
UC Irvine
UC Irvine Previously Published Works

Title
Robust distributed lag models using data adaptive shrinkage.

Permalink
https://escholarship.org/uc/item/8g0602dj

Journal
Biostatistics (Oxford, England), 19(4)

ISSN
1465-4644

Authors
Chen, Yin-Hsiu
Mukherjee, Bhramar
Adar, Sara D
et al.

Publication Date
2018-10-01

DOI
10.1093/biostatistics/kxx041
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g0602dj
https://escholarship.org/uc/item/8g0602dj#author
https://escholarship.org
http://www.cdlib.org/


Biostatistics (2018) 19, 4, pp. 461–478
doi:10.1093/biostatistics/kxx041
Advance Access publication on October 12, 2017

Robust distributed lag models using data adaptive
shrinkage

YIN-HSIU CHEN, BHRAMAR MUKHERJEE∗

Department of Biostatistics, University of Michigan, 1415 Washington Heights,
Ann Arbor, MI 48109, USA

bhramar@umich.edu

SARA D. ADAR

Department of Epidemiology, University of Michigan, 1415 Washington Heights,
Ann Arbor, MI 48109, USA

VERONICA J. BERROCAL

Department of Biostatistics, University of Michigan, 1415 Washington Heights,
Ann Arbor, MI 48109, USA

BRENT A. COULL

Department of Biostatistics, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA

SUMMARY

Distributed lag models (DLMs) have been widely used in environmental epidemiology to quantify the
lagged effects of air pollution on an outcome of interest such as mortality or cardiovascular events. Gen-
erally speaking, DLMs can be applied to time-series data where the current measure of an independent
variable and its lagged measures collectively affect the current measure of a dependent variable. The cor-
responding distributed lag (DL) function represents the relationship between the lags and the coefficients
of the lagged exposure variables. Common choices include polynomials and splines. On one hand, such
a constrained DLM specifies the coefficients as a function of lags and reduces the number of parame-
ters to be estimated; hence, higher efficiency can be achieved. On the other hand, under violation of the
assumption about the DL function, effect estimates can be severely biased. In this article, we propose a
general framework for shrinking coefficient estimates from an unconstrained DLM, that are unbiased but
potentially inefficient, toward the coefficient estimates from a constrained DLM to achieve a bias-variance
trade-off. The amount of shrinkage can be determined in various ways, and we explore several such meth-
ods: empirical Bayes-type shrinkage, a hierarchical Bayes approach, and generalized ridge regression. We
also consider a two-stage shrinkage approach that enforces the effect estimates to approach zero as lags
increase. We contrast the various methods via an extensive simulation study and show that the shrinkage
methods have better average performance across different scenarios in terms of mean squared error (MSE).
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We illustrate the methods by using data from the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) to explore the association between PM10, O3, and SO2 on three types of disease event counts
in Chicago, IL, from 1987 to 2000.

1. INTRODUCTION

In environmental epidemiology, investigators are often interested in estimating the effects of air pollution
levels on counts of some health events (e.g. mortality and cardiovascular events). Sometimes the effects are
not limited to the concurrent time periods but delayed in time.A number of early studies suggest that multi-
day average pollution levels are more predictive of health event counts than a single-day pollution measure
(Schwartz and Dockery, 1992; Schwartz, 1994). More recent time-series studies found that models with
just single-day pollution measures might underestimate the occurrence of health events associated with
air pollution (Schwartz, 2000; Roberts, 2005). Modeling each single lagged effect in separate models is
not desirable and it is difficult to synthesize the results across different models. The most straightforward
approach to jointly consider the temporal dynamics is to use a generalized linear model (GLM) with
current health event count as the outcome and with current and past air pollution levels as covariates in
the same regression model. However, this simple but naive modeling entails two problems. First, a large
number of parameters needs to be estimated, resulting in loss of power due to large degrees of freedom
(df), especially when the sample size is small and the maximal number of lags (L) is large. Second, the
serial autocorrelation between lagged pollution levels is often high. Thus, the lagged effect estimates,
though consistent for the true effects in large samples, could have inflated variance, and the sign of the
effect estimates could be reversed in small samples (Farrar and Glauber, 1967).

Polynomial distributed lag models (DLMs) (Almon, 1965), originally proposed in econometrics,
assume that the unknown lag coefficients lie on a polynomial function of the lag with known degree.
More generally, a constrained DLM imposes a pre-specified structure to constrain the lag coefficients as
a function of the lags. They serve as a general solution to circumvent the collinearity problem and esti-
mate effect coefficients with greater precision. Beyond polynomial constraints, several other functional
forms (Corradi, 1977; Hastie and Tibshirani, 1993) have been used. The choice of the distributed lag (DL)
function often relies on prior knowledge about the effects of exposure on health events. Thus, a linear DL
function may be appropriate for uniformly decreasing lagged effects and a quadratic DL function may
be appropriate for short delays in health effects after exposure. Such explicit prior knowledge may not
be available in many studies. Even with some degree of knowledge about the shape of the DL functions,
the parsimonious structure may omit some detailed characteristics of the lag course, but lead to increased
precision due to the reduced number of parameters to be estimated (Zanobetti and others, 2000). In addi-
tion, in examining multiple exposure-disease pairs, it is difficult to assess each DL function in detail on a
case-by-case basis.

As a potential solution, one could expand and enrich the class of DL functions, but that would defeat the
purpose of reducing the number of parameters to be estimated. Recently, some variations of constrained
DLMs have been proposed to capture the DL function more flexibly. Generalized additive distributed
lag models (GADLM) (Zanobetti and others, 2000) use splines to represent the DL function. Muggeo
(2008) proposed a flexible segmented break point model with doubly penalized B-splines. Distributed lag
non-linear models (DLNMs) (Gasparrini and others, 2010) were developed to simultaneously model the
non-linear exposure-response dependencies and non-linear DL function. Bayesian DLM (BDLM) (Welty
and others, 2009) has been proposed to incorporate prior knowledge about the shape of the DL function
through specification of the prior covariance matrix. BDLM has been extended to Bayesian hierarchical
DLM by adding another layer of hierarchy in order to account for regional heterogeneity (Peng and others,
2009). Obermeier and others (2015) introduced a flexible DLM where the lag effects are smoothed via a
difference penalty and the last lag coefficient is shrunk towards 0 via a ridge penalty.
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In this article, we consider several alternative approaches for shrinkage and smoothing of the dis-
tributed lag function. We propose a class of shrinkage methods that shrinks the unconstrained DLM
estimator toward a model-dependent constrained DLM estimator. The notion is to retain the flexibility
of unconstrained DLM and gain estimation efficiency from a parsimonious constrained DLM. The first
approach is to perform component-wise shrinkage by combining the two estimators using an empirical-
Bayes (EB) type of weighting (Mukherjee and Chatterjee, 2008; Chen and others, 2009). The second
approach is a new hierarchical Bayes (HB) approach. The third approach is generalized ridge regression
(GRR). The idea is the same as traditional ridge regression except that the unconstrained DLM estimators
are shrunk toward the constrained DLM estimator rather than shrinkage towards the null. The amount of
shrinkage is controlled by a tuning parameter chosen via a criterion such as corrected Akaike information
criterion (AICC) (Hurvich and others, 1998) and generalized cross-validation (GCV) (Golub and others,
1979). The three shrinkage methods provide a general framework to shrink one estimator toward its con-
strained counterpart in a data-adaptive manner. We also consider a two-stage shrinkage approach where
a hyperprior is introduced to penalize the estimates obtained from any of the shrinkage approaches to
ensure that the estimated DL function smoothly goes to zero at larger lags, akin to BDLM. In Section 2,
we introduce our shrinkage approaches in detail. In Section 3, we conduct an extensive simulation study
to compare the proposed approaches to existing alternatives. In Section 4, we illustrate our methods by
analyzing data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) to explore
association between a set of ambient pollutants and counts of overall mortality, cardiovascular mortality,
and deaths due to respiratory events in Chicago, IL, from 1987 to 2000. Section 5 contains concluding
remarks.

2. METHODS

We use the following notation throughout the article. Let xt denote the exposure measured at time t, such
as ambient air pollution level, yt denote the response measured at time t, such as daily mortality count,
and zt denote the covariates at time t, such as temperature and humidity. Let T be the length of the time
series. We consider the GLM g[E(yt|xt , xt−1, ..., xt−L, zt)] = α0 + zT

t α1 + ∑L
�=0 β�xt−� where α0 is the

intercept, α1 represents the effect of covariates, L is the pre-determined maximum number of lags, and
β = (β0,β1, ...,βL)

T is the vector of lagged effects. We first consider the log-linear Poisson model:

yt ∼ Poisson(μt)

log μt = α0 + zT
t α1 +

L∑
�=0

β�xt−�.

The goal is to estimate the lagged effect coefficients {β�}. For simplicity and without loss of generality, we
leave out intercept and covariates in subsequent presentation. A straightforward approach to estimate the
coefficients is through unconstrained maximum likelihood estimation (MLE). Let Xt = (xt , xt−1, ..., xt−L)

T .
The unconstrained DLM estimator β̂UDLM can be written as

β̂UDLM = arg max
β
�u(β) = arg max

β

T∑
t=1

[ytβ
T Xt − eβ

T Xt − log(yt !)]. (2.1)

Constrained DLM imposes structure on β by assuming β� is a known function of � for � = 0, . . . , L.
We assume that B1(·), . . ., Bp(·) are the p basis functions that generate the class of functions in which β
lies. A transformation matrix C (Gasparrini and others, 2010) is defined as a (L + 1) × p matrix where
the element (�+ 1, j) is the jth basis function Bj(·)measured at � (i.e. Bj(�)). For instance, a p − 1 degree
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polynomial DLM requires the specification of p basis functions. If a linear constraint is implemented,
one possible choice of basis functions is B1(�) = 1 and B2(�) = � and the corresponding C becomes a
(L + 1) × 2 matrix with all 1’s in the first column and 0, 1, ..., L in the second column. We can define
W t = CT X t where W t is a p × 1 vector representing the transformed independent variables in the model,
with corresponding coefficients θ p×1 in a lower-dimensional space to be regressed on. The constrained
DLM estimator is β̂CDLM = C θ̂ where

θ̂ = arg max
θ
�c(θ) = arg max

θ

T∑
t=1

[ytθ
T Wt − eθ

T Wt − log(yt !)]. (2.2)

and the variance of β̂CDLM is given by V (β̂CDLM) = CV (θ̂)CT .
Note that the choice of basis functions for constructing C is unique only up to a full-rank linear

transformation. In Sections 2.2–2.4, we will introduce different approaches to shrink β̂UDLM toward β̂CDLM

in a data-adaptive manner.

2.1. Connection between the transformation matrix C and the constraint matrix R

We establish the connection between a given transformation matrix C and its corresponding constraint
matrix R (as introduced below) that helps us generalize the proposed methods to a wider class of DLMs.
The notion of the constraint matrix R originates from the “smoothness prior” introduced by Shiller (1973).

Consider a (L+1)×p transformation matrix C . Specifying p basis functions underlying a DL function
results in p unconstrained parameters θ to be estimated as in (2.2). Equivalently, it can be formulated as
L+1 parameters in β to be estimated with L+1−p constraints on β, obtained by maximizing (2.1) subject
to the constraints. The constraints can be represented by Rβ = 0 where R is the (L + 1 − p) × (L + 1)
constraint matrix. The basis functions in C span the solution space of Rβ = 0, thus C and R have a
direct correspondence. Define Ce as a (L + 1) × (L + 1) matrix [C 0(L+1)×(L+1−p)] where 0(L+1)×(L+1−p)

is a (L + 1) × (L + 1 − p) matrix with zero entries. Applying singular value decomposition (SVD)
CT

e = U CDCV T
C where U C is the (L + 1)× (L + 1) unitary matrix with left-singular column vectors, V C

is the (L + 1)× (L + 1) unitary matrix with right-singular column vector, and DC is a (L + 1)× (L + 1)
diagonal matrix with singular values of CT

e along the diagonal, the (L+1−p)× (L+1) constraint matrix
R can be obtained as the last (L+1−p) rows of V T

C . More detailed description of the connection between
R and C is provided in the supplementary material available at Biostatistics online. We summarize two
important results that are going to be used in the subsequent development.
Result 1: β̂CDLM = C θ̂ , where θ̂ is as given in (2.2), is equivalent to the maximizer of the likelihood
function in (2.1) subject to the constraint Rβ = 0, where R is as defined above.
Result 2: The lag coefficients of polynomial DLMs, spline-based DLMs with known knot locations, or
using any other basis functions can all be represented by β = Cθ where C is a suitably defined (L+1)×p
transformation matrix and θ is a vector of unconstrained parameters in R

p. Therefore, the constrained
DLM solutions can alternatively be defined as an element belonging to the null space of the corresponding
constraint matrix R.
Remark 1: Throughout, we use polynomial DLM as our shrinkage target in this article but Results 1 and
2 suggest that the methods are generalizable to other more flexible DLMs.

2.2. Empirical Bayes-type shrinkage estimator

The simplest way to combine two estimators is taking the weighted average of the two with some reasonable
data-adaptive choices for the weights. Mukherjee and Chatterjee (2008) and Chen and others (2009)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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proposed an Empirical Bayes-type estimator to shrink a model-free estimator toward a model-based
estimator. For our context, we consider the following EB-type estimator

β̂EB = β̂UDLM + K(β̂CDLM − β̂UDLM) (2.3)

with K = (V̂ ◦ I L+1)[(V̂ + ψ̂ψ̂
T
) ◦ I L+1]−1. V̂ is the estimated variance-covariance matrix of β̂UDLM,

ψ̂ = β̂CDLM − β̂UDLM, I L+1 is a (L + 1) × (L + 1) identity matrix, and ◦ is the Hadamard product. The
shrinkage factor can be represented by K = diag[k1, ..., kL+1] with ki = vi/(vi + ψ̂2

i ) where ψ̂2
i is the ith

diagonal component of ψ̂ψ̂
T
, and vi is the ith diagonal element of V̂ for i = 1, · · · , L + 1. An alternative

choice for defining the weights is to consider the estimated variance–covariance matrix of ψ̂ instead of

ψ̂ψ̂
T

in (2.3). The expression and derivation of the variance–covariance estimate of ψ̂ are given in the
supplementary material available at Biostatistics online. From now on, we will denote the EB estimator

in (2.3) as EB1 and the EB estimator that replaces ψ̂ψ̂
T

with ˆCov(ψ̂) in (2.3) as EB2.
The shrinkage factor assesses how close the assumed working DL function in CDLM is to the pattern

observed in the data. At one extreme, K = I yields β̂EB = β̂CDLM. At the other extreme, K = 0 yields
β̂EB = β̂UDLM. When the working DL function in CDLM is not correctly specified, β̂EB is asymptotically
equivalent to β̂UDLM and therefore β̂EB is consistent. The expression of the asymptotic variance–covariance
of β̂EB and its derivation are provided in the supplementary material available at Biostatistics online. The
limiting distribution of

√
N (β̂EB − β) is not a normal distribution as expected for most model averaged

estimators (Claeskens and Carroll, 2007). However, Chen and others (2009) showed that the normal
approximation works well and is acceptable in practice.

2.3. Hierarchical Bayes model

We propose a HB approach that sets up a non-null shrinkage target through specification of the prior mean.
The formulation of the prior rests on the “smoothness” prior (Shiller, 1973) that smooths over the lag
curve by specifying a certain degree of order differences of β to follow a zero-mean normal distribution.
For ease of presentation, we focus on polynomial DLM below. The prior structure can be represented by

Rp−1β ∼ N (0, σ 2
πI L−p+1),

where Rp−1 is a (L−p+1)× (L+1) constraint matrix for the (p−1)th degree smoothness prior that uses
the p-degree order differences of β while σ 2

π is the prior variance. The element (i, j) of Rp−1 is (−1)(j−i)
( p

j−i

)
for j = i, ..., i + p and 0 elsewhere. The shrinkage target implied by the prior specification lie in the space
spanned by the solution of Rp−1β = 0 (i.e.

∑p
j=0(−1)j

(p
j

)
β�+j = 0 for � = 0, 1, ..., L − p + 1). We have

shown that the maximizer of the objective function in (2.1) subject to the constraint Rp−1β = 0 coincides
with the (p − 1)-degree polynomial DLM estimator. In other words, the smoothness approach is indeed
shrinking β̂UDLM toward β̂CDLM. The brief proof is provided in the supplementary material available at
Biostatistics online. Without loss of generality, hereafter we denote R as the constraint matrix with M
rows where M < L + 1 is the number of constraints.

Define a T × (L + 1) design matrix X = (X 1, · · · , X T )
T and an outcome vector Y = (y1, · · · , yT )

T of
length T . In order to allow uncertainty on the variance component σ 2

π , we specify the full HB model as:

Y |β ∼ Poisson(eXβ)

Rβ|σ 2
π ∼ N (0, σ 2

πI M )

σ 2
π ∼ IG(aπ , bπ ),

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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where aπ and bπ are hyper-prior parameters of the Inverse-Gamma (IG) distribution. The full conditional
distributions of σ 2

π and β are given by

f (σ 2
π |β, Y ) ∝ IG(aπ + M/2, bπ + βT RT Rβ/2)

f (β|σ 2
π , Y ) ∝

T∏
t=1

[exp(ytX
T
t β − eX T

t β)] · exp
(

−β
T RT Rβ

2σ 2
π

)
.

The marginal posterior density of β is not available in closed form. We use Metropolis Hastings algorithm
within a Gibbs sampler to approximate the posterior distribution and obtain the HB estimator β̂HB as the
posterior mean.

The connection between Bayesian modelling and penalized likelihood approach by viewing prior as
penalty is well-known. The dual problem of the HB model is to minimize

�p(β) = −
T∑

t=1

[
ytβ

T Xt − eβ
T Xt − log(yt !)

]
+ λβT RT Rβ,

where R is defined previously and λ is the tuning parameter. We can use the Newton–Raphson algorithm
(Gill and others, 1981) to obtain GRR estimator β̂GRR by minimizing �p(β) given λ. GCV (Golub and
others, 1979) and AICC (Hurvich and others, 1998) are two common criteria that can be used to choose
the tuning parameter λ. Using the results demonstrated in the previous section, we can assure that β̂GRR →
β̂CDLM as λ → ∞ and β̂GRR → β̂UDLM as λ → 0. The GRR model and HB model are similar and the major
difference is in how the amount of shrinkage is determined. It has been shown that the asymptotic variance
of β̂GRR is a monotonic decreasing function of λ, the asymptotic bias of β̂GRR is a monotonic increasing
function of λ, and the asymptotic mean square errors (MSE) of β̂GRR is lower than the asymptotic MSE
of β̂UDLM. The proofs are provided in the supplementary material available at Biostatistics online. The
described asymptotic properties assume that the tuning parameter λ is fixed. Choosing λ from data would
induce another layer of uncertainty in β̂GRR and the derived variance formula may underestimate its true
variance. To address this issue, we compare the proposed variance estimator with the empirical variance
of the estimates in our simulation study in Section 3.

2.4. Two-stage shrinkage

The Bayesian distributed lag model (BDLM) proposed by Welty and others (2009) smooths over the lagged
effects β. They construct the prior variance–covariance matrix on β in a way to ensure Var(β�) → 0 and
Cor(β�−1,β�) → 1 as � increases. The following hierarchy is specified:

Y |β ∼ Poisson(eXβ)

β|ω, σ 2 ∼ N (0, σ 2�(ω)), �(ω) = V (ω1)W (ω2)V (ω1), σ 2 = 10 · Var(β̂0),

where V (ω) = diag[1, exp(ω), exp(2ω), ..., exp(Lω)], W (ω2) = V (ω2)V (ω2)
T +

{I L+1 −V (ω2)}1L+11T
L+1{I L+1 −V (ω2)}T , I L+1 is the (L+1)× (L+1) identity matrix, 1L+1 is a (L+1)×1

vector of ones, and β̂0 is the estimated coefficient for lag 0 from unconstrained DLM. Rather than setting
fixed values for ω = (ω1,ω2)

T , Welty and others (2009) lets ω follow a discrete uniform distribution on
IR2 and the posterior distribution of β can be obtained accordingly.

We consider a two-stage shrinkage approach to ensure the additional property that the estimated DL
coefficients from one of the above shrinkage approaches smoothly go to zero at larger lags. In the first

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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stage, we shrink β̂UDLM toward β̂CDLM through one of the shrinkage approaches introduced in Sections
2.2–2.3. In the second stage, we specify the hyperprior on the variance–covariance matrix on β that
constrains the coefficients at larger lags to approach zero similar to BDLM. Without loss of generality, we
consider the EB-type estimator β̂EB as the shrinkage estimator from the first stage. The full specification
of the two-stage shrinkage model, with G and � defined in Section 2.2, is given by:

β̂EB|β ∼ N (β, G�GT )

β|ω, σ 2 ∼ N (0, σ 2�(ω)), �(ω) = V (ω1)W (ω2)V (ω1), σ 2 ∼ IG(a0, b0),

where V (ω) and W (ω) are as defined in Section 2.3. If we let ω = (ω1,ω2)
T have a discrete uniform prior

distribution, the full conditional distributions of β, σ 2, and ω are given by:

f (β|β̂EB,ω, σ 2) ∼ N ([1/σ 2�(ω)−1 + (G�GT )−1]−1(G�GT )−1β̂EB, [1/σ 2�(ω)−1 + (G�G)−1]−1)

p(ω|β̂EB,β, σ 2) = |�(ω)|−1/2exp[− 1
2σ2β

T�(ω)−1β]∑
ω∗ |�(ω∗)|−1/2exp[− 1

2σ2β
T�(ω∗)−1β]

f (σ 2|β̂EB,β,ω) ∼ IG(a0 + (L + 1)/2, b0 + βT�(ω)−1β/2).

The joint posterior distribution can be obtained via a Gibbs sampling technique and the two-stage shrinkage
estimate β̂HB2 can be obtained accordingly.

The analogue of the previous two-stage Hierarchical Bayesian approach is the two-stage hyper-
penalized approach. Again, the estimator from the first stage can be any one of the shrinkage estimators
introduced previously. We take β̂EB as the shrinkage estimator obtained in the first stage as before.A penal-
ized objective function is constructed in the second stage to penalize the departure from Var(β�) → 0 and
Cor(β�−1,β�) → 1 as � increases. The two-stage hyper-penalized estimator is given by

β̂HP = arg min
β
�hp(β) = arg min

β
[(β − β̂EB)

T (G�GT )−1(β − β̂EB)+ λβT�(ω)−1β],

where λ is the tuning parameter. We select λ based on cross-validation. For ω, we search through a grid
of possible values of ω and choose the values that minimize the above criterion. When β̂GRR is chosen as
the shrinkage estimator from the first stage, a similar framework can be followed.

3. SIMULATION STUDY

3.1. Simulation 1: comparison of single-step shrinkage approaches

We conducted a simulation study to compare the estimation properties of UDLM, CDLM, GADLM,
BDLM, and the three shrinkage approaches introduced in Sections 2.2 and 2.3 under a time-series setting.
All together, we considered eight different smoothing methods: UDLM, CDLM, EB1, EB2, GRR (with
tuning parameter selected via AICC), GADLM, BDLM, and HB. Among these, UDLM, CDLM, BDLM,
and GADLM are existing alternatives. A cubic spline with four equally spaced internal knots is applied
for GADLM. The prior on ω = (ω1,ω2)

T for BDLM was set to be a discrete uniform distribution over the
equally spaced sequence of length 50 ranging from −0.2 to −0.004 in both dimensions. The hyperprior
on the variance for HB was set to be weakly informative, with both inverse gamma prior parameters set
to 0.001.
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3.1.1. Simulation settings. We first generated an exposure series of length 200 with mean 0 and first order
autocorrelation equal to 0.6 from the model xt = 0.6xt−1 + εt where εt ∼ i.i.d N (0, 1) for t = 1, ..., 200.
Following the structure of Welty and others (2009), we simulated the outcome series Y as continuous
rather than count data for simplicity. The continuous Y can represent the logarithm transformation of the
counts and the normal approximation is applied for modeling purposes. We set L = 10 and generated
the outcome series Y from the model yt = ∑10

�=0 β�xt−� + εt where β = (β0, ...,β10)
T denote the true

coefficients and εt ∼ i.i.d N (0, 0.25) for t = 1, ..., 200. The error variance was determined to control the
signal-to-noise ratio.

Four sets of true βs were considered and different specifications of the working DL function in CDLM
were used. The three combinations of true coefficients and specified working DL function reflect the
first three scenarios of interest for comparing various methods: (i) the working DL function completely
matches true DL function, (ii) the working DL function moderately departs from the true DL function,
and (iii) the working DL function is very different from the true DL structure. Scenario 4 is created to
reflect a realistic situation when one is exploring association between multiple pollutants (e.g. O3, CO,
SO2, NO, PM10) and various outcomes (e.g. mortality, cardiovascular events, hospital admission). Each
exposure–outcome pair may have a different DL structure and it is not feasible to examine each structure
in depth. We consider a setting where data are generated from one of the five underlying true DL functions,
including (i) constant, (ii) linear, (iii) cubic, (iv) cubic-like smooth function with slight departure, and (v)
oscillating, is used to generate data with 20% frequency each while the working DL function is a cubic
polynomial. The summary parameter configurations corresponding to the four scenarios is provided in the
supplementary material available at Biostatistics online. We generated 1000 data sets for each scenario to
evaluate the estimation performance.

3.1.2. Evaluation metrics. To compare the estimation performance of the eight methods, we used two
sets of metrics. The first set of metrics measures the estimation properties of β̂ as a vector. They are (i)
squared bias, (ii) variance, (iii) relative efficiency with respect to UDLM, and (iv) the mean Euclidean
distance to the true coefficient. The second set of metrics measures the estimation properties of the total
effect (i.e.

∑10
j=0 βj). The metrics are (i) squared bias, (ii) variance, and (iii) relative efficiency with respect

to UDLM. The relative efficiency is the ratio of the mean squared errors (MSE) of UDLM estimates to
the MSE of the estimate under each method. The expressions of the metrics used for comparison are
summarized in the supplementary material available at Biostatistics online.

3.1.3. Results. The simulation results for the estimated lagged coefficient vector (β̂) are summarized in
the upper part of Table 1. As we observe, in scenario 1 when the working DL function completely matches
the true DL function, CDLM is nearly unbiased with lowest variance and MSE across all the methods as
expected. The relative efficiency is 8.43. Nonetheless, GRR, HB, and GADLM with relative efficiency
ranging from 4.52 to 5.38 perform reasonably well and are superior to EB1, EB2, and BDLM with relative
efficiency ranging from 1.68 to 1.99. In Scenario 2 when the working DL function moderately departs
from the true DL function, CDLM is more efficient than UDLM, with the loss from the bias compensated
for by a large reduction in variance. CDLM has relative efficiency equal to 2.26 and the relative efficiencies
of the shrinkage methods range from 1.56 to 4.22. GRR and HB outperform CDLM and UDLM in terms
of relative efficiency and mean distance whereas EB1 and EB2 are less efficient than CDLM. BDLM is
approximately as efficient as CDLM, and the mean distances are similar. When the working DL function
is very different from the true DL structure as depicted in Scenario 3, CDLM and GADLM are the least
efficient with relative efficiency around 0.70 since the large squared bias contributes to the MSE despite
the low variance. All the shrinkage methods and BDLM outperform both UDLM and CDLM in terms
of efficiency and mean distance in this scenario. In Scenario 4, we can observe that GRR (2.09) and HB

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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Table 1. Squared bias (in the unit of 10−3), variance (in the unit of 10−3), relative efficiency measured
with respect to the variance of the UDLM estimator, and distance. Distances are the average Euclidean
distance between the vector of lag coefficient estimates and the vector of the true coefficients (i.e. ||β̂−β||2).
Results for distributed lag (DL) function estimation (upper) and results for total effect estimation (lower)
are averaged across 1000 simulation repetitions

DL Function Estimation UDLM CDLM EB1 EB2 GRR GADLM BDLM HB

Squared Bias 0.02 0.00 0.01 0.01 0.00 0.00 0.51 0.00
(1) Working DL Function† Variance 19.49 2.31 9.80 10.56 3.62 4.15 11.13 4.32

Completely Matches Relative Efficiency 1.00 8.43 1.99 1.85 5.38 4.70 1.68 4.52
True DL Function Distance 0.14 0.05 0.09 0.10 0.05 0.06 0.11 0.06

Squared Bias 0.02 7.53 0.74 0.62 1.02 1.21 0.57 0.96
(2) Working DL Function† Variance 20.03 1.36 11.64 12.20 4.64 5.50 8.02 3.79
Moderately Departs from Relative Efficiency 1.00 2.26 1.62 1.56 3.54 2.99 2.33 4.22

True DL Function Distance 0.14 0.09 0.11 0.11 0.07 0.08 0.09 0.07

Squared Bias 0.02 27.59 1.68 1.41 7.27 17.68 6.29 6.15
(3) Non-smooth True Variance 20.23 1.36 15.50 15.95 10.38 9.62 8.95 8.65

DL Function Relative Efficiency 1.00 0.70 1.18 1.17 1.15 0.72 1.33 1.37
Distance 0.14 0.17 0.13 0.13 0.13 0.16 0.12 0.12

(4) Multiple True Squared Bias 0.02 1.19 0.17 0.15 0.40 0.36 0.34 0.26
DL Functions Relative Efficiency 1.00 1.54 1.53 1.42 2.09 1.79 1.77 2.26

Total Effect Estimation UDLM CDLM EB1 EB2 GRR GADLM BDLM HB

(1) Working DL Function† Squared Bias 0.01 0.00 0.02 0.02 0.01 0.00 0.19 0.01
Completely Matches Variance 3.31 3.26 3.74 3.76 3.29 3.35 3.20 3.31

True DL Function Relative Efficiency 1.00 1.02 0.88 0.88 1.01 0.99 0.98 1.00

(2) Working DL Function† Squared Bias 0.01 0.05 0.03 0.02 0.01 0.01 0.01 0.01
Moderately Departs from Variance 3.29 3.26 4.43 4.43 3.24 3.15 3.18 3.25

True DL Function Relative Efficiency 1.00 1.00 0.74 0.74 1.01 1.04 1.03 1.01

Squared Bias 0.00 0.00 0.04 0.03 0.00 0.02 0.04 0.00
(3) Non-smooth True Variance 3.04 2.99 3.55 3.53 3.00 3.08 2.90 3.01

DL Function Relative Efficiency 1.00 1.02 0.85 0.85 1.02 0.99 1.04 1.01

Bold values corresponding to the best performer in each row. †The working distributed lag (DL) function in CDLM for CDLM,
EB1, EB2, GRR, and HB.

(2.22) have higher relative efficiency compared to other methods as well as stable performances across
different individual lag structures. This simulation scenario illustrates that the shrinkage methods can be
useful in improving robustness as well as retaining reasonable precision when encountering uncertainty in
real-world analysis. Overall, GRR and HB have the best average performance across various lag structures
(Scenario 4), as well as reasonable efficiency under a given lag structure (Scenarios 1–3). For example,
GRR has relative efficiency of 5.38, 3.54, 1.15, and 2.09 and HB has relative efficiency of 4.52, 4.22,
1.37, and 2.26 across simulation Scenarios 1–4. Based on the simulation results, HB and GRR have robust
performance.

The simulation results for the estimated total effect (
∑10

l=0 β̂�) are summarized in the lower part of
Table 1. As we can see in Scenarios 1 and 2, all the methods yield nearly unbiased estimates for total
effect and the variances are at a similar level except for EB1 and EB2. In Scenario 3, when the true DL
is non-smooth, the total effects estimated from EB1, EB2, GADLM, and BDLM are slightly biased. In
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Table 2. Squared bias (in the unit of 10−3), variance (in the unit of 10−3), relative efficiency measured with
respect to the variance of UDLM estimator, and distance of the vector of the distributed lag coefficient
estimates obtained from seven statistical methods under the scenario that maximum lag (�) is excessively
specified. Distances are the average Euclidean distance between the vector of lag coefficient estimates
and the vector of the true coefficients (i.e. ||β̂ − β||2) across 1000 simulation repetitions

EB1 HB2-EB1 HP-EB1 GRR HB2-GRR HP-GRR BDLM

Squared Bias 2.22 1.62 1.22 0.83 2.13 1.43 0.68
Variance 66.16 62.39 61.77 18.26 9.79 10.91 35.80
Efficiency 1.83 1.95 1.98 6.54 10.47 10.13 3.42
Distance 0.25 0.24 0.24 0.13 0.10 0.10 0.18

Bold values corresponding to the best performer in each row.

terms of relative efficiency, GRR, GADLM, BDLM, and HB are approximately as efficient as UDLM for
estimating the total effect. Overall, the biases of the total effect estimates are minimal and the variances
of the total effect estimates are similar across the board with slightly higher values for EB1 and EB2.

3.2. Simulation 2: comparison of two-stage shrinkage approaches

Our second simulation study was designed to investigate the effect of the two-stage shrinkage when the
number of maximum lag is allowed to be much larger than the truth. We considered seven methods—EB1,
HB2 with EB1 from the first stage (HB2–EB1), HP with EB1 from the first stage (HP–EB1), GRR, HB2
with GRR from the first stage (HB2–GRR), HP with GRR from the first stage (HP–GRR), and BDLM. For
BDLM and HB2, the prior on ω = (ω1,ω2)

T was set to be a discrete uniform distribution over the equally
spaced sequence of length 50 ranging from −0.2 to −0.004 in both dimensions. For HP, ω was chosen
as the minimizer of the hyper-penalized criterion. The tuning parameters in HP–EB1 and HP–GRR were
selected based on 5-fold cross-validation. The working DL function in CDLM was specified as a cubic
polynomial throughout.

3.2.1. Simulation settings. We generated exposure series in the same way as the first simulation
study. L = 15 was chosen and the true lagged coefficients beyond lag 7 are all set equal to 0.
We generated the outcome series Y from the model yt = ∑15

�=0 β�xt−� + εt with true coefficients
β = (0.07, 0.135, 0.2, 0.210, 0.18, 0.125, 0.06, 0.02, 0, 0, 0, 0, 0, 0, 0, 0)T and εt ∼ i.i.d N (0, 0.25) for
t = 1, ..., 200. We generated 1000 data sets to evaluate the estimation performance.

3.2.2. Evaluation metrics. We evaluated the estimation properties of the seven methods based on the
same four metrics used in the first simulation scenario. The two-stage shrinkage methods can potentially
alleviate the problem of having nonzero coefficient estimates at larger lags when the number of maximum
lags is large. Let MAV denote the mean absolute value of the coefficient estimates for the lags with the true
coefficients equal to 0 (i.e. MAV = 1

8000

∑1000
i=1

∑15
j=8 |β̂ij|). We examine the MAVs of the seven methods to

assess their performance when the maximum number of lags L is misspecified.

3.2.3. Results. The results are presented in Table 2. Overall, the two-stage approaches are effective in
increasing efficiency when L is misspecified. Both HB2 and HP further reduce MSE and reduce the mean
distance compared to the shrinkage estimator obtained in the first stage. Specifically, compared to EB1
(1.83), HB2–EB1 (1.95) and HP–EB1 (1.98) have higher efficiencies while all three are less efficient than
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BDLM (3.42); in contrast, HB2–GRR (10.47) and HP–GRR (10.13) have higher efficiencies compared
to GRR (6.54). The efficiency gain from the second-stage shrinkage is limited for EB1 while the gain is
considerable for GRR.

The MAVs of the seven methods being compared are 0.047, 0.040, 0.029, 0.025, 0.012, 0.012, 0.019,
respectively. The reduction from 0.047 to 0.040 and 0.029, corresponding to 15% and 37% reduction in
MAV, suggests the usefulness of imposing a second-stage shrinkage on EB1 to mitigate the “tail” problem.
Similarly, a second stage shrinkage on GRR aids in reducing the MAVs from 0.025 to 0.012 and 0.012,
equivalent to 49% and 50% reduction in MAV. In this setting, a two-stage shrinkage approach with GRR
in the first stage (HB2–GRR) performs the best with respect to relative efficiency, mean distance to the
true coefficients, and MAV.
Remark 2: We conducted an analysis to evaluate whether ignoring the uncertainty from choosing the tuning
parameter λ in GRR would underestimate the variance of the cumulative effects which are one of the
primary quantities of interest in our context. We considered the empirical variance of the 1000 cumulative
estimates up to lag � from 1000 repetitions as the reference (i.e. 1

1000

∑1000
i=1 (

∑�

j=0 β̂ij − ∑�

j=0 β̄j)
2 for

� = 0, ..., 10). We computed the average of the 1000 estimated variances of the cumulative lag coefficients
from the 1000 repetitions (i.e. 1

1000

∑1000
i=1 V̂ar(

∑�

j=0 β̂ij) for � = 0, ..., 10) as a percentage of the reference.
The results are presented in the supplementary material available at Biostatistics online. We observe that
the asymptotic variances are slightly smaller on average than the empirical variances. The percentages
range from 0.83 to 1.02 across simulations, indicating no more than 10% underestimation of the standard
errors. The findings are in line with the coverage properties of confidence intervals of generalized additive
models using penalized regression splines studied by Marra and Wood (2012). To ensure the validity of
comparison across different methods, we will consider bootstrapping to obtain standard error estimates
for GRR and HP–GRR in the analysis of NMMAPS data.

4. APPLICATION TO NMMAPS DATA

We first explore the association of (i) daily particular matter with aerodynamic diameter less than 10
microns (PM10), (ii) daily ozone concentration (O3), and (iii) daily sulfur dioxide concentration (SO2)
with (1) daily non-accidental mortality counts, (2) daily cardiovascular mortality counts, and (3) daily
respiratory mortality counts in Chicago, IL for the period between 1987 and 2000 using part of the
NMMAPS data via UDLM, CDLM, and HB. A cubic polynomial working DL function was applied
for CDLM and is set as the shrinkage target for all shrinkage methods. We then applied eight of the
methods (UDLM, CDLM, EB1, GRR, BDLM, HB, HB2–GRR, HP–GRR) included in the simulation
study to investigate the association of PM10 and O3 with mortality counts and compare and contrast the
two distributed lag analyses. A 4-degree polynomial working DL function was applied. The NMMAPS
data contain daily mortality, air pollution, and weather data collected across 108 metropolitan areas in
the United States from 1987 to 2000. Further details with respect to NMMAPS data are available at
http://www.ihapss.jhsph.edu/data/NMMAPS/.

Zanobetti and others (2002) have shown that it is unlikely that lags beyond two weeks would have
substantial influence on associations between short-term exposures to pollution and mortality; rather,
inclusion of lags beyond 2 weeks might confound the estimation of lagged effects. We consider lags up
to L = 14 for PM10, O3, and SO2. Let xtk , ytk , and ztk denote exposure level, outcome count, and vector of
time-varying covariates, measured on day t for age group k in Chicago with t = 1, ..., 5114 and k = 1, 2, 3,
respectively. The three age categories are greater or equal to 75 years old, between 65 and 74 years old,
and less than 65 years old. The three exposures were shared across the three age groups (i.e. xtk ≡ xt)
and the vector of covariates ztk is specified in the same way as in previous analysis by Dominici and
others (2005). The same set of covariates is considered in the models for all exposures. We assume that
the mortality count in Chicago on day t for each of the age group k is a Poisson random variable Ytk with

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
http://www.ihapss.jhsph.edu/data/NMMAPS/
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mean μtk such that

log(μtk) = X T
t β + zT

tkα

= X T
t β + α0 +

2∑
j=1

α1jI(k = j)+
6∑

j=1

α2jI(dowt = j)+ ns(tempt ; 6 df,α3)

+ ns(temp
(3)
t ; 6 df,α4)+ ns(dptpt ; 3 df,α5)+ ns(dptp

(3)

t ; 3 df,α6)

+ ns(t; 98 df,α7)+ ns(t; 14 df,α8)I(k = 1)+ ns(t; 14 df,α9)I(k = 2),

where X t = (xt , ..., xt−14)
T , β = (β0, ...,β14)

T , I(·) is the indicator function,ns(·) denotes the natural
spline with specified df and αi represents the spline coefficients for i = 3, ..., 9. Predictors dowt , tempt ,
tempt , dptpt , and dptpt represent the day of week, current day’s temperature, average of the previous 3
days’ temperatures, current day’s dewpoint temperature, and the average of the previous 3 days’ dewpoint
temperatures for day t, respectively. The indicator variables allow different baseline mortality rates within
each age group and within each day of week. The smooth term for time (t) is to adjust for long-term trends
and seasonality and 98 df corresponds to 7 df per year over the 14-year horizon. The last two product
terms separate smooth functions of time with 2 df per year for each age group contrast. The primary goal
is to estimate the lagged coefficients β while α is the set of covariate related parameters.

The mean concentrations (standard deviations in parenthesis) of PM10, O3, and SO2 are 37.06 (19.25)
μg/m3, 19.14 (10.20) ppb, and 6.24 (2.95) ppb, respectively. The average daily non-accidental morality
count, daily cardiovascular mortality count, and daily respiratory mortality count are 38.47 (15.89), 16.97
(10.63), and 3.06 (2.73), respectively. We present the results of exploratory analysis in Figure 1. Along the
columns, we can see that the estimated DL functions for cardiovascular deaths are similar to the estimates
for total mortality while the estimated DL functions for respiratory deaths are less informative across
different exposures. The finding suggests that cardiovascular death is the leading composite of mortality
in association with PM10, O3, and SO2. Along the rows, we can see that the fitted DL functions of PM10

and SO2 are similar in that they increase at early lags, decrease at mid-range lags, and increase back to 0
line at late lags. The trend suggests the delayed effects of PM10 and SO2 and the phenomenon of mortality
displacement (Zanobetti and others, 2002; Zanobetti and Schwartz, 2008). On the other hand, the fitted
DL functions of O3 peak at earlier lags and decrease toward 0 at large lags suggesting the acute effects
of O3 compared to PM10 and SO2. Departure of HB fit from the CDLM fit for PM10 indicates that better
bias-variance tradeoff can be achieved using shrinkage while the consistency between the CDLM fits and
HB fits for O3 and SO2 suggest that the CDLM fits are adequate and the HB approach data-adaptively
aligns with CDLM in these situations.

Partial autocorrelation function (PACF) plots of PM10 and O3 are presented in the supplementary
material available at Biostatistics online. One can notice the slower decay and stronger autocorrelation in
O3 time series than in PM10 time series. Figure 2 compares the estimated DL functions obtained from the
eight methods for the association between PM10 and O3 and mortality in Chicago from 1987 to 2000. The
stronger autocorrelation of O3 time series corresponds to the more variable UDLM estimates. In addition,
PM10 demonstrates the strongest positive effects at lag 2–3, whereas O3 starts to demonstrate a positive
effect at lag 0 itself. This observation suggests an earlier onset of the short-term ozone effect on mortality
in Chicago during the study period.

4.1. Estimation of lag coefficients

With respect to PM10, the strongest association occurs at lag 3 for UDLM, EB1, GRR, BDLM, and HP–
GRR and at lag 2 for CDLM, HB, and HB2–GRR. The interquartile range of PM10 is 21.49μg/m3. The

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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Fig. 1. Estimated distributed lag functions up to 14 days for PM10, O3, and SO2 on total morality, cardiovascular
mortality, and respiratory mortality with 95% confidence/credible interval at each lag in Chicago, IL from 1987 to
2000 based on the NMMAPS data.

quantity 100[exp(21.49β�)− 1] represents the percentage change in daily mortality with an interquartile
range (IQR) increase in PM10 at lag �. The estimated percentage increases in mortality associated with a
21.49μg/m3 increase in PM10 at lag 3 are 0.65%, 0.56%, 0.44%, 0.54%, and 0.37% for UDLM, EB1, GRR,
BDLM, and HP-GRR, respectively. All of the 95% confidence/credible intervals (CIs) do not contain zero
suggesting that PM10 at lag 3 is significantly associated with daily mortality. Although all other methods
shrink and smooth the DL function and result in attenuated lagged effect estimates, the standard error
estimates are smaller as well. From the left panel of Figure 2, we can observe that the estimated DL function
obtained by HB and GRR for PM10 is closer to the UDLM fit than the CDLM fit indicating that CDLM
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Fig. 2. Estimated distributed lag functions up to 14 days for PM10 (left) and O3 (right) on mortality in Chicago, IL
from 1987 to 2000 based on the data from the NMMAPS under eight estimation methods. The lag effects are presented
as the percentage change in mortality with an interquartile range increase in the exposure level (PM10: 21.49μg/m3,
O3: 14.65 ppb).

might have led to over-smoothing the DL function. Consequently, the effects at lags 2 and 3 are much less
evident for CDLM compared to UDLM, GRR, and HB due to potential underestimation of the effects. In
this example, shrinkage methods are certainly preferred since CDLM is potentially underestimating the
effects by misspecifying the DL function.

In contrast, the strongest association unequivocally occurs at lag 2 across all 8 methods for O3. The IQR
of O3 is 14.65 ppb. The quantity 100[exp(14.65β�)−1] represents the percentage change in daily mortality
with an IQR increase in O3 at lag �. The estimated percentage increases in mortality associated with a
14.65 ppb increase in O3 at lag 2 range from 0.59% to 1.19% across the eight methods. All of the 95%
CIs do not cover zero indicating that O3 at lag 2 is significantly associated with daily mortality in Chicago
from 1987 to 2000. The peak at earlier lags for O3 indicates an earlier window of susceptibility and a more
acute effect on mortality compared to PM10. The estimated DL function of GRR/HB is more similar to
the CDLM fit in this case. The two examples also illustrate the data adaptive measure of GRR/HB. In a
given situation, one will not know which DL structure is the best and GRR/HB can be taken as a default
choice that will automatically adapt the fit. The estimated lagged effects with 95% CIs obtained for PM10

and O3 are tabulated in the supplementary material available at Biostatistics online.

4.2. Estimation of cumulative lag coefficients

Supplementary material available at Biostatistics online summarizes the estimated cumulative lagged
effects of PM10 and O3 on mortality up to lag 3, lag 7, and lag 14, respectively, with an IQR increase
in exposure level. The corresponding graphical representation is shown in Figure 3. An interquartile
(21.49μg/m3) increase in PM10 in each of lag 0 to lag 3 is associated with an increase in relative risk of
mortality ranging from 0.48% to 0.75% across different methods. The 95% CIs with lower bound close
to 0 suggest plausible positive association. However, the estimated cumulative lagged effects up to lag 7
range from 0.13% to 0.41% across the eight methods with all the 95% CIs containing 0. The drop between
lag 3 and lag 7 suggests the phenomenon of mortality displacement that has been noted in previous studies

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx041#supplementary-data
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Fig. 3. Estimated mean and 95% confidence/credible interval of the cumulative lagged effect (% change in mortality
count) up to 3, 7, and 14 days of PM10 (left) and O3 (right) on mortality with an interquartile range increase in exposure
level (PM10: 21.49 μg/m3, O3: 14.65 ppb) in Chicago, IL from 1987 to 2000 based on the data from the NMMAPS
under eight estimation methods.

(Zanobetti and others, 2002). The deaths of frail individuals would occur several days after the high air
pollution level episode resulting in the DL function to be positive at early lags and decrease and then
become negative at larger lags. The estimates of the total effect (up to lag 14) from all eight methods
are similar, ranging from −0.87% to −0.43%. The finding is consistent with results from the simulation
study. The proposed shrinkage methods are capable of capturing the trend of the DL functions (i.e. effects
at each individual lag) more precisely than other methods, whereas the total effect estimates and their
standard errors are usually similar across methods. From Figure 2, we can also observe that the two-stage
shrinkage methods HB2–GRR and HP–GRR shrink the tail of the estimated DL function towards 0. A
interquartile (14.65 ppb) increase in O3 in each of lag 0 to lag 3 is associated with an increase in relative
risk of mortality ranging from 1.81% to 2.07% across different methods. All the 95 % CIs are above 0
indicating the positive short-term effects of ozone on mortality in Chicago. The slightly larger cumulative
effects up to lag 7 compared to the cumulative effects up to lag 3 suggests the tapering positive ozone
effect on mortality between lag 3 and lag 7. In addition, the slightly smaller cumulative effects up to lag 14
compared to the cumulative effects up to lag 7 suggests the “harvesting” effects (Zanobetti and Schwartz,
2008).

5. DISCUSSION

In this article, we first reviewed unconstrained DLMs and constrained DLMs for modeling the lagged
effects of air pollution levels on a health outcome in a time-series setting. The unconstrained DLM estimator
is robust because it imposes no constraint on the DL function, whereas the constrained DLM estimator
is efficient due to parsimony. We introduced three classes of statistical approaches to combine the two
estimators in order to achieve bias-variance tradeoff. The commonality is that the amount of shrinkage
is determined in a data-adaptive manner. The resulting shrinkage estimators are found to be more robust
to deviation of the working DL function in CDLM from the true DL function. They are more efficient
than a vanilla unconstrained DLM estimator across the board. Our simulation results indicate that GRR
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and HB perform well in terms of estimation accuracy across different simulation scenarios. GADLM
is competitive when the true DL function is smooth but it leads to seriously biased estimates when the
true DL function is non-smooth (simulation setting 3). In contrast to spline-based DLMs and BDLM, our
shrinkage approaches leverage the efficiency gain from the parsimonious parametrization of the working
DL function in CDLM.

Based on the simulation results, we recommend GRR and HB as the preferred methods of choice. With
massive data sets or multiple exposure–outcome pairs to explore, if computational cost is of concern, GRR
is computationally less expensive than HB. To help understand the differences in relative computing times,
supplementary material available at Biostatistics online presents the computational time for analyzing the
NMMAPS data by each method. Moreover, existing methods like CDLM require the DL function be
carefully selected on a case-by-case basis. Practitioners may not have the resources to conduct such in
depth exploration of the lag structure when an agnostic association analysis is carried out with multiple
outcome–exposure combinations. Use of shrinkage methods can be viewed as a way to automate this
process and avoid selection of a parametric structure for each individual analysis, as in simulation Scenario
4 and NMMAPS analysis. The proposed shrinkage methods are robust to misspecification of the working
DL function and can be used to conduct agnostic discovery searches in an automatic and efficient fashion.

One of the key components for setting up the smoothness prior in HB and the penalty term in GRR
is the configuration of the constraint matrix R. It induces a non-null shrinkage target in both approaches.
We established the connection between R and the transformation matrix C in DLM framework. This
correspondence is a major contribution of the article. There are two implications of this connection.
First, R can be conveniently obtained as long as C , that transforms the constrained parameters in the
original space to the parameters in a lower-dimensional unconstrained space, is available. Second, one
can explicitly determine the constraint(s) between adjacent lag coefficients by integrating subject-matter
knowledge about the shape and smoothness regarding the DL function and define the corresponding C or
R, thus the framework is flexible.

Unconstrained DLMs, constrained DLMs, and the other one-stage shrinkage methods do not guarantee
that the coefficients at larger lags approach zero. Two-stage shrinkage methods are useful in remedying
this problem. However, the computation time needed is longer as taking into account the uncertainty at
both stages concurrently requires some resampling technique such as bootstrapping. Overall, the choice
of the methods has less influence on the estimated cumulative effects, as observed in the simulation study
and the NMMAPS analysis. Nevertheless, the shrinkage methods are useful in characterizing the DL
functions in a more precise manner by recognizing the possible bias in the CDLM specification. Precisely,
identifying the window of susceptibility to a disease event in association with air pollution would facilitate
environmental scientists to understand the pathway of environmental factors to disease risk and possible
interaction between different exposures.

These methods can potentially be extended to areas outside environmental epidemiology. The notion
of combining a model-free estimator and a model-based estimator is attractive in real-world situations
when no single estimator is universally optimal and it is difficult to examine the validity of the underlying
assumptions needed for a model-based estimator. We hope that our work will lead to further research in
other applications.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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