
UC Riverside
UC Riverside Previously Published Works

Title
A novel class of inhibitors that disrupts the stability of integrin heterodimers identified 
by CRISPR-tiling-instructed genetic screens

Permalink
https://escholarship.org/uc/item/8g06h775

Journal
Nature Structural & Molecular Biology, 31(3)

ISSN
1545-9993

Authors
Mattson, Nicole M
Chan, Anthony KN
Miyashita, Kazuya
et al.

Publication Date
2024-03-01

DOI
10.1038/s41594-024-01211-y

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g06h775
https://escholarship.org/uc/item/8g06h775#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Nature Structural & Molecular Biology | Volume 31 | March 2024 | 465–475 465

nature structural & molecular biology

https://doi.org/10.1038/s41594-024-01211-yArticle

A novel class of inhibitors that disrupts the 
stability of integrin heterodimers identified 
by CRISPR-tiling-instructed genetic screens

Nicole M. Mattson    1, Anthony K. N. Chan    1,2, Kazuya Miyashita1, 
Elizaveta Mukhaleva3, Wen-Han Chang1, Lu Yang1,2, Ning Ma    3, Yingyu Wang3, 
Sheela Pangeni Pokharel1,2, Mingli Li1, Qiao Liu1, Xiaobao Xu1, Renee Chen1, 
Priyanka Singh1, Leisi Zhang1, Zeinab Elsayed1, Bryan Chen1, Denise Keen4, 
Patrick Pirrotte5,6, Steven. T. Rosen4, Jianjun Chen    1,4, Mark A. LaBarge4,7, 
John E. Shively4,8, Nagarajan Vaidehi    3,4, Russell C. Rockne    3,4, Mingye Feng4,9 
& Chun-Wei Chen    1,2,4 

The plasma membrane is enriched for receptors and signaling proteins 
that are accessible from the extracellular space for pharmacological 
intervention. Here we conducted a series of CRISPR screens using human 
cell surface proteome and integrin family libraries in multiple cancer 
models. Our results identified ITGAV (integrin αV) and its heterodimer 
partner ITGB5 (integrin β5) as the essential integrin α/β pair for cancer 
cell expansion. High-density CRISPR gene tiling further pinpointed the 
integral pocket within the β-propeller domain of ITGAV for integrin αVβ5 
dimerization. Combined with in silico compound docking, we developed 
a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline 
for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting 
the β-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid 
uncoupling of integrin αVβ5 and cellular apoptosis, providing a unique class 
of therapeutic action that eliminates the integrin signaling via heterodimer 
dissociation. We also foresee the CRISPR-TICA approach to be an accessible 
method for future drug discovery studies.

The plasma membrane is a semipermeable barrier that encloses intra-
cellular components from the extracellular environment. In addition to 
the phospholipid bilayer, proteins are estimated to constitute as much 
as 50% of plasma membrane biomass. The cell surface proteome can be 
divided into integral membrane proteins (transmembrane proteins) 

and peripheral membrane proteins (membrane-anchored and other 
cell-surface-associated proteins), which are highly enriched for pro-
teins involved in cellular adhesion, migration, communication, ligand 
binding, signal transduction, nutrition/ion transport and immunity1,2. 
An estimated 543 to 1,100 different proteins are present on the cancer 
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Fig. 1a,b and Supplementary Table 2). We then delivered this library 
into five Cas9-expressing human cancer cell lines (MDA231, PANC1, 
U251, SW620 and H661) using lentiviral transduction and compared 
the change in frequency of each integrated sgRNA construct in these 
cells between day 0 and day 24 using high-throughput sequencing fol-
lowed by the MAGeCK algorithm30 (Fig. 1b and Supplementary Table 3).  
Combined analyses revealed that in addition to proteins commonly 
required for cell proliferation (positive controls; yellow dots), these 
CRISPR screens identified ITGAV (encoded by the ITGAV gene) as the 
top essential cell surface protein in multiple cells representative of 
cancer types (Fig. 1c and Supplementary Table 3; additional analyses 
of these surface proteome screens are shown in Extended Data Fig. 2).

To validate the library screen results, we transduced the Cas9+ 
MDA231 and PANC1 cells with sgRNAs targeting ITGAV (sgITGAV) to 
deplete the expression of endogenous ITGAV (Fig. 1d). Using a flow 
cytometric growth competition assay (Extended Data Fig. 3a), we found 
that cells transduced with sgITGAV were outcompeted by cells trans-
duced with sgRNA targeting nonessential sequences (sgCtrl) (Fig. 1e),  
and further expression of an exogenous ITGAV complementary DNA 
(cDNA) rescued the cells from sgITGAV (Extended Data Fig. 4). CRISPR 
depletion of ITGAV in MDA231-Cas9+ cells also led to pronounced apop-
tosis (Fig. 1f) and arrested the cell cycle (Fig. 1g). Clinically, we found 
that ITGAV was overexpressed in multiple cancer types, including those 
tested in our cell surface proteome CRISPR screens (Supplementary 
Fig. 1). We also observed an association of high ITGAV expression with 
poor survival prognosis in patients with diverse cancer types (Fig. 1h; 
source: Gene Expression Profiling Interactive Analysis (GEPIA), includ-
ing breast carcinoma, pancreatic adenocarcinoma, lung adenocarci-
noma, hepatocellular carcinoma and glioma; total: ~3,700 patients)31, 
highlighting the requirement for ITGAV in cancer progression.

ITGAV mediates RAC1 signaling and F-actin assembly
Integrins are known to control cytoskeletal rearrangement via 
plasma-membrane-associated Rho family small GTPases, includ-
ing RHOA, RAC1 and CDC42 (ref. 32). To elucidate the cytoskeletal 
signaling pathways affected by depletion of ITGAV, we analyzed 
the DepMap genome-wide CRISPR screen consortium database  
(https://depmap.org/portal/; BROAD Institute) and found higher corre-
lations of CERES scores (CERES is a computational method to estimate 
gene-dependency levels from CRISPR–Cas9 essentiality screens)18 
between ITGAV and RAC1 in the 769 tested cell models (Fig. 2a, purple, 
and Extended Data Fig. 5a; Pearson coefficient = 0.482; rank 6 of 17,709 
genes) than between ITGAV and CDC42 or RHOA (green). The code-
pendency relationship between ITGAV and RAC1 indicate that ITGAV 
primarily signals through RAC1 to mediate the intracellular response. 
We then performed RNA sequencing and gene set enrichment analysis 
(GSEA)33 on MDA231-Cas9+ cells transduced with sgCtrl versus sgITGAV. 
According to this transcriptomic analysis, the ‘RAC1_GTPase_Cycle’ was 
among the most depleted gene sets following sgITGAV transduction 
(Fig. 2b and Supplementary Table 4), supporting the data shown in 
Fig. 2a. Similar to sgITGAV, depletion of RAC1 by CRISPR (Fig. 2c) sup-
pressed proliferation and survival of MDA231-Cas9+ cells (Fig. 2d–f). 
To examine the impact of ITGAV on cytoskeletal dynamics, we stained 
actin filaments (F-actin) with Alexa Fluor 488-conjugated phalloidin in 
MDA231-Cas9+ cells. Similar to sgRAC1 (purple), sgITGAV transduction 
(red) resulted in altered cellular morphology, disassembled cytoskel-
eton and reduced cell size (Fig. 2g,h). Overall, our results indicate an 
essential role of ITGAV/RAC1 signaling in cancer cell maintenance.

Integrin family CRISPR screens highlighted integrin αVβ5
Integrins are obligate heterodimeric cell surface receptors composed 
of one of the 18 α subunits and one of the eight β subunits in the human 
genome (Fig. 3a)6. To pinpoint the critical components within the inte-
grin family that collaborate with ITGAV for cancer cell maintenance, we 
developed another CRISPR library targeting the gene coding regions of 

cell surface3, many of which have functions that could influence disease 
progression and therapeutic response. Owing to the extracellular acces-
sibility and the substantial biological functions of plasma membrane 
proteins, the cell surface proteome represents a valuable pool of targets 
for pharmacological intervention4,5.

Among these potential targets are integrins, a family of cell surface 
transmembrane receptors that have important roles in cell-to-cell and 
cell-to-extracellular-matrix (ECM) interactions6. Activation of integ-
rins also controls the morphology, polarity and migration of cells by 
engaging the cells to the extracellular environments and by rearranging 
intracellular cytoskeleton components such as actin filaments (that 
is, outside-in signaling)7. Integrins can also be activated through their 
carboxyl terminus intracellular tails to engage extracellular ligands 
(that is, inside-out signaling)8. Thus far, 24 distinct integrins have 
been documented, in four subfamilies (the RGD receptors, collagen 
receptors, laminin receptors and leukocyte-specific receptors), each 
of which is a cell surface heterodimer comprising of one of the 18 α 
subunits and one of the eight β subunits in the human genome6. These 
diverse integrin α/β pairs govern tissue morphogenesis, homeostasis, 
angiogenesis, thrombosis and inflammatory response6,9. In addition, 
integrins including α4β1, α5β1, αVβ3 and αVβ5 have been implicated in 
the carcinogenesis and metastasis of various tumor types10. Therefore, 
pharmacological targeting of specific integrin α/β pairs has become 
an attractive field for therapeutic development9,11.

CRISPR–Cas9 (clustered regularly interspaced short palindromic 
repeats and CRISPR-associated endonucleases)12–14 gene suppres-
sion screens are powerful genetic approaches for identifying effector 
genes in biological systems15–17. For example, the DepMap consortium  
(https://depmap.org/portal/; BROAD Institute) has performed 
genome-wide CRISPR library knockout screens in ~1,000 cell line mod-
els and enabled the discovery of a wide range of cancer-cell-dependent 
genes18,19. Furthermore, recent advances in high-density CRISPR gene 
tiling have revealed the utility of CRISPR technology in protein domain 
and subdomain characterization20–22. The saturation CRISPR mutagen-
esis screen thus provides a powerful platform for examining critical 
functional areas within the protein of interest and could instruct dis-
covery of therapeutics.

In this study, we conducted a series of unbiased CRISPR screens, 
including a surface proteome library screen and an integrin-family- 
focused library screen. As a result, we identified a requirement for 
integrin αV (ITGAV) and integrin β5 (ITGB5) in tumor cell mainte-
nance. We also exploited the power of high-density CRISPR gene- 
tiling screens23–28 and developed a drug discovery tool named CRISPR- 
TICA (CRISPR-Tiling-Instructed Computer-Aided). This workflow 
allowed us to identify an integrin αVβ5 disruptor that targets the 
CRISPR-hypersensitive pocket within the β-propeller domain of ITGAV 
to prevent its interaction with ITGB5, providing a unique class of inte-
grin inhibitor that acts through dissociation of the α/β heterodimers.

Results
Cell surface proteome CRISPR library screens
To identify critical cell surface proteins required for cancer cell expan-
sion, we evaluated a mass-spectrometry-derived cell surface protein 
atlas (1,492 genes)4 together with a membrane protein database (2,418 
genes)29 and the Human Protein Atlas – Plasma Membrane (2,254 genes; 
https://www.proteinatlas.org) and summarized 581 core cell surface 
proteins (Supplementary Table 1). Based on this, we developed a 
focused CRISPR library targeting the 581 genes encoding these cell 
surface proteins (involved in cellular adhesion, migration, communi-
cation, ligand binding, signal transduction, nutrition/ion transport, 
immunity and so on) with 2,905 single-guide RNAs (sgRNAs) (Fig. 1a; 
five sgRNAs per gene). We also spiked in a panel of 41 negative control 
sgRNAs (targeting nonhuman genes such as Luc, LacZ, Ren and Rosa26 
and scrambled sequences) and 27 positive control sgRNAs (targeting 
cancer-essential genes such as MYC, PCNA and RPA3) (Extended Data 
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each of the 26 integrin subunits with 25 sgRNAs per gene (Extended Data 
Fig. 1c and Supplementary Table 2; total 650 sgRNAs plus control sgR-
NAs) for a CRISPR depletion screen in the Cas9+ MDA231 and PANC1 cells 
(Fig. 3b). These validation screens suggested that in addition to those 
targeting ITGAV, the sgRNAs targeting ITGB5 were strongly depleted 
in both cancer cell models (Fig. 3c and Supplementary Fig. 2). We then 
annotated the CRISPR impact score (the median log10 fold change of 
the 25 sgRNAs for each subunit) to the integrin heterodimer network  
(a total of 24 different integrins, each with a unique α/β combination)6 
and identified integrin αVβ5 (an RGD receptor mediating cell-to-ECM 
interaction) as the top essential integrin pair in these cancer cells (Fig. 3d,  
red dotted circle). CRISPR depletion of ITGB5 (but not the other ITGAV 
heterodimer partners, including ITGB1/3/6/8) suppressed proliferation 
of MDA231 cells (Fig. 3e). Similar to the results for sgITGAV, depletion 
of ITGB5 (Fig. 3f) impaired the survival and cell cycle of MDA231 cells 
(Fig. 3g,h), phenocopying the effect of sgITGAV (Fig. 1f,g). Further 
analysis of gene codependency in the DepMap genome-wide CRISPR 
screen consortium database showed that the highest correlation of 
CERES scores in the 769 tested cell models was that between ITGAV and 
ITGB5 (Fig. 3i, blue; Extended Data Fig. 5b; Pearson coefficient = 0.686; 
rank 1 of 17,709 genes). By contrast, the correlations of CERES scores 
between ITGAV and other partner β subunit coding genes (ITGB1/3/6/8) 
were much weaker (Fig. 3i, yellow; Extended Data Fig. 5b), suggesting 
a selective requirement for the integrin αVβ5 heterodimer in cancer 
cell expansion.

CRISPR gene tiling pinpointed the β-propeller domain of 
ITGAV
To define the regions of ITGAV required for cancer cell survival, we 
employed a high-density gene tiling scan that pinpoints the functional 
regions within a protein by CRISPR-induced mutagenesis23–28. For this, 
we constructed a CRISPR library of 348 sgRNAs that target every posi-
tion with an NGG protospacer adjacent motif within the ITGAV cod-
ing exons (Fig. 4a, Extended Data Fig. 1d and Supplementary Table 2). 
We then utilized lentiviral transduction to deliver this library into the 
Cas9-expressing MDA231 cells and detected the frequencies of each 
sgRNA sequence before versus after 24 days of culture by NextSeq550 
sequencing (Supplementary Table 5). After smoothen modeling of the 
local sgRNAs34, our CRISPR-tiling scan identified seven regions with 
critical roles (Fig. 4b, numbers 1–7) within the β propeller domain of 
ITGAV (dashed box; F31–A467). We then mapped the normalized CRISPR 
score (NCS) on a three-dimensional (3D) structure of ITGAV (Fig. 4c; 
AlphaFold ID: P06756)35. We found that the CRISPR-sensitive peptide 
regions within the β-propeller domain represented the tips of the seven 
blade-shaped structures facing toward the aromatic residue-enriched 
central cavity, designated ‘hypersensitivity-illustrated pocket’ or ‘HIP’ 
(Fig. 4d; including F51, W123, F189, Y254, F308, S372 and Y436), which is 
in direct contact with a basic amino acid (lysine or arginine) in the loop 
motif of the βA domain within the β integrin subunits36–38.

To investigate the role of the β-propeller HIP in the ITGAV–ITGB5 
interaction in living cells, we employed a bioluminescence resonance 
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energy transfer (NanoBRET) assay (Fig. 4e)39,40 by fusing the energy 
donor NanoLuc luciferase to the cytoplasmic tail of ITGB5. We also 
fused the energy acceptor ‘HaloTag’ to the cytoplasmic tail of ITGAV. 
When adding the NanoLuc luciferase substrate (generating a 460 nm 
donor signal) and the HaloTag ligand (generating a 618 nm acceptor 
signal), this integrin αVβ5 reporter will turn on the NanoBRET signal 
(618 nm versus 460 nm ratio) while the ITGAV and ITGB5 subunits are 
proximal (Fig. 4e, left). Conversely, the NanoBRET signal will be abol-
ished upon disengagement between the ITGAV and ITGB5 subunits 
(Fig. 4e, right). Alanine substitution of any one of the β-propeller HIP 
residues (F51A, W123A, F189A, Y254A, F308A, S372A or Y436A) on 
ITGAV attenuated the NanoBRET signal by 50% to 70% compared with 
wild-type ITGAV (Fig. 4f; alanine substitution of the aromatic residues 
outside of HIP are shown in Extended Data Fig. 6), indicating a pivotal 
role of the ITGAV β-propeller HIP in integrin αVβ5 assembly.

A lead compound that disrupts ITGAV heterodimerization
To identify additional classes of inhibitors that block ITGAV heter-
odimerization, we developed a CRISPR-TICA pipeline that enables 
de novo identification of small molecular compounds for binding to 
CRISPR-hypersensitive surface areas of the targeted protein. We rea-
soned that the CRISPR-hypersensitive surface areas (which cannot 
tolerate CRISPR-induced mutagenesis; Fig. 4d) might indicate criti-
cal functional positions amenable to pharmaceutical inhibition. We 
mapped the NCS on a crystal structure of the ITGAV β-propeller domain 
(Fig. 5a; PDB ID: 3IJE)41–43 and used AutoSite44 and AutoDock Vina45 to 
predict the binding affinity of ~128 K diverse compounds (collected 

by the National Cancer Institute/Developmental Therapeutics Pro-
gram (NCI/DTP) Open Chemicals Repository) to the β-propeller HIP  
(Fig. 5a, box). We then selected the top 500 predicted binders (Fig. 5b 
and Supplementary Table 6; binding free energies (ΔG°) ≤ −11.6 kJ mol−1) 
for CellTiter Glo and CCK8 (Cell Counting Kit 8) validation screens in 
MDA231 cells (Fig. 5c and Supplementary Table 7; each compound 
tested at 10 µM) and identified nine candidate compounds that could 
suppress the viability of MDA231 cells with <10% viability in both assays 
(Fig. 5d and Extended Data Fig. 7).

As mutagenesis of the β-propeller HIP of ITGAV significantly 
affected the assembly of integrin αVβ5 (Fig. 4f), we utilized a flow cyto-
metric assay to detect integrin αVβ5 dimers on the cell surface using 
an monoclonal anti-integrin αVβ5 heterodimer antibody (Fig. 5e and 
Extended Data Fig. 3b). This allowed us to monitor the rapid changes in 
integrin αVβ5 levels on the cell surface upon 1 h compound treatments. 
We found that most of the candidate compounds were unable to reduce 
cell surface integrin αVβ5 levels (Cpd_AV5/82/259/343/377/388/469) or 
exhibited a notable fluorescent background (Cpd_AV84), suggesting 
that the cell inhibitory effects of these compounds were not associated 
with integrin αVβ5 disruption (Fig. 5f, green). On the other hand, one 
of the nine candidate compounds (Cpd_AV2) exhibited potential to 
reduce the presence of integrin αVβ5 on the cell surface (Fig. 5f, orange; 
minimum inhibitory concentration ~40 µM with half-maximal inhibi-
tory concentration (IC50) ~6.9 µM; additional validation data shown 
in Supplementary Fig. 3). At the cellular level, we found that Cpd_AV2 
led to pronounced apoptosis and cell cycle arrest by 3 h posttreatment 
(Fig. 5g, h). Furthermore, Cpd_AV2 induced a drastic change in cell 
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morphology, cytoskeleton assembly and cell size as early as 10 min 
posttreatment (Fig. 5i, j). These effects of Cpd_AV2 resembled those 
triggered by ITGAV depletion (Figs. 1f,g and 2g,h), marking Cpd_AV2 as 
the top integrin αVβ5 disruptor from the compound screen.

To validate the interaction between Cpd_AV2 and ITGAV, we 
purified the recombinant His6-tagged ITGAV [31–492 amino acids 
(aa)] from Escherichia coli (Fig. 6a; covers the β-propeller domain 
of ITGAV) and examined the protein thermal stability under control 
versus Cpd_AV2 conditions. We observed that incubation of Cpd_AV2 
(40 µM) increased the melting temperature (Tm) from 52.0 °C to 58.1 °C  
(Fig. 6b; ΔTm = 6.1 °C), suggesting an interaction between Cpd_AV2 
and the purified ITGAV β-propeller domain. Furthermore, molecular 
docking of the bound complexes demonstrated favorable interactions 
between Cpd_AV2 (yellow) and the ITGAV β-propeller central cavity 

(Fig. 6c) with a superior binding energy (ΔG° = −15.0 kJ mol−1; ranked 
in the top two of the ~128 K docked compounds), showing competi-
tive binding of Cpd_AV2 against the ITGB5 βA loop (right panel, cyan 
fragment; specifically at the K287 position) on the surface of the 
ITGAV β-propeller domain. Molecular dynamics simulations starting 
from the AlphaFold2 (ref. 35) structural model of the ITGAV–ITGB5 
complex showed that K287 of ITGB5 interacts closely with multiple 
aromatic residues in ITGAV (Extended Data Fig. 8a–d), thereby play-
ing a critical part in holding the complex together. This interaction is 
broken by the presence of Cpd_AV2 (Extended Data Fig. 8e). Mutation 
of K287 to alanine significantly attenuated the ITGAV–ITGB5 Nano-
BRET signal (Extended Data Fig. 8f), highlighting an essential role of 
the ITGB5 K287 in integrin αVβ5 assembly. These analyses together 
provide mechanistic insights into the role of Cpd_AV2 in disrupting 
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the ITGAV–ITGB5 interaction. Compared with Cpd_AV2, we found that 
cilengitide46–48 (an RGD-mimetic ITGAV inhibitor examined in multiple 
clinical trials) was unable to disrupt the level of cell surface integrin 
αVβ5 heterodimer (Fig. 6d) and resulted in less efficacy of cell suppres-
sion (Fig. 6e). Investigation of the effectiveness of Cpd_AV2 against 
commonly used cancer cell models indicated a utility of Cpd_AV2 
for pan-cancer treatment (Fig. 6f; IC50 = 1.3–5.2 µM in cell cultures). 
Collectively, our data suggest that Cpd_AV2 (NCI/DTP NSC identifier: 
268394; IUPAC name: (5S,7R,12S,14S)-5,14-dimethyl-7,12-dinaphthal
en-2-yl-1,4,8,11-tetrazacyclotetradecane; structure shown in Fig. 6g) 
acts through disrupting the ITGAV heterodimerization to eliminate 
integrin αVβ5 signaling, providing an alternative and potentially 

more potent ITGAV-targeted therapeutic approach compared with 
traditional RGD-blockers (Fig. 6h).

Discussion
The cell surface proteome is enriched for structural and signaling 
components that mediate diverse biological activities under normal 
and disease conditions1–4. A better understanding of the cell surface 
protein genes related to cancer progression could provide new ther-
apeutic opportunities and shed light on novel mechanisms of drug 
action. In this study, we performed a series of CRISPR genetic screens 
(that is, a cell surface proteome screen, an integrin family screen and 
a high-density ITGAV CRISPR-tiling screen) in multiple cancer cell 
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models. Using these functional genetics approaches, we identified the 
critical role of integrin αVβ5 in cancer cell maintenance. We also dem-
onstrated that the CRISPR-hypersensitive cavity within the β-propeller 
of ITGAV is indispensable to integrin αVβ5 heterodimerization, offering 
a therapeutic pocket for pharmacological development.

ITGAV (also known as CD51) is expressed in multiple tissue 
cell types and is involved in tissue developmental steps including 

angiogenesis49,50. The ITGAV integrins (αVβ1, αVβ3, αVβ5, αVβ6, 
αVβ8) are heterodimeric cell surface receptors that recognize 
RGD-containing ECM proteins (for example, vitronectin, fibronec-
tin, osteopontin, von Willebrand factor and thrombospondin)6 and 
intercellular signaling molecules (for example, TGFβ)51,52. Serving as 
the primary receptors for vitronectin (offered to cells under standard 
cell culture conditions for cell-to-plate adhesion), integrins αVβ3 and 
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αVβ5 are known to protect tumor-derived cells from apoptosis53,54. 
Increased expression of ITGAV has been reported as a prognostic 
marker in diverse cancer types (breast cancer, prostate cancer, ovar-
ian cancer, glioblastoma, myeloma, hepatocellular carcinoma, skin 

carcinoma, colorectal adenocarcinoma, esophageal adenocarcinoma, 
pancreatic adenocarcinoma and so on)9,10,48,55–62. A recent study also 
demonstrated the role of integrin αVβ5 in Zika virus entry to glioblas-
toma stem cells63. Genetic suppression of ITGAV was shown to impair 
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Data are presented as the mean ± s.e.m. P values were calculated by two-sided 
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http://www.nature.com/nsmb


Nature Structural & Molecular Biology | Volume 31 | March 2024 | 465–475 473

Article https://doi.org/10.1038/s41594-024-01211-y

the proliferation, survival and migration of cancer cells, suggesting 
that ITGAV could serve as a therapeutic target to inhibit tumor progres-
sion and metastasis11. Owing to the potential of ITGAV inhibition in the 
therapeutics market, pharmacological targeting of ITGAV integrins 
has been widely explored over the past 20 years, with more than 30 
inhibitors currently under clinical and preclinical development64. 
Nonetheless, the efficacy of current ITGAV-targeted therapies remains 
elusive, emphasizing the need for a novel and perhaps more effective 
blockade for ITGAV signaling.

Thus far, ITGAV inhibitors have been primarily focused on blocking 
interactions between heterodimerized ITGAV integrins (for example, 
αVβ3 and αVβ5) and RGD-containing ECM proteins9,10. Specifically, the 
current ITGAV integrin inhibitors belong to two principal strategies: 
there are RGD-mimetic molecules (for example, cilengtide, GLPG0187 
and MK-0429) and ITGAV-integrin-specific blocking antibodies (inte-
tumumab, etaracizumab, abituzumab (EMD 525797) and so on)11,64,65. 
Although it prevents the anchorage of cancer cells to ECM proteins, the 
most advanced compound among these traditional integrin inhibitors 
(cilengitide) showed limited benefits in several animal and human tri-
als66–68, potentially owing to incomplete suppression of basal integrin 
signaling, as the α/β heterodimers remained undisrupted (Fig. 6h, 
right). On the other hand, no compounds that disrupt the interac-
tions between ITGAV and its partner β subunits have previously been 
reported. Our results highlight a class of inhibitory mechanism that 
dissociates the integrin αVβ5 by blocking the CRISPR-hypersensitive 
β-propeller pocket (which cannot tolerate CRISPR-induced mutagen-
esis; Fig. 4d) in ITGAV. This strategy provides an additional and per-
haps more effective therapeutic action by eliminating basal integrin 
heterodimer signaling (Fig. 6h, left). Furthermore, this drug action 
might also prevent inside-out integrin activation6,8 from attenuating 
therapeutic efficacy.

Structurally, the basic amino acid encapsulated in the β-propeller 
of ITGAV is conserved across the ITGB1/3/5/6/8 peptides (Extended 
Data Fig. 9a; K/R287), highlighting the potential of Cpd_AV2 to dis-
rupt the functions of αVβ1, αVβ3, αVβ5, αVβ6 and αVβ8 integrins. As 
a proof of concept, we monitored the integrin-αVβ6-dependent cell 
adhesion of HT-29 colorectal carcinoma cells to fibronectin reported 
by ref. 69. We found that preincubation of the HT-29 cells with Cpd_
AV2 led to dose-dependent blockade of HT-29 cell adhesion to the 
fibronectin-coated wells (Extended Data Fig. 9b). We foresee that this 
integrin-targeting strategy will also be applicable to other integrin α 
subunits for compounds binding to their specific β-propeller pockets 
(a common feature within the integrin α subunits). Notably, the func-
tion of integrins is heavily influenced by the glycosylation of their 
extracellular domains70. In addition to the in vitro protein/compound 
biochemical assays that utilize nonglycosylated bacterially expressed 
proteins (Fig. 6a,b), cell-based characterizations such as cell surface 
flow cytometry and the NanoBRET interaction assay (Fig. 5f and Sup-
plementary Fig. 3) in mammalian cells are necessary to validate the 
impact of compounds on the full-length glycosylated integrins.

High-throughput CRISPR library screens have been performed 
in diverse cancer cell types, revealing critical mechanisms mediating 
tumorigenesis and therapeutic response15–19. By contrast, the potential 
of CRISPR technology to investigate gene function at subgene (that 
is, protein domain or motif) resolution is now being explored20–22. For 
example, high-resolution CRISPR gene tiling screens have been used to 
identify the essential elements within catalytic core domains22,24,26. In 
addition, CRISPR tiling has the sensitivity to pinpoint protein–protein 
interaction sites within screened proteins21,25,28. Our CRISPR gene scan 
has also been used to identify a protein domain mediating oncoprotein 
nuclear trafficking27. In the present study, we further exploited the 
utility of high-density CRISPR gene tiling to identify a protein surface 
pocket for therapeutic development (Figs. 4 and 5). We propose that 
CRISPR-hypersensitive surface areas (that is, those that cannot tolerate 
CRISPR-induced mutagenesis) might correspond to critical positions 

that, when targeted by small molecules, could disrupt the normal func-
tion of the protein. To validate this hypothesis, we obtained previously 
published CRISPR-tiling data from ref. 23 and identified four proteins 
with well-defined inhibitors targeting their CRISPR-hypersensitive 
pockets (Extended Data Fig. 10; including the bromodomain of BRD4 
and the kinase catalytic cores of AURKB, CDK1 and WEE1)71–74. These 
analyses demonstrated the utility of CRISPR tiling as a generalizable 
approach for future drug discovery.

In short, our ITGAV CRISPR-tiling scan offered ~3.0 aa per 
sgRNA resolution (Fig. 4a, b) and clearly distinguished the CRISPR- 
hypersensitive central pocket from the surrounding β-propeller 
domain (Fig. 4d). Notably, this 3D pocket was assembled from seven 
discontinuous CRISPR-hypersensitive segments (Fig. 4b, labeled 1–7; 
separate from each other in their two-dimensional (2D) peptide posi-
tions) in the ITGAV β-propeller domain, highlighting the capacity of 
the CRISPR-tiling scan for subdomain functional recognition beyond 
traditional domain mapping. This finding prompted us to develop 
the CRISPR-TICA workflow for de novo compound discovery and ena-
bled us to identify a lead inhibitor (Cpd_AV2) that disrupts integrin 
heterodimerization.

Availability of materials
Cas9-expressing cells; ITGAV cDNA; and the CRISPR library for the cell 
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Methods
Cell lines and cell culture
HEK293, PANC1 and SW620 cells were obtained from the American 
Type Culture Collection; MDA231 (that is, MDA-MB-231) cells were 
obtained from M. Feng (City of Hope Cancer Center); H661 cells were 
obtained from J. Qi (Dana Farber Cancer Institute); and U251 cells 
were obtained from M. Chen (City of Hope Cancer Center). Cells were 
cultured in Dulbecco’s modified Eagle medium (DMEM; Gibco) sup-
plemented with 10% fetal bovine serum (Omega Scientific). All media 
were supplemented with penicillin (100 units per ml; Gibco), strepto-
mycin (100 µg ml−1; Gibco), l-glutamine (2 mM; Gibco) and plasmocin  
(0.5 µg ml−1; InvivoGen). All cells were cultured in a 37 °C incubator with 
5% CO2. Cells stably expressing the Cas9 endonuclease were established 
via transduction of LentiCas9-Blast (52962, Addgene) lentivirus and 
selected using blasticidin (Gibco). For assay preparation, all adherent 
cells were removed from plates with a nonenzymatic cell dissociation 
buffer (13150016, Gibco).

CRISPR library and single sgRNA cloning
Briefly, guide RNA oligos were synthesized by microarray (Custom-
Array; for library cloning) or individual oligosynthesis (IDT; for 
single sgRNA) and cloned into the ipUSEPR lentiviral sgRNA vector 
(hU6-driven sgRNA coexpressed with EF-1a-driven red fluorescent 
protein (RFP) and puromycin-resistance gene) using the BsmBI (NEB) 
restriction sites (Extended Data Fig. 1a). CRISPR sgRNAs were selected 
using the BROAD Institute Genetic Perturbation Platform – CRISPick17. 
For the cell surface proteome CRISPR library, 2,905 sgRNA sequences 
targeting 581 genes encoding cell surface proteins were designed 
(Extended Data Fig. 1b; five sgRNAs per gene). For the integrin family 
CRISPR library, 650 sgRNA sequences targeting 26 genes encoding 
integrin subunits were selected (Extended Data Fig. 1c; 25 sgRNAs per 
gene). For the ITGAV tiling scan CRISPR library, 348 sgRNA sequences 
targeting every protospacer adjacent motif within the human ITGAV 
coding exons were covered (Extended Data Fig. 1d; 9 bp per sgRNA). 
The cloned libraries were first sequenced with a NextSeq to ensure at 
least 90% of the sgRNA sequences exhibited a minimal ten reads per 
million reads. Quality control sequencing reports for these libraries 
are shown in Supplementary Table 2. The sequences of single sgRNAs 
selected for validation experiments are listed in Supplementary Table 8.

Lentiviral production and transduction
Lentiviruses were produced in HEK293 cells (CRL-1573, American 
Type Culture Collection) with packaging plasmids pPAX2 (12260, 
Addgene) and pMD2.G (12259, Addgene). Then, pPAX2, pMD2.G and 
a lentiviral backbone plasmid were mixed in a 1:1:1 ratio in Opti-MEM 
medium (31-985-062, Gibco) in the presence of 50 µg ml−1 polyethyl-
eneimine (PRIME-P100-100MG, Serochem LLC). Twenty-four hours 
after transfection of HEK293 cells, the medium supernatant was 
aspired and replaced with fresh DMEM. Then, the transfected cells 
were allowed to grow for 48 h to produce lentiviruses. Subsequently, 
the virus-containing supernatants were incubated with 10% polyeth-
ylene glycol (BP233-1, ThermoFisher Scientific) at 4 °C overnight and 
then centrifuged at 3,000g, 4 °C, 30 min, to collect precipitated viral 
particles. After that, the viral pellets were resuspended with appropri-
ate DMEM, aliquoted and kept at −80 °C.

CRISPR library screens
The CRISPR library screens were performed as previously described28. 
Briefly, the CRISPR sgRNA libraries were delivered to Cas9-expressing 
cells using lentiviral infection (~15% transduction rate, monitored based 
on RFP expression). To achieve 1,000× coverage of the library in each 
screen, 30 million cells for the cell surface proteome library screen, 
six million cells for the integrin family library screen and four million 
cells for the ITGAV high-density CRISPR-tiling scan were used to start 
each screen replicate. The library-infected cells were then selected 

using puromycin (1.5 µg ml−1; Gibco) and subcultured every 3 days. 
The integrated sgRNA at the start (day 0) and end (day 24) timepoints 
was amplified by PCR (NEBNext Ultra II Q5; NEB) using the previously 
reported DCF01 5′-CTTGTGGAAAGGACGAAACACCG-3′ and DCR03 
5′-CCTAGGAACAGCGGTTTAAAAAAGC-3′ primers22. After sequencing 
with a NextSeq550 (Illumina), the read count of each 20 nucleotide 
sequence that matched an sgRNA in the library of guide RNA sequences 
was calculated. For the cell surface proteome screen, essential genes 
were identified using MAGeCK analysis30. For the integrin family gene 
panel screen, the CRISPR impact score was defined as the median log10 
fold change of the 25 sgRNAs for each integrin subunit encoding gene. 
For the ITGAV CRISPR gene tiling scan, the NCS indicated the frequency 
change of each sgRNA between the start and end of the screen on a log10 
scale, where the median score of the negative control sgRNA (defined 
as 0; sgRNA targeting nonessential sequences) and the median score 
of the positive control sgRNA (defined as −1.0; sgRNA targeting MYC, 
BRD4, RPA3, PCNA and so on) were obtained from the control sgRNAs 
within the screen libraries. Low-frequency sgRNAs (below 5% of the 
expected frequency) in the library were removed from the analysis.

Annotation of CRISPR gene tiling scan
The ITGAV CRISPR gene tiling scan library (348 sgRNAs targeting 
ITGAV coding exons) was delivered into the MDA231-Cas9+ cells and 
processed using the methods described above. For 2D annotation, 
the NCSs of individual sgRNAs were processed by Gaussian kernel 
smoothing in R22, and the average score over the trinucleotide codons 
was calculated for each peptide position. For 3D annotation, we first 
obtained 3D structure data for ITGAV from the AlphaFold Protein 
Structure Database (Protein ID: P06756)35 and the Research Collabo-
ratory for Structural Bioinformatics Protein Data Bank (RCSB PDB ID: 
3IJE)41–43. Subsequently, the smoothened ITGAV CRISPR NCSs (from 
the 2D annotation) were mapped onto the ITGAV 3D structures using 
the ‘Defined Attribute’ and ‘Render by Attribute’ functions in UCSF 
Chimera 1.15 (ref. 75).

CRISPR-TICA workflow
The human ITGAV β-propeller structure was extracted from 3IJE using 
PyMOL v.2.0.4 (Schrödinger, LLC) and the PDB 2PQR server76, and the 
resultant pqr file was converted into pdbqt format using AutoDock-
Tools77. The space within the CRISPR-hypersensitive region suitable for 
compound binding (the docking box shown in Fig. 5a) was suggested 
by AutoSite44. The 3D chemical structure of ~128 K diverse compounds 
(collected in the NCI/DTP Open Chemicals Repository; https://dtp.
cancer.gov) downloaded as mol2 files were split into subsets of 20,000 
compounds using Open Babel v.2.4.1 (ref. 78). Subsequently, each sub-
set was converted into pdbqt format (the input file format for AutoDock 
Vina) using PyRx v.0.9.7 (ref. 79). Having prepared both ligand and pro-
tein structures for structure-based drug discovery, we used AutoDock 
Vina v.1.1.2 (ref. 45), an in silico molecular docking program, to virtually 
dock these compounds into the defined docking box using the City of 
Hope Saturn 2 Linux cluster. Finally, the docking data were processed 
and exported to csv files using Raccoon2 (ref. 77).

Cell-based survival screen using CellTiter Glo and CCK8 assays
The top 500 ITGAV β-propeller binders suggested by CRISPR-TICA were 
requested from the NCI/DTP Open Chemicals Repository for func-
tional validation. Compound information is listed in Supplementary 
Table 6. MDA231 cells were seeded at 10,000 cells per well in 96-well 
plates for 24 h, and the compounds were added to a final concentra-
tion of 10 µM for another 72 h. For the Cell Counting Kit 8 (CCK8) assay, 
10 µl of CCK8 reagent (K1018, APExBio) was added to cells (100 µl per 
well), followed by incubation at 37 °C for 1 h, and the absorbance at 
450 nm was measured using an Infinite M1000 Pro plate reader (Tecan 
Trading AG). For the CellTiter Glo assay, cells were washed twice with 
phosphate-buffered saline (PBS) and resuspended by trypsinization. 
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The resuspended cells (50 µl) were mixed with CellTiter Glo 2.0 reagent 
(10 µl; G9241, Promega) in white flat-bottomed 96-well plates (353296, 
Corning) at room temperature for 10 min, and the luminescence was 
measured using an Infinite M1000 Pro plate reader (Tecan Trading AG). 
The relative CellTiter Glo (%) and CCK8 (%) signals were normalized to 
the control condition (DMSO).

Western blotting
Cells were harvested and lysed in 1% sodium dodecyl sulfate (SDS) lysis 
buffer (1% SDS, 50 mM Tris pH 7.5), and the proteins were denatured at 
95 °C for 15 min. Protein concentration was measured using a DC Pro-
tein Assay Kit II (5000112, Bio-Rad). Denatured protein samples were 
separated on Bolt 4–12% Bis-Tris plus gels (NW04125, Invitrogen) or 
3–8% Tris-acetate gels (EA0375, Invitrogen) using electrophoresis. The 
separated protein bands were transferred onto polyvinylidene fluoride 
(PVDF) Mini Stacks (0.2-µm pore size; IB24002, Invitrogen) using an 
iBlot 2 (Invitrogen). PVDF membranes were blocked with 5% bovine 
serum albumin (Fisher Scientific) in Tris-buffered saline with Tween-
20 (TBST) at room temperature for 1 h and then probed with primary 
antibodies for ITGAV (4711, Cell Signaling Technology, 1:1000), ITGB5 
(3629, Cell Signaling Technology; 1:1000), RAC1 (4651, Cell Signaling 
Technology; 1:1000) and β-actin (ab8226, Abcam; 1:5000) at 4 °C over-
night. After the membranes had been washed with TBST three times, 
HRP-conjugated goat anti-mouse (31430, Invitrogen; 1:10,000) or goat 
anti-rabbit (31460, Invitrogen; 1:10,000) IgG secondary antibodies were 
added, followed by shaking at room temperature for 1 h. The washed 
PVDF membranes were then incubated with SuperSignal West Femto 
Substrate (P134095, ThermoFisher), and the chemiluminescence  
signals were detected using a ChemiDoc imaging system (Bio-Rad). 
The antibody concentrations are listed in Supplementary Table 10. 
The uncropped gel blot images are shown in Supplementary Fig. 4.

Flow cytometric assays
Flow cytometric data were collected on an Attune NxT flow cytometer 
with an autosampler (ThermoFisher Scientific). For the RFP-coupled 
growth competition assay, the ipUSEPR vector system, which expresses 
an sgRNA together with a TagRFP fluorescent protein, was used to infect 
the Cas9+ cells at a ~50% transduction rate. The percentage of cells with 
an RFP fluorescence signal (RFP+%) was normalized to the RFP+% on 
day 0 (48 h after lentiviral infection). The cell cycle was monitored by 
EdU incorporation (10 µM EdU at 37 °C for 2 h) using Click-iT Plus EdU 
Alexa Fluor 647 Assay Kits (C10634, Invitrogen). Apoptotic cells were 
detected based on the Annexin V+/DAPI− population using an Annexin 
V Apoptosis Detection Kit (50-112-9048, Invitrogen). Live cells were 
defined by exclusion of 4′,6-diamidino-2-phenylindole (DAPI; D1306, 
Invitrogen) DNA staining. Cell surface integrin αVβ5 was recognized by 
a mouse monoclonal anti-human αVβ5 antibody (clone P1F76; sc-13588, 
Santa Cruz Biotech; 1:200) and stained with AF488-conjugated don-
key anti-mouse IgG (ab150105, Abcam) secondary antibody. Another 
mouse monoclonal anti-human αVβ5 antibody (clone P1F6; 920005, 
BioLegend; AF647-conjugated) was used to validate the αVβ5 flow 
cytometry results.

NanoBRET assays
To clone the constructs for the NanoBRET assays (Fig. 4e)39,40, wild-type 
ITGAV and ITGB5 cDNAs were subcloned from the open reading frame 
clones (HG11269 for ITGAV and HG10779 for ITGB5, Sino Biological) 
into the NanoBRET HaloTag and NanoLuc plasmids (N1821, Pro-
mega), respectively. Alanine substitution of the ITGAV β-propeller HIP  
(Fig. 4d,f; mutagenesis primers listed in Supplemental Table 9) was 
established using a Q5 site-directed mutagenesis kit (E0554S, New 
England Biolabs). All molecular cloning was performed with NEB 5-α 
competent E. coli cells (C2987; New England Biolabs). The final plasmids 
were validated via Sanger sequencing (Eton Bioscience). The NanoBRET 
HaloTag (ITGAV) and NanoLuc (ITGB5) plasmids were cotransfected 

into HEK293 cells using FuGENE HD (E2311, Promega). The transfected 
cells were seeded at 20,000 cells per well in white 96-well tissue culture 
plates (353296, Falcon) for 24 h and incubated with 100 nM of HaloTag 
ligand (HaloTag NanoBRET 618 Ligand; generating a 618 nm acceptor 
signal; G980A, Promega). The wells without HaloTag ligand served as 
negative controls. When the NanoLuc luciferase substrate was added, 
the 460 nm donor signal and the 618 nm acceptor signal were measured 
with a Synergy Neo2 Reader (BioTek).

Transcriptomic analysis
Total RNA from the sgCtrl- and sgITGAV-transduced cell samples was 
extracted using an RNeasy Mini Kit (74104, QIAGEN). The mRNA library 
prep was performed by Novogene Inc. and sequenced on a NovaSeq 
6000 (Illumina) with ~20 million paired-end 150 bp reads per sample. 
We then mapped the raw sequence reads to the human GRCh38 genome 
using STAR v.2.6.1d. Raw counts were quantified using featureCounts 
v.1.6.4 and then normalized using the trimmed mean of M values 
method. The relative expression level of each gene was compared 
using the Bioconductor package ‘edgeR.’ In addition, GSEA (v.4.1.0) 
was used to evaluate gene pathways affected by sgITGAV.

Purification of ITGAV β-propeller domain
Recombinant protein expression. To clone the pITGAV[31–492 
aa] for expressing the recombinant β-propeller domain in E. coli,  
the full-length human ITGAV open reading frame clone (HG11269,  
Sino Biological) was PCR amplified (primers AV_BP_F: 5′-GAGAACCT 
GTAC T TCC A ATCC ATG GAGT TC A ACC TAGACGTG GAC AG - 3 ′ 
and AV_BP_R: 5′-GTCGACGGAGCTCGAATTCGGATCCTTAGAG 
CAGGTTTTATTGTCTTG-3′) and cloned into the pNIC28-Bsa4 vec-
tor (26103, Addgene), resulting an ITGAV β-propeller domain (resi-
dues Phe31 to Ser492; 50.3 kDa) sequence with an amino-terminal 
hexahistidine tag (His6-tag). For recombinant expression of the 
ITGAV β-propeller domain, the pITGAV[31–492 aa] plasmid was first 
transformed into E. coli (BL21-CodonPlus-RIL; 230240, Agilent Tech-
nologies) in the presence of 100 µg ml−1 kanamycin and 50 µg ml−1 
chloramphenicol. The transformed E. coli was scaled up to 2 l liquid 
cultures in Terrific Broth (BP9728-500, ThermoFisher Scientific) at 
25 °C until the optical density at 600 nm reached 0.8. Expression of 
the recombinant β-propeller domain was induced by adding 0.5 mM 
isopropyl-β-d-thiogalactopyranoside (BP1755-1, ThermoFisher) at 16 °C 
overnight. The E. coli pellet was collected by centrifugation (8,000g, 
4 °C, 5 min) and sonicated (50% amplitude; 5 s bursts interrupted by 
5 s pauses for 60 cycles) on ice in the presence of 500 U benzonase 
(70664, MilliporeSigma) and cOmplete Protease Inhibitor Cocktail 
(04693159001, Roche). The cell lysate was centrifuged at 10,000g, 
4 °C, for 10 min, and the insoluble protein pellet (containing the 
recombinant protein inclusion body) was harvested for refolding and 
purification80.

Refolding and purification of the recombinant protein. Briefly, the 
protein pellet was vortexed to resuspend it in Buffer B (10 mM Tris pH 
8.0, 1% Triton X, 0.2 mM phenylmethylsulfonyl fluoride (PMSF)) and 
Buffer C (10 mM Tris pH 8.0, 0.2 mM PMSF), and the washed protein 
pellet was collected by centrifugation at 10,000g, 4 °C, for 15 min. 
This protein pellet was then dissociated in Buffer D (10 mM Tris pH 8.0,  
8 M urea, 10 mM DTT, 0.2 mM PMSF) at 4 °C for 2 h and centrifuged at 
30,000g, 4 °C, for 30 min. The supernatant was transferred to a prewet 
dialysis cassette (Slide-A-Lyzer G3, 10K molecular weight cut-off; 
A52973, ThermoFisher) and submerged in 500 ml of Buffer E (100 mM 
Tris pH 8.0, 3 M urea, 400 mM l-arginine monohydrochloride, 20 mM 
reduced l-glutathione, 2 mM oxidized l-glutathione) overnight. Next, 
the cassette was dialyzed in 2 l of Buffer A (10 mM Tris pH 8.0, 150 mM 
NaCl) at 4 °C for a total of 24 h (replaced with fresh Buffer A four times). 
The dialyzed sample (containing the refolded recombinant protein) 
was then centrifuged at 5,000g, 4 °C for 15 min and filtered through a 
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0.45 µm PES filter (124-0045, Thermo Scientific Nalgene). The clarified 
protein sample was further purified by immobilized metal affinity chro-
matography with a HisTrap HP column (95056-204, Cytiva) followed 
by anion exchange chromatography with a HiScreen Capto Q column 
(28926978, Cytiva) using an ÄKTA start protein purification system 
(GE Healthcare-Cytiva). The purified recombinant ITGAV β-propeller 
domain protein was checked by SDS polyacrylamide gel electropho-
resis with silver staining and stored at −80 °C.

Protein thermal shift assay
The concentration of the purified ITGAV β-propeller domain protein 
was measured with a DC Protein Assay Kit II (5000112, Bio-Rad). For 
each thermal shift reaction (50 µl each in 96-well plates), 2.5 µg puri-
fied ITGAV β-propeller domain protein was mixed with 40 µM (final 
concentration) of Cpd_AV2 (or with DMSO as the vehicle control) and 
Protein Thermal Shift Dye (final concentration preoptimized to 2×; 
4462263, ThermoFisher). The protein melt reaction was performed 
using a QuantStudio 3 real-time PCR system (ThermoFisher) to examine 
the fluorescence signal (ROX channel) from 25 °C to 99 °C with a ramp 
rate of 0.1 °C s−1. The protein melting temperature (Tm) and temperature 
shift (∆Tm) were calculated using JTSA (https://paulsbond.co.uk/jtsa).

Data availability
The RNA sequencing data generated in this study are available via the 
Gene Expression Omnibus under accession GSE231339. All the data 
supporting the findings of this study are included in this article and its 
Supplementary Information. The 3D protein structure (PDB ID: 3IJE) 
was obtained from the Research Collaboratory for Structural Bioinfor-
matics Protein Data Bank (https://www.rcsb.org). ITGAV expression 
data for breast, pancreas, brain, colon and lung cancers were obtained 
from the Gene Expression database of Normal and Tumor tissues  
(http://gent2.appex.kr/gent2/). Additional data that support 
the findings of this study are provided in the Supplementary 
Information.Source data are provided with this paper.

Code availability
The computational code and tool packages used in this study include 
Genetic Perturbation Platform (BROAD Institute), Bowtie2 ( Johns 
Hopkins University), UCSF Chimera 1.15 (UC San Francisco), Attune 
NxT v.3.1.2 (ThermoFisher), GSEA v.4.1.0 (UC San Diego and BROAD 
Institute), FASTQC v.0.11.8, Burrows-Wheeler Aligner v.0.7.17, MACS2 
v.2.1.1, SAMtools v.1.10, STAR v.2.6.1d, featureCounts v.1.6.4, edgeR 
v.4.0.1, deepTools v.3.5.1, IGV 2.14.0 (BROAD Institute), PyMOL 
v.2.0.4 (Schrödinger, LLC), the PDB 2PQR server76, AutoDockTools77, 
AutoSite44, Open Babel v.2.4.1 (ref. 78), PyRx v.0.9.7 (ref. 79), AutoDock 
Vina v.1.1.2 (ref. 45), Raccoon2 (ref. 77), JTSA (https://paulsbond.co.uk/
jtsa), Bio-Rad ChemiDoc MP (Bio-Rad), MAGeCK v.0.5.9.2 (ref. 30). IC50 
calculations and two-sided Student’s t-tests were performed using 
Prism 9 (GraphPad). P > 0.05 was considered to indicate a nonsignifi-
cant result.
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Extended Data Fig. 1 | CRISPR genetic screen libraries used in this study. 
(a) Map of the ipUSEPR vector expressing a sgRNA together with a puromycin-
resistant gene (PuroR) and a TagRFP fluorescent protein. Primers for Sanger 
(hU6-F_seq) and Illumina (DCF01 and DCR03) sequencing are listed. (b–d) Design 
and distribution of individual sgRNA frequencies RPMR (reads per million reads) 

in the CRISPR libraries targeting (B) cell surface proteome genes (n = 2,973 
sgRNAs), (C) integrin family genes (n = 714 sgRNAs), and (D) coding regions of 
ITGAV (n = 412 sgRNAs). (B) 90.1%, (C) 97.7%, and (D) 96.3% of sgRNA in these 
libraries passed the QC by exhibiting RPMR ≥ 10. Data are represented as median 
± interquartile range.
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Extended Data Fig. 2 | Analyses of the surface proteome CRISPR library 
screens. (a) Combined gene ranking of the cell surface proteome CRISPR screens 
was calculated by the MAGeCK algorithm. The ranking of ITGAV (red), positive 
controls (yellow; target common essential genes), negative controls (green; 
target non-essential sequences), and total library (grey) are indicated. The 
pink box highlights the leading-edge essential genes with a combined Log2FC 
below -1.0. (b) Distribution of the positive (n = 12 genes) and negative (n = 5 
genes) controls in the screen. Data are represented as median ± interquartile 
range. P value was calculated by two-sided Student’s t-test. (c) Three surface 
protein genes (ITGAV, ATP6AP2, and TFRC) were identified as the leading-edge 

essential genes. (d) Correlation of the CERES scores (computational method to 
estimate gene-dependency levels from CRISPR-Cas9 essentiality screens) and 
gene expression of ITGAV (left panel), ATP6AP2 (middle panel), and TFRC (right 
panel)(source: https://depmap.org/portal/; BROAD Institute). The cancer cell 
dependency on ITGAV is correlated with its expression. (e) Top ten candidate hits 
and (f) an overlap plot of the surface proteome CRISPR screens in five cell models. 
Red (ITGAV and ATP6AP2) indicates the common essential surface proteins in all 
screened cell types. Other colors (blue, orange, green, cyan, and pink) highlight 
the cell type-specific candidate genes.
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Extended Data Fig. 3 | Schematic outline of the flow cytometric analysis. 
(a) RFP growth competition assay (used in Figs. 1e, 2d, 3e): The ipUSEPR vector 
expresses a sgRNA together with a puromycin-resistant gene (PuroR) and a 
TagRFP fluorescent protein. The RFP fluorescent signal of live (DAPI–) singlet 

cells was detected by an Attune NxT flow cytometer with an HTS autosampler. 
The sgRNA targeting a functionally important gene will result in a reduced RFP+ 
population in the culture. (b) Gating strategy for detecting the cell surface αVβ5 
expression (used in Fig. 5e, f).

http://www.nature.com/nsmb
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Extended Data Fig. 4 | The effect of sgITGAV can be reversed by the exogenous 
ITGAV cDNA. (a) Schematic outline of the ITGAV gene coding region. The 
recognition sites of sgITGAV#2 and sgITGAV#3 span across the exon-intron 
junctions. These sgITGAVs only target the endogenous ITGAV coding sequence 
(with introns) but cannot recognize the ITGAV cDNA sequence (w/o introns),  

thus allowing the reconstitution of ITGAV through cDNA transduction.  
(b) Transduction of exogenous ITGAV cDNA in MDA231 cells significantly 
reversed the impact of sgITGAV on cell survival (n = 3 for each group).  
Data are represented as mean ± s.e.m. P values were calculated by two-sided 
Student’s t-test.
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Extended Data Fig. 5 | Correlation of the CERES scores between ITGAV 
and other genes. CERES score is a computational method to estimate gene-
dependency levels from CRISPR-Cas9 essentiality screens. The CERES scores of 
ITGAV (x-axis) and (a) Rho small GTPase genes RAC1, CDC42, and RHOA (y-axes; 
left, middle, and right respectively) and (b) ITGB1/3/5/6/8 (y-axes; top-left, top-
middle, top-right, bottom-middle, bottom-right, respectively) in 769 cell models 

(dots) were obtained from the DepMap CRISPR screen consortium database 
(source: https://depmap.org/portal/; BROAD Institute). A higher Pearson 
coefficient (r) of the CERES scores between two genes indicates a higher likelihood 
the two genes are co-regulated in the tested cell models. The gene rank number is 
based on the Pearson coefficient (r) of the CERES scores between ITGAV and a total 
of 17,709 genes tested in the genome-wide CRISPR library screens.
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Extended Data Fig. 6 | Effect of alanine substitution of non-HIP aromatic 
residues on the NanoBRET assay. (a) The location of four aromatic residues 
(W234, F507, W790, and F938) outside of HIP were highlighted. (b) Alanine 
substitution of these non-HIP residues (purple; n = 3 for each group) exhibits 

minimal impact on the NanoBRET signal compared to the wild-type ITGAV  
(gray; n = 3). Data are represented as mean ± s.e.m. P values were calculated by 
two-sided Student’s t-test.

http://www.nature.com/nsmb
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Extended Data Fig. 7 | Information of the candidate ITGAV targeting 
compounds. The NCI/DTP NSC identifier, the predicted binding free energy 
(ΔG°) to ITGAV’s β-propeller HIP, and the chemical structure of the top 9 
candidate compounds are indicated. The identity (up-right; within one ppm 

of theoretical value) of Cpd_AV2 was validated by an Orbitrap Fusion Tribrid 
Mass Spectrometer (Thermo Scientific) at the City of Hope Integrated Mass 
Spectrometry Shared Resource.
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Extended Data Fig. 8 | Modeling of ITGAV/ITGB5 interaction. (a) 3D structure 
of the extracellular domain of ITGB5 was modeled by AlphaFold2 (cyan) and 
overlaid with the ITGB3 portion of integrin αVβ3 structure resolved by Xiong 
et al. (PDB ID: 3IJE, chain B; blue). Overall, we observed high concordance of the 
3D structures between ITGB3 and ITGB5, including the highly conserved basic 
amino acid (ITGB3’s R287 or ITGB5’s K287) in the loop motif of the βA domain 
highlighted in (b). (c) Modeling of ITGAV/ITGB5 interaction using the AlphaFold2 
predicted ITGB5 structure (cyan) and the ITGAV portion of integrin αVβ3 
structure (PDB ID: 3IJE, chain A; red). (d and e) Molecular dynamics simulation 

using GROMACS 2022 with CHARMM36m force field indicates (d) a close contact 
between ITGB5’s K287 and ITGAV’s β-propeller HIP pocket (purple box), and 
(e) the occupancy of Cpd_AV2 (yellow) into ITGAV’s HIP pocket disengaged the 
side chain of ITGB5’s K287 from stably interacting with ITGAV. (f) Substitution of 
ITGB5’s K287 with an alanine (K287A) significantly attenuated the ITGAV/ITGB5 
NanoBRET signal, highlighting an essential role of this basic residue in integrin 
αVβ5 assembly (n = 3 for each group). Data are represented as mean ± s.e.m.  
P value was calculated by two-sided Student’s t-test.
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Extended Data Fig. 9 | Potential impact of Cpd_AV2 on additional ITGAV 
integrin pairs. (a) Sequence alignment of ITGAV heterodimer partners 
ITGB1/3/5/6/8 at the loop motif of their βA domain. The highly conserved basic 

amino acid (K/R287) encapsulated in ITGAV’s β-propeller is labeled. (b) Cpd_AV2 
treatment attenuates the integrin αVβ6-mediated adhesion to fibronectin (Fn) in 
HT-29 colorectal carcinoma cells (n = 3 for each group).
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Extended Data Fig. 10 | CRISPR-TICA evaluation of well-defined drug-
targeting pockets. The smoothened CRISPR tiling data (left panel; blue lines) 
of (a) BRD4, (b) AURKB, (c) CDK1, and (d) WEE1 were obtained from Munoz et al. 

On the right panels, the green boxes highlight the CRISPR-TICA region of interest 
based on the CRISPR sensitivity. The yellow arrows indicate the previously 
reported inhibitors for these proteins.
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The RNA-seq data generated in this study are available via Gene Expression Omnibus (GEO) under accession GSE231339. All the data supporting the findings of this 
study are included in this article and its Supplementary Information. Three-dimensional protein structure (PDB ID: 3IJE) was obtained from the Research 
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB; https://www.rcsb.org). ITGAV expression data in breast, pancreas, brain, colon, and lung 
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cancers was obtained from Gene Expression database of Normal and Tumor tissues (GENT2 database: http://gent2.appex.kr/gent2/). Additional data that support 
the findings of this study are provided in the Supplementary Information.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Fig. 1A-C: total 2973 sgRNAs library screen performed in 5 cell line models. n = 3 was chosen to allow two-sided Student’s t-test. 
Fig. 1D: 2 independent sgCtrl sequences and 3 independent sgITGAV sequences. Sample size was chosen based on the available independent 
sgRNA numbers. 
Fig. 1E: 2 independent sgCtrl sequences and 3 independent sgITGAV sequences. n = 3 for each sgRNA group was chosen to allow two-sided 
Student’s t-test. 
Fig. 1F,G: n = 3 for each sgRNA group was chosen to allow two-sided Student’s t-test. 
Fig. 1H: n = 927 patients for each ITGAV(high) and ITGAV(low) groups. Sample size was chosen based on the total available data from the 
GEPIA database. 
Fig. 2A: 17110 genes tested in 769 cell models. Sample size was chosen based on the total available data from the DepMap database. 
Fig. 2B: n = 3 for each sgRNA group was chosen to allow GSEA analysis. 
Fig. 2C: 2 independent sgCtrl sequences and 3 independent sgRAC1 sequences. Sample size was chosen based on the available independent 
sgRNA numbers. 
Fig. 2D: 2 independent sgCtrl sequences and 3 independent sgRAC1 sequences. n = 3 for each sgRNA group was chosen to allow two-sided 
Student’s t-test. 
Fig. 2E,F: n = 3 for each sgRNA group was chosen to allow two-sided Student’s t-test. 
Fig. 2H: sgCtrl (n = 30), sgITGAV (n = 42), and sgRAC1 (n = 33). Sample size was chosen based on available cell number for each sgRNA group. 
Fig. 3B-D: total 712 sgRNAs library screen performed in 2 cell line models. n = 3 was chosen to allow two-sided Student’s t-test. 
Fig. 3E: 2 independent sgCtrl sequences and 3 independent sgRNA sequences for each ITGB gene. n = 3 for each sgRNA group was chosen to 
allow two-sided Student’s t-test. 
Fig. 3F: 2 independent sgCtrl sequences and 3 independent sgITGB5 sequences. Sample size was chosen based on the available independent 
sgRNA numbers. 
Fig. 3G,H: n = 3 for each sgRNA group was chosen to allow two-sided Student’s t-test. 
Fig. 3I: 17110 genes tested in 769 cell models. Sample size was chosen based on the total available data from the DepMap database. 
Fig. 4A,B: total 412 sgRNAs library screen performed in MDA231-Cas9 cells. n = 3 was chosen to allow two-sided Student’s t-test. 
Fig. 4F: n = 3 for each ITGAV cDNA group was chosen to allow two-sided Student’s t-test. 
Fig. 5B: total 128562 compounds. Sample size was chosen based on the total available compounds collected by the NCI/DTP Open Chemicals 
Repository. 
Fig. 5C: total 500 compounds with the top binding energy were chosen for CellTiterGlo and CCK8 assays.  n = 3 for each condition was chosen 
to allow two-sided Student’s t-test. 
Fig. 5F: n = 4 in this experiment based on the available cell cultures. A minimum of n = 3 is required for IC50 test. 
Fig. 5G,H: n = 3 for each treatment group was chosen to allow two-sided Student’s t-test. 
Fig. 5J: Control (n = 30) and Cpd_AV2 (n = 33). Sample size was chosen based on available cell number for each treatment group. 
Fig. 6A: Representative gel of 2 independent protein purification experiments. 
Fig. 6B: Vehicle (724 data points) and Cpd_AV2 (724 data points) was chosen based on the available data from 25°C to 80°C. 
Fig. 6D: n = 3 for each treatment group was chosen to allow two-sided Student’s t-test. 
Fig. 6E: n = 3 for each treatment group was chosen to allow two-sided Student’s t-test and IC50 test. 
Fig. 6F: n = 3 for each treatment group was chosen to allow IC50 test.

Data exclusions No data point was excluded.

Replication For Fig. 1A-C, 3B,C and 4A,B, triplicated library screens were performed. For other experiments, a minimum of 2 independent experiments 
were performed and all attempts at replication were successful.

Randomization In cell culture experiment, an initial cell culture was split into individual cultures randomly with an equal seeding density. Each culture 
received a sgRNA, cDNA, CRISPR library, or compounds without predetermination.

Blinding The same group of researchers designed, operated, and analyzed the experiments. Therefore, they were aware of the treatment conditions 
while executing and analyzing the experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Western blot: primary antibodies against ITGAV (4711, Cell Signaling Technology, 1:1000), ITGB5 (3629, Cell Signaling Technology; 

1:1000), RAC1 (4651, Cell Signaling Technology; 1:1000), and beta-actin (ab8226, Abcam; 1:5000) at 4°C overnight. After washing, 
the membranes were incubated with HRP-conjugated goat anti-mouse (31430, Invitrogen; 1:10,000) or goat anti-rabbit (31460, 
Invitrogen; 1:10,000) IgG antibodies at room temperature for 1 hour. The chemiluminescent signals were detected using a ChemiDoc 
imaging system (Bio-Rad). The cell surface integrin αVβ5 was recognized by a mouse monoclonal anti-human αVβ5 antibody (clone 
P1F76; sc-13588, Santa Cruz Biotech; 1:200) and stained by AF488-conjugated donkey anti-mouse IgG (ab150105, Abcam) secondary 
antibody. 

Validation 1. The specificity of anti-human-ITGAV (4711, Cell Signaling Technology, 1:1000), anti-human-ITGB5 (3629, Cell Signaling Technology; 
1:1000), anti-human-RAC1 (4651, Cell Signaling Technology; 1:1000) to their target proteins was confirmed by Western blots with 
CRISPR depletion of the targeted protein in human cells as shown in Fig. 1D, 2C, 3F, and Suppl. Fig. 4. 
2. The specificity of anti-human beta-actin (ab8226, Abcam; 1:5000) was evaluated by Western blot of human cell samples and 
observed a single band at the expected molecular weight (~40 kDa) as shown in Suppl. Fig. 4. 
3. HRP-conjugated goat anti-mouse (31430, Invitrogen; 1:10,000) and goat anti-rabbit (31460, Invitrogen; 1:10,000) IgG secondary 
antibodies have been used in our lab for multiple projects, including the detection of protein IP and co-IP. These secondary 
antibodies have shown high specificity to only detect the primary antibodies from their targeted species (mouse, rabbit). 
4. The specificity of monoclonal anti-human αVβ5 antibody (clone P1F76; sc-13588, Santa Cruz Biotech; 1:200) to cell surface integrin 
αVβ5 (stained by AF488-conjugated donkey anti-mouse IgG; ab150105, Abcam) was confirmed by flow cytometry of human cells 
with sgCtrl vs. sgITGAV as shown in Fig. 5E. Another mouse monoclonal anti-human αVβ5 antibody (clone P1F6; 920005, Biolegend; 
AF647-conjugated) was used to validate the αVβ5 flow cytometry results.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293, PANC1, and SW620 cells were obtained from the American Type Culture Collection (ATCC). MDA231 (i.e., MDA-
MB-231) cells were obtained from Dr. Mingye Feng (City of Hope Cancer Center; original commercial source: ATCC). H661 
cells were obtained from Dr. Jun Qi (Dana Farber Cancer Institute; original commercial source: ATCC). U251 cells were 
obtained from Dr. Mike Chen (City of Hope Cancer Center; original commercial source: European Collection of Authenticated 
Cell Cultures [ECACC]).

Authentication 1. HEK293, PANC1, and SW620 cells were directly purchased from ATCC. As a biological resource center, ATCC 
comprehensively performs authentication and quality-control tests on all distribution lots of cell lines using short tandem 
repeat (STR) profiling. 
2. MDA231, H661, U251 cells were obtained from our collaborators and were not further authenticated.

Mycoplasma contamination Plasmocin was added in all culture medium to prevent mycoplasma contamiation. All cell lines tested negative for 
mycoplasma contamination using a Mycoplasma PCR Detection Kit (Abm cat# G238).

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology

Sample preparation For competition cell culture assays, Cas9-expressing cells were transduced with the ipUSEPR (RFP+) sgRNA constructs in 96-
well plates at ~50% infection. Relative RFP% refers to percentages of RFP+ cells over time after lentiviral infection, which was 
normalized to the RFP+% on day 0 (i.e., 48 hours after the lentiviral infection). The cell cycle was measured by Click-iT Plus 
EdU Alexa Fluor 647 Assay Kits (C10634, Invitrogen). Cells were exposed to 10 μM EdU at 37°C for 2 hours, and the 
percentage of cells in the S phase was defined by EdU-positive cells over the total singlet cells. Cellular apoptosis was 
detected using Annexin V Apoptosis Detection Kit (50-112-9048, Invitrogen). Live cells were defined by 4’,6-diamidino-2-
phenylindole (DAPI; D1306, Invitrogen) dye exclusion. The cell surface integrin αVβ5 was detected by a mouse monoclonal 
anti-human αVβ5 antibody (sc-13588, Santa Cruz Biotech; 1:200).

Instrument Attune NxT flow cytometer with autosampler (ThermoFisher).

Software Attune NxT v3.1.2 (ThermoFisher).

Cell population abundance The RFP, αVβ5 properties were measured over the live/singlet cell population.

Gating strategy FSC/SSC was used to get actual cells. FSC-A/FSC-H was used to get singlet. FSC/DAPI was used to gate live cells. Non-stained 
(or non-transduced) cells were used as negative controls for gating.  

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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