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Online Load Balan
ing and First-Hop Bandwidth

Allo
ation in Publi
-Area Wireless Networks

Abstra
t| Re
ent studies 
hara
terizing workloads in

Publi
-Area Wireless Networks (PAWNs) have shown that:

(i) user loads are often time varying and lo
ation-dependent;

(ii) user load is often unevenly distributed a
ross a

ess

points (APs); and (iii) the load on the APs at any given time

is not well 
orrelated with the number of users asso
iated

with those APs. Administrators in su
h networks thus have

to address the 
hallenge of unbalan
ed network utilization

resulting from unbalan
ed user load, and also guarantee its

users a minimum level of quality of servi
e (e.g., suÆ
ient

wireless bandwidth).

In this paper, we address the 
hallenges of improving

PAWN utilization and user bandwidth allo
ation through

a 
ommon solution { dynami
, lo
ation-aware adaptation.

We observe that by adaptively varying the bandwidth al-

lo
ated to users in the wireless hop within 
ertain bounds


oupled with admission 
ontrol at ea
h AP, the network 
an

a

ommodate more users as its 
apa
ity 
hanges with time.

Further, by adaptively sele
ting the AP that users asso
iate

with, the network 
an relieve sporadi
 user 
ongestion at

popular lo
ations and in
rease the likelihood of admitting

users at pre-negotiated servi
e levels.

We des
ribe how these algorithms enable the network

to transparently adapt to user demands and balan
e load

a
ross its a

ess points. We evaluate the e�e
tiveness of

these algorithms on improving user servi
e rates and net-

work utilization using simulations in
orporating real work-

loads from 
ampus, 
onferen
e, and 
orporate environ-

ments. Our algorithms improve the degree of balan
e in

the system by over 45% and allo
ate over 30% more band-

width to users in 
omparison to existing s
hemes that o�er

little or no load balan
ing.

I. Introdu
tion

The vision of pervasive ubiquitous 
omputing where

users have network a

ess anytime, anywhere, is being en-

abled by deployments of high-speed wireless networks in


ommon pla
es of 
ongregation su
h as airports, malls, ho-

tels, parks, arenas, and so on [1℄, [2℄. Two key 
hallenges

to the host organization deploying these Publi
-Area Wire-

less Networks (PAWNs) are: (i) 
apa
ity planning, making

the best use of the available network resour
es to derive the

best return on its investment; and (ii) guaranteeing at least

a minimum amount of bandwidth to users. As the use of

PAWNs spreads beyond simple data transfer to data- and

performan
e intensive multimedia appli
ations, the need

to address quality of servi
e issues, su
h as enhan
ed ser-

vi
e provisioning and �rst-hop bandwidth management will

be
ome in
reasingly important. Further, as PAWNs s
ale

to larger organizations and support a greater number of

users, it will be 
ru
ial to 
onsider te
hniques that ade-

quately provide 
apa
ity to handle dynami
ally varying,

lo
ation-dependent user load.

We envision that in the future PAWNs will support a

wide range of quality of servi
e (QoS) models to provide

sustained levels of the wireless bandwidth to 
ontending

users. These models would range from free a

ess with-

out guarantees (for best-e�ort traÆ
) to paid 
onne
tivity

for appli
ations requiring �xed QoS (e.g., IP telephony)

to adaptive di�erentiated servi
e for real-time multime-

dia appli
ations (e.g., streaming, audio/video 
onferen
-

ing). Su
h servi
e poli
ies provide a natural separation

between di�erent 
lasses of users, allowing the 
reation of

a tiered servi
e model that bene�ts paid users. Therefore,

as PAWNs allow users to shop for a desired level of QoS,

it is important that the network have adequate 
apa
ity

and that the �rst-hop bandwidth be managed s
alably and

eÆ
iently.

Most PAWN deployments have hitherto addressed

the problem of 
apa
ity planning through stati
 over-

provisioning of network 
apa
ity { installing enough wire-

less a

ess points (APs) to handle an overall estimated net-

work load. Unfortunately, there are limitations to this ap-

proa
h. First, installation and operation of more a

ess

points translates to a larger infrastru
ture and maintenan
e


ost. Se
ond, an in
reased number of APs in the network

would limit the number of APs that 
an be operated on

non-interfering 
hannels due to the inherent limits of 
han-

nel reuse in 802.11 networks.

Re
ent workload 
hara
terization studies of PAWNs [3℄,

[4℄, [5℄, [6℄ have shown that user servi
e demands are highly

dynami
 in terms of both time of day and lo
ation, and

that user load is often distributed quite unevenly among

the APs. Furthermore, it has been shown that the load

on the APs at any given time is not well 
orrelated with

the number of users asso
iated with those APs. A key


onsequen
e of this behavior is sporadi
 user 
ongestion at


ertain popular spa
es within the network resulting in (i)

under-utilized network resour
es due to unbalan
ed load,

and (ii) unsatis�ed user servi
e requests.

In this paper, we address the 
hallenges of 
apa
ity plan-

ning and user bandwidth allo
ation through a 
ommon so-

lution { dynami
, lo
ation-aware adaptation. In order to

balan
e the network load, we propose that the network

adaptively sele
t the AP that the user asso
iates with by

in
orporating the user's workload and geographi
 lo
ation

within the network. In order to satisfy the user's servi
e

request, we propose that the initial pro
ess of asso
iation

with an AP be performed in 
onjun
tion with expli
it ad-

mission 
ontrol at ea
h 
andidate AP that 
an admit the

user's request. Therefore, both the network and its users

expli
itly and 
ooperatively adapt themselves to 
hanging

load 
onditions. By admitting the user's traÆ
 at an AP

other than the one that would provide the servi
e by de-

fault (as in asso
iation based on highest signal strength),

the network load automati
ally gets distributed a
ross its

APs. As users' traÆ
 is dynami
ally and adaptively di-

re
ted from a heavily loaded AP to a lightly loaded AP,

it in
reases their likelihood of re
eiving a pre-negotiated
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bandwidth guarantee from the network.

This paper makes the following 
ontributions:

1. We present the problem of �rst-hop wireless bandwidth

allo
ation as a spe
ial 
ase of the well-known online load

balan
ing problem and present three online heuristi
s for

�rst-hop bandwidth allo
ation. These heuristi
s improve

the degree of balan
e in the system by over 45% and allo-


ate over 30% more bandwidth to users than 
urrent ap-

proa
hes;

2. We prove that the general o�ine problem (i.e., where we

have global knowledge of user arrivals and requests) of �nd-

ing an optimal assignment of users to APs in an arbitrary

network with arbitrarily sized user bandwidth requests, is

NP-
omplete;

3. We propose three di�erent heuristi
s for allo
ating users

to APs based on their bandwidth requirements and eval-

uate their performan
e via tra
e driven simulations. Our

simulations model three di�erent PAWN settings using real

workload 
hara
terization tra
es: (i) a 
onferen
e WLAN

workload [3℄, (ii) a university 
ampus WLAN workload [4℄,

and (iii) a 
orporate WLAN workload [5℄. To the best of

our knowledge, ours is the �rst study of wireless LAN band-

width provisioning in
orporating real WLAN workloads in

the simulation.

The rest of this paper is organized as follows. In Se
-

tion 2, we overview related work in QoS provisioning in

wireless LANs. In Se
tion 3, we introdu
e the problem of

online bandwidth allo
ation using mathemati
al notation.

In Se
tion 4, we derive the NP-
ompleteness result of the

optimal o�ine resour
e allo
ation problem. In Se
tion 5,

we des
ribe three heuristi
s for online bandwidth allo
a-

tion. In Se
tion 6, we dis
uss me
hanisms for online load

balan
ing in PAWNs. In Se
tion 7, we evaluate the on-

line bandwidth allo
ation heuristi
s and �nally 
on
lude

in Se
tion 8.

II. Related Work

The IEEE 802.11 standard does not provide any spe
-

i�
ations for 
apa
ity planning. Further, the 802.11

CSMA/CA proto
ol with the Distributed Coordination

Fun
tion (DCF) for media a

ess itself does not provide

any guarantees on the wireless bandwidth [1℄.

The 802.11 Working Group is still 
onsidering proposals

for introdu
ing QoS enhan
ements into the standard. One

of these proposals 
alls for the use of per-
ow resour
e-

based admission 
ontrol 
ombined with prioritized data

transmission for real-time traÆ
 [7℄. However, this s
heme

does not take into a

ount the dynami
ally varying nature

of the wireless medium. In [8℄, the authors dis
uss various

bandwidth allo
ation te
hniques for managing bandwidth

in the wireless hop. While this work addresses �rst-hop

QoS by taking into a

ount the end-to-end path properties

of individual 
ows, it does not deal with reallo
ation of


ows among APs.

There have been a number of other proposals to en-

han
e or modify the MAC proto
ol in wireless LANs to

provide long-term fairness to 
ows using 
entralized and

distributed s
hemes [9℄, [10℄, [11℄, [12℄. Again, all of these

s
hemes have fo
used on enhan
ing the fairness proper-

ties of the wireless MAC in order to provide di�erentiation

among 
ontending 
ows, thus improving user QoS within

a single 
ell in the network. They do not fo
us on the

dynami
s of the wireless network as a whole.

Re
ently, various vendors of wireless LAN produ
ts have

in
orporated load-balan
ing features in the latest release

of network drivers and �rmware for APs and wireless PC


ards [13℄, [14℄. APs supporting this feature maintain a


ount of the number of users asso
iated with APs in ea
h


ell and broad
ast bea
ons 
ontaining this information to

users in the 
ell. New users re
eive bea
ons from multiple

a

ess points and use this load information to determine

and asso
iate with the least-loaded AP. However, these

te
hniques do not take into a

ount user workloads and

QoS requirements and are lo
al in s
ope, distributing users

evenly a
ross available overlapping 
ells.

In [15℄, the authors present load-balan
ing algorithms

for eÆ
ient routing in multi-hop wireless a

ess networks.

However, their algorithms pertain to multi-hop wireless a
-


ess networks where ea
h node has to �nd a QoS-aware

route to the egress node that 
onne
ts to the ba
kbone of

the network. In 
ontrast, we fo
us on networks where ev-

ery mobile node is only one wireless hop away from the

ba
kbone, and hen
e wireless routing is not an issue. Fur-

ther, they do not 
onsider how network load 
hanges with

arriving and departing users; this 
annot be negle
ted in

PAWNs.

Hanly [16℄ has addressed the problem of maximizing

spread spe
trum 
apa
ity in a 
ellular network by �nd-

ing an optimal allo
ation of users to base stations and an

optimal set of transmitter power levels. Although it may

appear that su
h approa
hes are also appli
able to wire-

less LANs, several important di�eren
es exist. First, wire-

less LANs use distributed, 
ontention-based MAC proto-


ols where only one user a

esses the 
hannel at any given

time. Se
ond, in wireless LANs 
ell 
apa
ity is related to

the individual workloads of users rather than the transmit

power levels [3℄, [5℄.

Lastly, Azar [17℄ and Phillips [18℄ have extensively stud-

ied the 
omplexity of the network load balan
ing problem

from a theoreti
al standpoint, and have proven bounds for

several heuristi
s for the online problem. In this paper, we

adapt their theoreti
al model to wireless LANs and expli
-

itly evaluate the performan
e of our heuristi
s using real

workload measurements.

The algorithms presented in this paper jointly address

the problems of in
reasing wireless network utilization and

maintaining pre-negotiated user bandwidth agreements

with the network.
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Fig. 1. The ar
hite
ture of a PAWN

III. Online Bandwidth Allo
ation { Theoreti
al

Formulation

In this se
tion, we present a theoreti
al formulation of

the problem of �rst-hop bandwidth allo
ation and show

that it maps to a spe
ial 
ase of the general online load

balan
ing problem. We begin by des
ribing our system

and quality of servi
e models, and then formally present

the problem de�nition.

A. System Model

We 
onsider a PAWN model with a high-speed wired

ba
kbone and �rst-hop wireless links 
on�gured a

ording

to the IEEE 802.11 standard in infrastru
ture mode [1℄.

The high-level ar
hite
ture of our PAWN model is shown

in Figure 1. A PAWN is servi
ed by APs providing over-

lapping 
overage in the geographi
 area. Neighboring APs

operate on di�erent radio frequen
y (RF) 
hannels to avoid

interferen
e. Our design assumes the existen
e of an ad-

mission 
ontrol server (ACS) that maintains and manages

all per-AP and per-user state in the network. The ACS

makes repeated admission 
ontrol de
isions as users arrive

and move within the network and thus helps determine

their point of atta
hment to the network. The goal of the

network is to alleviate user 
ongestion at the hot-spots and

thus improve network utilization. We now des
ribe the

quality of servi
e model that spe
i�es how users negotiate

their QoS requirements with the network.

B. Quality of Servi
e Model

Sin
e the �rst-hop bandwidth in a wireless network is

a s
ar
e, shared resour
e, an equitable distribution of the

available bandwidth among 
ontending users ne
essitates

QoS negotiation. While wired networks provide users

with �xed levels of deterministi
 or statisti
al guarantees,

through bandwidth reservation, many aspe
ts of wireless

networks pre
lude exa
t 
ontrol over the �rst-hop band-

width. First, wireless networks are 
hara
terized by time-

varying and lo
ation dependent errors in the 
hannel [12℄.

Se
ond, users in a wireless network tend to be mobile and

the QoS that has been negotiated at one lo
ation may not

be honored as the users 
hange their point of atta
hment

to the network. Therefore, the network will have to adap-

tively vary the level of QoS provided to the user as the


hannel quality and 
apa
ity 
hange with time due to the

dynami
s of the wireless environment.

We use the notion of bandwidth bounds introdu
ed

in [19℄ to 
hara
terize user QoS spe
i�
ation. Ea
h user's

rate requirement is spe
i�ed by a [b

min

; b

max

℄ bound. On
e

a user is admitted at an AP, the network attempts to guar-

antee the user a data rate of at least b

min

with possible pro-

visioning up to b

max

. Typi
ally, the lower bound b

min

is

determined by minimum rate requirement for the user's ap-

pli
ation, while the upper bound b

max

is determined by its

peak rate. If the user does not spe
ify bandwidth bounds,

the network assumes a best-e�ort request. Ea
h AP in

the network has a 
ertain fra
tion of 
apa
ity reserved for

best-e�ort users to allow for ba
kward 
ompatibility with

existing s
hemes.

The notion of bandwidth bounds for QoS negotiation in

the �rst-hop has several advantages. First, it o�ers the

PAWN provider a way to adaptively plan its 
apa
ity and

a
hieve load balan
ing. Se
ond, it allows the user a way to

negotiate a pipe to the ba
kbone, with a guaranteed min-

imum bandwidth and ex
ess 
apa
ity provisioning beyond

b

min

, as available. Third, QoS bounds 
an be used to 
har-

a
terize user workloads for both real-time multimedia and

bursty data traÆ
. Finally, as mentioned in the introdu
-

tion, supporting di�erent levels of b

min

provides a natural

separation between user 
onne
tions, allowing the 
reation

of a tiered servi
e model that bene�ts paid users. These

QoS poli
ies would either be advertised to the user by the

PAWN provider. Alternatively, the QoS poli
y 
ould be

driven by some pre-negotiated poli
y between the users and

wireless ISPs at the PAWN host organization. For exam-

ple, Wayport has entered strategi
 relationships with other

PAWN providers su
h as iPass, su
h that, users a

essing

these two networks (e.g., at a hotel and an airport), would

re
eive a pre-negotiated level of servi
e at a pre-determined


harge [20℄.

C. Notation

We now 
hara
terize the online user allo
ation problem

mathemati
ally. We 
onsider a PAWN servi
ed by N APs

that are supposed to serve a set of users that arrive and de-

part in time. Ea
h AP has a �xed 
apa
ityB Mb/se
. Ea
h

user j has an asso
iated bandwidth requirement, given by

a range (b

min;j

; b

max;j

), an arrival time �(j), and a set

D

j

� M of APs that are within RF range of the user's

lo
ation.

We �rst 
onsider the 
ase of user allo
ation without pre-

emption. Therefore, a user is to be assigned to exa
tly

one of the APs in D

j

upon arrival and on
e assigned,


annot be transferred to a di�erent AP. The assigned AP

starts pro
essing the user's request immediately at a rate

b

min;j

< b

j

< b

max;j

, until the user departs the system. If

no AP in D

j


an admit the user's request, the user waits

in a queue until 
apa
ity be
omes available. The total load

on AP i at time t, denoted L

i

(t) is the sum of the band-

widths b

j

of users assigned to AP i at time t. An online

assignment algorithm must assign a user j to a server in D

j

so as to redu
e the maximum load on any given AP and

satisfy the user's bandwidth request subje
t to the 
apa
ity
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onstraint { the de
ision is made without any knowledge

of future arrivals or departures [17℄. For unrestri
ted as-

signment, (i.e., jD(j) = N) Azar et al. [17℄, showed that

the best solution to the online problem is greedy heuristi


that a
hieves a 
ompetitive ratio (online/optimal o�ine)

of log(N).

Before proposing algorithms to solve the online problem,

we evaluate the 
omplexity of the related o�ine bandwidth

allo
ation problem, whi
h is de�ned as follows. The opti-

mal o�ine assignment algorithm assigns all arriving users

knowing the entire sequen
e of user arrivals and depar-

tures. For a set of K total users, labeled 1, 2, . . . , K, the

algorithm 
omputes the optimal allo
ation ve
tor,


 2 f1; 2; : : : ; Ng

K

: 


j

2 D

j

;8j = 1; 2; : : : ; N

of users to APs that minimizes the maximum load on

any AP and satis�es the users' bandwidth request with-

out violating the 
apa
ity 
onstraint of ea
h AP. We 
all

this o�ine problem Load-Balan
ed Capa
ity-Constrained

Bandwidth Allo
ation (LCBA).

IV. NP-Completeness of LCBA

In this se
tion, we prove that LCBA is NP-
omplete.

We note that LCBA is an optimization (or sear
h) prob-

lem and the theory of NP-
ompleteness is designed to be

applied only to de
ision problems [21℄. However, ea
h opti-

mization problem 
an be stated as a 
orresponding de
ision

problem. The proof of NP-
ompleteness of a de
ision prob-

lem � 
onsists of two parts: (i) � 2 NP, and (ii) for a known

NP-
omplete problem �

0

2 NP, there exists a polynomial

time transformation from �

0

to �.

We assume that for ea
h user j, (b

min;j

= b

max;j

= b

j

),

and jD

j

j = 2, i.e., ea
h user is within range of exa
tly 2

APs. We show that even this spe
ial instan
e of LCBA is

NP-
omplete, thereby showing that the general problem is

at least as hard.

A. Graph-theoreti
 Formulation

Given a set of K users, N APs, and the set D

j

for ea
h

user j, we 
an 
onstru
t a bipartite graph G with two sets

of verti
es L and R. The set L represents users (jLj =

K) and the set R represents APs (jRj = N). An edge

between a vertex in L and a vertex in R indi
ates that

the user is within range of that AP. Therefore, for ea
h

user j, we have an edge 
onne
ting j and every node in

D

j

. The edges are labeled with 
apa
ity equivalent to the

bandwidth requirement b

j

of user j.

The de
ision version of the LCBA problem 
an then be

des
ribed as follows:

INSTANCE: A dire
ted graph G = (V;E), where

V = L [ R; and 8 j 2 L, a b

j

spe
ifying the bandwidth

requirement of user j. A set of APs, D

j

, within radio range

of user j, where every node in D

j

is in R. The edge set is

E = f(j;D

j

) 8 j; where j 2 L andD

j

2 R8 jg. A �xed


onstant 
apa
ity B and a 
onstant S.

QUESTION: Is there an allo
ation of users to APs su
h

that the total load at any AP

P

i2R;j2i

b

j

� S � B?

There are two parts to proving the NP-
ompleteness of

LCBA. First, we have to show that LCBA is in NP and

next, show that L �

P

LCBA for some NP-
omplete lan-

guage L. We show both these below.

Theorem 1: LCBA is in NP.

Proof: In order to prove membership in NP, we have

to show that it is possible to verify a 
erti�
ate solution

to an instan
e of LCBA, in polynomial time. A 
erti�
ate

solution to a given instan
e of LCBA is the assignment of

the ea
h vertex in L to a single vertex in R. Formally, the

veri�er takes as input the graph G, the values of b

j

and D

j

for ea
h vertex in L, and the assignment A. It 
he
ks that

the assignment de�nes a map for ea
h vertex j in L to only

one vertex in D

j

. Then it 
he
ks that

P

i2R;j2i

b

j

� S �

B. If these 
he
ks pass, it a

epts, else it reje
ts. �

Theorem 2: LCBA is NP-hard, i.e., L �

P

LCBA for

some NP-
omplete language L.

Proof: : It 
an be shown that the above de
ision prob-

lem is NP-hard through a redu
tion from the vertex 
over

problem, whi
h is well-known to be NP-
omplete. Thus we


hoose L to be the language of graphs with vertex 
over of

size at most K, and show that L �

P

LCBA.

The vertex-
over problem 
an be de�ned as follows:

The vertex 
over of an undire
ted graph G = (V;E) is
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a subset V

0

2 V su
h that if (u; v) 2 E, then u 2 V

0

or

v 2 V

0

(or both). In other words, ea
h vertex \
overs" its

in
ident edges, and a vertex 
over for G is a set of verti
es

that 
overs all the edges in E. The size of the vertex 
over

is the number of verti
es in it. The de
ision version of the

vertex 
over problem takes as input the graph G = (V;E)

and a positive integer K and is to determine whether G

has a vertex 
over a size at most K.

The redu
tion f, shown in in Figure 2, takes as input a

graph G = (V;E) : V = fv

1

; v

2

; : : : v

n

g; i:e:; jV j = n, and a

positive integer K and produ
es a bipartite graph instan
e

of LCBA as follows. First we show the 
onstru
tion of the

AP nodes, then the user nodes, the edges between APs and

users, and then assign 
apa
ities and bandwidth requests.

1. For ea
h vertex in V , 
onstru
t an AP node V

i

. We 
all

these vertex APs. Then add a spe
ial (n + 1)

th

AP node

W .

2. For ea
h vertex in V , 
onstru
t a user node v

i

. We 
all

these vertex users. In addition, for ea
h edge e

ij

= (v

i

; v

j

),

add a user node e

ij

. We 
all these edge users.

3. Conne
t ea
h vertex user v

j

to its 
orresponding vertex

AP V

j

and to the AP W . Conne
t ea
h edge user e

ij

to

the vertex APs V

i

and V

j

.

4. Assign a 
apa
ity n to ea
h vertex AP node V

j


on-

stru
ted from the verti
es in G and assign a 
apa
ity nK

to the AP node W.

5. Assign a bandwidth request of n to ea
h vertex user v

j


onstru
ted from the verti
es in G and assign a bandwidth

request of 1 to ea
h edge user e

ij

.

It is easy to see that f is polynomial time 
omputable.

The intuition for why the redu
tion works is that every

edge in the original graph has degree at most n, and that

one or both end points of an edge are in the vertex 
over.

Formally, we need to 
he
k that G has a vertex 
over of

size K if and only if G

0

has an admissible assignment of

users to APs. So �rst suppose G has a vertex 
over of size

K that 
onsists of nodes fv

i

; v

j

; : : : v

i+K�1

g. Assign ea
h

vertex user node in the vertex 
over to the AP W , whi
h

leaves AP W �lled to 
apa
ity. Now, assign the remaining

vertex users (those verti
es not in the vertex 
over) to their


orresponding vertex APs, whi
h leaves those APs �lled to


apa
ity. Now the only user nodes that remain to be as-

signed are the edge user nodes, and the only APs available

are those K vertex APs that form the vertex 
over. It is

easy to see that ea
h of these nodes will be atta
hed to at

least one edge node (sin
e ea
h edge node is in
ident on

at least one node in the vertex 
over), and at most n edge

nodes (sin
e ea
h vertex has degree at most n). There-

fore, the edge nodes of unit 
apa
ity requirement 
an be

assigned to these vertex-
over APs.

Conversely, suppose G

0

has an admissible assignment of

users to APs. We let S = nK. Now the K users assigned

to AP W will use up its 
apa
ity leaving the other vertex

users (those with bandwidth request n) to be for
ibly as-

signed to their 
orresponding vertex APs, again using up

their 
apa
ity. This means that the edge nodes 
an now

only be assigned to the those K vertex APs, whose 
or-

respondent vertex users were assigned to W . Sin
e every

edge user node is 
onne
ted only to its end point verti
es

(by 
onstru
tion from G), this subset of K vertex APs will


over every edge user node formed from the edge set of G.

In other words, these nodes form a vertex 
over of size K

in G. This 
on
ludes the proof. �

We note here that the redu
tion maps an arbitrary in-

stan
e of the vertex 
over problem to a de�ned instan
e

of the LCBA problem, where jD(j)j = 2. Therefore, the

problem of allo
ating users with arbitrarily sized requests

to APs, given an arbitrary network layout is a hard prob-

lem, even for the 
onstrained 
ase that a user 
an hear only

two APs.

V. Heuristi
 Algorithms

In this se
tion, we des
ribe three heuristi
 algorithms to

solve the online LCBA problem. We fo
us primarily on

how these heuristi
s manage the �rst-hop wireless band-

width in the PAWN. When users request servi
e from the

network, the heuristi
s perform admission 
ontrol at the

APs and return to them the AP that they should asso
iate

with. These heuristi
s have previously been studied in the


ontext of online bin pa
king [22℄.

Sin
e the heuristi
s solve the online problem, they op-

erate with no knowledge of future user requests. Their

goal is to a

ommodate ea
h user requests at the AP that

has the 
apa
ity to servi
e them. The 
riterion motivat-

ing the 
hoi
e of the AP is based on: (i) a
hieving a bal-

an
ed load distribution a
ross APs at any instant (i.e., a

greedy approa
h), or (ii) trading o� transient load imbal-

an
e among APs in order to admit potentially larger band-

width requests in the future. The latter approa
h admits

requests at an already loaded AP that 
an still 
ontain

them, in order to reserve room at APs that may be better

�lled by heavier (i.e., higher bandwidth) future requests.

In ea
h 
ase, the users' requests are �rst admitted at the

lower bound, b

min

, and any ex
ess 
apa
ity is divided in

a way that users are admitted at the level of their upper

bound b

max

, as far as possible. In other words, if b

avl;m

is the available 
apa
ity at AP m at a given instant, the

ex
ess 
apa
ity b

ex
ess;j

above b

min;j

allo
ated to user j

is: b

ex
ess;j

= min(b

avl;m

; b

max;j

). Therefore, the allo
a-

tion is fair in the sense that all user requests assigned to a

given AP get an equal ex
ess share of the APs bottlene
k


apa
ity.

A. First-�t Allo
ation

The First-Fit heuristi
 allo
ates users to the �rst AP

in the list that has enough available 
apa
ity. If the AP

that the user asso
iates with by default upon entering the

network has enough 
apa
ity to admit his request, First-

Fit retains the user at that AP, thereby performing simi-

lar to the non-load balan
ed approa
h. In general, given

a set of 
onse
utive user arrivals, First-Fit tries to admit

the requests lo
ally in the neighborhood of APs around

the user. Therefore, First-Fit preferentially �lls-up 
ertain

APs before others and gradually spreads user load from

the neighborhood of the 
ongested region through the en-

tire network.
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B. Best-Fit Allo
ation

The Best-Fit heuristi
 looks for the best AP that 
an still


ontain the user's request. The best AP refers to the most

�lled AP that still has enough 
apa
ity to admit the re-

quest under 
onsideration. Intuitively, it 
an be seen that

Best-Fit would perform worse than First-Fit in balan
ing

the user load. However, the advantage of Best-Fit is that

it minimizes overall unused 
apa
ity (i.e., wasted band-

width) by tightly pa
king a 
ertain heavily-loaded AP and

reserving 
apa
ity at a 
omparatively lightly-loaded AP for

heavier requests.

C. Balan
ed-Fit Allo
ation

The Balan
ed-Fit heuristi
 is a more intuitive approa
h

to allo
ating users to APs. For a given user request,

Balan
ed-Fit admits it at the AP that has the maximum

available 
apa
ity or least load. Ties are broken arbitrar-

ily. It is easy to see that at every step Balan
ed-Fit glob-

ally distributes the load through the entire network. How-

ever, Balan
ed-Fit 
an have poor worst-
ase performan
e

be
ause at any instant it 
reates a fragmentation of the

network load among the available APs. In other words, on

average every AP in the network is equally likely to ad-

mit users from a given set of in
oming requests, thereby

in
reasing the probability of denying servi
e to a future

heavy request. In 
ontrast, both First-Fit and Best-Fit

have better worst 
ase performan
e in being able to admit

more users at their admissible bandwidth levels. The ad-

vantage of Balan
ed-Fit lies in its eÆ
ient use of available

resour
es to maximize instantaneous network utilization.

Therefore, it always has better average-
ase performan
e.

D. Dis
ussion

The heuristi
s des
ribed in this se
tion operate on the as-

sumption that users more or less stay lo
alized in a 
ertain

region of the network, whi
h is true the 
ase as reported in

the PAWN workload 
hara
terization studies involving lap-

top users [3℄, [4℄, [5℄, [6℄. However, if users are very mobile

the bandwidth provisioning problem may need traje
tory

predi
tion and advan
e bandwidth reservation in the wire-

less hop [23℄. Therefore, the network has the opportunity

to provide users feedba
k about where in the network (i.e.,

through whi
h AP) their servi
e requests will be best met

using one of the above heuristi
s. If the AP sele
ted by

admission 
ontrol is di�erent from the one the users are


urrently asso
iated to, they would be required to 
hange

their point of atta
hment to that AP. While the heuristi
s

des
ribed in this se
tion determine the best AP that 
an

servi
e the user's request, there still needs to be a me
ha-

nism by whi
h users a
tually 
hange their asso
iation with

the APs. The detailed des
ription of these me
hanisms is

beyond the s
ope of this paper, but we brie
y dis
uss two

me
hanisms in the following se
tion.

VI. Online Load Balan
ing in WLANs

The bandwidth allo
ation heuristi
s des
ribed in the

previous se
tion a
hieve load balan
ing by redistributing

user load either lo
ally among neighboring APs around

the user (e.g., First-Fit, Best-Fit), or globally throughout

the entire network (e.g., Balan
ed-Fit). Through these ap-

proa
hes the network expli
itly in
orporates user servi
e

requests while asso
iating users with APs. Although users

initially submit their requests to the network through a

default AP asso
iation (i.e., one based on strongest signal

strength), these approa
hes may require users' 
onne
tions

to be routed through a di�erent AP that better a

ommo-

dates their workload.

In this se
tion, we brie
y des
ribe two approa
hes that


an be used to provide feedba
k to users about whi
h AP

they are to asso
iate with and how they perform this as-

so
iation. Depending on the admission 
ontrol heuristi


used, this 
an be done either: (i) by transparently 
hang-

ing the user-AP asso
iations in pla
e without requiring the

user to move (expli
it 
hannel-swit
hing), or (ii) by provid-

ing feedba
k to the user about the lo
ation of the AP that

provides the servi
e (network-dire
ted roaming) [24℄.

A. Expli
it Channel Swit
hing

Figure 3 depi
ts a WLAN installation with three APs

within a subnet providing overlapping 
overage in a re-

gion, thereby ensuring 
ontinuity of network a

ess as users


hange their lo
ation within the network. In order to min-

imize 
hannel interferen
e, neighboring APs are often 
on-

�gured to operate on di�erent RF 
hannels.

We now 
onsider heuristi
s that distribute load lo
ally

among neighboring APs. In this 
ase, the mobile user is at

the periphery of the transmission range of A

ess Point 1

and within hearing range of APs 2 and 3. When the user

submits a servi
e request he is initially asso
iated with AP

1, whi
h is unable to handle his servi
e requirement (as

indi
ated in the [b

min

; b

max

℄ range). The user also re
ords

the re
eived signal strength (Rssi) of bea
on signals re-


eived from the other APs and sends the list of APs (AP 2

and AP 3, in this 
ase) during the QoS negotiation phase.

On
e the network determines the AP that 
an servi
e the

user's request, it returns the AP's identity (SSID, MAC

address) and its operating 
hannel to the user. The user

now transparently asso
iates with this new AP, by merely


hanging the RF 
hannel to that of the new AP. The op-

eration of dynami
ally swit
hing the user's RF 
hannel is

supported in 
urrent hardware and software.

Expli
it 
hannel swit
hing, thus a
hieves lo
alized load

balan
ing among APs that provide overlapping 
overage

in the neighborhood of the user. This algorithm trades

o� signal strength with load by for
ing the user to swit
h

from an overloaded AP that has the strongest RF signal to

a neighboring lightly loaded AP to whi
h the signal may

possibly be weaker.

B. Network Dire
ted Roaming

With expli
it 
hannel swit
hing, the network lo
ally re-

distributes load a
ross neighboring APs by requesting user

wireless devi
es to expli
itly 
hange their asso
iation from

an overloaded AP to a less loaded neighboring AP that


an admit the servi
e request. This algorithm relies on the
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Fig. 3. A WLAN showing overlap between neighboring APs. The

dotted lines indi
ate potential 
hannels that the mobile user 
an

swit
h to.

existen
e of at least one AP within range of the user that

has enough 
apa
ity to honor the QoS requirement. How-

ever, 
omplete overlapping 
overage may not be available

in all s
enarios (e.g., in the ends of 
orridors of an build-

ing). Furthermore, none of the APs in the neighborhood

of the user may be able to admit the user at the requested

servi
e level. Or, the user may not be able to hear a 
lear

signal from any other APs, possibly due to the logisti
al


onstraints imposed by her lo
ation (like obstru
tions be-

tween her and the AP, 
ausing the SNR value to go below

the operable threshold).

When neighboring APs 
annot handle user admission re-

quests using expli
it 
hannel swit
hing, the network 
an

instead provide feedba
k suggesting potential lo
ations to

whi
h users 
an roam to get the desired level of servi
e.

We 
all this te
hnique network-dire
ted roaming.

When the network 
annot handle a user's servi
e request

in the user's 
urrent lo
ation, the user is likely to roam in

the network to �nd an AP with 
onne
tivity. Sin
e the

network knows both the lo
ations of APs with available


apa
ity as well as the user's 
urrent lo
ation, it is ideally

situated to dire
t the user to the AP where requested ser-

vi
e 
an be provided. The Balan
ed-Fit heuristi
, whi
h

performs admission 
ontrol at all APs in the network, 
an

determine whi
h AP, if any 
an provide this servi
e. Fur-

thermore, with the 
exibility to potentially dire
t users to

any AP, the network has the ability to globally balan
e

load a
ross all APs. Of 
ourse, this depends upon the 
o-

operation of the user, but it is in the user's best interest to

follow the network's roaming suggestion to get servi
e. If

the user did not wish to undertake the overhead of physi-


ally moving, he 
ould renegotiate the servi
e in the same

lo
ation with a lower b

min

.

Network-dire
ted roaming fundamentally depends upon

the ability of the network to determine a user's lo
ation,

and the ability to dire
t the user to lo
ations with avail-

able 
apa
ity. There are many te
hniques that 
an be used

to determine the user's geographi
 lo
ation, ea
h with a

varying level of a

ura
y [25℄, [26℄. On
e the user's lo
a-

tion is known, a visual way of dire
ting the user to the

desired lo
ation is to use an indoor navigation map (e.g.,

an a
tive map) of the 
overage area [27℄. Alternatively, the

network, using pre-de�ned asso
iations, 
ould translate the

destination AP names into spe
i�
 lo
ation names within

the network that 
an aid the user while roaming. For in-

stan
e, gate numbers 
ould be used in an airport network

to indi
ate roaming destinations to users. The roaming de-


ision also depends upon fa
tors like natural obsta
les in

the environment, whi
h 
an be depi
ted in the a
tive map.

VII. Performan
e Evaluation

In this se
tion, we investigate the performan
e of the

heuristi
s des
ribed in the previous se
tions via tra
e

driven simulations. Sin
e the admission 
ontrol and load

balan
ing heuristi
s seek to satisfy individual user QoS re-

quirements and distribute load a
ross the network, we use

performan
e metri
s to experimentally answer to the fol-

lowing basi
 questions:

1. What is the e�e
t of performing admission 
ontrol at

ea
h AP on the bandwidth re
eived by users?

2. How does the net o�ered load at a heavily-loaded AP


hange as a result of re-allo
ating users to lightly-loaded

APs?

3. What is the e�e
t of these heuristi
s on overall network

utilization?

We begin by des
ribing our simulation methodology and

the metri
s that we use to quantify the performan
e of the

heuristi
s, and then present results for three di�erent sim-

ulation s
enarios. These s
enarios use three real workloads

from 
onferen
e [3℄, 
orporate [5℄, and 
ampus [4℄ WLAN

environments.

A. Simulator Setup

We designed a simulator that implements the admission


ontrol heuristi
s on all arriving users in the PAWN. The

simulation parameters that 
an be 
on�gured during input

are: (i) the number of simulation iterations (ii) the number

and lo
ation of APs, (iii) the user arrival model, (iv) the

lo
ation of users relative to the APs, (v) the peak band-

width at the APs, and (vi) the admission 
ontrol heuristi


to be employed. The simulation parameters that we in
or-

porate dire
tly from the tra
e are user arrival rate, user

data rates, and user session durations.

In all s
enarios, we set the 
apa
ity of the APs to be

the pra
ti
al a
hievable limit of 6 Mb/se
 [28℄. The sim-

ulator generates users a

ording to an arrival model that

is spe
i�ed during initialization. For CBR traÆ
, users

generate data a

ording to the a
tual data rate of the ap-

pli
ation. For VBR and bursty traÆ
, we 
hoose the data

rates from the three workload studies. We model the size

and dimensions of the network from the studies again, but

only analyze representative network domains in the larger

(i.e., 
orporate and 
ampus) s
enarios.
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B. Performan
e Metri
s

To quantify the bene�ts a
hieved by admission 
ontrol on

the QoS provided to users, we de�ne the normalized band-

width as the ratio of the a
tual allo
ated bandwidth to the

maximum desired bandwidth of users. When the APs have

adequate 
apa
ity to admit all users at their upper data

rate bound, b

max

, the normalized bandwidth approa
hes

1. Normalized bandwidth redu
es as APs are driven 
lose

to saturation and in
oming users are admitted at data rates

mu
h lower than their upper bound. Furthermore, a user's

normalized bandwidth is inversely proportional to the time

the user spends in the system.

To quantify the bene�ts a
hieved by redistributing load

a
ross the network, we use the net o�ered load at the APs

and monitor its variation as users get reallo
ated from a

heavily-loaded AP to a lightly-loaded AP.

To further quantify the e�e
t of inter-AP load balan
ing,

we adapt the 
on
ept of balan
e index introdu
ed in [29℄ to

re
e
t the used 
apa
ity (bandwidth) in ea
h AP. Suppose

B

i

is the total throughput of AP i, then we de�ne the

balan
e index � to be:

� = (

X

B

i

)

2

=(n �

X

B

2

i

)

where n is the number of 
ells over whi
h the load is being

distributed. When the load a
ross APs is more or less

balan
ed, the balan
e index approa
hes 1. On the other

hand, � approa
hes 1=n in the 
ase of heavily unbalan
ed

network load.

In all our results we 
ompare the performan
e of the

three AP allo
ation heuristi
s with the base-
ase approa
h

of default asso
iation with an AP based on strongest re-


eived signal strength (Rssi).

C. S
enario 1 { Conferen
e Room

The �rst tra
e that we use to populate our simulation

models was 
olle
ted by Bala
handran et al. [3℄ over three

days at the ACM SIGCOMM 
onferen
e in 2001. The high-

level 
hara
teristi
s of the tra
e are:

� User arrivals 
losely follow the 
onferen
e s
hedule

and are modeled as a Markov-modulated Poisson pro
ess

(MMPP).

� Users are more or less equally distributed a
ross APs in

the 
onferen
e room. However individual workloads vary

widely.

� Users are broadly 
lassi�ed as light, medium, and heavy

users depending on their average data rates. Light users

have an average data rate of 30 kbps, medium users around

80 kbps, and heavy users around 175 kbps.

Our 
onferen
e room is a network of area 30m by 30m

with three APs linearly pla
ed linearly in the room. We in-


orporate the user workloads (i.e., light, medium and heavy

users), and inter-arrival times (� = 38 se
.) dire
tly from

the tra
e.

We now study the e�e
t of the heuristi
s on normal-

ized bandwidth, o�ered load, and balan
e index, and then

present a dis
ussion of the observations. We study the

variation of these parameters over a single 
onferen
e ses-

sion that lasts 90 min., with users arriving a

ording to an
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Fig. 4. The e�e
t of heuristi
s on user QoS and overall network

utilization for the 
onferen
e WLAN workload.
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MMPP (ON period = 84 min., mean arrival rate, � = 1.58

users/min.).

C.1 Bandwidth Allo
ated to Users

Figure 4(a) shows the variation in normalized bandwidth

allo
ated to users as a fun
tion of in
reasing system load

for a single 
onferen
e session. The system load on the

x-axis is in
reased by in
reasing the mean arrival rate of

the Poisson pro
ess. Balan
ed-Fit performs the best pro-

viding users with nearly 100% of their maximum required


apa
ity. Balan
ed-Fit is 
losely followed by Rssi, whi
h

performs better than the First-Fit and Best-Fit algorithms.

This is be
ause of the fa
t that in the 
onferen
e network

users are in a 
onstrained spa
e and are equally likely to as-

so
iate with any one AP. Therefore, the user and workload

distribution at all APs are more or less the same ex
ept

at times when one AP gets a signi�
antly higher share of

heavy users as seen at times in the tra
e [3℄. In these situ-

ations, Balan
ed-Fit outperforms Rssi.

C.2 O�ered Load at the AP

Figure 4(b) plots the o�ered load at two representative

APs, AP2 and AP3, when a 
onferen
e is in session. AP2

is pla
ed in the 
enter of the room, whereas AP3 is a 
orner

AP providing 
overage only to a smaller geographi
al re-

gion around it. The plot shows 
urves only for Balan
ed-Fit

and Rssi. As users enter the network, Balan
ed-Fit keeps

the o�ered load at both APs almost 
onstant at around 1.5

mbps (i.e. e�e
tive load balan
ing). On the other hand,

Rssi admits users in pla
e at the AP 
losest to their 
ur-

rent lo
ation and thus witnesses a greater load imbalan
e

between AP2 and AP3. The lower average o�ered load at

AP3 for the Rssi approa
h is also be
ause AP3 is a 
orner

AP and by default has fewer users that asso
iate to it.

C.3 Balan
e Index

Figure 4(
) shows how the balan
e index in the network

varies during a 
onferen
e session. Again, as expe
ted,

Balan
ed-Fit performs near optimal for the given 
onfer-

en
e workload. The balan
e index for the Rssi approa
h

has a bursty variation following the 
hange in the o�ered

load at ea
h AP. Comparing with Figure 4(b), we 
an see

that whenever the di�eren
e in the o�ered load at AP1 and

AP2 is high, the balan
e index drops to 0.6 or below, when

using Rssi.

C.4 Dis
ussion

The performan
e of the admission 
ontrol heuristi
s on

individual user bandwidth allo
ation and overall network

utilization re
e
ts the following 
hara
teristi
s of the 
on-

feren
e room environment. First, sin
e it is a 
onstrained

spa
e where APs are symmetri
ally pla
ed in the network,

users are equally likely to asso
iate with any one of the

APs. Se
ond, sin
e the per
entage of users that 
ontribute

to signi�
antly larger data transfers is small, an even user

distribution is almost as good as a load balan
ed approa
h.

Therefore, Rssi performs almost as well as Balan
ed-Fit.

On the other hand, su
h workloads do not favor the use of

Best-Fit and First-Fit approa
hes, whi
h are both designed

to perform better for a greater variation in the workload

distribution among APs.

One impli
ation of the above results 
on
erns 
apa
ity

planning. Although network designers for su
h 
onferen
e-

room s
enarios may deploy APs to symmetri
ally 
over the

spa
e, it may not be suÆ
ient to a
hieve load balan
ing. If

the network witnesses a greater proportion of heavy users

at one parti
ular AP, resulting in a greater disparity in the

workload distribution among APs, intelligent load balan
-

ing s
hemes will need to be implemented.

Other PAWN settings like airport gate areas and lounges

physi
ally and geographi
ally resemble a 
onferen
e-room

network due to the existen
e of a 
onstrained spa
e and

s
heduled times of use. However, the two s
enarios have

important di�eren
es. First, users are more likely to lo
al-

ize themselves to 
ertain parti
ular areas of the network

for various reasons su
h as the proximity of power outlets,

or geographi
 
onstraints of other servi
es (e.g., gate areas

with arriving or departing 
ights). Se
ond, su
h networks

are highly likely to see a greater variation in workload dis-

tribution among APs (e.g., a large group of MP3 down-

loads, online games) resulting in hot-spots. In su
h 
ases,

using Rssi for allo
ating users to APs will lower the nor-

malized bandwidth of users and leave the network under-

utilized. Therefore, the network will bene�t by implement-

ing dynami
 load balan
ing.

D. S
enario 2 { Corporate OÆ
e Building

The se
ond s
enario we study is a four-week tra
e 
ol-

le
ted at a 
orporate wireless network deployed in three

resear
h buildings at the IBM T. J. Watson Resear
h Cen-

ter [5℄. This is a larger tra
e than the 
onferen
e network

both in terms of the size of the network and the user pop-

ulation. In this tra
e, Balazinska et al., found that:

� A bulk of the data transfers (over 40%) is a

ounted for

by a very small fra
tion of the users (< 10%).

� The user data rates and session durations both follow a

power law.

� User arrivals follow the regular oÆ
e s
hedule.

� Heavy user workloads have average data transfer rates of

about 1 Mbps and light users have data rates of around 10

kbps.

We model the busiest and largest building in the 
or-

porate network for whi
h detailed 
hara
terizations were

available. We model a single 
oor of the building spanning

an re
tangular area of 50m by 20m with 8 APs. Four APs

are pla
ed in the four 
orners of the 
oor and the other 4

APs are symmetri
ally pla
ed in the hallways in the mid-

dle. Using the power law distribution of user workloads in

the tra
e, our network has 10% of heavy users.

Figure 5 presents our results for normalized bandwidth,

o�ered load, and balan
e index between the hours of 11 am

to 1 pm, whi
h witness peak user a
tivity during the day.

Ideally, we would like to have evaluated the three simu-

lation s
enarios using the same invariants. Unfortunately

however, the tra
es have been independently analyzed by

three di�erent resear
h groups and are not similar in their
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Fig. 5. The e�e
t of heuristi
s on user QoS and network utilization

for the 
orporate WLAN workload.


hara
terization. For example, the 
orporate PAWN tra
e

does not 
hara
terize user arrivals during the day. To ad-

dress this situation, we �nd the parameter in the tra
e that

best 
aptures the system load { per
entage of heavy users

in the network.

D.1 Bandwidth Allo
ated to Users

We now study the variation in normalized bandwidth

as a fun
tion of the per
entage of heavy users in the net-

work. Figure 5(a) plots the normalized bandwidth of users

as the number of heavy users in the system in
reases. As

in the 
onferen
e-room 
ase, Balan
ed-Fit and Rssi outper-

form the other admission 
ontrol approa
hes, albeit only

by a 10% margin. Furthermore, as the per
entage of heavy

users in the system in
reases, the normalized bandwidth

provided by Best-Fit �rst de
reases and then in
reases (at

over 60% heavy users). First-Fit also sees similar improve-

ment, albeit only with a mu
h higher per
entage of heavy

users.

This phenomenon 
an be explained as follows. Best-Fit

tries to tightly pa
k an AP until it rea
hes peak 
apa
ity.

As the number of heavy users in
reases, the normalized

bandwidth de
reases until su
h time that Best-Fit allo
ates

them to the AP that is being �lled. However, on
e this AP

rea
hes a 
apa
ity at whi
h no further heavy user request


an be admitted, Best-Fit starts �lling the next AP that

has least 
apa
ity greater than this user's request. This


auses the normalized bandwidth to rise again. First-Fit

sees a delayed improvement be
ause it takes longer to �ll-

up an AP to 
apa
ity.

D.2 O�ered Load at the AP

Figure 5(b) shows the variation in o�ered load in the net-

work at two APs, AP1 and AP4. Again, the plot 
ompares

Balan
ed-Fit and Rssi approa
hes only. As would be ex-

pe
ted, Balan
ed-Fit keeps the o�ered load relatively equal

at both APs ex
ept during sudden bursts in the o�ered load

(just before t = 4000). However, even su
h situations sta-

bilize rather soon. The Rssi approa
h, on the other hand,

performs poorly with load di�eren
es of over 80% between

the two APs (at t = 5000). Further, it 
an be seen that

the o�ered load does not stabilize with Rssi be
ause users

are not reallo
ated from AP4 to AP1.

D.3 Balan
e Index

Figure 5(
) shows the balan
e index of the network as a

fun
tion of time. Balan
ed-Fit spreads the load in the best

way possible and hen
e outperforms the other heuristi
s,

while Best-Fit and First-Fit perform little or no load bal-

an
ing by preferentially loading an AP. As the per
entage

of heavy users is higher, the net o�ered load at these APs

is also higher, resulting in a lower balan
e index than in

the 
onferen
e-room 
ase.

D.4 Dis
ussion

Our performan
e evaluation of the 
orporate WLAN s
e-

nario indi
ates that the Best-Fit and First-Fit heuristi
s

perform well when there is a greater proportion of heavy
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data transfers in the network. The tra
e [5℄ we used wit-

nessed that some users (about 10%) on average transfer

over 1 mbps of data, and that average user data rates

follows a power law distribution with exponent 0.85 (i.e.,

1=x

0:85

). We envision that in the future more users will

have data-intensive average workloads, thus de
reasing the

the exponent of this distribution. In su
h situations, the

performan
e of First-Fit and Best-Fit heuristi
s will be


omparable to the Balan
ed-Fit approa
h. This is be
ause

as heavy user requests use up signi�
ant available 
apa
ity

in an AP, both First-Fit and Best-Fit naturally start al-

lo
ating users to other APs, thus gradually spreading the

workload a
ross the network and a
hieving load balan
ing.

On the other hand, the Rssi approa
h is able to provide a

higher normalized bandwidth only as long as the AP has

adequate 
apa
ity to a

ommodate the user request.

E. S
enario 3 { University Campus

The third s
enario that we use in our simulation is a


ampus WLAN tra
e 
olle
ted at several parts of the Dart-

mouth College 
ampus [4℄. This is the largest and most


omprehensive tra
e of a publi
 wireless network spanning

11 weeks and 
aptures the a
tivity of over 2000 users. In

this tra
e, Kotz et. al., dis
overed that:

� Residential traÆ
 in dormitories dominate all other traf-

�
.

� Network ba
kup and �le sharing 
ontribute to a large

fra
tion of the generated traÆ
.

� Cross-subnet roaming frequently o

urred.

We note that the areas of 
ampus around the 
lassrooms

are similar to a 
onferen
e room setting with 
onstrained

spa
e and s
heduled times of use. Therefore, we used the

dorm as the PAWN for this s
enario. Our network spans

35m by 20m with 5 APs in the 
overage area. The pla
e-

ment of APs is based on a simple re
tangular geometry {

one AP in ea
h 
orner and the �fth AP in the 
enter of the

re
tangular region.

The study mentions that the dorm had a more or less


onstant number of users (about 400, on average) during

the night hours, whi
h are the 10 hours of peak a
tivity.

Therefore, we model a 
onstant user base of 400 users. The

study also observed that during the night hours 
ertain

parts of the dorms were hot-spots, witnessing heavy av-

erage data transfers (e.g., due to high-bandwidth KaZaA

downloads). We model the 
entral AP to be the one that

these heavy users are asso
iated to. As in the 
orporate

WLAN tra
e, this tra
e also unfortunately does not 
har-

a
terize user arrivals and user session a
tivity. Therefore,

in order to e�e
tively vary system load, we vary the num-

ber of per-user (light or heavy) sessions during the 10-hour

period of the simulation. As the number of per-user ses-

sions in
reases, the o�ered load in the system in
reases.

This simulates the e�e
t of in
reasing user arrivals.

Figure 6 shows our results for normalized bandwidth,

o�ered load, and balan
e index for one hour of user a
tivity.
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E.1 Bandwidth Allo
ated to Users

Figure 6(a) shows the normalized bandwidth of users

as the system load in
reases. As the load in the system

in
reases, the normalized bandwidth allo
ated by Rssi de-


reases steadily. As the number of per-user sessions in-


reases to about 8/hr., the drop in normalized bandwidth

for the Rssi is over 30%. This is be
ause there are a greater

per
entage of heavy users at one parti
ular lo
ation in the

system. When Rssi is used for asso
iating with an AP in

this hot-spot, the AP is unable to satisfy user requests on
e

its 
apa
ity is fully used. On the other hand, Balan
ed-Fit

a
hieves better performan
e. The normalized bandwidth

provided by the Best-Fit and First-Fit heuristi
s initially

de
reases with in
reasing load and then in
reases as these

heuristi
s start gradually re-allo
ating users to neighboring

APs.

E.2 O�ered Load at the AP

Figure 6(b) plots the variation in o�ered load as a fun
-

tion of time a
ross two APs, AP1 and AP3. AP1 is a


orner AP, whereas, AP3 is the hot-spot AP at the 
enter

of the PAWN whi
h handles a peak o�ered load of nearly

5 mbps. As in the previous two s
enarios, we 
ompare Rssi

and Balan
ed-Fit only. With asso
iation based on Rssi,

this AP qui
kly gets saturated, leaving the network un-

balan
ed and denying further user requests. On the other

hand, Balan
ed-Fit spreads the load among the available

APs keeping it nearly balan
ed over time.

E.3 Balan
e Index

Lastly, we study the variation in balan
e index. Fig-

ure 6(
) shows the variation in balan
e index as a fun
tion

of system load. Again, system load is in
reased by in-


reasing the average number of per-user sessions per hour.

Balan
ed-Fit performs the best as it a
hieves the maxi-

mum load balan
ing among APs. It is interesting to see

that First-Fit and Best-Fit have very similar performan
e.

This behavior is a result of the inherent workload distribu-

tion a
ross APs. APs 1, 2, 4, and 5 are all evenly loaded

with the same proportion of light and heavy users, while

AP 3 is the hot-spot, with a greater per
entage of heavy

users. Therefore, both First-Fit and Best-Fit are equally

likely to 
hoose the same lightly-loaded AP (1, 2, 4, or 5) to

allo
ate users to, sin
e there is no inherent ordering among

these APs. Rssi performs better than Best-Fit and First-

Fit, but has an average balan
e index of 0.6 be
ause of the

heavy load in AP 3.

E.4 Dis
ussion

Among the three tra
es that we used to populate our

simulation models, the 
ampus dorm tra
e had the great-

est disparity in user workload distribution among APs.

Two high-level 
hara
teristi
s of the user behavior were:

(i) users have a wide variation in their workloads, and

(ii) 
ertain spe
i�
 regions in the network witness higher-

bandwidth data transfers than others, 
reating lo
alized

hot-spots. Under su
h 
onditions, the Rssi approa
h fails

to provide users with their requested bandwidth on
e the

overloaded AP rea
hes 
apa
ity. Furthermore, it does not

improve the imbalan
e in the o�ered load a
ross APs. This

is not the 
ase with the 
onferen
e-room and 
orporate

tra
es where, for a bulk of the tra
e, users are fairly evenly

distributed a
ross APs, and users have more or less similar

workloads.

We now dis
uss how the 
orrelation between number of

users and the o�ered load at an AP 
an in
uen
e the de
i-

sion on the admission 
ontrol heuristi
 to be used. When-

ever there is a weak 
orrelation between number of users

asso
iated with an AP and the o�ered load at those APs, as

in the 
ampus and 
orporate WLAN tra
es, it 
reates hot-

spots in the network where the APs are more likely to get

saturated. In su
h situations, the Rssi approa
h will not

perform well and the network will bene�t from expli
itly

re-allo
ating users using a heuristi
 su
h as Balan
ed-Fit.

On the other hand, if the 
orrelation between number of

users and workload improves and the network has a sym-

metri
 distribution of APs where users are equally likely to

asso
iate with any AP, Rssi is as e�e
tive as Balan
ed-Fit.

Lastly, we dis
uss s
enarios where the Balan
ed-Fit may

not perform well in o�ering high normalized bandwidth to

users. Consider a network where a group of many small

bandwidth requests are followed by a group of large (i.e.

around B=4, where B is the AP's 
apa
ity) requests arrive

in the network. A Balan
ed-Fit approa
h would spread the

small requests a
ross all APs keeping the o�ered load bal-

an
ed a
ross APs. This form of allo
ation uses up 
apa
ity

nearly equally at all APs, not leaving adequate 
apa
ity

anywhere for the se
ond group of large user requests. As

a 
onsequen
e, the larger user requests 
annot be admit-

ted to any of the partially �lled APs. In su
h, situations,

approa
hes like Best-Fit and First-Fit will more optimally

use the overall network 
apa
ity.

VIII. Con
lusions and Ongoing Work

This work has been motivated by three key observa-

tions made in three re
ent PAWN workload 
hara
teri-

zation studies: (i) user loads are often time varying and

lo
ation-dependent; (ii) user load is often unevenly dis-

tributed a
ross a

ess points (APs); and (iii) the load on

the APs at any given time is not well 
orrelated with the

number of users asso
iated with those APs. In order to ad-

dress this problem, we propose heuristi
s to adaptively and

dynami
ally vary the bandwidth allo
ated to users in the

wireless hop within 
ertain bounds. Furthermore, these

heuristi
s 
hange user-AP asso
iations and thus alleviate

user 
ongestion at popular lo
ations, providing inter-AP

load balan
ing.

This paper makes the following 
ontributions:

1. We present the problem of �rst-hop wireless bandwidth

allo
ation as a spe
ial 
ase of the well-known online load

balan
ing problem and present three online heuristi
s for

�rst-hop bandwidth allo
ation. These heuristi
s improve

the degree of balan
e in the system by over 45% and allo-


ate over 30% more bandwidth to users than 
urrent ap-
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proa
hes;

2. We prove that the general o�ine problem (i.e., where we

have global knowledge of user arrivals and requests) of �nd-

ing an optimal assignment of users to APs in an arbitrary

network with arbitrarily sized user bandwidth requests, is

NP-
omplete;

3. We propose three di�erent heuristi
s for allo
ating users

to APs based on their bandwidth requirements and evalu-

ate their performan
e via tra
e driven simulations.

Our high-level results indi
ate that for all three s
enarios

Balan
ed-Fit outperforms all the other admission 
ontrol

heuristi
s and the base 
ase approa
h of asso
iation based

on re
eived signal strength (Rssi). On average, Balan
ed-

Fit, allo
ates over 30% more normalized bandwidth to

users and improves the network balan
e index by over 45%.

Rssi performs well, in s
enarios with even user distribu-

tion a
ross APs and when the number of users and o�ered

load at the APs are relatively well 
orrelated. Best-Fit and

First-Fit improve in their ability to allo
ate bandwidth to

users as the proportion of heavy data transfers in
reases.

To the best of our knowledge, ours is the �rst study of

wireless LAN bandwidth provisioning in
orporating real

WLAN workloads in performan
e evaluation.
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