identification of frames (Ohl, Scheich 
and Freeman, 2001); the other basis is the analytic phase (Freeman and Rogers, 
2002). The n values of analytic phase from a 2-D array, n.5 x n.5, form a phase 
surface, which is fitted with a 2-D conic spatial basis function at each time step 
(Freeman, 2004b). The location and sign of the apex of the cone vary 
unpredictably at times of rapid change in spatial amplitude pattern between 
frames (high values of De(t)). Within frames the sign (maximum lead or lag) and 
spatial phase gradient are fixed, and De(t) varies less than the distance between 
electrodes, which is the limit of spatial resolution. Successive values of the slope 
of the cone are averaged across the frame to give the phase gradient, γ(tc), in 
rad/mm where tc is the center time of the frame. The phase difference from the 
preceding value, Δφj(t) = φj(t) - φj(t-1), j = 1, …, n, after unwrapping approximates 
the rate of change in phase at each time step. Averaging over n and division by 
the duration of the digitizing step in s gives the frame frequency, ω(t) in rad/s; 
division by 2π gives frequency in Hz. The ratio of analytic frequency in rad/s to 
phase gradient in rad/m gives phase velocity in m/s for comparison with spike 
conduction velocities. The spatial standard deviation, SDX(t), of the phase 
differences, Δφj(t), measures the variance of the spatial phase pattern at each time 
step.  
 
An example in Fig. 2.01 shows the analytic phase differences, Δφj(t), j = 1, …,64 
in a time period of 400 ms. The ECoG was recorded from the visual cortex of a 
rabbit trained to respond to a visual conditioned stimulus and band pass filtered in 
the gamma range (20-80 Hz) prior to application of the Hilbert transform. The 
spikes in phase differences tend to occur almost simultaneously over the whole 
array. Between the spikes the rate of change converges to a constant value with a 
low spatial variance, indicating the relative stationarity defined by the constancy 
of frequency. Nonstationarity appears in the change of frequency from each frame 
to the next; the average frequency difference between frames was 7 Hz (about 
±20% of the peak spectral frequency of the pass band, 33±7 Hz). Fig. 2.02 shows 
the spatial standard deviation, SDX(t), giving a sequence of spikes that indicate 
the time locations of state transitions. During those jumps the analytic amplitude 
(A(t), gray curve) tends to low values; within the frames A(t) tends to high values 
that are accompanied by low values of De(t) (not shown). This configuration 
shows that the frame is characterized by high intensity activity with a nearly 
constant carrier frequency and a stable spatial pattern of amplitude and phase. It 
forms the archetype for a linear, stationary mesoscopic pattern of ensemble 
dynamics, likely with superposition of multiple components (Haken, 2006).  
 
In brief, within each frame there may emerge a spatial pattern of amplitude that 
specifies the normalized feature vector, A(t), with its point in n-space. A sequence 
of points gives a trajectory. A cluster of points indicates formation and 
maintenance by an attractor of either a stable spatial pattern over the duration of a 
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frame or a delimited trajectory within the attractor. The feature vector at the peak 
amplitude of A(t) in a frame best specifies the spatial pattern of amplitude 
modulation governed by the attractor.  

 
Fig. 2.01. The raster plot shows the successive differences of the unwrapped analytic 

phase, Δpj(t), changing with time (left abscissa) and channel (right abscissa). The 8 
columns of 8 rows are aligned to show the near-coincidence of the sudden jumps and 
dips given by forward and backward phase slip (Fig. A1, D in Appendix 2) with near-
zero lag across channels. Phase slip shows the incidence of widespread state 
transitions; plateaus show epochs of near-stationarity of visual cortical dynamics. 
From Freeman (2004a).   

 
 
Fig. 2.02. The gray curve shows the analytic amplitude, A(t). The black spikes show the 

spatial standard deviation of the analytic phase differences, SDX(t), in Fig. 2.01. See 
rotating vector in the polar plot (Fig. A1, B, Appendix 2). From Freeman (2004a).  
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In extrapolation of these results in sensory cortices to motor cortices, the brief 
spikes of high SDX(t) may show the state transitions by which the intentional 
control systems of the neocortex organize and dissolve the successive neural 
activity patterns that execute intended actions. The use of the LFP and ECoG for 
BCI will require determination of the multiple frequency ranges for the carrier 
waves, whose amplitude modulations give the spatial amplitude patterns of 
dendritic currents and spike densities by which commands are transmitted to other 
areas of cortex and to the brain stem. The LFP and ECoG thereby may temporally 
and spatially localize the stationary frames in different frequency bands prior to 
classification. Newer evidence (Gonzalez et al., 2006) suggests that epsilon 
activity can also be identified in scalp EEG, but this range has been explored only 
in respect to basic properties of stability (Freeman, 1974).  
 
3. Use of the analytic signal to classify frames  
 
The primary aim in BCI is to use n channels of recording at m time steps to 
acquire mxn-dimensional feature vectors with high information content as control 
signals. Each mxn feature vector is derived by decomposition of an array of n 
electrical signals into a set of n scalar values that specifies a set of m points in 
mxn-space (Freeman, 2005). The set of mxn concomitant feature vectors can be 
conceived as time functions that specify m frames of a trajectory in n-space 
during the performance of an operant. The dimensions of the mxn-space are 
determined in part by the empirical number of components derived from 
temporal, spatial and spectral decomposition, and in part by the conceptual 
framework in which an intentional action is conceived, constructed and described.  
 
An example of mesoscopic frame classification from sensory cortex is shown in 
Fig. 2.03, A. A rabbit was trained to discriminate each of two CS in a selected 
modality (here vision), one reinforced (CS+) and the other not (CS-) in a classic 
aversive conditioning paradigm. There appeared in the 8x8 ECoG from the visual 
cortex to which each CS was directed a sequence of 3 frames (Fig. 2.03, A); in 
each frame the carrier frequency approached a constant value in the gamma range 
and the AM pattern stabilized as shown by a fall in De(t). The order parameter, 
A2(t), in each AM pattern gave a feature vector specifying a point in 64-space.  
 
The frames in succession differed from each to the next within each trial but 
tended to cluster across the 20 trials. Therefore a 3x64 (mxn) normalized feature 
vector was constructed to represent each stimulus category in 192-space for each 
trial. The hyperspace clusters were mapped into 2-space for display of two 
clusters of points that represented the differing spatial patterns corresponding to 
the discriminated stimuli (Fig. 2.04, B). Optimal classification was found by 
dividing the feature vector at each time step by the rate of change, De(t), giving 
the pragmatic information index, He(t) (Freeman, 2005). Similar results were 
found in frames with carrier frequencies in the beta range (Fig. 2.03, B) but with 
significant differences as described below.  
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Fig. 2.03. The latency and duration for each frame is shown by a colored bar as measured 

by an index for pragmatic information, He(t), derived from the analytic amplitudes of 
the 64 signals at each digitizing time step of 2 ms (see legend of Fig, 2.04, A). The 
first 3 frames in a set of 20 trials were labeled by color: first, red; second; green; 
third, blue.  

A. Frame latencies from onset of CS+ (with reinforcement) at t = 0 and their durations 
were represented by colored bars for gamma carrier frequencies after classifier-
directed optimization of the threshold for the pragmatic information index. A similar 
plot held for frames after unreinforced CS-. Gamma bursts occurred preferentially in 
the first half second after CS onset.  

B. The frames with beta carrier frequencies had longer start latencies, longer durations, 
and larger diameters than those for gamma frames. At optimized thresholds for the 
pragmatic information index the frames were equally likely to occur before and after 
CS onsets. From Freeman (2005).  

 

 
Fig. 2.04, A. The spatial AM pattern of each frame was expressed by a feature vector 

given by mxn = 3x64 values of normalized index, He(t) = amplitude squared divided 
by the rate of change in the order parameter, A2

i,j(t)/De,I,j(t), 1 = 1. 3; j = 1, 64, at the 
time point, t, of the maximal mean amplitude, A(t), in each frame. A threshold, te, for 
He(t) was set by visual inspection of the time series of He(t) to demarcate the 
beginnings and endings of frames (Fig. 2.03). The mxn feature vectors from 20 CS+ 
trials with reinforcement and 20 CS- trials without reinforcement were classified with 
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respect to CS+/CS-. The classification level was calculated repeatedly as the 
threshold was varied in search of an optimal value.  

B. The multidimensional scaling technique of nonlinear mapping (Sammon, 1969) 
projected clusters from n-space into 2-space, optimizing their separation while 
preserving the relative distances between all the data points. Two clusters were 
specified in this example: the 1x192 feature vector from the first three 1x64 feature 
vectors in the CS+ trials, and the 1x192 feature vector from the first three 1x64 
feature vectors in the CS-. The circles representing the standard deviations (SD) of 
the clusters were calculated in the display plane. From Freeman (2005).  

 
The variance of the clusters was measured by the SD in 2-space (circles) around 
the projections of the two centers of gravity (Fig. 2.04, B), and the goodness of 
classification was assayed by the shortest Euclidean distance from each point to 
the nearest center of gravity. The variance in each cluster was attributed to noise 
in the system, to errors of measurement, and to incremental changes in the 
dynamics from on-going learning with each new trial. The clusters displayed AM 
patterns of activity that manifest nonconvergent attractors in a high-dimensional 
landscape of basins of attraction. The trajectories and clusters appeared to 
constitute chaotic itinerancy among dynamical states in neocortical systems 
(Tsuda, 2001). Details of the statistical techniques for spatial category 
classification have been described (Barrie, Holcman and Freeman, 1999; Kozma 
and Freeman, 2001; Ohl, Scheich and Freeman, 2001; Freeman, 2005, 2006).  
 
An important distinction must be drawn between the feature vectors from MSA at 
the microscopic, sensorimotor level and the LFP and ECoG at the mesoscopic, 
perceptual level. Owing to their inherently high degree of spatial localization, the 
feature vectors based in spikes give extra weight in classification to the sites of 
high spike frequency (locally in time) and to the specific electrodes (locally in 
space). Deletion of channels yielding few spikes has little effect on the rates of 
correct classification, so the MSA reveals high temporospatial contrast in the 
classificatory value of the information. In contrast, the channels of mesoscopic 
feature vectors contribute equally to correct classification irrespective of their 
amplitudes or locations. No channel is any more or less important for 
classification than any other channel, which means that perceptual information is 
spatially distributed uniformly (Freeman and Viana Di Prisco, 1986; Barrie, 
Freeman and Lenhart, 1996; Ohl, Scheich and Freeman, 2001).  
 
An example is shown of macroscopic pattern classification in Fig. 2.05, in which 
64 electrodes were placed in groups of up to 16 on the visual, auditory, 
somatomotor and entorhinal cortices and the olfactory bulb of cats and rabbits 
(Freeman, Gaál and Jornten, 2003) trained to discriminate auditory or visual 
stimuli in an operant appetitive paradigm. An index (Tass et al., 1999) of the level 
of global synchronization was calculated from the analytic phase, φj (t), j = 1,…, 
64, which revealed episodic increases in phase locking (Fig. 2.05, A) particularly 
in the interval between CS and CR (Freeman and Rogers, 2003).  
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Fig. 2.05. A. An index of synchrony revealed intermittent global synchronization across 

multiple cortices between onsets of CS and CR. From Freeman and Rogers (2003).  
B. Classification of frames was based on Euclidean distances between feature vectors, 

A(t), from reinforced CS+ and unreinforced CS-. Deletion of the EEG data from each 
cortical area reduced the classification assay in the test period but had no significant 
effect in the control period.  The strongest effect was by removal of the olfactory 
signals, while the least was by deletion of the entorhinal signals.  The window was 
128 ms stepped at 64 ms. The mean t:c-ratios (test:control) from the control period 
from 1.6 to 2.4 s and the test period from 3.6 to 4.4 s were derived after the deletions 
specified as follows.   None: .34 vs. 2.71.  EC: -.01 vs. 2.36.  VC: .01 vs. 2.17.  SM: 
.00 vs. 2.04.  AC: .01 vs. 1.60.  OB: .07 vs. 0.74.  From Freeman and Burke (2003). 

 
The frames having carrier frequencies in the gamma range occurred early after CS 
onset in the primary sensory areas and were modality specific (Fig. 2.03); they 
were found only in the sensory cortex to which the CS were directed. The 
classifiable frames with carrier frequencies in the beta range occurred >400 ms 
after CS onset, had longer durations, and had greater diameters (Freeman, 2005). 
In subjects with widely dispersed electrodes the 1x64 feature vectors from AM 
patterns were optimally classified with respect to CS when data from all cortices 
were used (solid curve, Fig 2.05, B); deletion of data from any of the 4 sensory 
areas and the entorhinal cortex diminished the classification (dotted curves). The 
somatosensory and motor areas in the cat and rabbit are intermingled, so the 
macroscopic pattern included the motor areas, thereby offering a bridge between 
sensory input and motor output that included much if not all of each hemisphere.  
 
In summary, linear decomposition with the Hilbert transform of an array of ECoG 
serves to evaluate 5 basic state variables at each point in time and space in the 
array: the order parameter, A(t); its mean amplitude, A(t); its rate of change with 
time, De(t); the rate of change in phase with time (instantaneous frequency, ω(t)); 
and rate of change with space (phase gradient, γ(t)). From these can be calculated 
the times of start and end of frames, durations, diameters, conduction velocities 
for initiation, and the times required for state transitions and convergence to 
attractors. These frames have been observed, measured, and classified with 
respect to conditioned stimuli both locally in the several sensory cortices and 
globally across multiple cortices. They have been found to coexist in at least two 
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carrier and gating frequency ranges. Since the beta patterns include the motor 
cortices, they could provide the macroscopic frames in which motor actions are 
constructed. Owing to the low rates of change in space-time of the carrier 
frequency and the order parameter, it can be inferred that the frames reflect brief 
epochs of stationarity and linearity, from which might be extracted by linear 
regressors the time-varying structures of MSA and LFP that carry signals from 
cortex into the brain stem for motor control, if the frames can be found.  
 
However, these frames are by no means obvious in raw data streams. Other 
techniques are required; remarkably two of these techniques are also linear. One 
is linear decomposition based on the theory of volume conduction (Section 4), 
and the other is decomposition based in the theory of linear feedback systems 
(Section 5), based on the property that the frames in the beta and gamma bands 
appear to conform to the principle of superposition. This treatment may not hold 
for the alpha and theta bands, which manifest the nonlinear mechanisms that 
determine frame rates.  

 
4. Use of ECoG to decompose LFP by distinguishing open vs. closed fields 
 
The relations between ECoG, LFP and MSA are obscured by the overlap in the 
volume conductor of the dendritic currents from multiple neuronal populations. 
The tissue in which neurons are embedded is an electrically conducting medium 
with specific resistance that is far less than the membrane resistance of the 
neurons, which explains the low amplitudes of extracellular signals from flows of 
dendritic current. The electric current fields established by neuron populations 
result from loop currents that exit neurons at “sources” and re-enter the same 
neurons at “sinks”. The potential differences from the extracellular limbs of the 
current loops all sum in the volume conductor, with contributions at every point 
from every neuron but in varying amounts dependent on distance from the sources 
and sinks in accordance with Coulomb’s inverse square law. The alignment and 
lamination of neurons in cortex is prerequisite for the summation of the potential 
fields from sources and sinks that are intense enough to measure as population 
state variables. The summation of potentials from all populations in the volume 
conductor is linear and instantaneous. This fact is greatly to the advantage of 
analyzing the contributions of multiple overlapping populations. In principle the 
contribution of the dendrites of every neuron to the LFP can be distinguished by 
linear decomposition, provided one knows the waveform of its activity and that 
one has sufficient recording sites within and around the field of every neuron for 
sufficiently long time.  
 
However, in practice, the low-frequency dendritic potentials of single neurons can 
only be extracted by intracellular recording, which reflects intimately the synaptic 
input from the surround. The LFP is especially complex and is extremely 
sensitive to the depth of the recording site. Researchers in the field should adopt a 
convention of subscripting ECoG records by site (e.g., motor cortex, Brodmann 
Area 4, as in ECoG BA4) and LFP records also by depth (for example, LFPBA4,950 
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microns, preferably after post-mortem verification by layer, as in LFPBA4,V). The 
ECoG is far less complex. When it is recorded at points on the surface of the 
cortex overlying the sites of depth recording with respect to a far distant reference 
site, it can be used to partition the LFP into local vs. remote components. The 
reason is clear from an understanding of the geometry of the loop currents 
generated by electrochemical activity of neurons.  
 
The source-sink pair for each neuron (equal but opposite in sign as parts of the 
same current loop) tends to either of two idealized forms. Pyramidal cells have 
axial symmetry, so that the source and sink are separated and typically of equal 
density; they generate a dipole field called “open”, which extends instantaneously 
throughout the cortex to its surface and throughout the brain to the scalp. Each 
cell has a dipole axis. When the axes of the cells are randomly oriented as in the 
reticular formation, their dendritic fields sum to zero at the mesoscopic level, and 
their activity can only be detected from their spikes. High-amplitude open fields 
appear only when the individual dipoles are aligned parallel to each other and 
with cell bodies in a tight layer. That is why cortex forms the EEG, and basal 
ganglia do not. Stellate cells have radial symmetry, so that the source and sink for 
each cell tend to be concentric; the polarity of the field of potential is dominated 
by the source or sink with the highest density. The field is called “closed” because 
it is not detectable outside the anatomical radii of the axons and dendrites of the 
stellate cell type. Closed fields sum within the layer of cells of the same type, but 
the sums tend to have low amplitudes, owing to the cancellation of the potential 
fields of the concentric sources and sinks (Freeman, 1975/2004).  
 
The open fields tend to span the cortical depth with one pole in the most 
superficial ‘marginal’ layer and the other pole in the deeper layers, and with the 
zero isopotential surface between the poles, at which the dipole field cannot be 
detected. This surface is observed as the “turn-over” where the field potential 
reverses polarity when recorded from a penetrating electrode. Closed fields tend 
to have maximal amplitudes close to the zero isopotential surface of the open 
field; they have no “turn-over” (p. 246, Fig. 4.44 in Freeman, 1975/2004). LFP 
are mixtures of the closed and open fields, whereas ECoG are solely from open 
fields that are dendritic in origin in the frequency range <300 Hz and spike in 
origin for frequencies >300. Therefore, the separation of open field components in 
LFP from closed field components is facilitated by recording the ECoG with 
respect to a distant site from an electrode on the cortical surface at the site of entry 
of a microelectrode into the cortical depth. However, this decomposition does not 
guarantee that the LFP contains the dendritic correlate of the spike activity; in 
fact, the optimal recording site is at the trigger zone of a pyramidal cell with axial 
symmetry, where the dipole field has its maximal spatial rate of change at the zero 
isopotential, so there is no LFP component at all. Small shifts in position can give 
dramatic changes in components, hence the label of depth is highly desirable for 
interpretation and replication of field potential recording.  
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A common misconception holds that field potentials are the envelopes of spikes. 
The individual spike has a source-sink-source along an axon with a wavelength 
that is given by the product of the propagation velocity and the duration (e.g., 10 
m/s x 1 ms = 1 cm). When the axon has axial symmetry, the field is open and 
extends instantaneously throughout the brain. However, most axons are short (<1 
mm) with low velocity and with multiple branches tending to radial symmetry. 
The compound action potential is detectable as a diphasic or triphasic waveform 
only when (a) many axons in a parallel bundle are excited simultaneously and (b) 
then only briefly as in the far-field brain stem auditory evoked potential, before 
the many action potentials disperse owing to differing propagation velocities and 
to spatial divergence of axonal branches. These two conditions do not hold for the 
spike correlates of endogenous cortical field potentials. The spikes of individual 
cortical neurons are statistically related to LFP and ECoG, and their sum is 
detectable in the noise >300 Hz, but the action currents do not sum to contribute 
to the LFP and ECoG in the oscillations <300 Hz. As far as contributions by 
volume conduction are concerned, the MSA and ECoG yield independent state 
variables respectively from axons (inputs and outputs of cortical neurons) and 
dendrites (intracortical operators) by which to assess the underlying neural 
activity patterns.  
 
5. Phase relation between state variables imposed by negative feedback 
 
However, the optimal correlate of spike firing may be found reliably in the ECoG, 
and this may support extraction of a time-lagged correlate of the firing in the 
LFPBAx,V. Cortical oscillatory waveforms in the beta and gamma ranges are 
generated by the interactions among populations of excitatory and inhibitory 
neurons; the most crucial evidence is that the oscillations of the inhibitory neurons 
lag those of the excitatory neurons on average by π/2 rad (90°), not in phase (0°) 
as predicted by models based on cellular properties (Traub et al., 1996; 
Whittington et al., 2000; Kopell et al., 2000). This is because the two most 
important contributions to LFP and ECoG are the dipole fields from excitatory 
pyramidal cells and the closed fields from inhibitory interneurons. These two 
laminar populations interact by negative feedback. Owing to the 90° phase lag (on 
average) of the output of the feedback limb from the output of the forward limb, 
the contributions of the dipole and closed fields are linearly separable (Freeman, 
1975/2004), just as the cosine function is uncorrelated with its derivative, the sine 
function. Modeling the interaction with differential equations in a KII set supports 
the experimental proof that the excitatory and inhibitory populations oscillate at 
the same instantaneous frequency, and that the inhibitory oscillation on average 
lags the excitatory oscillation by a quarter cycle (Freeman, 2000).  
 
This relation underlies the utility of the Hilbert transform, because the quadrature 
of the recorded pyramidal cell dendritic output predicts the interneuronal dendritic 
output. When the pyramidal cell output can be approximated by a cosine, the 
inhibitory output can be predicted by a negative sine wave at the same frequency. 
The crosscorrelation between the two waveforms tends toward zero despite the 
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functional interdependence of the two populations, so they are easily separated by 
PCA or ICA. The phase relation often deviates from π/2 owing to co-existing 
feedback by mutual excitation among pyramidal cells and mutual inhibition 
among interneurons. There is another reason for deviation. Phase differences 
between signals at differing locations commonly deviate from zero or π/2 lag in 
the same interactive populations owing to conduction delays from propagation 
velocities averaging 2.24±1.18 m/s in rabbit neocortex and 2.62±1.16 m/s in 
human neocortex, giving phase gradients of 13.2±4.1 rad/mm in rabbit ECoG 
(Freeman, 2004b) and 7.9±2.4 rad/mm in human ECoG (Freeman, 2006). The 
range of phase differences with phase dispersion, when expressed as a fraction of 
the cycle duration of the carrier wave, seldom exceeds ±1/8 of a cycle (π/4), 
which is the half-power level (cos2 ±45° = 0.5). These phase lags do not manifest 
true traveling waves, but instead they reveal the delays in cortical activation 
imposed by communication using propagated action potentials. The standing 
wave property is important, because traveling waves could not sustain the 
amplitude patterns illustrated for feature vectors in Fig. 2.03, B and Fig. 2.04, B. 
Within the 1/8 cycle dispersion limit the deviations from the assumption of time-
invariance on which use of PCA and ICA is based appear to be negligible.  
 
6. Conclusions  
 
The major unsolved problem in BCI/BMI is to model the descending macro-
meso-micro limb of the reflex-arc/action-perception-cycle, where decisions are 
made on what actions to take and how to take them. Neither MSA recording, nor 
empirical engineering, nor neuropsychological theorizing is likely to solve it; 
systematic acquisition and analysis of data from records of dendritic potentials are 
essential. Investigation of the ascending micro-meso-macro limb indicates that the 
operations and transformations of neural activity are conducted in episodic, 
“cinematographic” sequences of frames. Remarkably, it turns out that, despite the 
obvious nonlinearities in neocortical dynamics, the neural activities within frames 
and their observable manifestations in electric fields are readily susceptible to 
linear analysis (Freeman, 1975/2004; Basar, 1998; Haken, 2006). In this respect 
the temporal coherence of phase-locked waveforms is just as important as the 
laminar alignment of sources and sinks for the formation of LFP and ECoG. In 
order to extract useful information from the underlying dendritic fields of 
potential it is necessary to decompose the recordings from electrode arrays into 
the distinctive waveforms from identified populations in the mix. Within frames 
linear decomposition appears to be the method of choice.  
 
The major steps in linear decomposition are provided by selective recording of 
open and closed fields in the volume conductor; time-lagged correlation to 
distinguish contributions from phase-locked oscillations of excitatory and 
inhibitory populations having identical frequencies with on average 90° lag 
between them; multiple pass bands using spatial and temporal filtering using 
Fourier techniques; and the identification using the Hilbert transform of the 
sequence of state transitions in the beta and gamma ranges of the brain activity. 
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The value of this step inheres in the finding that the rates of change in frequency 
and in AM pattern are often relatively constant within the epochs bracketed by 
high rates of change. Not only are the frequencies of oscillation relatively 
constant; the maximal phase dispersion across multiple recordings of the 
oscillatory waveform is under a quarter cycle, the half-power soft boundary 
condition (Freeman, 2004b), which facilitates transmission of cortical output 
through divergent-convergent pathways. Those pathways perform spatiotemporal 
integration that reduces noise in the transmission of spatially coherent signals. 
Additionally, use of the rate of change, De(t), in the order parameter, A(t), given 
by equation (A2.5) in Appendix 2 shows that the spatial AM patterns are stable 
under temporal integration. Therefore, linearity and spatiotemporal stationarity 
appear to hold to a good approximation within such segments, and the classic 
techniques for decomposition that assume linearity, stationarity, and statistical 
independence may be applicable to signals within these segments, most 
importantly FFT for spectral decomposition and PCA for spatial decomposition. 
ICA will be inapplicable to individual frames, if the number of digitizing steps in 
the duration of a typical segment is less than the number of electrodes, as in 
domains of stationarity. However, ICA applied to ECoG and LFP segments 
including the CS/CR time interval and decomposed into the temporal frequency 
pass bands of interest might facilitate localization of stationary frames.  
 
Warning should be given that typically sparse electrode arrays that under-sample 
the spatial textures of ECoG and LFP will not reveal clear-cut inverse relations 
between the two components of the analytic signal, A(t) and φ(t), and the AM 
patterns, because multiple frames commonly overlap with differing carrier 
frequencies. Large high-density arrays and multiple spectral pass-bands in both 
temporal and spatial frequency domains will be needed to bridge from 
expressions of desired goals in neocortical activity to control of neuroprostheses. 
The real mystery is how neural masses speciate action patterns from generic 
states. Solution of that mystery may come through the next stage of BMI/BCI, 
which is the extraction from subjects of usable feature vectors, and the 
implementation of that information to train neural networks as universal function 
generators to drive adaptive control devices in desired tasks toward stated ends.  
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Appendix 2. The Hilbert Transform 
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Brain waves are commonly treated as if they were the sum of the outputs of a set 
of neural oscillators, each of which has a constant frequency and variable 
amplitude. This treatment is based on the assumption that brain dynamics is linear 
and time-invariant, which is clearly not the case. The advantage conveyed by this 
assumption is the ease with which Fourier analysis can be applied to brain waves 
using the Fast Fourier Transform (FFT) to decompose segments of brain waves 
into frequency components. The disadvantage is the inability of linear analysis to 
capture and display the nonlinear state transitions by which brains operate. An 
alternative linear transform is the Hilbert transform, which when applied to a 
brain wave recording in effect calculates the rate of change in the amplitude at 
each time step of the digitized signal. This operation effectively re-expresses an 
oscillation as a vector that rotates counterclockwise in the complex plane. The 
amplitude is expressed by the length of the vector, A(t), and the rate of change is 
expressed by the angular velocity of the rate of rotation of the vector about the 
origin of the complex plane. The rate of rotation is expressed as a rate of change 
in phase in degrees/second, radians/second (rad/s), or cycles/second (Hz). The 
immediate advantage is that the Hilbert transform decomposes a brain wave into 
an analytic amplitude, A(t), and an analytic phase, φ(t). The change in phase in 
rad with each time step divided by the digitizing interval in s approximates an 
instantaneous frequency that can vary, unlike the frequencies that are extracted by 
Fourier decomposition. The disadvantage is that the Hilbert transform is very 
sensitive to noise of many kinds; it only works well after band pass filtering of a 
brain wave. Criteria for optimal band pass filtering have been described elsewhere 
(Freeman, 2004a, b; 2005; 20060.  
 
The application of the Hilbert transform to each intracranial recording from an 
array of microelectrodes is a multi-step procedure. First, a high pass filter set at 
~400 Hz extracts the MSA, and a low pass filter set at ~400 Hz extracts the LFP 
from the same n microelectrode recordings. Second, the low pass data are down-
sampled from ~40,000/s to 200/s and normalized to zero mean for every channel 
and unit standard deviation (SD) for all channels, trials and data sets to give the 
normalized LFP. Third, the demeaned, normalized LFP are band pass filtered in 
the classic empirical ranges: theta (3-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), 
gamma (30-60 Hz), and high gamma (60-200 Hz), and the n channels in each pass 
band are segmented to save the data from each trial with ~3 s preceding and ~3 s 
following each CS onset (Fig. A1, A). Fourth, the Hilbert transform is applied to 
get the analytic signal, Vj(t), with a real part (blue curve), the filtered LFP, vj(t), 
and an imaginary part (red curve), i uj(t), the output of the Hilbert transform:  
 

  Vj (t) = vj (t) + i uj (t) ,   j = 1,…, 64,   (A2.1) 

 
where the Hilbert transform of vj(t) in the time segment, t’,  
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uj(t) = 1/π PV ∫

+°°
vj(t') / (t - t') dt',   (A2.2) 

       
‐°°

 
where PV signifies the Cauchy Principal Value. The imaginary part is also known 
as the quadrature of the signal, because each cosine component in the recorded 
signal is transformed to a sine component; taking the derivative by the transform 
is equivalent to shifting the phase of v(t) by 90° (π/2 rad) to get u(t).  
 
Fifth, the square root of the sum of squares of the real and imaginary parts gives 
the analytic amplitude, Aj(t), for each channel, j = 1,…,n,  

 

  A j (t) = ( v j 2(t) + u2 j (t) ) .5 ,    (A2.3) 

 
and the arctangent of the ratio of the imaginary part divided by the real part gives 
the analytic phase, φ j (t) (Fig. A1, B):  

 

  φ j(t) = atan ( u j (t) / v j (t) ),   j = 1,64.  (A2.4)  

 
The mean of the square of amplitude, Aj 

2 (t) over n gives the mean power, A2 (t) 
(Fig. A1, D), and the set of n scalar values of Aj (t) divided by A(t) gives the 
normalized feature vector at each time step, A(t). The feature vector provides a 
measure of the order parameter of the ensemble of cortical neurons that is under 
observation. A(t) specifies the normalized spatial pattern formed in the pass band 
by the signals from the n channels, and it designates a point in n-space that is 
occupied by the tip of the feature vector as it describes a trajectory through  
infinite brain state space that is projected into n-space by measurement.  
 
Sixth, the rate of change in the normalized order parameter, De(t), is calculated 
from the analytic power by calculating the Euclidean distance between the tips of 
the feature vectors in n-space at each successive digitizing step:  
 

De(t) = |A2 (t)| - |A2 (t-1)|.     (A2.5) 

De(t) is a measure of the stability and stationarity of the normalized spatial 
pattern. Successive points in time specified by A(t) form clusters, whereas epochs 
of rapid change are manifested by a wide trajectory through n-space. The ratio of 
the rate of energy dissipation estimated by mean analytic power, A(t), divided by 
the rate of change in the order parameter, De(t), gives a quantity called the 
‘pragmatic information’, He(t), which is maximal when the LFP amplitude peaks 
and when concomitantly the spatial pattern of the LFP is optimally stabilized.  
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  He(t) = A2(t) / De(t).     (A2.6) 
 
Seventh, the analytic phase, φ j(t). is unwrapped by adding π radians at each break 
point where the arctangent goes to infinity (Fig. A1, D), and the analytic 
frequency, ωj(t), is estimated by calculating the phase difference between 
successive digitizing steps in the unwrapped analytic phase, Δφj(t), time series and 
dividing that difference by the duration of the digitizing step, Δt. The mean 
analytic frequency, ω(t), and its spatial standard deviation, SDX, are calculated 
over the n channels at each time step. Typically in neocortical data the values of 
ω(t) and SDX are nearly constant for time periods of 60-120 ms indicating 
stationarity, and they fluctuate over the n channels in brief time periods that 
demarcate sudden transitions in analytic frequency, power, and spatial pattern. 
The implication is that areas of neocortex function in near-linear, stationary 
dynamics most of the waking state, but undergo brief state transitions 3 to 10 
times each second. During the transitions the analytic amplitude, A(t), drops to a 
low level, and the variances of the analytic frequency, ω(t), given by SDX(t) 
increases briefly but dramatically (Fig. 2.01) in what is known as ‘phase slip’ 
(Pikovsky, Rosenblum and Kurths, 2001). A state transition appears to be 
required to initiate the formation of a new spatial pattern, A(t), which is the order 
parameter manifesting a nonconvergent “chaotic” attractor in the landscape of 
basins of attraction sustained by an area of cortex.  
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Fig. A1. A. A representative segment on a typical channel was selected from visual cortical beta 

EEG after band pass filtering (20-50 Hz). The blue curve shows the spatial ensemble average 
of the real part representing the excitatory neuronal output (v(t) in equation (A2.1)). The red 
curve shows the imaginary part representing the inhibitory neuronal output (u(t)).  B. The real 
part of the analytic signal (abscissa) is plotted against the imaginary part (ordinate) as a 
vector. Time is implicit in counterclockwise rotation of the vector tip starting from the asterix 
just to the right of the origin where the axes cross. C. The blue curve shows the average 
analytic amplitude, A(t), in equation (A2.3) giving the length of the vector). D. The blue 
sawtooth curve shows the average analytic phase, φ(t), given by equation (A2.4). The red 
curve shows the average unwrapped phase, p(t). The analytic frequency ω is taken from the 
slope in rad/s. The deviations from the average slope show “phase slip” which is due to 
repeated state transitions. A reinforced conditioned stimulus (CS+, full field dim light flash) 
was delivered at 0 ms. From Freeman (2004a).  




