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Abstract 
 
While subjective visual experiences are remarkably stable and 
coherent, their underlying data is incomplete and heavily 
influenced by the eyes’ saccadic rhythm. In this work, we 
show that a deep and recurrent neural network can effectively 
reconstruct vibrant images from restricted retinal inputs 
during active vision. Our method includes the creation of a 
dataset for synthetic retinal inputs, containing intensity, color, 
and event-camera-generated motion data. We demonstrate the 
importance of both long-short-term memory and corollary 
discharge signals to image stabilization and the system’s 
sensitivity to noise, corresponding to recent experimental 
findings. Our study contributes to the advancement of realistic 
and dynamic models for image reconstruction, providing 
insights into the complexities of active visual perception. 

Keywords: computational cognition; image reconstruction; 
visual perception. 

Introduction 
Striving to provide a stable and coherent visual experience, 
the human visual system confronts various challenges 
arising from the heterogeneous characteristics of the retina. 
The peripheral retina, characterized by a reduced density of 
cone photoreceptors, exhibits compromised color sensitivity 
and spatial acuity compared to the central fovea (Lee et al., 
2010; Solomon et al., 2005). This reduction in visual fidelity 
is further compounded by the eccentricity increasing size of 
the retinal ganglion cells’ (RGCs) receptive fields, resulting 
in diminished visual accuracy in the peripheral visual field 
(Wandell, 1995). 

A significant factor contributing to limited visual 
representation in the peripheral retina is the RGCs’ center-
surround receptive fields. These fields realize spatial 
compression, primarily transmitting edge-related 
information while neglecting surface details. Consequently, 
neural encoding within both the fovea as well as the 
peripheral visual field tends to prioritize contour-based 
features over a comprehensive representation of the visual 
scene (Wandell, 1995). The visual system addresses these 
limitations through the mechanism of saccadic vision. By 
rapidly directing attention to specific salient points within 
the visual field, the brain can gather detailed information 
about important features while conserving computational 
resources and overcoming the limitations imposed by the 
retinal architecture. Saccadic eye movements function as a 

compensatory mechanism, mitigating the constraints 
imposed by the peripheral retina. This natural adaptation 
contributes to a more precise comprehension of visual 
perception in real-world scenarios. However, this continual 
repositioning poses an enigma: despite the constant motion 
of the eyes and the resulting changes in retinal input, the 
subjective experience of the visual world remains 
remarkably stable and coherent (Bridgeman et al., 1994; 
MacKay, 1973; Melcher, 2011). 

Visual stability, the capacity to sustain a consistent 
perceptual experience during ocular movements, relies on a 
complex set of mechanisms. Trans-saccadic integration 
involves the integration of visual information acquired prior 
to and following saccades, ensuring a smooth and 
uninterrupted perceptual experience (Irwin, 1996; Melcher, 
2011; Melcher and Colby, 2008). Recent studies have 
shown that trans-saccadic integration is not merely a 
collection of isolated snapshots taken during each fixation 
(Stewart and Schütz, 2018; Wolf and Schütz, 2015). 
Accordingly, inter-saccadic motion processing works to 
integrate motion information across successive eye 
movements, contributing to a perception of stability via gaze 
correction (Schweitzer and Rolfs, 2021). Saccadic 
suppression, a neurophysiological process, suppresses visual 
processing during rapid eye movements, preventing blurring 
of the visual scene and maintaining stability (Krekelberg, 
2010). Additionally, Corollary Discharge signals (CD) play 
a crucial role by sending a signal concerning the anticipated 
changes in visual input due to upcoming eye movements. 
CD signals enable anticipatory adjustments that contribute 
to the stability of the perceptual experience (Cavanaugh et 
al., 2016).  

Cohen and colleagues (2020) consider the limitations of 
peripheral as well as saccadic vision under real-world 
conditions and used a virtual reality (VR) setup with human 
observers to explore dynamic real-world environments 
where only the attended parts of the scene were presented in 
color (using eye-tracking system) while the visual periphery 
remained desaturated. Surprisingly, a significant number of 
observers were unaware of drastic alterations to their visual 
world, challenging the conventional understanding of the 
richness and accuracy of perceptual awareness in dynamic, 
active saccadic, and naturalistic viewing conditions (Cohen 
et al., 2020). Their study therefore demonstrates that even 
with partial synthetic information derived from each saccade 
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within the scene, visual perception maintains the impression 
of a rich and colorful world. 

A recent study (Cohen Duwek et al., 2023) proposed a 
computational model that considers both the constrained 
visual information from retinal input and inter-saccadic 
motion information to reconstruct a complete and vividly 
colored image. The researchers utilized a straightforward 
dataset comprising color images and event data recorded by 
an event camera during three fixed-target saccades. 
Although they successfully demonstrated the reconstruction 
of a sharp and colorful image using their model, its 
applicability is limited to simpler datasets with fixed-target 
saccades, and it cannot be extended to more intricate real-
world data involving non-fixed target saccades. In this 
work, we extended this study, allowing the reconstruction of 
stable images from retinal inputs involving saccadic eye 
movements towards points of interest, mimicking active 
vision. To this end, we created a new synthetic dataset 
comprising retinal inputs with both color and motion 
attributes. To facilitate image stabilization, we introduced 
CD signals into a Convolutional Neural Network with long-
short-Term Memory (LSTM) (X. Shi et al., 2015), ensuring 
the creation of visually stable perception from saccadic 
retinal inputs.  

Methods 
In this section, we will first briefly describe the generation 
of retinal inputs, followed by the neural network 
architecture we used to generate a visually stable perception. 
The goal here was to synthetically generate retinal inputs 
during three saccadic eye movements. Retinal input is 
comprised of an achromatic channel emulating the neural 
responses of On-Off center-surround retinal ganglion cells 
(RGCs), a chromatic channel replicating the response of 
color opponent RGCs, and events generated by an event-
camera simulator to simulate rapid intra-saccadic motion. 
To generate those retinal inputs, we computationally 

simulated foveated color maps, an intensity channel, and 
intra-saccadic motion data. The neural network architecture 
we used to generate a visually stable perception from those 
retinal inputs was comprised of four phases: 1) 
Reconstruction of the image intensity from the event frames 
using convLSTM and convolution layers. convLSTMs are 
described in detail in (X. Shi et al., 2015); 2) Prediction of 
the image intensity from the input Laplacian using a Poisson 
solver layer. The derivation of the input’s Laplacian and 
Poisson-driven image reconstruction is described in detail in 
(Cohen Duwek et al., 2021). The reproduced events-based 
intensity map was combined with the predicted intensity 
from the foveated Laplacian of each saccade through a 
convolutional network, resulting in an enhanced intensity 
representation of both outcomes; 3) A U-Net model was 
used to colorize the foveated color inputs along with the 
predicted intensity to reconstruct a fully colored image for 
each saccade. The U-Net model for colorful image 
reconstruction is described in detail in (Cohen Duwek et al., 
2022); and 4) We used the convLSTM neural network to 
predict the final image, derived from the reconstructed 
images of all saccades. The framework schematic is shown 
in Figure 1. In the following few sections, we will describe 
those steps in greater detail. 

Generating retinal inputs 
As was described above, to generate retinal inputs we 

computationally simulated foveated color maps, an intensity 
channel, and intra-saccadic motion data. To this end, Retinal 
inputs were generated from 935 images, from the ImageNet 
dataset (Jia Ding et al., 2009). These images were cropped 
and resized to 200x200 pixels and labeled as scenes. 

We generated four images representing gaze points (the 
initial image, followed by three saccades). Inter-saccadic 
motion data, which is generated during saccades, was 
acquired using a simulated event camera (DVS), which 
generates events upon pixel-level changes in luminance. 

 
Figure 1: Our model schematic for reconstruction and colorization of stable images from 3 saccadic retinal inputs. 
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The locations for the saccadic movements were strategically 
chosen to simulate eye movements toward salient features 
within the image. Identifying these salient points involved 
utilizing the “Good Features to Track” method (J. Shi and 
Tomasi, 1994) and applying K Means with k=3 to those 
points, determining the three most crucial gaze points in 
each scene. The “Good Features to Track” algorithm is a 
corner detection method that identifies points in images with 
significant local intensity changes in multiple directions by 
evaluating the eigenvalues of the structure tensor at each 
pixel and selecting points with sufficiently large eigenvalues 
as distinctive features. We note that other more intricate and 
biological plausible techniques for selecting gaze points 
during motion and when prior knowledge is available were 
recently suggested (Thomas Parr et al., 2021). However, for 
the task of merely scanning a static scene and reconstructing 
a large portion of it, our approach suffices. We defined the 
visual field to be of size 128x128 and each of the four 
images (the initial image and the three saccades) was 
centered around one saccadic target location and labeled as 
saccades. Furthermore, the dataset contains the documented 
x-y coordinates (relative to the scene image) for each 
saccadic target location. 
 
Chromatic Channel. To separate the chromatic and 
achromatic channels, we first converted the saccade images 
from RGB representation to opponent channels RG, BY, and 
the intensity I by using the opponent transformation: 
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where 𝑀!"" is the color opponent transformation matrix in 
which 𝑎 = 0.2989, 𝑏 = 0.587, and	𝑐 = 0.114. To simulate 
the size of the receptive field, being smaller in the fovea and 
larger towards the periphery, we applied Gaussian filters 
with different scales on the opponent image (Perry and 
Geisler, 2002). To replicate the impaired color perception in 
the peripheral vision, we employed a circular mask 
positioned at the centers of each channel (RG, and BY) with 
a radius of 42 pixels, zeroing out all pixels outside the mask. 
 
Achromatic Channel. To simulate the On-Off center-
surround response of RGC in the achromatic channel, we 
applied the discrete Laplacian operator 

	𝐿 = 	!
0 −1 0
−1 4 −1
0 −1 0

' on the intensity channel I as follows: 

 
𝐼#$%#&& = 	𝐼 ∗ 𝐿 ≈ ∆𝐼.                 (2) 
 
Intra-saccadic Motion.  We generated a video of the visual 
field moving across 3 gaze points starting from the center of 
the scene and relocating to the target saccadic locations. We 
used the V2E DVS emulator (Yuhuang Hu et al., 2021) to 
generate realistic synthetic events from the intensity frames, 
producing a list of events for each saccade. 

V2E transforms typical video footage, captured by 
conventional frames-driven cameras, into data resembling 
the output of a dynamic vision sensor (DVS). V2E generates 
pixel-level events, where the intensity change surpasses a 
set threshold. As some saccades are shorter than others, and 
the event count relies on pixel alterations, the quantity of 
events between two intensity frames may vary. During each 
saccade, events occurring between two consecutive event 
frames were combined and summed into a single event 
frame. This process resulted in 15-50 event frames for each 
saccade, with variations based on the saccade duration 
influenced by the distance between the two gaze points. An 
event frame was constructed by initializing an empty 
128x128 array and processing all events within the time 
frame between two consecutive timestamps of intensity 
frames. For each positive event, +1 (increased luminance) 
was added to the appropriate pixel location, and -1 for each 
negative event (decreased luminance). Images with videos 
that did not have enough frames, and therefore event frames, 
were discarded.  We summed each 5 event frames in each 
saccade, into a single integrated event frame, producing 3-5 
integrated event frames per saccade. Zero filled frames were 
added to maintain the structure of 5 frames per saccade. 
 
Corollary discharge signals. CD signals are neural signals 
that accompany voluntary movements (here, the saccades), 
providing the brain with information about the intended 
motor commands (Melcher, 2011). The CD signals were 
represented here as translation vectors in Cartesian 
coordinates (x, y). With those signals, every event frame 
undergoes translation to the target location relative to the 
initial image (scene). Both the achromatic and chromatic 
channels were also adjusted using the identity CD vector. 

Model Description 
The network was adversarially trained with a 

discriminator to produce realistic results. Our goal was to 
reduce the cumulative loss functions across each stage of the 
Generator while enhancing the Discriminator's capability to 
distinguish between "fake" and "real" instances. The loss of 
the generator is the mean of the losses of the results of each 
saccade, forcing the network to also learn to reconstruct an 
image from each saccade, as well as utilize several saccades 
to improve its final reconstructed result. 
 
Intensity prediction. For each saccade, we took the intra-
saccadic event frames and used the real-world locations we 
saved from each video frame’s center in the scene, to 
reallocate the event frames to their scene location in a 
200x200 empty image. The image was then cropped to its 
middle 128x128 pixels. We summed each 5 event frames in 
every saccade into a single integrated event frame, 
producing 3-5 integrated event frames per saccade. Zero-
filled frames were added to maintain the structure of 5 
integrated event frames per saccade. Using the integrated 
event frames in real-world coordinates (by translation via 
the CD vectors), we reconstructed the intensity using a 
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ConvLSTM neural network, followed by convolution 
layers. Zero-filled frames were filtered out. The network 
was trained using Mean Absolute Error (MAE) as its loss 
metric. The foveated intensity Laplacian of each saccade 
was then used to predict the intensity of the image’s center 
using the Reconstruction Layer (i.e., this layer performs 
Poisson Integration). The predicted intensity images, 
derived from each two successive saccades, were combined 
using a convolutional layer to predict an improved intensity 
map. The loss was calculated at this stage using MAE loss 
between the ground truth (GT) and the predicted intensity. 
 
Image colorization with U-Net. Using the predicted 
intensity along with the foveated opponent (OPP) color 
channels as inputs, a U-Net architecture network was used 
to predict the fully colored image (Isola et al., 2017; 
Ronneberger et al., 2015). 
Two loss functions were used on the results of the 
colorization:  
 
ℒ!"" = 𝜆!""(𝑀𝐴𝐸>𝑂', 𝑂@'A +𝑀𝐴𝐸>𝑂(, 𝑂@(A)        (3)    
          
where MAE was derived from the predicted and the original 
image’s color channels.  
The second loss includes both SSIM a LPIPS metrics 
(described below in detail): 
 
ℒ)*+ = 𝜆,,-. D1 − 𝑆𝑆𝐼𝑀>𝐼)*+ , 𝐼G)*+AH 	

+ 𝜆/"-",𝐿𝑃𝐼𝑃𝑆>𝐼)*+ , 𝐼G)*+A 

 
(4) 

  
where 𝐼#$% = 𝑜𝑝𝑝2𝑟𝑔𝑏(𝑂&, 𝑂', 𝑂() and  
𝐼>#$% = 𝑜𝑝𝑝2𝑟𝑔𝑏(𝑂?&, 𝑂?', , 𝑂?(). 
 
Saccadic integration. At this point, we possess four 
reconstructed color images, each predicted through a 
distinct saccade. By utilizing ConvLSTM layers in 
conjunction with additional convolution layers, we 
generated our final  result. With each saccade, predictions 
were integrated, and used to enhance the result accuracy. 
 
Generative adversarial network (GAN). We trained our 
reconstruction and colorization convolutional neural 
networks using an adversarially trained generator and a 
discriminator, intending to optimize the loss functions 
previously mentioned. We trained two different models, one 
using all the inputs mentioned (Foveated OPP, and 
integrated event frames), and the second model trained 
without the integrated event frames (i.e., no events). Both 
models were trained using input from three successive 
saccades. We employed an adversarially trained 
discriminator, denoted as D, utilizing a convolutional 
PatchGAN classifier (Isola et al., 2017). The primary 
objective of D is to discern the "fake" images generated by 
the trained Generator, denoted as G. The Generator 
produces reconstructed outputs, denoted as y, which are 
intentionally crafted to be indistinguishable from "real" 

images denoted as x. The adversarial interplay involves D 
striving to maximize its ability to identify fake images, 
while G endeavors to minimize this detectability. The GAN 
loss was computed using: 
 
ℒ0*12(𝐺, 𝐷) = 𝔼3,5[𝑙𝑜𝑔𝐷(𝑥, 𝑦)]

+ 𝜆6𝔼3,*(3)log	[(1
− 𝐷(𝑥, 𝐺(𝑥))] 

 
(5) 

 
Here, x represents the retinal input, y is the ground truth 
image transformed into the opponent color space, 𝔼 denotes 
the expected value, and 𝜆6 serves as a gain parameter. The 
first term of Equation (5) involves presenting GT examples 
to the discriminator, while the second term introduces fake 
examples generated by the Generator. 
In conclusion, the ultimate end-to-end minimization 
objective is expressed as: 
 
𝐺∗ = argmin

*
max
6

ℒ0*12(𝐺, 𝐷) +
													ℒ)*+ +ℒ!""+ℒ:! + ℒ∇" 

 
(6) 

Implementation details 
The implementation of the model utilized TensorFlow and 
was trained on an NVIDIA A100 GPU featuring 80GB of 
RAM. The dataset, which was created from 935 ImageNet 
images, was partitioned into three sets: 70% for training, 
15% for validation, and 15% for testing. We set 𝜆∇" = 100, 
𝜆<= = 25, 𝜆!"" = 150,	𝜆,,-. = 100,	and 𝜆6 = 10 over the 
whole experiment, for the loss functions. Each model tested 
was trained for 200 Epochs, with a batch size of 8, and an 
initial learning rate of 0.001. 

Similarity metrics 
In this work, we used four metrics to assess our model. 
SSIM serves as a metric for image similarity, with a higher 
score denoting increased likeness to the reference image. 
LPIPS (Zhang et al., 2018) functions as a perceptual metric 
for assessing image quality, wherein a lower score signifies 
a more favorably perceived image quality. Peak Signal-to-
Noise Ratio (PSNR) quantifies the quality of a reconstructed 
signal by comparing it to the original, measuring the ratio of 
peak signal power to noise power. Additionally, 
CIEDE2000 (Luo et al., 2001) is a color difference metric 
that gauges perceptual color disparities between samples, 
considering attributes such as lightness, chroma, and hue.  

Results 
Figure 2 illustrates the original ground truth (GT) images 
alongside the reconstructed images produced by two 
training methods: with and without event data. We observe 
a clear improvement in the output quality with each saccade, 
going from a somewhat blurry image to a more detailed one 
over time. Notable improvements are especially visible in 
the colors. For example, in the bird picture, the top right 
corner lacks color in the first saccade but becomes gradually 
greener in subsequent saccades. Similarly, in the second 
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image, the bottom right corner starts with missing color but 
becomes more vibrant with each saccade. The facial features 
of the child also become sharper and more detailed in each 
saccade, evolving from an initially blurry appearance. Table 
1 shows the scores of the SSIM, LPIPS, PSNR, and 
CIEDE2000 similarity metrics. The scores for the input 
(Input column, Table 1) were computed by transforming the 
masked color channels (RG, BY) and the reconstructed 
intensity channel (I, after performing Poisson integration on 

this channel) into the RGB color space. Table 1 indicates 
that the outcomes for input involving three saccades yield 
the highest scores, showing improved SSIM and LPIPS 
scores with events. Beginning with an input of the first 
saccade, we observe enhancements in the reconstruction 
quality with each additional saccade. Interestingly, better 
results were achieved without events in the PSNR and 
CIEDE2000 metrics, indicating the importance of events for 
perceptual similarity. 
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Figure 2: Chosen image reconstructions with and without events, with and without noise and when 1-3 saccades were used for 

reconstruction. 
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Sensitivity to Noise 
We further tested the sensitivity of the CD signals to noise 
by introducing Gaussian noise (standard deviation (𝜎) of 1 
and a mean of 0, ranging from -4 to 4 pixels) to the CD 
vectors, affecting both the relocation process of the 
integrated event frames, as well as the foveated saccade 
images. The noise introduced a random displacement of up 
to 4-pixel in each axis for each gaze point. The randomness 
in the noise distribution influences the precise positioning of 
the inputs within the scene. Table 1 demonstrates a 
decreased quality across all evaluation scores, suggesting 
that predictions are heavily influenced by CD noise. 
Furthermore, Figure 2 demonstrates that images 
reconstructed with noisy CD vectors exhibit a slight 
blurriness.  

 Discussion 
In this study, we demonstrate that a deep recurrent neural 

network can effectively reconstruct vibrant images from 
restricted retinal inputs during active vision, involving 
saccadic eye movements directed towards points of interest 
in the scene. Our method includes the creation of a synthetic 
dataset that incorporates retinal inputs containing 
information on intensity, color, and motion. Significantly, 
the incorporation of both Long-Short-Term-Memory 
(LSTM) and CD signals stands out as a crucial element in 
the model, contributing to the enhancement of image 
stabilization through eye movements. The model can 
reproduce the results observed by Cohen and colleagues 
(Cohen et al., 2020), indicating that observers can perceive a 
colorful scene even when colors are eliminated from their 
peripheral field of view in each saccade. A more recent 
study (Cohen Duwek et al., 2023) demonstrates that 
peripheral color can be perceived (predicted) based on 
achromatic input in the peripheral visual field. However, 
this model was designed for fixed non-saccadic images. In 
contrast, our demonstration illustrates that deep neural 
networks can achieve both colorization of the peripheral 
visual field and stable perception. This is achieved by 
incorporating saccadic integration, implemented as a Long 
Short-Term Memory (LSTM) component, and utilizing the 
Corollary Discharge (CD) signal for stabilization. In this 
scenario, convolutional LSTMs (X. Shi et al., 2015) serve 
the role of a functional visual memory (Stewart and Schütz, 
2018) in the context of trans-saccadic integration. This 

function potentially plays a crucial role in achieving both 
high visual accuracy in the peripheral region and the 
stabilization of vision across saccades. 
We assessed two configurations of the model— one with 
event data (representing intersaccadic motion) and one 
without event data— using four distinct similarity matrices 
(SSIM, LPIPS, PSNR, CIEDE2000). Interestingly, the 
model configuration with events outperformed the model 
without events in terms of SSIM and LPIPS. However, it 
exhibited lower performance in both PSNR and 
CIEDE2000, indicating the importance of events' 
contribution to perceptual similarity. Additionally, we 
introduced noise to the CD vectors, demonstrating the 
model's sensitivity to lesser controlled conditions. 
Recognizing the influence of noise on the precision of 
relocation is crucial for interpreting the model's 
performance in the presence of more unpredictable inputs. 
Our findings uncover the importance of accurate Corollary 
Discharge (CD) signals. This outcome aligns with an 
experimental study conducted by Cavanaugh and colleagues 
(Cavanaugh et al., 2016). In their research, they eliminated 
the CD signal in old-world monkeys and illustrated the 
crucial role of this signal in the monkeys' perception during 
saccadic movements. Our model, currently trained 
exclusively on datasets with three saccades, could benefit 
from an expansion of the dataset to include varied numbers 
of saccades. This adjustment will probably further enhance 
the model's adaptability to diverse scenarios, allowing it to 
handle a broader range of input variations and better 
simulate the complexities of real-world visual processing. 
While our model showed significant capabilities in 
simulating retinal input based on three saccades, introducing 
variability in the training set could uncover patterns and 
features that contribute to improved generalization across 
various eye movement scenarios. 

This research represents a significant step forward in 
understanding and replicating the dynamics of active vision 
within the context of image reconstruction. By integrating 
saccadic integration, CD signals, LSTM, and colorization, 
our study contributes to the advancement of realistic and 
dynamic models for image reconstruction, providing 
insights into the complexities of visual perception, 
particularly in scenarios where active vision processes are 
essential. 
  

  
1 Saccade 2 Saccades 3 Saccades   

No Events With Events No Events With Events No Events With Events  
Input No 

Noise 
With 
Noise 

No 
Noise 

With 
Noise 

No 
Noise 

With 
Noise 

No 
Noise 

With 
Noise 

No 
Noise 

With 
Noise 

No 
Noise 

With 
Noise 

SSIM (%) 59.42  75.62  71.65  77.86  73.75  78.39  73.17  81.05  75.08  80.63 73.68  82.78  75.88  
LPIPS (%) 53.54  30.32  31.69  27.35  31.21  26.22  28.01  24.13  28.52  22.92  25.27  21.73  26.67  
PSNR (dB) 17.01  23.22  22.74  23.57  23.24  23.72  23.08  24.04  23.5  25.19  24.15 dB 25.17  24.39 dB 
CIEDE2000 13.72 6.51 6.92 6.52 6.7 6.26 6.59 6.10 6.38 5.3 5.75 5.31 5.66 
 
Table 1: Reconstruction image evaluation metrics. Higher values of SSIM and PSNR, and lower values of LPIPS and CIEDE2000 
indicate higher similarity. 
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