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Online Load Balancing and First-Hop Bandwidth
Allocation in Public-Area Wireless Networks

Abstract— Recent studies characterizing workloads in
Public-Area Wireless Networks (PAWNSs) have shown that:
(i) user loads are often time varying and location-dependent;
(ii) user load is often unevenly distributed across access
points (APs); and (iii) the load on the APs at any given time
is not well correlated with the number of users associated
with those APs. Administrators in such networks thus have
to address the challenge of unbalanced network utilization
resulting from unbalanced user load, and also guarantee its
users a minimum level of quality of service (e.g., sufficient
wireless bandwidth).

In this paper, we address the challenges of improving
PAWN utilization and user bandwidth allocation through
a common solution — dynamic, location-aware adaptation.
We observe that by adaptively varying the bandwidth al-
located to users in the wireless hop within certain bounds
coupled with admission control at each AP, the network can
accommodate more users as its capacity changes with time.
Further, by adaptively selecting the AP that users associate
with, the network can relieve sporadic user congestion at
popular locations and increase the likelihood of admitting
users at pre-negotiated service levels.

We describe how these algorithms enable the network
to transparently adapt to user demands and balance load
across its access points. We evaluate the effectiveness of
these algorithms on improving user service rates and net-
work utilization using simulations incorporating real work-
loads from campus, conference, and corporate environ-
ments. Our algorithms improve the degree of balance in
the system by over 45% and allocate over 30% more band-
width to users in comparison to existing schemes that offer
little or no load balancing.

I. INTRODUCTION

The vision of pervasive ubiquitous computing where
users have network access anytime, anywhere, is being en-
abled by deployments of high-speed wireless networks in
common places of congregation such as airports, malls, ho-
tels, parks, arenas, and so on [1], [2]. Two key challenges
to the host organization deploying these Public-Area Wire-
less Networks (PAWNS) are: (i) capacity planning, making
the best use of the available network resources to derive the
best return on its investment; and (ii) guaranteeing at least
a minimum amount of bandwidth to users. As the use of
PAWNSs spreads beyond simple data transfer to data- and
performance intensive multimedia applications, the need
to address quality of service issues, such as enhanced ser-
vice provisioning and first-hop bandwidth management will
become increasingly important. Further, as PAWNs scale
to larger organizations and support a greater number of
users, it will be crucial to consider techniques that ade-
quately provide capacity to handle dynamically varying,
location-dependent user load.

We envision that in the future PAWNs will support a
wide range of quality of service (QoS) models to provide
sustained levels of the wireless bandwidth to contending
users. These models would range from free access with-
out guarantees (for best-effort traffic) to paid connectivity

for applications requiring fixed QoS (e.g., IP telephony)
to adaptive differentiated service for real-time multime-
dia applications (e.g., streaming, audio/video conferenc-
ing). Such service policies provide a natural separation
between different classes of users, allowing the creation of
a tiered service model that benefits paid users. Therefore,
as PAWNSs allow users to shop for a desired level of QoS,
it is important that the network have adequate capacity
and that the first-hop bandwidth be managed scalably and
efficiently.

Most PAWN deployments have hitherto addressed
the problem of capacity planning through static over-
provisioning of network capacity — installing enough wire-
less access points (APs) to handle an overall estimated net-
work load. Unfortunately, there are limitations to this ap-
proach. First, installation and operation of more access
points translates to a larger infrastructure and maintenance
cost. Second, an increased number of APs in the network
would limit the number of APs that can be operated on
non-interfering channels due to the inherent limits of chan-
nel reuse in 802.11 networks.

Recent workload characterization studies of PAWNS [3],
[4], [5], [6] have shown that user service demands are highly
dynamic in terms of both time of day and location, and
that user load is often distributed quite unevenly among
the APs. Furthermore, it has been shown that the load
on the APs at any given time is not well correlated with
the number of users associated with those APs. A key
consequence of this behavior is sporadic user congestion at
certain popular spaces within the network resulting in (i)
under-utilized network resources due to unbalanced load,
and (ii) unsatisfied user service requests.

In this paper, we address the challenges of capacity plan-
ning and user bandwidth allocation through a common so-
lution — dynamic, location-aware adaptation. In order to
balance the network load, we propose that the network
adaptively select the AP that the user associates with by
incorporating the user’s workload and geographic location
within the network. In order to satisfy the user’s service
request, we propose that the initial process of association
with an AP be performed in conjunction with explicit ad-
mission control at each candidate AP that can admit the
user’s request. Therefore, both the network and its users
explicitly and cooperatively adapt themselves to changing
load conditions. By admitting the user’s traffic at an AP
other than the one that would provide the service by de-
fault (as in association based on highest signal strength),
the network load automatically gets distributed across its
APs. As users’ traffic is dynamically and adaptively di-
rected from a heavily loaded AP to a lightly loaded AP,
it increases their likelihood of receiving a pre-negotiated



bandwidth guarantee from the network.

This paper makes the following contributions:

1. We present the problem of first-hop wireless bandwidth
allocation as a special case of the well-known online load
balancing problem and present three online heuristics for
first-hop bandwidth allocation. These heuristics improve
the degree of balance in the system by over 45% and allo-
cate over 30% more bandwidth to users than current ap-
proaches;

2. We prove that the general offline problem (i.e., where we
have global knowledge of user arrivals and requests) of find-
ing an optimal assignment of users to APs in an arbitrary
network with arbitrarily sized user bandwidth requests, is
NP-complete;

3. We propose three different heuristics for allocating users
to APs based on their bandwidth requirements and eval-
uate their performance via trace driven simulations. Our
simulations model three different PAWN settings using real
workload characterization traces: (i) a conference WLAN
workload [3], (ii) a university campus WLAN workload [4],
and (iii) a corporate WLAN workload [5]. To the best of
our knowledge, ours is the first study of wireless LAN band-
width provisioning incorporating real WLAN workloads in
the simulation.

The rest of this paper is organized as follows. In Sec-
tion 2, we overview related work in QoS provisioning in
wireless LANs. In Section 3, we introduce the problem of
online bandwidth allocation using mathematical notation.
In Section 4, we derive the NP-completeness result of the
optimal offline resource allocation problem. In Section 5,
we describe three heuristics for online bandwidth alloca-
tion. In Section 6, we discuss mechanisms for online load
balancing in PAWNs. In Section 7, we evaluate the on-
line bandwidth allocation heuristics and finally conclude
in Section 8.

II. RELATED WORK

The TEEE 802.11 standard does not provide any spec-
ifications for capacity planning. Further, the 802.11
CSMA/CA protocol with the Distributed Coordination
Function (DCF) for media access itself does not provide
any guarantees on the wireless bandwidth [1].

The 802.11 Working Group is still considering proposals
for introducing QoS enhancements into the standard. One
of these proposals calls for the use of per-flow resource-
based admission control combined with prioritized data
transmission for real-time traffic [7]. However, this scheme
does not take into account the dynamically varying nature
of the wireless medium. In [8], the authors discuss various
bandwidth allocation techniques for managing bandwidth
in the wireless hop. While this work addresses first-hop
QoS by taking into account the end-to-end path properties
of individual flows, it does not deal with reallocation of
flows among APs.

There have been a number of other proposals to en-
hance or modify the MAC protocol in wireless LANs to
provide long-term fairness to flows using centralized and
distributed schemes [9], [10], [11], [12]. Again, all of these
schemes have focused on enhancing the fairness proper-
ties of the wireless MAC in order to provide differentiation
among contending flows, thus improving user QoS within
a single cell in the network. They do not focus on the
dynamics of the wireless network as a whole.

Recently, various vendors of wireless LAN products have
incorporated load-balancing features in the latest release
of network drivers and firmware for APs and wireless PC
cards [13], [14]. APs supporting this feature maintain a
count of the number of users associated with APs in each
cell and broadcast beacons containing this information to
users in the cell. New users receive beacons from multiple
access points and use this load information to determine
and associate with the least-loaded AP. However, these
techniques do not take into account user workloads and
QoS requirements and are local in scope, distributing users
evenly across available overlapping cells.

In [15], the authors present load-balancing algorithms
for efficient routing in multi-hop wireless access networks.
However, their algorithms pertain to multi-hop wireless ac-
cess networks where each node has to find a QoS-aware
route to the egress node that connects to the backbone of
the network. In contrast, we focus on networks where ev-
ery mobile node is only one wireless hop away from the
backbone, and hence wireless routing is not an issue. Fur-
ther, they do not consider how network load changes with
arriving and departing users; this cannot be neglected in
PAWNS.

Hanly [16] has addressed the problem of maximizing
spread spectrum capacity in a cellular network by find-
ing an optimal allocation of users to base stations and an
optimal set of transmitter power levels. Although it may
appear that such approaches are also applicable to wire-
less LANSs, several important differences exist. First, wire-
less LANs use distributed, contention-based MAC proto-
cols where only one user accesses the channel at any given
time. Second, in wireless LANs cell capacity is related to
the individual workloads of users rather than the transmit
power levels [3], [5].

Lastly, Azar [17] and Phillips [18] have extensively stud-
ied the complexity of the network load balancing problem
from a theoretical standpoint, and have proven bounds for
several heuristics for the online problem. In this paper, we
adapt their theoretical model to wireless LANs and explic-
itly evaluate the performance of our heuristics using real
workload measurements.

The algorithms presented in this paper jointly address
the problems of increasing wireless network utilization and
maintaining pre-negotiated user bandwidth agreements
with the network.
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Fig. 1. The architecture of a PAWN

ITII. ONLINE BANDWIDTH ALLOCATION — THEORETICAL
FORMULATION

In this section, we present a theoretical formulation of
the problem of first-hop bandwidth allocation and show
that it maps to a special case of the general online load
balancing problem. We begin by describing our system
and quality of service models, and then formally present
the problem definition.

A. System Model

We consider a PAWN model with a high-speed wired
backbone and first-hop wireless links configured according
to the IEEE 802.11 standard in infrastructure mode [1].
The high-level architecture of our PAWN model is shown
in Figure 1. A PAWN is serviced by APs providing over-
lapping coverage in the geographic area. Neighboring APs
operate on different radio frequency (RF) channels to avoid
interference. Our design assumes the existence of an ad-
mission control server (ACS) that maintains and manages
all per-AP and per-user state in the network. The ACS
makes repeated admission control decisions as users arrive
and move within the network and thus helps determine
their point of attachment to the network. The goal of the
network is to alleviate user congestion at the hot-spots and
thus improve network utilization. We now describe the
quality of service model that specifies how users negotiate
their QoS requirements with the network.

B. Quality of Service Model

Since the first-hop bandwidth in a wireless network is
a scarce, shared resource, an equitable distribution of the
available bandwidth among contending users necessitates
QoS negotiation. While wired networks provide users
with fixed levels of deterministic or statistical guarantees,
through bandwidth reservation, many aspects of wireless
networks preclude exact control over the first-hop band-
width. First, wireless networks are characterized by time-
varying and location dependent errors in the channel [12].
Second, users in a wireless network tend to be mobile and
the QoS that has been negotiated at one location may not
be honored as the users change their point of attachment
to the network. Therefore, the network will have to adap-
tively vary the level of QoS provided to the user as the
channel quality and capacity change with time due to the

dynamics of the wireless environment.

We use the notion of bandwidth bounds introduced
in [19] to characterize user QoS specification. Each user’s
rate requirement is specified by a [bpmin, bmaz] bound. Once
a user is admitted at an AP, the network attempts to guar-
antee the user a data rate of at least b,,;, with possible pro-
visioning up to bmae- Typically, the lower bound b, is
determined by minimum rate requirement for the user’s ap-
plication, while the upper bound b, is determined by its
peak rate. If the user does not specify bandwidth bounds,
the network assumes a best-effort request. Each AP in
the network has a certain fraction of capacity reserved for
best-effort users to allow for backward compatibility with
existing schemes.

The notion of bandwidth bounds for QoS negotiation in
the first-hop has several advantages. First, it offers the
PAWN provider a way to adaptively plan its capacity and
achieve load balancing. Second, it allows the user a way to
negotiate a pipe to the backbone, with a guaranteed min-
imum bandwidth and excess capacity provisioning beyond
bmin, as available. Third, QoS bounds can be used to char-
acterize user workloads for both real-time multimedia and
bursty data traffic. Finally, as mentioned in the introduc-
tion, supporting different levels of b,,;, provides a natural
separation between user connections, allowing the creation
of a tiered service model that benefits paid users. These
QoS policies would either be advertised to the user by the
PAWN provider. Alternatively, the QoS policy could be
driven by some pre-negotiated policy between the users and
wireless ISPs at the PAWN host organization. For exam-
ple, Wayport has entered strategic relationships with other
PAWN providers such as iPass, such that, users accessing
these two networks (e.g., at a hotel and an airport), would
receive a pre-negotiated level of service at a pre-determined
charge [20].

C. Notation

We now characterize the online user allocation problem
mathematically. We consider a PAWN serviced by N APs
that are supposed to serve a set of users that arrive and de-
part in time. Each AP has a fixed capacity B Mb/sec. Each
user j has an associated bandwidth requirement, given by
a range (bmin,j,Omaz,j), an arrival time 7(j), and a set
D; C M of APs that are within RF range of the user’s
location.

We first consider the case of user allocation without pre-
emption. Therefore, a user is to be assigned to exactly
one of the APs in D; upon arrival and once assigned,
cannot, be transferred to a different AP. The assigned AP
starts processing the user’s request immediately at a rate
bmin,j < bj < bmas,j , until the user departs the system. If
no AP in D; can admit the user’s request, the user waits
in a queue until capacity becomes available. The total load
on AP i at time ¢, denoted L;(t) is the sum of the band-
widths b; of users assigned to AP i at time t. An online
assignment algorithm must assign a user j to a server in D;
so as to reduce the maximum load on any given AP and
satisfy the user’s bandwidth request subject to the capacity
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Fig. 2. The reduction of an instance of (a) Vertex Cover to an instance of (b) LCBA

constraint — the decision is made without any knowledge
of future arrivals or departures [17]. For unrestricted as-
signment, (i.e., |[D(j) = N) Azar et al. [17], showed that
the best solution to the online problem is greedy heuristic
that achieves a competitive ratio (online/optimal offline)
of log(N).

Before proposing algorithms to solve the online problem,
we evaluate the complexity of the related offline bandwidth
allocation problem, which is defined as follows. The opti-
mal offline assignment algorithm assigns all arriving users
knowing the entire sequence of user arrivals and depar-
tures. For a set of K total users, labeled 1, 2, ..., K, the
algorithm computes the optimal allocation vector,

ce{l,2,....N}Y¥ :¢; e D;Vj=1,2,...,N

of users to APs that minimizes the maximum load on
any AP and satisfies the users’ bandwidth request with-
out violating the capacity constraint of each AP. We call
this offline problem Load-Balanced Capacity-Constrained
Bandwidth Allocation (LCBA).

IV. NP-CoOMPLETENESS oF LCBA

In this section, we prove that LCBA is NP-complete.
We note that LCBA is an optimization (or search) prob-
lem and the theory of NP-completeness is designed to be
applied only to decision problems [21]. However, each opti-
mization problem can be stated as a corresponding decision
problem. The proof of NP-completeness of a decision prob-
lem I consists of two parts: (i) IT € NP, and (ii) for a known
NP-complete problem II' € NP, there exists a polynomial
time transformation from II' to II.

We assume that for each user j, (bmin,j = bmaz,; = b;),
and |D;| = 2, i.e., each user is within range of exactly 2
APs. We show that even this special instance of LCBA is
NP-complete, thereby showing that the general problem is
at least as hard.

A. Graph-theoretic Formulation

Given a set of K users, N APs, and the set D; for each
user j, we can construct a bipartite graph G with two sets

of vertices L and R. The set L represents users (|L| =
K) and the set R represents APs (|R| = N). An edge

between a vertex in L and a vertex in R indicates that
the user is within range of that AP. Therefore, for each
user j, we have an edge connecting j and every node in
D;. The edges are labeled with capacity equivalent to the
bandwidth requirement b; of user j.

The decision version of the LCBA problem can then be
described as follows:

INSTANCE: A directed graph G = (V,E), where
V=LUR, andV j € L, a b; specifying the bandwidth
requirement of user j. A set of APs, D;, within radio range
of user j, where every node in D; is in R. The edge set is
E ={(4,D;) V j, where j € L andD; € RY j}. A fixed
constant, capacity B and a constant S.

QUESTION: Is there an allocation of users to APs such
that the total load at any AP ZieR,]’Ei b; < S < B?

There are two parts to proving the NP-completeness of
LCBA. First, we have to show that LCBA is in NP and
next, show that . <p LCBA for some NP-complete lan-
guage L. We show both these below.

Theorem 1: LCBA is in NP.

Proof: In order to prove membership in NP, we have
to show that it is possible to verify a certificate solution
to an instance of LOBA, in polynomial time. A certificate
solution to a given instance of LCBA is the assignment of
the each vertex in L to a single vertex in R. Formally, the
verifier takes as input the graph G, the values of b; and D
for each vertex in L, and the assignment A. It checks that
the assignment defines a map for each vertex j in L to only
one vertex in D;. Then it checks that ZieR,]’Ei b; <S <
B. If these checks pass, it accepts, else it rejects. O

Theorem 2: LCBA is NP-hard, i.e., L <p LCBA for
some NP-complete language L.

Proof: : 1t can be shown that the above decision prob-
lem is NP-hard through a reduction from the vertex cover
problem, which is well-known to be NP-complete. Thus we
choose L to be the language of graphs with vertex cover of
size at most K, and show that L <p LCBA.

The vertex-cover problem can be defined as follows:
The vertex cover of an undirected graph G = (V, E) is



a subset V' € V such that if (u,v) € E, then u € V' or
v € V' (or both). In other words, each vertex “covers” its
incident edges, and a vertex cover for G is a set of vertices
that covers all the edges in E. The size of the vertex cover
is the number of vertices in it. The decision version of the
vertex cover problem takes as input the graph G = (V, E)
and a positive integer K and is to determine whether G
has a vertex cover a size at most K.

The reduction f, shown in in Figure 2, takes as input a
graph G = (V,E) : V = {v1,v2,...v,},i.e.,|V| =n, and a
positive integer K and produces a bipartite graph instance
of LCBA as follows. First we show the construction of the
AP nodes, then the user nodes, the edges between APs and
users, and then assign capacities and bandwidth requests.
1. For each vertex in V', construct an AP node V;. We call
these verter APs. Then add a special (n + 1)* AP node
w.

2. For each vertex in V, construct a user node v;. We call
these vertez users. In addition, for each edge e;; = (v;,v;),
add a user node e;;. We call these edge users.

3. Connect each vertex user v; to its corresponding vertex
AP V; and to the AP W. Connect each edge user e;; to
the vertex APs V; and V.

4. Assign a capacity n to each vertex AP node V; con-
structed from the vertices in G and assign a capacity nK
to the AP node W.

5. Assign a bandwidth request of n to each vertex user v;
constructed from the vertices in G and assign a bandwidth
request of 1 to each edge user e;;.

It is easy to see that f is polynomial time computable.
The intuition for why the reduction works is that every
edge in the original graph has degree at most n, and that
one or both end points of an edge are in the vertex cover.

Formally, we need to check that G has a vertex cover of
size K if and only if G' has an admissible assignment of
users to APs. So first suppose G has a vertex cover of size
K that consists of nodes {v;,v;,...vi+x—1}. Assign each
vertex user node in the vertex cover to the AP W, which
leaves AP W filled to capacity. Now, assign the remaining
vertex users (those vertices not in the vertex cover) to their
corresponding vertex APs, which leaves those APs filled to
capacity. Now the only user nodes that remain to be as-
signed are the edge user nodes, and the only APs available
are those K vertex APs that form the vertex cover. It is
easy to see that each of these nodes will be attached to at
least one edge node (since each edge node is incident on
at least one node in the vertex cover), and at most n edge
nodes (since each vertex has degree at most n). There-
fore, the edge nodes of unit capacity requirement can be
assigned to these vertex-cover APs.

Conversely, suppose G has an admissible assignment of
users to APs. We let S = nK. Now the K users assigned
to AP W will use up its capacity leaving the other vertex
users (those with bandwidth request n) to be forcibly as-
signed to their corresponding vertex APs, again using up
their capacity. This means that the edge nodes can now
only be assigned to the those K vertex APs, whose cor-
respondent vertex users were assigned to W. Since every

edge user node is connected only to its end point vertices
(by construction from G), this subset of K vertex APs will
cover every edge user node formed from the edge set of G.
In other words, these nodes form a vertex cover of size K
in G. This concludes the proof. O

We note here that the reduction maps an arbitrary in-
stance of the vertex cover problem to a defined instance
of the LCBA problem, where |D(j)| = 2. Therefore, the
problem of allocating users with arbitrarily sized requests
to APs, given an arbitrary network layout is a hard prob-
lem, even for the constrained case that a user can hear only
two APs.

V. HEURISTIC ALGORITHMS

In this section, we describe three heuristic algorithms to
solve the online LCBA problem. We focus primarily on
how these heuristics manage the first-hop wireless band-
width in the PAWN. When users request service from the
network, the heuristics perform admission control at the
APs and return to them the AP that they should associate
with. These heuristics have previously been studied in the
context of online bin packing [22].

Since the heuristics solve the online problem, they op-
erate with no knowledge of future user requests. Their
goal is to accommodate each user requests at the AP that
has the capacity to service them. The criterion motivat-
ing the choice of the AP is based on: (i) achieving a bal-
anced load distribution across APs at any instant (i.e., a
greedy approach), or (ii) trading off transient load imbal-
ance among APs in order to admit potentially larger band-
width requests in the future. The latter approach admits
requests at an already loaded AP that can still contain
them, in order to reserve room at APs that may be better
filled by heavier (i.e., higher bandwidth) future requests.
In each case, the users’ requests are first admitted at the
lower bound, b,in, and any excess capacity is divided in
a way that users are admitted at the level of their upper
bound by,qz, as far as possible. In other words, if bsyr,m
is the available capacity at AP m at a given instant, the
excess capacity begcess,j above b, ; allocated to user j
is: begcess,j = Min(bavi,m,bmae,j)- Therefore, the alloca-
tion is fair in the sense that all user requests assigned to a
given AP get an equal excess share of the APs bottleneck
capacity.

A. First-fit Allocation

The First-Fit heuristic allocates users to the first AP
in the list that has enough available capacity. If the AP
that the user associates with by default upon entering the
network has enough capacity to admit his request, First-
Fit retains the user at that AP, thereby performing simi-
lar to the non-load balanced approach. In general, given
a set of consecutive user arrivals, First-Fit tries to admit
the requests locally in the neighborhood of APs around
the user. Therefore, First-Fit preferentially fills-up certain
APs before others and gradually spreads user load from
the neighborhood of the congested region through the en-
tire network.



B. Best-Fit Allocation

The Best-Fit heuristic looks for the best AP that can still
contain the user’s request. The best AP refers to the most
filled AP that still has enough capacity to admit the re-
quest under consideration. Intuitively, it can be seen that
Best-Fit would perform worse than First-Fit in balancing
the user load. However, the advantage of Best-Fit is that
it minimizes overall unused capacity (i.e., wasted band-
width) by tightly packing a certain heavily-loaded AP and
reserving capacity at a comparatively lightly-loaded AP for
heavier requests.

C. Balanced-Fit Allocation

The Balanced-Fit heuristic is a more intuitive approach
to allocating users to APs. For a given user request,
Balanced-Fit admits it at the AP that has the maximum
available capacity or least load. Ties are broken arbitrar-
ily. Tt is easy to see that at every step Balanced-Fit glob-
ally distributes the load through the entire network. How-
ever, Balanced-Fit can have poor worst-case performance
because at any instant it creates a fragmentation of the
network load among the available APs. In other words, on
average every AP in the network is equally likely to ad-
mit users from a given set of incoming requests, thereby
increasing the probability of denying service to a future
heavy request. In contrast, both First-Fit and Best-Fit
have better worst case performance in being able to admit
more users at their admissible bandwidth levels. The ad-
vantage of Balanced-Fit lies in its efficient use of available
resources to maximize instantaneous network utilization.
Therefore, it always has better average-case performance.

D. Discussion

The heuristics described in this section operate on the as-
sumption that users more or less stay localized in a certain
region of the network, which is true the case as reported in
the PAWN workload characterization studies involving lap-
top users [3], [4], [5], [6]. However, if users are very mobile
the bandwidth provisioning problem may need trajectory
prediction and advance bandwidth reservation in the wire-
less hop [23]. Therefore, the network has the opportunity
to provide users feedback about where in the network (i.e.,
through which AP) their service requests will be best met
using one of the above heuristics. If the AP selected by
admission control is different from the one the users are
currently associated to, they would be required to change
their point of attachment to that AP. While the heuristics
described in this section determine the best AP that can
service the user’s request, there still needs to be a mecha-
nism by which users actually change their association with
the APs. The detailed description of these mechanisms is
beyond the scope of this paper, but we briefly discuss two
mechanisms in the following section.

VI. ONLINE LoaD BALANCING IN WLANS

The bandwidth allocation heuristics described in the
previous section achieve load balancing by redistributing

user load either locally among neighboring APs around
the user (e.g., First-Fit, Best-Fit), or globally throughout
the entire network (e.g., Balanced-Fit). Through these ap-
proaches the network explicitly incorporates user service
requests while associating users with APs. Although users
initially submit their requests to the network through a
default AP association (i.e., one based on strongest signal
strength), these approaches may require users’ connections
to be routed through a different AP that better accommo-
dates their workload.

In this section, we briefly describe two approaches that
can be used to provide feedback to users about which AP
they are to associate with and how they perform this as-
sociation. Depending on the admission control heuristic
used, this can be done either: (i) by transparently chang-
ing the user-AP associations in place without requiring the
user to move (ezplicit channel-switching), or (ii) by provid-
ing feedback to the user about the location of the AP that
provides the service (network-directed roaming) [24].

A. Ezplicit Channel Switching

Figure 3 depicts a WLAN installation with three APs
within a subnet providing overlapping coverage in a re-
gion, thereby ensuring continuity of network access as users
change their location within the network. In order to min-
imize channel interference, neighboring APs are often con-
figured to operate on different RF channels.

We now consider heuristics that distribute load locally
among neighboring APs. In this case, the mobile user is at
the periphery of the transmission range of Access Point 1
and within hearing range of APs 2 and 3. When the user
submits a service request he is initially associated with AP
1, which is unable to handle his service requirement (as
indicated in the [bmin, bmaz] range). The user also records
the received signal strength (Rssi) of beacon signals re-
ceived from the other APs and sends the list of APs (AP 2
and AP 3, in this case) during the QoS negotiation phase.
Once the network determines the AP that can service the
user’s request, it returns the AP’s identity (SSID, MAC
address) and its operating channel to the user. The user
now transparently associates with this new AP, by merely
changing the RF channel to that of the new AP. The op-
eration of dynamically switching the user’s RF channel is
supported in current hardware and software.

Explicit channel switching, thus achieves localized load
balancing among APs that provide overlapping coverage
in the neighborhood of the user. This algorithm trades
off signal strength with load by forcing the user to switch
from an overloaded AP that has the strongest RF signal to
a neighboring lightly loaded AP to which the signal may
possibly be weaker.

B. Network Directed Roaming

With explicit channel switching, the network locally re-
distributes load across neighboring APs by requesting user
wireless devices to explicitly change their association from
an overloaded AP to a less loaded neighboring AP that
can admit the service request. This algorithm relies on the
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existence of at least one AP within range of the user that
has enough capacity to honor the QoS requirement. How-
ever, complete overlapping coverage may not be available
in all scenarios (e.g., in the ends of corridors of an build-
ing). Furthermore, none of the APs in the neighborhood
of the user may be able to admit the user at the requested
service level. Or, the user may not be able to hear a clear
signal from any other APs, possibly due to the logistical
constraints imposed by her location (like obstructions be-
tween her and the AP, causing the SNR value to go below
the operable threshold).

When neighboring APs cannot handle user admission re-
quests using explicit channel switching, the network can
instead provide feedback suggesting potential locations to
which users can roam to get the desired level of service.
We call this technique network-directed roaming.

When the network cannot handle a user’s service request
in the user’s current location, the user is likely to roam in
the network to find an AP with connectivity. Since the
network knows both the locations of APs with available
capacity as well as the user’s current location, it is ideally
situated to direct the user to the AP where requested ser-
vice can be provided. The Balanced-Fit heuristic, which
performs admission control at all APs in the network, can
determine which AP, if any can provide this service. Fur-
thermore, with the flexibility to potentially direct users to
any AP, the network has the ability to globally balance
load across all APs. Of course, this depends upon the co-
operation of the user, but it is in the user’s best interest to
follow the network’s roaming suggestion to get service. If
the user did not wish to undertake the overhead of physi-
cally moving, he could renegotiate the service in the same
location with a lower b,,;y,.

Network-directed roaming fundamentally depends upon
the ability of the network to determine a user’s location,
and the ability to direct the user to locations with avail-
able capacity. There are many techniques that can be used
to determine the user’s geographic location, each with a
varying level of accuracy [25], [26]. Once the user’s loca-

tion is known, a visual way of directing the user to the
desired location is to use an indoor navigation map (e.g.,
an active map) of the coverage area [27]. Alternatively, the
network, using pre-defined associations, could translate the
destination AP names into specific location names within
the network that can aid the user while roaming. For in-
stance, gate numbers could be used in an airport network
to indicate roaming destinations to users. The roaming de-
cision also depends upon factors like natural obstacles in
the environment, which can be depicted in the active map.

VII. PERFORMANCE EVALUATION

In this section, we investigate the performance of the
heuristics described in the previous sections via trace
driven simulations. Since the admission control and load
balancing heuristics seek to satisfy individual user QoS re-
quirements and distribute load across the network, we use
performance metrics to experimentally answer to the fol-
lowing basic questions:

1. What is the effect of performing admission control at
each AP on the bandwidth received by users?

2. How does the net offered load at a heavily-loaded AP
change as a result of re-allocating users to lightly-loaded
APs?

3. What is the effect of these heuristics on overall network
utilization?

We begin by describing our simulation methodology and
the metrics that we use to quantify the performance of the
heuristics, and then present results for three different sim-
ulation scenarios. These scenarios use three real workloads
from conference [3], corporate [5], and campus [4] WLAN
environments.

A. Simulator Setup

We designed a simulator that implements the admission
control heuristics on all arriving users in the PAWN. The
simulation parameters that can be configured during input
are: (i) the number of simulation iterations (ii) the number
and location of APs, (iii) the user arrival model, (iv) the
location of users relative to the APs, (v) the peak band-
width at the APs, and (vi) the admission control heuristic
to be employed. The simulation parameters that we incor-
porate directly from the trace are user arrival rate, user
data rates, and user session durations.

In all scenarios, we set the capacity of the APs to be
the practical achievable limit of 6 Mb/sec [28]. The sim-
ulator generates users according to an arrival model that
is specified during initialization. For CBR traffic, users
generate data according to the actual data rate of the ap-
plication. For VBR and bursty traffic, we choose the data
rates from the three workload studies. We model the size
and dimensions of the network from the studies again, but
only analyze representative network domains in the larger
(i.e., corporate and campus) scenarios.



B. Performance Metrics

To quantify the benefits achieved by admission control on
the QoS provided to users, we define the normalized band-
width as the ratio of the actual allocated bandwidth to the
maximum desired bandwidth of users. When the APs have
adequate capacity to admit all users at their upper data
rate bound, b4z, the normalized bandwidth approaches
1. Normalized bandwidth reduces as APs are driven close
to saturation and incoming users are admitted at data rates
much lower than their upper bound. Furthermore, a user’s
normalized bandwidth is inversely proportional to the time
the user spends in the system.

To quantify the benefits achieved by redistributing load
across the network, we use the net offered load at the APs
and monitor its variation as users get reallocated from a
heavily-loaded AP to a lightly-loaded AP.

To further quantify the effect of inter-AP load balancing,
we adapt the concept of balance indez introduced in [29] to
reflect the used capacity (bandwidth) in each AP. Suppose
B; is the total throughput of AP i, then we define the
balance index /3 to be:

B = (O B)/(nx) B
where n is the number of cells over which the load is being
distributed. When the load across APs is more or less
balanced, the balance index approaches 1. On the other
hand, 8 approaches 1/n in the case of heavily unbalanced
network load.

In all our results we compare the performance of the
three AP allocation heuristics with the base-case approach
of default association with an AP based on strongest re-
ceived signal strength (Rssi).

C. Scenario 1 — Conference Room

The first trace that we use to populate our simulation
models was collected by Balachandran et al. [3] over three
days at the ACM SIGCOMM conference in 2001. The high-
level characteristics of the trace are:

o User arrivals closely follow the conference schedule
and are modeled as a Markov-modulated Poisson process
(MMPP).

o Users are more or less equally distributed across APs in
the conference room. However individual workloads vary
widely.

o Users are broadly classified as light, medium, and heavy
users depending on their average data rates. Light users
have an average data rate of 30 kbps, medium users around
80 kbps, and heavy users around 175 kbps.

Our conference room is a network of area 30m by 30m
with three APs linearly placed linearly in the room. We in-
corporate the user workloads (i.e., light, medium and heavy
users), and inter-arrival times (7 = 38 sec.) directly from
the trace.

We now study the effect of the heuristics on normal-
ized bandwidth, offered load, and balance index, and then
present a discussion of the observations. We study the
variation of these parameters over a single conference ses-
sion that lasts 90 min., with users arriving according to an
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MMPP (ON period = 84 min., mean arrival rate, A = 1.58
users,/min.).

C.1 Bandwidth Allocated to Users

Figure 4(a) shows the variation in normalized bandwidth
allocated to users as a function of increasing system load
for a single conference session. The system load on the
x-axis is increased by increasing the mean arrival rate of
the Poisson process. Balanced-Fit performs the best pro-
viding users with nearly 100% of their maximum required
capacity. Balanced-Fit is closely followed by Rssi, which
performs better than the First-Fit and Best-Fit algorithms.
This is because of the fact that in the conference network
users are in a constrained space and are equally likely to as-
sociate with any one AP. Therefore, the user and workload
distribution at all APs are more or less the same except
at times when one AP gets a significantly higher share of
heavy users as seen at times in the trace [3]. In these situ-
ations, Balanced-Fit outperforms Rssi.

C.2 Offered Load at the AP

Figure 4(b) plots the offered load at two representative
APs, AP2 and AP3, when a conference is in session. AP2
is placed in the center of the room, whereas AP3 is a corner
AP providing coverage only to a smaller geographical re-
gion around it. The plot shows curves only for Balanced-Fit
and Rssi. As users enter the network, Balanced-Fit keeps
the offered load at both APs almost constant at around 1.5
mbps (i.e. effective load balancing). On the other hand,
Rssi admits users in place at the AP closest to their cur-
rent location and thus witnesses a greater load imbalance
between AP2 and AP3. The lower average offered load at
AP3 for the Rssi approach is also because AP3 is a corner
AP and by default has fewer users that associate to it.

C.3 Balance Index

Figure 4(c) shows how the balance index in the network
varies during a conference session. Again, as expected,
Balanced-Fit performs near optimal for the given confer-
ence workload. The balance index for the Rssi approach
has a bursty variation following the change in the offered
load at each AP. Comparing with Figure 4(b), we can see
that whenever the difference in the offered load at AP1 and
AP2 is high, the balance index drops to 0.6 or below, when
using Rssi.

C.4 Discussion

The performance of the admission control heuristics on
individual user bandwidth allocation and overall network
utilization reflects the following characteristics of the con-
ference room environment. First, since it is a constrained
space where APs are symmetrically placed in the network,
users are equally likely to associate with any one of the
APs. Second, since the percentage of users that contribute
to significantly larger data transfers is small, an even user
distribution is almost as good as a load balanced approach.
Therefore, Rssi performs almost as well as Balanced-Fit.
On the other hand, such workloads do not favor the use of

Best-Fit and First-Fit approaches, which are both designed
to perform better for a greater variation in the workload
distribution among APs.

One implication of the above results concerns capacity
planning. Although network designers for such conference-
room scenarios may deploy APs to symmetrically cover the
space, it may not be sufficient to achieve load balancing. If
the network witnesses a greater proportion of heavy users
at one particular AP, resulting in a greater disparity in the
workload distribution among APs, intelligent load balanc-
ing schemes will need to be implemented.

Other PAWN settings like airport gate areas and lounges
physically and geographically resemble a conference-room
network due to the existence of a constrained space and
scheduled times of use. However, the two scenarios have
important differences. First, users are more likely to local-
ize themselves to certain particular areas of the network
for various reasons such as the proximity of power outlets,
or geographic constraints of other services (e.g., gate areas
with arriving or departing flights). Second, such networks
are highly likely to see a greater variation in workload dis-
tribution among APs (e.g., a large group of MP3 down-
loads, online games) resulting in hot-spots. In such cases,
using Rssi for allocating users to APs will lower the nor-
malized bandwidth of users and leave the network under-
utilized. Therefore, the network will benefit by implement-
ing dynamic load balancing.

D. Scenario 2 — Corporate Office Building

The second scenario we study is a four-week trace col-
lected at a corporate wireless network deployed in three
research buildings at the IBM T. J. Watson Research Cen-
ter [5]. This is a larger trace than the conference network
both in terms of the size of the network and the user pop-
ulation. In this trace, Balazinska et al., found that:

o A bulk of the data transfers (over 40%) is accounted for
by a very small fraction of the users (< 10%).

o The user data rates and session durations both follow a
power law.

o User arrivals follow the regular office schedule.

o Heavy user workloads have average data transfer rates of
about 1 Mbps and light users have data rates of around 10
kbps.

We model the busiest and largest building in the cor-
porate network for which detailed characterizations were
available. We model a single floor of the building spanning
an rectangular area of 50m by 20m with 8 APs. Four APs
are placed in the four corners of the floor and the other 4
APs are symmetrically placed in the hallways in the mid-
dle. Using the power law distribution of user workloads in
the trace, our network has 10% of heavy users.

Figure 5 presents our results for normalized bandwidth,
offered load, and balance index between the hours of 11 am
to 1 pm, which witness peak user activity during the day.

Ideally, we would like to have evaluated the three simu-
lation scenarios using the same invariants. Unfortunately
however, the traces have been independently analyzed by
three different research groups and are not similar in their
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characterization. For example, the corporate PAWN trace
does not characterize user arrivals during the day. To ad-
dress this situation, we find the parameter in the trace that
best captures the system load — percentage of heavy users
in the network.

D.1 Bandwidth Allocated to Users

We now study the variation in normalized bandwidth
as a function of the percentage of heavy users in the net-
work. Figure 5(a) plots the normalized bandwidth of users
as the number of heavy users in the system increases. As
in the conference-room case, Balanced-Fit and Rssi outper-
form the other admission control approaches, albeit only
by a 10% margin. Furthermore, as the percentage of heavy
users in the system increases, the normalized bandwidth
provided by Best-Fit first decreases and then increases (at
over 60% heavy users). First-Fit also sees similar improve-
ment, albeit only with a much higher percentage of heavy
users.

This phenomenon can be explained as follows. Best-Fit
tries to tightly pack an AP until it reaches peak capacity.
As the number of heavy users increases, the normalized
bandwidth decreases until such time that Best-Fit allocates
them to the AP that is being filled. However, once this AP
reaches a capacity at which no further heavy user request
can be admitted, Best-Fit starts filling the next AP that
has least capacity greater than this user’s request. This
causes the normalized bandwidth to rise again. First-Fit
sees a delayed improvement because it takes longer to fill-
up an AP to capacity.

D.2 Offered Load at the AP

Figure 5(b) shows the variation in offered load in the net-
work at two APs, AP1 and AP4. Again, the plot compares
Balanced-Fit and Rssi approaches only. As would be ex-
pected, Balanced-Fit keeps the offered load relatively equal
at both APs except during sudden bursts in the offered load
(just before t = 4000). However, even such situations sta-
bilize rather soon. The Rssi approach, on the other hand,
performs poorly with load differences of over 80% between
the two APs (at ¢ = 5000). Further, it can be seen that
the offered load does not stabilize with Rssi because users
are not reallocated from AP4 to AP1.

D.3 Balance Index

Figure 5(c) shows the balance index of the network as a
function of time. Balanced-Fit spreads the load in the best
way possible and hence outperforms the other heuristics,
while Best-Fit and First-Fit perform little or no load bal-
ancing by preferentially loading an AP. As the percentage
of heavy users is higher, the net offered load at these APs
is also higher, resulting in a lower balance index than in
the conference-room case.

D.4 Discussion

Our performance evaluation of the corporate WLAN sce-
nario indicates that the Best-Fit and First-Fit heuristics
perform well when there is a greater proportion of heavy



data transfers in the network. The trace [5] we used wit-
nessed that some users (about 10%) on average transfer
over 1 mbps of data, and that average user data rates
follows a power law distribution with exponent 0.85 (i.e.,
1/2°8%). We envision that in the future more users will
have data-intensive average workloads, thus decreasing the
the exponent of this distribution. In such situations, the
performance of First-Fit and Best-Fit heuristics will be
comparable to the Balanced-Fit approach. This is because
as heavy user requests use up significant available capacity
in an AP, both First-Fit and Best-Fit naturally start al-
locating users to other APs, thus gradually spreading the
workload across the network and achieving load balancing.
On the other hand, the Rssi approach is able to provide a
higher normalized bandwidth only as long as the AP has
adequate capacity to accommodate the user request.

E. Scenario 8 — University Campus

The third scenario that we use in our simulation is a
campus WLAN trace collected at several parts of the Dart-
mouth College campus [4]. This is the largest and most
comprehensive trace of a public wireless network spanning
11 weeks and captures the activity of over 2000 users. In
this trace, Kotz et. al., discovered that:

o Residential traffic in dormitories dominate all other traf-
fic.

e Network backup and file sharing contribute to a large
fraction of the generated traffic.

o Cross-subnet roaming frequently occurred.

We note that the areas of campus around the classrooms
are similar to a conference room setting with constrained
space and scheduled times of use. Therefore, we used the
dorm as the PAWN for this scenario. Our network spans
35m by 20m with 5 APs in the coverage area. The place-
ment of APs is based on a simple rectangular geometry —
one AP in each corner and the fifth AP in the center of the
rectangular region.

The study mentions that the dorm had a more or less
constant number of users (about 400, on average) during
the night hours, which are the 10 hours of peak activity.
Therefore, we model a constant user base of 400 users. The
study also observed that during the night hours certain
parts of the dorms were hot-spots, witnessing heavy av-
erage data transfers (e.g., due to high-bandwidth KaZaA
downloads). We model the central AP to be the one that
these heavy users are associated to. As in the corporate
WLAN trace, this trace also unfortunately does not char-
acterize user arrivals and user session activity. Therefore,
in order to effectively vary system load, we vary the num-
ber of per-user (light or heavy) sessions during the 10-hour
period of the simulation. As the number of per-user ses-
sions increases, the offered load in the system increases.
This simulates the effect of increasing user arrivals.

Figure 6 shows our results for normalized bandwidth,
offered load, and balance index for one hour of user activity.
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E.1 Bandwidth Allocated to Users

Figure 6(a) shows the normalized bandwidth of users
as the system load increases. As the load in the system
increases, the normalized bandwidth allocated by Rssi de-
creases steadily. As the number of per-user sessions in-
creases to about 8/hr., the drop in normalized bandwidth
for the Rssi is over 30%. This is because there are a greater
percentage of heavy users at one particular location in the
system. When Rssi is used for associating with an AP in
this hot-spot, the AP is unable to satisfy user requests once
its capacity is fully used. On the other hand, Balanced-Fit
achieves better performance. The normalized bandwidth
provided by the Best-Fit and First-Fit heuristics initially
decreases with increasing load and then increases as these

heuristics start gradually re-allocating users to neighboring
APs.

E.2 Offered Load at the AP

Figure 6(b) plots the variation in offered load as a func-
tion of time across two APs, AP1 and AP3. APl is a
corner AP, whereas, AP3 is the hot-spot AP at the center
of the PAWN which handles a peak offered load of nearly
5 mbps. As in the previous two scenarios, we compare Rssi
and Balanced-Fit only. With association based on Rssi,
this AP quickly gets saturated, leaving the network un-
balanced and denying further user requests. On the other
hand, Balanced-Fit spreads the load among the available
APs keeping it nearly balanced over time.

E.3 Balance Index

Lastly, we study the variation in balance index. Fig-
ure 6(c) shows the variation in balance index as a function
of system load. Again, system load is increased by in-
creasing the average number of per-user sessions per hour.
Balanced-Fit performs the best as it achieves the maxi-
mum load balancing among APs. It is interesting to see
that First-Fit and Best-Fit have very similar performance.
This behavior is a result of the inherent workload distribu-
tion across APs. APs 1, 2, 4, and 5 are all evenly loaded
with the same proportion of light and heavy users, while
AP 3 is the hot-spot, with a greater percentage of heavy
users. Therefore, both First-Fit and Best-Fit are equally
likely to choose the same lightly-loaded AP (1, 2, 4, or 5) to
allocate users to, since there is no inherent ordering among
these APs. Rssi performs better than Best-Fit and First-
Fit, but has an average balance index of 0.6 because of the
heavy load in AP 3.

E.4 Discussion

Among the three traces that we used to populate our
simulation models, the campus dorm trace had the great-
est disparity in user workload distribution among APs.
Two high-level characteristics of the user behavior were:
(i) users have a wide variation in their workloads, and
(i) certain specific regions in the network witness higher-
bandwidth data transfers than others, creating localized
hot-spots. Under such conditions, the Rssi approach fails
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to provide users with their requested bandwidth once the
overloaded AP reaches capacity. Furthermore, it does not
improve the imbalance in the offered load across APs. This
is not the case with the conference-room and corporate
traces where, for a bulk of the trace, users are fairly evenly
distributed across APs, and users have more or less similar
workloads.

We now discuss how the correlation between number of
users and the offered load at an AP can influence the deci-
sion on the admission control heuristic to be used. When-
ever there is a weak correlation between number of users
associated with an AP and the offered load at those APs, as
in the campus and corporate WLAN traces, it creates hot-
spots in the network where the APs are more likely to get
saturated. In such situations, the Rssi approach will not
perform well and the network will benefit from explicitly
re-allocating users using a heuristic such as Balanced-Fit.
On the other hand, if the correlation between number of
users and workload improves and the network has a sym-
metric distribution of APs where users are equally likely to
associate with any AP, Rssi is as effective as Balanced-Fit.

Lastly, we discuss scenarios where the Balanced-Fit may
not perform well in offering high normalized bandwidth to
users. Consider a network where a group of many small
bandwidth requests are followed by a group of large (i.e.
around B/4, where B is the AP’s capacity) requests arrive
in the network. A Balanced-Fit approach would spread the
small requests across all APs keeping the offered load bal-
anced across APs. This form of allocation uses up capacity
nearly equally at all APs, not leaving adequate capacity
anywhere for the second group of large user requests. As
a consequence, the larger user requests cannot be admit-
ted to any of the partially filled APs. In such, situations,
approaches like Best-Fit and First-Fit will more optimally
use the overall network capacity.

VIII. CONCLUSIONS AND ONGOING WORK

This work has been motivated by three key observa-
tions made in three recent PAWN workload characteri-
zation studies: (i) user loads are often time varying and
location-dependent; (ii) user load is often unevenly dis-
tributed across access points (APs); and (iii) the load on
the APs at any given time is not well correlated with the
number of users associated with those APs. In order to ad-
dress this problem, we propose heuristics to adaptively and
dynamically vary the bandwidth allocated to users in the
wireless hop within certain bounds. Furthermore, these
heuristics change user-AP associations and thus alleviate
user congestion at popular locations, providing inter-AP
load balancing.

This paper makes the following contributions:

1. We present the problem of first-hop wireless bandwidth
allocation as a special case of the well-known online load
balancing problem and present three online heuristics for
first-hop bandwidth allocation. These heuristics improve
the degree of balance in the system by over 45% and allo-
cate over 30% more bandwidth to users than current ap-



proaches;

2. We prove that the general offline problem (i.e., where we
have global knowledge of user arrivals and requests) of find-
ing an optimal assignment of users to APs in an arbitrary
network with arbitrarily sized user bandwidth requests, is
NP-complete;

3. We propose three different heuristics for allocating users
to APs based on their bandwidth requirements and evalu-
ate their performance via trace driven simulations.

Our high-level results indicate that for all three scenarios
Balanced-Fit outperforms all the other admission control
heuristics and the base case approach of association based
on received signal strength (Rssi). On average, Balanced-
Fit, allocates over 30% more normalized bandwidth to
users and improves the network balance index by over 45%.
Rssi performs well, in scenarios with even user distribu-
tion across APs and when the number of users and offered
load at the APs are relatively well correlated. Best-Fit and
First-Fit improve in their ability to allocate bandwidth to
users as the proportion of heavy data transfers increases.
To the best of our knowledge, ours is the first study of
wireless LAN bandwidth provisioning incorporating real
WLAN workloads in performance evaluation.
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