
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Foot-mounted Pedestrian Inertial Navigation Systems for Self-contained Tracking

Permalink
https://escholarship.org/uc/item/8g16b9x3

Author
Jao, Chi-Shih

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g16b9x3
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Foot-mounted Pedestrian Inertial Navigation Systems for Self-contained Tracking

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mechanical and Aerospace Engineering

by

Chi-Shih Jao

Dissertation Committee:
Professor Andrei M. Shkel, Chair

Professor Solmaz S. Kia
Professor Sharad Mehrotra

2023

© 2023 Chi-Shih Jao

DEDICATION

To the brave and selfless firefighters and first responders who risk their lives every day in
dangerous situations to keep our communities safe, you are the true heroes of our society.

ii

TABLE OF CONTENTS

Page

LIST OF ABBREVIATIONS viii

LIST OF FIGURES xii

LIST OF TABLES xxiv

LIST OF ALGORITHMS xxvi

ACKNOWLEDGMENTS xxvii

VITA xxviii

ABSTRACT OF THE DISSERTATION xxxii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Pedestrian Localization in Extreme Scenarios 1
1.1.2 Navigation System Requirements for Worst-case Scenarios 2

1.2 Background . 5
1.2.1 A Brief History of Pedestrian Inertial Navigation Systems 5
1.2.2 Why Foot-mounted IMUs? . 6
1.2.3 Zero-velocity Update Algorithm . 8
1.2.4 Traditional ZUPT-aided INS . 9

1.3 Problem Statement . 13
1.3.1 Challenges on Foot-mounted Sensors 14
1.3.2 Challenges on Algorithm Assumptions 17
1.3.3 Challenges on Estimation Filter . 18

1.4 Literature Review . 19
1.4.1 Enhancements On Motion Sensor . 19
1.4.2 Enhancements On Algorithm Assumption 21
1.4.3 Enhancements On Estimation Filter 23

1.5 Thesis Overview . 32

iii

2 On Motion Sensor − Overcoming Insufficient Sensor FSR and Bandwidth 33
2.1 Introduction . 33
2.2 Experimental Investigation of FSR Requirements 34
2.3 Confirmation Using Pedestrian Simulation Model 39

2.3.1 An Analytical Walking Model Based on an Inverted Pendulum 40
2.3.2 Synthesizing Noise-Free IMU Readings 43
2.3.3 IMU Noise Model . 44
2.3.4 Comparing Simulated and Experimental Results 48

2.4 Algorithmic Reconstruction of Saturated Signals 51
2.4.1 Properties of Saturated Foot-mounted IMU Measurements 52
2.4.2 A Reconstruction Filter . 55
2.4.3 Experimental Validation . 66

2.5 System-Level Enhancement Using Prioritizable IMU 71
2.5.1 Measurement Model for Multiple Inertial Sensors 72
2.5.2 Alignment of Multiple Inertial Sensors 73
2.5.3 Prioritization Mechanism . 74
2.5.4 Experimental Validation . 77

2.6 Conclusion . 80

3 On Motion Sensor − Mitigating Thermal-Induced Errors 81
3.1 Introduction . 81
3.2 Thermal Compensation Using a Neural Network 81

3.2.1 Sensor Measurement Model . 82
3.2.2 Thermal-induced Errors . 82
3.2.3 Back-Propagation Neural Network 85
3.2.4 Thermal-compensated ZUPT-aided INS 86

3.3 Experimental Validation . 88
3.3.1 Experimental Setup . 88
3.3.2 Experimental Results . 90

3.4 Conclusion . 91

4 On Algorithm Assumption − Reinforcing Stance Phase Detection 92
4.1 Introduction . 92
4.2 False Alarm in Traditional IMU-based Detection 93
4.3 Aiding by a Dynamic Vision Sensor . 94

4.3.1 Dynamic Vision Sensor Overview . 94
4.3.2 Foot-mounted Dynamic Vision Sensor 95
4.3.3 DVS-aided Zero Velocity Detection (DVS-SHOE) 101
4.3.4 Experimental Results . 102

4.4 Aiding by Downward-facing Range Sensor 107
4.4.1 Detector Derivation With General Likelihood Ratio Test 107
4.4.2 Performance Evaluation . 109

4.5 Conclusion . 114

iv

5 On Algorithm Assumption − Bypassing Binarism by Using Adaptive Covariance 115
5.1 Introduction . 115
5.2 ZUPT-aided INS Using FIBA Covariance . 116

5.2.1 Concept Overview . 116
5.2.2 Modeling Instability of Foot Dynamics 118
5.2.3 The Foot-Instability-Based Adaptive (FIBA) Covariance 123
5.2.4 Hyper-Parameter Selection . 124
5.2.5 Discussion . 126
5.2.6 The Zero-velocity Measurement Model 129

5.3 Experimental Validation . 133
5.3.1 Different Traveling Speeds . 134
5.3.2 Different Terrains . 136

5.4 Conclusion . 138

6 On Estimation Filter − Increasing Yaw Angle Observability 140
6.1 Introduction . 140
6.2 ZUPT-aided INS Augmented by Self-contained Vision-based Foot-to-foot Mea-

surements . 141
6.2.1 Foot-to-foot Kinematics . 142
6.2.2 Structure of the EKF States . 143
6.2.3 Prediction Model: Strapdown Inertial Navigation using Dual IMUs . 144
6.2.4 Measurement Model . 145

6.3 Simulation and Experimental Results . 148
6.3.1 Simulation Results . 148
6.3.2 Experimental Results . 149

6.4 Conclusion . 156

7 On Estimation Filter − Compensating Vertical Position 157
7.1 Introduction . 157
7.2 ZUPT-aided INS Augmented With an Altimeter 158

7.2.1 EKF Prediction Step . 158
7.2.2 EKF Update Step . 159

7.3 Analytically Predicting Vertical Displacement Error 161
7.3.1 Estimation of Error Covariance in the Down Direction 162
7.3.2 Simulation and Experiment . 166

7.4 A Hybrid Barometric/Ultrasonic Altimeter 170
7.4.1 Ultrasonic Altimeter . 171
7.4.2 Hybrid Altimeter . 177
7.4.3 Experimental Verification For Hybrid Altimeter 187

7.5 Real-Time Implementation of ZUPT-Altimeter/aided INS 197
7.5.1 The Sugar-Cube Navigation Platform 199
7.5.2 Real-time Performance Evaluation 201

7.6 Conclusion . 203

v

8 On Estimation Filter − Bounding Position Error With Self-Contained Approach 205
8.1 Introduction . 206
8.2 Integrating Deterministic, Opportunistic, and Cooperative Functionalities . . 207

8.2.1 Deterministic . 208
8.2.2 Cooperative . 213
8.2.3 Opportunistic . 214
8.2.4 The EKF for PINDOC . 216

8.3 System Hardware . 217
8.3.1 Lab-On-Shoe Platform . 217
8.3.2 LTE Receivers and Processing Modules 219
8.3.3 Cooperative UWB Modules . 219

8.4 Experiment Validation . 220
8.4.1 Performance Metrics . 221
8.4.2 Experiment #1: One Moving Agent, Two Stationary Agents 223
8.4.3 Experiment #2: Three Moving Agents 229

8.5 Conclusion . 233

9 On Estimation Filter − SLAMing With UWB and Foot-mounted IMU 234
9.1 Introduction . 234
9.2 The Original UWB-Foot-SLAM . 235

9.2.1 Algorithm Design . 236
9.2.2 System Design . 242
9.2.3 Experimental Validation . 245

9.3 UWB-Foot-SLAM2 . 254
9.3.1 Algorithm Design . 255
9.3.2 System Design . 272
9.3.3 Experimental Validation . 275

9.4 Conclusion . 289

10 Conclusion 291
10.1 Contribution of the Dissertation . 291
10.2 Future Research Directions . 296

10.2.1 Boosting FSR and Bandwidth of Inertial Sensors 296
10.2.2 Enhancing Stance Phase Detection With Deep/Machine Learning . . 298
10.2.3 Continuing FIBA Covariance . 299
10.2.4 Improving Hybrid Ultrasonic/Barometric Altimeters 301
10.2.5 Extending UWB-Foot-SLAM Framework 302
10.2.6 Foot-mounted-INS-Enabled Mapping and Path Planning 306

10.3 Commcercializable Solution: emergency Firefighter Indoor Navigation Sys-
tems (eFINS) . 306

Bibliography 318

vi

Appendix A Pedestrian Navigation Testbeds 339
A.1 Lab-On-Shoe Platform . 339
A.2 Sugar-Cube Platform . 417

Appendix B MATLAB Codes 493
B.1 ZUPT-aided INS With Sensor Fusion . 493
B.2 Pedestrian Navigation Simulation . 518
B.3 Custom Libraries . 524

Appendix C List of Vendors 575

vii

LIST OF ABBREVIATIONS

Page

5G Fifth Generation . 4
AC Alternate Current . 23
AcRW Acceleration Random Walk . 13
AMV Acceleration-Moving Variance . 48
ANN Artificial Neural Network . 311
AoA Angle of Arrival . 27
APUAVD International Conference Actual Problems of Unmanned Aerial Vehicles

Developments . 320
ARE Angular Rate Energy . 21
ARW Angular Random Walk . 13
ASPIN Autonomous Systems Perception, Intelligence, & Navigation 219
BPNN Back-Propagation Neural Network 21
CAD Computer-Aided Design . 151
CCDC Chinese Control And Decision Conference 336
CEP Circular Error Probable . 48
CMOS Complementary Metal-Oxide Semiconductor 352
CNN Convolutional Neural Network . 22
CoM Center of Mass . 41
CONECCT International Conference on Electronics, Computing and Communication

Technologies . 332
COTS Commercial-Off-The-Shelf . 5
CPU Central Processing Unit . 221
CVPR Computer Vision and Pattern Recognition Conference 324
DCM Direction Cosine Matrix . 10
DIO Deep-Inertial Odometry . 6
DNN Deep Neural Network . 206
DoA Direction-of-Arrival . 215
DoF Degree of Freedom . xxxii
dps degrees per second . 86
DVS Dynamic Vision Sensor . 92
ECC European Control Conference . 333
EFIR Extended Finite Impulse Response 29
EKF Extended Kalman Filter . xxxiii
EMG ElectroMyoGraphy . 22
ENC European Navigation Conference 323
FIBA Foot-Instability-Based Adaptive . 116
FOV Field Of View . 95
FPS Frame Per Second . 352
FSR Full-Scale Range . xxxii
FUSION 2018 21st International Conference on Information Fusion 332
GigE Gigabit Ethernet . 151
GLRT General Likelihood Ratio Test . 21

viii

GNSS Global Navigation Satellite Systems 4
GPR Gaussian Process Regression . 80
HAR Human Activity Recognition . 299
HHR Heuristic Heading Compensation 24
HMM Hidden Markov Model . 22
I2C Inter-Integrated Circuit . 200
ICAR International Conference on Advanced Robotics 333
ICCAS International Conference on Control, Automation and Systems . . . 326
ICCSEC International Conference on Computer Systems, Electronics and

Control . 327
ICEMI International Conference on Electronic Measurement & Instruments 336
ICIAR International Conference Image Analysis and Recognition 323
ICINIS International Conference on Intelligent Networks and Intelligent

Systems . 334
ICINS Saint Petersburg International Conference on Integrated Navigation

Systems . 335
ICIT International Conference on Industrial Technology 319
ICRA International Conference on Robotics and Automation 323
ICVS International Conference on Computer Vision Systems 335
ID IDentification . 239
IDE Integrated Development Environment 200
IFITA International Forum on Information Technology and Applications . 325
IJERTCS International Journal of Embedded and Real-Time Communication

Systems . 320
IMU Inertial Measurement Unit . xii
INERTIAL International Symposium on Inertial Sensors and Systems 319
INS Inertial Navigation Systems . xii
INSS International Conference on Networked Sensing Systems 332
ION GNSS+ International Technical Meeting of the Satellite Division of The Institute

of Navigation . 318
ION ITM International Technical Meeting of The Institute of Navigation . . . 319
IPIN International Conference on Indoor Positioning and Indoor

Navigation . 318
IPSN International Symposium on Information Processing in Sensor

Networks . 328
IROS International Conference on Intelligent Robots and Systems 328
ISISS International Symposium on Inertial Sensors and Systems 332
ITNEC Information Technology, Networking, Electronic and Automation

Control Conference . 328
KF Kalman Filter . 29
LCE Loop-Closure Error . xxiii
LEO Low Earth Orbit . 4
LiDAR Light Detection And Ranging . 4
LTE Long-Term Evolution . 4
LOS Line-Of-Sight . 206

ix

LoS Line-of-Sight . 241
LR Likelihood Ratio . 119
LSTM Long Short-Term Memory . 22
MAC Media Access Control . 258
MAE Mean Absolute Error . 283
MAG MAGnitude . 21
MEMS Micro-Electro-Mechanical-System 5
MetroAeroSpace International Workshop on Metrology for AeroSpace 330
MIMU Multi-IMU . 24
MSE Mean Squared Error . 85
MV Moving Variance . 21
NI National Instruments . 219
NIOSH National Institute for Occupational Safety and Health 1
NLOS Non-Line-Of-Sight . 29
NLoS Non-Line-of-Sight . 241
PCB Printed Circuit Board . 20
PDOP Position Dilution Of Precision . 252
PF Particle Filter . 29
PINDOC Pedestrian Indoor Navigation system integrating Deterministic,

Opportunistic, and Cooperative functionalities 206
PLA PolyLactic Acid . 243
PLANS Position, Location and Navigation Symposium 318
PM Power Metric . 219
PPE Person Protective Equipment . 4
RF Radio Frequency . 4
RFID Radio Frequency IDentification . 4
RMSE Root Mean Square Error . 48
RRW Rate Random Walk . 13
RSS Receiver Signal Strength . 4
RTT Round-Trip Time . 27
SAN Synthetic Aperture Navigation . 206
SD Standard Deviation . 14
SHOE Stance Hypothesis Optimal dEtection 21
SHS Step and Headings System . 6
SLAM Simultaneously Localization And Mapping xxxiv
SoftCOM International Conference on Software, Telecommunications and

Computer Networks . 328
SONAR SOund Navigation And Ranging 26
SPCOM International Conference on Signal Processing and Communications 323
SPI Serial Peripheral Interface . 77
spm steps per minute . 77
SVM Support Vector Machine . 22
SWaP+C Size, Weight, Power, and Cost . 15
TDoA Time Difference of Arrival . 29
TEC Thermal Electric Cooler . 82

x

ToA Time of Arrival . 27
ToF Time of Fly . 29
UART Universal Asynchronous Receiver-Transmitter 217
UbiComp Ubiquitous Computing . 331
uFINS Ultimate Foot-mounted Inertial Navigation System 11
UKF Unscented Kalman Filter . 29
UPINLBS Ubiquitous Positioning, Indoor Navigation, and Location Based

Service . 320
USRP Universal Software Radio Peripheral 219
UWB UltraWide Band . xxi
VDOP Vertical Dilution Of Precision . 228
VRW Velocity Random Walk . 13
WCSP Wireless Communications and Signal Processing 337
WPNC Workshop on Positioning, Navigation and Communication 325
ZARU Zero Angular Rate Update . 24
ZUPT Zero velocity UPdaTe . xii

xi

LIST OF FIGURES

Page

1.1 A photo of a severe structural fire that occurred on December 3 1999 in
Worcester, Massachusetts [52]. 3

1.2 INS and SHS. An INS computes the full trajectory of a unit in 3D, represented
with solid line with position dots, whilst an SHS deals only with gross step
vectors in 2D, marked with arrow sequence [75]. 7

1.3 Illustration of a human gait cycle [81]. 8
1.4 Histograms of accelerometer and gyroscope FSR and bandwidth of 42 different

IMUs used in the selected 82 publications related to foot-mounted INS. . . . 15

2.1 Experimental setup and experiment scenario discussed in Section 2.2. The
Smartbug IMU (TDK/InvenSense) was attached with a double-sided tape on
a face shield worn by the person. One VN−200 (VectorNav) was attached
with a double-sided tape on chest of a person. The other VN−200 was placed
inside the left pocket. The ADIS16497−3 (Analog Devices) was mounted with
tape on the toe side of the left shoe. 35

2.2 IMU readings at different mounting positions of a human body while per-
forming everyday pedestrian activities. Plots in the same column show IMU
readings collected with the same sensor, and plots in the same row correspond
to measurements obtained within one complete gait cycle while performing
the same activity. 36

2.3 Modeling of walking dynamics using an inverted pendulum in the stance phase
and regular pendulum in the swing phase. 40

2.4 Example profiles of simulated and measured Inertial Measurement Unit (IMU)
readings in two steps, in the case of walking along a straight line. The left
column represents modeled sensors’ readings, and the right column represents
experimental sensors’ readings. 47

2.5 Comparison of navigation accuracy of the Zero velocity UPdaTe (ZUPT)-
aided Inertial Navigation Systems (INS) in the cases of rigid body walker
simulation and experiments with VN−200 IMU. The left column represents
modeling, and the right column represents experiments. 49

2.6 Concept of the developed reconstruction filter. 51

xii

2.7 (a) Experimental setup of controlled indoor navigation experiments. The red
circles indicate foot-landing locations, and the blue arrows illustrate traveling
directions. (b) Experimental setup of foot-mounted IMUs. The VN−200 IMU
(red) was mounted on top of the ADIS16497−3 IMU (silver). Both IMUs were
firmly attached on the toe side of the foot. 52

2.8 (a) Accelerometer readings of one gait cycle collected with an Analog Device
ADIS16497−3 IMU in the first series of experiments discussed Section 2.4.1.
(b) Accelerometer readings collected with a VectorNav VN−200 IMU during
the same time period as (a). (c) Accelerometer readings of one gait cycle
collected with the Analog Device IMU in the second series of experiments
discussed Section 2.4.1. Accelerometer readings collected with the VectorNav
IMU during the same time period as (c). (e) A zoomed-in view of (c), showing
signals pattern in a heel-strike phase of a gait cycle. The areas marked with
striped patterns indicate measurements of accelerations having magnitudes
larger than 16 g. For the VN−200 IMU, these accelerometer’s measurements
could not be correctly measured and are called the immeasurable signals in
this section. (f) A zoomed-in view of (d), showing a saturated signal pattern
in the heel-strike phase. 54

2.9 Three examples of deterministic bias profiles of an IMU having accelerometer’s
FSR of 16 g. 59

2.10 Relationship of saturation area A
′

k and saturation period τk. The blue dots
marked measurements of saturated area A

′

k in the second series of experiments
discussed in Section 2.4.1. The red curve represents saturated areas predicted
by a GP regression discussed in Section 2.4.2. The grey shadow areas indicate
the 3× RMSE of the prediction. The black dashed lines illustrate a 2nd-order
polynomial for curve-fitting the RMSE. The orange bars indicate measurement
distribution. 60

2.11 Examples of raw unsaturated accelerometer’s measurements collected during
the heel-strike phase and artificially saturated measurements that are recon-
structed by the developed reconstruction filter. 64

2.12 (a) Error distribution of artificially saturated accelerometer’s readings dis-
cussed in Section 2.4.2. (b) Error distribution of the artificially saturated
accelerometer’s readings that were reconstructed by the developed reconstruc-
tion filter. 65

2.13 developed navigation framework. 66

xiii

2.14 (a), (b), (c), and (d) display the ground truth and the trajectories estimated
by the ZUPT-aided INS using measurements collected by ADIS16497−3 and
VN−200 in the first series as well as ADIS16497−3 and VN−200 in the second
series, respectively. (e) presents trajectories estimated by the ZUPT-aided INS
using the developed reconstruction filter based on measurements collected by
the VN−200 IMU in the second series of experiments. (f), (g), (h), and (i)
present ground truth and the horizontal step-wise displacements obtained in
the five approaches. The radiuses of the dashed red circles indicate the values
of the corresponding horizontal step-wise Root Mean Square Errors (RMSEs).
(k), (l), (m), (n), and (o) present ground truth and vertical displacement
between two consecutive steps. The red dashed lines marked the vertical
step-wise RMSEs. (f), (g), (h), (i), (j), (k), (l), (m), (n), and (o) contains
exactly 740 blue points. 67

2.15 Concept of the developed Prioritizable IMU array (Prio-IMU). 71
2.16 A prototype of the developed Prio-IMU and the characteristics of the deployed

sensors. 76
2.17 Profiles of accelerometer and gyroscope measurements collected by the Prio-

IMU prototype. 78
2.18 Estimated trajectories of the experiments. 79

3.1 (a) Experimental setup and (b) experimental scenario used in the experiments
described in subsection 3.3. 83

3.2 (a) Relations of z-axis gyroscope biases measured in the experiment presented
subsection 3.2.2 and predicted using the trained BPNN discussed in subsection
3.2.3 versus temperature and temperature rate. The gray transparent plane
indicates zero temperature rates and divides the dataset into cooling and
heating processes. (b) The relationship between sensor biases and temperature
measurements in the dataset shown in (a). Hysteresis effects can be observed.
(c) Relations of biases and temperature rates in the dataset shown in (a). . 87

3.3 Developed temperature-compensated ZUPT-aided INS. The thermal compen-
sation approach uses 12 different BPNNs to separately predict bias drifts and
noise standard deviation variations of accelerometers and gyroscopes along
the 3 axes. In each BPNN, a 2× 1 feature vector including temperature and
temperature is used as input. 88

3.4 Comparison of navigation solutions obtained with a standalone ZUPT-aided
INS and the developed temperature-compensated ZUPT-aided INS when op-
erating in environments where temperatures were static or varying. In the
static case, the standalone ZUPT-aided INS and the developed approach had
similar position RMSE. In the temperature varying cases, our approach out-
performed the standalone ZUPT-aided INS. 89

xiv

4.1 An example of the SHOE statistics in one gait cycle. The gait cycle is split
into two stance phases and a swing phase. The swing phase can be further
divided into three stages. In the first stage, the foot takes off the ground. In
the second stage, the foot travels in the air. In the third stage, the foot lands
on the ground. 93

4.2 The Lab-On-Shoe platform integrated with DVS128. The Lab-On-Shoe plat-
form is equipped with an IMU, three ultrasonic sensors, a barometer, a CMOS
camera, and a DVS. The developed DVS-aided SHOE detector discussed in
this section only uses the DVS and the IMU. 96

4.3 (a) The accelerometer readouts in an indoor walking experiment. (b) The
corresponding DVS firing rate in the same experiment. (c) An example of
DVS events collected in the same experiment. (d) A group of events collected
during a swing phase in the experiment. (e) A CMOS image of the scene
generating DVS events during the swing phase. (f) A group of events collected
during a stance phase in the experiment. 97

4.4 (a) DVS is mounted next to the IMU and faces outward. (b) DVS is mounted
next to the IMU and faces outward. (c) Firing rate in an indoor walking
experiment with DVS mounting configuration shown in (a). (d) Firing rate in
an indoor walking experiment with DVS mounting configuration shown in (b).
(e) An example of a DVS image taken when the DVS is facing the ground.
(f) An example of a DVS image taken when the DVS is moving and facing
forward. (g) An example of a DVS image taken during the stance phase,
capturing events generated by the other shoe. 99

4.5 (a) shows an example of SHOE and DVS-SHOE statistics for one gait cycle
in the indoor walking experiment. The orange area indicates the stage of
shoe traveling in the air during the swing phase. (b) presents the detection
performance of the SHOE detector in the indoor walking experiments. The
green area indicates the range of thresholds that achieves a near 0% false alarm
and 100% detection rate. (c) demonstrates the detection performance of the
DVS-SHOE detector in the indoor walking experiments. The green area in
(c) is larger than the one shown in (b). The larger green area implies that the
DVS-SHOE detector is more robust than the SHOE detector. 103

4.6 (a) shows an example of SHOE and DVS-SHOE statistics for one gait cycle
in the indoor walking experiment. The orange area indicates the stage of
shoe traveling in the air during the swing phase. (b) presents the detection
performance of the SHOE detector in the indoor walking experiments. The
green area indicates the range of thresholds that achieves a near 0% false alarm
and 100% detection rate. (c) demonstrates the detection performance of the
DVS-SHOE detector in the indoor walking experiments. The green area in
(c) is larger than the one shown in (b). The larger green area implies that the
DVS-SHOE detector is more robust than the SHOE detector. 105

4.7 The Lab-On-Shoe platform integrated with a downward-facing ultrasonic sen-
sor. The camera in the picture was not used in this work. 109

xv

4.8 (a), (b), and (c) are examples of the statistics of the developed UA-SHOE
detector, the SHOE statistics, and the smoothed ultrasonic sensor readouts
in a walking experiment. (d) shows the stance phase detected by the three
detectors in a gait cycle. In this gait cycle, the USPD detector had a false
alarm, the SHOE detector had a mis-detection, and the UA-SHOE detector
had the best detection performance. 111

4.9 Comparison of navigation results estimated by ZUPT-aided INS using three
different detectors of zero-velocity events. 113

5.1 Concept of Foot-Instability-Based-Adaptive (FIBA) Covariance for ZUPT-
aided INS. 116

5.2 (a) A conventional ZUPT-aided INS using the stance phase detector with a
threshold.(b) The developed ZUPT-aided INS implemented in an EKF with
the developed FIBA covariance. The developed system does not use a stance
phase detector and adopts a covariance matrix for zero-velocity measurements
that varies in each iteration based on instability level of a foot. 117

5.3 (a) A profile of the Likelihood Ratio statistics, expressed in (5.3), in an in-
door pedestrian navigation experiment discussed in Section 5.2.4. (b) The
blue curve illustrates a profile of the log-likelihood ratio in the same experi-
ment, expressed in (5.4). The green line and the blue line represent the low
threshold and the high threshold used for the SHOE detector, respectively, in
the experiments discussed in Section 5.3.1. (c) The blue curve shows a profile
of the developed Foot-Instability-Based Adaptive (FIBA) covariance. The red
horizontal line indicates the value of 0.02. The dark gray areas indicate the
stance phase detected by the SHOE detector with the threshold value specified
by the green line in (b). The light gray areas mark the stance phase detected
by the SHOE detector with the threshold value specified by the yellow line
in (b). (d) and (e) display zoomed-in versions of (c), showing two scenarios,
marked with the dashed rectangles, that a pedestrian’s foot was unstable, but
a stance phase was detected. 122

5.4 The scenario and setup of the experiments discussed in Section 5.2.4. The red
square indicates the nominal starting point of the experiment, and the red
triangle marks the nominal destination. The distance between the starting
point and the destination was 42.6 m, which was measured by a ruler. The
IMU used in the experiments was a VectorNav VN−200 IMU. The sensor
was mounted on a fixture securely attached to the toe side of the boot. The
sampling rate was set to 800 Hz. 124

5.5 A reference path for indoor pedestrian navigation experiments, described in
Section 5.2.4. 125

5.6 The accumulated position errors at the destination estimated by the ZUPT-
aided INS using the developed FIBA covariance with different values of the
hyper-parameter β and γ in the indoor pedestrian navigation experiments
discussed in Section 5.2.4. The minimum displacement error, marked with
the red pentagram, occurred at β = e−4.5 and γ = 1.8. 126

xvi

5.7 (a) examples of the EKF innovation sequences, ỹZUPT, and 3× square-root of
the EKF innovation covariances, σỹZUPT

. It can be seen that the innovation
sequences in the cases of using the low threshold and the high threshold do
are not continuous because the conventional ZUPT-aided INS performs the
update step only during the stance phase. The grey areas represent the stance
phases identified by the SHOE detector. A logarithm version of the innovation
sequence in the ZUPT-aided INS using the FIBA covariance is presented next
to the regular version for better visualization of large values. The developed
FIBA covariance does not require the binary stance phase detection, but the
stance phase periods are displayed to illustrate the status of the foot. (b) pro-
files of auto-correlation calculated based on the innovation sequences, ỹZUPT,
presented in (a). (c) amount of velocity corrected in each iteration of the EKF
update step. It can be observed that, even though the ZUPT-aided INS using
the FIBA covariance feedbacks the zero-velocity measurements regardless of
the stance phase and the swing phase, the corrections applied to the velocity
states when the foot was very unstable were minimal, which was 6.28×10−10.
(d) the estimated velocities. All profiles shown in this figure corresponded to
the IMU measurements collected during one complete gait cycle in the walking
part of the experiments discussed in Section 5.2.4. 127

5.8 (a) Trajectories and destinations estimated by the ZUPT-aided INS using the
SHOE detector with a low threshold in the first series of experiments described
in Section 5.3.1. The value of the low threshold is indicated by the green line
in Figure 5.3(b). (b) Trajectories and destinations estimated by the ZUPT-
aided INS using the developed FIBA covariance in the same experiments. The
hyper-parameters used for the FIBA covariance are summarized in Table 5.1.
(c) Trajectories and destinations estimated by the ZUPT-aided INS using the
SHOE detector with a high threshold in the experiments. The value of the
high threshold is represented by the yellow line in Figure 5.3(b). In these
experiments, the ZUPT-aided INS using the FIBA covariance reduced the
maximum displacement errors from 4m to less than 1 m, as compared to the
case using the low thresholds. When compared with solution using the high
threshold, the FIBA covariance improved navigation performance by of 36%
horizontally and 64% vertically. 135

5.9 The scenario of the second series of experiments discussed in Section 5.3.2.
The trajectories in the experiments included the segments of terrains of flat
planes, stairs, and a ramp. 136

5.10 (a) Trajectories and destinations estimated by the ZUPT-aided INS using
the developed FIBA covariance in the pedestrian navigation experiments de-
scribed in Section 5.3.2. The hyper-parameters used for the FIBA covariance
are summarized in Table 5.1. (b) Trajectories and destinations estimated
by the ZUPT-aided INS using the SHOE detector with the threshold in the
same experiments. The value of the threshold is indicated by the green line
in Figure 5.3(b). In this series of experiments, the system using the FIBA
covariance outperformed the conventional ZUPT-aided INS by 12% in terms
of horizontal CEP and 45% in terms of vertical RMSE. 137

xvii

6.1 Relationship between the coordinate frames of different objects in the devel-
oped system. 141

6.2 Lab-on-Shoe system for investigation of self-contained navigation. 143
6.3 Simulated results correspond to standalone ZUPT (ZUPT), ZUPT aided by

relative distance (range), and ZUPT aided by relative position (pos). Data in
red were the estimated final positions of the left shoe, and those in blue were
the estimated final position of the right shoe. Zoomed-in views of the data
set corresponding to each of the methods are shown next to the data set. The
dashed circle around each data set indicates the 3σ limit. 150

6.4 An example of consecutive images captured by the camera during a walking
experiment. 152

6.5 Estimated results of the first set of experiments from the standalone ZUPT
method (ZUPT), ZUPT aided by relative distance measurements (ZUPT +
Relative distance), and our developed system (ZUPT + Relative position).
The lower plots show the estimated trajectories, and the upper plots present
the corresponding final positions. The triangles in the upper plots indicate
the statistical means of each data set. 153

6.6 Estimated results of the second set of experiments from the standalone ZUPT
method (ZUPT), ZUPT aided by relative distance measurements (ZUPT +
Relative distance), and our developed system (ZUPT + Relative position). . 155

7.1 A typical propagation of errors in displacement estimations in the INS aided
by ZUPT and altimeter. N, E, and D are the displacements along the north,
east, and down directions, respectively. The red curve in each plot is the error
profile, and the blue curve indicates the 3σ limit of errors. 162

7.2 Illustrated is a test platform integrated with an MS−5803 altimeter. 167
7.3 The relation of altimeter resolution and the displacement error standard de-

viation along the down direction. 168
7.4 The relation of altimeter sampling rate and the displacement error standard

deviation along the down direction. 169
7.5 The Lab-On-Shoe platform integrated with a downward-facing ultrasonic sen-

sor SRF08 and a barometric altimeter MS5803−01BA. 172
7.6 (a) The ultrasonic measurements collected by a shoe-mounted downward-

facing ultrasonic sensor SRF08 during the experiment of walking indoor on
flat surfaces, upstairs, and downstairs. The height of each stair was assumed
to be nominally identical and was around 15 cm. The total elapsed time in
this experiment was 46.5 s. In the period of the first 16 s, 24.5 s to 30.5 s,
and 38.5 s to the end, a subject walked on a flat plane. From 16 s to 24.5 s,
the subject went down four stairs. From 30.5 s to 38.5 s, the subject went
up four stairs to the original height level. (b) ultrasonic profile in the case of
downstairs. (c) ultrasonic profile in the case of upstairs. (d) ultrasonic profile
in the case of flat plane. 173

7.7 (a) Shoe height and floor height estimated by the proposed method, and shoe
height determined by ZUPT-augmented INS. (b) Barometer readouts collected
during the indoor walking experiment. 177

xviii

7.8 (a) The framework for the hybrid ultrasonic/barometric altimeter. (b) ZUPT-
aided INS augmented by the hybrid altimeter. 178

7.9 (a) The pitch angle measurements estimated by accelerometers, the stance
phase status, the detected ramp flags, and the reference shoe height estimated
by ZUPT-aided INS in the experiment for ramp detection. (b) The reference
trajectory, obtained by the ZUPT-aided INS, of the experiment for ramp
detection. 182

7.10 (a) The reference vertical trajectory, estimated by the barometer, of the exper-
iment for elevator detection. (b) The accelerometer measurements collected
during the experiment. (c) Acceleration profiles of the start and the end of the
elevator motion. (d) Acceleration profiles of walking slowly. (e) The elevator
detection results of the experiment. (d) Acceleration profiles of walking fast. 184

7.11 (a) Reference trajectory for the experiments when barometer is subject to
temperature and air pressure changes. (b) Reference trajectory for the indoor
experiment walking on a flat plane. (c) Reference trajectory for the indoor
experiment walking on different terrains. 188

7.12 (a) The height, measured by the barometer, of the experiment discussed in
Section IVA. (b) The height measured by the hybrid altimeter of the experi-
ment. (c) Comparison of the two altimeters in walking in an environment with
stable air pressure and temperature. The hybrid altimeter could capture the
subtle foot motion while the barometer failed to do so. (d) Comparison of the
two altimeters in the case of air pressure changed due to the room transition.
The height measured by the barometer was affected by the transition while
the measurement of the hybrid altimeter maintained stable. 189

7.13 (a) An example of the height estimated by a standalone ZUPT-based INS,
ZUPT-based INS aided by a barometer, and ZUPT-based INS aided by a
hybrid altimeter in the experiments where the subject walked on a flat plan.
(b) Vertical displacement accuracy of all three navigation solutions. 191

7.14 (a), (b), and (c) examples of the height estimated by standalone ZUPT-based
INS, ZUPT-based INS aided by the barometer, and ZUPT-based INS aided
by the hybrid altimeter in the experiments presented in Section 7.4.3.C. (d)
The final vertical displacements of the three navigation solutions. 193

7.15 (a) The runtime framework of the Sugar-Cube platform. (b) Sensor connection
and communication mechanism on the Sugar-Cube platform. (c) Navigation
algorithm implemented on the on-board micro-controller.1 198

7.16 Hardware of the Sugar-Cube navigation platform. 200
7.17 The upper plot shows an example of the trajectories estimated by the Sugar-

Cube platform and Lab-On-Shoe platform, respectively. The bottom plot
shows estimated destination, CEPs, and RMSEs in the ten experiments dis-
cussed in Section 7.5.2. 202

8.1 Concept of the developed Pedestrian Indoor Navigation System Integrating
Deterministic, Opportunistic, and Cooperative Functionalities (PINDOC). . 205

xix

8.2 Framework for the developed Pedestrian Indoor Navigation system integrat-
ing Deterministic, Opportunistic, and Cooperative functionalities (PINDOC).
The deterministic module produces navigation solutions for each agent with a
Zero-velocity-UPdaTe (ZUPT)-aided Inertial Navigation Systems (INS) aug-
mented with sensing modalities including altimeters and foot-to-foot range
measurements. The opportunistic module enhances the deterministic solu-
tions with pseudorange measurements collected based on cellular Long-Term
Evolution (LTE) Signal of OPportunity (SOP). Navigation accuracy of each
individual agent is further enhanced by cooperative localization using UWB-
based inter-agent range measurements. 207

8.3 A block diagram depicting the LTE-DNN-SAN block diagram used in the
developed PINDOC framework shown in Figure 8.2. 215

8.4 Experimental setup used for investigation of the navigation performance of
the developed PINDOC. The deterministic localization approach was realized
with the Lab-On-Shoe platform, which integrated sensing modalities includ-
ing IMUs, altimeters, and ultrasonic sensors. In this section, only IMU and
altimeters were used. The opportunistic LTE-based pseudoranges were col-
lected by the Laird cellular Antennas and their corresponding signal processing
units. The cooperative modules mounted on the Lab-On-Shoe platform in-
cluded UWBs for foot-to-foot ranging and inter-agent ranging measurements.
The laptop was used in the experiment for data logging. 218

8.5 (a) Point cloud map of the experimental scenario generated with LiDAR and
camera modules installed on iPhone 12 Max Pro. (b) The blue and the red
curves represent navigation solutions of the two feet of agent No.1 estimated
by the developed PINDOC implementing the ZUPT-aided INS augmented by
altimeters, foot-to-foot ranging, and inter-agent ranging measurements in the
experiment discussed in Section 8.4. The blue star and the red star marked
the locations of stationary agent No.2 and agent No.3 in the navigation frame.
The green triangles represent checkpoints that were used to evaluate the in-
trajectory localization performance of the navigation solutions. 222

8.6 Navigation trajectories estimated by different configurations of the developed
PINDOC. In the plot of configuration K, only the trajectory associated with
Agent 1’s right foot was shown because, in the experiment, only the naviga-
tion solution of the right foot was augmented with LTE pseudoranges. Error
metrics of each of the configurations are documented in TABLE 8.3. 226

8.7 Experimental setup of the experiment discussed in Section 8.4.3. 229
8.8 The top plot shows the navigation solutions of the three agents produced

by the PINDOC system in the experiment discussed in Section 8.4.3. The
bottom three plots separately present the same navigation solution of each
agent. Agent No.1’s trajectories were generated with the ZUPT-aided INS
augmented with altimeter measurements, foot-to-foot ranging, and inter-agent
ranging measurements. Agent No.2 and agent No.3’s trajectories were gener-
ated with the ZUPT-aided INS augmented with altimeter measurements, and
inter-agent ranging measurements. 231

xx

9.1 Concept of the developed UWB-Foot-SLAM. 235
9.2 Block diagram illustrating the developed UWB-Foot-SLAM algorithm. The

algorithm involved a foot-mounted IMU, a foot-mounted UltraWide Band
(UWB), and several UWB beacons to be deployed in an operating environment
during a navigation task. 236

9.3 Experimental setup. The setup included the Lab-On-Shoe platform and the
PEBBLE system. The Lab-On-Shoe platform included multiple sensing modal-
ities. This section only used the IMU and UWB mounted on the left foot. . . 242

9.4 Block diagram illustrating firmware of the Lab-On-Shoe platform and the
PEBBLE system. 243

9.5 Experimental scenario for the experiment discussed in Section 9.2.3. 42 Op-
tiTrack motion capture cameras were mounted on the ceiling of a warehouse
and obtain the ground truth position and orientation. Two beacons were
placed on top of the orange barricades during the experiment. A pedestrian
performed the experiment by walking along the light green trajectory. . . . 246

9.6 Estimated (Est.) Navigation solutions computed with a standalone ZUPT-
aided INS and the developed UWB-Foot-SLAM in the experiment discussed
in Section 9.2.3. Items colored in black correspond to the Ground Truth
(G.T.) collected by motion capture cameras. The radius of each dashed circle
represents three times the position standard deviation. Positions of Beacon
#1 (B1) and beacon #2 (B2) are marked with star and diamond symbols,
respectively. 248

9.7 Position estimates and its associated covariances of the developed UWB-Foot-
SLAM algorithm in the experiment discussed in Section 9.2.3. It could be
observed that the covariances of the agent’s positions increased over time
while the covariances of the beacons’ positions were reduced. At the end of
this experiment, the covariances of the agent’s positions were still less than
that of the beacons’ locations. 249

9.8 Navigation solutions estimated by the developed UWB-Foot-SLAM and a
standalone ZUPT-aided INS in the experiment presented in Section 9.2.3.
. 250

9.9 Propagation profile of the covariances associated with agent’s and beacon’s po-
sitions. It could be seen that the agent’s position uncertainties were bounded
in the case of the UWB-Foot-SLAM while the uncertainties in the case of the
ZUPT-aided INS followed an increasing trend. 251

9.10 Concept of the developed UWB-Foot-SLAM2 algorithm. 254
9.11 Block diagram illustrating the developed UWB-Foot-SLAM2 algorithm. The

algorithm involved two IMUs, two barometers, two UWBs mounted on a foot-
mounted localization system, as well as seeded UWBs, reference barometers,
and event IMUs integrated into beacons to be deployed in an operating envi-
ronment during a navigation task. 256

9.12 A picture showing prototypes of a Lab-On-Shoe platform and three beacons
of a PEBBLE 2.0 system. Firmware implementation of the two systems are
discussed in Figure 9.13 and Figure 9.14. 269

xxi

9.13 A block diagram illustrating firmware implemented on the Lab-On-Shoe plat-
form shown in Figure 9.12. 271

9.14 A block diagram illustrating firmware implemented on each beacon in the
PEBBLE 2.0 system shown in Figure 9.12. 272

9.15 Experimental scenario for the experiment discussed in Section 9.3.3. 42 Opti-
Track motion capture cameras were mounted on the ceiling of a warehouse and
obtain the ground truth position and orientation. Two beacons were placed
on top of the orange barricades during the experiment. The operation range
of the motion capture camera system was around 15 [m] × 15 [m]. 274

9.16 Estimated (Est.) Navigation solutions computed with a standalone ZUPT-
aided INS and the original UWB-Foot-SLAM in the experiment discussed in
Section 9.3.3. Items colored in black correspond to the Ground Truth (G.T.)
collected by motion capture cameras. It could be seen that the estimated and
ground truth trajectories have small discrepancies. Quantitative evaluation
of the estimated solutions is summarized in TABLE 9.3. The radius of each
dashed circle represents three times the position standard deviation predicted
by the EKF at the end of the experiments. Positions of Beacon #1 (B1) and
beacon #2 (B2) are marked with star and diamond symbols, respectively. . 276

9.17 Position estimates and its associated covariances of the original UWB-Foot-
SLAM algorithm in the experiment discussed in Section 9.3.3. It could be
observed that the covariances of the agent’s positions increased over time
while the covariances of the beacons’ positions were reduced. At the end of
this experiment, the covariances of the agent’s positions were still less than
that of the beacons’ locations. It could also be observed that the patterns of
a subject’s trajectories have impacts on the mapping performance. 277

9.18 An illustration of the experimental scenario and process. Seven beacons were
deployed during the experiment discussed in Section 9.3.3 at different indoor
locations. The locations of the beacons shown in this figure were not pre-
surveyed but estimated by our developed UWB-Foot-SLAM2 algorithm. The
point cloud representation of the experimental scenario is used as a visual
reference. 279

xxii

9.19 Navigation solutions using eight different algorithms in the experiment dis-
cussed in Section 9.3.3. The solutions listed from top left to bottom right
are traditional ZUPT-aided INS (ZUPT), ZUPT-aided INS augmented with
a barometric altimeter (ZUPT /w ALT), ZUPT-aided INS with a differ-
ential barometric altimeter (ZUPT w/ALT+), ZUPT-aided INS augmented
with barometric altimeters and foot-to-foot ranging (Deterministic), ZUPT-
aided INS augmented with differential barometric altimeters and foot-to-foot
ranging (Deterministic+), the original UWB-Foot-SLAM, the original UWB-
Foot-SLAM augmented with differential barometric altimeters (UWB-Foot-
SLAM+), and the developed UWB-Foot-SLAM2. The orange trajectories
represent the estimated positions of the first loop of the experiment, and the
blue trajectories represent the rest of the estimated positions. The duration
of the experiment was around 1 hour, and the trajectory length was around
3.5 [km]. The developed UWB-Foot-SLAM2 had the minimum 3D mean ab-
solute error of 0.48 [m], equivalent to 0.013% traveling distance based on a
3.5-[km]-long trajectory. Quantitative evaluation of all the navigation solu-
tions is presented in TABLE 9.4. 282

9.20 Propagation of Loop-Closure Errors (LCEs) of different navigation solutions.
It could be observed that using self-contained aiding techniques for the ZUPT-
aided INS could reduce the navigation errors increase rate. The UWB-Foot-
SLAM framework could effectively bound error growth, allowing for high po-
sitioning accuracy in long-term navigation tasks. 285

9.21 Propagation profile of the covariances associated with agent’s and beacon’s po-
sitions. It could be seen that the agent’s position uncertainties were bounded
in the case of the UWB-Foot-SLAM, while the uncertainties in the case of the
ZUPT-aided INS followed an increasing trend. 288

10.1 The concept of the proposed prototype eFINS. (a) FRUITS systems to be
installed on a firetruck. (b) BOOTS to be embedded inside the sole of a
firefighter boot. (c) TALKS for transmission and visualization of firefighter’s
current locations. (d) FLAME to be distributed in operating environments to
further enhance navigation accuracy of the BOOTS. 307

10.2 Navigation solutions implemented on the micro-controller in the BOOTS mod-
ule. 308

xxiii

LIST OF TABLES

Page

1.1 Bias characteristics of different grades of IMUs [212]. 6
1.2 FSR and −3 dB bandwidth of inertial sensors used in selected 82 publications

related to foot-mounted IMUs. 16

2.1 Maximum accelerometer’s and gyroscope’s readings in different activities. . . 39
2.2 Parameter settings for different noise models. 45
2.3 EKF Parameter settings for the ZUPT-aided INS 68
2.4 Step-wise displacement errors in terms of RMSE. 69

5.1 Hyper-parameters for the FIBA covariance 125
5.2 EKF Parameter settings for the ZUPT-aided INS 133
5.3 Percentage of position error in trajectory length for the 1st series of experi-

ments . 134
5.4 Percentage of position error in trajectory length for the 2nd series of experi-

ments . 138

6.1 Accumulated errors and covariances of the simulation dataset. 150
6.2 Accumulated errors and covariances of the first set of the experiments 152
6.3 Accumulated errors and covariances of the second set of the experiments. . . 155

7.1 Noise Characteristics of the Kalman Filter for the Ultrasonic Altimeter. . . . 176
7.2 Noise Characteristics of the Multi-Model Kalman Filter for the Hybrid Altimeter187
7.3 RMSEs of a standalone ZUPT-based INS, ZUPT-based INS aided by the

barometer, and ZUPT-based INS aided by the hybrid altimeter in the exper-
iments of walking on a flat plane. 191

7.4 RMSEs of the standalone ZUPT-based INS, ZUPT-based INS aided by the
barometer, and ZUPT-based INS aided by the hybrid altimeter in the exper-
iments of walking on different terrains, including flat surfaces, a ramp, stairs,
and an elevator. 194

7.5 Parameters for the EKF . 199

8.1 LTE ENodeBs’ Charactestics . 223
8.2 Parameters for the EKF . 224
8.3 Navigation Performance of the developed PINDOC implemented in different

configurations. 227

xxiv

8.4 Navigation errors of the PINDOC implemented in different configurations in
an experiment discussed Section 8.4.3 . 232

9.1 Parameters for the EKF . 247
9.2 Parameters for the EKF . 270
9.3 Summary of navigation performance of a standalone ZUPT-aided INS and the

original UWB-Foot-SLAM algorithm in the experiments discussed in Section
9.3.3. 273

9.4 Comparison of navigation performance using INS aided with different tech-
niques. Orders of this table are sorted from lowest 3D MAE to highest 3D
MAE. 283

xxv

LIST OF ALGORITHMS

Page
1 Ramp detection . 180
2 Elevator detection . 183

xxvi

ACKNOWLEDGMENTS

First, I would like to thank my Ph.D. advisor, Professor Andrei M. Shkel, for serving as
my dissertation chair, bringing me into the field of navigation and indoor positioning, and
giving me an opportunity to devote myself to solving challenges in this domain. His support,
guidance, and advice have made this Ph.D. journey a pleasant and unforgettable experience.
I would also like to thank my dissertation committee members, Professor Solmaz Kia and
Professor Sharad Mehrotra, for their time reviewing this thesis and providing insightful
comments and suggestions.

I am grateful to my colleagues and friends at UCI Microsystems Laboratory for their guid-
ance, collaboration, and support. More specifically, I would like to thank Dr. Sina Askari
and Dr. Yusheng Wang for mentoring me when I first joined the lab and rigorously training
me on the fundamentals of statistical estimation and system integration, which later became
the building blocks for me to realize many research ideas; I would like to thank Dr. Dan-
meng Wang for her invaluable suggestions on inertial sensor characterization and delightful
collaboration; I would like to thank Dr. Mohammad H. Asadian, Dr. Radwan Mohammed
Noor, Yu-Wei Lin, Dr. Daryosh Vatanparvar, Doreen Hii, Austin Parrish, Eudald Sangenis,
and Lois Meira for the help in various aspects in the lab and mental supports.

I would also like to thank Professor Zak Kassas, Professor Solmaz Kia, and their students,
Ali Abdullah, Dr. Jianan Zhu, Changwei Chen, and Minwon Seo, for their advice and
collaboration in the uNavChip project, which was not only a great learning experience but
also enlightened me to look at the problem of indoor positioning from different perspectives.
I would like to thank Joe Grasso for his help and suggestion on performance evaluations
of navigation systems. I would also like to thank Professor Emre Neftci and his student
Kenneth M. Stewart for their collaboration and advice regarding the research on dynamic
vision sensors. I would like to thank Professor Alexandra Voloshina and her student Paula
Simo for their assistance in developing pedestrian navigation simulations.

I also would like to thank funding sources provided by U.S. Department of Commerce, Na-
tional Institute of Standards and Technology (NIST) under Contract No. 70NANB17H192,
70NANB21H154, and 70NANB22H073.

Finally, I would like to express my gratitude to my parents, my brother, my wife, and my
friends for their unconditional encouragement, support, and love.

xxvii

VITA

Chi-Shih Jao

EDUCATION

Doctor of Philosophy in Mechanical and Aerospace Engineering 2023
University of California, Irvine Irvine, CA

Master of Science in Mechanical and Aerospace Engineering 2022
University of California, Irvine Irvine, CA

Master of Science in Electrical Engineering 2018
The Pennsylvania State University, University Park State College, PA

Bachelor of Science in Electrical Engineering 2015
National Tsing Hua University Hsinchu, Taiwan

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2023
University of California, Irvine Irvine, CA

Graduate Research Assistant 2016–2018
The Pennsylvania State University, University Park State College, PA

Undergraduate Research Assistant 2014–2015
National Tsing Hua University Hsinchu, Taiwan

TEACHING EXPERIENCE

Teaching Assistant 2023
University of California, Irvine Irvine, CA

xxviii

JOURNAL PUBLICATIONS

Chi-Shih Jao, Danmeng Wang, Changwei Chen, Eudald Sangenis, Joe Grasso, Solmaz S.
Kia, and Andrei M. Shkel, ”UWB-Foot-SLAM2: Using Multi-Sensor Enhancement for Foot-
mounted Pedestrian INS And Simultaneously Localized UWB Beacons”, IEEE Journal of
Indoor and Seamless Positioning and Navigation, 2023. (In Preparation)

Chi-Shih Jao, Ali A Abdallah, Changwei Chen, Min-Won Seo, Solmaz S Kia, Zaher M
Kassas, Andrei M. Shkel, ”PINDOC: Pedestrian indoor navigation system integrating deter-
ministic, opportunistic, and cooperative functionalities”, IEEE Sensors Journal, vol. 22, no.
14, pp. 14424–14435, 2022.

Austin R Parrish, Chi-Shih Jao, Andrei M. Shkel, ”Stance phase detection for ZUPT-aided
INS using knee-mounted IMU in crawling scenarios”, IEEE Sensors Letters, vol. 6, no. 5,
pp. 1–4, 2022.

Changwei Chen, Chi-Shih Jao, Andrei M. Shkel, Solmaz S Kia, ”UWB sensor placement for
foot-to-foot ranging in dual-foot-mounted ZUPT-aided INS”, IEEE Sensors Letters, vol. 6,
no. 2, pp. 1–4, 2022.

Chi-Shih Jao, Andrei M. Shkel, ”A reconstruction filter for saturated accelerometer signals
due to insufficient FSR in foot-mounted inertial navigation system”, IEEE Sensors Journal,
vol. 22, no. 1, pp. 695–706, 2021.

Ali A Abdallah, Chi-Shih Jao, Zaher M Kassas, Andrei M. Shkel, ”A pedestrian indoor
navigation system using deep-learning-aided cellular signals and ZUPT-aided foot-mounted
IMUs”, IEEE Sensors Journal, vol. 22, no. 6, pp. 5188–5198, 2021.

Chi-Shih Jao, Andrei M. Shkel, ”ZUPT-aided INS bypassing stance phase detection by
using foot-instability-based adaptive covariance”, IEEE Sensors Journal, vol. 21, no. 21, pp.
24338-24348, 2021.

Yusheng Wang, Chi-Shih Jao, Andrei M. Shkel, ”Scenario-dependent ZUPT-aided pedestrian
inertial navigation with sensor fusion”, Journal of Gyroscopy and Navigation, vol. 12, no. 1,
pp. 1–16, 2021.

CONFERENCE PUBLICATIONS

Chi-Shih Jao, Danmeng Wang, Joe Grasso, and Andrei M. Shkel, ”UWB-Foot-SLAM:
Bounding Position Error of Foot-mounted Pedestrian INS with Simultaneously Localized
UWB Beacons”, IEEE/ION Position, Location and Navigation Symposium (PLANS), Mon-
terey, CA, Apr. 24-27, 2023.

Chi-Shih Jao, Danmeng Wang, and Andrei M. Shkel, ”Prio-IMU: Prioritizable IMU Array
for Enhancing Foot-Mounted Inertial Navigation Accuracy”, IEEE International Symposium
on Inertial Sensors and Systems (INERTIAL), Kauai, Hawaii, Mar. 28-31, 2023.

xxix

Chi-Shih Jao, Eudald Sangenis, Paula Simo, Alexandra Voloshina, Andrei M. Shkel, ”An
Inverted Pendulum Model of Walking for Predicting Navigation Uncertainty of Pedestrian in
Case of Foot-mounted Inertial Sensors”, IEEE International Symposium on Inertial Sensors
and Systems (INERTIAL), Kauai, Hawaii, Mar. 28-31, 2023.

Austin R. Parrish, Chi-Shih Jao, Danmeng Wang, and Andrei M. Shkel, ”Study of IMU
Mounting Position for ZUPT-Aided INS in the Case of Firefighter Crawling”, IEEE Inter-
national Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, Hawaii, Mar.
28-31, 2023.

Austin R. Parrish, Chi-Shih Jao, Danmeng Wang, and Andrei M. Shkel, ”“Sugar-Cube”:
Pedestrian Hardware Platform That Fits in the Sole of a Shoe”, IEEE International Sympo-
sium on Inertial Sensors and Systems (INERTIAL), Kauai, Hawaii, Mar. 28-31, 2023.

Eudald Sangenis, Chi-Shih Jao, Andrei M. Shkel, ”SVM-based Motion Classification Using
Foot-mounted IMU for ZUPT-aided INS”, IEEE Sensors, Dalla, TX, USA, Oct 30-2, 2022.

Chi-Shih Jao, Ali A. Abdallah, Changwei Chen, Minwon Seo, Solmaz S. Kia, Zaher M.
Kassas, Andrei M. Shkel, ”Sub-meter accurate pedestrian indoor navigation system with dual
ZUPT-aided INS, machine learning-aided LTE, and UWB signals”, the 35th International
Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+
2022), Denver, CO, USA, Sep 19-23, 2022.

Chi-Shih Jao, Danmeng Wang, Austin R Parrish, Andrei M. Shkel, ”A neural network ap-
proach to mitigate thermal-induced errors in ZUPT-aided INS”, IEEE International Sympo-
sium on Inertial Sensors and Systems (INERTIAL), Avignon, France, May 8-11, 2022.

Chi-Shih Jao, Austin Parrish, and Andrei M. Shkel. ””Sugar-Cube” PLT: A Real-time
Pedestrian Localization Testbed Utilizing Foot-mounted IMU/Barometer/Ultrasonic Sen-
sors.” IEEE Sensors, Virtual Conference, Oct. 31-4, 2021.

Chi-Shih Jao, Yusheng Wang, and Andrei M. Shkel, ”A zero velocity detector for foot-
mounted inertial navigation systems aided by downward-facing range sensor”, IEEE Sensors,
Virtual Conference, Oct. 25-28, 2020.

Chi-Shih Jao, Yusheng Wang, Yu-Wei Lin, Andrei M. Shkel, ”A hybrid barometric/ultra-
sonic altimeter for aiding ZUPT-based inertial pedestrian navigation systems”, the 33rd In-
ternational Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2022), Virtual Conference, Sep 21-25, 2020.

Chi-Shih Jao, Kenneth Stewart, Jörg Conradt, Emre Neftci, and Andrei M. Shkel, ”Zero
Velocity Detector for Foot-mounted Inertial Navigation System Assisted by a Dynamic Vision
Sensor”, DGON Inertial Sensors and Systems (ISS), Virtual Conference, Sep. 15-16, 2020.

Chi-Shih Jao, Yusheng Wang, Sina Askari, Andrei M. Shkel, ”A closed-form analytical esti-
mation of vertical displacement error in pedestrian navigation”, IEEE/ION Position, Loca-

xxx

tion and Navigation Symposium (PLANS), Virtual Conference, Apr 20-23, 2020.

Yusheng Wang, Yu-Wei Lin, Sina Askari, Chi-Shih Jao, Andrei M. Shkel, ”Compensation
of systematic errors in ZUPT-aided pedestrian inertial navigation”, IEEE/ION Position,
Location and Navigation Symposium (PLANS), Virtual Conference, Apr 20-23, 2020.

Chi-Shih Jao, Yusheng Wang, Andrei M. Shkel, ”Pedestrian inertial navigation system aug-
mented by vision-based foot-to-foot relative position measurements”, IEEE/ION Position,
Location and Navigation Symposium (PLANS), Virtual Conference, Apr 20-23, 2020.

Sina Askari, Chi-Shih Jao, Yusheng Wang, Andrei M. Shkel, ”Learning-based calibration
decision system for bio-inertial motion application”, IEEE Sensors, Montreal, Canada, Oct.
27-30, 2019.

Sina Askari, Chi-Shih Jao, Yusheng Wang, Andrei M. Shkel, ”A laboratory testbed for
self-contained navigation”, IEEE International Symposium on Inertial Sensors and Systems
(INERTIAL), Naples, FL, USA, Apr 1-5, 2019.

Yusheng Wang, Sina Askari, Chi-Shih Jao, Andrei M. Shkel, ”Directional ranging for en-
hanced performance of aided pedestrian inertial navigation”, IEEE International Symposium
on Inertial Sensors and Systems (INERTIAL), Naples, FL, USA, Apr 1-5, 2019.

xxxi

ABSTRACT OF THE DISSERTATION

Foot-mounted Pedestrian Inertial Navigation Systems for Self-contained Tracking

By

Chi-Shih Jao

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Professor Andrei M. Shkel, Chair

This Ph.D. dissertation presented the research on development of pedestrian inertial navi-

gation systems that track a person in a self-contained and infrastructure-free manner. The

investigated approach utilized Zero-velocity UPdaTe (ZUPT)-aided Inertial Navigation Sys-

tems (INS) based on foot-mounted Inertial Measurement Units (IMUs). Prior implemen-

tations of the ZUPT-aided INS suffer from error sources originating from motion sensors,

algorithm, and estimation. This dissertation attempted to address the identified error sources

and proposed new algorithmic and system-level approaches. The main contributions of this

thesis include:

• approaches, on both algorithm and system levels, to address issues of insufficient inertial

sensors’ Full-Scale Range (FSR) and bandwidth when mounting on the foot. On the

algorithm level, a reconstruction filter was developed, predicting accelerometers’ signals

exceeding measurable ranges. On the system level, an IMU array with a prioritization

mechanism was developed, enabling measurements of acceleration as large as 200 [g].

The two approaches were experimentally verified to improve the positioning accuracy

of a ZUPT-aided INS in cases of foot-mounted sensors experiencing large shocks.

• a neural network-based approach to predict and compensate 12 different thermal-

induced errors, consisting of bias and noise variations in a 6-Degree of Freedom (DoF)

xxxii

IMU, based on temperatures and temperature rates. It was experimentally verified

that the developed temperature compensation approach reduced navigation error of

ZUPT-aided INS by more than 15×, as compared to a traditional ZUPT-aided INS,

in a scenario where ambient temperature varied with a range of 30◦C.

• improved traditional IMU-based stance phase detection by fusing measurements of a

foot-mounted IMU and a downward-facing ultrasonic sensor. The ultrasonic sensor was

demonstrated with preferred properties that its measurements had a unique value only

when the foot is in contact with the ground and the value does not vary in different

pedestrian activities. It was demonstrated, with experiments involving walking and

running, that the accuracy of the developed stance phase detector outperformed the

traditional IMU-based detector and improved navigation accuracy of the ZUPT-aided

INS by more than 2×.

• an adaptive mechanism to vary the covariance of the zero-velocity measurements based

on log-likelihood ratio metrics derived from measurements of a foot-mounted IMU. It

was demonstrated that the adaptive covariance could bypass the necessity of using a

stance phase detector in a ZUPT-aided INS. Results collected from indoor navigation

experiments showed that the navigation accuracy of the ZUPT-aided INS using the

developed adaptive covariance mechanism improved horizontal and vertical position

accuracy by 36% and 64%, respectively, as compared to the case of conventional ZUPT-

aided INS using a stance phase detector.

• a vision-based foot-to-foot positioning augmentation to increase the observability of

the Extended Kalman Filter (EKF) on the yaw angle state in a dual foot-mounted

IMU framework. This approach utilized a camera mounted on one foot to capture

images of a feature pattern mounted on the other foot, and relative positions between

the two feet were derived from the images. Numerical simulation and experimental

results showed that the ZUPT-aided INS improved navigation accuracy by over 90%

xxxiii

and 85%, respectively, as compared to the traditional ZUPT-aided INS.

• developed and demonstrated, for the first time, a hybrid barometric/ultrasonic al-

timeter that considered a downward-facing ultrasonic sensor was mounted on foot to

improve a ZUPT/Altimeter-aided INS framework, minimizing sensitivity of altitude

measurements to variations in ambient temperature and air pressure. Experimental

results showed that, in the case of abrupt temperature changes, the vertical displace-

ment accuracy of ZUPT-aided INS augmented with the developed hybrid altimeter had

a 96% and a 97% improvement, as compared to a standalone ZUPT-aided INS and a

ZUPT-aided INS augmented with a barometer, respectively.

• a Simultaneously Localization AndMapping (SLAM) framework based on foot-mounted

IMUs and environmental-deployed UWB beacons, referred to as UWB-Foot-SLAM,

where beacons used did not need to be pre-deployed and pre-surveyed but were dis-

tributed in an environment during a navigation task and provided position compensa-

tion to bound position error growth. Additionally, this thesis developed the UWB-Foot-

SLAM2 algorithm that augmented the original UWB-Foot-SLAM with self-contained

aiding techniques. Experimental results showed that the developed UWB-Foot-SLAM

framework mapped unknown beacons with displacement errors less than 0.5 [m]. In an

indoor navigation experiment involving a pedestrian traveling around 3.5 [km] for an

hour in a three-floor 50 [m] ×15 [m] ×15 [m] building on terrains of flat planes, ramps,

stairs, and elevators, the 3D loop-closure error of the UWB-Foot-SLAM2 algorithm

was 0.62 [m]

xxxiv

Chapter 1

Introduction

This chapter introduces the research presented in this thesis; provides the background on

pedestrian navigation systems; formulates the problems in a traditional implementation

of ZUPT-aided INS using foot-mounted IMUs; reviews state-of-the-art approaches; and

presents an overview and an outline of this thesis.

1.1 Motivation

1.1.1 Pedestrian Localization in Extreme Scenarios

An accurate and reliable positioning solution is critical for personnel safety in numerous

applications, such as emergency response and military operations [165]. Firefighters, first

responders, and war fighters can get disoriented very easily while operating under complex

building types and harsh environmental conditions. Losing track of current positions has

been one of the factors causing approximately 80 to 100 firefighters to be lost or injured in

the line of duty each year in the U.S., according to the National Institute for Occupational

1

Safety and Health (NIOSH). Having position information in extreme circumstances can not

only increase situational awareness and allow for effective communication for these public

safety personnel but also enable incident commanders to quickly plan search, escape, and

rescue strategies, increasing personal accountability [179].

In order to navigate in an unknown environment and safely return to exits in emergency

situations, firefighters are currently trained to practice simple but robust techniques, such as

following a fire hose or a dedicated rope that connects them to a point outside of dangerous

areas, leaving flashlights in doorways to locate rooms’ exits, or keeping their left or right

hand in contact with the wall [111]. However, these approaches do not report instantaneous

numerical positioning information to firefighters or incident commanders, making it difficult

in some cases to perform immediate responses to the fast-changing firefighting scenarios,

which can cause delays in life-saving missions. Developing localization systems for firefights

and first responders is in high demand [51].

1.1.2 Navigation System Requirements for Worst-case Scenarios

Development of localization systems for firefighters, however, is a very challenging problem

because a solution dedicated to this purpose needs to meet several strict requirements [249],

including:

1. 1-meter accuracy for several minutes to hours: complex building interiors can consist

of narrow hallways and multiple rooms;

2. environmental-independent: in addition to the need to navigate between indoor and

outdoor environments, the emergency responders can encounter extreme conditions

where visibility is poor due to smoke, mist, airborne particles, or low light intensity.

Figure 1.1 shows an example of an extreme environment of structural firefighting sce-

2

Figure 1.1: A photo of a severe structural fire that occurred on December 3 1999 in Worcester,
Massachusetts [52].

3

nario;

3. infrastructure-free: an assumption of being able to pre-deploy or access navigational

infrastructures in the surrounding environment might not be feasible;

4. fast deployment: life-saving operations may require responses within a few seconds;

5. consistent availability: in harsh environments, accidents can happen any time and

anywhere;

6. small-form-factor: large and heavy devices can become extra burdens restricting lo-

comotion of firefighters in emergencies, who already carry many pieces of equipment,

such as helmets, gas masks, oxygen tanks, thermal cameras, and Person Protective

Equipment (PPE), that collectively can be as heavy as 70 lbs;

7. low-cost: fire departments have a limited budget to maintain and update utilities and

equipment.

These requirements not only eliminate the possibility of using Global Navigation Satellite

Systems (GNSS), which has degraded localization performance or fails in indoor environ-

ments or urban canyons but also exclude many existing indoor navigation technologies

[129, 133]. These technologies include vision-based systems [58, 74, 139, 190, 140] that

perform SLAM using images captured by monocular [139], stereo [140, 122], RGB-D in-

frared [190], thermal imaging [110], or event-based cameras [200]; Light Detection And

Ranging (LiDAR) [78]; Radio Frequency (RF) signal-based positioning systems that trilat-

erates range measurements or fingerprints Receiver Signal Strength (RSS) using Bluetooth

[34, 265], Wi-Fi [38], UWB [61], Radio Frequency IDentification (RFID) [232], or cellular

signals including Long-Term Evolution (LTE) [5], Fifth Generation (5G) [6], Low Earth Or-

bit (LEO) satellite [17]. These technologies may be used opportunistically in firefighting

scenarios. However, it can be dangerous to assume that sensors and underlying assumptions

4

behind the operations of these technologies are always valid [47]. Under these circumstances,

pedestrian INS based on inertial sensing technology are the reasonable option, as the systems

operate in a self-contained manner, require no installation time, and produce consistently

available measurements [9].

1.2 Background

1.2.1 A Brief History of Pedestrian Inertial Navigation Systems

An inertial navigation approach can be traced back to the mid−20th century when the system

first became operational [195] and was used in military operations for navigation of aircraft,

missiles, and ships. Although INS was demonstrated with effective navigation performance

in these applications, inertial sensors of the 20th century were large and expensive [196]. As

a result, it was not practical to adopt this type of navigation solution for personal navigation

applications.

Thanks to the successful development of Micro-Electro-Mechanical-System (MEMS) tech-

nology in the past two decades, low-cost IMUs with small form factors have become broadly

available. The miniaturization of IMUs has allowed for attaching the sensors to a person and

performing strapdown INS [198]. However, due to noise and stochastic time-varying biases

in IMU measurements, navigation errors build up in each dead reckoning step. This property

renders the system to have errors in position, velocity, and orientation estimates accumulat-

ing very quickly when a miniaturized IMU is used because the sensor had degraded noise

performance, as compared to its macro-scale counterpart. Table 1.1 presents noise charac-

teristics of different grades of IMUs. In the case of a Commercial-Off-The-Shelf (COTS)

consumer-grade IMU, position errors of the INS can exceed one meter within just a few

seconds [69]. Therefore, standalone INS does not have sufficient accuracy for firefight local-

5

ization.

Table 1.1: Bias characteristics of different grades of IMUs [212].

IMU grade
Bias Instability

Typical Application
Accelerometer [mg] Gyroscope [◦/h]

Consumer >50 >100 Consumer electronics
Industrial 1∼50 10∼100 Automotive industry
Tactical 0.5∼1 0.1∼10 Short-term navigation

Navigation <0.05 0.01 Aeronautics navigation

1.2.2 Why Foot-mounted IMUs?

Pedestrian INS has advantages over a standalone INS for the ability to exploit, whether di-

rectly or as an enhancement technique, local bio-mechanical information at parts of a human

body where IMUs are mounted or attached [233]. Previous studies have investigated differ-

ent implementations of pedestrian INS using IMUs attached to a helmet [22, 40], placed

in a pocket [138, 104, 8], and mounted on a foot [48, 67]. The systems using helmet- or

pocket-mounted IMUs perform Step and Headings Systems (SHSs) or Deep-Inertial Odom-

etry (DIO), which calculate a series of vectors including information regarding step length

and step heading for each gait cycle and sum up the vectors to track 2D position when steps

are detected [75]. Figure 1.2 illustrates the differences in solutions produced by SHSs and

INS-base approaches. In the SHSs, step lengths are estimated based on an assumption that

when a pedestrian walks naturally, there is a high correlation between walking pace and

step length. However, this assumption might not be valid in firefighting scenarios, where

firefighters perform various activities, causing inaccuracies in step estimation and increas-

ing navigation errors. In DIO, position tracking is formulated as a learning problem. This

approach trains deep neural networks that learn pedestrian locations from raw IMU data

[33]. In the corresponding training processes, a very large dataset that consists of position

measurements involving extensive maneuvers is collected, and the measurements are usually

6

Figure 1.2: INS and SHS. An INS computes the full trajectory of a unit in 3D, represented
with solid line with position dots, whilst an SHS deals only with gross step vectors in 2D,
marked with arrow sequence [75].

7

obtained from other non-inertial sensing modalities, such as motion cameras [215]. Among

these IMU placements, the systems using foot-mounted IMUs attract great attention for

firefighter localization due to their unique ability can significantly enhance a strapdown INS

with a ZUPT algorithm.

Figure 1.3: Illustration of a human gait cycle [81].

1.2.3 Zero-velocity Update Algorithm

ZUPT algorithm is based on observations of patterns in a human gait cycle, which is divided

into the stance phase and the swing phase, as shown in Figure 1.3. The algorithm assumes

that during the stance phase, velocities of a human foot are very close to zero and periodically

resets velocity estimates to zero during this period [95]. In the early 2000s, the ZUPT-

aided INS using a foot-mounted IMU was implemented by simply resetting the velocity

8

estimates produced by an INS to zero when a stance phase is detected [189]. Although this

implementation improved navigation accuracy, it did not have a reliable navigation accuracy

due to being very sensitive to the performance of stance phase detection, which has been a

challenging problem even until now. In 2005, researchers implemented the ZUPT-aided INS

in an EKF framework, where the propagation step is the INS, and the update step feedbacks

pseudo-zero-velocity measurements to compensate for residual velocities of the INS when a

stance phase is detected [57]. The implementation with EKF has a significant advantage

over the one simply resetting the velocity to zero because it was mathematically proven that

the EKF has not only bounded velocity errors but also orientation errors along the roll and

pitch axes. As compared to a standalone INS, the ZUPT-aided INS significantly improved

the navigation accuracy and duration and has been experimentally demonstrated to have a

navigation error of less than 1% of traveling distances with a consumer-grade IMU, which

allowed for maintaining a navigation error of less than 1 m for a few minutes [141].

1.2.4 Traditional ZUPT-aided INS

The ZUPT-aided INS is implemented in EKF. This subsection presents the details of strap-

down INS, EKF, and stance phase detector.

Strapdown Inertial Navigation Systems

The strapdown INS performs localization by dead reckoning based on IMU measurements.

Readouts of COTS IMUs are usually expressed as linear accelerations and angular velocity

in the body frame (b-frame), which is an orthogonal axis set aligned with the roll, pitch, and

yaw axes of the sensor. The strapdown INS can be derived in different reference coordinate

systems, including the inertial frame (i-frame), which has its origin at the center of the Earth

and axes which are non-rotating with respect to the fixed stars; the Earth frame (e-frame),

9

which has its origin a the center of the Earth axes that are fixed with respect to the Earth;

and the navigation frame (n-frame), which is a local geographic frame having its origin at

the location of the navigation system and axes aligned with the direction of north, east, and

down (vertical). Pedestrian navigation focuses on localizing people in the local n-frame. The

n-frame mechanization is presented as follows:

an = Cn
b f

b − [2ωn
ie + ωn

en]× v+ gnl (1.1)

Ċ
n

b = Cn
bΩ

b
nb (1.2)

ωb
nb = ωb

ib − Cb
n[ω

n
ie + ωn

en] (1.3)

gnl = g− ωn
ie × [ωn

ie × p] (1.4)

Here, an is the linear acceleration in the n-frame generated by navigation motion, fb is the

3-axis accelerometer readouts, ωb
ib is the 3-axis gyroscope readouts, Ωb

nb is skew-symmetric

matrix corresponding to ωb
ib, ω

n
ie is the Earth rotation rate expressed in the n-frame, ωn

en is

the transport rate of n-frame with respect to the e-frame, v̇ is the acceleration generated by

motion of navigation in the n-frame, v is the velocity estimates in the n-frame, p is the posi-

tion estimates in the n-frame, Cn
b is the Direction Cosine Matrix (DCM) for transformation

from b-frame to n-frame, and g is the unit gravity vector expressed in the n-frame.

To implement the n-frame mechanisation in a computer, (1.1)-(1.4) need to be discretized. In

this section, the discretization uses 1st-order Taylor Series Expansion, presented as follows:

a(k + 1) = Cn
b (k + 1)fb(k)− [2ωn

ie(k) + ωn
en(k)]× v(k) + gnl (k + 1)

Cn
b (k + 1) = Cn

b (k)[Ω
b
nb(k + 1) + I3×3]

ωb
nb(k + 1) = ωb

ib(k)− Cb
n(k)[ω

n
ie(k) + ωn

en(k)]

gnl (k + 1) = g− ωn
ie(k)× [ωn

ie(k)× p(k)]

10

Velocity v and position p in the n-frame are calculated as follows:

v(k + 1) = a(k + 1)∆t+ v(k)

p(k + 1) = v(k + 1)∆t+ p(k).

Stance Phase Detection

The stance phase detection in the proposed Ultimate Foot-mounted Inertial Navigation Sys-

tem (uFINS) will be achieved with a combination of IMU and ultrasonic measurements. The

detector determines a stance phase if

T (zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2 + 1

σ2
h

∥ yhk − h ∥2) < γ,

where Ωn = l ∈ N, n ≤ l ≤ N − 1 is a collection of the IMU measurement indexes at time n

with a window of length N , zn = {[yαk⊤, yωk
⊤]}k=N−1

k=N is a sequence of the IMU measurements

in the window, yωk
⊤ are the gyroscope measurements at k, σ2

a is the noise variance of the

accelerometer, σ2
ω is the noise variance of the gyroscope, σ2

h is the noise variance of the

ultrasonic sensor, h is the height of the ultrasonic sensor with respect to the ground, and γ

are user-defined thresholds.

Extended Kalman Filter

The EKF state x is a 15× 1 vector, described as follows:

x = [q, v,p,ba,bg],

where q the attitudes of the IMU mounted expressed in navigation frame, respectively. ba

and bg are the bias of the accelerometers and gyroscopes.

11

In each implementation iteration, the EKF first performs a prediction step, followed by an

update step. In this subsection, xk and x̂k denote estimated state in the update step and

the prediction step at time k, and Pk and P̂k denote estimated state in the update step and

the prediction step at time k. The prediction step is described as follows:

x̂k+1 = INS(xk)

P̂k+1 = FkPkF
⊤
k +Qk.

The update step is described as follows:

xk+1 = x̂k+1 + P̂k+1H
⊤
k [HkP̂k+1H

⊤
k +Rk]

−1[zk −Hkx̂k+1]

Pk+1 = [I− P̂k+1H
⊤
k [HkP̂k+1H

⊤
k +Rk]

−1Hk]P̂k+1.

The matrices Fk, Qk, Hk, Rk are expressed as follows:

Fk = exp(Ak∆t+ I),where Ak =

03×3 03×3 03×3 −C(q) 03×3

−→
f n× 03×3 03×3 03×3 C(q)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

,

Qk =

σARW 03×3 03×3 03×3 03×3

03×3 σVRW 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 σRRW 03×3

03×3 03×3 03×3 03×3 σAcRW

,

Hk =

[
03×3 I3×3 03×9

]
.

where
−→
f n× is the skew-symmetric cross-product-operator of the accelerometer outputs of

12

the IMU, expressed in the navigation frame, σARW is Angular Random Walk (ARW) of

the gyroscopes, σVRW is the Velocity Random Walk (VRW) of the accelerometers, σRRW

is Rate Random Walk (RRW) of the gyroscope, and σAcRW is the Acceleration Random

Walk (AcRW) of the accelerometers. C(q) is the DCM corresponding to the quaternion q.

1.3 Problem Statement

Although ZUPT-aided INS can achieve a localization error on the order of 1% of the total

trajectory length, this level of accuracy might not be sufficient for firefighters and first re-

sponders as they may need to travel for hundreds or thousands of meters in GNSS-degraded

environments and maintain the accuracy of their location on the level of 1 meter. To extend

the usage of the ZUPT-aided INS, improvements are needed on both the sensor-level and

the algorithm-level. For MEMS-based IMUs, sensor level development includes innovative

design of micro-mechanical structures and corresponding control circuits that lead to better

noise characteristics in terms of ARW, VRW, RRW, and AcRW, and larger sensor FSR

and bandwidth. On the algorithmic and system level, it has been identified that accuracy

and reliability of the ZUPT-aided INS are affected by multiple error sources, including in-

consistent stance phase detection accuracy, weak observability of yaw angle estimates, EKF

systematic errors, ambient temperature variations, insufficient IMU FSR and bandwidth,

and unbounded position error growth [205].

This thesis focuses on the issues of the ZUPT-aided INS on algorithmic and system level

and aims to develop approaches to address each of the error sources. These error sources

can be grouped into three categories: on motion sensors, on algorithm assumptions, and on

estimation filters. The three categories are discussed in detail in the following paragraphs.

13

1.3.1 Challenges on Foot-mounted Sensors

Ambient Temperature Variations

A majority of MEMS IMUs are silicon-based devices, which have performance sensitive to

ambient operating temperatures. Variations in ambient temperatures significantly impact

the fundamental characteristics of these inertial sensors as well as their control circuits [16].

This impact leads to bias drifts and increased noise Standard Deviation (SD) in IMU mea-

surements. In such cases, the accuracy and reliability of a traditional ZUPT-aided INS are

degraded because the unmodeled bias drifts and the increased noise SD would cause large

errors in the unobservable yaw angle state, affect detection accuracy of a traditional zero-

velocity detector involved in the ZUPT algorithm, and generate filter inconsistencies in the

EKF. The degraded performance of the ZUPT-aided INS may occur in firefighting scenarios,

as it is conceivable that temperatures around firefighters can change as much as 20 − 30◦C

in a short time span [79].

Insufficient IMU FSR and Bandwidth

Insufficient sensor FSR has been reported as an error source in foot-mounted INS [205].

Although mounting IMUs on footwear brings the benefits of using the ZUPT algorithm,

foot-mounted sensors experience significantly larger forces than the sensors mounted on other

parts of a body. Forces as large as 40 g can occur during the heel-strike phase of a gait

cycle and saturate measurements obtained from many COTS high-performance IMUs, which

have an excellent noise performance but often limited sensor FSR and were often used in

previous research work regarding foot-mounted IMUs. Table 1.2 summarizes FSR and −3 dB

bandwidth of IMUs used in the 82 selected publications related to foot-mounted INS. Figure

1.4 presents of accelerometer and gyroscope FSR and bandwidth of 42 different IMUs used

14

in the selected 82 publications related to foot-mounted INS. It could be observed in Figure

1.4 that many of the chosen IMUs might not have sufficient sensor FSR and bandwidth

to fully reconstruct the violent inertial forces experienced by sensors during walking and

running. Although there are COTS IMUs with accelerometer’s FSR larger than 200 g,

which might be sufficient for foot-mounted INS, these sensors are not preferable for inertial

navigation because they usually have an order-of-magnitude worse noise performance. With

high-performance IMUs, the saturation indicates that foot-mounted IMU could produce

incorrect readings of actual accelerations during the take-off phase and the heel-strike phase,

which leads to degraded navigation accuracy and needs to be taken into account in the

ZUPT-aided INS [44]. The trade-off between sensor’s noise performance, FSR, bandwidth,

and Size, Weight, Power, and Cost (SWaP+C) remained to be unresolved challenges in

development of sensors for pedestrian inertial navigation.

Gyroscope Full-Scale Range

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Degree Per Second

0

5

10

15

#
of

IM
U

s

Accelerometer Full-Scale Range

0 20 40 60 80 100 120 140
g

0

2

4

6

8

10

12

#
of

IM
U

s

Accelerometer -3dB Bandwidth

0 500 1000 1500
Hz

0

1

2

3

4

#
of

IM
U

s

Gyroscope -3dB Bandwidth

0 100 200 300 400 500
Hz

0

1

2

3

4

5

#
of

IM
U

s

Figure 1.4: Histograms of accelerometer and gyroscope FSR and bandwidth of 42 different
IMUs used in the selected 82 publications related to foot-mounted INS.

15

Table 1.2: FSR and −3 dB bandwidth of inertial sensors used in selected 82 publications
related to foot-mounted IMUs.

Year Brand Model
Gyro Accel

PublicationFSR
(°/s)

BW
(Hz)

FSR
(g)

BW
(Hz)

2003

Analog
Devices

ADXL NA NA 10 NA [189]
2009 ADXRS300 300 40 NA NA [254]
2010 ADIS16355 300 350 10 350 [181, 186, 65, 267, 145]
2011 ADXL345 NA NA 16 NA [80, 261]
2012 ADIS16367 1200 330 18 330 [144, 251]
2013 ADIS16354AMLZ 300 350 1.7 350 [160]
2015 ADIS16488 480 330 18 330 [240]
2016 ADIS16480 480 330 10 330 [148]
2019 ADIS16485 480 330 5 330 [213]
2022 ADIS16470 2000 550 40 600 [99]
2022 ADIS16497−3 2000 550 40 750 [1]
2007 BAE SILMU02 9000 135 140 130 [149]
2006 Cloud Cap Crista 300 100 10 50 [66, 67, 21]
2003

Honeywell
GG1308 1000 NA NA NA [189]

2011 HG1930 7200 NA 85 NA [117]

2017
Inertial
Element

MIMU22BTP 2000 256 16 260 [203]

2005
Intersense

InertiaCube3 1200 NA NA NA [57]
2011 NavChip 2000 NA 16 NA [44, 124, 267]
2011

Invensense

ITG−3200 2000 NA NA NA [255, 261]
2011 IMU−3000 2000 NA NA NA [208, 80]
2014 MPU−9150 2000 256 16 260 [141, 146, 221, 128]
2017 MPU−9250 2000 250 16 260 [194, 41, 130, 131]
2020 MPU−6050 2000 256 16 260 [258, 11]
2022 ICM−20948 2000 197 16 246 [37]
2009 Kionix KXM52 NA NA 6 1500 [254]
2009 Memsense nIMU 1200 50 NA NA [24]
2011

MicroStrain
3DM−GX2 1200 NA 10 NA [206, 23]

2016 3DM−GX4−45 900 250 16 225 [156]
2021 3DM−CV5−25 1000 500 40 225 [120]
2020 Starneto IMU 120 NA 6 NA [231]

2011
STMicro-
electronics

LIS3LV02 NA NA 6 40 [255]

2018
VectorNav

VN−100 2000 260 16 256 [202]
2018 VN−200 2000 260 16 256 [223, 216, 222, 218, 214]

2015
x-io
Technologies

x-IMU 2000 NA 8 NA [208, 123, 220]

2007

Xsens

MTx 300 40 5 30 [152, 256, 164, 101, 102, 168]
2009 MTi 300 40 5 30 [95, 96, 176, 158, 175, 176, 252, 45]
2010 MTx−28A53G25 1200 40 18 30 [15]
2017 MTi−100 450 415 20 375 [257, 201, 151]
2016 MTi−G710 1000 415 20 375 [210, 197, 125]
2018 MTw 2000 184 16 184 [105]
2020 MTi−3−8A7G6−DK 2000 180 16 180 [204]

16

1.3.2 Challenges on Algorithm Assumptions

Inconsistent Stance Phase Detection Accuracy

Navigation errors of the ZUPT-aided INS highly depend on the accuracy of stance phase

detection. A misdetection is defined as the case where the detector fails to determine a stance

phase when a foot-mounted IMU is stationary. Misdetection can leave velocity estimates not

being corrected for an extended period of time, propagating polynomially to accumulated

position errors. A false alarm is referred to as the case where the foot is moving while the

detector indicates a stance phase. False alarms can lead to resetting velocity to zero while

a pedestrian’s foot is traveling very fast, violating the assumption of the ZUPT algorithm

and greatly degrading the navigation accuracy [181]. In a traditional implementation of the

ZUPT-aided INS, stance phase detection is based purely on IMU measurements. However,

this mechanism does not have a high detection accuracy because the measurement patterns

of the stance phases and the swing phases are very different when a pedestrian is performing

different activities.

EKF Systematic Errors

In ideal scenarios, the innovation sequences of the EKF are zero-mean Gaussian sequences.

However, the innovation sequence of the ZUPT-aided INS has been reported to have between-

step correlations and non-zero means [143]. The non-zero mean phenomenon is caused by

the violation of the assumption that the velocity of a foot in the stance phase is completely

stationary because the completely stationary scenario almost never happens in practice when

a pedestrian is performing daily activities, such as walking, running, climbing stairs, and

crawling. The violation of the assumption misleads the ZUPT algorithm to over-confidently

correct velocity states frequently with the measurement covariance matrix that has low-value

17

entrees. The modeling errors accumulate at each step, decreasing the navigation accuracy

of the ZUPT-aided INS [157].

1.3.3 Challenges on Estimation Filter

Weak Observability of Yaw Angle Estimates

While it has been proven that the ZUPT-aided INS implemented in the EKF had bounded

errors for velocity states along the three axes of translation and orientation states along the

roll and pitch axes, yaw angle errors grow unboundedly as the state are not observable in

the EKF. The unbounded yaw angle errors lead to accumulated horizontal position errors,

limiting the usage of the foot-mounted INS [96].

Unbounded Position Error Growth

In addition to the yaw angle state being weakly observable, position states of the ZUPT-

aided INS along the three axes of translation also have errors that grow unboundedly. The

horizontal position errors are coupled with yaw angle errors. The vertical position errors

are enhanced due to that COTS IMU FSR and bandwidth are not insufficient to measure

high shocks generated by foot-striking the ground. Once error sources are introduced to the

system, accuracy of estimated positions would significantly decrease and the errors would

propagate to subsequent position estimates, lowering the reliability of the ZUPT-aided INS.

To realize an accurate and reliable pedestrian navigation system based on ZUPT-aided INS,

the discussed six error sources are needed to be addressed. Although tremendous research

efforts and progress were shown in the literature, which will be discussed in Chapter 1.4, that

was devoted to independently mitigating the impacts of the six errors on navigation perfor-

mance, the problems caused by these error sources in ZUPT-aided INS remains unsolved.

18

This thesis intends to develop algorithmic advancements that address the problems.

1.4 Literature Review

This chapter of the dissertation discusses previous work on approaches to improve the ZUPT-

aided INS using foot-mounted IMUs. The approaches are grouped into solutions that solve

the different aspects of the system described in Chapter 1.3. Each group is presented as a

section in this chapter.

1.4.1 Enhancements On Motion Sensor

Compensation for Insufficient FSR and Bandwidth

In order to address the problem of insufficient inertial sensor FSR, previous works have

attempted different approaches. In [143] and [214], shock-absorbing pads were attached

between an IMU and a shoe. The pad could reduce the magnitude of forces experienced

by the IMU to a certain extent, but the forces could still be larger than accelerometer’s

FSR of many COTS IMUs. In [101], the research group modified the ZUPT-aided INS

algorithm by applying zero position change during heel strike phases and adjusting estimation

error covariance matrices. Their algorithm was designed based on the assumption that

displacements of an IMU mounted on the heel side of a shoe are minimal during heel strike

phases. Based on our observation in pedestrian navigation experiments, we considered that

the assumption might not be realistic in some scenarios, such as running, where the foot-

mounted IMUs can be very unstable during the heel-strike phases. In [100], an additional

IMU mounted on the calf of a human was used to assist a foot-mounted IMU. The usage of

the calf-mounted IMU was shown to improve navigation accuracy but increased the hardware

19

complexity of a pedestrian navigation system.

To mitigate errors induced by insufficient bandwidth of inertial sensors in ZUPT-aided INS,

the errors can be modeled as a function of both sensor bandwidth and experienced velocities

[120], and the error model was used in the EKF of the ZUPT-aided INS.

Temperature Compensation

MEMS-based IMUs are well-understood to have measurements that are affected by temperature-

dependent errors [46]. Approaches reported in the literature for mitigating temperature-

induced errors can be categorized into temperature control mechanisms and temperature

compensation approaches. Temperature control mechanisms integrate an additional temper-

ature controller co-located with the IMU to stabilize the ambient temperatures [247]. Tem-

perature compensation approaches approximate a relation between sensor thermal-induced

biases and thermal-related variables with a mathematical model [147]. The mathematical

model is then used to predict the biases, and the predicted biases are removed from raw

sensor measurements. Among these two groups of approaches, temperature control mecha-

nisms have been demonstrated to more effectively minimize temperature-induced errors in

MEMS-IMUs, but come with a trade-off of increasing the size and cost of an integrated

sensor system.

This section focuses on reviewing literature regarding temperature compensation methods.

MEMS-IMUs as on silicon-based devices were analyzed to have a linear relationship be-

tween sensor thermal-induced biases and thermal-related variables [42]. Since temperature

variations also impact control circuits and may cause distortion on corresponding Printed

Circuit Boards (PCBs), the relationship was demonstrated with nonlinearity [237] in ex-

periments where thermal variations were gentle. To account for the nonlinearity, previ-

ous works investigated different mathematical models, including different orders of poly-

20

nomials [147, 192, 245] and configurations of Back-Propagation Neural Networks (BPNNs)

[237, 209, 241, 53, 54, 56, 55, 16, 28, 228]. However, in experiments where temperature

variations were significant, the temperature-bias relation was demonstrated with a hystere-

sis effect [159]. The observations of hysteresis effects indicated that sensor biases might

be a nonlinear function of more than one input of temperature and led researchers to in-

vestigate different input features of the mathematical models. Therefore, in addition to

temperature readings, temperature rate, temperature gradient, or IMU readings were also

considered as inputs to the mathematical model that aims to predict thermal-induced er-

rors [192, 241, 54, 245, 16, 228]. Although these methods have demonstrated to effectively

mitigate the errors in IMU readings, it is still unclear to what extent can these approaches

improve position accuracy of foot-mounted INS when operating in temperature-varying en-

vironments.

1.4.2 Enhancements On Algorithm Assumption

Robust Stance Phase Detection

In the early development of the ZUPT-aided INS algorithm, researchers have started to use

a foot-mounted IMU for stance phase detection [66, 149]. In 2010, the detection problem was

formalized as a binary hypothesis testing derived in a General Likelihood Ratio Test (GLRT)

framework [181]. In this framework, the two hypotheses correspond to the cases of the stance

phase and the swing phase in a gait cycle, respectively. Using this approach, four detectors

were derived, which are the Stance Hypothesis Optimal dEtection (SHOE), acceleration-

Moving Variance (MV), acceleration-MAGnitude (MAG), and Angular Rate Energy (ARE).

In these mechanisms, the detection is achieved by comparing a pre-defined threshold with a

metrics called statistics, which can be expressed in terms of the ratio of likelihoods computed

from sensor measurements acquired during the two hypotheses cases. The statistics of these

21

detectors directly relates to the stability of the IMU, and the detection is based on the fact

that the foot is more stable in the stance phase than in the swing phase. These detectors

compare the statistics with a pre-defined threshold and detect a stance phase if the statistics

are lower than the threshold.

Using a fixed threshold for determining the gait phases for these detectors is, however,

challenging because the stability of a person’s foot during the stances varies significantly and

depends on the type of activities. A detection threshold that is optimal for normal walking

might be too low for running [223], and vice versa, resulting in misdetection or false alarms.

To improve the detection accuracy, many techniques have been developed to enhance the

detectors derived in the GLRT framework. These techniques include using adaptive thresh-

olds based on 1) additional assumptions of pedestrian gait models, such as the maximum

shock of a foot-mounted IMU within a gait is different while walking and running [223]

and the probability of occurrence of two consecutive stance phases during a short period is

low [206], magnitudes of normalized accelerometer signals are different for various motions

[121], a combination of accelerometers and gyroscopes is beneficial for walking and stan-

dalone gyroscope measurements is better for running [124], and sliding windows [194], 2)

activities classified using data-driven approaches, such as Support Vector Machine (SVM)

algorithm [203, 152], Hidden Markov Model (HMM) [191], fuzzy logic reasoning [210], Long

Short-Term Memory (LSTM) [202, 41], and Convolutional Neural Network (CNN) [39], 3)

additional information extracted from the foot-mounted IMU, such as a chest-mounted

accelerometer [256], the temporal variance of accelerometers [197, 127], and 4) sensor fu-

sion with additional non-inertial sensing modalities, which include magnetometers [148],

ElectroMyoGraphy (EMG) [211], shoe-embedded pressure sensors [130, 131], and downward-

facing RF range sensors[260, 255].

22

Non Zero Velocity Update

To mitigate the impact of the observation that the velocity of the foot is, although very close,

not zero, previous approaches have considered applying non-zero-velocity updates during

the detected stance phase. The non-zero-velocity measurements can be derived from foot

kinematics [234, 102] or obtained from additional sensors, such as an array of magnetometers

[182], Alternate Current (AC) electromagnetic sensors [222, 218], or cameras [15, 157].

1.4.3 Enhancements On Estimation Filter

Magnetometer Compass

Based on measurements collected with calibrated 3-axis magnetometer, the heading angle

can be estimated. Multiple previous research works have reported utilizing a magnetometer

as a compass to provide additional measurements of heading angle and bound yaw angle error

growth [257, 125, 208, 23]. However, modern indoor environments are filled with conductive

materials and metals, which generate magnetic field disturbance, including hard- and soft-

iron effects, and significantly degrade heading estimation accuracy. To reduce hard-iron and

soft-iron interference in magnetometers, physically rotating the sensors at every operating

location is needed in magnetometer calibration approaches [235]. These approaches are

not realistic in a real-time pedestrian navigation system. Without calibration, the estimated

heading angle can have errors of up to 100◦ in indoor environments [7], which are much larger

than the errors generated by integrating gyroscope measurements in a short- to mid-term

navigation mission.

23

Zero Angular Rate Update

Zero Angular Rate Update (ZARU) algorithm feedbacks pseudo measurements of zero an-

gular rate update when a stance phase is detected [96]. This algorithm allows for correcting

EKF states of gyroscope biases, reducing heading angle drift. However, it has been reported

that to effectively use the ZARU algorithm, the measurements of zero angular rate update

should be used only when the foot-mounted IMU is completely stationary [143]. Otherwise,

the actual measurements of angular rate generated by subtle motions of the foot may be

incorrectly treated as gyroscope biases, leading to significantly degraded yaw angle accuracy.

Multi-IMU Platform

In the ZUPT-aided INS, ARW is an important gyroscope measurement characteristic that

affects how fast the yaw angle state drifts [216]. Reducing the ARW can directly improve

yaw angle estimation accuracy. To improve the ARW with COTS IMUs, a Multi-IMU

(MIMU) platform, which acquires measurements from multiple IMUs simultaneously via

parallel communication protocols, can be used [183, 142, 184]. The MIMU platform allows

for averaging out independent stochastic errors in low-cost IMUs.

Heuristic Heading Compensation

Heuristic Heading Compensation (HHR) is an approach to enhance the ZUPT-aided INS

with an additional assumption that when pedestrians walk in indoor environments, the

trajectories consist of segments of straight lines [24]. The HHR algorithm detects if a person

is walking a straight line and corrects the yaw angle state by feeding back measurements of

zero yaw angle changes between two or multiple consecutive steps during the stance phase

[96]. A variation of the HHR approach was to integrate a side-facing laser range sensor with

24

a foot-mounted IMU [158]. The laser range sensor measures the distance to walls. Assuming

that walls are vertical flat planes, this approach simultaneously maps position of walls and

updates position and heading angle states of the sensor based on the range measurements.

Foot-SLAM

Implementing a SLAM algorithm based on foot-mounted INS, which is referred to as the

Foot-SLAM algorithm, has also been demonstrated to reduce errors in the yaw angle state,

leading to more reliability in long-term position stability. In Foot-SLAM algorithm, the

ZUPT-aided INS was implemented in a particle filter framework with probabilistic transition

maps, based on the probability of the pedestrian crossing transitions in a regular 2D grid of

adjacent hexagons of a predefined radius [171, 14, 163, 164, 63]. The navigation performance

of this approach could be enhanced by considering cases of indoor moving platforms, such

as elevators and escalators [105], using an adaptive threshold in the built-in zero-velocity

detection to account for non-walking cases [204], combining the occupancy maps obtained

from multiple agents [173, 162, 161], incorporating prior knowledge of the building layout as

prior maps [106], and integrating a few known locations [103].

Foot-to-foot Augmentation

An enhancement mechanism to augment ZUPT for pedestrian INS is to employ a dual foot-

mounted IMU system, which has shown to significantly improved navigation results compared

to a single foot-mounted IMU and a standalone ZUPT algorithm. A system using dual IMU

benefits from additional measurements derived from the relative motions between the two

shoes of a pedestrian, which information will be stacked with the pseudo-measurements

from ZUPT in a Kalman filter-based algorithm [213, 99]. Several different measurements

derived from the relative shoe motion were reported. One branch of measurement methods

25

imposes statistical constraints on the maximum or minimum distance between the two shoes

[186, 65, 146, 37]. These methods formulate the constraint conditions based on a single

hypothetical foot motion model, which in general is different for each individual.

Another branch uses actual ranging sensors to acquire real-world foot-to-foot distance mea-

surements. Brand et al. proposed a personal navigation system aided by foot-to-foot ranging

measurement, which is the relative distance between the two shoes [26]. Their system was

later tested by Laverne et al. with foot-to-foot range measurements obtained from two pairs

of shoe-mounted SOund Navigation And Rangings (SONARs) [117]. Although this system

has been demonstrated with excellent navigation results, their measurement model had to

be linearized for use of the EKF; their model assumed the mismatch between position esti-

mations from IMUs and distance measurements from SONARs to be small, which might not

always be the case. In addition to relative distance measurements, the system proposed by

Bancroft et al. also used relative positions between the two shoes as updates in the EKF [21].

Wang et al. utilized beam pattern characteristics of some COTS ultrasonic transmitters to

provide foot-to-foot yaw angle compensation [213]. The system proposed by Placer et al.

[160] adopted a shoe-mounted marker. They used the marker as a landmark and updated

the position of the system based on the landmark when the corresponding images showed

that the marker was stationary.

Magnetic-field SLAM

In indoor environments, the presence of ferromagnetic elements generate magnetic interfer-

ence, which makes it very challenging to directly enhance ZUPT-aided INS with heading

angles estimated from calibrated magnetometer measurements. However, magnetometers

can be used to implement a SLAM algorithm based on a magnetic interference map.

Assuming magnetic field anomalies in an indoor environment are nearly static over time and

26

have sufficient spatial variability, localization solutions can be obtained based on distinct

patterns of a magnetic fingerprint [76] with a pre-surveyed magnetic anomaly map. This

approach was demonstrated to track position along the three axes of mobile robots operat-

ing in indoor environments and generate a magnetic-field fluctuation map [199, 188]. This

approach was combined with foot-mounted IMU in pedestrian navigation. Previous work

reported a method called MagSLAM, which produces 2D localization solution by first us-

ing foot-mounted INS to map ambient magnetic field strength, and then the map was used

to improve long-term positioning stability [172]. The MagSLAM was later extended to in

the case of 3D positioning and experimentally proven effective with a foot-mounted IMU,

including 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer [201, 151].

Aiding with Signals of Opportunity

To improve localization accuracy of the foot-mounted INS for long-term navigation tasks,

solutions using opportunistic exteroceptive external aiding signals have been explored. These

signals include Wi-Fi, Bluetooth, RFID, UWB, and cellular signals, such as LTE and 5G.

Wi-Fi Although standalone Wi-Fi positioning is not an infrastructure-free solution, the

signals are presented in many modern buildings. Localization based on Wi-Fi signals can be

implemented in many different approaches, including Time of Arrival (ToA), Angle of Arrival

(AoA), or hybrid of ToA and AoA, Round-Trip Time (RTT), standalone RSS, and RSS

fingerprinting [246, 180]. Among these approaches, RSS-based techniques, which requires a

site-surveying step, can be operational with only one anchor signal transmitter without the

requirement of re-programming COTS Wi-Fi routers. These properties allow for a larger

operational area and ease of deployment, making it a more attractive option for indoor

localization compared to the other implementations using Wi-Fi signals.

27

Previous research has investigated approaches that combined the RSS fingerprinting tech-

niques with foot-mounted IMUs. These two systems worked in a complementary manner.

In [71, 73, 72, 13, 50, 35, 30], foot-mounted INS is used to both perform localization as well

as constructing a map of Wi-Fi RSS. These approaches have been demonstrated to increase

positioning accuracy for long-term navigation, as compared to a standalone ZUPT-aided

INS. Bruno et al. enhanced the Foot-SLAM algorithm with Wi-Fi RSS map [27].

Bluetooth Indoor positioning solutions based on Bluetooth protocols require pre-installation

of Bluetooth beacons. When these beacons are available in a navigation environment, local-

ization can be performed by using corresponding range measurements or RSS fingerprints. In

[266], researcher combined range and RSS measurements of Bluetooth with pedestrian INS

using IMUs embedded in a hand-held smartphone and performed positioning in a SLAM

framework realized with graph-based optimization.

Although many previous research works have reported the foot-mounted pedestrian navi-

gation platform including both IMU and Bluetooth module, the Bluetooth modules were

mostly used for transmitting sensor measurements [19, 20] or real-time navigation solutions

[144]. Gu et al. utilized Bluetooth signals to initialize and calibrate foot-mounted INS based

on iBeacons pre-deployed in a navigation environment [70].

RFID RFID systems include tags and readers. It was first demonstrated that distance

measurements deduced from RSS path-loss models of known RFID tags with a standalone

INS in both loosely- and tightly-coupled EKF framework could improve navigation accuracy,

as compared to a standalone INS [168, 254, 170]. To further increase the navigation accuracy

of RFID/INS system, foot-mounted IMU was used, allowing for implementation of a ZUPT

algorithm [175, 80, 176].

28

UWB UWB communication protocols are mainly used to enhance pedestrian inertial nav-

igation systems in two approaches: beacon-based approaches using distance measurements

and cooperative localization.

COTS UWB modules, such as Decawave DWM1000, can be programmed as a receiver or a

beacon. Distance measurements between a UWB receiver and a UWB beacon can be ob-

tained using RTT, which does not require clock synchronization between each UWB node,

allowing a flexible implementation, as compared to Time of Fly (ToF), AoA, or Time Differ-

ence of Arrival (TDoA). When UWB beacons, which are usually pre-installed in a indoor en-

vironment before a navigation task, are connected to UWBs mounted on a pedestrian’s body,

the corresponding range measurements can be used to enhance navigation solutions of foot-

mounted IMU systems. These approaches can be implemented in different filter framework,

including Kalman Filter (KF) [267], EKF [251, 123], Particle Filter (PF) [156, 174], joint

state PF [252, 258, 219], quaternion KF [231], iterated EKF [221, 11], Unscented Kalman

Filter (UKF) [36], predictive adaptive KF [243], federated Extended Finite Impulse Re-

sponse (EFIR) Filter [244], and graph-based optimization [220]. The experiments conducted

in these research mounted UWB on different parts of the body, such as head [219, 221, 123],

backpack [268, 244, 243], chest [252, 36], and foot [231, 258, 267, 11].

In cooperative localization, a group of communicating agents uses inter-agent relative range

measurements as feedback to improve the localization accuracy of their local navigation fil-

ters [155]. Cooperative localization is often considered an infrastructure-free enhancement

technique in pedestrian navigation and can be implemented based on inter-agent range mea-

surements obtained using different mechanisms, including computer vision or wireless RF

signals [43]. Among these implementations, UWB-based range measurements have attracted

significant attention in indoor navigation because the sensor has high time resolution, wide

bandwidth, and capability to work under Non-Line-Of-Sight (NLOS) conditions [264]. Using

enhancement with UWB-based inter-agent range measurements, ZUPT-aided INS has been

29

experimentally shown to increase position accuracy [150, 128, 264, 145, 261].

Cellular Signals Cellular signals have been used in an opportunistic localization framework.

In this framework, cellular towers are treated as beacons, and positioning can be achieved by

trilaterating pseudorange measurements based on cellular signals [108]. Cellular signals pos-

sess several desirable characteristics for indoor localization: abundance, geometric diversity,

high bandwidth, high carrier-to-noise ratio (C/N0) in indoor conditions, and the fact that

some of their downlink signals are free to use [4, 3]. These localization approaches have been

demonstrated to provide absolute position compensations to standalone INS [109, 132, 135].

In [1], a system integrating ZUPT-aided INS and LTE pseudorange measurements in both

loosely- and tightly-coupled manners was developed.

Height Compensation

For first responders, the precision of height estimation is a crucial performance metrics. For

example, an accumulated three-meters of error in the vertical direction is equivalent to an

error in identification of the floor in a building [166]. The navigation errors coming from

the ZUPT-based INS accumulate unboundly in the vertical direction [143]. Thus, additional

sensing modalities can be effectively used along with the ZUPT-based INS to enhance the

navigation accuracy, in-plane and out-of-plane. Barometric altimeters (barometers) are pop-

ular devices for this purpose as they provide independent and direct measurements of position

along the vertical direction. Barometric data for INS has been shown to improve the overall

navigation results in various types of integrated INS [167, 98, 187, 253, 177, 240]. However,

because these devices detect changes in air pressure, their measurements are easily affected

by weather changes during data acquisition, elevated pressure due to temperature increase in

the event of fire, and other environmental effects [118]. Although this issue can be addressed

by using one or multiple reference barometers at known locations [107, 169, 193, 154, 238],

30

this type of solution is not suitable for infrastructure-free navigation. Moreover, barometers

are easily subjected to air pressure perturbations in local environments. For example, open-

ing a door or a window near the sensor would lead to an incorrect estimation of height [107],

and those errors could be further amplified in chaotic air pressure environments [165, 207].

An alternative sensor that can be employed to obtain information about the relative vertical

position is an ultrasonic sensor [242, 59, 112, 166]. Downward-facing ultrasonic sensors can

measure the distance between the sensor and the ground. In [166], for example, an ultrasonic

sensor was mounted on the bottom of a backpack to detect a relative height distance. This

information was fused with height measurements collected from a barometer and used in the

KF framework. Such arrangement has been demonstrated to effectively handle the pressure

shock during navigation and allowed for estimating the barometer bias during the transition

between indoor and outdoor environments. However, the KF discussed in [166] depends

highly on barometric measurements, and those can be inaccurate due to, for example, the

room temperature controlled by air-conditioning or other chaotic variations under extreme

operational cases. In pedestrian navigation, rich information can be extracted from the

dynamics of a human walk. The mechanism introduced in [166], if used to aid ZUPT-

based INS, can provide a bound for displacement error growth in the vertical direction but

cannot capture subtle foot motions, which could benefit the overall navigation results of a

pedestrian INS. In [45], downward-facing ultrasonic sensors were mounted on the shoe to

extract measurements of the height of a shoe relative to the ground. Although the method

showed an improvement of navigation accuracy in experiments of walking on a flat surface,

as compared to standalone ZUPT-aided INS, it did not account for other common indoor

terrains, such as stairs, ramps, and elevators.

31

1.5 Thesis Overview

This Ph.D. thesis develops algorithmic techniques for enhancing the current state-of-the-art

implementation of ZUPT-aided INS. In this thesis, we developed eight approaches, each

of which is designed specifically to address one of the three error sources: foot-mounted

sensors, algorithm assumptions, and estimation filter, discussed previously in Section 1.3.

The approaches have been experimentally verified to improve the navigation accuracy of

pedestrian navigation systems using ZUPT-aided INS and were envisioned to be combined

together to achieve an infrastructure-free pedestrian positioning solution. Such a solution has

a potential for long-term accuracy and reliability not subjective to surrounding environments

undergoing pedestrian activities.

The rest of this thesis is organized as follows. Chapter 2 and Chapter 3 present approaches to

mitigate issues on foot-mounted inertial sensors, including insufficient FSR and bandwidth

as well as thermal-induced errors. Chapter 4 and Chapter 5 focus on the problems on algo-

rithm assumptions and provide multi-sensor-aided stance phase detectors and an adaptive

mechanism to automatically adjust measurement covariance of zero-velocity measurements.

Chapter 6, Chapter 7, and Chapter 8 addresses the problems on estimation filters from three

different aspects of the yaw angles, vertical position, and 3D positions, respectively. Chapter

9 presents a SLAM framework based on UWB and foot-mounted IMUs. Finally, Chapter 10

concludes the thesis with highlights of my contributions and suggestions for future research

directions.

32

Chapter 2

On Motion Sensor − Overcoming

Insufficient Sensor FSR and Bandwidth

2.1 Introduction

There are increased demands on inertial sensor’s Full-Scale Range (FSR) and bandwidth

when the sensor is mounted on the foot. The foot-mounted sensors experience large shocks

that could saturate many COTS IMUs, degrading navigation performance of pedestrian

navigation systems using such sensors. This chapter focuses on addressing the problem of

sensor’s insufficient FSR and bandwidth. The rest of this chapter is organized as follows.

Section 2.2 experimentally investigates the minimum FSR of a foot-mounted IMU to capture

signals without saturation in different pedestrian activities. Section 2.3 utilizes an analytical

pedestrian inertial navigation simulation model, based on an inverted pendulum rigid body

walking model, allowing for confirmation that insufficient sensor’s FSR and bandwidth in-

deed lead to a significant increase in navigation errors. Section 2.4 develops an algorithmic

approach to reconstruct saturated accelerometer signals. Section 2.5 presents a prioritizable

33

IMU array, a system-level approach integrating multiple different IMUs to boost the FSR

and bandwidth. Section 2.6 summarizes this chapter with future research outlooks.

Section 2.3 of this chapter is a collaborative effort. The rigid body walking model presented

in Section 2.3.1 was developed by UCI Professor Alexander Voloshina. The author of this

thesis, Chi-Shih Jao, supervised by UCI professor Andrei Shkel, contributed to implementing

reverse inertial navigation mechanization presented in Section 2.3.2, as well as the approach

and results presented in Section 2.3.3, generating foot-mounted IMU signals that considered

deterministic noises, stochastic noises, and sensor limitation.

2.2 Experimental Investigation of FSR Requirements

This section discusses properties of IMU measurements at different mounting positions,

sources that lead to incorrect readings, and profiles of saturated IMU measurements.

An IMU consists of a triaxial accelerometer and a triaxial gyroscope, measuring specific

forces that are proportional to linear accelerations and angular velocities experienced by

the inertial sensors. During pedestrian navigation, IMUs deployed on different locations

of a human body experienced different forces, which generated distinct patterns of IMU

measurements.

To understand characteristics and limitations of the IMU measurements, a series of pedes-

trian navigation experiments of different pedestrian activities with multiple IMU mounting

positions was conducted. The experiments were conducted in the Engineering Gateway

Building at the University of California, Irvine. Figure 2.1 shows an experimental setup

and experimental environment for this study. In the experiments, four IMUs, including one

Invensense SmartBug, two VectorNav VN−200, and one Analog Device ADIS16497−3, were

mounted firmly, with tapes, on the head, chest, left pocket, and left shoe of a pedestrian,

34

Stairs

Flat plane

Stairs

Invensense
SmartBug
• ±16 g
• ±2000 dps
• 100 Hz

VectorNav
VN-200
• ±16 g
• ±2000 dps
• 800 Hz

Analog Device
ADIS16497-3
• ±40 g
• ±2000 dps
• 4250 Hz

Figure 2.1: Experimental setup and experiment scenario discussed in Section 2.2. The
Smartbug IMU (TDK/InvenSense) was attached with a double-sided tape on a face shield
worn by the person. One VN−200 (VectorNav) was attached with a double-sided tape on
chest of a person. The other VN−200 was placed inside the left pocket. The ADIS16497−3
(Analog Devices) was mounted with tape on the toe side of the left shoe.

35

Head Chest Pocket Foot

Ac
ce

le
ra

tio
n,

 m
/s

2

Time, s

Accelerometer readings in one step Gyroscope readings in one step

An
gu

la
r r

at
e,

 d
eg

/s
ec

Head Chest Pocket Foot

Time, s

Stance
Swing

x
y
z

W
al

k
sl

ow

10 10.5 11-5
0
5

10
15

10 10.5 11-10
-5
0
5

10
15

10 10.5 11
-20
-10

0
10

10 10.5 11
-20

0
20
40

10 10.5 11

-20

0

20

10 10.5 11

-20

0

20

10 10.5 11-200

0

200

10 10.5 11
-500

0

500

Ju
m

pi
ng

9 9.1 9.2
-20

0
20
40

9 9.1 9.2
-20

0
20
40

9 9.1 9.2
-200
-100

0

100

9 9.1 9.2-500

0

500

9 9.1 9.2
-100

0
100

9 9.1 9.2
-200

0

200

9 9.1 9.2
-1000

0

1000

9 9.1 9.2
-2000

0

2000

D
ow

ns
ta

irs

fa
st

6.2 6.4 6.6
0

10

20

6.2 6.4 6.6
0

20

40

6.2 6.4 6.6-40
-20

0

20

6.2 6.4 6.6
0

200

400

6.2 6.4 6.6-100

0

100

6.2 6.4 6.6
-100

0
100
200

6.2 6.4 6.6
-200

0

200

6.2 6.4 6.6
-1000

-500
0

500

U
ps

ta
irs

fa

st

11.5 12
0
5

10
15

11.5 12
-10

0
10
20
30

11.5 12-40

-20

0

20

11.5 12
-50

0
50

100
150

11.5 12
-50

0

50

11.5 12-200

0

200

11.5 12
-200

0

200

11.5 12
-1000

0

1000

D
ow

ns
ta

irs

sl
ow

17 17.5 18
0

10

20

17 17.5 18-10

0

10

20

17 17.5 18-20

-10

0

17 17.5 18-100

0

100

200

17 17.5 18
-20

0

20

17 17.5 18
-50

0

50

17 17.5 18
-100

0

100

17 17.5 18-500

0

500

U
ps

ta
irs

sl

ow

13 13.5 14
0
5

10

13 13.5 14-10

0

10

13 13.5 14
-20

-10

0

13 13.5 14-50

0

50

13 13.5 14

-20
0

20

13 13.5 14
-50

0

50

13 13.5 14-200

0

200

13 13.5 14-500

0

500

R
un

fa

st

6.5 7-10
0

10
20
30

6.5 7-20
0

20
40
60

6.5 7-100
-50

0

50

6.5 7
-100

0
100
200
300

6.5 7
-100

0
100
200

6.5 7-200

0

200

400

6.5 7
-500

0

500

6.5 7
-1000

0

1000

R
un

sl

ow

5.5 6-20

0

20

5.5 6-20
0

20
40
60
80

5.5 6
-100

0

100

5.5 6
-100

0
100
200

5.5 6-100

0

100

5.5 6-200

0

200

5.5 6

-1000

0

1000

5.5 6
-1000

0

1000

W
al

k
fa

st

3.6 4 4.4 4.8
0

10

20

3.6 4 4.4 4.8
-10

0
10
20

3.6 4 4.4 4.8
-20

0

20

3.6 4 4.4 4.8
-50

0

50

3.6 4 4.4
-40
-20

0
20
40

3.6 4 4.4 4.8-100

0

100

3.6 4 4.4 4.8-400
-200

0
200
400
600

3.6 4 4.4 4.8-1000

0

1000

Figure 2.2: IMU readings at different mounting positions of a human body while performing
everyday pedestrian activities. Plots in the same column show IMU readings collected with
the same sensor, and plots in the same row correspond to measurements obtained within one
complete gait cycle while performing the same activity.

36

respectively. With this setup, the pedestrian performed nine different activities, which are

listed on the y-axis label of Figure 2.2. While performing the activities, the pedestrian used

a metronome as a reference to the tempo of each step, not as a measurement itself. In

each activity listed in Figure 2.2, a slow movement corresponds to a tempo of approximately

60 steps per second, and a fast movement means 120 steps per second. Duration of each

experiment was around 60 seconds.

Figure 2.2 demonstrates the experimental results in the series of experiments. In Figure 2.2,

plots in the same column display IMU readings collected with the corresponding sensor as

described in Figure 2.1, and plots in the same row reveal the measurements obtained within

one complete gait cycle while performing the same activity. In this study, one complete gait

cycle contains two stance phases and one swing phase. The stance phase is the period when a

foot is stationary on the ground, and the swing phase is when the foot is traveling in the air.

In this series of experiments, the largest angular velocities were always measured in the step

in which the largest acceleration occurred. The maximum magnitudes of accelerometer’s

readings and gyroscope’s readings collected in each experiment with the different IMUs are

documented in Table 2.1.

The following observation can be made about results presented in Figure 2.2.

1. In most activities, except for jumping, the z-axis accelerometer’s measurements col-

lected by the four different IMUs exhibit two peaks. In the cases of head- and chest-

mounted IMUs, the peaks were generated by the heel-strike phases of two consecutive

strides taken by two different feet. In the cases of pocket- and foot-mounted IMUs, the

peaks were produced during the toe-off phase and the heel-strike phase of the same

foot in the gait cycle.

2. Patterns of accelerometers’ and gyroscopes’ measurements collected by the four IMUs

appeared different during the stance and swing phases. These differences can be utilized

37

for step detection, as described in [22] with head-mounted IMUs, [8] with pocket-

mounted IMUs, and [218] with foot-mounted IMUs.

3. Foot-mounted IMUs demonstrated a distinct characteristic, as compared to other

mounting positions. For example, during the stance phases, the acceleroemters’ read-

ings were nearly identical to unit gravity and the gyroscopes’ readings were very close

to zero measurements. This distinct characteristic allows for robust stance phase de-

tection. Furthermore, with the assumption that the foot has minimal motion when

the foot is on the ground, the characteristic enables applying a ZUPT algorithm to the

strapdown inertial navigation systems.

4. The magnitudes of linear accelerations and angular velocities experienced by the foot-

mounted IMU were significantly larger than the IMUs mounted at other positions. In

this series of experiments, nominal gyroscope’s FSR of the four different sensors had

similar values of approximately ±2000 degree per second (dps), which was verified

by an inertial characterization equipment centrifuge Ideal Aerosmith Model 1571 at

UCI Microsystems Lab[222]. It can be observed in Table 2.1, that the ±2000 dps

gyroscope’s FSR was not large enough for the case of jumping. Note in Table 2.1,

maximum accelerometers’ and gyroscopes’ readings of the Analog Device IMU were

larger than their nominal FSR. This is because for the Analog Device’s IMU, FSR is

the largest amount of acceleration the sensor can measure accurately. A measurement

larger than the FSR may not reflect the actual force the sensor experienced.

5. Nominal accelerometers’ FSR of the four IMUs were different, which were ±16 g

for the Invensnese SmartBug and Vector VN−200 and ±40 g for the Analog Device

ADIS16497−3. The nominal accelerometers’ FSRs were confirmed by inertial charac-

terization in UCI Microsystems Lab with shaker APS Dynamics Model APS500 [222].

In Table 2.1, it can be observed that the accelerometers’ FSR of the SmartBug and

the VN−200 were not sufficient to fully reconstruct forces experienced by the foot-

38

mounted IMU in some activities, such as running slow, running fast, going downstairs

fast, and jumping. In the cases of going downstairs fast, and jumping, even a ±40 g

accelerometer’s FSR was not high enough.

Table 2.1: Maximum accelerometer’s and gyroscope’s readings in different activities.

Mounting position
Head (SmartBug) Chest (VectorNav) Pocket (VectorNav) Foot (Analog Device)

Accel (g) Gyro (dps) Accel (g) Gyro (dps) Accel (g) Gyro (dps) Accel (g) Gyro (dps)

Walk slow 1.4 51.7 1.4 58.6 2.3 214.6 4.4 586.8

Walk fast 2.1 71.5 2.1 126.2 3.8 576 14.6 1083.9

Run slow 3.8 252.6 7.3 342.3 11.3 1342.9 22.5 1182.4

Run fast 3.5 312.8 5.8 366.1 11.3 1922.6 40.9* 2157.3*

Upstairs slow 1.4 67.3 1.5 74.6 3.4 188.4 8 563.6

Downstairs slow 2.1 59.9 2.5 95.9 3.5 216.1 15 796.4

Upstairs fast 2.1 126.7 5.1 322 5 479 29.4 1047

Downstairs fast 3.3 195.5 8.3 245.3 5.3 553.5 40.8* 1008.6

Jumping 4.1 152.1 6.2 402 15.3 1617.5 40.9* 2379.2*

* The measurements exceed nominal sensor FSR.

Based on these IMU readings, it can be emphasized that although foot-mounted IMU has the

advantage of being able to use the ZUPT-aided INS algorithm, the requirements of sensor’s

FSR for foot-mounted systems are higher, and many COTS high-performance IMUs might

not have characteristics that meet the requirements of the application. This section focuses

on the issue of insufficient accelerometer’s FSR in foot-mounted pedestrian navigation. In

the next section, we use an analytical pedestrian simulation model to confirm that insufficient

sensor FSR causes a significant error growth.

2.3 Confirmation Using Pedestrian Simulation Model

This section presents an analytical model with reduced complexity based on an inverted

pendulum shown in Figure 2.3. This model is used to generate foot position for the case

of foot-mounted INS-based navigation. The developed model accounts for high acceleration

shocks during the heel-strike and toe-off phases, which enable simulating the effects of the

limited sensor FSR and bandwidth on navigation accuracy. Additionally, six different IMU

39

Stance phaseSwing phase

Inverted
pendulum
model

Pendulum
model

Foot-mounted
inertial sensor

𝜃𝜃2

𝜃𝜃1

𝐩𝐩𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐩𝐩𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
Figure 2.3: Modeling of walking dynamics using an inverted pendulum in the stance phase
and regular pendulum in the swing phase.

noise sources, including white noise, bias instability, random walk, scale factor inconsisten-

cies, misalignment, and turn-on bias were added to the simulated IMU signals.

2.3.1 An Analytical Walking Model Based on an Inverted Pendulum

We used a walking model, referred to as the rigid body walker [62, 114, 10], and investigated

whether such a model is capable of predicting with sufficient accuracy the trajectory of the

foot during walking. Figure 2.3 shows the configuration of the model, which consists of two

rigid legs of length l of negligible mass connected by a frictionless hinge joint. The motion of

the model is constrained to two dimensions. In this model, only one foot is on the ground at

any given moment, during which time the system behaves like an inverted pendulum. The

angle dynamics of the stance leg with respect to gravity, denoted as θ1, are expressed as

θ̈1 =
g

l
sin(θ1),

where g is the gravity constant. The motion of the swing leg is dictated by the torsional

hip spring, with a spring constant, khip, acting between the stance and swing legs. This is

40

analogous to hip flexor and extensor muscle activity during healthy human walking. The

angle of the swing leg, θ2, with respect to gravity, is calculated as

θ̈2 =
khip
mf l2

(θ1 − θ2) +
g

l
(sin(θ1 − θ2)cos(θ1))− θ̇1

2
sin(θ1 − θ2),

where mf is the mass of the foot. With mf ≪ m, the swing leg does not affect stance leg

dynamics [113]. The model is simulated to be analogous to human walking at a speed of

1.00 [m/s] and a step length of 0.662 [m]. To obtain generalized results, all model parameters

were non-dimensionalized with respect to body mass (m), leg length (l, 0.87m for typical

human) and gravity (g). As a result, the simulated model gait had an average speed, v̄, of

v̄=0.342
√
lg.

Initial conditions of the model are set such that model dynamics repeat with each step. In

other words, the model is on a limit cycle and all system states are identical for each step.

The roles of the swing and stance leg switch when the swing leg contacts the ground. At this

point, the model undergoes a perfectly inelastic collision, which redirects the center of mass

velocity to be tangential to the new stance leg. Energy is lost as a result of this collision and

must be replaced in order to maintain steady-state walking. To compensate for the energy

loss, an impulse is applied along the stance leg immediately prior to foot contact of the swing

leg. In other words, the impulse is perpendicular to the Center of Mass (CoM) direction of

motion before collision and is analogous to the push-off work done by the lower leg muscles

during human walking [113]. That is, push-off is perpendicular to the direction of motion of

the CoM before collision. This redirects the CoM dynamics prior to collision, adding energy

to the system and compensating for energy lost during foot contact [113].

The whole system provides a better understanding of the energy expenditure during human

gait. The pendulum dynamics experience energy loss due to the collisions of the model after

every step. To compensate for the loss, the model is powered by impulsive push-off P during

41

stance leg and hip work k acting between the legs. The algorithm applies the toe-off impulse

before losing energy due to the collision of the heel-strike and later this value is used to set the

initial condition for the upcoming steps. The hip torque is produced by a spring of stiffness

k [114, 115]. The energy gained when the foot leaves the ground is compensated by a loss

of kinetic energy. Thus, the metabolic effort is performed during the changeover between

feet due to the work of the collision. An optimization algorithm provides the most optimal

set of initial conditions (P and k) to create a limit cycle for the model, where each step is

identical to the previous one. The algorithm performs diverse iterations to find the values

that provide the minimum errors compared to the desired speed and step length defined by

the user.

The model we are using simulates human walking at a velocity of 1m/s and at a step length

of 0.662m, which is dictated by the optimized hip stiffness. To obtain generalized results,

the outcome variables are non-dimensionalized with respect to body mass M, leg length (l,

nominally 0.87 for typical human), and gravity g. The numerical integration began every time

after heel-strike followed by toe-off. After a new heel-strike, the integration was interrupted

to define a new stance leg. The simulated two-step gait relied on a combination of push-off

and hip work for power.

The pelvis positions of the rigid body walker, ppelvis, during each step can be computed as

ppelvis = l

−(sin(θ1)− sin(θ1,0))

0

cos(θ1)

+ ppelvis,0,

where ppelvis,0 is the position of the pelvis at the end of the previous step and θ1,0 is the angle

of the stance leg at the beginning of each step. Positions of the stance leg, pstance, and the

42

swing leg, pswing, are computed as

pstance = ppelvis + l

sin(θ1)

0

−cos(θ1)

 ,pswing = ppelvis + l

sin(θ2)

0

−cos(θ2)

 .

In our simulation, positions of a foot in the navigation frame, denoted as pn, are obtained by

alternating between positions of the stance leg and the swing leg. Roll angle ϕ and yaw angle

ψ of the foot remain zero throughout the entire simulation, and the pitch angle θ alternates

between θ1 and θ2.

2.3.2 Synthesizing Noise-Free IMU Readings

This study follows the strapdown INS algorithm, discussed for example in [198], and trans-

forms the ground truth position pn and orientations along roll ϕ, pitch θ, and yaw ψ angles

generated from the rigid body walker to noise-free IMU signals. Velocities in the navigation

frame vn are computed from the position pn, and accelerations in the navigation frame anare

obtained from the velocity. Angular rates of the body frame with respect to the navigation

frame ωb
nb are calculated from orientations as

ωb
nb =

ϕ̇

0

0

+ C3

0

θ̇

0

+ C3C2

0

0

ψ̇

 ,

where C3 is a rotation matrix rotating ϕ degree along the roll direction and C2 is a rotation

matrix rotating θ degree along the pitch direction. Local gravity is computed as

gnl = g− ωn
ie × (ωn

ie × pn),

43

where g is the gravity vector and ωn
ie is the Earth rate. Noise-free accelerometer readings ua

are obtained as

ua = Cb
n(a

n + (2ωn
ie + ωn

en)× vn + gnl), (2.1)

where ωn
en is the transport rate of the navigation frame and Cb

n is the DCM representation

of ωb
nb. Noise-free gyroscope readings ug are expressed as

ug = ωb
nb + Cb

n(ω
n
ie + ωn

en). (2.2)

2.3.3 IMU Noise Model

This study considers eight different error sources for each sensor of an IMU, consisting of

three accelerometers and three gyroscopes. The error sources include stochastic components

of white noise, bias instability, and random walk; deterministic components of scale factor

inconsistency, misalignment, and turn-on bias; and sensor limitations of FSR and bandwidth.

These error sources are added to the noise-free accelerometers and gyroscopes readings de-

scribed in (2.1) and (2.2).

Stochastic Noise Model

Simulated accelerometer readings corrupted with the stochastic components, denoted as ûa,

are expressed as

ûa = ua + n̂N + n̂B + n̂K , (2.3)

where n̂N , n̂B, and n̂K denote the white noise, bias instability, and random walk components,

respectively. This study modeled these three noise components with approaches presented

44

in [49], having the following formulations:

n̂N = ωN , ˙̂nB = −µBn̂B + ωB, ˙̂nK = ωK ,

where ωN , ωN , and ωK are zero-mean Gaussian noise with variances of σ2
N , σ

2
B, and σ2

K ,

respectively. The values of the variances are to be determined via an optimization process

that fits the noise models to the Allan Variance plot of a real IMU. µB is the correlation

time associated with bias instability, and the value of µB was set to 10 [s] in this study.

Deterministic Noise Model

Simulated accelerometer readings corrupted with both the stochastic and deterministic com-

ponents, denoted as ũa, are expressed as

ũa = M(ûa + b0), (2.4)

where M is a misalignment matrix with diagonal entries being scale factor errors along the

three axes and off-diagonal entries being cross-axis sensitivity, and b0 is the turn-on bias.

In this study, values of b0 were determined from a zero-mean Gaussian distribution with a

Table 2.2: Parameter settings for different noise models.

Parameter Accel Value Gyro Value

White noise σN 0.0015 [m/s3/2] 1.74e−4 [rad/s1/2]

Bias instability σB 3.92e−4 [m/s2] 4.84e−5 [rad/s]

Random walk σK 1.01e−4 [m/s5/2] 1.41e−4 [rad/s3/2]

Scale factor error 0.05% 0.05%

Cross axis sensitivity 0.02◦ 0.02◦

Turn-on bias σb0 0.01 [g] 0.3 [deg/s]

Full-scale range αFSR 16 [g] 2000 [deg/s]

Bandwidth fcutoff 260 [Hz] 256 [Hz]

45

variance of σ2
b0

at the beginning of each simulation.

Sensor Measurement Limitation

This study applies a 6th-order Butterworth low-pass filter on ũa with a cut-off frequency,

denoted as fcutoff, to simulate the limited bandwidth of an IMU. To simulate sensor with

limited FSR, αFSR, we require that |ũa| < αFSR. Simulated IMU readings that include the

stochastic and deterministic noise components and measurement limitation, denoted as ūa,

is expressed as

ūa =

αFSR if lowpass(ũa, fcutoff) > αFSR

−αFSR if lowpass(ũa, fcutoff) < −αFSR

lowpass(ũa, fcutoff) otherwise

(2.5)

The processes described in (2.3)-(2.5) with different noise parameter settings are used to

obtain simulated gyroscope readings corrupted with the error sources, denoted as ūg. In

this study, IMU readings were simulated based on noise characteristics of a VectorNav IMU

VN−200. The parameters of stochastic noise components were determined experimentally

with the Allan Variance test, and the deterministic component and sensor measurement

limitation parameters were set nominally according to the sensor datasheet. Values of the

parameters used in our developed approach are summarized in TABLE 2.2. The sampling

rate of the simulated IMU was set to 800 [Hz].

Figure 2.4 shows profiles of IMU readings in two steps generated with the developed sim-

ulation and collected with a VN−200 IMU. In Figure 2.4, acceleration shocks could be

observed during the heel-strike and toe-off phases, in both the simulated and experimented

IMU readings. The acceleration shocks in the simulation were generated because the rigid

46

10 11 12 13
Time, s

-5
-4
-3
-2
-1
0
1
2
3
4
5

g

Accelerometer readings

x
y
z

10 11 12 13
Time, s

-1000
-800
-600
-400
-200

0
200
400
600
800

1000
Gyroscope readings

10 11 12 13
Time, s

-5
-4
-3
-2
-1
0
1
2
3
4
5

g

Accelerometer readings

10 11 12 13
Time, s

-1000
-800
-600
-400
-200

0
200
400
600
800

1000
Gyroscope readings

de
g/

s

de
g/

s

Rigid Body Walker Experiment

SwingStance SwingStance

Acceleration shocks
(Heel-strike and toe-off)

Acceleration shocks
(Heel-strike and toe-off)

Figure 2.4: Example profiles of simulated and measured IMU readings in two steps, in the
case of walking along a straight line. The left column represents modeled sensors’ readings,
and the right column represents experimental sensors’ readings.

47

body walker model discussed in Section 2.3.1 considers events of the foot colliding with the

ground, which causes a discontinuity in velocity measurements. The maximum acceleration

shock generated in our model was around 200 [g].

2.3.4 Comparing Simulated and Experimental Results

This study compares the navigation accuracy of the ZUPT-aided INS using a series of 20

simulations and 20 experiments. In each run of the simulations, we used the model discussed

in Section 2.3.1 with 28 steps, resulting in a straight-line trajectory of 42.86 [m]. In the

experiments, an IMU VN−200 was mounted on the toe-side of a subject’s boot, and the

sampling rate of the sensor was set to 800 [Hz]. The subject walked a straight-line trajectory

of 42.3 [m] with each step length of approximately 0.75 [m] and a pace of around 60 steps

per minute. The ZUPT-aided INS was implemented in an EKF with the Acceleration-

Moving Variance (AMV) detector [181]. The initial yaw angle of each navigation solution

was assumed to be aligned with the North.

Figure 2.5 shows the navigation results of the simulations (left column) and experiments

(right column). 3D Root Mean Square Error (RMSE), horizontal Circular Error Proba-

ble (CEP), and vertical (⊥) RMSE between the simulated and experimental results had a

difference of 6%, 40%, and 7%, respectively. The vertical positions in the simulations and

experiments drifted in the same direction. To the best of our knowledge, this is the first

pedestrian navigation simulation model that captures with sufficient accuracy the vertical

positioning drifts. It could be shown with our model that insufficient sensor FSR and band-

width are the dominating sources of the drifts. This observation supports the hypothesis

on the causes leading to the vertical positioning drifts in the foot-mounted INS that were

discussed in previous research [205].

Two lessons could be learned by observing the results presented in Figure 2.5. First, the ⊥

48

-2 -1 0 1 2
East, m

0

10

20

30

40

50

N
or

th
,m

Horizontal trajectory

-2 -1 0 1 2
East, m

0

10

20

30

40

50
N

or
th

,m
Horizontal trajectory

Rigid Body Walker Experiments

Est Path
Est End
Start
GT end
GT Path RMSE: 0.78 [m]

Horizontal CEP: 0.41 [m]

⊥RMSE: 0.44 [m]

RMSE: 0.83 [m]

Horizontal CEP: 0.69 [m]

⊥ RMSE: 0.41 [m]

-1 -0.5 0 0.5 1
East, m

42

42.5

43

43.5

44

N
or

th
, m

Destination

0 10 20 30 40 50
North, m

-1

-0.5

0

0.5

1

D
ow

n,
m

Vertical trajectory

-1 -0.5 0 0.5 1
East, m

41

41.5

42

42.5

43

N
or

t h
,m

Destination

0 10 20 30 40 50
North, m

-1

-0.5

0

0.5

1

D
ow

n,
m

Vertical trajectory

Figure 2.5: Comparison of navigation accuracy of the ZUPT-aided INS in the cases of rigid
body walker simulation and experiments with VN−200 IMU. The left column represents
modeling, and the right column represents experiments.

49

RMSE of the simulation results was larger than the experiments. This was due to the fact

that the simulated accelerometer readings, as shown in Figure 2.4, even though capturing the

trend, had significantly larger shocks along the z-axis than the experimental accelerometer

readings. When limiting in the simulated IMU readings the accelerometer FSR to 16 [g],

large accelerometer biases were introduced, resulting in a larger vertical positioning error.

Second, the estimated trajectory length in the experiments had larger deviations than in the

simulation. We believe the reason is that the simulated IMU signals had identical patterns

in each step, while, in the experiments, the signals had slightly different patterns of the

human subject’s walking style. Thus, a fixed threshold in the stance phase detection could

be optimal in the simulation but not in the experiments. These observations suggest that, in

order to improve the accuracy of navigation uncertainty prediction, future research should

augment the model with more sophisticated foot motions. One potential research direction

is to combine the analytical rigid body walker with traditional approaches of generating foot

motion using motion cameras or IMUs.

This section presented a simple, yet practical, model that is sufficient to predict with high

accuracy the navigation uncertainty of a ZUPT-aided INS using a foot-mounted IMU. The

experimental results showed that the developed simulation model had a 6% discrepancy in

position RMSEs, as compared to experiments, but captured all main features of motion. Our

model also accurately predicted the drift in the vertical direction, matching well the reported

experiments. The simulation results show that insufficient FSR and bandwidth were factors

causing the drifts along the vertical direction. The results discussed in this section were

published in [85].

In the following two sections, we present two enhancement approaches for pedestrian navi-

gation systems using foot-mounted IMUs to mitigate the impact of saturated IMU signals

on positioning accuracy.

50

2.4 Algorithmic Reconstruction of Saturated Signals

0.2 0.4 0.6 0.8 1

Time, s

-30

-20

-10

0

10

20

30

40

A
c
c
e

le
ra

ti
o
n

,
g

0.2 0.4 0.6 0.8 1
Time, s

-30

-20

-10

0

10

20

30

40

A
c
c
e

le
ra

ti
o

n
,

g

Reconstruction

filter

IMU

Saturated

Accelerometer

Reconstructed

Accelerometer

Dead region

Full Scale Range

Rebuilt

segments

Rebuilt

segments

Figure 2.6: Concept of the developed reconstruction filter.

This section presents a reconstruction filter to pre-process accelerometer signals for a ZUPT-

aided INS. The developed reconstruction filter aims to rebuild saturated accelerometer

signals due to insufficient accelerometer’s FSR. Reconstructing saturated accelerometer sig-

nals is considered equivalent to predicting immeasurable signals. Immeasurable signals are

defined in this section as the acceleration outputs that can be correctly measured by ac-

celerometers with very high FSR but are immeasurable if the FSR is low. The concept of

the developed reconstruction filter is based on observations that profiles of immeasurable

signals during the heel-striking phase are similar to a triangular function, which are parame-

terized with amplitude α and period λ. When a sequence of saturated accelerometer signals

are detected, the developed reconstruction filter estimates the parameters α and λ, generates

a triangle wave based on the estimated parameters, and superimposes the triangle wave to

the saturated accelerometer signals. Reconstructed accelerometer’s signals, which are out-

putted from the reconstruction filter, are inputted to the ZUPT-aided INS. Because noise

performance of reconstructed signals and raw signals are different, the process noise settings

51

for accelerometer bias states in the EKF need to be modified. The developed reconstruction

filter also predicts a noise variance for every reconstructed accelerometer’s readings, and the

predicted noise variances are used to vary the value of the process noise in the ZUPT-aided

INS.

The rest of the section is organized as follows. Section 2.4.2 discusses derivation and im-

plementation of the developed reconstruction filter. Experimental results are presented in

Section 2.4.3 and concludes the section with a highlight of our main results.

2.4.1 Properties of Saturated Foot-mounted IMU Measurements

Start & End

Foot landing
location

VN-200

ADIS16497-3

(a) (b)

Figure 2.7: (a) Experimental setup of controlled indoor navigation experiments. The red
circles indicate foot-landing locations, and the blue arrows illustrate traveling directions. (b)
Experimental setup of foot-mounted IMUs. The VN−200 IMU (red) was mounted on top of
the ADIS16497−3 IMU (silver). Both IMUs were firmly attached on the toe side of the foot.

As shown in Figure 2.2, foot-mounted inertial sensors are experiencing high linear accelera-

tions and angular velocities while performing common pedestrian activities. When sensors

are not designed for the required FSR, the pedestrian activities may lead to saturated IMU

52

measurements. To confirm that saturated measurements do not represent actual forces ex-

perienced by a foot-mounted IMU, two series of ten indoor walking experiments with two

IMUs, including an Analog Device ADIS16497−3 and a VectorNav VN−200, were conducted

in the Engineering Gateway Building at the University of California, Irvine. The experimen-

tal setup is shown in Figure 2.7(a). The two IMUs were mounted firmly next to each other

on a pedestrian’s right foot, as illustrated in Figure 2.7(b). The illustrated scenario will

be used in the next section to show how shortcomings of FSR of sensors can be addressed

algorithmically.

In the first series of experiments, the pedestrian began by standing still for 20 seconds. Then,

the pedestrian walked, in a way that he felt most comfortable, for exactly 74 steps at a pace

of around 70 steps per min in a close-loop rectangular trajectory, as shown with the red lines

in Figure 2.7(a). During the walk, the pedestrian landed the foot on locations, marked with

the red circles in Figure 2.7(a), at every step. The controlled foot landing landmarks were

used for better control and evaluation of the experiments. The stride length of each step was

121.92 cm (4 feet) when traveling along the hallway and 60.96 cm (2 feet) when perpendicular

to the direction. The trajectory length was 87.8 m, and the duration was around 120 seconds.

The IMU measurements showed that, on average, a maximum acceleration shock of 2.3 g

was generated during each step. In the second series of experiments, the pedestrian repeated

the same trajectory but landed his foot hard on the floor during walking that produced a

maximum shock in each step with a mean value of 23.6 g. The maximum shock usually

occurred along the vertical version. It should be noted that this acceleration exceeded the

accelerometer’s FSR of the VN−200. Sampling rates of ADIS16497−3 and VN−200 were

set to 850 Hz and 800 Hz, respectively. It is worth noting that gyroscopes’ FSR, for both the

ADIS16497−3 and the VN−200, was 2000 deg/sec, and the maximum angular rate measured

in all the experiments was around 1600 deg/sec. These angular rates were within the FSR

of IMUs used for the experiments but would exceed FSR of many consumer-grade COTS

gyroscopes on the market.

53

20.86 20.88 20.9 20.92
Time, s

-24

-22

-20

-18

-16

-14

-12

Heel-strike phase

A
c
c
e

le
ra

ti
o

n
,

g

(c)

1st Series

21.2 21.4 21.6 21.8 22 22.2 22.4
Time, s

-1

0

1

2

3

X
Y
Z

A
c
c
e
le

ra
ti
o
n
,
g

(a)

21.2 21.4 21.6 21.8 22 22.2
Time, s

-1

0

1

2

3

A
c
c
e

le
ra

ti
o

n
,

g

(b)

20.2 20.4 20.6 20.8 21
Time, s

-30

-20

-10

0

10

20

30

40

Immeasurable

with VN-200

A
c
c
e

le
ra

ti
o

n
,

g

2nd Series

20.2 20.4 20.6 20.8 21
Time, s

-30

-20

-10

0

10

20

30

40

A
c
c
e

le
ra

ti
o

n
,

g

(d)

Saturated

signals

20.86 20.88 20.9 20.92
Time, s

-24

-22

-20

-18

-16

-14

-12

A
c
c
e

le
ra

ti
o

n
,

g

(e)

(f)

Immeasurable

with VN-200

Immeasurable

Signals to VN-200

Stance phase Take-off Swing phase Heel strike

A
D
IS
1
6
4
9
7
-3

V
N
-2
0
0

Figure 2.8: (a) Accelerometer readings of one gait cycle collected with an Analog Device
ADIS16497−3 IMU in the first series of experiments discussed Section 2.4.1. (b) Accelerom-
eter readings collected with a VectorNav VN−200 IMU during the same time period as (a).
(c) Accelerometer readings of one gait cycle collected with the Analog Device IMU in the
second series of experiments discussed Section 2.4.1. Accelerometer readings collected with
the VectorNav IMU during the same time period as (c). (e) A zoomed-in view of (c), showing
signals pattern in a heel-strike phase of a gait cycle. The areas marked with striped patterns
indicate measurements of accelerations having magnitudes larger than 16 g. For the VN−200
IMU, these accelerometer’s measurements could not be correctly measured and are called
the immeasurable signals in this section. (f) A zoomed-in view of (d), showing a saturated
signal pattern in the heel-strike phase.

54

Figure 2.8 shows an example of the accelerometer’s readings of the VectorNav and the

ADIS16497−3 collected during one gait cycle in the first and the second series of experi-

ments. Three observations were made in Figure 2.8. First, the accelerometer readings in

Figure 2.8(a) and (b) showed similar profiles and did not exceed the accelerometers’ FSR of

the two IMUs. Second, in Figure 2.8(c), the Analog Device IMU measured an acceleration

as large as 37 g during the heel strike phase, while in Figure 2.8(d), the VectorNav mea-

sured a maximum acceleration of around 16 g. Since the accelerometer’s FSR of VN−200

was 16 g, the VectorNav IMU was considered to have incorrect measurements during the

second series of experiments. The highlighted area shown in Figure 2.8(e) is an example of

an immeasurable signal of the VN−200 IMU. Third, in Figure 2.8(f), it could be seen that

the third pick did not reach 16 g. However, in Figure 2.8(e), the Analog Device IMU clearly

measured an acceleration larger than 16 g along the x-axis. In our opinion, the third pick

in Figure 2.8(f) is an incorrect measurements, but it did not display a value as large as the

accelerometer’s FSR of the VN−200 because during the short period of time, measurements

were not sampled by the inertial sensor when the maximum acceleration occurred.

These two series of experiments illustrated that in the case of insufficient FSR, large forces

experienced by the foot-mounted IMU could lead to incorrect accelerometer’s readings. The

matching between FSR and profile of accelerometers is critical in ZUPT-aided INS. The next

section of this section will introduce a reconstruction filter that aims to mitigate the negative

effect that insufficient accelerometer’s FSR brings to foot-mounted INS. The introduced

approach allows to relax FSR requirements.

2.4.2 A Reconstruction Filter

This section aims to provide an approach to reconstruct, in real-time, accelerometer’s mea-

surements that are saturated due to insufficient FSR. This section discusses modeling the

55

saturated accelerometer’s readings and presents the a reconstruction filter resolving the sat-

urated signals.

Modeling of Saturated Accelerometer Signals

This section defines immeasurable signals of an accelerometer as the measurements of acceler-

ation that have magnitude larger than the FSR of the sensor. Our developed reconstruction

filter is designed to predicts immeasurable signals and superimposes the predicted signals

to saturated measurements. To characterize the immeasurable signals, this section models

accelerometer’s measurements, ya,β(n), that are collected at time n with FSR of value β, as

follows:

ya,β(n) = yF (n) + b(n) + ω(n), (2.6)

where

b(n) = ba(n) + Ψβ(n), ω(n) ∼ N(0, σ2
VRW).

Here, yF (n) is true specific forces experienced by the accelerometers, ω(n) is a white Gaussian

noise components have a standard deviation of σVRW, and b(n) is an accelerometer bias. This

section considered that the accelerometer bias consists of a stochastic component, ba(n), and

a deterministic bias, Ψβ(n). The stochastic component is the inherent bias of accelerometers

and is commonly described by in-run bias instability. The deterministic component Ψβ(n) is

caused by using insufficient FSR of a value β to measure large forces. The deterministic bias

Ψβ(n) has the same magnitude as an immeasurable signal but with opposite sign. It is worth

noting that Ψβ(n) depends on an accelerometer’s FSR. Figure 2.8(e) and (f) show examples

of profiles of accelerometer’s signals collected by the Analog Device IMU and the VectorNav

IMU, respectively, during a heel-strike phase. In the case of the Analog Device IMU, the

56

accelerometer’s FSR, β = 40 g, and Ψ40(n) = 0 everywhere. In the case of the VectorNav

IMU, β = 16 g, and Ψ16(n) is considered to have a profiles similar to the accelerometer

signals shown in Figure 2.8(e) that have magnitude larger than 16 g.

It can be observed in Figure 2.8(e) that the immeasurable signals are formed by individual

humps. Each of such humps is denoted as ψβ,k(n). Then, the mathematical expression of

the bias Ψβ(n) can be described as follows:

Ψβ(n) =

 ψβ,k(n), t(ns,k) ≤ t(n) < t(ns,k) + τk

0, elsewhere

Here, t(n) is elapsed time at sample n and ns,k is the sample where a hump ψβ,k(n) is first

detected.

Design of Reconstruction Filter

This section aims to provide an approach to mitigate navigation errors due to insufficient

accelerometer’s FSR by reconstructing the immeasurable signals. The reconstruction process

is equivalent to predicting the deterministic bias component, Ψβ(n) and adding it to the

saturated signals.

Measuring Immeasurable Signals In order to section the characteristics of each ψβ,k(n), it

is needed to collect a series of ψβ,k(n) during pedestrian navigation experiments. However,

acquiring the true ψβ,k(n) is challenging as it would require knowledge of the true stochastic

accelerometer bias, ba(n), which is not accessible when an IMU is in motion. In this sec-

tion, it was assumed that the ZUPT-aided INS could accurately estimate the stochastic bias.

Based on the assumption, we approximated Ψβ(n) and denoted the approximated version

as Ψ
′

β(n). Following this notation, the humps ψβ,k(n) are approximated with ψ
′

β,k(n). The

57

approximated version Ψ
′

β(n) can be obtained by subtracting unsaturated accelerometer sig-

nals, collected using an IMU with a higher accelerometer’s FSR, with the saturated one. For

example, consider a case where one accelerometer has an FSR of value β1 and another has a

value β2 with a condition that β1 > max(ya,β1(n)) > β2. In such case, ψ
′

β2,k
(n) is expressed

as follows:

ψ
′

β2,k
(n) = ya,β1(n)− ya,β2(n) = ya,β1(n)− sgn(ya,β2(n))β2, for ns,k ≤ n < ns,k + dk, (2.7)

where sgn() is the sign function. The second equation holds because it was assumed that

during saturation periods, ya,β2 = β2 if ya,β2 > 0 and ya,β2 = −β2 if ya,β2 < 0.

In the experiments described in Section 2.4.1, β1 = 40 and β2 = 16, as the the ADIS16497−3

IMU and the VN−200 IMU had an accelerometer FSR of 40 g and 16 g, respectively. The

ADIS16497−3 was used to collect a dataset of ψ
′

16,k(n) for the VN−200 IMU. To do so, we

artificially saturated, with a threshold of 16 g, the accelerometers’ readings collected by the

Analog Device IMU in the second series of experiments described in Section 2.4.1. In the

experiments, there were 494 detected saturation events in total. Figure 2.9 demonstrates an

example of profiles of approximated deterministic bias Ψ′
16(n) for the VN−200 IMU. We

could see in Figure 2.9 that there were three individual humps. The yellow humps correspond

to the deterministic bias along the z-axis and the yellow hump marks the bias along the y-

axis. In Figure 2.9, no x-axis deterministic bias was collected. Furthermore, by observing

the collected profiles of ψ
′

16,k(n), we discovered two properties of ψ
′

16,k(n). First, profiles of

ψ
′

16,k(n) are not identical but have a similar triangular shape. Second, we found that areas

under ψ
′

16,k(n) is proportional to saturated period.

Characterizing Immeasurable Signals Based on the observation made in Figure 2.9, we

characterized each ψβ,k(n) with height, hk, width, τk, and area, Ak. τk is a period where a

sequence of accelerometer signals are saturated and will be referred to as saturation period

58

20.86 20.87 20.88 20.89 20.9
Time, s

2

4

6

8

0

Deterministic Bias profiles 𝚿𝚿𝟏𝟏𝟏𝟏
′ (𝐭𝐭)

ℎ𝑘𝑘
𝜏𝜏𝑘𝑘𝐴𝐴𝑘𝑘′Ac

ce
le

ra
tio

n,
 g

10

𝜓𝜓16,𝑘𝑘
′

𝜓𝜓16,𝑘𝑘+1
′

𝜓𝜓16,𝑘𝑘+2
′

Figure 2.9: Three examples of deterministic bias profiles of an IMU having accelerometer’s
FSR of 16 g.

in the following texts. hk and Ak are described as

hk = sgn(ya(m)) max
ns,k≤x≤ns,k+dk

|ψβ,k(x)|

Ak =

∫ t(ns,k)+τk

t(ns,k)

|ψβ,k(t)| dt =
ns,k+dk∑
m=ns,k

|ψβ,k(m)|δt

where dk =
τk
δt

and δt is the sampling period of an accelerometer.

In practical situation where ψ
′

16,k(n) is used instead of ψβ,k(n), the saturation area A
′

k can

be measured as follows:

A
′

k =

ns,k+dk∑
n=ns,k

(|ψ′

16,k(n)|) =
ns,k+dk∑
n=ns,k

(|ya,40(n)− sgn(ya,40(n))16|). (2.8)

Figure 2.10 shows a relationship of A
′

k and τk. The data points marked in blue in Figure 2.10

and their corresponding histogram indicated with the orange bar illustrate the statistics of

saturation areas at different saturation periods based on the IMU measurements collected

with the Analog Device IMU during the second series of experiments described in Section

59

2.4.1. It could be seen in Figure 2.10 that around 80% of the data had a saturation period

of less than 6 ms. Moreover, the statistical mode of the collected data appears at 0.0035 ms.

-50

0

50

100

150

Saturated Area vs Saturated Period

2 3 4 5 6 7 8 9 10 11 12
Saturated Period 𝜏𝜏𝑘𝑘, ms

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Measurements
Prediction
True RMSE
Est. RMSE

Measurements
Estimates �̂�𝐴𝑘𝑘 𝜏𝜏𝑘𝑘
3 × RMSE
Histogram
Est. var. 3 �𝜎𝜎𝐴𝐴𝑘𝑘 𝜏𝜏𝑘𝑘

Sa
tu

ra
te

d
Ar

ea
, 𝐴𝐴

𝑘𝑘′

494 data point

Figure 2.10: Relationship of saturation area A
′

k and saturation period τk. The blue dots
marked measurements of saturated area A

′

k in the second series of experiments discussed
in Section 2.4.1. The red curve represents saturated areas predicted by a GP regression
discussed in Section 2.4.2. The grey shadow areas indicate the 3× RMSE of the prediction.
The black dashed lines illustrate a 2nd-order polynomial for curve-fitting the RMSE. The
orange bars indicate measurement distribution.

Approximating Immeasurable Signals With a Triangular Function Although ψ
′

β,k(n) is

measurable, the measurements cannot be achieved in a real-time manner if only a single

IMU is used in a pedestrian navigation system. Therefore, estimation of ψ
′

β,k(n) is needed.

Based on the observation in Figure 2.9 that the immeasurable signals have triangular shape,

we hypothesized that the ψ
′

β,k(n) can be approximated with a scale version of triangle wave

functions, Λk(n, α, λ), which is expressed as follows:

Λk(t, αk, λk) = 2αk|
t

λk
− ⌊ t

λk
+

1

2
⌋|, (2.9)

60

where αk is the amplitude, λk is the period of the triangle wave, and ⌊ ⌋ is the floor function.

The area of the triangular wave, ∆k(αk, λk) is calculated as

∆k(αk, λk) =
αkλk
2

(2.10)

The estimated deterministic bias, denoted as Ψ̂16(n), is expressed as follows.

Ψ̂16(n) =

 ψ̂16,k(n), t(ns,k) ≤ t(n) < t(ns,k) + τk

0, elsewhere

 (2.11)

where

ψ̂16,k(n) = sgn(ya,16(n))Λ(n, αk, λk)

Here, λk is available when operating in real-time and has the same value as τk. However,

αk, which determines the amplitudes of the triangle wave, cannot be measured directly from

saturated accelerometer signals and needs to be estimated.

Estimating Immeasurable Signals Using Gaussian Process Regression In this section,

the estimation of αk aims to minimize the statistical expectation of difference in A
′

k and

∆k(αk, λk). For each measured ψ
′

16,k(n), the corresponding τk was considered as a feature

and the corresponding A
′

k as a label. Then, the saturation areas were modeled as a Gaussian

Process (GP). The modeled GP has a constant basis function and a squared exponential

kernel. The GP was trained with the 494 measurements of saturation areas and their cor-

responding saturation periods. The trained GP is found to have a parameter for the basic

function, β = 24.5, and an estimated noise, σ = 8.25. The trained GP was then used to

predict a saturation area for each detected saturation period τk. The predicted saturation

area is denoted as Âk(τk).

61

The red curve presented in Figure 2.10 shows the predicted saturation area Âk(τk). The grey

shadow area represents the RMSE of the prediction evaluated at each saturation period.

Based on the results shown in Figure 2.10, several observations were made. First, the RMSEs

of the data corresponding to saturation period less than 6 ms, which takes up 80% of the

entire dataset, are smaller than the RMSEs of the other 20% of the data. Second, in the cases

of saturated periods higher than 6 ms, the RMSEs increased, indicating that the prediction

had large uncertainties. The large uncertainties indicate that behaviors of the immeasurable

signals in the cases of the higher saturation periods were less predictable. In this case,

the developed reconstruction filter can have limited performance, and sensors with a larger

accelerometer’s FSR are needed.

The estimation of αk, denoted as ĥk(τk), that minimized difference between A
′

k in (2.8) and

∆k(αk, λk) in (2.10) can be found as follows:

ĥk(τk) =
2Âk(τk)

τk
. (2.12)

Using (2.12), the height of the triangular wave function is determined, which is used to

estimate ψ
′

16,k(n).

Besides estimation of αk, we would also like to predict the uncertainty of estimated αk because

the RMSEs presented in Figure 2.10 shows that the uncertainty of Âk(τk) is not constant at

different values of τk. We used a 2nd-order polynomial with a least-square cost function to fit

the calculated RMSEs marked with the grey area in Figure 2.10. The fitted curve, denoted

as, σ̂Ak
(τk) was utilized to predict the uncertainty of Âk(τk). The two black dashed curves

shown in Figure 2.10 illustrate Âk(τk) + 3σ̂Ak
(τk) and Âk(τk) − 3σ̂Ak

(τk), respectively. The

uncertainty of estimated αk, denoted as σ̂αk
(τk), can be expressed as follows:

σ̂αk
(τk) =

2σ̂Ak
(τk)

τk
. (2.13)

62

With ĥk(τk) in (2.12) and σ̂αk
(τk) in (2.7), we determined that ψ

′

16,k(n) in (2.11) can be best

approximated with a triangular wave described as follows:

ψ
′

16,k(n) ≈ ψ̂16,k(n) = sgn(ya,16(n))Λ(n,
2Âk(τk)

τk
, τk) + ωΛ(n), (2.14)

where

ωΛ(n) ∼ N(0, σ̂2
αk
(τk)).

Reconstruction of Saturated Accelerometer Signals In this section, the estimated immea-

surable signals Ψ̂16(n) are used to reconstruct saturated accelerometer’s readings ya,16(n)

when saturated signals are detected. The detection of saturated signals can be achieved by

comparing accelerometer’s readings with a threshold, which has a value close to a nominal

accelerometer’s FSR. When a saturated signal is detected, the reconstructed accelerometer’s

readings, ŷa,16(n), is expressed as follows:

ŷa,16(n) = ya,16(n)− Ψ̂16(n)

= yF (n) + ba(n) + Ψ16(n)− Ψ̂16(n) + ω(n)

= yF (n) + ba(n) + ω̂a,16(n),

(2.15)

where

ω̂a,16(n) ∼ N(0, σ2
VRW + σ̂2

αk
(τk)).

Figure 2.11 exhibits examples of accelerometer signals reconstructed based on the artificially

saturated accelerometer signals collected with the Analog Device IMU in the second series

of experiments discussed in Section 2.4.1. To quantify the accuracy of reconstructed signals,

the raw unsaturated accelerometer’s signals were considered as the reference measurements.

63

10.2 10.25 10.3 10.35 10.4 10.45
Time, s

-15

-10

-5

0

5

10

15

20

25

Accelerometer readouts (Raw vs Reconstructed)

10.33 10.34 10.35
14
16
18
20
22
24 Raw x

Raw y
Raw z
Reconstructed x
Reconstructed y
Reconstructed z
Saturated region
Nominal FSR

Ac
ce

le
ra

tio
n,

 g

Figure 2.11: Examples of raw unsaturated accelerometer’s measurements collected during
the heel-strike phase and artificially saturated measurements that are reconstructed by the
developed reconstruction filter.

Errors of the artificially saturated signals and the reconstructed signals with respect to the

raw unsaturated measurements during the saturation period were calculated. Figure 2.12

shows the error distributions of the saturated accelerometer’s signals and the reconstructed

signals. Few things can be noted in Figure 2.12. First, the RMSE of the saturated signals

was 4.63, while the RMSE of the reconstructed signals was decreased to 2.42. Second, the

errors in the saturated signals had a bias of 2.97 g, while the bias was reduced to 0.507 g

when the reconstruction filter was used. Third, the error distribution of the saturated signals

was ill-fitted with a Gaussian distribution, indicating that inputting the saturated signals

to the EKF of the ZUPT-aided INS would extensively violate the assumption of the EKF.

After applying the reconstructed filter, it could be perceived that the shape distribution

becomes closer to a Gaussian distribution. Based on the experimental result, we concluded

that it was beneficial to apply our developed reconstruction filter in foot-mounted pedestrian

inertial navigation to pre-process IMU readings, which were collected with an accelerometer

64

having an FSR of 16 g.

Error Distribution Before Reconstruction

-20 -15 -10 -5 0 5 10 15 20
Acceleration error, g

(a)

(b)

0

20

40

60

80

100
Error distribution
Gaussian dist. fit

Error Distribution After Reconstruction

-20 -15 -10 -5 0 5 10 15 20
Acceleration error, g

0

20

40

60

80

100
Error distribution
Gaussian dist. fit

𝜇𝜇 = 0.507
𝜎𝜎 = 2.42

𝜇𝜇 = 2.97
𝜎𝜎 = 3.27

RMSE = 4.63

RMSE = 2.48

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Figure 2.12: (a) Error distribution of artificially saturated accelerometer’s readings discussed
in Section 2.4.2. (b) Error distribution of the artificially saturated accelerometer’s readings
that were reconstructed by the developed reconstruction filter.

Use of the Reconstructing Filter With a ZUPT-aided INS

The navigation framework used to produce localization solutions is a ZUPT-aided INS aug-

mented by the developed reconstruction filter, which is shown in Figure 2.13. In the de-

veloped framework, the ZUPT-aided INS is implemented with the SHOE detector using a

constant threshold. Implementation of the ZUPT-aided INS was documented in detail in

[224]. Before inputting measurements collected from a foot-mounted IMU into the ZUPT-

aided INS, the developed framework first pre-process the IMU measurements with the devel-

oped reconstruction filter. The reconstruction filter outputs two pieces of information. The

first piece is the pre-processed IMU measurements, and the second piece is the predicted

65

uncertainty for the pre-processed measurements. The pre-processed IMU measurements are

inputted to the strapdown INS and the ZUPT algorithm. The predicted uncertainty is used

to boost the process noise for accelerometer bias states in the EKF.

EKF

INS

ZUPT
IMU

Reconstruction
Filter Process noise

for bias states

Navigation
Solutions

Estimate
Applitude 𝜶𝜶
and period 𝝀𝝀

Saturation
Detection Predict noise

variance

Predict
triangular wave

Δ n,𝛼𝛼, 𝜆𝜆

𝜎𝜎Δ 𝑛𝑛
Accelerometer
𝒚𝒚𝒂𝒂(𝒏𝒏)

Reconstruction Filter

Δ n,𝛼𝛼, 𝜆𝜆

𝜎𝜎Δ 𝑛𝑛

IMU biases

Figure 2.13: developed navigation framework.

2.4.3 Experimental Validation

We compared navigation performance of a traditional ZUPT-aided INS and the developed

ZUPT-aided INS using the reconstruction filter based on the dataset collected by the two

IMUs in the two series of experiments discussed in Section 2.4.1. In the experiments, the

trajectories contained saturated sensor readings. Thresholds for stance phase detection in

the ZUPT-aided INS were set to a similar value in both series of experiments, as the nominal

walking paces were the same. The EKF noise parameters, including VRW σVRW, ARW σARW,

RRW σRRW, AcRW σAcRW, and measurement noise for zero-velocity measurements σZUPT

had values listed in Table 2.3. In each of the experiments, initial biases of gyroscopes were

estimated by taking the average of gyroscope measurements collected in the first 20 seconds

when the pedestrian was standing still on the ground. During the same period, initial biases

of accelerometers were estimated by the ZUPT-aided INS. The estimated initial biases were

removed from the IMU measurements collected in the rest of the timestamps. The initial

66

1st
se

rie
s

w
ith

 A
D

IS
16

49
7-

3

Trajectories Stepwise horizontal locations Stepwise vertical locations

1st
se

rie
s

w
ith

 V
N

-2
00

2nd
se

rie
s

w
ith

 A
D

IS
16

49
7-

3
2nd

se
rie

s
w

ith
 V

N
-2

00
2nd

se
rie

s
w

ith
 V

N
-2

00
(r

ec
on

st
ru

ct
ed

)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-10

0

10

20

30

40

50

-0.2 -0.1 0 0.1 0.2

East, m

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

No
rth

, m

0 200 400 600 800

Samples, #

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Do
wn

, m

RMSE = 0.056 RMSE = 0.028

(j)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

N
or

th
, m

East, m
-1 0 0.1 0.2

-0.2
-0.2

(o)0.2
0.15

0.1
0.05

0
-0.05

-0.1
-0.15

D
ow

n,
 m

Sample #
200 400 600 800

-0.2
0

(e)
50

40

30

20

10

0

N
or

th
, m

East, m
-2.5 -2 -1 0 0.5

-10
-1.5 1-0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-10

0

10

20

30

40

50

-0.2 -0.1 0 0.1 0.2

East, m

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

No
rth

, m

0 200 400 600 800

Samples, #

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Do
wn

, m

RMSE = 0.059 RMSE = 0.054

(i)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

N
or

th
, m

East, m
-1 0 0.1 0.2

-0.2
-0.2

(n)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

D
ow

n,
 m

Sample #
200 400 600 800

-0.2
0

(d)
50

40

30

20

10

0

N
or

th
, m

East, m
-2.5 -2 -1 0 0.5

-10
-1.5 1-0.5

-0.2 -0.1 0 0.1 0.2

East, m

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

No
rth

, m

0 200 400 600 800

Samples, #

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Do
wn

, m

RMSE = 0.037 RMSE = 0.02

(h)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

N
or

th
, m

East, m
-1 0 0.1 0.2

-0.2
-0.2

(m)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

D
ow

n,
 m

Sample #
200 400 600 800

-0.2
0-2.5 -2 -1.5 -1 -0.5 0 0.5 1

-10

0

10

20

30

40

50

(c)50

40

30

20

10

0

N
or

th
, m

East, m
-2.5 -2 -1 0 0.5

-10
-1.5 1-0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-10

0

10

20

30

40

50

-0.2 -0.1 0 0.1 0.2

East, m

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

No
rth

, m

0 200 400 600 800

Samples, #

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Do
wn

, m

RMSE = 0.031 RMSE = 0.016

(g)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

N
or

th
, m

East, m
-1 0 0.1 0.2

-0.2
-0.2

(l)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

D
ow

n,
 m

Sample #
200 400 600 800

-0.2
0

Step # 11

Step # 10
(b)

50

40

30

20

10

0

N
or

th
, m

East, m
-2.5 -2 -1 0 0.5

-10
-1.5 1-0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-10

0

10

20

30

40

50

-0.2 -0.1 0 0.1 0.2

East, m

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

No
rth

, m

0 200 400 600 800

Samples, #

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Do
wn

, m

RMSE = 0.037 RMSE = 0.027

(f)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

N
or

th
, m

East, m
-1 0 0.1 0.2

-0.2
-0.2

Direction
of motion

Start
&
End

(k)
0.2

0.15

0.1
0.05

0
-0.05

-0.1
-0.15

D
ow

n,
 m

Sample #
200 400 600 800

-0.2
0

(a)50

40

30

20

10

0

N
or

th
, m

East, m
-2.5 -2 -1 0 0.5

-10
-1.5 1-0.5

Est. Path
Est. Step
Ground True

Estimates
Ground true
RMSE

Estimates
Ground true
RMSE

Figure 2.14: (a), (b), (c), and (d) display the ground truth and the trajectories estimated by
the ZUPT-aided INS using measurements collected by ADIS16497−3 and VN−200 in the first
series as well as ADIS16497−3 and VN−200 in the second series, respectively. (e) presents
trajectories estimated by the ZUPT-aided INS using the developed reconstruction filter based
on measurements collected by the VN−200 IMU in the second series of experiments. (f),
(g), (h), and (i) present ground truth and the horizontal step-wise displacements obtained
in the five approaches. The radiuses of the dashed red circles indicate the values of the
corresponding horizontal step-wise Root Mean Square Errors (RMSEs). (k), (l), (m), (n),
and (o) present ground truth and vertical displacement between two consecutive steps. The
red dashed lines marked the vertical step-wise RMSEs. (f), (g), (h), (i), (j), (k), (l), (m),
(n), and (o) contains exactly 740 blue points.

67

orientation of each experiment was determined by aligning the trajectory of the first ten

steps with the north.

Table 2.3: EKF Parameter settings for the ZUPT-aided INS

EKF parameter Value

σARW 2.1597× 10−5

σVRW 4.8557× 10−4

σRRW 1.7141× 10−6

σAcRW 1.3873× 10−6

σZUPT 0.02

In Figure 2.14(a), (b), (c), and (d), the blue marks show the ten trajectories estimated

by the standalone ZUPT-aided INS with the two IMUs in the two series of experiments,

respectively. Figure 2.14(e) presents trajectories estimated by the ZUPT-aided INS using

the developed reconstruction filter based on measurements collected by the VN−200 IMU

in the second series of experiments. The red circles in Figure 2.14(a), (b), (c), (d), and

(e) indicate the true foot-landing location in each step. The ground truth information was

measured by a ruler. In Figure 2.14(f), (g), (h), (i), and (j), each blue dot indicates a vector

of the horizontal displacement between two consecutive steps subtracted by the ground true

step-wise displacements. In Figure 2.14(k), (l), (m), (n), and (o), each blue dot marks the

vertical displacement between two consecutive steps. Each plot of Figure 2.14(f), (g), (h),

(i), (j), (k), (l), (m), (n), and (o) contains exactly 740 blue points. The RMSE of the step-

wise displacements was computed. In Figure 2.14(f), (g), (h), (i), and (j), the radius of the

dashed red circle is the step-wise RMSE value. In Figure 2.14(k), (l), (m), (n), and (o), two

horizontal dashed lines represent the positive and the negative vertical step-wise RMSE. The

horizontal and the vertical RMSEs are summarized in Table 2.4. In Table 2.4, the entries

in the fourth row of the first two columns are filled as ”not applicable” because no saturated

measurements were detected in the first series of experiments.

A few phenomena can be noted in Figure 2.14.

68

Table 2.4: Step-wise displacement errors in terms of RMSE.

Deployed

sensor

1st series 2nd series

Horizontal Vertical Horizontal Vertical

ADIS16497−3 0.037 0.027 0.037 0.026

VN−200 0.038 0.016 0.059 0.054

VN−200 (Reconstructed) N/A* N/A* 0.056 0.028

*No saturated accelerometer’s reading was detected.

1. It can be observed that the step-wise navigation errors using the two different IMUs

in the first series of experiments were on a similar level. Although the Analog Device

IMU and the VectorNav IMU have different noise performances, the difference was

negligible in our opinion and would not lead to a different navigation accuracy in a

pedestrian navigation task of around 120 seconds.

2. In the second series of experiments where the two IMUs experienced large shocks,

the navigation errors of the ADIS16497−3 did not increase, while the error in the

case of VN−200 were 1.34× and 3.37× larger along the horizontal and vertical direc-

tions, respectively. We considered that the increased errors were caused by not only

insufficient accelerometer’s FSR but also insufficient accelerometer’s and gyroscope’s

bandwidths. The consideration of insufficient bandwidth as an error source was be-

cause large shocks that occurred during the heel-strike phases generated a series of

high-frequency components. These high-frequency components might exceed the ac-

celerometer’s and gyroscope’s bandwidths of the VN−200, which were 260 Hz and 256

Hz, respectively. Note that in the case of the ADIS16497−3, insufficient sensor band-

width was not considered as a primary error source because the ADIS16497−3 had an

accelerometer’s and gyroscope’s bandwidths of 750 Hz and 550 Hz.

3. When using our developed reconstruction filter to pre-process the saturated measure-

ments collected by the VN−200 IMU, the RMSEs along horizontal and vertical direc-

tions were reduced by 5% and 50%, respectively. The improvements indicated that it

69

is beneficial to pre-process IMU measurements using the developed approach in this

series of experiments. It is worth mentioning that the amount of improvements along

the vertical direction was significantly larger than in the horizontal direction. In our

opinion, the discrepancy was because of an observation that most of the saturated

accelerometer’s signals were along the z-axis. In the x-axis and the y-axis, the forces

experienced by the IMU saturated accelerometer’s readings only a few times. As a

result, the developed reconstruction filter had limited improvements in the navigation

accuracy along the horizontal direction in these experiments.

Based on the experimental results in these specific series of experiments, we demonstrated

that the developed reconstruction filter is capable to mitigate the navigation errors due to

insufficient accelerometer FSR for the ZUPT-aided INS.

This section presented a reconstruction filter for the ZUPT-aided INS. The reconstruction

filter aims to rebuild the accelerometer’s saturated readings due to large shocks during the

heel-strike phase in a gait cycle of pedestrian navigation. This section experimentally illus-

trated that acceleration shocks experienced by foot-mounted IMUs are an error source when

an insufficient accelerometer’s FSR is used, and the error cannot be ignored in pedestrian

navigation. To evaluate localization performance of a ZUPT-aided INS enhanced by the

developed reconstruction filter, two series of indoor pedestrian navigation experiments were

conducted with a VectorNac VN−200 IMU and an Analog Device ADIS16497−3 IMU, which

have distinct accelerometer’s FSRs. In the first series of experiments, the accelerometer’s

readings were not saturated, while in the second series of experiments, foot-mounted IMUs

experienced large forces during heel-strike phases that saturated accelerometer’s readings.

The ZUPT-aided INS based on the two IMUs in the first series of experiments had similar

navigation accuracy. In the second series, the navigation performance of the VN−200 re-

duced by 1.34× and 3.37× along the horizontal and the vertical directions, while the position

accuracy using the ADIS16497−3 remained on the same level as in the first series. When ap-

70

plying our developed reconstruction filter to the saturated accelerometer’s measurements, the

navigation accuracy along horizontal and vertical directions was increased by 5% and 50%,

respectively. Two conclusions were drawn from the experimental results. First, the decreased

performance of the VN−200 emphasized the importance of matching sensors characteristics

to application requirements and, as an example, illustrated how the mismatch in the FSR of

the accelerometer could degrade the performance of pedestrian inertial navigation. Second,

it is beneficial to pre-process IMU measurements using the developed reconstruction in the

indoor pedestrian experiments, especially when sensors with required characteristics are not

available. The developed approach is general and can be applied in other pedestrian navi-

gation scenarios and applications. The results presented in this section have been published

in [87].

2.5 System-Level Enhancement Using Prioritizable IMU

-20

0

20

40

60

A
cc

el
er

at
io

n
, g

Figure 2.15: Concept of the developed Prioritizable IMU array (Prio-IMU).

71

This section reports a prioritizable IMU array (Prio-IMU), a systematic approach utilizing

multiple different IMUs to mitigate the impact of insufficient sensor FSR and bandwidth

on ZUPT-aided INS using foot-mounted IMUs. Figure 2.15 illustrates the concept of the

developed Prio-IMU. The Prio-IMU integrates readings from multiple IMUs, each with

different sensor FSRs and noise characteristics. The approach utilizes the properties that an

IMU with good noise characteristics usually comes with a trade-off of low sensor FSR and

bandwidth, and vice versa. In scenarios when the system experiences large accelerations and

angular velocities, utilizing a sensor with great noise performance but insufficient FSR could

lead to a larger navigation error, as compared to a sensor with poor noise performance but

sufficiently high FSR.

In the developed Prio-IMU, each IMU in the system needs to be aligned to a universal

coordinate system so that all the units measure similar physical quantities of accelerations

and angular velocities. This section describes a sensor model, discusses the alignment of

multiple IMUs, and presents a mechanism to prioritize the usage of different IMUs.

2.5.1 Measurement Model for Multiple Inertial Sensors

The developed Prio-IMU considers N calibrated IMUs mounted on different locations of a

rigid body, such as a PCB. An IMU calibration process includes identifying errors in the

sensor’s scale factors, cross-axis sensitivities, and turn-on biases, and the procedure could be

done with an estimation algorithm using self-measurements [29] or through external equip-

ment, such as a shaker or a rate table [222]. The ith IMU of the Prio-IMU is characterized

by eight different metrics, including accelerometer’s FSR, Fi
a, bandwidth, B

i
a, VRW, σi

a,N,

and bias instability, σi
a,B, and gyroscope’s FSR, Fi

g, bandwidth, B
i
g, ARW, σi

g,N, and bias

instability, σi
g,B. The N IMUs can be chosen such that the characterization metrics satisfy

72

the following conditions:

∀i > 0 and i < j < N,Fi
a ≤ Fj

a,B
i
a ≤ Bj

a, σ
i
a,N ≤ σj

a,N,

σi
a,B ≤ σj

a,B,F
i
g ≤ Fj

g,B
i
g ≤ Bj

g, σ
i
g,N ≤ σj

g,N, σ
i
g,B ≤ σj

g,B.

The Prio-IMU produces a single measurement vector at time k, denoted as uk, by prioritizing

the measurements collected by one of the IMUs integrated into the system. The prioritiza-

tion mechanism is discussed in Section 2.5.3. A Prio-IMU measurement vector uk includes

accelerometer readings, ak, and gyroscope readings, ωk, along the three axes. ak and ωk are

modeled as follows:

ak = āk + b̄a,k + na,k,ωk = ω̄k + b̄g,k + ng,k, (2.16)

where āk and ω̄k are the true accelerations and angular velocities that are not measurable,

b̄a,k and b̄g,k are unknown accelerometer and gyroscope time-varying stochastic biases, and

na,k and ng,k are accelerometer and gyroscope white noise components, modeled as zero-mean

Gaussian with standard deviations of σa,N,k and σg,N,k, respectively.

2.5.2 Alignment of Multiple Inertial Sensors

This study denotes uii
k as a measurement vector collected by the ith calibrated IMU at time k

and expressed in the sensor’s own body frame. uii
k =

[
aiik ,ω

ii
k

]⊤
, where aiik and ωii

k represent

accelerometer and gyroscope readings along the three axes, respectively. The acceleration

and angular velocity measured by the ith IMU can also be expressed in the body frame of

the jth IMU, denoted as uij
k =

[
aijk ,ω

ij
k

]⊤
.

73

Angular rates of ωii
k and ωij

k have the following relationships:

ωij
k = Tj

iω
ii
k , (2.17)

where Tj
i is a DCM transforming the body frame of ith IMU to the body frame of the jth

IMU. Acceleration of aiik and aijk have the following relationships:

aijk = Tj
ia

ii
k + [ωij

k]×([ω
ij
k]×r

j
i) + [ω̇ij

k]×r
j
i . (2.18)

In (2.18), ω̇ij
k is angular acceleration, [x]× represents the skew-symetric matrix of a vector x,

and rji represents the position of the ith IMU in the body frame of the jth IMU. The terms

[ωij
k]×([ω

ij
k]×r

j
i) and [ω̇ij

k]×r
j
i in (2.18) correspond to the centrifugal force and the Euler force,

respectively.

The DCM Tj
i and the position vector rji in (2.17) and (2.18) are unknown and assumed to

be time-independent values. In this study, we followed the estimation algorithm discussed

in [185] to determine the relative geometry Tj
i and rji between two IMUs. Additionally,

the angular acceleration ω̇ij
k is calculated by taking the difference between two consecutive

gyroscope measurements. That is, ω̇ij
k = (ωij

k − ωij
k−1)/dt, where dt is the sampling rate of

the IMU. In this study, we aligned all IMUs to the body frame of the 1st IMU, which has

the best noise performance and lowest FSR and bandwidth.

2.5.3 Prioritization Mechanism

At time k, the developed Prio-IMU chooses the accelerometer measurements collected by

the IMU with the best noise performance among the IMUs that do not have saturated

accelerometer measurements. The accelerometer white noise component na,k in (2.16) follows

the noise characteristics of the chosen IMU. The choice mechanism can be mathematically

74

expressed as follows:

ak = an1k , σa,N,k = σn
a,N, (2.19)

where

n = min{j | ∀1 ≤ i < j ≤ N, |ai1k | ≥ Fi
a and |ai1k | < Fi

a}.

With the nth IMU being chosen, this study also estimates the time-varying accelerometer

biases b̄a,k in (2.16). The estimated bias, denoted as ba,k, is updated at each time step as

ba,k = bn1
a,k, (2.20)

where bij
a,k represents the estimated accelerometer stochastic time-varying bias of the ith

IMU expressed in the body frame of the jth IMU. In our Prio-IMU, the stochastic biases

bij
a,k of the accelerometer of the ith IMU are estimated based on unsaturated accelerometer

measurements collected by the IMU with the best noise performance. At each timestamp k,

bij
a,k is estimated as follows:

bij
a,k = aijk−1 − (aljk−1 − blj

a,k−1), (2.21)

where lth IMU is chosen such that

l = min{m | ∀1 ≤ m ≤ i, |amm
k−1| ≤ Fm

a }.

A result of (2.21) is that b11
a,k = 0. This result was intended as the 1st IMU of the Prio-IMU

has the lowest bias instability, and the available information from the other IMUs does not

allow a more accurate estimation of the bias than zero.

75

The gyroscope readings of the developed Prio-IMU, ωk, are obtained with similar procedures

discussed in (2.19)-(2.21).

ICM20948

ICM20649

ICM20948

ICM20649

ADXL375

ICM-20948
Accelerometer
- FSR: 16 [g]
- BW: 473 [Hz]

- 𝜎𝑎,𝑁: 230 [
μg

Hz
]

- 𝜎𝑎,𝐵: 0.1 [mg]
Gyroscope
- FSR: 2000 [dps]
- BW: 361.4 [Hz]

- 𝜎𝑔,𝑁: 0.015 [
dps

Hz
]

- 𝜎𝑔,𝐵: 0.0019 [dps]

ICM-20649
Accelerometer
- FSR: 30 [g]
- BW: 473 [Hz]

- 𝜎𝑎,𝑁: 285 [
μg

Hz
]

- 𝜎𝑎,𝐵: 0.15 [mg]
Gyroscope
- FSR: 4000 [dps]
- BW: 361.4 [Hz]

- 𝜎𝑔,𝑁: 0.0175 [
dps

Hz
]

- 𝜎𝑔,𝐵: 0.0061 [dps]

ADXL375
Accelerometer
- FSR: 200 [g]
- BW: 1600 [Hz]

- 𝜎𝑎,𝑁: 5000 [μg/√Hz]
- 𝜎𝑎,𝐵: 0.4 [mg]

Shoe
fixture

Microcontroller
Teensy4.0

ICM-20948
IMU

(Low FSR)

ADXL375
Accelerometer

(High FSR)

ICM-20649
IMU

(Medium FSR)

FrontBack

Figure 2.16: A prototype of the developed Prio-IMU and the characteristics of the deployed
sensors.

76

2.5.4 Experimental Validation

Experimental Setup

To demonstrate the developed Prio-IMU, we developed a Prio-IMU prototype, shown in

Figure 2.16. The current implementation of the system integrates a Teensy 4.0 microcon-

troller with an ICM−20948 6-DoF IMU, an ICM−20649 6-DoF IMU, and a 3-DoF ADXL375

accelerometer. Serial Peripheral Interface (SPI) communication protocol was used to com-

municate with all three sensors, and the sampling rate of the system was programmed at

1800 [Hz]. We experimentally characterized the three sensors, and the characteristics and

the Allan deviation plots of each sensor are shown in Figure 2.16.

Figure 2.17 presents profiles of accelerometer and gyroscope measurements collected by the

Prio-IMU prototype during the heel-strike phase of a running experiment. We could observe

that the accelerometers of both ICM−20948 and ICM−20649 were saturated while the mea-

surements of the ADXL375 were below the sensor accelerometer FSR of 200 [g]. It was also

observed in Figure 2.17 that the gyroscope measurements of the ICM−20948 were saturated

at 2000 [dps] while the measurements of ICM−20649 peaked at around 2600 [dps].

Experimental Results

To validate the navigation performance of the developed Prio-IMU, we conducted a series of

10 sets of pedestrian indoor navigation experiments at the University of California, Irvine.

In each trial, a subject first walked a straight line for around 45 [m] at a pace of around 80

[steps per minute (spm)] and then ran a straight line for 42.8 [m] at a pace of around 180

[spm]. The total trajectory length was 87.8 [m]. We compared the navigation performance

of the ZUPT-aided INS using four different configurations of the Prio-IMU prototypes. Each

configuration used a unique combination of the three inertial sensors shown in Figure 2.16.

77

41.85 41.9 41.95 42 42.05
Time, s

-20

0

20

40

60

Ac
ce

le
ra

tio
n,

g
z-axis accelerometer during heel strike

ICM-20948
ICM-20649
ADXL375

44.74 44.76 44.78 44.8
Time, s

-500

0

500

1000

1500

2000

2500

An
gu

la
rR

at
e,

dp
s

y-axis gyroscope during heel strike

ICM-20948
ICM-20649

Select ADXL375
Select ICM-20649

Select ICM-20948

Select ICM-20649

Select ICM-20948

saturation

saturation

saturation
saturation

Figure 2.17: Profiles of accelerometer and gyroscope measurements collected by the Prio-
IMU prototype.

In this study, we implemented the ZUPT-aided INS in an EKF framework with the SHOE

detector [83, 181]. Two fixed thresholds for the SHOE detector were determined, one for the

case of walking and the other for running, such that the navigation errors were minimized.

Figure 2.18 presents the experimental results using the four different configurations. We

used the horizontal RMSEs (2D RMSE), CEPs, and vertical (⊥) RMSEs to evaluate each

navigation solution. We could observe that Configuration 4, where all three sensors on

the Prio-IMU prototype were used, had the minimum navigation errors, as compared to

the other configurations. The experimental results proved that it is beneficial to use the

developed Prio-IMU to improve navigation accuracy in the case of foot-mounted IMUs.

Two remarks can be made on the developed Prio-IMU prototype. First, the quality of the

Prio-IMU measurements was sensitive to errors in alignments of multiple IMUs. In our cur-

rent approach, aligning the accelerometers of different IMUs, as discussed in (2.18), involved

compensation of the centrifugal force and the Euler force, which required information of

relative position vectors between each integrated IMU. The positions were results of algo-

rithmic estimation with uncertainties. Moreover, the angular accelerations in (2.18) were

78

Configuration 1
(ICM-20948)

Configuration 2
(ICM-20948 + ICM-20649)

Configuration 3
(ICM-20948 + ADXL375)

Configuration 4
(ICM-20948 + ICM-20649 + ADXL375)

⊥RMSE = 14.85 [m] ⊥RMSE = 10.67 [m]

⊥RMSE = 2.92 [m] ⊥RMSE = 2.62 [m]

Walking

Running

Walking

Running

Walking

Running

Walking

Running

-20 -10 0 10 20

East, m

65

70

75

80

85

90

95

100

105

N
or

th
,
m

Estimated destination (horizontal)

2D RMSE = 10.96 [m]

Estimated destination

True destination

CEP (r = 3.47 [m])

-15 -10 -5 0 5 10 15

East, m

70

75

80

85

90

95

100

N
o
rt

h
,

m

Estimated destination (horizontal)

2D RMSE = 8.18 [m]

Estimated destination

True destination

CEP (r = 1.91 [m])

-15 -10 -5 0 5 10 15

East, m

70

75

80

85

90

95

100

N
o
rt

h
,

m

Estimated destination (horizontal)

2D RMSE = 2.53 [m]

Estimated destination

True destination

CEP (r = 1.75 [m])

-15 -10 -5 0 5 10 15

East, m

70

75

80

85

90

95

100

N
o
rt

h
,

m

Estimated destination (horizontal)

2D RMSE = 2.32 [m]

Estimated destination

True destination

CEP (r = 1.71 [m])

-10 -5 0 5 10

East, [m]

0

20

40

60

80

100

N
o
r t

h
,
[m

]

Estimated Trjectories

-10 -5 0 5 10

East, [m]

0

20

40

60

80

100

N
o
r t

h
,
[m

]

Estimated Trjectories

-10 -5 0 5 10

East, [m]

0

20

40

60

80

100

N
o
r t

h
,
[m

]

Estimated Trjectories

-10 -5 0 5 10

East, [m]

0

20

40

60

80

100

N
o
r t

h
,
[m

]

Estimated Trjectories

Figure 2.18: Estimated trajectories of the experiments.

79

derived from gyroscope measurements by taking the derivative, which could introduce high-

frequency noise components. One approach to reducing errors introduced by IMU alignment

is to minimize displacements between each inertial sensor, and this could potentially be

achieved through micro-fabrication technology. Second, the three inertial sensors integrated

into the Prio-IMU prototype shown in Figure 2.16 were chosen with a consideration of flexi-

ble development. The choice of sensors could be refined by not only increasing the FSR and

bandwidth but also optimizing the noise performance of a particular axis of an accelerometer

or gyroscope. For example, integrating an ultra-low-noise z-axis gyroscope could reduce the

unobservable yaw angle errors in the ZUPT-aided INS, increasing the long-term navigation

accuracy.

2.6 Conclusion

This chapter presented two approaches, an algorithmic reconstruction filter and a prioriti-

zable IMU array, to mitigate the problem of insufficient sensor FSR and bandwidth. The

developed reconstruction filter, designed for a single IMU, used a Gaussian Process Regres-

sion (GPR) to predict profiles of accelerometer signals exceeding the sensor’s FSR based

on saturation periods and compensate saturated accelerometer signals with the predicted

profiles. The prioritizable IMU array integrated multiple IMUs with different specifications

and prioritized the usages of the different sensors in different scenarios. The two developed

approaches were separately verified with experiments to improve the navigation accuracy of

the ZUPT-aided INS in non-walking scenarios, as compared to the traditional ZUPT-aided

INS.

80

Chapter 3

On Motion Sensor − Mitigating

Thermal-Induced Errors

3.1 Introduction

This chapter presents an algorithmic approach to compensate thermal-induced errors of iner-

tial sensors for ZUPT-aided INS. The chapter is organized as follows. Section 3.2 discusses a

developed thermal-compensation approach, Section 3.3 presents experimental results validat-

ing the developed approach, and Section 3.2 summarizes and concludes the results presented

in this chapter.

3.2 Thermal Compensation Using a Neural Network

This section discusses the sensor measurement model, thermal-induced errors due to tem-

perature and temperature rate, details of the developed BPNN-based thermal compensation

approach, and a temperature-compensated ZUPT-aided INS.

81

3.2.1 Sensor Measurement Model

6-axis IMU measurements, including accelerometer and gyroscope readings along the three

axes collected directly from a COTS sensor at time k, are denoted as ū(k). The IMU

measurements are modeled as follows:

ū(k) = u(k) + bturn-on + bin-run(k) + bT(T,∆T) + ñT(k), (3.1)

ñT(k) ∼ N(0,σ2
T(T,∆T)I). (3.2)

Here, u(k) is uncontaminated IMU measurements that contain the actual acceleration and

angular velocity, which are not available from the sensor. bturn-on is the turn-on bias of an

IMU. Gyroscope components of bturn-on can be estimated by taking the average of measure-

ments collected from a stationary IMU, and accelerometer components can be estimated by

applying a ZUPT algorithm on the stationary measurements [69]. bin-run(k) denotes IMU in-

run biases, which are considered unpredictable in this section. T and ∆T are the measured

temperature and temperature rate with respect to time. bT(T,∆T) is thermal-induced biases

of accelerometer and gyroscope along the 3 axes. ñT(k) is white Gaussian noise components

that have a temperature-dependent covariance matrix σ2
T(T,∆T). I is an identity matrix.

3.2.2 Thermal-induced Errors

This section considers 12 different thermal-induced errors, including bias drifts and noise SD

variations of accelerometers and gyroscopes along the three axes. To understand the charac-

teristics of these errors, an experiment was conducted with a setup shown in Figure 3.1(a).

In order to guarantee that the IMU experienced minimal motion, we removed the IMU, the

Thermal Electric Cooler (TEC), and the heat sink from the shoe shown in Figure 3.1, firmly

mounted the IMU on a laboratory table, and attached the TEC and the heat sink on top

82

Industrial-grade
Inertial Measurement Unit (IMU)

Thermal-Electric Cooler
(TEC)

Heat sink

Origin marker

(a) (b)

Checkpoint marker

Nominal path

Figure 3.1: (a) Experimental setup and (b) experimental scenario used in the experiments
described in subsection 3.3.

83

of the IMU. The sampling rate of the IMU was set to 800 Hz. In the experiment, ambient

temperature around the IMU varied between 20◦C to 50◦C at a rate between −0.2◦C/s to

0.2◦C/s. Note that these values were measured by the thermometer of the IMU. The IMU

was stationary throughout the roughly 3.3 hour long experiment.

In the experiment, measurements of thermal-dependent bias drifts, denoted as b̄T(k), and

measurements of noise SD variations, denoted as σ̄2
T(k), were collected as follows:

b̄T(k) = movmean(ū(k)− ĝ− b̂turn-on) (3.3)

σ̄2
T(k) = movvar(ū(k)− b̂turn-on − b̄T(k)). (3.4)

In (3.3) and (3.4), movmean() is the moving average function and movvar() is the mov-

ing variance function. This section uses a window size of 12.5 s for both movmean() and

movvar(). The window size was determined based on the average integration periods where

the IMU reached its noise floors. ĝ is the estimated gravity vector that was computed by

taking average on static accelerometer readings.

The 12 thermal-dependent errors were collected based on (3.3) and (3.4). In this section,

only dataset of the thermal-induced error for the z-axis gyroscope bias is presented, as this

error component tends to have the largest impact on the performance of a ZUPT-aided

INS implemented in the EKF. For the other 11 errors, their corresponding data are not

shown here and will be presented in future research work on this topic. Figure 3.2 shows the

measured and predicted z-axis gyroscope biases versus temperature and temperature rate.

The measured gyroscope biases are colored in blue in Figure 3.2. Discussion regarding the

predicted results will be presented in subsection 3.2.3. In Figure 3.2(a), we could observe that

the collected biases were correlated with both temperature and temperature rate. In Figure

3.2(c), it appeared that the trend of the bias drifts during the heating process and the cooling

process were different. Moreover, the bias profiles corresponding to different heating rates

84

were distinct, and the same phenomenon can also be observed during the cooling processes.

These trends led to the appearance of hysteresis effects in the bias-temperature relation plot

in Figure 3.2(b).

3.2.3 Back-Propagation Neural Network

This section considers the 12 thermal-induced errors as 12 different unknown functions, six of

which corresponding to biases, denoted as bT(T,∆T), and the other six of which correspond-

ing to noise SD variations, denoted as σ2
T(T,∆T). Our developed temperature compensation

approach aims to approximate the unknown functions of bT(T,∆T) and σ2
T(T,∆T) with

b̂T(T,∆T) and σ̂2
T(T,∆T) that have feedforward Neural Network (NN) structures using a

2×1 input feature vector consisting of temperature measurement and temperature rate. We

trained 12 different BPNNs to separately predict the 12 thermal-induced errors. For each

of the 12 BPNNs, a collected input feature vector is labeled with a corresponding thermal-

induced error. For example, in the BPNN for the z-axis gyroscope bias, the feature vector

was labeled with a collected z-axis gyroscope bias measurement. The BPNNs used in this

section utilized three layers: an input layer, a hidden layer, and an output layer. In the

training step of the BPNNs, we utilized the Levenberg-Marquardt (LM) backpropagation

approach [241] to train the NN based on features and labels obtained using (3.3) and (3.4)

for each of the 12 thermal-dependent errors. The training data contained around 9.8 million

data points, and the dataset was randomly divided as 70% for training, 15% for verification,

and 15% for testing. Mean Squared Error (MSE) was used as the performance evaluation.

Hyperbolic tangent was selected as associated activation functions. In each of the BPNNs,

the hidden layer had five neurons. This configuration was chosen because using a higher

number of neurons only leads to marginally improved MSE during the BPNN verification

process in this experiment.

85

Figure 3.2 demonstrates z-axis gyroscope biases predicted using the trained BPNN corre-

sponding to the z-axis gyroscope bias. We can observe in Figure 3.2 that the prediction

results, colored in orange, were visually aligned with the measured gyroscope biases, colored

in blue, indicating that the trained BPNN could describe the nonlinear and the hysteresis

effects appeared in Figure 3.2(b). In this experiment, the measured gyroscope biases had a

RMSE of 0.343 degrees per second (dps). When the predicted z-axis gyroscope biases were

subtracted from the measured gyroscope biases, the RMSE was significantly reduced to 0.024

dps.

3.2.4 Thermal-compensated ZUPT-aided INS

In our developed approach, the 12 thermal-induced errors predicted by the 12 trained BPNNs

are inputted to the ZUPT-aided INS for temperature compensation. Figure 3.3 illustrates

the thermal-compensated ZUPT-aided INS. In this approach, IMU biases predicted by the

6 BPNNs for biases are removed from raw measurements collected from an IMU. The

predicted noise SD variations corresponding to gyroscopes and accelerometers are divided

by the nominal ARW and VRW, respectively. These quotients are inputted to a zero-

velocity detector and the EKF to vary the entries in the covariance matrix corresponding

to orientation and velocity states. This section used the SHOE detector for zero-velocity

detection.

86

De
gr

ee
 P

er
 S

ec
on

d

20-0.3

-0.6

-0.2

-0.4

30

Temperature,
o

C

-0.1

Gyro Bias z

-0.2

D
eg

re
e

Pe
r S

ec
on

d

400

0

0.1 50

0.2

0.2

Zero temperature rate plane

Cooling

Heating

HeatingCooling
Hysteresis effects

(a)

(b) (c)

Measurements

Predictions

Temperature rate, °C/s

z-axis gyro bias vs 𝚫𝚫T

z-axis gyro bias

Temperature, °C

0.4

0.2

0

-0.2

-0.4

-0.6

z-axis gyro bias vs T

20 25 30 35 40 45 50
-0.8

De
gr

ee
 P

er
 S

ec
on

d

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
-0.3 -0.2 -0.1 0 0.1 0.2

Figure 3.2: (a) Relations of z-axis gyroscope biases measured in the experiment presented
subsection 3.2.2 and predicted using the trained BPNN discussed in subsection 3.2.3 versus
temperature and temperature rate. The gray transparent plane indicates zero temperature
rates and divides the dataset into cooling and heating processes. (b) The relationship between
sensor biases and temperature measurements in the dataset shown in (a). Hysteresis effects
can be observed. (c) Relations of biases and temperature rates in the dataset shown in (a).

87

�𝒃𝒃T(𝑇𝑇,Δ𝑇𝑇)

Δ𝑇𝑇 �u(𝑘𝑘)𝑇𝑇

INSZUPT detector

EKF

Navigation solutions

12 × BPNN
−

�𝝈𝝈T(𝑇𝑇,Δ𝑇𝑇)

Figure 3.3: Developed temperature-compensated ZUPT-aided INS. The thermal compensa-
tion approach uses 12 different BPNNs to separately predict bias drifts and noise standard
deviation variations of accelerometers and gyroscopes along the 3 axes. In each BPNN, a
2× 1 feature vector including temperature and temperature is used as input.

3.3 Experimental Validation

3.3.1 Experimental Setup

To validate the developed approach in real scenarios, a series of 20 indoor walking experiments

was conducted in a temperature-varying environment. The experimental setup is shown

in Figure 3.1(a). In the experiment, the same IMU used in the experiment discussed in

subsection 3.2.2 was mounted on a pedestrian’s right boot, and a TEC was mounted on top

of the IMU. Figure 3.1(b) shows an experimental field, where one origin marker and one

checkpoint marker, represented respectively by the black square and the green circle in Figure

3.1(b), were placed on the floor. The nominal distance between the two markers was 42.6 [m],

measured with an industrial ruler. In each experiment, the pedestrian started by standing

still at the origin marker for roughly 20 seconds. This period was used to perform the initial

calibration of IMUs. Then, the pedestrian walked at a rate of around 80 steps per minute

88

RMSE:
0.57 m

RMSE:
0.38 m

RMSE:
0.34 m

RMSE:
9.29 m

Standalone
ZUPT-aided INS

Temperature-compensated
ZUPT-aided INS

Static temperature Static temperature

Varying temperature Varying temperature

-3 -2 -1 0 1 2 3
East, m

0

10

20

30

40

N
or

th
,m

-20 -10 0 10 20
East, m

-10

0

10

20

30

40

50

No
rt

h,
m

-3 -2 -1 0 1 2 3
East, m

0

10

20

30

40

N
or

th
,m

-3 -2 -1 0 1 2 3
East, m

0

10

20

30

40

N
or

th
,m

Est. Path

Est. checkpoint

Est. destination

Origin marker

Checkpoint marker

Figure 3.4: Comparison of navigation solutions obtained with a standalone ZUPT-aided
INS and the developed temperature-compensated ZUPT-aided INS when operating in en-
vironments where temperatures were static or varying. In the static case, the standalone
ZUPT-aided INS and the developed approach had similar position RMSE. In the tempera-
ture varying cases, our approach outperformed the standalone ZUPT-aided INS.

89

toward the checkpoint marker and then walked back to the origin marker. The duration of

each experiment was around 2 minutes, and the length of the trajectory was approximately

85.2 [m]. In the first ten sets of experiments, the ambient temperature was static at around

25◦C± 0.05◦C. In the other ten sets of experiments, the ambient temperature measured by

the IMU varied and was either increased from 20◦C to 50◦C or decreased from 50◦C to 20◦C,

five trials were performed for each combination of parameters.

3.3.2 Experimental Results

Figure 3.4 demonstrates the navigation solutions produced by a standalone ZUPT-aided INS

and the developed temperature-compensated ZUPT-aided INS in the static temperature and

varying temperature environments. The position RMSE was used to evaluate at the origin

and checkpoint markers. In this experiment, it could be observed that standalone ZUPT-

aided INS had an RMSE of 0.38 [m] while operating at static temperature situations and

9.29 [m] while operating at the temperature-varying situation. The increase in error indicates

that the IMU experienced large thermal-induced biases, and the standalone ZUPT-aided INS

could not effectively compensate for them. The developed temperature-compensated ZUPT-

aided INS demonstrated a similar performance as the standalone ZUPT-aided INS in static

temperature situations with an RMSE of 0.34 [m]. However, in temperature-varying situa-

tions, the developed approach significantly reduced the RMSE to 0.57 [m]. Based on these

experiments, we concluded that enhancing the ZUPT-aided INS with the developed BPNN-

based temperature compensation method improved navigation accuracy when operating in

the temperature-varying situations, as compared to the standalone ZUPT-aided INS.

90

3.4 Conclusion

This chapter discussed a BPNN-based temperature compensation method for enhancing

ZUPT-aided INS while operating in temperature-varying environments. The temperature

compensation method used 12 separately trained feedforward NNs to predict thermal-induced

errors, including bias drifts and noise variations of accelerometers and gyroscopes along the

three reference axes of IMU. A series of pedestrian indoor walking experiments with a nomi-

nal length of 85.2 [m] were conducted to evaluate the developed approach. The experimental

results showed that when operating in environments where ambient temperature changed

between 20◦C and 50◦C, a standalone ZUPT-aided INS had a position RMSE of 9.29 [m]

while our developed temperature-compensated ZUPT-aided INS achieved a RMSE of 0.57

[m]. We concluded that applying the temperature compensation method to enhance ZUPT-

aided INS in the experiments is beneficial. The result presented in this chapter has been

published in [90].

91

Chapter 4

On Algorithm Assumption − Reinforcing

Stance Phase Detection

4.1 Introduction

This chapter discusses the development of stance phase detectors used in the ZUPT-aided

INS. Two stance phase detectors were developed, and the corresponding navigation perfor-

mances were experimentally investigated. In this chapter, Section 4.2 identifies a problem

in conventional IMU-based stance phase detector, Section 4.3 presents the development of

a stance phase detector using foot-mounted IMU and Dynamic Vision Sensor (DVS) with

experimental validation, Section 4.4 derives a stance phase detector utilizing a foot-mounted

IMU and a downward-facing ultrasonic sensor and evaluates the navigation performance

with indoor pedestrian navigation experiments, Section 4.5 concludes this chapter with a

discussion of the results.

92

4.2 False Alarm in Traditional IMU-based Detection

In early developments of the ZUPT algorithm for pedestrian navigation, stance phase de-

tection, or zero velocity detection, was often achieved by comparing a fixed threshold with

statistics of likelihood computed from accelerometers’ and gyroscopes’ measurements [181].

One of the frequently used detector is the SHOE detector. The statistics of the SHOE de-

tector directly relates to stability of the foot, and its detection mechanism is based on an

observation that the foot is more stable in the stance phase than in the swing phase. As a

result, if the statistics is higher than the defined threshold, the SHOE detector determines

the swing phase. Otherwise, the detector indicates the stance phase.

Ground Take-off In the air Landing Ground

Swing phaseStance phase Stance phase

false alarm

SHOE detector

119 119.5 120 120.5 121
Time, s

20
18
16
14

10
8
6
4

12

22

Lo
g-

Li
ke

lih
oo

d Log-Likelihood
Threshold

Figure 4.1: An example of the SHOE statistics in one gait cycle. The gait cycle is split into
two stance phases and a swing phase. The swing phase can be further divided into three
stages. In the first stage, the foot takes off the ground. In the second stage, the foot travels
in the air. In the third stage, the foot lands on the ground.

The statistics of the SHOE detector, however, has an undesirable property. Figure 4.1

presents an example of statistics of the SHOE detector of one gait cycle in an indoor walking

experiment. In the second stage of the swing phase, the statistics of the SHOE detector

decreased when compared to the first and the second stages. The decrease was due to the

fact that the foot is more stable when traveling in the air than when taking off or landing.

False alarms of zero velocity detection, which is defined as the case that a detector determines

93

as a stance phase when the foot is in the swing phase, often occur during the period when

the foot is in the air. For example, using the threshold indicated by the red line in 4.1

would trigger a false alarm. Notice that although a lower the threshold value can be used to

eliminate the false alarm, the lower value does not necessarily lead to an improved overall

navigation result.

4.3 Aiding by a Dynamic Vision Sensor

This section presents an event-based camera-assisted zero velocity detector for foot-mounted

INS. The developed detector achieves zero-velocity detection by comparing a threshold with

its statistics, computed using the firing rate, defined as the total number of events generated

during a period, of the event-based camera and the statistics from the SHOE detector. The

developed detector is shown to reduce the rate of false alarms of zero velocity detection and

to increase the accuracy of pedestrian navigation. This section gives an overview of the

DVS, presents hardware design of a foot-mounted INS integrated with a DVS, analyzes the

properties of the DVS firing rate during indoor navigation experiments, derives the event-

based camera-aided zero velocity detector in a GLRT framework, evaluates the developed

detector in terms of detection rate, false alarm rate, and navigation error, and experimentally

demonstrates the validity of the developed detector.

4.3.1 Dynamic Vision Sensor Overview

DVS, or Event-based cameras, work differently from a traditional CMOS camera in a way

that a DVS asynchronously detects light intensity changes, called events [126]. Some previous

work has been conducted to apply the DVS to the field of navigation [229, 230, 137]. The

DVS has a high dynamic range, high temporal resolution, low power consumption, and

94

reduced motion blur [60], making it an intriguing alternative for efficient event detection in

foot-mounted INS navigation. Since DVS detects light intensity changes, no event would

be generated in an ideal case if no object is moving inside its Field Of View (FOV). This

idea can be extended to detect whether a DVS is stationary. Under the assumption that the

background inside the FOV is static, a DVS has a property that no event would be produced

when DVS is static, and a large number of events would be generated when the DVS is

moving. In this section, the developed approach utilizes this property of a DVS to assist the

SHOE detector.

4.3.2 Foot-mounted Dynamic Vision Sensor

The Lab-On-Shoe Platform Integrated With a DVS128

To understand the characteristics of measurements obtained from a foot-mounted DVS and

investigate its effect when aiding foot-mounted IMU for pedestrian inertial navigation, the

Lab-On-Shoe platform was integrated with a mini-eDVS system. The integrated system is

shown in Figure 4.2. The Lab-On-Shoe was previously developed by UCI MicroSystems

Lab for evaluating navigation performance of foot-mounted IMUs when aided by other non-

inertial sensors, such as barometers, ultrasonic sensors, and cameras [18]. The mini-eDVS

system contains an event-based camera DVS128 and a micro-controller [229]. The detail

description of the event-based camera DVS128 can be found in [126]. In this section, the

IMU sampling rate was set to 120 Hz. The DVS firing rate was obtained by calculating the

number of events generated in a period of 0.0083 s.

95

Event camera
DVS128

IMU
ADIS16495

Camera
aCA800-500uc

Ultrasonic
SRF08

Barometer
MS5803-01BA

Figure 4.2: The Lab-On-Shoe platform integrated with DVS128. The Lab-On-Shoe platform
is equipped with an IMU, three ultrasonic sensors, a barometer, a CMOS camera, and a DVS.
The developed DVS-aided SHOE detector discussed in this section only uses the DVS and
the IMU.

96

Accelerometer readouts

x, pixel

0 20 40 60 80 100 120

x, pixel

0

20

40

60

80

100

120

y,
 p

ix
el

y,
 p

ix
el

0 20 40 60 80 100 120

x, pixel

0

20

40

60

80

100

120

y,
 p

ix
el

One gait cycle One gait cycle

Swing Stance Swing Stance

Ac
ce

le
ra

tio
n,

 g

Firing rate
Time, s

Time, s

N
um

be
r o

f e
ve

nt
s

DVS raw events

Time, s

y,
 p

ix
el

(c)

(b)

(a)

132 133 134 135 136 137 138 139
0

200
400
600
800

1000
1200
1400
1600
1800
2000

0

20

40

60

80

100

120

0 20 40 60 80 100 120

CMOS camera image DVS profile during swing phase

(d) (e) (f)

x, pixel

y,
 p

ix
el

0

20

40

60

80

100

120

0 20 40 60 80 100 120

DVS profile during stance phase

132 133 134 135 136 137 138 139
50

100

0

20

40

60

80

100

120

132 133 134 135 136 137 138 139
-4
-3
-2
-1
0
1
2
3
4
5

X
Y
Z

Figure 4.3: (a) The accelerometer readouts in an indoor walking experiment. (b) The corre-
sponding DVS firing rate in the same experiment. (c) An example of DVS events collected
in the same experiment. (d) A group of events collected during a swing phase in the experi-
ment. (e) A CMOS image of the scene generating DVS events during the swing phase. (f)
A group of events collected during a stance phase in the experiment.

97

Measurements of Foot-mounted DVS

A DVS asynchronously detects light intensity changes, called events. A positive light inten-

sity change is represented as a positive event, and a negative change is a negative event. In

this section, the two types of events are not distinguished as they are both generated by light

intensity changes. One scenario that events are produced is when a scene observed is moving

relatively to the DVS. In the case of a shoe-mounted DVS in a walking experiment, a large

number of events are produced when the shoe is moving, and fewer events present when the

shoe is stationary. An example of DVS events generated in an indoor walking experiment

is shown in Figure 4.3(c). Each of the blue particles in Figure 4.3(c) is an event. For visu-

alization, we collected the events generated in a 0.0083 s window and displayed the events

as an DVS image. Figure 4.3(e) and (f) illustrate DVS images taken during a swing phase

and a stance phase, respectively. The blue and the red particles in Figure 4.3(e) and (f)

represent positive and negative events. We can observe that the number of events generated

during the stance phase is distinctively less than the swing phase. Note that even though the

shoe-mounted DVS had minimum movement during the stance phase, events exist in Figure

4.3(f). Those events are considered as noise events.

The firing rate of a DVS is defined as the total number of events triggered within a period.

The DVS firing rate of the walking experiment is presented in Figure 4.3(b). Accelerometer

readouts collected in the same walking experiment, shown in Figure 4.3(a), are used as

references to the stance phases and the swing phases. Figure 4.3(b) illustrates that the firing

rate increases during the swing phases and decreases during the stance phases. Thus, the

firing rate of a shoe-mounted DVS can be used to assist the SHOE detector, which only relies

on IMU measurements.

98

120 122 124 126 128 130time,s
0

200
400
600
800

1000
1200
1400
1600
1800
2000

75 76 77 78 79 80time,s

200
400
600
800

1000
1200
1400
1600
1800

Ground

Shoe

Background

Time, s

Time, s

Firing rate at mounting position (a)

Firing rate at mounting position (b)

N
um

be
r o

f e
ve

nt
s

N
um

be
r o

f e
ve

nt
s

DVS facing frontDVS facing side

(a)

(c)

(d)

(b)

(e) (f) (g)

DVS

DVS

Swing phase

Stance phase

Figure 4.4: (a) DVS is mounted next to the IMU and faces outward. (b) DVS is mounted
next to the IMU and faces outward. (c) Firing rate in an indoor walking experiment with
DVS mounting configuration shown in (a). (d) Firing rate in an indoor walking experiment
with DVS mounting configuration shown in (b). (e) An example of a DVS image taken when
the DVS is facing the ground. (f) An example of a DVS image taken when the DVS is
moving and facing forward. (g) An example of a DVS image taken during the stance phase,
capturing events generated by the other shoe.

99

Mounting Position of DVS

To maximize the assistance that a DVS can provide for zero-velocity detection, two indoor

walking experiments were conducted with the Lab-On-Shoe platform integrated with the

DVS128 to determine a mounting configuration for the DVS. The two experiments were

conducted with the same path and walking speed and different mounting configurations for

the DVS. The mounting configuration of the DVS in the first experiment is illustrated in

Figure 4.4(a), where the DVS was mounted next to the IMU and faced outward to surround-

ing walls. In the second experiment, the DVS was mounted on top of the IMU and faced

toward the front. The configuration of the second experiment is shown in Figure 4.4(b).

Figures 4(c) and (d) illustrate examples of the firing rates collected during the first and the

second experiments, respectively. Comparing the firing rates in the swing phase, we can see

that the configuration demonstrated in Figure 4.4(a) led to a consistent DVS firing rate. In

contrast, the firing rate collected with the configuration shown in Figure 4.4(b) fluctuated

dramatically. The fluctuation was contributed by the fact that with the configuration in

Figure 4.4(b), there is a period during the swing phase that the FOV of the DVS was facing

the ground. The ground in the experiments does not have many visual features. Thus, the

number of events that were generated was less when the DVS is facing the ground. An

example of events generated when the DVS was facing the ground is shown in Figure 4.4(e).

In this series of experiments, we also found that using the configuration in Figure 4.4(b) has

another drawback. During the stance phase, the other shoe can come inside the FOV of

the DVS, generating events that are not beneficial for zero-velocity detection. Figure 4.4(g)

shows an example of the events caused by the other shoe. Since zero-velocity detection is

based on comparing a statistics of likelihood with a threshold, one of the desired properties

is that the statistics during the stance phase is distinct from that during the swing phase.

Thus, to achieve the best performance for zero velocity detection, we conclude that the DVS

should be mounted next to the IMU, facing outward.

100

4.3.3 DVS-aided Zero Velocity Detection (DVS-SHOE)

A zero velocity detector that utilizes statistics of the SHOE detector and firing rate of a

DVS is developed. The developed detector will be referred to as the DVS-aided SHOE

(DVS-SHOE) detector in the following discussion. The derivation of the DVS-SHOE is

similar to the derivation of the SHOE detector presented in [181], which uses the GLRT

framework. In the derivation of the DVS-SHOE detector, the inertial sensors measurements,

yαk and yωk , was augmented with the DVS firing rate, yλk , and the measurement vector yk can

be expressed in the following form:

yk =

yαk

yωk

yλk

 =

sαk

sωk

shk

+

vαk

vωk

vλk

 = sk + vk.

Here, sαk ∈ R3 and sωk ∈ R3 denote the IMU-experienced acceleration and angular rate,

respectively. sλk ∈ R denotes denotes the firing rate of the DVS. vαk ∈ R3, vωk ∈ R3 and

vhk ∈ R represent the measurement noises of the accelerometer, gyroscope, and ultrasonic

sensor, respectively. The derivation used an assumption that the measurement noises of

accelerometers, gyroscopes, and DVS firing rate are independent and identically-distributed

white Gaussian noises with respective variances σ2
α, σ

2
ω, and σ

2
λ.

As discussed in [181], the two hypotheses, H0 andH1, in zero-velocity detection correspond to

the cases of the swing phase and the stance phase, respectively. Under the hypothesis H1, the

accelerometer only experiences the gravitational acceleration; the angular rate experienced

by the gyroscope is zero; the DVS firing rate is a constant value λ. For an ideal noise-free

DVS, λ is zero. In a practical situation, noise events can be generated even when no object

is moving in a DVS field of view, and therefore, λ is non-zero. In the implementation,

λ=30 was experimentally determined. Under the hypothesis H0, forces from the foot lead

to complicated foot motion, so that the accelerometer experiences acceleration exceeding

101

gravity, the gyroscope readouts fluctuate, and the DVS detects events generated by the

foot motion. For the two hypotheses, the sensor measurements were assumed to satisfy the

following conditions:

H0 : ∃k ∈ Ωn, s
α
k ̸= gun, s

ω
k ̸= 03×1, s

λ
k ̸= λ,

H1 : ∀k ∈ Ωn, s
α
k = gun, s

ω
k = 03×1, s

λ
k = λ,

where un is a 3 × 1 unit vector, g is the gravitational constant, and Ωn = {l ∈ N, n ≤ l <

N − 1} is a collection of the sensor measurement indexes at time n with a window of length

N .

Following the derivation described in [181], the developed DVS-SHOE detector chooses H1

if

Tλ(zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2 + 1

σ2
λ

∥ yλk − λ ∥2) < γ, (4.1)

where zn = {yk}k=N−1
k=n and γ are user-defined thresholds.

4.3.4 Experimental Results

To validate the DVS-SHOE detector, a series of indoor close-loop walking experiments was

performed with the Lab-On-Shoe platform integrated with the DVS128. The series of exper-

iments included ten nominally identical trials. In each trial, a subject walked over 150 steps

for a duration of 160 m in about 120 s. The trajectory included a flat surface, a ramp, and

stairs. A reference trajectory generated by ZUPT-aided INS with the DVS-SHOE detector

is shown in Figure 4.6(a).We used two methods to evaluate the DVS-SHOE detector. The

first method was to study the detection performance in terms of the detection rate and the

false alarm rate. The second method was to investigate the navigation results of ZUPT-aided

102

INS with different detectors. Detailed implementation of the ZUPT-aided INS is presented

in [216].

Detector Performance

Pe
rc

en
ta

ge
, %

Pe
rc

en
ta

ge
, %

ZUPT: statistic vs threshold

3 4 5 6 7 8 9 10 11
Threshold, exp(x)

0

20

40

60

80

100

DVS-aided SHOE detector

3 4 5 6 7 8 9 10 11
Threshold, exp(x)

0

20

40

60

80

100

The SHOE detector

Detection rate
False alarm rate

148.6 148.8 149 149.2 149.4 149.6 149.8 150 150.2 150.4
Time, s

6

8

10

12

14

16

18

20

22

Lo
g-

L i
ke

li h
oo

d

false alarm by SHOE

in air

(a)

(b) (c)

Detection rate
False alarm rate

DVS-SHOE
SHOE

Figure 4.5: (a) shows an example of SHOE and DVS-SHOE statistics for one gait cycle in
the indoor walking experiment. The orange area indicates the stage of shoe traveling in the
air during the swing phase. (b) presents the detection performance of the SHOE detector
in the indoor walking experiments. The green area indicates the range of thresholds that
achieves a near 0% false alarm and 100% detection rate. (c) demonstrates the detection
performance of the DVS-SHOE detector in the indoor walking experiments. The green area
in (c) is larger than the one shown in (b). The larger green area implies that the DVS-SHOE
detector is more robust than the SHOE detector.

The detection performance of the DVS-SHOE detector is first compared with that of the

SHOE detector. False alarm rate and detection rate were used as metrics for evaluation.

103

In zero-velocity detection, a false alarm is generated when the shoe is moving, but a stance

phase detector indicates a stance phase. A mis-detection is produced when the shoe is on the

ground, but the detector determines a swing phase. Figure 4.5(a) illustrates that using the

threshold indicated by the green line in Figure 4.5(a) for the SHOE detector would lead to a

false alarm in the walking experiment. The false alarm was eliminated when the statistics of

the DVS-SHOE was used. The elimination was due to the fact that during the period when

the shoe is traveling in the air, the DVS firing remains consistently on a high level. Thus, the

statistics of the DVS-SHOE was kept high during the orange area in Figure 4.5(a), leading

to a reduction of the false alarm.

Figure 4.5(b) and (c) demonstrate the detection rates of the SHOE detector and the DVS-

SHOE detector when different values of thresholds were used. We can observe that the first

false alarm for the DVS-SHOE detector happened at a much larger threshold value than in

the case of the SHOE detector. The green areas in both Figure 4.5(b) and (c) indicate that

when a threshold value is chosen from this range, the detector achieves a near 0% false alarm

rate and a 100% detection rate. In this series of experiments, the green area in Figure 4.5(e)

is larger than Figure 4.5(d), implying that the DVS-SHOE detector can handle a larger range

of thresholds.

Navigation Performance

To evaluate the DVS-SHOE detector in a more realistic case, the navigation accuracy of

ZUPT-based INS when using the SHOE detector is compared with case using the DVS-

SHOE detector. The navigation accuracy is evaluated with the CEP. The estimated final

destinations of the ten sets of experiments and the CEPs are presented in Figure 4.6(b) and

(c). The experimental results showed that the CEP is reduced by around 25%, from 1.2 m

to 0.9 m, when the DVS-SHOE detector is applied. The improvement is a direct result of

the fact that the DVS-SHOE detector has a better zero-velocity detection performance than

104

N
or

th
, m

N
or

th
, m

-2 -1 0 1 2
East, m

-2

-1

0

1

2

Estimated horizontal destination
(DVS-SHOE)

Estimated destination
True destination
CEP (50%)

-2 -1 0 1 2
East, m

-2

-1

0

1

2

Estimated horizontal destination
(SHOE)

(b)

𝑟𝑟CEP= 1.2 m 𝑟𝑟CEP= 0.9 m

(c)

Path

Origin

End

(a)

N
or

th
, m

-5

0

5

10

15

East, m
-20 -15 -10 -5 0 5 10

Estimated Trajectories

Figure 4.6: (a) shows an example of SHOE and DVS-SHOE statistics for one gait cycle in
the indoor walking experiment. The orange area indicates the stage of shoe traveling in the
air during the swing phase. (b) presents the detection performance of the SHOE detector
in the indoor walking experiments. The green area indicates the range of thresholds that
achieves a near 0% false alarm and 100% detection rate. (c) demonstrates the detection
performance of the DVS-SHOE detector in the indoor walking experiments. The green area
in (c) is larger than the one shown in (b). The larger green area implies that the DVS-SHOE
detector is more robust than the SHOE detector.

105

the SHOE detector.

The DVS-SHOE detector has two constraints. First, the detector used an assumption that

the scene observed by the DVS is static to use the DVS firing rate for zero-velocity detec-

tion. Nevertheless, this is not always the case. If the DVS observes moving objects during

the stance phase, the statistics of the DVS-SHOE will increase, leading to mis-detections.

Second, if the scene inside the field of view does not have many visual features, for example,

a white wall, then the statistics of the DVS-SHOE will decrease, leading to false alarms.

This section presented a novel zero velocity detector, the DVS-SHOE detector, for ZUPT-

aided INS augmented by a foot-mounted event-based camera DVS128. The firing rate of

the foot-mounted DVS was demonstrated to increased during the swing phase and decreased

during the stance phase in a walking experiment. The DVS mounting configuration, which

is to mount the DVS next to an IMU and face the sensor outward for optimal performance of

zero-velocity detection, was experimentally determined. Two methods were used to evaluate

the developed DVS-SHOE detector. First, we compared the detection performances of the

SHOE detector and the DVS-SHOE detector in terms of false alarm rate and detection rate.

The experimental results showed that the DVS-SHOE detector achieved a lower false alarm

rate than the SHOE detector. Second, we compared the navigation performance of the

ZUPT-aided INS using the SHOE detector and the DVS detector. The experimental results

showed that the CEP of the case using DVS-SHOE is reduced by around 25%, from 1.2 m to

0.9 m, as compared to the case of the SHOE detector. The results presented in this section

was published in [88].

106

4.4 Aiding by Downward-facing Range Sensor

This section presents the development of a zero velocity detector, referred to as the Ultrasound-

Aided SHOE (UA-SHOE) detector, for foot-mounted INS assisted by a downward-facing

range sensor. The UA-SHOE detector is based on statistics combining the SHOE detector,

which relies only on IMU measurements, with an additional information about the height of

the foot relative to the ground. In the rest of this section, for clarity, the detectors presented

in [181] and [255] will be referred to as the SHOE detector and the Ultrasonic-only Stance

Phase Detection (USPD) detector, respectively. In the implementation of the UA-SHOE

detector, the height information is acquired with the downward-facing range sensor, which

is an ultrasonic sensor mounted at the foot’s arch. A combination of the SHOE detector

and the ultrasonic measurements is shown in this section to result in an improved navigation

performance.

This section derives the statistics of the detector in a General Likelihood Ratio Test (GLRT)

framework, verifies the developed UA-SHOE detector with experiments conducted by travel-

ing at different speeds, and compares the performance of the developed UA-SHOE detector

with a commonly used SHOE detector and the USPD detector in terms of the navigation

errors of the ZUPT-aided INS.

4.4.1 Detector Derivation With General Likelihood Ratio Test

The developed UA-SHOE detector can be derived similarly to the GLRT framework pre-

sented in [181]. The inertial sensors measurements yk are augmented by the height of the

107

shoe relative to the ground, and can be presented in the following form:

yk =

yαk

yωk

yhk

 =

sαk

sωk

shk

+

vαk

vωk

vhk

 = sk + vk.

Here, sαk ∈ R3 and sωk ∈ R3 denote the IMU-experienced acceleration and angular rate,

respectively. shk ∈ R denotes the height of the shoe relative to the ground. vαk ∈ R3, vωk ∈ R3

and vhk ∈ R represent the measurement noises of the accelerometer, gyroscope, and ultrasonic

sensor, respectively. In the derivation, the measurement noises of accelerometers, gyroscopes,

and range sensors were assumed to be independent and identically-distributed white Gaussian

noises with respective variances σ2
α, σ

2
ω, and σ

2
h.

Recall that zero velocity detection is a binary hypothesis test problem, and the two hy-

potheses, H0 and H1, are defined as the cases of the swing phase and the stance phase,

respectively. Under the hypothesis H0, the sensor measurements are not consistent, so no

simplifying assumption is made. Under the hypothesis H1, the accelerometer only experi-

ences the gravitational acceleration, and the angular rate experienced by the gyroscope is

zero. Moreover, under H1, the shoe height is a constant value h. In other words, for the two

hypotheses, we assume the sensor measurements should satisfy the following conditions:

H0 : ∃k ∈ Ωn, s
α
k ̸= gun, s

ω
k ̸= 03×1, s

h
k ̸= h,

H1 : ∀k ∈ Ωn, s
α
k = gun, s

ω
k = 03×1, s

h
k = h,

where un is a 3 × 1 unit vector, g is the gravitational constant, and Ωn = {l ∈ N, n ≤ l <

N − 1} is a collection of the sensor measurement indexes at time n with a window of length

N .

108

Following the derivation described in [181], the developed UA-SHOE detector chooses H1 if

Th(zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2 + 1

σ2
h

∥ yhk − h ∥2) < γ, (4.2)

where zn = {yk}k=N−1
k=n and γ are user-defined thresholds.

4.4.2 Performance Evaluation

Ground 4 cm

Ultrasonic sensor
SRF08 IMU

ADIS16495-3

Camera
acA4024-8gc

Figure 4.7: The Lab-On-Shoe platform integrated with a downward-facing ultrasonic sensor.
The camera in the picture was not used in this work.

This subsection compares the performance of the developed UA-SHOE detector with a com-

monly used SHOE detector and USPD detector. The USPD detector uses the range sensor

measurements smoothed by the 2nd order Butterworth low-pass filter. The normalized cut-

off frequency of the filter was set to 0.1 [Hz]. Two series of experiments were conducted with

the Lab-On-Shoe platform integrated with a downward-facing range sensor. The Lab-On-

Shoe system is documented in [18]. The downward-facing range sensor was mounted at the

middle part of the shoe, shown in Figure 4.7. The range sensor used in this section is an

ultrasonic sensor SRF08, but it can be replaced by other range sensors, such as LiDAR. The

109

sampling rate of the ultrasonic sensor was 25 [Hz], while the IMU sampling rate was 120

[Hz]. Each series contained 10 sets of identical experiments. In the first series of experiments,

the subject walked straight towards the North on a flat surface for 42.67 [m] at a speed of

around 1 [m/s] (80 [steps/min]) in 45 [s]. In the second series, the subject repeated the same

experiments but running at a speed of around 2 [m/s] (160 [steps/min]) in 23 [s].

Statistics Comparison

Figure 4.8(a), (b), and (c) show examples of the statistics of the developed UA-SHOE de-

tector, the commonly used SHOE detector, and USPD detector. The red line in each plot

is the threshold used to compare the statistics of the detectors. Two trends shall be noted

in these plots. First, the smoothed ultrasonic sensor measured, at least once during the

stance phases, the minimum shoe height selected to be 4cm in these experiments. Second, as

compared to the original SHOE detector, the statistics of the developed UA-SHOE detector

is higher during swing phases, implying that the rate of false alarms was reduced. This is

because the UA-SHOE detector, described by (4.2), has an additional term 1
σ2
h
∥ yhk−h ∥2. In

our view, the major advantage of adding this term is that its value directly tests if the shoe

is on the ground, while the other two terms in (4.2) relate to stability of the shoe and are

not necessarily a reliable indicator whether the shoe is on the ground. Since the ultrasonic

readouts are equal to the minimum shoe height, h, when the shoe contacts the ground, the

noise variance σ2
h can be set to a minimal value. In this section, σ2

h = 10−38.

Figure 4.8(d) shows the detection results in a gait cycle of the walking experiment using the

three detectors with the thresholds indicated by the red line in Figure 4.8(a), (b), and (c).

The accelerometer measurements are superimposed in the plot as a reference for the swing

and stance phases. Three lessons can be learned from results shown in Figure 4.8. First,

during the gait cycle, all three detectors identified correctly the stance phase at least once.

Second, during 33.15s and 33.25s, a stance phase period was detected by the USPD detector,

110

(a) (b) (c)

(d)

Ultrasonic aided SHOE

Log-Likelihood
Threshold

28 30 32 34
Time, s

0

50

100

Lo
g-

lik
el

ih
oo

d

SHOE

Log-Likelihood
Threshold

28 30 32 34
Time, s

5

10

15

20

Lo
g-

lik
el

ih
oo

d

Downward ultrasonic

Smoothed Readouts
ZUPT Threshold

28 30 32 34
Time, s

0

0.05

0.1

0.15

0.2

Sh
oe

 h
ei

gh
t,

m
Misdetection by SHOEFalse-alarm by ultrasonic

Swing phase Stance phase

32.4 32.6 32.8 33 33.2 33.4 33.6 33.8
Time, s

-30

-20
-10

0
10

20
30

40
50

60

Accelerometer vs ZUPT in a gait cycle

accel x
accel y
accel z
Ultrasonic
Ultrasonic aided SHOE
SHOE

Ac
ce

le
ra

tio
n,

 m
/s

^2

Figure 4.8: (a), (b), and (c) are examples of the statistics of the developed UA-SHOE
detector, the SHOE statistics, and the smoothed ultrasonic sensor readouts in a walking
experiment. (d) shows the stance phase detected by the three detectors in a gait cycle. In
this gait cycle, the USPD detector had a false alarm, the SHOE detector had a mis-detection,
and the UA-SHOE detector had the best detection performance.

111

but the accelerometer measurements indicated that IMU was experiencing an acceleration

generated by not only the gravity but also by other inertial forces. We considered this

period as a false alarm of the detector. The false alarm was possibly generated because of

two reasons: 1) when the arch of the foot touched the ground, the IMU mounted at the toe

side was still experiencing a short period of vibration, and 2) the lower sampling rate of the

ultrasonic sensor resulted in a delay between its measurements and the IMU measurements.

Third, during 33.6 [s] and 33.8 [s], the SHOE detector had a mis-detection. Although this

mis-detection can be eliminated by using a higher threshold, the higher threshold may not

necessarily result in a better navigation accuracy in this experiment. In our experiment, the

UA-SHOE detector had the best zero-velocity detection performance.

Navigation Error Comparison

Figure 4.9 presents the navigation results of two series of experiments utilizing ZUPT-aided

INS with three detectors, the UA-SHOE detector, the SHOE detector, and the USPD de-

tector. The thresholds used for walking and running experiments were the same, and were

set to e12, e11.5, and 0.045 for the three detectors, respectively. The initial heading of each

experiment was adjusted so that the first 10m of all the trajectories were aligned. The nav-

igation errors are expressed in terms of CEP, whose radius by definition contains at least

50% of the destinations, and RMSE.

Figure 4.9 illustrates that the RMSEs of the UA-SHOE detector are marginally better than

the USPD detector by 27.5% (24cm) for the walking case and 11.3% (25cm) for the running

case. These improvements are mainly because the UA-SHOE detector reduces false alarms

introduced by the USPD detector. One example of the USPD false alarm reduced by the

UA-SHOE detector is illustrated in Figure 4.8(d). The RMSEs of the UA-SHOE detector

and the SHOE detector in the walking experiments had a comparable performance, with

a discrepancy of less than 7% (5cm). In the running experiments, the UA-SHOE detector

112

-5 0 5
East, m

36

38

40

42

44

46

-2 -1 0 1 2
East, m

41

42

43

44

-2 -1 0 1 2
East, m

41

42

43

44

-2 -1 0 1 2
East, m

41

42

43

44

-2 -1 0 1 2
East, m

41

42

43

44

-2 -1 0 1 2
East, m

41

42

43

44

W
al

ki
ng

R
un

ni
ng

SHOEUSPD UA-SHOE

𝑟𝑟CEP = 0.5 m

𝑟𝑟CEP = 0.7 m

𝑟𝑟CEP = 0.6 m

𝑟𝑟CEP = 0.7 m

𝑟𝑟CEP = 0.7 m

𝑟𝑟CEP = 1.7 m

RMSE = 0.7 m

RMSE = 4.4 m
RMSE = 2.0 m

RMSE = 0.6 m RMSE = 0.9 m

RMSE = 2.2 m

Estimated destination
True destination
CEP (50%)

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

Figure 4.9: Comparison of navigation results estimated by ZUPT-aided INS using three
different detectors of zero-velocity events.

113

outperformed the original SHOE detector by more than 50%.

This section presents a new zero velocity detector, the UA-SHOE detector, for foot-mounted

INS assisted by a downward-facing range sensor. The experimental results of walking and

running cases showed that, compared to the USPD detector, the RMSEs of the UA-SHOE

detector are improved by 27.5% and 11.3%, respectively. The RMSEs of the UA-SHOE

detector and the original SHOE detector in the walking experiments had a comparable

performance, with a discrepancy of less than 7%. In the running experiments, the UA-

SHOE detector outperformed the original SHOE detector by more than 50%. The result of

this section was published in [93].

4.5 Conclusion

This chapter presents two stance phase detectors for the ZUPT-aided INS, the UA-SHOE

detector and the DVS-SHOE detector, that fuse IMU measurements with additional non-

inertial sensing modalities of a downward-facing ultrasonic sensor and a DVS, respectively.

The additional sensing modalities were included to reduce the false alarm rate in traditional

IMU-based detectors. In a series of experiments where a pedestrian walked close-loop tra-

jectories on different terrains, including flat planes, stairs, and ramps, navigation accuracy

of the ZUPT-aided INS was improved by 25% when using the developed DVS-SHOE detec-

tor, as compared to the case of using the SHOE detector. In another series of experiments

where a pedestrian ran along a 42.6 [m] straight-line trajectory, the experimental results

show that using the developed UA-SHOE detector for the ZUPT-aided INS led to more than

a 2× improvement on the navigation accuracy, as compared to the case of using the SHOE

detector.

114

Chapter 5

On Algorithm Assumption − Bypassing

Binarism by Using Adaptive Covariance

5.1 Introduction

This chapter presents the development of an adaptive covariance allowing for bypassing the

necessity of using a stance phase detection in implementation of ZUPT-aided INS and re-

ducing the impact of modeling error caused residual velocities of a foot during the stance

phases on navigation performance. Figure 5.1 illustrates the concept of the developed adap-

tive mechanism. The rest of this chapter is organized as follows. Section 5.2 derives the

developed adaptive covariance, Section 5.3 validates the developed approach with indoor

pedestrian navigation experiments and discusses experimental results, and Section 5.2.5 con-

cludes the chapter.

115

ZUPT detection

Swing phaseStance phase

Adaptive Covariance for ZUPT

Low uncertainty
High uncertainty

IMU

One Gait Cycle

Figure 5.1: Concept of Foot-Instability-Based-Adaptive (FIBA) Covariance for ZUPT-aided
INS.

5.2 ZUPT-aided INS Using FIBA Covariance

This section first gives an overview of the developed adaptive mechanisms and then discusses

the derivation of the log-likelihood ratio that quantifies the foot instability level, the design

of the developed Foot-Instability-Based Adaptive (FIBA) covariance, parameters selection

for the FIBA covariance, and properties of the EKF innovation sequences in the developed

ZUPT-aided INS.

5.2.1 Concept Overview

This section presents the mechanism and implementation of a ZUPT-aided INS with a FIBA

covariance in an EKF framework. The developed mechanism, shown in Figure 5.2(b), aims

to minimize one of the modeling errors in the ZUPT algorithm by using an adaptive mea-

surement covariance matrix to avoid feeding back the zero-velocity measurements with high

confidence when an inertial sensor mounted on a foot is not completely stationary. Com-

116

IMU

Inertial Navigation Systems

The log-likelihood

Zero-velocity
measurements

Extended
Kalman Filter

Stance Phase Detector

IMU

Inertial Navigation Systems

FIBA Covariance

Zero-velocity measurements Extended
Kalman Filter

Foot-Instability-Based Adaptive (FIBA) Covariance

(a)

(b)

The log-likelihood

Thresholds
>

Figure 5.2: (a) A conventional ZUPT-aided INS using the stance phase detector with a
threshold.(b) The developed ZUPT-aided INS implemented in an EKF with the developed
FIBA covariance. The developed system does not use a stance phase detector and adopts
a covariance matrix for zero-velocity measurements that varies in each iteration based on
instability level of a foot.

117

pared to the conventional ZUPT-aided INS, shown in Figure 5.2(a), the developed algorithm

feedbacks the pseudo measurements of zero velocity at every time instance in the EKF with

the measurement covariance matrix updated by the FIBA covariance that varies according

to an instability level of a pedestrian’s foot. The foot instability level is quantified in this sec-

tion with a log-likelihood ratio statistics calculated based on readings from the foot-mounted

IMU. The FIBA covariance is designed to have a significantly higher value when an IMU

mounted on the foot is unstable, which are the cases when the IMU experiences forces other

than the gravity of the Earth. The higher value of the FIBA covariance in these cases causes

the feedback of zero-velocity measurements to have a numerically minimal effect on other

navigation states. When the sensor unit is stable, the FIBA covariance automatically de-

clines to low values that are sufficient to compensate for residual velocities of a standalone

INS. This property of the FIBA covariance not only reduces the modeling error of the ZUPT

algorithm but also enables an alternative implementation of the ZUPT-aided INS without

using a stance phase detector.

The developed ZUPT-aided INS using the FIBA covariance is implemented in an EKF frame-

work, which is illustrated by the block diagram presented in Figure 5.2(b). The propagation

step and the update step of the EKF used in this section are similar to the system discussed

in [216]. However, in implementation presented in this section, the zero-velocity measure-

ment covariance matrix RZUPT is time-varying and adjusted according to the developed FIBA

covariance in each update step of the EKF.

5.2.2 Modeling Instability of Foot Dynamics

The FIBA covariance for zero-velocity measurements aims to provide a low uncertainty when

a sensor unit mounted on a foot is stable, which is the case of the sensors being completely

stationary, and a high uncertainty when the sensor is unstable, which is the case of the

118

sensors experiencing a motion. The moving case and stationary case are denoted as H0 and

H1, respectively. To model the instability level of the sensor with a metrics, this section

derives a Likelihood Ratio (LR) statistics that describes the probabilities of occurrence of

any of the two cases based on IMU measurements zn. In this section, the logarithm of

the derived LR statistics, which is the log-likelihood ratio, is considered as a metrics that

describes the instability level of a pedestrian’s foot.

The derivation of the LR statistics is similar to the derivation of the SHOE detector presented

in [181]. The inertial sensor measurements yk are modeled using the following notations:

yk =

yαk
yωk

 =

sαk
sωk

+

vαk
vωk

 = sk + vk.

Here, sαk ∈ R3 and sωk ∈ R3 denote the IMU-experienced acceleration and angular rate, respec-

tively. Vectors vαk ∈ R3 and vωk ∈ R3 represent the measurement noise of the accelerometer

and gyroscope, respectively. This derivation used an assumption that the measurement noise

of accelerometers and gyroscopes has two components. One of the components is described

by independent and identically-distributed white Gaussian noises. The other component is

stochastic biases. It was considered that the stochastic biases could be minimized by sub-

tracting IMU measurements with bias states of the EKF used in ZUPT-aided INS. Therefore,

in this derivation, the measurement noise of accelerometers and gyroscopes were modeled as

white Gaussian noises with respective variances σ2
α and σ2

ω.

In the case H0, signal patterns of foot-mounted IMU measurements are unknown. In the case

H1, we hypothesize that the accelerometer experiences only the gravitational acceleration,

and the angular rate experienced by the gyroscope is zero. More formally, for the two cases,

119

the sensor measurements are assumed to satisfy the following conditions:

H0 : ∃k ∈ Ωn, s
α
k ̸= gun, s

ω
k ̸= 03×1,

H1 : ∀k ∈ Ωn, s
α
k = gun, s

ω
k = 03×1,

where un is a 3 × 1 unit vector, g is the gravitational constant, and Ωn = {l ∈ N, n ≤ l <

N − 1} is a collection of the sensor measurement indexes at time n with a window of length

N .

Following the derivation described in [181], the probability density function (pdf) of collected

IMU measurements zn under H0 is expressed as

p(zn;H0) =
1

(2πσ2
α)

3N/2(2πσ2
ω)

3N/2
, (5.1)

where zn = {yk}k=N−1
k=n . The pdf under H1 is given by

p(zn;H1) =
1

(2πσ2
α)

3N/2
exp(− 1

2σ2
α

∑
k∈Ωn

(∥ yαk−g
ȳαk

∥ ȳαk ∥
∥2) 1

(2πσ2
ω)

3N/2
exp(− 1

2σ2
ω

∑
k∈Ωn

(∥ yωk ∥2),

(5.2)

where

ȳαk =
1

N

∑
k∈Ωn

yαk .

The LR statistics L(zn) is derived from (5.1) and (5.2), having the following form

L(zn) =
p(zn;H0)

p(zn;H1)
= exp(

∑
k∈Ωn

1

2σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

2σ2
ω

∥ yωk ∥2). (5.3)

120

An example of the LR statistics profile collected in an indoor walking-and-running experiment

is demonstrated in Figure 5.3(a). It should be noted that the LR statistics is always positive.

This section quantifies the foot instability level with a log-likelihood ratio. The log-likelihood

ratio, denoted as S(zn), takes a scaled version of the logarithm of (5.3) to increase the

numerical discrepancy of small values, which corresponds to the case when a foot is relatively

stable. The log-likelihood ratio S(zn) is expressed as follows:

S(zn) =
2

N
log(L(zn)) =

1

N
(
∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2)). (5.4)

Figure 5.3(b) gives an example of the log-likelihood ratio profile collected in the same exper-

iment involving indoor walking and running. It can be seen that (5.4) gives a lower value

in the case of the sensor being stationary than in the case of the moving sensor. Two phe-

nomena can be noticed in Figure 5.3(b). First, in the case where an IMU is traveling at

a constant velocity without any rotation, the value of the log-likelihood ratio would be on

the same level as in the case of the IMU being completely stationary. However, based on

our observations in pedestrian navigation experiments, the constant velocity scenarios are

unlikely to occur when the IMU is mounted on a shoe. Second, the log-likelihood ratio has

an identical expression to the statistics metrics used by the SHOE detector. However, the

statistics metrics and the log-likelihood ratio play two different roles. In the SHOE detector,

the statistics metrics is utilized to compare with a threshold for zero-velocity event detection.

In this section, the log-likelihood ratio is considered as an approach to quantify the insta-

bility level of a pedestrian’s foot based on inertial sensor readings, enabling the covariance

matrix of zero-velocity measurements to dynamically adjust its values in different scenarios.

121

5 10 15 20 25 30 35
5 10 15 20 25 30 35

Time, s
(a)

0

5

10
105 Likelihood Ratio Statistics

5 10 15 20 25 30 35
Time, s

(b)

-5
0
5

10
15
20

The Log-Likelihood (Foot Instability Level)

Statistics metrics
Threshold for walking
Threshold for running

StandStand Walk Run

FIBA Covariance for Zero-velocity Measurements

Lo
g(

st
at

is
tic

)

Time, s
(c)

(d) (e)
Fixed variance
FIBA Covariance
ZUPT event detected with low threshold
ZUPT event detected with high threshold

Potential ZUPT
modeling error

20

-20

0

5

-10

0

-5

-15

5

0

-5

14.6 14.8 15 15.2 15.4 26.5 27 27.5

Figure 5.3: (a) A profile of the Likelihood Ratio statistics, expressed in (5.3), in an indoor
pedestrian navigation experiment discussed in Section 5.2.4. (b) The blue curve illustrates
a profile of the log-likelihood ratio in the same experiment, expressed in (5.4). The green
line and the blue line represent the low threshold and the high threshold used for the SHOE
detector, respectively, in the experiments discussed in Section 5.3.1. (c) The blue curve
shows a profile of the developed Foot-Instability-Based Adaptive (FIBA) covariance. The
red horizontal line indicates the value of 0.02. The dark gray areas indicate the stance
phase detected by the SHOE detector with the threshold value specified by the green line in
(b). The light gray areas mark the stance phase detected by the SHOE detector with the
threshold value specified by the yellow line in (b). (d) and (e) display zoomed-in versions of
(c), showing two scenarios, marked with the dashed rectangles, that a pedestrian’s foot was
unstable, but a stance phase was detected.

122

5.2.3 The Foot-Instability-Based Adaptive (FIBA) Covariance

The developed FIBA covariance is designed to have values that are varying based on the

derived log-likelihood ratio in (5.3). The derived log-likelihood ratio demonstrates a desired

property where the metrics decreases in the stable case and increases in the unstable case.

However, the values might not be suitable for selection as an uncertainty of the zero-velocity

measurements. This section hypothesizes that the appropriate uncertainty for zero-velocity

measurements can be achieved by scaling the log-likelihood ratio. The FIBA covariance,

σFIBA(zn), is expressed as follows:

σFIBA(zn) = βS(zn)
γ, β ∈ R+, γ ∈ R (5.5)

In (5.5), β and γ are hyper-parameters of the FIBA covariance that need to be selected.

Note that

σFIBA(zn) > 0,∀zn.

The developed FIBA covariance σFIBA(zn) is used to update the covariance matrix RZUPT(zn)

for the zero-velocity measurements in each iteration in the EKF framework. It is assumed

that the zero-velocity measurements are uncorrelated and that uncertainties for the mea-

surements along the 3-axis are identical. RZUPT(zn) is presented as follows:

RZUPT(zn) =

σ2
FIBA(zn) 0 0

0 σ2
FIBA(zn) 0

0 0 σ2
FIBA(zn)

 (5.6)

The diagonal structure of RZUPT(zn) and the positivity property of the term σ2
FIBA(zn) guar-

123

antee RZUPT(zn) to be a proper covariance matrix.

Destination

Origin

Inertial Measurement Unit
VectorNav VN-200

Experiment environment Experimental setup

42.6 m

Figure 5.4: The scenario and setup of the experiments discussed in Section 5.2.4. The red
square indicates the nominal starting point of the experiment, and the red triangle marks
the nominal destination. The distance between the starting point and the destination was
42.6 m, which was measured by a ruler. The IMU used in the experiments was a VectorNav
VN−200 IMU. The sensor was mounted on a fixture securely attached to the toe side of the
boot. The sampling rate was set to 800 Hz.

5.2.4 Hyper-Parameter Selection

This section uses a data-driven approach to estimate values of the hyper-parameters β and

γ.Pedestrian navigation experiments were conducted in the Engineering Gateway Building

at the University of California, Irvine. The experimental setup and scenarios are shown in

Figure 5.4. The IMU VectorNav VN−200 was mounted on the toe side of the right shoe.

In the experiments, a pedestrian first walked at a speed of approximately 60 step/sec on a

straight line for 20 m and then ran at a speed of approximately 100 step/sec along the line

for 22.6 m. An example of the trajectory inside the building is illustrated in Figure 5.5. The

pedestrian repeated the same experiments 10 times. The relative ground truth location of

the destination was determined by a ruler.

The selection of hyper-parameters aims to minimize navigation errors. Based on IMU mea-

124

Reference Path

20 m

-117.8404 -117.8402 -117.84 -117.8398 -117.8396

Longitude (o)

33.6432

33.6433

33.6434

33.6435

33.6436

33.6437

La
tti

tu
de

(o)

Path
Start
End

Engineering Gateway Building at UC Irvine

Figure 5.5: A reference path for indoor pedestrian navigation experiments, described in
Section 5.2.4.

surements collected in the experiments, we implemented the ZUPT-aided INS with the devel-

oped FIBA covariance and swept the values of β with values

[
e−15, e−14.5, e−14.0, ..., e15.0

]
and γ with values

[
−3, −2.5, −2, ..., 3

]
. For each pair of β and γ values, we calculated

the RMSEs based on the loop-closure errors of the ten experiments. Figure 5.6 presents the

RMSEs when different values of β and γ were used. The hyper-parameters that corresponded

to the minimum error are summarized in Table 5.1.

Table 5.1: Hyper-parameters for the FIBA covariance

Hyper-parameter Value
β exp(−4.5)
γ 1.8

125

5.2.5 Discussion

With β = e−4.5 and γ = 1.8, an example of profile of the FIBA covariance is illustrated

in Figure 5.3(c), and two zoomed-in versions are shown in Figure 5.3(d) and Figure 5.3(e),

respectively. The blue curves represent the value of the FIBA covariance, varying based

on the IMU measurements collected in the experiments described in Section 5.2.4, and the

red horizontal line indicates a value of the variance of the zero-velocity measurements that

are commonly used in other pedestrian navigation systems using foot-mounted IMUs. The

dark and the light gray areas in 5.3(c) illustrate the stance phases detected by the SHOE

detector with a threshold represented by the green and the yellow horizontal lines in 5.3(b),

respectively. The following three features can be observed in Figure 5.3(c), Figure 5.3(d),

and Figure 5.3(e).

e
-15

e
-10

e
-5

e
0

e
5

e
10

e
15

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L
o

g
(d

is
p

la
c
e
m

e
n
t
e

rr
o

r)

Accumulated Displacement Errors vs Hyper-parameters

Local minima at
𝛽 = exp 4.5 𝑎𝑛𝑑 𝛾 = 1.8

𝛽

𝛾

Figure 5.6: The accumulated position errors at the destination estimated by the ZUPT-aided
INS using the developed FIBA covariance with different values of the hyper-parameter β and
γ in the indoor pedestrian navigation experiments discussed in Section 5.2.4. The minimum
displacement error, marked with the red pentagram, occurred at β = e−4.5 and γ = 1.8.

126

11.5 12 12.5 13
Time, s

0

2

4

6

m
/s

Velocity correction, 𝐊𝐊𝒌𝒌�𝒚𝒚𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙,𝒌𝒌 Velocity stateInnovation Sequence, �𝒚𝒚𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙,𝒌𝒌 Auto-correlation of �𝒚𝒚𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙,𝒌𝒌

11.5 12 12.5 13
Time, s

-0.2

-0.1

0

0.1

0.2

m
/s

4.5 m/sExceeding covariance

H
ig

h
th

re
sh

ol
d

(a) (d)

-3 -2 -1 0 1 2 3
Lag, (s)

0

0.5

1
Due to detector
false alarm

(b) (c)

11.5 12 12.5 13
Time, s

-0.05

0

0.05
m

/s

11.28 11.3 11.32 11.34
-0.01

0
0.01

11.5 12 12.5 13
Time, s

0

2

4

6

m
/s

11.5 12 12.5 13
Time, s

-0.04

-0.02

0

0.02

0.04

m
/s

-3 -2 -1 0 1 2 3
Lag, (s)

0

0.5

1

4.545 m/s

Lo
w

 th
re

sh
ol

d x
y
z
3𝜎𝜎�𝒚𝒚𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙,𝒌𝒌

Stance

x
y
z

Stride ~0.8𝑠𝑠

Within-step
correlation

Between-step
correlation

x
y
z
Stance

x
y
z
Stance

11.3 11.35 11.4
-4
-2
0
2
4

10-3

-3 -2 -1 0 1 2 3
Lag, (s)

0

0.5

1
4.542m/sNegative

correlation

FI
B

A
C

ov
ar

ia
nc

e

11.5 13
Time, s

-0.05

0

0.05

m
/s

11.32 11.34 11.36

-5
0
5

10-3

11.5 12 12.5
Time, s

0

2

4

6

m
/s

6.28 × 10−10 𝑚𝑚/𝑠𝑠

11.5 12 12.5 13
Time, s

-0.2

-0.1

0

0.1

0.2

m
/s

11.5 12 12.5 13
Time, s

-20

-10

0

10

20

Lo
g(

m
/s

)

Log version

11.5 12 12.5 13
Time, s

-0.2

-0.1

0

0.1

0.2

m
/s

Figure 5.7: (a) examples of the EKF innovation sequences, ỹZUPT, and 3× square-root of
the EKF innovation covariances, σỹZUPT

. It can be seen that the innovation sequences in the
cases of using the low threshold and the high threshold do are not continuous because the
conventional ZUPT-aided INS performs the update step only during the stance phase. The
grey areas represent the stance phases identified by the SHOE detector. A logarithm version
of the innovation sequence in the ZUPT-aided INS using the FIBA covariance is presented
next to the regular version for better visualization of large values. The developed FIBA
covariance does not require the binary stance phase detection, but the stance phase periods
are displayed to illustrate the status of the foot. (b) profiles of auto-correlation calculated
based on the innovation sequences, ỹZUPT, presented in (a). (c) amount of velocity corrected
in each iteration of the EKF update step. It can be observed that, even though the ZUPT-
aided INS using the FIBA covariance feedbacks the zero-velocity measurements regardless of
the stance phase and the swing phase, the corrections applied to the velocity states when the
foot was very unstable were minimal, which was 6.28 × 10−10. (d) the estimated velocities.
All profiles shown in this figure corresponded to the IMU measurements collected during one
complete gait cycle in the walking part of the experiments discussed in Section 5.2.4.

127

• In Figure 5.3(c), the FIBA covariance during the stance phase decreases to a compara-

ble level defined by the red line, which marked a value commonly used for the variance

of zero-velocity measurements in implementation of conventional ZUPT-aided INS.

The decrease indicates that the zero-velocity measurements have low uncertainty, and

the velocity error would be reduced during this period. During the swing phase, the

FIBA covariance increases sharply, leading to a result that the zero-velocity measure-

ments have high uncertainty, and the velocity state in the navigation solutions would

not be numerically affected by the zero-velocity feedback. This property of the de-

veloped FIBA covariance eliminates the need to use a stance phase detector for the

ZUPT-aided INS.

• In the period pointed by the black arrow in Figure 5.3(d), a stance phase highlighted

in light gray is detected, but the instability of the shoe is higher than in other regions

of the stance phase. In our opinion, the instability was due to the fact that the foot

of a pedestrian could still move slightly during the stance phase, and the movement

generated acceleration and angular velocity that contributed to higher values of the log-

likelihood ratio. In conventional ZUPT-aided INS using a stance phase and a constant

measurement variance, the filter could be over-confident in the zero-velocity measure-

ments, resulting in a modeling error. With the FIBA covariance, the uncertainty was

automatically tuned to a higher number, reducing the impact of the modeling error on

navigation accuracy.

• Figure 5.3(e) shows a segment of the FIBA covariance collected when the pedestrian was

running. In this period, the SHOE detector with a threshold indicated by the green line

in Figure 5.3(b) was not able to detect the stance phase. The SHOE detector with the

threshold indicated by the yellow line in Figure 5.3(b) could identify a stance phase,

but the usage of the constant covariance could introduce a modeling error because

instability of the foot when running should be higher than in the case of walking. In

128

this example, the value of the FIBA covariance in the running case was higher than in

the walking case, indicating the modeling error is reduced when the FIBA covariance

was used for the ZUPT-aided INS.

5.2.6 The Zero-velocity Measurement Model

A ZUPT-aided INS uses the pseudo-zero-velocity measurements to correct the velocity states

in the update step of the EKF. In a traditional implementation of the system, illustrated in

Figure 5.2(a), the zero-velocity measurements are applied only when a stance phase is de-

tected. The implementation of our developed ZUPT-aided INS using the FIBA covariance,

which is described in Figure 5.2(b), feedbacks the zero-velocity information in every iteration

of the EKF, regardless of the stance phase or the swing phase. The different implementations

lead to distinct properties of the zero-velocity measurement model, the quality of which can

be evaluated by reviewing innovation sequences of the EKF[143]. In this section, we investi-

gate the properties of the measurement model by studying the innovation sequences, ỹZUPT,

innovation covariances, σ2
ỹZUPT

, auto-correlation of the innovation sequences, velocity state

propagation, and velocity state correction KkỹZUPT, which is a Kalman gain Kk multiplied

by the innovation sequences ỹZUPT.

Figure 5.7 compares the properties of zero-velocity measurement models in the developed

ZUPT-aided INS using FIBA covariance, the conventional ZUPT-aided INS with the SHOE

detector using a low threshold indicated by the green line in Figure 5.3(b), and the conven-

tional ZUPT-aided INS with the SHOE detector using a high threshold described by the

yellow line in 5.3(b). It is worth noting that, in this dataset, the low threshold was a pre-

ferred value for walking, and the high value was favorable in the case of running. All profiles

shown in Figure 5.7 corresponded to the IMU measurements collected during one complete

gait cycle in the walking part of the experiments discussed in Section 5.2.4. Interpretations

129

of the plots shown in Figure 5.7 are discussed in the following paragraphs.

The Zero-velocity Innovation Sequences

A few observations can be made based on the innovation sequences shown in Figure 5.7(a).

First, it can be seen that the innovation sequences have different profiles in different imple-

mentations of the ZUPT-aided INS. In the cases of the conventional ZUPT-aided INS using

both the low and high thresholds, the innovation sequences were not continuous because the

update step of the EKF was performed only when a stance phase was detected. Second, in

all the cases, the innovation sequences along the z-axis had larger values than those along

the x- and the y-axis. This phenomenon was considered a result of accelerometer’s band-

width of the VN−200 IMU, which was 260 Hz, being insufficient to fully reconstruct the

forces experienced by the foot-mounted IMU during heel striking phases. The insufficient

bandwidth of an IMU in foot-mounted INS has been reported in [101]. Third, the innovation

sequences along the x- and the y-axis in the cases of FIBA covariance and the low threshold

were bounded by the dotted 3σỹZUPT
curves in Figure 5.7(a), while the innovation sequence in

the case using the high threshold frequently exceeded the 3σỹZUPT
curve. The occurrence of

exceeding innovation sequences is considered a sign of inappropriate setting of the threshold

in the stance phase detection, which could introduce unmodeled errors into the navigation

systems.

Correlation of the Zero-velocity Measurements

Figure 5.7(b) compares statistics of auto-correlations of the innovation sequences ỹZUPT. Five

observations can be made in Figure 5.7(b):

• The auto-correlations in the three cases show the innovation sequences are correlated

130

within lags of approximately 0.3 seconds. Since stride periods during walking in this

experiment were around 0.8 seconds, this phenomenon suggests that the innovation

sequences were correlated within a step, which has been reported and referred to as

the within-step correlation in [143].

• The auto-correlations in the cases of the low threshold and the high threshold have

peaks at lags of approximately every one second. The presence of the peaks indi-

cates that the zero-velocity measurements between two steps were correlated. In [143],

this type of correlation was referred to as the between-step correlation. Although the

within-step and the between-step correlations are in contrast to the assumptions of

EKF and can lead to navigation errors, it is typically assumed that the correlations

would die out within a short period of time.

• The correlation of the innovation sequence in the case of using the high threshold

was increased, as compared to the low threshold case. In our opinion, the increase

can be interpreted as a presence of zero-velocity measurements biases, which was in-

troduced by an inappropriate setting of thresholds in the stance phase detection. In

implementation of the conventional ZUPT-aided INS, the additional navigation errors

brought by the high correlation can be reduced by improving performance of stance

phase detection[88].

• The auto-correlation in the case of the FIBA covariance had increased within-step and

between-step correlations, as compared to those in the other two cases. Moreover,

the auto-correlation along the x-axis shows negative values at lags of around every

0.5 seconds. In this dataset, 0.5 seconds was approximately the period between the

middle points of a stance phase and a swing phase that were adjacent to each other.

Our explanation for the increase in correlations was that in the developed ZUPT-

aided INS using the FIBA covariance, the zero-velocity measurements during the entire

experiment were utilized in the EKF update step, and the innovation sequences during

131

the swing phases had large biases. While developing the ZUPT-aided INS using the

FIBA covariance, this phenomenon was taken into account, and the FIBA covariance

handles the highly correlated zero-velocity measurements during the swing phases by

increasing the measurement covariance matrix to significantly larger values.

Velocity Correction During the Swing Phase

In Figure 5.7(c), it can be seen that, in cases of the low threshold and the high threshold,

velocity corrections had the maximum value at the beginning of each detected step, and the

magnitude of the corrections in the latter case was larger than the former case. Since the

high threshold was an inappropriate setting for walking, the large correction in this case

can lead to reduced accuracy in velocity estimation. The inaccuracy velocity estimation can

be seen in Figure 5.7(d), where the difference in the peaks of velocity states, in the case of

the low and the high thresholds, was 0.041 m/s. In the case of the FIBA covariance, the

maximum correction did not occur at the beginning of a stance phase but at the moment

when the foot had the highest stability, which is illustrated in Figure 5.7(c). In Figure 5.7(c),

it could also be observed that, even though the ZUPT-aided INS using the FIBA covariance

feedbacks the zero-velocity measurements regardless of the stance phase and the swing phase,

the corrections applied to the velocity states when the foot was very unstable were minimal,

which was 6.28 × 10−10 in the case shown in Figure 5.7(c). This number can be considered

to have an insignificant impact to the estimation accuracy of the velocity states during the

swing phases in a short- to mid-term navigation mission. As presented in Figure 5.7(d),

the difference in the peaks of velocity states in the case of the low threshold and the FIBA

covariance was less than 0.003 m/s. In this dataset, it was unclear about whether the case

using FIBA covariance had a better velocity estimation accuracy or the one with the low

threshold. Alternative localization systems, for example, the camera system described in

[15], are needed to verify this information.

132

Based on properties of the innovation sequences demonstrated in Figure 5.7, we concluded

that even though the ZUPT-aided INS using the FIBA applied the zero-velocity measure-

ments, which were highly correlated, regardless of the stance phase and the swing phase, the

developed system only gave an influential update to the velocity state when the foot was

stable. During the swing phases when the foot was unstable, the velocity correction could

be considered insignificant and would not impact the velocity estimation accuracy in this

experiment.

5.3 Experimental Validation

To investigate the navigation performance of the developed ZUPT-aided INS using the FIBA

covariance, two series of experiments were conducted in the Engineering Gateway building at

the University of California, Irvine. The first series investigated the navigation performance

in the case of traveling at two different speeds. The second series evaluated the performance

in the case of traveling on different terrains. The experimental setup used for the two series

of experiments is shown in Figure 5.4. A VectorNav IMU VN−200 was mounted on a

customized fixture which was firmly attached to the toe side of the pedestrian’s right shoe.

The IMU was connected to a laptop held by the pedestrian for data recording. The sampling

rate of the IMU was set to 800 Hz. The EKF noise parameters, including VRW σVRW, ARW

σARW, RRW σRRW, and AcRW σAcRW, had values listed in Table 5.2.

Table 5.2: EKF Parameter settings for the ZUPT-aided INS

EKF parameter Value
σARW 2.1597× 10−5

σVRW 4.8557× 10−4

σRRW 1.7141× 10−6

σAcRW 1.3873× 10−6

133

5.3.1 Different Traveling Speeds

The first series of experiments was the same as the experiments conducted for parameter

selection of the FIBA covariance, which is described in Section 5.2.4. A reference trajectory is

shown in Figure 5.5. In this experiment, we evaluated the navigation accuracy of the ZUPT-

aided INS using the SHOE detector with a low threshold specified by the green line in 5.3(b),

the SHOE detector with a high threshold illustrated by the yellow line in 5.3(b), and the

FIBA covariance. The zero-velocity variance used for the conventional ZUPT-aided INS was

set to 0.02 m/s. For the horizontal displacement error, CEP, which is a circle centered at

the ground truth location with a radius enclosing 50% of the data, was used. For the vertical

displacement error, the RMSE based on the estimated destination was calculated.

The navigation solutions are presented in Figure 5.8. It can be observed that the horizontal

displacement errors of destinations estimated by solutions that used the low threshold and

the FIBA covariance had similar values, which were 0.62 m and 0.64 m, respectively. The

horizontal CEP in the case of using the high threshold was increased to 1 m. The vertical

RMSEs in the case of the FIBA covariance was 0.34, which was smaller than the other

two localization solutions. Ratios of position errors and trajectory lengths in this series of

experiments are summarized in Table 5.3.

Table 5.3: Percentage of position error in trajectory length for the 1st series of experiments

Low threshold FIBA covariance High threshold
Horizontal 1.46% 1.51% 2.35%
Vertical 1.01% 0.8% 2.24%

Two observations can be made in this series of experiments. First, the ZUPT-aided INS that

was using a high threshold had larger displacement errors because the high threshold led to

feeding the zero velocity measurements to the EKF when the foot was not stable, resulting

in additional modeling errors. The developed ZUPT-aided INS using the FIBA covariance

also feedbacked zero-velocity measurements during this period, but the modeling error was

134

-5 0 5

East, m

0

5

10

15

20

25

30

35

40

N
or

th
, m

Estimated Trjectories

-5 0 5

East, m

0

5

10

15

20

25

30

35

40

N
or

th
, m

Estimated Trjectories

-5 0 5

East, m

0

5

10

15

20

25

30

35

40

N
or

th
, m

Estimated Trjectories

Low threshold High thresholdFIBA covariance

(a) (b) (c)Running

Walking

-1.5 -1 -0.5 0 0.5 1 1.5
East, m

41

41.5

42

42.5

43

43.5

44
Estimated destination (horizontal)

𝐫𝐫𝐂𝐂𝐂𝐂𝐂𝐂 = 0.62 m

-1.5 -1 -0.5 0 0.5 1 1.5
East, m

41

41.5

42

42.5

43

43.5

44
Estimated destination (horizontal)

𝐫𝐫𝐂𝐂𝐂𝐂𝐂𝐂 = 0.64 m

⊥ RMSE: 0.34 m⊥ RMSE: 0.43 m

-1.5 -1 -0.5 0 0.5 1 1.5
East, m

41

41.5

42

42.5

43

43.5

44
Estimated destination (horizontal)

Estimated destination
True destination
CEP

𝐫𝐫𝐂𝐂𝐂𝐂𝐂𝐂 = 1 m

⊥ RMSE: 0.95 m

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

East, m East, m East, m

Estimated TrajectoriesEstimated Trajectories Estimated Trajectories

0

40

35

30

25

20

15

10

5

0

40

35

30

25

20

15

10

5

0

40

35

30

25

20

15

10

5

-5 50 -5 50 -5 50

Figure 5.8: (a) Trajectories and destinations estimated by the ZUPT-aided INS using the
SHOE detector with a low threshold in the first series of experiments described in Section
5.3.1. The value of the low threshold is indicated by the green line in Figure 5.3(b). (b)
Trajectories and destinations estimated by the ZUPT-aided INS using the developed FIBA
covariance in the same experiments. The hyper-parameters used for the FIBA covariance are
summarized in Table 5.1. (c) Trajectories and destinations estimated by the ZUPT-aided
INS using the SHOE detector with a high threshold in the experiments. The value of the
high threshold is represented by the yellow line in Figure 5.3(b). In these experiments, the
ZUPT-aided INS using the FIBA covariance reduced the maximum displacement errors from
4m to less than 1 m, as compared to the case using the low thresholds. When compared with
solution using the high threshold, the FIBA covariance improved navigation performance by
of 36% horizontally and 64% vertically.

135

Ramp

Flat plane

Stairs

Start & End

Figure 5.9: The scenario of the second series of experiments discussed in Section 5.3.2. The
trajectories in the experiments included the segments of terrains of flat planes, stairs, and a
ramp.

reduced because the uncertainty of the zero-velocity measurements automatically adjusted

to a higher value. Second, although the displacement errors at the destinations estimated by

the ZUPT-aided INS using the low threshold had errors less than one meter, it can be seen

that the estimated trajectory in Figure 5.8(a) drifted away when the pedestrian started to

run and the maximum error was 4 m along the east direction. The drift was observed because

the low threshold was not able to detect the stance phase, and hence no ZUPT algorithm

was triggered during this period. In this series of experiments, the developed ZUPT-aided

INS using the FIBA covariance demonstrated an improvement in the localization accuracy,

as compared to the conventional ZUPT-aided INS using the SHOE detector with a low

threshold and a high threshold.

5.3.2 Different Terrains

The second series of experiments investigated the navigation performance of the developed

ZUPT-aided INS using FIBA covariance when operating on different terrains. The exper-

136

-0.5 0 0.5
East, m

-0.5

0

0.5
Estimated destination (horizontal)

-0.5 0 0.5
East, m

-0.5

0

0.5
Estimated destination (horizontal)

Estimated destination
True destination
CEP

-8 -6 -4 -2 0

East, m

0

5

10

15

Estimated Trjectories

-8 -6 -4 -2 0

East, m

0

5

10

15

N
or

th
, m

Estimated Trjectories

𝐫𝐫𝐂𝐂𝐂𝐂𝐂𝐂 = 𝟎𝟎.𝟐𝟐𝟐𝟐𝐦𝐦 𝐫𝐫𝐂𝐂𝐂𝐂𝐂𝐂 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝐦𝐦

⊥ RMSE: 0.26 m ⊥ RMSE: 0.48 m

FIBA covariance Shoe detector w/
constant threshold

(a) (b)

Estimated Trajectories Estimated Trajectories

East, mEast, m

Estimated destination
True destination
CEP

N
or

th
, m

N
or

th
, m

N
or

th
, m

15

10

5

0

15

10

5

0

-8 0-2-4-6 -8 0-2-4-6

N
or

th
, m

Figure 5.10: (a) Trajectories and destinations estimated by the ZUPT-aided INS using the
developed FIBA covariance in the pedestrian navigation experiments described in Section
5.3.2. The hyper-parameters used for the FIBA covariance are summarized in Table 5.1. (b)
Trajectories and destinations estimated by the ZUPT-aided INS using the SHOE detector
with the threshold in the same experiments. The value of the threshold is indicated by
the green line in Figure 5.3(b). In this series of experiments, the system using the FIBA
covariance outperformed the conventional ZUPT-aided INS by 12% in terms of horizontal
CEP and 45% in terms of vertical RMSE.

137

iments were conducted in an indoor environment illustrated in Figure 5.9. In this series

of experiments, a pedestrian walked a closed-loop trajectory for a length of 50 m in 40 s.

The path included a flat surface, a ramp, and stairs. The pedestrian repeated the same

experiments 10 times.

We compared the navigation performance of the developed ZUPT-aided INS using the FIBA

covariance and the conventional ZUPT-aided INS using the SHOE detector with a constant

threshold. The experimental results of the two systems are shown in Figure 5.10. The so-

lution with FIBA covariance improved horizontal CEP and the vertical RMSE by 12% and

45%, respectively, as compared to the conventional ZUPT-aided INS. Table 5.4 summarizes

percentage of position errors in trajectory lengths in this series of experiments. We concluded

the improvement in the navigation accuracy to be a direct result of using the FIBA covari-

ance, which reduced the modeling error in the ZUPT-aided INS. This series of experiments

demonstrated that the navigation performance of the ZUPT-aided INS using the developed

FIBA covariance outperformed the case of conventional ZUPT-aided INS when traveling on

terrains of flat planes, stairs, and slopes.

Table 5.4: Percentage of position error in trajectory length for the 2nd series of experiments

FIBA covariance Constant threshold
Horizontal 0.58% 0.66%
Vertical 0.52% 0.96%

5.4 Conclusion

This chapter introduced the FIBA covariance to dynamically adjust uncertainties of the

zero-velocity measurements in the ZUPT-aided INS, allowing to reduce the modeling error

of the ZUPT algorithm. The developed ZUPT-aided INS with the FIBA covariance was

implemented in the EKF framework, where the measurements covariance matrix for the

138

zero-velocity measurements was updated in each iteration according to the FIBA covariance,

which varied based on the instability metrics derived from foot-mounted IMU measurements.

The developed FIBA covariance was demonstrated to exhibit a property that it gives a value

sufficiently lower when the foot was stable, such that the zero-velocity measurements can

effectively reset the velocity states. When the foot was experiencing a motion, the statistics

of the FIBA covariance increased sharply, and as such the zero-velocity measurements would

not have a significant numerical impact on the velocity state. This property of the FIBA

covariance allows to reduce the ZUPT modeling error and eliminates the requirement to have

a stance phase detector in the ZUPT-aided INS. Two series of indoor pedestrian navigation

experiments were conducted in this section to evaluate the ZUPT-aided INS using the devel-

oped FIBA covariance. In the first series, including both walking and running activities, the

solution using the FIBA covariance showed a maximum improvement in navigation accuracy

of 36% horizontally and 64% vertically, as compared to the conventional ZUPT-aided INS

using the SHOE detector with a constant threshold. In the second series of experiments,

which included walking on different terrains of flat planes, stairs, and slopes, the ZUPT-aided

INS using the FIBA covariance reduced horizontal CEP by 12% and vertical RMSE by 45%,

as compared to the conventional ZUPT-aided INS. We concluded that using the FIBA co-

variance in the ZUPT-aided INS can eliminate the need to use a stance phase detector and

could be beneficial for navigation accuracy. The result of this chapter has been published

in [86]. Future research directions based on the developed FIBA covariance mechanism are

suggested in Section 10.2 of Chapter 10.

139

Chapter 6

On Estimation Filter − Increasing Yaw

Angle Observability

6.1 Introduction

This chapter presents the development of an augmentation approach to enhance the observ-

ability of a ZUPT-aided INS implemented in an EKF framework. The section is organized

as follows. Section 6.2 presents the developed approach, Section 6.3 evaluates the naviga-

tion performance of the developed approach with numerical simulation and real-world indoor

pedestrian navigation experiments, Section 6.4 concludes this chapter with a highlight of the

results.

140

6.2 ZUPT-aided INS Augmented by Self-contained Vision-

based Foot-to-foot Measurements

This section presents a vision-aided pedestrian inertial navigation system that includes two

sets of shoe-mounted IMUs, cameras, and feature patterns. The system uses shoe-mounted

feature points to estimate the relative positions between the shoes and compensates the

position and yaw angle drifts in a ZUPT-aided INS. The number of feature points to be

used in the system is a fixed quantity. As a result, the computational complexity is constant

in any context. Our developed system uses foot-mounted IMUs and implements the ZUPT to

limit the error growth in velocity estimation from IMU measurements between each camera

frame. Additionally, the system does not use historical measurements for compensation.

Thus, it is possible to achieve a real-time implementation.

{𝑛𝑛}

{𝑏𝑏𝑅𝑅} (𝐪𝐪𝑛𝑛
𝑏𝑏𝑅𝑅 ,𝐩𝐩𝑛𝑛

𝑏𝑏𝑅𝑅)
(𝐪𝐪𝑏𝑏𝑅𝑅

𝐶𝐶𝑅𝑅 ,𝐩𝐩𝑏𝑏𝑅𝑅
𝐶𝐶𝑅𝑅){𝐶𝐶𝑅𝑅}

(𝐪𝐪𝐶𝐶𝑅𝑅
𝑓𝑓𝐿𝐿 ,𝐩𝐩𝐶𝐶𝑅𝑅

𝑓𝑓𝐿𝐿)

(𝐪𝐪𝑛𝑛
𝑏𝑏𝐿𝐿 ,𝐩𝐩𝑛𝑛

𝑏𝑏𝐿𝐿)

{𝑓𝑓𝐿𝐿}

{𝑏𝑏𝐿𝐿}

(𝐪𝐪𝑏𝑏𝑅𝑅
𝑏𝑏𝐿𝐿 ,𝐩𝐩𝑏𝑏𝑅𝑅

𝑏𝑏𝐿𝐿)

{𝑓𝑓𝑅𝑅}

{𝐶𝐶𝐿𝐿}
(𝐪𝐪𝑏𝑏𝐿𝐿

𝑓𝑓𝐿𝐿 ,𝐩𝐩𝑏𝑏𝐿𝐿
𝑓𝑓𝐿𝐿)

(𝐪𝐪𝑏𝑏𝐿𝐿
𝐶𝐶𝐿𝐿 ,𝐩𝐩𝑏𝑏𝐿𝐿

𝐶𝐶𝐿𝐿)

(𝐪𝐪𝐶𝐶𝐿𝐿
𝑓𝑓𝑅𝑅 ,𝐩𝐩𝐶𝐶𝐿𝐿

𝑓𝑓𝑅𝑅)

(𝐪𝐪𝑏𝑏𝑅𝑅
𝑓𝑓𝑅𝑅 ,𝐩𝐩𝑏𝑏𝑅𝑅

𝑓𝑓𝑅𝑅)

Figure 6.1: Relationship between the coordinate frames of different objects in the developed
system.

141

6.2.1 Foot-to-foot Kinematics

This section derives a measurement model that uses self-contained vision measurements

and ZUPT algorithm, provides a mechanism to simulate the foot-to-foot relative position

measurements obtained by shoe-mounted cameras, and verifies the developed system with

real-world experiments by comparing the results with a standalone ZUPT-aided INS and the

ZUPT-aided INS augmented by foot-to-foot relative distance measurements.

The developed system aims to simultaneously track positions and orientations of the two

shoe-mounted IMUs {bL} and {bR} in the navigation frame {n} in an EKF. Two cameras

{CR} and {CL} and two feature patterns {fL} are used to extract measurements for the

update step of the EKF. The relationships between all the coordinate frame used in this

section are shown in Figure 6.1. Earth rotation effect on the navigation frame is also included

in our model. The system has two steps. The first step estimates the position and the

orientation of the two IMUs based on the strap-down inertial navigation algorithm [198]. In

the second step, the system estimates the pose of the IMUs based on images captured by

the cameras and determines the status of each foot with a ZUPT detector. Then, these two

measurements are fed to the EKF update step.

The setup of the system includes two IMUs, two feature patterns, and two cameras. All these

components are mounted on the heel side of both shoes, shown in Figure 6.2. Returning to

Figure 6.1, the positions and orientations of the two cameras in the two IMU frames are

expressed by two vectors (qCL
bL
,pCL

bL
) and (qCR

bR
, pCR

bR
). The positions and orientations of the

feature patterns in the two IMU frames are expressed by (qfLbL ,p
fL
bL
) and (qfRbR ,p

fR
bR
). (qfLCR

,pfL
CR

)

is the position of the feature pattern from the left shoe in the right camera frame and

(qfRCL
,pfR

CL
) is the position of the feature pattern from the right shoe in the left camera frame.

142

Figure 6.2: Lab-on-Shoe system for investigation of self-contained navigation.

6.2.2 Structure of the EKF States

The system keeps track of the states of the two shoe-mounted IMUs with an EKF. The EKF

state is a 30× 1 vector, described as follows:

x = [qbLn , v
bL
n ,p

bL
n ,b

bL
a ,b

bL
g , q

bR
n , v

bR
n ,p

bR
n ,b

bR
a ,b

bR
g],

where qbLn , v
bL
n ,p

bL
n are the attitudes, velocities, and positions of the IMU mounted on the left

shoe expressed in navigation frame, respectively. bbL
a and bbL

g are the bias of the accelerom-

eters and gyroscopes of the left IMU. qbRn , v
bR
n ,p

bR
n ,b

bR
a , and bbR

g indicate the attitudes,

velocities, positions, and the bias of the IMU mounted on the right shoe. The error state

that are used in the EKF update step is expressed as

δx = [δθbL
n , δv

bL
n ,δp

bL
n , δb

bL
a , δb

bL
g , δθ

bR
n , δvbRn , δp

bR
n , δb

bR
a , δb

bR
g],

143

Note that the attitude states are expressed in terms of the Euler angle (roll, pitch, yaw) in

the error state because the true attitudes and the estimated attitudes are assumed to only

differ by a small amount. Therefore, according to [136], the error quaternions δq can be

approximated by

δq = [
1

2
δθ⊤, 1]⊤.

6.2.3 Prediction Model: Strapdown Inertial Navigation using Dual IMUs

In the prediction step of the EKF, the states of each IMU are propagated according to the

standard Strapdown Inertial Navigation [198] and the motions of the two feet are considered

to be independent of each other. The linearized continuous-time model of the system state

is expressed as follows:

ẋ ≜ Ax+ B = A =

 AL 015×15

015×15 AR

 x+ B =

BL

BR

 ,
where

AL(t) =

03×3 03×3 03×3 −C(qbLn) 03×3

−→
fL

n× 03×3 03×3 03×3 C(qbLn)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

,

144

AR(t) =

03×3 03×3 03×3 −C(qbRn) 03×3

−→
fR

n× 03×3 03×3 03×3 C(qbRn)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

,

BL =

C(qbLn)σARW

C(qbLn)σVRW

03×1

σRRW

σAcRW

,BR =

C(qbRn)σARW

C(qbRn)σVRW

03×3

σRRW

σAcRW

,

where
−→
fL

n× and
−→
fR

n× are the skew-symmetric cross-product-operator of the accelerometer

outputs of the left IMU and the right IMU, expressed in the navigation frame, respectively,

σARW is ARW of the gyroscopes, σVRW is the VRW of the accelerometers, σRRW is RRW of

the gyroscope, and σAcRW is the AcRW of the accelerometers. C(q) is the DCM corresponding

to the quaternion q.

6.2.4 Measurement Model

The model consists of measurements from the ZUPT and the relative position between the

two shoes obtained by the camera capturing the feature pattern mounted on the other shoe.

Zero-velocity Update

A stance phase detector is used to determine if a zero velocity measurement should be fed

to the system. Different mechanisms to build a stance phase detector have been explored,

145

including using IMU with a pre-determined threshold, IMU and additional sensors, or IMU

with adaptive threshold [223]. In this section, a stance phase is detected if

T (zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − ȳαn ∥2 + 1

σ2
ω

∥ yωk − ȳωn ∥2) < γ, (6.1)

where Ωn = l ∈ N, n ≤ l ≤ N − 1 is a collection of the IMU measurement indexes at time n

with a window of length N , zn = {[yαk⊤, yωk
⊤]}k=N−1

k=N is a sequence of the IMU measurements

in the window, yαk are the accelerometer measurements at k, σ2
a is the noise variance of

the accelerometer, yωk are the gyroscope measurements at k, σ2
a is the noise variance of the

accelerometer, σ2
ω is the noise variance of the gyroscope, and γ are user-defined thresholds.

Foot-to-Foot Relative Position Measurement

Images containing the feature pattern are used to estimate the pose of the camera mounted

on the opposite shoe. This method considers a valid measurement when the feature pattern

is fully present inside the FOV of the camera. For each frame taken by the camera, the

position of the feature pattern relative to the camera can be estimated based on the features

detected by computer vision-based methods and deduce the relative position between the

camera and the feature pattern (qfLCR
,pfL

CR
) and (qfRCL

,pfR
CL

).

The positions of the two IMUs, the cameras, and the feature patterns have a relation shown

in Figure 6.1. The foot-to-foot relative position measurements, which is the difference in

positions of the left IMU and the right IMU expressed in the navigation frame pbL
n −pbR

n , are

derived as follows.

When the left feature pattern is presented in the FOV of the right camera, the position of

146

the left IMU in the navigation frame can be rewritten as

pbL
n = C(qbRn)pbLbR + pbR

n = C(qbRn){pCR
bR

+ C(qCR
bR

)[pfL
CR

− C(qfLCR
)C⊤(qfLbL)p

fL
bL
]}+ pbR

n

Similarly, when the right feature pattern is presented in the FOV of the left camera, the

position of the right IMU in the navigation frame can be expressed as

pbR
n = C(qbLn)pbRbL + pbL

n = C(qbLn){pCL
bL

+ C(qCL
bL

)[pfR
CL

− C(qfRCL
)C⊤(qfRbR)p

fR
bR
]}+ pbL

n

Thus, the foot-to-foot relative position in the navigation frame is described as

pbL
n − pbR

n = C(qbRn){pCR
bR

+ C(qCR
bR

)[pfL
CR

− C(qfLCR
)C⊤(qfLbL)p

fL
bL
]}

= −C(qbLn){pCL
bL

+ C(qCL
bL

)[pfR
CL

− C(qfRCL
)C⊤(qfRbR)p

fR
bR
]}

Note that the above relation includes two equations. The first equation is used when the left

feature pattern is present in the FOV of the right camera, and the second equation is used

when the right feature pattern is present in the FOV of the left camera.

The measurement model for the relative position measurements and the ZUPT detector for

both IMUs are described as follows:

zF2F = pbL
n − pbR

n , zZUPTL
= vbLn , zZUPTR

= vbRn ,

and the corresponding measurement matrices are

HF2F =

[
03×6 I3×3 03×6 03×6 −I3×3 03×6

]
,

HZUPTL
=

[
03×3 I3×3 03×9 03×15

]
,

HZUPTR
=

[
03×15 03×3 I3×3 03×9

]
.

147

The form of the EKF measurement model employed depends on what measurements are

available. When the measurements are available, they are stacked in one measurement vector

z to form a single batch-form update equation. Similarly, the batch measurement matrix is

formed by stacking the measurement matrices corresponding to the available measurements.

For example, in the case where relative position and ZUPT of both feet have measurements,

the measurement model is

z =

pbL
n − pbL

n

vbLn

vbRn

 ,H =

HF2F

HZUPTL

HZUPTR

 .

6.3 Simulation and Experimental Results

6.3.1 Simulation Results

To validate the developed visual-aided pedestrian INS, a series of numerical simulations was

performed and the results were compared with those using standalone ZUPT and ZUPT

aided by foot-to-foot relative distance. The foot-to-foot relative distance measurements were

assumed to be obtained from shoe-mounted SONAR sensors. In the simulation setup, two

hypothetical foot trajectories were generated based on a foot motion model of a pedestrian

walking at regular speed straight toward the North for 100 steps, resulting in a total length

of 154 m in 107 s. Four assumptions were made for the foot motion: 1) each of the steps

for the two feet was utterly identical, 2) the left foot started first, 3) the initial separation

distance between the two shoes were 20 cm, and 4) the foot velocities were zero during the

entire stance phase. The simulation model also included mismatches of g-sensitivity in the

IMUs, which leads to the effect that the trajectory of left shoe drifted towards the west, and

the trajectory of the right shoe drifted towards the east. This phenomenon was observed in

148

the experiments reported in [222].

The nominal final locations of the two shoes in the navigation frame were [154.3, 0, 0]⊤ m for

the left shoe and [153.5, 0.2, 30]⊤ m for the right shoe. These position measurements were

used to produced simulated IMU readouts for both shoes based on the generated paths. The

IMU noise characteristics were the same as those of Analog Device ADIS−16485 IMUs used

in the experiments (see subsection 6.3.2). The relative position measurements were derived

by converting the difference in positions of the two shoes in the navigation frame to the body

frame of each IMU. The generated relative position measurements were considered valid only

if the position was within the FOV region. This simulation assumed that the cameras have

a FOV of 75◦ and a frame rate of 60 Hz. These two parameters directly affect the amount of

valid relative position measurements. The adopted standard deviation of the measurements

was 1 mm. For relative distance measurements, it was assumed that the SONARs have the

same characteristics as those of Devantech SRF08 Ultrasonic Sensors.

We collected 30 sets of simulations and compared the estimated results from the developed

visual-aided INS with those estimated by standalone ZUPT algorithm and by ZUPT aided

by foot-to-foot relative distance. Figure 6.3 shows the results. The average accumulated

errors ēL and ēR and the covariances along the east direction σx,L and σx,R and the north

direction σy,L and σy,R resulting from different methods are summarized in Table 6.1. The

developed system showed an average improvement in accumulated errors of more than 90%

for both feet compared to the relative distance aided ZUPT method and standalone ZUPT

method.

6.3.2 Experimental Results

To demonstrate the validity of our system in realistic situations, experiments were conducted

with a flexible system integrated with cameras and feature patterns [18]. The performance

149

-4 -3 -2 -1 0 1 2 3
East [m]

153

153.2

153.4

153.6

153.8

154

154.2

154.4

154.6

154.8

155

N
or

t h
[m

]

Numerical Simulation Final Positions

nomial (L)
nomial (R)
ZUPT (L)
ZUPT (R)
pos (L)
pos (R)
range (L)
range (R)

-1 -0.9 -0.8
154.285

154.29

-3.3-3.2-3.1 -3 -2.9
154.245

154.25
154.255

154.26

-0.8 -0.7 -0.6
153.515

153.52

153.525

0.1 0.2 0.3 0.4
153.51
153.52
153.53

1.2 1.4 1.6

153.51

153.515

153.52

-0.1 0 0.1 0.2

154.28

154.29

154.3

Figure 6.3: Simulated results correspond to standalone ZUPT (ZUPT), ZUPT aided by
relative distance (range), and ZUPT aided by relative position (pos). Data in red were the
estimated final positions of the left shoe, and those in blue were the estimated final position
of the right shoe. Zoomed-in views of the data set corresponding to each of the methods are
shown next to the data set. The dashed circle around each data set indicates the 3σ limit.

Table 6.1: Accumulated errors and covariances of the simulation dataset.

Unit [m]
ZUPT-aided INS Enhancement

Standalone Relative distance Relative position
ēL 2.9687 0.8687 0.0653
ēR 1.2354 0.8598 0.0646
σx,L 0.0962 0.0654 0.0817
σy,L 0.0027 0.0012 0.0014
σx,R 0.0841 0.0647 0.0809
σy,R 0.0016 0.0012 0.0014

150

of our system was evaluated against the standalone ZUPT method and the INS using both

ZUPT and foot-to-foot relative distance measurements. The flexible system adopted Analog

Device ADIS16485 IMUs and Devantech SRF08 SONARs. The cameras employed in this

section were Gigabit Ethernet (GigE) camera acA800−200gc from the Basler Camera, and

the lens of choice had a 4 mm focal length and a FOV of 73◦. The cameras were calibrated

by the standard camera calibration method provided by the MATLAB Toolbox [259, 77, 25].

The resolution of the images was 800×600 pixels. Images were recorded at a frame rate of 60

Hz while the IMU provided measurements at 120 Hz. The relative positions between cameras

and IMUs, and between feature patterns and IMUs, were determined by Computer-Aided

Design (CAD). The SONARs had a sampling rate of 25 Hz and a line-of-sight of 60◦.

The feature pattern employed in the experiments was a 6 × 9 scaled-version checkerboard,

which is often used in the standard camera calibration process. It should be pointed out

that other reference geometries or features could also be used for detection. The physical

size of each grid on the checkerboard was 5×5 mm. The features used for detection were the

40 intersubsection points on the checkerboard. The adopted feature detection method was

described in [64]. For the 40 points detected on each frame, the camera extrinsic matrix was

estimated with the method presented in [259], and from the extrinsic matrix, the relative

positions between the two shoes were deduced. A slice of the sequence of images recorded

during one of our indoor walking experiments is shown in Figure 6.4.

Two sets of experiments with different nominal trajectories were conducted on the second

floor of the Engineering Gateway Building at the University of California, Irvine. In the first

set of experiments, we conducted 5 runs of indoor experiments of walking straight toward

the north for 53 meters. At the end of the experiment, the nominal distance between the

two shoes was 30 cm and the nominal final locations were [53,−0.15, 0]⊤ m for the left shoe

and [53, 0.15, 0]⊤ m for the right shoe. We compared this result to the case of using relative-

distance-aided ZUPT algorithms and that of using standalone ZUPT, shown in Figure 6.5.

151

Figure 6.4: An example of consecutive images captured by the camera during a walking
experiment.

The accumulated navigation errors ēL and ēR for each case are shown in Table 6.2. The

developed system showed improvements in the accumulated navigation error of 55% and

22% for left and right foot when compared with standalone ZUPT; 30% and 31%, when

compared with ZUPT aided by relative distance.

Table 6.2: Accumulated errors and covariances of the first set of the experiments

Unit [m]
ZUPT-aided INS Enhancement

Standalone Relative distance Relative position
ēL 5.2113 3.3565 2.3589
ēR 3.2046 3.6173 2.4852

Three things can be noted from the experiments. First, in the plot corresponding to the

standalone ZUPT algorithm, we observed that the estimated trajectories of the left shoe

drifted toward the west and those of the right shoe to the east. The main factor for this

phenomenon was considered to be the mismatch of the g-sensitivity of the IMUs [222]. We

did not calibrate the g-sensitivity of the IMUs in this section. Nevertheless, we observed

that the trajectories estimated by our developed system had been shown to mitigate the

errors caused by this phenomenon, while the method using foot-to-foot relative distance

152

-10 0 10
Easting, m

0

5

10

15

20

25

30

35

40

45

50

55

N
or

t h
i n

g,
m

-10 0 10
Easting, m

0

5

10

15

20

25

30

35

40

45

50

55

N
or

t h
i n

g,
m

-10 0 10
Easting, m

0

5

10

15

20

25

30

35

40

45

50

55

N
or

t h
i n

g,
m

ZUPT-aided INS
w/ SONAR

ZUPT-aided INS
w/ CameraZUPT-aided INS

-6 -4 -2 0 2
48

50

52

54

-6 -4 -2 0 2
48

50

52

54

-6 -4 -2 0 2
48

50

52

54

Estimated (R)
Estimated (L)

mean (R)
mean (L)

Nominal (R)
Nominal (L)

Figure 6.5: Estimated results of the first set of experiments from the standalone ZUPT
method (ZUPT), ZUPT aided by relative distance measurements (ZUPT + Relative dis-
tance), and our developed system (ZUPT + Relative position). The lower plots show the
estimated trajectories, and the upper plots present the corresponding final positions. The
triangles in the upper plots indicate the statistical means of each data set.

153

measurements did not show much improvement. The observation can be explained by the

fact that the measurement model of the relative distance in the EKF only optimizes the

relative distance between the two shoes. Thus, the effect of such a method is to bring close

together the trajectories resulted from the left and the right IMUs. This effect was also

observed in Figure 6.3. Second, we perceived that all estimated trajectories by the three

methods had lengths shorter than 53 m. This perception was mainly due to the systematic

error in ZUPT, where the velocity of the foot was assumed zero during the stance phase in

the gait cycle while in reality, the foot velocity was not absolutely zero during the stance

phase. The false assumption that it is zero led to shorter estimated trajectories. Third,

in the experiments, the amount of foot-to-foot relative position measurements obtained in

each gait cycle was not consistent. The inconsistency was also another contribution to the

difference between experiments and simulations.

In the second set of experiments, we conducted a close loop trajectory, which included more

complicated walking motions of four right turns, a ramp, and a short stair. In this set of

experiments, whenever we made a turn, we walked in an arched shape, instead of a direct

90◦ turn, so that the checkerboard could still be inside the FOV of the camera. The starting

point of the left shoe overlapped with the ending point of the right shoe, and vice versa.

The nominal total length of the trajectory was 126 m, and the navigation time was 140 s.

The estimated results obtained by the three methods were compared and shown in Figure

6.6. The accumulated navigation errors eL and eR for each case are summarized in Table 6.3.

The developed system showed improvements in the accumulated navigation error of 83% and

85% for each foot when compared to standalone ZUPT and 23% and 54%, when compared

with ZUPT aided by relative distance.

We would like to point out that the lighting condition in the environment and the exposure

time of the camera were key factors in implementation of the developed system. The lighting

condition directly affected the performance of the feature detector. As a result, it is important

154

ZUPT ZUPT + Relative positionZUPT + Relative distance

-25 -20 -15 -10 -5 0 5 10 15
Easting, m

-5

0

5

10

15

20

25

30

35

40
-25 -20 -15 -10 -5 0 5 10 15

Easting, m

-5

0

5

10

15

20

25

30

35

40
-25 -20 -15 -10 -5 0 5 10 15

Easting, m

-5

0

5

10

15

20

25

30

35

40

N
or

th
in

g,
 m

N
or

th
in

g,
 m

N
or

th
in

g,
 m

Figure 6.6: Estimated results of the second set of experiments from the standalone ZUPT
method (ZUPT), ZUPT aided by relative distance measurements (ZUPT + Relative dis-
tance), and our developed system (ZUPT + Relative position).

Table 6.3: Accumulated errors and covariances of the second set of the experiments.

Unit [m]
ZUPT-aided INS Enhancement

Standalone Relative distance Relative position
eL 9.0606 1.9836 1.5337
eR 5.8524 1.9156 0.8743

155

to have sufficient light sources when the camera is used as a part of the navigator. The

exposure time of the camera should also be set appropriately. If the exposure time set too

short, the resulting images would not have enough brightness for the feature detection to

work well. It cannot be set too long either; since the foot velocity can go up to as fast as 3

m/s, a long exposure time would lead to a quite blurry image. In our experiments, the value

was set to 2000 µs.

6.4 Conclusion

In this chapter, a visual-aided Pedestrian INS using foot-to-foot relative position measure-

ments was presented. The main contribution was the measurement model that blends ZUPT

and foot-to-foot relative position measurements. The relative position measurements between

the two shoes were obtained from shoe-mounted feature patterns and cameras. This measure-

ment model directly outputs compensation measurements for the three position states and

three velocity states, and does not need linearization. The developed system has constant

computational complexity in any environment. The simulation results showed an improve-

ment in accumulated navigation errors of over 90%. Experiments were also conducted, where

the shoe-mounted feature pattern was rendered to a scaled version of a checkerboard. Ex-

perimental results showed a maximum improvement of 85% in accumulated errors, verifying

the validity of the developed system in real-world environments. The results presented in

this chapter were published in [94].

156

Chapter 7

On Estimation Filter − Compensating

Vertical Position

7.1 Introduction

This chapter focuses on the development of approaches for enhancing vertical position ac-

curacy of the ZUPT-aided INS. The rest of this section is organized as follows. Section 7.2

presents the EKF used to fuse altimeter measurements with the ZUPT-aided INS, Section

7.3 derives a close-form analytical expression that predicts the covariance of the estimated

vertical displacement, Section 7.4 develops a hybrid ultrasonic/barometric altimeter that uti-

lizes a downward-facing ultrasonic sensor to improve the reliability of a barometric altimeter,

Section 7.5 demonstrates a real-time system architecture of the ZUPT-aided INS augmented

with an altimeter, and Section 7.6 concludes the chapter.

157

7.2 ZUPT-aided INS Augmented With an Altimeter

This section presents the EKF used to realize the ZUPT-aided INS augmented with an

altimeter.

7.2.1 EKF Prediction Step

A standard strap-down inertial navigation system in the navigation frame was implemented

[198]. The output from the INS is corrected in the EKF by keeping track of the states

δxk = [δθ⊤
k , δv

⊤
k , δs

⊤
k]

⊤, where δθk, δvk, and δsk are the altitude, velocity, and position

errors along the north, east, and down directions of the navigation coordinate frame at

timestamp k [198].

The linearized continuous-time dynamic model of EKF is expressed as follows:

δẋt =

03×3 03×3 03×3

−→
f n× 03×3 03×3

03×3 I3×3 03×3

 δxt +

Cn

b ñARW

Cn
b ñVRW

03×1

 ≜ Atδxt + Bt,

where
−→
f n× is the skew-symmetric cross-product-operator of the accelerometer output in the

navigation frame; ñARW is ARW of the gyroscopes; ñVRW is the VRW of the accelerometers;

Cn
b is the DCM from the body frame to the navigation frame;0n×m is a n×m zero matrix;

and Im×m is a m×m identity matrix. At and Bt are time varying matrices.

This continuous-time model is discretized by the Euler’s equation since the sampling period

158

∆t of the IMU is small, and the discrete-time dynamic matrix can be expressed as

Fk = exp(Atk∆t) ≈ I+Atk∆t,

Bk = Btk∆t,

Qk = diag(Bk)∆t.

The EKF prediction equations are

δx̂k+1 = Fkδxk,

P̂k+1 = FkPkF
⊤
k +Qk,

where δx̂k+1 is the predicted states and P̂k+1 is the a priori covariance matrix at the (k+1)th

step.

7.2.2 EKF Update Step

On the updated step, both altimeter and pseudo-zero-velocity measurements were used to

correct the INS output. The altimeter measurement updates the system states when a

measurement is available, and the ZUPT measurements comes in when a stance phase is

detected. Pressure-based altimeters measure the absolute air pressure, denoted as p. In

an environment where temperature is static at 15 ◦C and gravity constant is 9.80665 m/s2,

this measurement can be converted to the estimated displacement along the down direction

d⊥ with respect to an initial location [253] based on the Earth’s atmosphere model by the

equation

d⊥ = 44330× (1− (
p

p0
)

1
5.255) ,

159

where p0 is the absolute pressure at the sea level. The measurement matrix for altimeter

HALT is expressed as follows:

HALT =

[
01×3 01×3 0 0 1

]
.

For the ZUPT algorithm, a stance phase is detected if

T (zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − ȳαn ∥2 + 1

σ2
ω

∥ yωk − ȳωn ∥2) < γ, (7.1)

where Ωn = l ∈ N, n ≤ l ≤ N − 1 is a collection of the IMU measurement indexes at time n

with a window of length N , zn = {[yαk⊤, yωk
⊤]}k=N−1

k=N is a sequence of the IMU measurements

in the window, yαk are the accelerometer measurements at k, σ2
a is the noise variance of

the accelerometer, yωk are the gyroscope measurements at k, σ2
a is the noise variance of the

accelerometer, σ2
ω is the noise variance of the gyroscope, and γ are user-defined thresholds.

The measurement matrix HZUPT for ZUPT algorithm is expressed as follows:

HZUPT =

[
03×3 I3×3 03×3.

]
,

The measurement equation of the EKF has different forms for each of the following three

cases: 1) A stance phase is detected (ZUPT ON) and the altimeter has a null measurement,

2) A swing phase is detected and the altimeter acquires a measurement (altimeter ON), and

3) A stance phase is detected and the altimeter obtains a measurement (Both ON). The

altimeter can provide null measurement because in the case of this project, an IMU with

100Hz sampling rate and an altimeter with 10Hz sampling rate are used. The altimeter

acquires an effective measurement at the first IMU sample. Then in the following 9 IMU

samples, the altimeter gives null measurement. The measurement equation of the EKF is

160

expressed as follows:

zk = Hδxk + ω̃k,

where H = HZUPT in the ZUPT ON case, H = HALT in the altimeter ON case, and H =[
H⊤

ZUPT,H
⊤
ALT

]⊤
in the both ON case. ω̃k is the measurement noise associated with altimeter

and ZUPT measurements, modeled as Gaussian distribution, with variances σ2
ALT and σ2

ZUPT,

respectively.

The EKF update equations are described as follows.

K = P̂k+1H
⊤(HP̂k+1H

⊤ +R)−1,

vk+1 = zk −Hδx̂k+1,

δxk+1 = δx̂k+1 +Kvk+1,

Pk+1 = (I−KH)P̂k+1,

where K is the Kalman gain, vk+1 is the innovation sequence, xk+1 is the a posteriori state,

and Pk+1 is the covariance matrix at the (k + 1)th step.

7.3 Analytically Predicting Vertical Displacement Error

Pedestrian INS implementing ZUPT-aided INS based on a foot-mounted IMU has been

pointed out that vertical displacement drifts faster than the horizontal ones [143]. As dis-

cussed in Section 1.4.3, altimeters can provide vertical position compensation for the ZUPT-

aided INS. When developing a ZUPT/altimeter-aided INS, there are a variety of types of al-

timeters, each of which has different noise density, resolution, measurement ranges, SWaP+C

budget. An accurate analytical approach that estimates vertical displacement accuracy of an

161

ZUPT/Altimeter-aided INS can greatly lower the development cost and duration and allows

for quickly determining a balance between SWaP+C and navigation accuracy.

The analytical estimations of velocity errors in the north, east, and down directions were

previously derived in [216], and the position error standard deviations in the north and east

directions were analytically estimated in [226] for a ZUPT-augmented INS. This section dis-

cusses a closed-form analytical estimation of the displacement error in the vertical direction

in a ZUPT/altimeter-aided INS.

7.3.1 Estimation of Error Covariance in the Down Direction

0 20 40 60 80 100 120
-0.2

0

0.2

N
or

th
, [

m
]

Position Error Propagation

0 20 40 60 80 100 120

-0.2

0

0.2

Ea
st

, [
m

]

0 20 40 60 80 100 120
Time, [s]

-0.05

0

0.05

D
ow

n,
 [m

]

3𝜎𝜎

Error

62 64 66 68 70 72 74

Time, [s]

0.0266

0.0268

0.027

0.0272

0.0274

Figure 7.1: A typical propagation of errors in displacement estimations in the INS aided by
ZUPT and altimeter. N, E, and D are the displacements along the north, east, and down
directions, respectively. The red curve in each plot is the error profile, and the blue curve
indicates the 3σ limit of errors.

The analytical estimation of the displacement error in the down direction was motivated by

an observation that the altimeter measurements are able to reduce the navigation error by

restricting the error growth of displacement along the down direction. A typical propagation

of errors in displacements along the north, the east, and the down directions and their covari-

162

ances are presented in Figure 7.1. It could be observed that while covariances of the errors

in displacement estimation of the north and the east directions keep growing over time, the

covariance along the down direction reaches a stable level with a small range of fluctuation.

The fluctuation of the covariance follows a pattern that is reduced when measurements from

an altimeter are acquired, and it increases when the measurements from the altimeter are

not available. This observation inspired us to combine the altimeter parameters that de-

termine the altimeter performance and the IMU parameters that are dominated in the free

navigation. The combination enables us to fully analyze the system behavior and extract

the covariance of the errors in the system’s state estimation.

Since there are 9 states in the EKF implementation, both the a priori and the a posteriori

covariance matrices Pk and P̂k are 9 × 9. These two matrices are divided into nine 3 × 3

sub-matrices as follows:

Pk =

P11 P12 P13

P21 P22 P23

P31 P32 P33

 , P̂k =

P̂11 P̂12 P̂13

P̂21 P̂22 P̂23

P̂31 P̂32 P̂33

 .

From the EKF propagation equations,

P̂22(3, 3) = P22(3, 3) + (2P21(3, 2)aD,t + σ2
VRW)∆t

= P22(3, 3) + 2P21(3, 2)vD,t + σ2
VRW∆t,

where aD,t and vD,t are the acceleration and the velocity estimates along the down direction

in the navigation frame. Since the term with P21(3, 2) ≪ σ2
VRW, an increase in P22(3, 3)

during the prediction step, denoted as ∆predP22(3, 3) can be approximated as

∆predP22(3, 3) = P̂22(3, 3)− P22(3, 3) = σ2
VRW∆t

163

From the update step,

P22(3, 3) = P̂22(3, 3)−
P̂22(3, 3)

σ2
ZUPT

2

Consequently, the decrease in P22(3, 3) during the update step, denoted as ∆updateP22(3, 3),

is

∆updateP22(3, 3) = −P̂22(3, 3)

σ2
ZUPT

2

Because the ZUPT algorithm limits the error covariance growth in velocities, the increase

∆predP22(3, 3) during the prediction step is equal to decrease ∆updateP22(3, 3) in the update

step,

∫
tstride

∆predP22(3, 3)dt = −
∫
tstance

∆updateP22(3, 3)dt, (7.2)

where tstride is a time duration of the swing phase in a gait cycle, Nstance is a number of samples

being updated by the ZUPT algorithm, and dt is a sampling rate of IMU. Rearranging (7.2),

the covariance of the velocity along the down direction is

P22(3, 3) =

√
σ2
VRWtstrideσ

2
ZUPT

Nstance

To find P23(3, 3), the derivation starts from the propagation equation,

P̂23(3, 3) = P23(3, 3) + (P22(3, 3) + αD,tP13(2, 3))∆t

Since the term with P13(2, 3) is much smaller than the term with P22(3, 3), the equation can

164

be rewritten and the increase of P23(3, 3) during the swing phase is approximated as

∆predP23(3, 3) = P̂23(3, 3)− P23(3, 3) = P22(3, 3)∆t =

√
σ2
VRWtstrideσ

2
ZUPT

Nstance

∆t

After taking the integral in (7.2) from 0 to t, P23(3, 3) can be expressed as follows:

P23(3, 3) =

√
σ2
VRWtstrideσ

2
ZUPT

Nstance

t

Now, it is ready to derive P33(3, 3). From the propagation equation, the increase of displace-

ment covariance along the down direction, when the altimeter measurement is not available,

is

∆predP33(3, 3) = P̂33(3, 3)− P33(3, 3) ≈ 2P23(3, 3)∆t.

From the update equation discussed in Section 7.2.1, the decrease in covariance when al-

timeter data is obtained is

∆updateP33(3, 3) = P33(3, 3)− P̂33(3, 3) = −P23(3, 3)
2

σ2
ZUPT

− P33(3, 3)
2

σ2
ALT

,

where σALT is the altimeter measurement noise, which is considered as identical to the al-

timeter resolution in this case.

Since the displacement covariance along the down direction is bounded by altimeter mea-

surements,

∫
tALT OFF

∆predP33(3, 3) = −
∫
tALT ON

∆updateP33(3, 3), (7.3)

where tALT ON is the total amount of time that the altimeter is obtaining data within a gait

cycle, and tALT OFF is the rest of the time in the gait cycle. Taking the integration, the

165

estimate of the error covariance of displacement along the down direction is

P33(3, 3) = (
tALT OFF

NALT ON

√
σ2
VRWtstrideσ

2
ZUPT

Nstance

− σ2
VRWtstrideNstancetALT ON

3NALT ON

)
1
2
σALT√
∆t

.

A few observations can be made from the analytical solution:

1. The variance of the vertical displacement estimate in the EKF is affected by σVRW, but

is independent of σARW.

2. Altimeter sampling rate and resolution are key factors in estimation of variance.

3. The ratio of the swing phase and the stance phase during the gait cycle would affect

the estimate of variance.

7.3.2 Simulation and Experiment

Two sets of numerical simulations and experiments were conducted to verify the derived

analytical expression. This section presents how the simulations and experiments were con-

ducted and discuss their results.

Investigation of Altimeter Resolutions on Vertical Accuracy

In the first set of simulations and experiments, the effect of altimeter resolution on displace-

ment error along the down direction was investigated. For simulation, a trajectory of foot

toward north and the corresponding IMU and altimeter readouts were generated based on

a human gait analysis [216]. The stride length was set to 0.6 [m], and each step was con-

sidered identical. VRW of the IMU was set to 0.023 mg/
√
Hz, and ARW to 0.3 ◦/

√
h. The

altimeter sampling rate was set to 20 Hz. The total navigation time was 107 s. Then, dif-

166

ferent levels of altimeter noises, from 10−3 [m] to 10 [m], were added to the readouts. Next,

the ZUPT-augmented inertial navigation algorithm aided by altimeter was applied to the

IMU and altimeter readouts. A flexible laboratory testbed [18] was used to perform the ex-

periments. Five additional pressure-based altimeters, MS−5803−01BA, MS−5803−02BA,

MS−5803−05BA, MS−5803−14BA, and MS−5803−30BA were considered. Their resolu-

tions were experimentally determined, which were found to be 0.29 [m], 0.6 [m], 1.5 [m], 5

[m], and 10 [m], respectively. For each altimeter, a set of 6 similar experiments was con-

ducted. In each experiment, the total navigation time was 90 s.

IMU
ADIS16485

Altimeter
MS-5803

SONAR
SRF08

Figure 7.2: Illustrated is a test platform integrated with an MS−5803 altimeter.

Figure 7.3 shows a relation between altimeter resolution to the estimated position error’s

standard deviation along the down direction. The blue curve corresponds to the analytical

estimation of the error displacement covariance; the red circles indicate the results of the

simulation, and the blue solid triangles represent the statistical means of the results from

the 6 experiments using the same altimeter. The results show that the analytical and the

167

simulation estimates were closely matched within 15% for altimeter resolutions higher than

0.05 [m]. This mismatch came mainly from omitting the terms that have relatively small

values in the derivation of the analytical estimates. For the case of lower altimeter resolu-

tions, the term with P13(2, 3) was no longer 10 times smaller than P33(3, 3), and a larger

discrepancy percentage was expected. Figure 7.3 also shows a difference within 16% between

the analytical estimation and experimental results. The discrepancy between the analytical

estimation and experimental results was contributed not only by omission of the small-value

terms but also by the following two factors: 1) foot dynamics considered in the derivation was

not exactly the same as the actual walking experiments and 2) the altimeter measurements

could be affected by abrupt changes in air pressure during the experiments.

10
-3

10
-2

10
-1

10
0

10
1

Altimeter resolution [m]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
o
s
it
io

n
e
rr

o
r

s
td

a
lo

n
g

z
a
xi

s
[m

]

Position error vs altimeter resolution

Simulation results

Analytical results

Experimental results

Figure 7.3: The relation of altimeter resolution and the displacement error standard deviation
along the down direction.

168

Investigation of Altimeter Sampling Rate on Vertical Accuracy

In the second set of simulation and experiment, we investigated a relationship between the

altimeter sampling rate and the displacement covariance. The simulation setup was the

same as in the first set, except that in this case, the altimeter resolution was set to 0.1 [m]

and its sampling rate was swept from 2 Hz to 100 Hz. In the experiment, the altimeter

MS−5803−01BA was used with our custom navigation platform, and the sampling rate was

swept from 1 Hz to 20 Hz. Nominal trajectories were the same as in the first experiment,

and 6 experiments were conducted for each sampling rate.

0 20 40 60 80 100

Altimeter sampling rate [Hz]

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

P
o
s
it
io

n
e
rr

o
r

s
td

a
lo

n
g

z
a
xi

s
[m

]

Position error vs sampling rate

Simulation results

Analytical results

Experimental results

Figure 7.4: The relation of altimeter sampling rate and the displacement error standard
deviation along the down direction.

Figure 7.4 shows the effect of altimeter sampling rate on the estimated position error standard

deviation along the down direction. The blue curve corresponds to the analytical estimation

169

of the error displacement covariance; the red circles indicate the results of the simulation,

and the blue solid triangles represent statistical means of the results from the 6 experiments

using the same altimeter. The results show that the numerical simulation results differed

from the analytical results by less than 20%. It could be seen that the discrepancy between

them tended to increase as the altimeter sampling rate was increased. This was anticipated

because an increase in the altimeter sampling rate led to a longer integration intervals for the

second integral in (7.3), in which the term P21(3, 2) was neglected because of the assumption

P21(3, 2) ≪ σ2
VRW. The difference between experimental results and analytical results was

within 5%. Note that only altimeter sampling rates lower than 20 Hz was shown due to

the limitation of the sampling rate of altimeter MS−5308 in data acquisition communication

protocol.

This section derived an analytical solution for position variance estimation in the case of

inertial navigation aided by ZUPT and altimeter measurements. The solution showed that

the displacement error variance along the down direction was directly related to the altimeter

resolution, altimeter sampling rate, IMU VRW, IMU sampling rate, and the swing phase

and the stance phase percentage of the gait cycle. The analytical expression was verified

by numerical simulation and experimental, showing that the analytical estimation had an

uncertainty of less than 20%. This section provides an analytical expression to estimate

the displacement accuracy along the down direction of INS aided by ZUPT and altimeter

measurements. The results discussed in this section were published in [91].

7.4 A Hybrid Barometric/Ultrasonic Altimeter

In this section, a hybrid altimeter that uses a shoe-mounted ultrasonic altimeter and a shoe-

mounted barometer for aiding ZUPT-based INS was developed. One of the goals of this

approach is to minimize the usage of barometers during indoor navigation, as barometers are

170

subject to variations in ambient temperature and air pressure. The shoe-mounted ultrasonic

sensor was placed on a toe side of pedestrian’s shoe, facing downward to the ground. The

measurement is the height of the shoe relative to the ground. The KF is used to convert

ultrasonic readouts to altitude data relative to the initial location and refer to this type of

altimeter as the ultrasonic altimeter. The developed ultrasonic altimeter is experimentally

demonstrated to estimate pedestrian’s elevation when walking on a flat plane.

To extend the usage of the ultrasonic altimeter when operating on other terrains, a hybrid

framework that fuses a barometer and an ultrasonic altimeter was developed. In the fusion

process, the ultrasonic altimeter receives more weights when the hybrid system detects that

the pedestrian is walking on a flat plane or stairs. For the case of slopes or inside elevators, the

hybrid system would prioritize the barometer measurements. The detection of flat planes,

slopes, and elevators would be achieved with information obtained instantaneously from

an IMU. This configuration not only limits the error growth of an INS in the vertical

direction but also enables capturing the foot motions, which is subsequently used to aid

ZUPT-augmented INS.

7.4.1 Ultrasonic Altimeter

A shoe-mounted downward-facing ultrasonic sensor is capable of finding relative distances

between the shoe and the ground. To use the sensor as an altimeter, we convert the relative

distance to the height of the shoe in the navigation frame by simultaneously estimating the

vertical position of the floor in the navigation frame. In the case of walking on flat surfaces

and stairs, the estimation of floors can be achieved based on two phenomena: 1) ultrasonic

measurements are smooth in the case of flat surfaces, and 2) a discontinuity in ultrasonic

measurements can be observed when the sensor is passing through edges of stairs. These

phenomena were observed in indoor walking experiments with the Lab-On-Shoe platform

171

9 cm

Downward-facing
Ultrasonic sensor SRF08

Barometer
MS5803-01BA

IMU ADIS16495-3

Ground

Figure 7.5: The Lab-On-Shoe platform integrated with a downward-facing ultrasonic sensor
SRF08 and a barometric altimeter MS5803−01BA.

[31] integrated with a downward-facing ultrasonic sensor SRF08 and a barometric altimeter

MS5803−01BA, shown in Figure 7.5. The sampling rates of the ultrasonic sensor and the

barometer were set to 25 Hz and 5 Hz, respectively.

Since distance measurements of the ultrasonic sensor are discretized, two consecutive distinct

measurements always have a discontinuity. In the case of walking at a speed of 40 steps per

minute on a flat plane, the maximum discontinuity, α, can be approximated as follows:

α =
max(Foot relative elevation)

Fs × Tswing phase

2

where Fs is the ultrasonic sampling rate and Tswing phase is the swing phase duration. Then,

the maximum discontinuity α was used as a threshold to determine smoothness of the mea-

surements. If two consecutive measurements have a difference smaller than the threshold

α, then the measurements during this period are considered to be smooth, and vice versa.

In this section, the threshold α is set to 6 cm. Figure 7.6(a) presents an example of the

172

16 17 18 19
Time, s

0.05

0.1

0.15

0.2

0.25

R
e

la
t i
v
e

H
e

ig
h

t,
m

0 5 10 15 20 25 30 35 40 45 50

Time, s

0.05

0.1

0.15

0.2

0.25

0.3

R
el

at
i v

e
H

e
ig

h
t,

m

Ultrasonic sensor measurements

Stair
height

Stair
height

(a)

(b) (c) (d)

Stairs

Flat plane

Flat planeDownstairs Upstairs

30 31 32 33
Time, s

0.1

0.15

0.2

0.25

41 41.5 42
Time, s

0.05

0.1

0.15

0.2

Figure 7.6: (a) The ultrasonic measurements collected by a shoe-mounted downward-facing
ultrasonic sensor SRF08 during the experiment of walking indoor on flat surfaces, upstairs,
and downstairs. The height of each stair was assumed to be nominally identical and was
around 15 cm. The total elapsed time in this experiment was 46.5 s. In the period of the
first 16 s, 24.5 s to 30.5 s, and 38.5 s to the end, a subject walked on a flat plane. From 16
s to 24.5 s, the subject went down four stairs. From 30.5 s to 38.5 s, the subject went up
four stairs to the original height level. (b) ultrasonic profile in the case of downstairs. (c)
ultrasonic profile in the case of upstairs. (d) ultrasonic profile in the case of flat plane.

173

ultrasonic measurements collected during an experiment of walking indoor at a speed of

40 steps per minute on flat surfaces, upstairs, and downstairs. In Figure 7.6(a), multiple

humps in the ultrasonic measurements can be observed. Each hump corresponded to the

swing phase in a gait cycle. In Figure 7.6(b), the first half of the hump had a discontinuity

when going downstairs. In Figure 7.6(c), when going upstairs, a discontinuity appeared on

the second half of the hump. The ultrasonic measurements in the case of walking on flat

surfaces, shown in Figure 7.6(d), were smooth because there were not any two consecutive

measurements that had a difference larger than α.

Kalman Filter for Ultrasonic Altimeter

A standard KF to realize the estimation of the vertical position of the shoe and the floor

was used. The KF has the following states:

xk = [hk, Vk, Lk]
⊤

where hk, Vk, and Lk are the shoe height, the shoe vertical velocity, and the floor height

in the navigation frame at time k, respectively. The propagation step of the KF uses the

relation hk+1 = hk+Vkdt, where dt is the sampling rate of the ultrasonic sensor. Furthermore,

the EKF uses an assumption that floor does not move and the shoe velocity in the vertical

direction does not change in the propagation step. The discrete propagation matrices Fk

and Qk of the KF are formulated as follows:

Fk =

1 dt 0

0 1 0

0 0 1

 ,Qk =

σ2
hk

0 0

0 σ2
Vk

0

0 0 σ2
Lk

174

where σ2
hk
, σ2

Vk
, and σ2

Lk
are the variances of noise corresponding to shoe height, shoe vertical

velocity, and floor elevation, modeled as zero-mean Gaussian.

In the update step of the KF, the ultrasonic sensor provides three types of data: 1) relative

distance between the shoe and the floor dk,SONAR, which are the raw readouts from the

sensor, 2) vertical velocity of the shoe Vk,SONAR, obtained by subtracting two consecutive

ultrasonic measurements, and 3) floor elevation in navigation frame Lk,SONAR. The ultrasonic

measurement of the floor elevation is achieved by observation that a discontinuity ∆h is

displayed in ultrasonic measurements when the sensor is passing through edges of stairs.

The value of the discontinuity ∆h, as the ultrasonic sensor scans through edges of stairs, is

considered to be the change of floor elevation when both the pitch angle and the vertical

velocity of the shoe are very close to zero. A consequence of this configuration is that

the value of the floor elevation measurement is equal to the current floor height when no

discontinuity is observed, which is the case for flat surfaces. The measurement vector zk and

update matrices H and R of the KF are formulated as follows:

zk =

Vk,SONAR

Lk,SONAR

dk,SONAR

 =

dk,SONAR−dk−1,SONAR

dt

Lk−1,SONAR −∆h

dk,SONAR

 =

Vk + nVk,SONAR

Lk,SONAR + nLk,SONAR

hk − Lk + ndk,SONAR

Hk =

0 1 0

0 0 1

1 0 −1

 ,Rk =

σ2
hk,SONAR

0 0

0 σ2
Vk,SONAR

0

0 0 σ2
Lk,SONAR

where ndk,SONAR

, nVk,SONAR
, and nLk,SONAR

are the noises corresponding to ultrasonic measure-

ments of shoe relative height, shoe vertical velocity, and floor elevation, modeled as zero-mean

Gaussian with respective variances σ2
hk,SONAR

, σ2
Vk,SONAR

, and σ2
Lk,SONAR

.

175

KF Parameter Values

nhk
0.01

nVk
0.01

nLk
0.1

nhk,SONAR
0.01

nVk,SONAR
0.05

nLk,SONAR
1

Table 7.1: Noise Characteristics of the Kalman Filter for the Ultrasonic Altimeter.

Ultrasonic Altimeter Performance Evaluation

This section presents an example of measurements of an ultrasonic altimeter. We tested the

ultrasonic altimeter with the indoor walking experiment discussed in Figure 7.6. The initial

height was assumed to be 17 [m] above the sea level. The noise characteristics, determined

according to the nominal specification described in the datasheet of the ultrasonic sensor

SRF08, were summarized in Table 7.1. In this experiment, the threshold α for determining

the smoothness of the ultrasonic measurements was set to 6 cm. Figure 7.7(a) shows the

estimated heights of the shoe and the floor, represented by a red curve and a blue curve,

respectively. The black curve in Figure 7.7(a) illustrates the vertical positions estimated by

the standalone ZUPT-aided INS based on IMU measurements collected in the same exper-

iment. Details of the implementation of the standalone ZUPT-aided INS can be found in

[91]. In this experiment, the accumulated error along the vertical direction of the standalone

ZUPT-aided INS was 14 cm, while the error of the ultrasonic altimeter decreased to 1 cm.

The remaining error sources of the ultrasonic altimeter could be due to 1) limited to reso-

lution of the ultrasonic sensor, and 2) non-zero pitch angle of the shoe when discontinuities

were observed, resulting in a shorter estimated floor level change because the sound waves

might hit walls of the stairs, instead of ground. Filtering of these multi-path events would

require an additional signal processing element.

176

Ab
so

lu
te

 h
ei

gh
t,

[m
]

0 5 10 15 20 25 30 35 40 45 50
Time, [s]

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8
Pressure Altimeter Readouts

0 5 10 15 20 25 30 35 40 45 50
Time, [s]

16.4

16.6

16.8

17

17.2

17.4

17.6
Comparison of different estimation mechanisms

Estimated Shoe Height
Estimated Floor Height
ZUPT-INS

Flat FlatStairs StairsFlat

(a) (b)

Ultrasonic Altimeter measurements Barometric Altimeter measurements

Flat FlatStairs StairsFlat

Stairs Flat plane

Ab
so

lu
te

 h
ei

gh
t,

[m
]

Figure 7.7: (a) Shoe height and floor height estimated by the proposed method, and shoe
height determined by ZUPT-augmented INS. (b) Barometer readouts collected during the
indoor walking experiment.

Figure 7.7(b) shows the readouts of the barometer MS5803−01BA collected in the same

experiments discussed in Figure 7.7(a). Two observations can be made in Figure 7.7(a) and

(b). First, the measurements of ultrasonic altimeter demonstrated a higher resolution than

the barometer, which has the lowest resolution among Commercial-Off-The-Shelf sensors.

Second, the ultrasonic altimeter captured subtle foot motions, which were not observed in

the barometric measurements. The subtle foot motion could benefit the overall navigation

results of a pedestrian INS.

7.4.2 Hybrid Altimeter

The hybrid altimeter presented in this section uses both measurements from the ultrasonic

altimeter and the barometer. The main reason why the ultrasonic altimeter is not sufficient

in its characteristics to replace barometers is that it does not account for other possible

terrains that appear in indoor environments, such as ramp or elevator. It fails to operate

under such conditions because, in the KF for the ultrasonic altimeter discussed in Section

177

7.4.1, the floor height state is updated only when a discontinuity (or a stair) is detected.

When the ultrasonic altimeter operates under a ramp or inside an elevator, the estimated

floor elevation will remain the same, which leads to incorrect estimation of the shoe height.

The hybrid altimeter aims to include the ultrasonic altimeter’s advantages of stability and

high resolution, while also leveraging barometer’s capability of operation in the cases of

ramp and elevator. Thus, the hybrid altimeter is designed to adaptively select the weight to

put on the two types of altimeters based on the terrain under operation and to fuse the two

measurements. The adaptive property is achieved with a Multi-Model KF, and the detection

of different indoor terrains is realized with a foot-mounted IMU. Figure 7.8(a) presents the

framework for the hybrid altimeter. In the case of flat surfaces or stairs, the measurements

from the ultrasonic altimeter receive more weights in the fusion process. When operating

inside an elevator or on a ramp, the hybrid altimeter increases the weights of the barometer.

IMU
measurements

Ramp detection

Stance phase
detection

Elevator detection

1st model
(flat plane & stairs)

2nd model
(ramp & elevator)

≤ 1

> 1

Hybrid altimeter
measurements

Multi-model
Kalman Filter

Barometric
measurements

Ultrasonic
measurements

Low pass filter Outlier rejection

ZUPT
detector

Inertial
Navigation

System

Hybrid
Altimeter

Barometer IMU

Extended Kalman Filter

Localization

Ultrasonic

Hybrid
Altimeter

(a) (b)

Figure 7.8: (a) The framework for the hybrid ultrasonic/barometric altimeter. (b) ZUPT-
aided INS augmented by the hybrid altimeter.

178

Next, the principles of the elevator detection and the ramp detection will be discussed. The

configuration of the Multi-Model KF will also be explained in detail.

Ramp Detection

The detection of ramps in the hybrid altimeter framework is designed to be accomplished

by a foot-mounted IMU. An example of using a foot-mounted IMU to detect indoor ramps

was introduced in [97]. The detection principle used in this section is that during the stance

phase in a gait cycle, when the motion experienced by an IMU is minimal, the pitch angle

of the IMU in the case of ramps is different from the case of flat planes. For example, if

the pitch angle of a foot-mounted IMU is zero when the shoe contacts a flat plane, it can

be determined that the contacting ground is a ramp when the pitch angle of the IMU is

not zero. To account for swing phases, the developed approach made an assumption that if

the foot in the current stance phase rests on an incline, then the foot was traveling over the

incline during the entire period of the previous swing phase.

The pitch angle θ of the foot at time k can be directly calculated by accelerometers mea-

surements yak when the foot motion is minimum and can be expressed as follows:

θ(yak) = tan−1(
ya,xk√

(ya,yk)2 + (ya,zk)2
)

where yak = [ya,xk
⊤, ya,yk

⊤, ya,zk
⊤]⊤ and ya,xk , ya,yk , and ya,zk are the readouts of the accelerometers

along the x, y, and z axis at time k, respectively.

The status of the foot can be determined by a stance phase detector. This section uses the

179

SHOE detector, which determines a stance phase if

T (zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2) < γ, (7.4)

where Ωn = l ∈ N, n ≤ l ≤ N − 1 is a collection of the IMU measurement indexes at time n

with a window of length N , zn = {[yαk⊤, yωk
⊤]}k=N−1

k=N is a sequence of the IMU measurements

in the window, yωk
⊤ are the gyroscope measurements at k, σ2

a is the noise variance of the

accelerometer, σ2
ω is the noise variance of the gyroscope, and γ are user-defined thresholds.

Combining the pitch angle calculated from IMU measurements and stance phase detection,

the ramp detector Tramp can be formulated as follows:

Algorithm 1 Ramp detection

1: l= The last stance phase
2: if T (zn) < γ then
3: if |θ(yαn)− θ0| < ϵ then Tramp(zn) = 1
4: if Tramp(zl) then k = l + 1
5: while k ̸= n do Tramp(zk) = 1 k = k + 1
6: end while
7: end if
8: else if N is odd then Tramp(zn) = 0
9: end if
10: else if N is odd then Tramp(zn) = 0
11: end ifn = n+ 1

where θ0 is the pitch angle obtained at the beginning of the experiment when the foot was

the on the ground. The parameter ϵ is a threshold used here to improve the robustness

of the detector since the estimated pitch angle in practice is rarely exactly equal to zero.

Tramp(zk) = 1 indicates that a ramp is detected at time k.

To test the performance of the developed ramp detector, a close-loop experiment with tra-

jectory that included flat surfaces, stairs, and a ramp was conducted. Figure 7.9(b) shows

the reference trajectory obtained from the standalone ZUPT-aided INS. In the experiment,

the agent first walked towards the North for 7 meters on a flat surface in 16 seconds, turned

180

90◦ to the East and walked for 13 meters in 12 seconds on a ramp, turned 90◦ to the South

and walked upstairs for three steps in 5 seconds, proceeded with walking on a flat surface

for 6 meters in 10 seconds, turned 90◦ to the West and walked back to the starting point on

a flat surface.

Figure 7.9(a) shows the pitch angle measurements, the stance phase status, the detected

ramp flags, and the reference shoe height estimated by ZUPT-aided INS. The left-hand side

of Figure 7.9(a) presents a zoomed-in view that includes two gait cycles in the experiments.

The gait during 16s to 18s was on a flat surface, and the one during 18 s to 21.2 s was on

a ramp. A clear difference between the pitch angles during the two stance phases can be

observed. The pitch angles in the case of a flat plane ranged from −2.6◦ to 1.25◦, while in

the case of ramp, the range was from −7◦ to −8.25◦. The right-hand side of Figure 7.9(a)

presents another zoomed-in view that includes two other gait cycles in the experiments. The

gait during 38 s to 39.5 s was on a flat surface, and the one during 39.5 s to 41 s was on a

stair. The detected pitch angles when foot rested on the flat plane and the stair had similar

values, both had the range between −4◦ to −1.6◦. The discussed ramp detector with a ϵ = 4◦

achieved a 100% accuracy rate and no false alarm in this experiment.

Elevator Detection

Elevator detection can be achieved with the z-axis accelerometer of a foot-mounted IMU.

An example of elevator detection using the z-axis accelerometer was presented in [248].

The detection concept is that when a person with a foot-mounted IMU is standing inside

a moving elevator the direction of the force experienced by the IMU within a period of

time is consistent, while in the same length of time, the direction of the force generated

by foot dynamics is inconsistent. Figure 7.10(c), (d), and (f) illustrate examples of vertical

accelerations measured by the Lab-On-Shoe platform in the cases of walking slowly, walking

fast, and standing inside a moving elevator. In Figure 7.10(d) and (f), it can be seen that the

181

38 39 40 41 42
seconds

-70

-60

-50

-40

-30

-20

-10

0

10

20

de
gr

ee

0 10 20 30 40 50 60 70 80
seconds

-60
-40
-20

0
20

de
gr

ee

Pitch angle 𝜽𝜽 vs ZUPT

15 16 17 18 19 20 21
seconds

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

de
gr

ee

Pitch 𝜃𝜃
ZUPT

Stairs

Ramp

𝜃𝜃 = 1.25°

𝜃𝜃 = −2.6°
𝜃𝜃 = −8.25°

𝜃𝜃 = −7°

RampFlat plane stairsFlat plane

𝜃𝜃 = −1.6°

𝜃𝜃 = −4°

𝜃𝜃 = −1.58°

𝜃𝜃 = −1.8°

0 10 20 30 40 50 60 70 80
seconds

16.6
16.8

17
17.2
17.4
17.6

m
Shoe Altitude

0 10 20 30 40 50 60 70 80
seconds

-1
0
1
2

R
am

p
fla

gs

Ramp detector

(a)

(b)

Flat plane

Estimated Path

Figure 7.9: (a) The pitch angle measurements estimated by accelerometers, the stance phase
status, the detected ramp flags, and the reference shoe height estimated by ZUPT-aided
INS in the experiment for ramp detection. (b) The reference trajectory, obtained by the
ZUPT-aided INS, of the experiment for ramp detection.

182

period of time when the IMU is experiencing the same direction of acceleration was 0.3s in

the case of walking slowly and 0.2s in the case of walking fast. In Figure 7.10(c), the period

of time that the IMU experienced acceleration from the same direction was 1.5s. Thus,

the elevator detection can be achieved by observing a window with length N of the z-axis

accelerometer measurements. If all the measurements within the window are consistently

larger or consistently smaller than the gravity, then the motion is generated by the elevator

instead of the foot. The detection mechanism can be described as follows:

Algorithm 2 Elevator detection

1: if ya,zk < g∀k ∈ Ωn or ya,zk > g∀k ∈ Ωn then TElevator(zn) = 1
2: else if N is odd then TElevator(zn) = 0
3: end if

where Ωn = l ∈ N, n ≤ l ≤ N − 1 is a collection of the IMU measurement indexes at time n

with a window of length N, zn = {[yakT , yωk T]T}k=N−1
k=n is a sequence of the IMU measurements

in the window, and ya,zk is the z-axis accelerometer measurement at time k.

To test the performance of the elevator detector, an indoor experiment including walking

and standing in a moving elevator was conducted. In the experiment, the subject started

from the fourth floor of a four-story building and walked into the elevator. During 17s to

51s, 86s to 92s, 126s to 140s, 185s to 191s, and 208s to 218s, the subject was standing inside

the moving elevator. The periods between 51s and 86s,92s and 126s, 140s and 185s, the

subject moved out of the elevator, walked around on a flat surface, and went back into the

elevator. During 191s and 208s, the subject stood inside of the still elevator. The total time

duration of the experiment was 232s. The vertical trajectory of the subject was illustrated

by a barometer, shown in Figure 7.10(a). Figure 7.10(b) demonstrates the accelerometer

measurements collected during the experiment and Figure 7.10(e) presents the detection

results. In this experiment, we set the window of length to be 1s. The detection of elevator

motion achieved 100% detection rate with no false alarm.

183

In elevator

slow normal

normal

fast

normalnormal

Walking slow

4F

1F

2F

3F

~0.3s

accel x

accel y

accel z

(a) (b) (c)

(d) (e) (f)

Accelerometer profile of
walking slow

Accelerometer profile of
walking fast

Accelerometer profile in
elevator

On flat plane

Barometer Readouts

Elevator Detection

Accelerometer Readouts

~1.5s

~1.5s
Started ended

Elevator

208 210 212 214 216 218
Time, s

7

8

9

10

11

12

13
x
y
z

X
Y
Z

Ac
ce

le
ra

tio
n,

 m
/s

^2

Walking fast

~0.2s

x
y
z

149.5 150 150.5 151
Time, s

-40

-20

0

20

40 X
Y
Z

Ac
ce

le
ra

tio
n,

 m
/s

^2

0 50 100 150 200 250
Time, s

N
eg

at
iv

e
Po

si
tiv

e

0 50 100 150 200 250
Time, s

-60

-40

-20

0

20

40

60

80
Ac

ce
le

ra
tio

n,
 m

/s
^2

0 50 100 150 200 250
Time, s

2
4
6
8

10
12
14
16
18
20

H
ei

gh
t,

[m
]

10 11 12
Time, s

-20

-10

0

10

20

30

Ac
ce

le
ra

t io
n,

m
/s

2

x
y
z

X
Y
Z

Figure 7.10: (a) The reference vertical trajectory, estimated by the barometer, of the ex-
periment for elevator detection. (b) The accelerometer measurements collected during the
experiment. (c) Acceleration profiles of the start and the end of the elevator motion. (d)
Acceleration profiles of walking slowly. (e) The elevator detection results of the experiment.
(d) Acceleration profiles of walking fast.

184

Multi-Model Kalman Filter for the Hybrid Altimeter

The hybrid altimeter uses both ultrasonic and barometric altimeters. Since barometric mea-

surements have a bias that comes from ambient weather changes, the bias also needs to be

estimated. The KF state discussed in Section 7.4.1 is augmented with a bias state bk for the

barometer. The augmented KF states are formulated as follows:

xk = [hk, Vk, Lk, bk]
⊤.

In the propagation step of the Multi-Model KF, we assumed that the bias state bk, whose

noise nbk is modeled as a Gaussian distribution, maintains the same expected value. The

dynamics of the other states is inherited from the KF for the ultrasonic altimeter. Thus, the

propagation matrices F and Q of the KF can be expressed as follows:

Fk =

1 dt 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,Qk =

σ2
hk

0 0 0

0 σ2
Vk

0 0

0 0 σ2
Lk

0

0 0 0 σ2
bk

The barometer readout hk,baro is considered as the summation of true heights hk, current

sensor bias bk, and a Gaussian noise nhk,baro
with variance σ2

hk,baro
, which can be expressed as:

hk,baro = hk + bk + nhk,baro
.

In the update step of the Multi-Model KF for the proposed hybrid altimeter, the mea-

surement vector zk of the KF for the ultrasonic altimeter was augmented with the height

measurement hk,baro from the barometer. The measurement vector zk of the Multi-model

185

KF is expressed as:

zk =

hk,baro

Vk,SONAR

Lk,SONAR

dk,SONAR

and the corresponding measurement matrices H and R are formulated as follows:

Hk =

1 0 0 1

0 0 1 0

0 0 0 1

0 1 0 −1

,Rk =

σ2
hk,baro

0 0 0

0 σ2
hk,SONAR

0 0

0 0 σ2
Vk,SONAR

0

0 0 0 σ2
Lk,SONAR

The Multi-Model KF has two models. The two models differ in the noise characteristics

of the states hk, Vk, Lk, and bk and the measurements Vk,SONAR and Lk,SONAR. In the first

model, where the altimeter is assumed to operate over flat surfaces and ramps, the noise

variance configuration, except for the states bk, is the same as in the case of the ultrasonic

altimeter. As for the state bk, since it is equivalent to hk,baro − hk and the state hk in the

first model is mainly affected by the ultrasonic altimeter, the noise variance is set to a value

comparable to the maximum distance measured by the ultrasonic sensor. In the second

model, which is the case of elevators and ramps, the noise characteristics of the states hk,

Vk, and Lk and the measurements Vk,SONAR and Lk,SONAR are increased because under these

terrains, the ultrasonic altimeter does not provide reliable measurements. The noise variance

of the state bk, on the other hand, is set to a value that was experimentally determined. This

value is usually much lower than the value in the first model. Table 7.2 summarizes the

values used in this section for the noise characteristics of the Multi-Model KF.

The framework presented in Figure 7.8(a) also includes a low-pass filter for barometer mea-

186

Table 7.2: Noise Characteristics of the Multi-Model Kalman Filter for the Hybrid Altimeter

KF Parameter 1st model value 2nd value

nhk
0.01 100

nVk
0.01 10

nLk
0.1 1

nhk,SONAR
0.01 10

nVk,SONAR
0.05 10

nLk,SONAR
1 0.01

nhk,baro
1 1

surements and an outlier rejector module for ultrasonic measurements. The low-pass filter

is included because raw measurements of the barometer contain high-frequency thermal and

electronic noises. The outlier rejector module is designed to improve the false alarm rate for

the stair detection. Machine learning techniques have the potential to classify different gait

motion phases based on the ultrasonic altimeter readouts and can be expected to improve

the stair detection further.

7.4.3 Experimental Verification For Hybrid Altimeter

To validate the proposed hybrid altimeter, three series of experiments using the Lab-On-Shoe

platform, shown in Figure 7.5, were conducted. In every experiment, the sampling rates of

the IMU, barometer, and the downward-facing ultrasonic sensor were set to 120Hz,5Hz, and

25Hz, respectively. The first series of experiments illustrated that the hybrid altimeter is

more robust to temperature and air pressure variations than a conventional barometer. In

the second series of experiments of walking on a flat plane, we demonstrated that when

estimating a vertical displacement, the accuracy of the ZUPT-based INS aided by a hybrid

altimeter outperformed both ZUPT-aided INS cases, standalone and barometer-aided. The

187

third series of experiments investigated the performance of the ZUPT-based INS aided by

the hybrid altimeter when walking on different terrains, such as flat surfaces, stairs, ramps,

and elevators.

Effect of Temperature And Air Pressure Changes

Estimated Path w/ Floor Plan

-20 -15 -10 -5 0 5 10 15

Easting, m

-40

-35

-30

-25

-20

-15

-10

-5

0

Path
Start
End

(a) (b) (c)

Entered room

Exited room

1st fire

2nd fire

Estimated Path

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
Easting, m

0

2

4

6

8

10

12

14

16

Estimated Path

End

Path
Start

*

N
or

th
in

g,
 m

N
or

th
in

g,
 m

North, mEast, m

D
ow

n,
 m

14

15

16

17

6
4

2
0

-2
-4

-6

Figure 7.11: (a) Reference trajectory for the experiments when barometer is subject to
temperature and air pressure changes. (b) Reference trajectory for the indoor experiment
walking on a flat plane. (c) Reference trajectory for the indoor experiment walking on
different terrains.

To investigate robustness of the hybrid altimeter measurements when the barometer is sub-

jected to variations due weather changes, an experiment simulating an environment where

surrounding temperature and air pressure are unstable was conducted. The nominal tra-

jectory of the experiment is shown in Figure 7.11(a), which was obtained by a standalone

ZUPT-aided INS. A subject started the navigation from a reference position in the hallway

and the trajectory was recorded by the Lab-On-Shoe platform. The subject started to walk

10 [m] towards the South. At the 60 s mark, the subject stopped and during this time a fire

was simulated by heating up the barometer for 0.1 s with a commercial lighter. The subject

continued the navigation and entered a room at 78 s, walked for 8 [m], and left the room at

100 s. Then, the subject walked for another 10 [m] towards the South and stopped at 120 s.

At 140 s, another heat source lasting 0.1 s was triggered next to the barometer. The subject

moved toward the South for another 7 [m] to reach the destination. The time duration of

188

this experiment was 180 s, and the nominal heights of the starting point and the ending

point were the same. In the experiment, the subject walked at a speed of approximately 40

steps per minute. The results were analyzed in the next paragraph.

17.6 [m]

1.2 [m]1 [m]

17.09 [m]

Room transition

Fire

20 [m] 13 [m](a)

(b)

(c) (d)

0 20 40 60 80 100 120 140 160 180
Time, [s]

15

20

25

30

35

40
Height estimated by the barometric altimeter

0 20 40 60 80 100 120 140 160 180
Time, [s]

17

17.1

17.2

17.3
Height estimated by the hybrid altimeter

Shoe Height
Floor Height

20 25 30
Time, [s]

16.8

17

17.2

17.4

17.6

70 80 90 100 110
Time, [s]

16.5

17

17.5

18Hybrid Altimeter
Floor height
Barometric Altimeter

Ab
so

lu
te

 H
ei

gh
t,

[m
]

Ab
so

lu
te

 H
ei

gh
t,

[m
]

H
ei

gh
t,

[m
]

H
ei

gh
t,

[m
]

Figure 7.12: (a) The height, measured by the barometer, of the experiment discussed in Sec-
tion IVA. (b) The height measured by the hybrid altimeter of the experiment. (c) Comparison
of the two altimeters in walking in an environment with stable air pressure and temperature.
The hybrid altimeter could capture the subtle foot motion while the barometer failed to do
so. (d) Comparison of the two altimeters in the case of air pressure changed due to the room
transition. The height measured by the barometer was affected by the transition while the
measurement of the hybrid altimeter maintained stable.

Figure 8(a) shows the shoe height estimated by the barometer and Figure 8(b) demonstrates

the shoe height and the floor height estimated by the hybrid altimeter. Figure 8(a) illustrates

that the first fire and the second fire caused vertical errors of 20 [m] and 13 [m] for the

barometer, respectively. Figure 8(c) is a zoomed-in view of the sensor measurements during

70 s and 110 s, showing that the transitions between the hallway to the room led to the

vertical errors of 1 [m] and 1.2 [m], as judged from measurement of the barometer. Figure

8(b) demonstrates that the two events of fire and the transitions between different rooms had

a minimal effect on the hybrid altimeter measurements. Figure 8(b) depicts that the hybrid

189

altimeter can capture subtle foot motions while the barometer is incapable of capturing the

motions due to insufficient resolution.

This experiment investigated the effect of air pressure and temperature changes on readings

of the barometers. The operational principle of the ultrasonic sensor involves transmission

of the sound wave in air, which is affected by the changes in ambient air pressure and

temperature. This effect was not accounted in these experiments.

Experiments of walking on flat planes

To derive the performance of the hybrid altimeter, when used to assist the ZUPT-aided INS,

we first performed experiments of walking indoor at a speed of approximately 40 steps per

minute in a square shape pattern for three full circles. we repeated the same experiment

10 times. In the experiment, the starting position and the ending position were the same.

The total trajectory length was 150 [m], and the navigation time was 232 s. The experiment

was conducted on the same floor, so there was no floor height changes during the entire

experiment. we assumed that the initial height was 17m above the sea level. Figure 7.11(b)

shows a nominal horizontal trajectory obtained by the ZUPT-aided INS. Since the altimeter

measurements do not have significant impacts on the displacement errors along the horizontal

directions, we only focused on errors along the vertical direction. The ZUPT-aided INS

augmented by an altimeter was used for localization, as described in [91]. Note, that the

altimeter used in [91] was a barometer but the same analytical framework can be applied

when the barometer is replaced by the proposed hybrid altimeter. Figure 4(b) illustrates the

configuration of the ZUPT-aided INS augmented by the hybrid altimeter.

Figure 7.13(a) shows the estimated height measurements from 1) standalone ZUPT-based

INS, 2) ZUPT-based INS aided by the barometer, and 3) ZUPT-based INS aided by the

hybrid altimeter. Figure 7.13(b) shows the final vertical displacements of the 10 sets of

190

(a)

0 20 40 60 80 100 120 140 160 180 200

Time, [s]

15.8

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

D
is

pl
ac

em
en

t a
lo

ng
 th

e
D

ow
n,

 [m
]

Comparison of trajectories

INS + ZUPT
INS + ZUPT + Barometer
INS + ZUPT + Hybrid Altimeter

20 22 24 26

16.8
16.9

17
17.1
17.2

(b)

ZUPT ZUPT+Baro ZUPT+Hybrid

Aiding methods

15.8

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6
Comparison of different aiding methods

True height

D
is

pl
ac

em
en

t a
lo

ng
 th

e
D

ow
n,

 [m
]

Figure 7.13: (a) An example of the height estimated by a standalone ZUPT-based INS,
ZUPT-based INS aided by a barometer, and ZUPT-based INS aided by a hybrid altimeter in
the experiments where the subject walked on a flat plan. (b) Vertical displacement accuracy
of all three navigation solutions.

Table 7.3: RMSEs of a standalone ZUPT-based INS, ZUPT-based INS aided by the barom-
eter, and ZUPT-based INS aided by the hybrid altimeter in the experiments of walking on
a flat plane.

INS aiding method Height RMSE [m]

ZUPT 0.272

ZUPT + Barometer 0.453

ZUPT + Hybrid Altimeter 0.01

experiments estimated by the three different navigation solutions. The red horizontal line

in Figure 7.13(b) indicates the true height. we calculated RMSE based on the 10 sets of

the experiment, summarized in Table 7.3, and found that the RMSEs of the standalone

ZUPT-based INS, the ZUPT-based INS aided by the barometer, and the ZUPT-based INS

aided by the hybrid altimeter were 0.27 [m], 0.453 [m], and 0.01 [m], respectively. In this

series of experiments, the ZUPT-based INS aided by the hybrid altimeter reduced the error

by 96%, as compared to the standalone ZUPT-based INS, and by 97%, as compare to the

ZUPT-based INS aided by the barometer.

191

Experiments Of Walking On Different Terrains

To demonstrate the hybrid altimeter in a more realistic situations, we conducted a series of

experiments with a nominal trajectory that included an elevator, a ramp, flat surfaces, and

stairs. The total navigation time in each experiment was 210s, and the length was 92m. We

repeated 10 sets of the identical experiment. Figure 7.11(c) demonstrates a reference trajec-

tory of the experiment obtained by the ZUPT-aided INS augmented by the hybrid altimeter.

At the beginning of each experiment, an agent who wore the Lab-On-Shoe platform would

start the experiment on the second floor of a building. In the first 33 s, the subject moved

from the starting point to an elevator. Between 33 s and 41 s, the elevator moved down

one floor, whose nominal height was measured to be 3.8 [m]. From 41 s to 70 s, the subject

moved out of the elevator and walked on a flat surface to stairs. Between 70 s to 135 s, the

subject walked upstairs for 26 stairs. The nominal height of each of the stairs was 15 cm.

After the first eight stairs, there was a small area of a flat surface, where the subject walked

one step during 100 s to 102 s time interval. Between 135 s and 145 s, the subject walked on

a flat surface to a ramp. From 145 s to 165 s, the subject walked down along the ramp. The

nominal height difference between the two ends of the ramp was 60 cm. From 165 s to 175 s,

the subject moved on a flat surface to other stairs. From 175 s to 182 s, the subject walked

upstairs for four stairs. The nominal height of each of the stairs was measured to be 15 cm.

From 182 s to the end of the experiment, the subject walked back to the starting point on

a flat surface. In this series of experiments, the subject walked at a speed of approximately

40 steps per minute. The results of this experiment is discussed in the next paragraph.

We compared vertical displacements estimated by the ZUPT-augmented INS, the ZUPT-

augmented INS aided by the barometer, and the ZUPT-augmented INS aided by the hybrid

altimeter. It should be pointed out that because of the stair height estimation error of the

ultrasonic altimeter discussed in Section 7.4.1.B, we applied a constant to compensate stair

height estimation. In this series of experiments, we found that the average value of the

192

INS + ZUPT + Hybrid altimeter

(a) (b)

(d)

22

Comparison of different aiding methods

Elevator Stairs Ramp Flat plane

ZUPT ZUPT+Baro ZUPT+Hybrid

Comparison of different aiding methodsINS + ZUPT + Hybrid Altimeter

INS + ZUPT + BarometerINS + ZUPT

1F

2F

3F

0 50 100 150 200 250
Time, sec

12

13

14

15

16

17

18

19

20

21

D
ow

n,
 m

1F

2F

3F

0 50 100 150 200 250
Time, sec

12

13

14

15

16

17

18

19

20

21

D
ow

n,
 m

(c)

1F

2F

3F

0 50 100 150 200 250
Time, sec

12

13

14

15

16

17

18

19

20

21

D
ow

n,
 m

Aiding methods

12

13

14

15

16

17

18

19

20

21
H

ei
gh

t,
m

INS + ZUPT
INS + ZUPT + barometer
INS + ZUPT + Hybrid altimeter
True height

Figure 7.14: (a), (b), and (c) examples of the height estimated by standalone ZUPT-based
INS, ZUPT-based INS aided by the barometer, and ZUPT-based INS aided by the hybrid
altimeter in the experiments presented in Section 7.4.3.C. (d) The final vertical displacements
of the three navigation solutions.

estimated stair heights was 11.5 cm, which was 3.5 cm less than the nominal stair height.

Thus, the compensation value was selected to be 3.5 cm in this series of experiments. The

results of three navigation solutions are shown in Figure 7.14(a), (b), and (c), respectively.

The final vertical displacements of the 10 sets of the experiments for the three navigation

193

Table 7.4: RMSEs of the standalone ZUPT-based INS, ZUPT-based INS aided by the barom-
eter, and ZUPT-based INS aided by the hybrid altimeter in the experiments of walking on
different terrains, including flat surfaces, a ramp, stairs, and an elevator.

INS aiding method Height RMSE [m]

ZUPT 4.15

ZUPT + Barometer 0.21

ZUPT + Hybrid Altimeter 0.36

solutions are shown in Figure 7.14(d). The RMSEs of the three methods summarized in Table

7.4. Figure 7.14(a) illustrates that standalone ZUPT-augmented INS could not account for

the elevator motion, leading to identification of a wrong floor. Although in this series of

experiments, the RMSE of the ZUPT-augmented INS aided by the barometer was smaller

than when aided by the hybrid altimeter, instability in the estimated height profiles can be

observed in the case with the barometer. For example, in Figure 7.14(b), during 41s and

75s, the ZUPT-augmented INS aided by the barometer indicated that the subject was under

the ground level. The primary error sources of the hybrid altimeter were: 1) barometer

bias when operating on a ramp or in an elevator and 2) stair height estimation error from

the ultrasonic altimeter. The contributing factors of the stair height estimation error were

discussed in Section 7.4.1.B.

Discussion

Section 7.4.3 has demonstrated that the proposed hybrid altimeter can achieve an accurate

estimation of vertical displacement when operating under different terrains. However, two

major challenges when using the proposed hybrid altimeter were identified.

1. Stair height underestimate. In our opinion, the underestimate is mainly contributed

from three factors: 1) multi-path effects of ultrasonic sensors, 2) the fact that the

vertical velocity of the foot when going above the edges of stairs is not zero, and 3)

194

wide detection cone of the ultrasonic sensor SRF08 resulting in detecting the wall of

stairs when scanning through the edge of the stairs. The first factor could possibly be

resolved by including an additional signal processing module in the hybrid altimeter

framework. To address the second factor, additional velocity detectors are required.

The third factor can be potentially eliminated by using a range sensor that has a narrow

detection cone, such as LiDAR. The underestimate of stair height also implies that the

assumption of the state Lk for floor height and the measurement L(k, SONAR) being

zero-mean Gaussian random variables might be inaccurate.

2. False alarms of stairs detection. In the ultrasonic altimeter module, a threshold for

determining the smoothness of the ultrasonic measurements was defined, and if the

measurement is not smooth, or equivalently has a discontinuity, then a stair is detected.

However, due to the low sampling rate of the ultrasonic sensor, in the case of walking

fast or running, two consecutive ultrasonic measurements tend to have a difference

larger than the smoothness threshold, even when walking on a flat plane. The large

difference can result in false alarms of stair detection. This phenomenon could be

reduced if an array of sensors with a high sampling rate is used. Another contributing

factor to false alarms of stair detection is related to walking patterns. It could be

observed that in some gait patterns, there is a short period during the swing phase

that the bottom of the foot is facing the surrounding wall of a building, instead of

the ground. This phenomenon would result in two significant discontinuities in the

ultrasonic measurement collected during this period. One is a positive discontinuity at

the beginning of the period, and the other is a negative one at the end of the period.

Our solution to this problem was to use a temporal threshold to determine a false

alarm of the stair detection if the time difference between occurrences of a positive and

negative discontinuities is smaller than the temporal threshold.

This section presented a hybrid altimeter that uses a barometer and a downward-facing

195

ultrasonic altimeter for aiding foot-mounted INS. The development of the hybrid altimeter

aims to minimize the usage of barometric altimeter in height estimation as measurements

of barometers are easily affected by ambient temperature and air pressure changes. We

first showed that a shoe-mounted downward-facing ultrasonic sensor alone could be used

as an altimeter, in the case of flat surfaces and stairs, by simultaneously estimating shoe

height and floor elevation. To account for other common indoor terrains, such as ramps

and elevators, a multi-model KF to fuse measurements of the barometer and the ultrasonic

altimeter was used. In the fusion process, the hybrid altimeter adaptively selects weights

for the two altimeters based on the terrains under operation. In the cases of flat planes and

stairs, the ultrasonic altimeter has high-resolution and stable measurements, thus the noise

variances corresponding to the ultrasonic altimeter are set to lower values than the noise

variance of the barometer. In the case of ramps and elevators, the barometer measurements

are more reliable than the ultrasonic sensor; therefore, the noise variances of the barometer

are decreased, and those of the ultrasonic altimeter are increased. Detection of elevators and

ramps were shown in this section to be achieved with a foot-mounted IMU. Three series

of experiments were conducted to test the performance of the proposed hybrid altimeter.

The first experiment showed that the hybrid altimeter was less sensitive to temperature and

air pressure changes in the surrounding environment, as compared to the barometer. The

second series of experiments investigated the performance of the hybrid altimeter in the case

of walking slowly on a flat plane, and experimental results indicated that the ZUPT-based

INS aided by the hybrid altimeter improved the RMSE along the vertical direction by 96%,

as compared to a standalone ZUPT-based INS, and by 97%, as compared to the ZUPT-based

INS aided by the barometer. In the third series of experiments, we validated the operation

of the hybrid altimeter in the cases of common indoor terrains, such as flat surfaces, stairs,

ramps, and elevators. The experimental results showed that the RMSE of the ZUPT-based

INS aided by the hybrid altimeter outperformed the RMSE of the standalone ZUPT-based

INS by 91%. When compared to the RMSE of the ZUPT-based INS aided by the barometer,

196

the RMSE of the ZUPT-based INS aided by the hybrid altimeter was increased by 41% (0.15

m). In our opinion, the primary sources contributing to the vertical error of the ZUPT-based

INS aided by the hybrid altimeter are the underestimate of stair height and the false alarm of

stair detection of the ultrasonic altimeter. The results presented in this section was published

in [92].

7.5 Real-Time Implementation of ZUPT-Altimeter/aided INS

In Section 7.4 and 4.4, we have shown that integrating the foot-mounted system with a

downward-facing ultrasonic sensor could be beneficial for reducing the vertical position error

and enhancing performance of the stance phase detection. In Section 7.4, a hybrid altimeter

that combined a barometer and a downward-facing ultrasonic sensor was proposed to enhance

the ZUPT-aided INS, and the integrated system was demonstrated with higher position

resolution and increased robustness against ambient temperature and air pressure changes,

as compared to a standalone barometer. In 4.4, the UA-SHOE detector was developed to

achieve automatic identification of zero-velocity events. When compared to other existing

advanced detectors utilizing adaptive mechanisms [206, 223] and machine learning [203, 225],

the UA-SHOE fused measurements obtained from a downward-facing ultrasonic sensor and a

foot-mounted IMU and was shown to be capable of functioning while a pedestrian performing

different activities, such as walking and running.

Although the hybrid altimeter and the UA-SHOE detector have been demonstrated with

advantageous performance, the authors indicated that the setups used in the two approaches

were not ideal to do extensive performance evaluation, as the systems were relatively bulky,

which could limit the range of motion of a pedestrian, and the on-board sensors were not

optimized with high sampling rates, which might not fully reconstruct the complex foot

motion. There are other existing platforms for evaluating foot-mounted pedestrian INS

197

[144, 117, 119]. However, these systems usually do not provide the flexibility to change

hardware configuration easily, nor do they come with the freedom to efficiently reprogram

on-board processing units. Therefore, it is beneficial to develop a compact and flexible

development platform.

IMU

Inertial Navigation
Systems

Zero Velocity Update

Extended Kalman Filter

UltrasonicBarometer

+UA-SHOE
IMU biases

State
PropagationReset velocity

Stance phase flag

Vertical displacement

Navigation Solutions

Initialization

System power-up

Read data
from sensors

Reboot?

Perform
localization

Transmit data

Yes

No

(a) (c)

Microcontroller
Teensy 4.0
(600 MHz)

IMU ICM-
20948 (350 Hz)

SONAR SRF08
(150 Hz)

Altimeter
MS-5803-01BA

(25 Hz)

Bluetooth
HC-05

(100 Hz)

USB2.0
(350 Hz)

Lithium
battery

(850mAh)

UART
I2C

(b)

Figure 7.15: (a) The runtime framework of the Sugar-Cube platform. (b) Sensor connec-
tion and communication mechanism on the Sugar-Cube platform. (c) Navigation algorithm
implemented on the on-board micro-controller.1

This section introduces a flexible and compact multi-sensor hardware testbed, referred to as

the Sugar-Cube navigation platform. The Sugar-Cube platform includes a micro-controller,

Teensy 4.0, to collect measurements from an IMU, a barometer, and an ultrasonic sensor and

produce localization of a user in real-time based on the altimeter-enhanced ZUPT-aided INS

198

using the UA-SHOE detector. The platform provides a flexible plug-and-play architecture

for hardware and software development.

7.5.1 The Sugar-Cube Navigation Platform

Navigation Algorithm

The real-time navigation solution implemented on the current Sugar-Cube platform is the

ZUPT-aided INS enhanced by a barometric altimeter with the UA-SHOE detector. Figure

7.15(c) exhibits a block diagram of the algorithm, which is realized in an EKF framework.

A detailed discussion of the propagation step and the update step can be found in [91]. The

stance phase detector used in this work is the UA-SHOE detector. Comprehensive derivation

of the detector is presented in [93]. Table 7.5 lists values of EKF parameters, including ARW

σg, VRW σa, RRW σr, AcRW σAc, and threshold γh used for the UA-SHOE.

Table 7.5: Parameters for the EKF

Hyper-parameter Value
σg 2.7221× 10−5

σa 0.0017
σr 8.3174× 10−7

σAc 6.63× 10−6

γh e−12

Hardware System Implementation

A hardware prototype of the Sugar-Cube navigation platform is illustrated in Figure 7.16.

The black box in Figure 7.16 is a fixture for placing customized PCBs. A micro-controller

Teensy 4.0, a consumer-grade 9-axis IMU ICM−20948, a barometric altimeter MS5803−01BA,

and a Bluetooth module HC−05 were located on the PCB. A downward-facing ultrasonic

199

Bluetooth
HC-05

Ultrasonic
SRF08

Ultrasonic
SRF08

Lithium battery

Microcontroller
Teensy 4.0

Bluetooth
HC-05

Barometer
MS5803-01BA

IMU
ICM-20948

USB2.0

Figure 7.16: Hardware of the Sugar-Cube navigation platform.

sensor SRF08 was firmly attached at the backside of the red extended fixture arm shown

in Figure 7.16. The nominal distance between the ultrasonic sensor and the ground was 9

cm. In this configuration, the Sugar-Cube platform was mounted at the toe side, but it can

be detached and moved to other locations, such as the heel side. The power source of the

Sugar-Cube platform was an 850 mAh lithium battery with a 3.7 v output. The battery was

connected to a voltage booster module located on the PCB to bring the voltage up to 5 v.

A block diagram illustrating sensor connection and communication protocols on the Sugar-

Cube platform is shown in Figure 7.15(b). The processing unit of the platform is the micro-

controller Teensy 4.0, which has a nominal clock rate of 600 MHz and can be boosted up to

1.008 GHz. In this work, the Sugar-Cube platform was programmed with language C/C++

through the Teensyduino library in the Arduino Integrated Development Environment (IDE).

Inter-Integrated Circuit (I2C) was used to communicate with the on-board IMU, ultrasonic

sensor, and barometer were and had a sampling rate of 350 Hz, 150 Hz, and 25 Hz, re-

spectively. Information, including orientation, velocity, position, zero velocity states, and

200

sensor readings, can be selectively transmitted to a remote device, such as a smartphone or

a computer, via Bluetooth and USB2.0 port with up to 100 Hz and 350 Hz transmission

frequency, respectively.

A flow chart describing a runtime framework of the Sugar-Cube platform is presented in

Figure 7.15(a). In the initialization process, the Sugar-Cube platform is assumed completely

stationary for around 10 s. During this process, all communication protocols are initiated,

accelerometer biases are estimated by implementing the ZUPT algorithm, gyroscope biases

are calculated by taking the average of the measurements, and initial heading angle of the

system is calculated based on the on-board magnetometer. Then, the Sugar-Cube platform

enters a sensor data acquisition process. The obtained sensor readings are accessed by

the localization module, which produces locations of a user based on the ZUPT-aided INS

enhanced by a barometer with the UA-SHOE detector at a rate of 350 Hz. At the end of

each iteration, the system waits for user’s command to determine whether to continue the

next iteration or to re-initiate the entire system.

7.5.2 Real-time Performance Evaluation

To evaluate the navigation performance of the developed Sugar-Cube platform, ten sets of

indoor navigation experiments were conducted in the Engineering Gateway Building at the

University of California, Irvine. In the experiments, the Sugar-Cube navigation platform

was mounted on a pedestrian’s right foot, and a Lab-On-Shoe platform was installed on the

pedestrian’s left shoe. In [18], readers can find a detailed documentation of the Lab-On-

Shoe platform, which was a multi-sensor system equipped with near-tactical-grade IMUs. In

this work, the Lab-On-Shoe system was used as a benchmark provided by the navigation

accuracy. In each experiment, the pedestrian started from a marker placed on the ground,

walked a closed-loop trajectory at a speed of 60 step/min on terrains of flat planes, slopes,

201

and stairs, and returned to the marker at the end of the experiment. The duration of each

of the experiments was 1 min, and the length of the trajectories was 50 [m].

-1.5 -1 -0.5 0 0.5 1
X, m

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Circular Error Probable

True destination
Sugar-Cube est.
Sugar-Cube CEP (r = 0.76)
Lab-On-Shoe est.
Lab-On-Shoe CEP (r = 0.07)

⊥ RMSESugarCube: 0.24
⊥ RMSELab−On−Shoe: 0.16

Flat
plane

Stairs

Slopes

-1 0 1 2 3 4 5 6 7 8
X, m

-2

0

2

4

6

8

10

12

14

16

18
Navigation Solutions

Sugar-Cube
Sugar-Cube (end)
Lab-On-Shoe
Lab-On-Shoe (end)
Start & End

Y,
 m

Y,
 m

Figure 7.17: The upper plot shows an example of the trajectories estimated by the Sugar-
Cube platform and Lab-On-Shoe platform, respectively. The bottom plot shows estimated
destination, CEPs, and RMSEs in the ten experiments discussed in Section 7.5.2.

Figure 7.17 presents the experimental results. The Sugar-Cube platform estimated naviga-

tion solutions in real-time, and the solutions provided by the Lab-On-Shoe were calculated

in a post-processing manner using the same algorithm implemented on the Sugar-Cube plat-

form. The upper plot in Figure 7.17 displays an example of the trajectories estimated from

202

the two systems overlapped on a floor plan of the building. It could be seen that the real-

time solution obtained from the Sugar-Cube platform was able to depict the movement of

the pedestrian. The bottom plot presents CEPs, which are circles enclosing 50% of the esti-

mated horizontal destinations in the ten experiments, and RMSEs of the estimated vertical

displacements. The CEP’s Radius was 0.76 [m] in the case of the Sugar-Cube platform and

was 0.07 [m] in the case of the Lab-On-Shoe platform. The vertical RMSEs of the Sugar-

Cube and the Lab-On-Shoe platform were 0.24 and 0.16, respectively. In our opinion, the

Lab-On-Shoe platform had a higher accuracy mainly because the current configuration of the

Sugar-Cube platform used a consumer-grade IMU while the Lab-On-Shoe platform adopted

a near-tactical-grade IMU. Based on these experiments, we concluded that the Sugar-Cube

platform could collect measurements from an IMU, a barometer, and a downward-facing

ultrasonic sensor and perform real-time localization of a pedestrian with respect to an initial

location.

This section presented the Sugar-Cube navigation platform, which was developed to be capa-

ble of performing real-time localization of a pedestrian based on a ZUPT-aided INS enhanced

by an altimeter with the UA-SHOE detector. A series of indoor walking experiments of 60

s were conducted, and the experimental results demonstrated that the real-time navigation

results of the Sugar-Cube platform had a horizontal CEP of 0.76 [m] and a vertical RMSE

of 0.24 [m]. The result of this section has been published in [84].

7.6 Conclusion

This chapter presents the development of enhancement approaches that improve the posi-

tioning accuracy of ZUPT-aided INS along the vertical direction. A closed-form analytical

expression was derived to predict the covariance of the ZUPT-aided INS implemented in the

EKF along the vertical direction. The analytical expression predicts that the variance of

203

the vertical displacement is affected by the VRW of an IMU, altimeter sampling rate and

resolution, and the ratio of the swing phase and the stance phase during the gait cycle. The

developed hybrid altimeter fuses a barometer and a downward-facing ultrasonic sensor in a

Multi-Model EKF that simultaneously tracks the heights of both the foot and the ground.

It was experimentally demonstrated that the experimental results showed that the RMSE

of the ZUPT-aided INS aided by the hybrid altimeter outperformed the RMSE of the stan-

dalone ZUPT-aided INS by 91% and the RMSE of the ZUPT-aided INS augmented with a

barometer by 41%. A system architecture was developed to demonstrate real-time imple-

mentation of the ZUPT-aided INS augmented with a barometric altimeter, and the real-time

navigation solutions had a horizontal CEP of 0.76 [m] and a vertical RMSE of 0.24 [m] in a

series of experiments involving a pedestrian walking a 50-[m] closed-loop trajectory covering

terrains of flat planes, stairs, and ramps.

204

Chapter 8

On Estimation Filter − Bounding Position

Error With Self-Contained Approach

IMU

Deterministic Localization

- Foot-mounted IMU

- Altimeter

- Foot-to-foot ranging

Cooperative Localization

- Inter-agent UWB ranging

Opportunistic Localization

- Cellular LTE

Figure 8.1: Concept of the developed Pedestrian Indoor Navigation System Integrating De-
terministic, Opportunistic, and Cooperative Functionalities (PINDOC).

205

8.1 Introduction

This chapter presents a Pedestrian Indoor Navigation system integrating Deterministic, Op-

portunistic, and Cooperative functionalities (PINDOC) for navigation of multiple agents.

The developed PINDOC can be implemented in different configurations, providing a nav-

igation solution using a different combination of the deterministic, opportunistic, and co-

operative functionalities. The deterministic approach utilizes dual foot-mounted IMU and

implements ZUPT-aided INS augmented by barometric altimeter and foot-to-foot range mea-

surements. The opportunistic approach uses psuedorange measurements extracted from cel-

lular LTE towers and implements a Deep Neural Network (DNN)-based Synthetic Aperture

Navigation (SAN) to spatially mitigate multipath. This approach operates in a base/rover

framework in order to tackle one of the main challenges of LTE opportunistic navigation,

i.e., the unknown cellular towers’ clock states. The cooperative localization approach uses

UWBs for inter-agent range measurements and differentiates Line-Of-Sight (LOS) and NLOS

components using a power-metric-based detector. The developed PINDOC is implemented

with an EKF in a centralized manner.

This chapter is a collaborative effort. The algorithm design, implementation, and experi-

mental hardware associated with the cooperative localization approach, discussed in Section

8.2.2, were carried out by Ph.D. students Changwei Chen and Mingwon Soo under UCI

Professor Solmaz Kia’s supervision. The DNN-SAN-LTE algorithm and the corresponding

experimental setup in the opportunistic approach, discussed in Section 8.2.3, were designed

and independently tested by Ali Abdallah with Ohio State University Professor Zak Kassas’s

guidance. The author of this thesis, Chi-Shih Jao, supervised by UCI professor Andrei Shkel,

was responsible for the deterministic localization approach, discussed in Section 8.2.1, as well

as the integration of the deterministic, the opportunistic, and the cooperative approaches.

The rest of the chapter is organized as follows. Section 8.2 presents the mathematical model

206

of the developed approach. Section 8.3 demonstrates a hardware system that realizes the

developed algorithm. Section 8.4 discusses validation experiments. Section 8.5 presents

concluding remarks.

8.2 Integrating Deterministic, Opportunistic, and Coopera-

tive Functionalities

𝑟
LTE𝑖

𝑗(𝑘)

agent3agent2

Stance phase

Detector
Strapdown

INS

Barometer IMU

Estimated navigation results

Foot-to-foot UWBs

𝒃𝑎,𝐴𝑖(𝑘)

𝒃𝑔,𝐴𝑖(𝑘)

Inter-agent UWBsRover LTE

Opportunistic Cooperative Deterministic (on both feet)

Extended Kalman Filter

Height

ConversionDNN-SAN

agent1 agent𝑁−1 agent𝑁

𝑢𝑘𝑝⊥𝑖(𝑘)𝑝A2𝐴𝑖(𝑘)

𝛿𝑡rx𝑖(𝑘)

ሶ𝛿𝑡rx𝑖(𝑘)

𝑑⊥𝑖(𝑘)

ෝ𝒙 (𝑘|𝑘)

LOS

detector

Bias

correction

𝑟A2𝐴𝑖(𝑘)

ෝ𝒙𝑨𝑖(𝑘 − 1|𝑘 − 1)

𝑧A2A𝑖(𝑘) = 𝑟A2A𝑖(𝑘) 𝑧F2F𝑖(𝑘) = 𝑟F2F𝑖(𝑘) 𝑧ALT𝑖(𝑘) = 𝑑⊥𝑖(𝑘) 𝑧ZUPT𝑖(𝑘) = 𝟎𝟑×𝟏 ෝ𝒙𝐴𝑖(𝑘|𝑘 − 1)𝑧
LTE𝑖

𝑗(𝑘) = 𝑟
LTE𝑖

𝑗(𝑘)

𝛿𝑡A2𝐴𝑖(𝑘) 𝑝F2F𝑖(𝑘)

LOS

detector

Bias

correction

𝑟F2F𝑖(𝑘)

𝛿𝑡F2F𝑖(𝑘)

ZUPT

Base LTE

+

agent𝑖

Outlier detection

Figure 8.2: Framework for the developed Pedestrian Indoor Navigation system integrating
Deterministic, Opportunistic, and Cooperative functionalities (PINDOC). The deterministic
module produces navigation solutions for each agent with a Zero-velocity-UPdaTe (ZUPT)-
aided Inertial Navigation Systems (INS) augmented with sensing modalities including al-
timeters and foot-to-foot range measurements. The opportunistic module enhances the de-
terministic solutions with pseudorange measurements collected based on cellular Long-Term
Evolution (LTE) Signal of OPportunity (SOP). Navigation accuracy of each individual agent
is further enhanced by cooperative localization using UWB-based inter-agent range measure-
ments.

The developed PINDOC system uses an EKF as the navigation filter. The developed frame-

work is illustrated in Figure 8.2. This section discusses the EKF framework that fuses the

deterministic, opportunistic, and cooperative localization approaches used in the PINDOC.

207

The EKF estimates the state vector x(k) for a group of N agents, expressed as:

x(k) = [x⊤A1
(k), x⊤A2

(k), . . . , x⊤AN
(k), x⊤LTE1

(k), x⊤LTE2
(k), . . . , x⊤LTEN

(k)]⊤,

where Ai denotes agent i in the group, and xAi
(k) and xLTEi

(k) are the states associated

with agent i, described as

xAi
(k) = [q⊤

Al
i
(k), v⊤

Al
i
(k),p⊤

Al
i
(k),b⊤

a,Al
i
(k),b⊤

g,Al
i
(k),

q⊤Ar
i
(k), v⊤Ar

i
(k), p⊤

Ar
i
(k),b⊤

a,Ar
i
(k),b⊤

g,Ar
i
(k)]⊤ ∈ R30×1

xLTEi
(k) = [cδtrxi(k), cδ̇trxi(k)]

⊤ ∈ R2×1,

where qAl
i
(k), vAl

i
(k),pAl

i
(k),ba,Al

i
(k), and bg,Al

i
(k) represent states of the left foot of agent i,

including orientations, velocities, positions in the navigation frame, and accelerometer and

gyroscope biases in the sensor body frame. qAr
i
(k), vAr

i
(k),pAr

i
(k),ba,Ar

i
(k), and bg,Ar

i
(k) are

the corresponded states of the right foot agent i. cδtrxi(k) and cδ̇trxi(k) indicate the speed of

light, c, multiplied by estimated clock bias and drift of an LTE receiver mounted on agent i.

This expression of xLTEi
(k) has a unit of meter, which is beneficial for numerical calculations,

as compared to directly using clock bias and drift.

8.2.1 Deterministic

The deterministic approach is used in the prediction step of the EKF and corrects the states

in the update step with sensor measurements acquired from self-contained sensors mounted

on the shoes of the same agent. The self-contained sensors include two sets of an IMU, an

altimeter, and a UWB. One set of sensors is mounted on each foot of the agent.

208

Strapdown Inertial Navigation Systems

In the prediction step, the state propagation is implemented by inputting the IMU mea-

surements on each foot to the strapdown inertial navigation systems [198]. The linearized

state transition matrix corresponding to strapdown INS, denoted as FINS(k), is expressed as

follows:

FINS(k) = eAINS(tk)dt,

where dt is the sampling rate of the system and

AINS(t) =

AA1(t) 030×30 . . . 030×30

030×30 AA2(t)
...

...
. . . 030×30

030×30 . . . 030×30 AAN
(t)

,

with

AAi
(t) =

AAl
i
(t) 015×15

015×15 AAr
i
(t)

 ,
and

AAl
i
(t) =

03×3 03×3 03×3 −C(qAl
i
(k)) 03×3

[
−→
fl

n×] 03×3 03×3 03×3 C(qAl
i
(k))

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

.

209

Here, [
−→
fl

n×] is the skew-symmetric cross-product-operator of the accelerometer outputs of

the left IMU, expressed in the navigation frame. C(q) is the DCM corresponding to the

quaternion vector q. 0n×m indicates a zero matrix having n number of rows and m number

of columns. AAr
i
(t) is constructed in the same manner as AAl

i
(t) except that the states

corresponding to the right foot are used.

The process noise matrix corresponding to strapdown INS, denoted as QINS(k), is expressed

as

QINS(k) =

QA1
(k) 030×30 . . . 030×30

030×30 QA2
(k)

...

...
. . . 030×30

030×30 . . . 030×30 QAN
(k)

,

QAi
(k) =

QAl
i
(k) 015×15

015×15 QAr
i
(k)

 ,
with QAl

i
(k) =

σ2
ARWI3×3 03×3 03×3 03×3 03×3

03×3 σ2
VRWI3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 σ2
AcRWI3×3 03×3

03×3 03×3 03×3 03×3 σ2
RRWI3×3

.

Here, In×n is the identity matrix having n number of rows and columns. σ2
ARWi

, σ2
VRWi

, σ2
RRWi

,

and σ2
AcRWi

are the ARW of the gyroscopes, the VRW of the accelerometers, the RRW of

the gyroscopes, and the AcRW of the accelerometers of the IMU mounted on the left shoe

of agent i. This section set QAr
i
(k) = QAl

i
(k) based on an assumption that two IMUs, each

mounted on the same agent’s left and right feet, have similar noise characteristics.

210

Zero-velocity Update

When a stance phase is detected, the ZUPT algorithm is activated to compensate for the

velocity state in the update step of the EKF. The compensation is done by feeding in pseudo-

measurements of zero velocity along the three axes, which is denoted as vZUPT(k) = 03×1.

In this section, the stance phase detection is achieved with the SHOE detector [181]. For

the states associated with the left and the right feet of agent i, the ZUPT measurement

models, zZUPTl
i
(k) and zZUPTr

i
(k), measurement matrices, HZUPTl

i
(k) and HZUPTr

i
(k), and

measurement covariance matrices, RZUPTl
i
(k) and RZUPTr

i
(k), are expressed as follows:

zZUPTl
i
(k) = zZUPTr

i
(k) = vZUPT(k)

HZUPTl
i
(k) =

0((i−1)×30+3)×3

I3×3

0(24+(N−i)×30+2N)×3

⊤

HZUPTr
i
(k) =

0((i−1)×30+18)×3

I3×3

0(9+(N−i)×30+2N)×3

⊤

RZUPTl
i
(k) = RZUPTr

i
(k) = σ2

ZUPTi
I3×3,

where σ2
ZUPTi

is the noise variance of the zero-velocity measurement vZUPT for agent i.

Altimeter Measurements

In pedestrian navigation, altitude measurements can be obtained from a barometer [91]

or, in a hybrid approach, using both barometer and ultrasonic sensors [92]. At time k,

altimeters mounted on the left and the right shoes of agent i provide measurements of

vertical displacements in the navigation frame, which are denoted as d⊥l
i
(k) and d⊥r

i
(k),

211

respectively. The altimeter measurements are used in the update step of the EKF to bound

error growth of estimated position along the vertical direction[91]. The measurement models

corresponding to the altimeter on the left and right feet of agent i, zALTl
i
(k) and zALTr

i
(k),

are described as follows:

zALTl
i
(k) = d⊥l

i
(k), zALTr

i
(k) = d⊥r

i
(k).

The associated measurement matrices are described as

HALTl
i
(k) =

[
01×((i−1)×30+8) 1 01×(21+(N−i)×30+2N)

]
HALTr

i
(k) =

[
01×((i−1)×30+23) 1 01×(6+(N−i)×30+2N)

]
.

The measurement noise covariance matrices are described as

RALTl
i
(k) = RALTr

i
(k) = σ2

ALTi
,

where σ2
ALTi

is the noise variance of the altimeter measurements for agent i.

Foot-to-foot Ranging Measurements

Distance measurements between the two feet of agent i, denoted as rF2Fi
(k), can be obtained

from various different sensing modalities, including ultrasonic sensors [213], foot-to-foot cam-

eras [94], electromagnetic systems [222], and UWB [263, 31]. In this section, UWB-based

foot-to-foot ranging measurements are used. The foot-to-foot range measurements are clas-

sified into LOS and NLOS by a power metric-based approach [264]. In this section, only LOS

UWB measurements are used. The range measurements are processed with bias correction.

The processed foot-to-foot measurements are fused in the update step of the EKF to com-

pensate for relative distances between the two feet [117]. The corresponding measurement

212

model, zF2Fi
(k), and measurement matrix, HF2Fi

(k), are described as follows:

zF2Fi
(k) = rF2Fi

(k)

HF2Fi
(k) =

0((i−1)×30+6)×1

∂||p
Al
i
(k)−pAr

i
(k)||⊤

∂p
Al
i

015×1

∂||p
Al
i
(k)

−pAr
i
(k)||⊤

∂pAr
i
(k)

0(6+(N−i)×30+2N)×1

⊤

.

The measurement noise covariance matrices are described as

RF2Fi
(k) = σ2

F2Fi
,

where σ2
F2Fi

is the noise variance of the foot-to-foot range measurements for agent i.

8.2.2 Cooperative

The cooperative localization approach is realized through inter-agent ranging measurements

obtained from UWB sensors attached to the right shoe of each agent. Similar to the foot-

to-foot range measurements, the measurements between agent i and agent h, denoted as

rA2Ah
i
(k), are classified into LOS and NLOS cases, and only LOS cases are used in the

update step of the EKF. The LOS measurements are further processed with bias correction.

Details of the implementation of the cooperative localization and the classification of LOS

and NLOS are documented in [261] and [262]. Assuming that i < h, the corresponding

inter-agent range measurement model, zA2Ah
i
(k), and measurement matrix, HF2Fh

i
(k), are

213

described as follows:

zA2Ah
i
(k) = rA2Ah

i
(k)

HA2Ah
i
(k) =

0((i−1)×30+21)×1

∂||pAr
i
(k)−pAr

h
(k)||⊤

∂pAr
i
(k)

0(6+(h−i−1)×30+21)×1

∂||pAr
i
,k−pAr

h
,k||⊤

∂pAr
h
,k

0(6+(N−h)×30+2N)×1

⊤

.

The measurement noise covariance matrices are described as

RA2Ah
i
(k) = σ2

A2Ah
i
,

where σ2
A2Ah

i
is the noise variance of the inter-agent range measurements between agent i and

agent h.

8.2.3 Opportunistic

In the developed framework, cellular LTE signals are utilized to provide absolute position-

ing measurements. This is achieved by exploiting LTE downlink signals opportunistically

in a base/rover LTE-DNN-SAN framework. Details of the LTE-DNN-SAN framework were

documented in [2]. In this developed framework, a “base” LTE receiver is located outside

the building and has access to GNSS signals. The base collects signals from multiple LTE

towers (also known as eNodeBs) in the environment. The positions of the eNodeBs are pre-

surveyed and assumed to be known (e.g., according to [134]). The base receiver estimates

the eNodeBs’ clock biases and shares this information with the indoor receivers denoted by

“rovers.” Each rover has a copy of the same LTE receiver used in the base unit; however,

214

a DNN-based SAN correction block is applied, in which the pedestrian’s motion is utilized

to synthesize a geometrically-separated antenna array from time-separated snapshots. This

allows for beamforming towards the LOS from the rover to the LTE eNodeB, while suppress-

ing multipath components. This process requires obtaining the LOS steering vector, which

is obtained by taking the nearest Direction-of-Arrival (DoA) estimate from the developed

DNN-DoA estimator to the LOS DoA estimated using the current estimate of the rover’s

position and the known LTE eNodeB positions. Figure 8.3 depicts the block diagram of the

LTE-DNN-SAN framework.

Preprocessing
and

Sampling Loops
and Tracking
Correlators

Data

Mitigation
MultipathData

Formulation

r
LTE

j
i
(k)

Figure 8.3: A block diagram depicting the LTE-DNN-SAN block diagram used in the devel-
oped PINDOC framework shown in Figure 8.2.

The EKF prediction step propagates the state xLTEi
(k) with following state transition matrix

FLTEi
(k) and process noise covariance QLTEi

(k)

FLTEi
(k) =

1 dt

0 1

QLTEi

(k) = c2

σδtrxidt+ σδ̇trxi
dt3

3
σδ̇trxi

dt2

2

σδ̇trxi
dt2

2
σδ̇trxi

dt,

where σδtrxi and σδ̇trxi

are parameters associated with clock quality. Details regarding mod-

eling of the clock bias and drift are documented in [3].

215

In the update step of the EKF, LTE psuedorange measurements are fused in a tightly-

coupled manner with the deterministic and the cooperative approaches. For LTE signals

that are transmitted from eNodeB j and received by LTE receiver on agent i, the associated

pseudorange measurement is denoted as rLTEj
i
(k). The location of eNodeB j is represented by

peNodeBj
. The corresponding measurement model, zLTEj

i
(k), measurement matrix, HLTEj

i
(k),

and measurement covariance matrix, RLTEj
i
(k), are described as follows:

zLTEj
i
(k) = rLTEj

i
(k)

HLTEj
i
(k) =

0((i−1)×30+21)×1

∂||pAr
i
(k)−peNodeBj

||⊤

∂pAr
i
(k)

0(6+(N−i)×30)×1

0((i−1)×2)×1

1

0(1+(N−i)×2)×1

⊤

RLTEj
i
(k) = σ2

LTEj
i

.

Here, σ2
LTEj

i

is an adaptive value based on c2 α

(C/N0)
j
i

, where (C/N0)
j
i is the signal-to-noise ratios

of the pseudorange measurement rLTEj
i
(k) and α is a tuning parameter that was chosen to

be 2.22 × 10−11 [3]. To detect and remove outliers from LTE observables, a rudimentary

innovation-based detector is implemented to filter out inconsistent LTE observables [68].

8.2.4 The EKF for PINDOC

The developed PINDOC combines the deterministic, opportunistic, and cooperative local-

ization approaches in the EKF. When each of the sensing modalities mentioned previously

becomes available, the EKF stacks all available measurements and performs the update step.

Settings of the noise parameters are determined based on noise characteristics of sensors in-

216

volved in the implementation.

8.3 System Hardware

This section discusses experimental hardware, shown in Figure 8.4, that is designed to eval-

uate navigation performance of the developed PINDOC.

8.3.1 Lab-On-Shoe Platform

The Lab-On-Shoe platform, shown in Figure 8.4, is responsible for acquisition of all sensor

measurements, except for foot-to-foot ranges, that are associated with the deterministic

localization. The Lab-On-Shoe was developed in Microsystems Lab at the University of

California, Irvine, as a reconfigurable multi-sensor pedestrian navigation testbed [18]. The

agent wears the Lab-On-Shoe platform on both left and right feet. Each shoe of the platform

includes an Analog Device ADIS16497−3 tactical-grade IMU, an MS5803−01BA barometric

altimeter, an SRF08 ultrasonic sensor, and two SRF02 ultrasonic sensors. The barometer

has a nominal resolution of 10 cm in vertical displacement measurement, and the ultrasonic

sensor has a range resolution of 1 cm. In this section, the ultrasonic sensors were not used in

the experiment discussed in Section 8.4. A microcontroller Teensy 3.2 is used to implement

digital communication protocols, including the I2C and SPI, to collect sensor measurements

on the Lab-On-Shoe platform. The sampling rate of IMUs and altimeters are 1000 Hz and 20

Hz, respectively. The collected measurements are transmitted to a laptop with the Universal

Asynchronous Receiver-Transmitter (UART) through a USB cable for data logging.

217

Deterministic

Opportunistic

Cooperative

Lab-On-Shoe Platform

Laird Cellular Antennas

- LTE Pseudoranges

Ultra-WideBand

(On Lab-On-Shoe)

- Inter-agent ranging

Laptop

- Store Lab-On-Shoe

and UWB Data

Ultrasonic

SRF08

Ultrasonic

SRF02
IMU

ADIS16497-3

Micro-controller

Teensy 3.2

UWB

DWM1000

Bluetooth

HC-05

Altimeter

MS5803-01BA

Lithium

battery

Cooperative

module

Ultrasonic

SRF08

Ultrasonic

SRF02

Bluetooth

HC-05

Micro-controller

Teensy 3.2

Lithium

battery

IMU

ADIS16497-3

Lab-On-Shoe platform

NI USRP-2955 Laptop

Battery Storage

Figure 8.4: Experimental setup used for investigation of the navigation performance of the
developed PINDOC. The deterministic localization approach was realized with the Lab-On-
Shoe platform, which integrated sensing modalities including IMUs, altimeters, and ultra-
sonic sensors. In this section, only IMU and altimeters were used. The opportunistic LTE-
based pseudoranges were collected by the Laird cellular Antennas and their corresponding
signal processing units. The cooperative modules mounted on the Lab-On-Shoe platform
included UWBs for foot-to-foot ranging and inter-agent ranging measurements. The laptop
was used in the experiment for data logging.

218

8.3.2 LTE Receivers and Processing Modules

LTE signals are used to realize the opportunistic approach for the developed PINDOC. Each

agent in the PINDOC carries a backpack where an LTE receiver is mounted and contains

an LTE receiver, a laptop, a battery, and a storage hard drive. The LTE receiver, developed

at the Autonomous Systems Perception, Intelligence, & Navigation (ASPIN) Laboratory [3],

is equipped with four consumer-grade cellular omni-directional Laird antennas, and a quad-

channel National Instruments (NI) Universal Software Radio Peripheral (USRP)−2955 is

used to simultaneously down-mix and synchronously sample LTE signals at 10 Megasamples

per second (Msps). The sampled LTE signals are transferred from the USRP−2955 via a

PCI Express cable and stored on a laptop for post-processing. The LTE measurements have

a sampling rate of 100 Hz.

8.3.3 Cooperative UWB Modules

One cooperative module, shown in Figure 8.4, is mounted on each shoe of the Lab-On-Shoe

platform. Each of the modules includes a UWB DWM1000, a microcontroller Teensy 3.2,

a Bluetooth device HC−05, and a lithium battery [262]. The microcontroller running at a

clock rate of 120 Mhz implements an UWB protocol to communicate with the UWB, and

the battery provides a power source for the entire module. The module on the left shoe of an

agent is paired up with the modules located on the right foot of all other agents and obtains

three pieces of information: range, Power Metric (PM), and agent identification (ID). PM

is the difference between the total received signal power and the direct-path signal power

and is used for LOS/NLOS detection. The range measurements are used for foot-to-foot

ranging when obtained from two UWBs mounted on the same agent and for inter-agent

ranging when collected from the sensors mounted on two different agents. The collected

measurements, including range, PM, and agent ID, are transmitted to nearby Teensy 3.2 on

219

the Lab-On-Shoe platform in UART communication protocol via the Bluetooth transmitter.

The sampling rate of the UWB range measurements is 10 Hz.

The developed pedestrian navigation testbed shown in Figure 8.4 was designed as a research

prototype to quickly and flexibly investigate different localization accuracy of algorithms

for pedestrian indoor navigation systems. In Figure 8.4, the hardware mounted on each

shoe of the Lab-On-Shoe systems, the LTE backpack, and handheld laptop weighted 237

g, 5.44 kg, and 1.53 kg, respectively. It has been demonstrated that it is possible to adapt

this pedestrian navigation testbed into a minimized wearable device for practical, real-life

applications. For the deterministic module, foot-mounted IMU systems, such as the Sugar-

Cube platform [84] and the OpenShoe module[144], with small form factors and real-time

positioning functionality have been developed; For the cooperative module, systems like

the TRX system [236] are commercially available. For the opportunistic module, it can be

implemented on a modern smartphone with the limitation of the number of available RF

Front-Ends and the available resources from the cellular modem. For implementing the full

capability of opportunistic navigation, hardware (i.e., cellular modem) modifications will be

required.

8.4 Experiment Validation

To evaluate navigation performance of the developed PINDOC, we conducted two series of

multi-agent pedestrian navigation experiments in an indoor environment at the Engineering

Gateway Building at the University of California, Irvine. This section describes the experi-

ment, presents the experimental results, and discusses the performance of the PINDOC.

220

8.4.1 Performance Metrics

This section considered seven performance metrics, including one computational complexity

metric and six different accuracy metrics, to evaluate the navigation performance of the

PINDOC. These metrics, listed in Table 8.3, are processing time, position RMSE, two-

dimensional (2D) RMSE, vertical (⊥) RMSE, position error SD, maximum displacement

error, and final position error. In this section, processing time was used to evaluate the

computational complexity of a localization solution. The processing time is calculated based

on the amount of time for the 2021a MATLAB program, operating on a laptop with an AMD

Ryzen 9 5900HS Central Processing Unit (CPU) running at a clock rate of around 4 GHz,

to compute a navigation solution based on collected sensor measurements.

The six accuracy metrics were chosen so that the navigation performance of the developed

PINDOC can be conveniently compared with the localization accuracy of other indoor nav-

igation systems developed in the literature. Among these six metrics, RMSE is often used

to evaluate an estimated localization solution when reference trajectories along the three

dimensions are available. 2D RMSE and ⊥ RMSE are used as benchmarks when estimated

positioning solutions emphasize accuracy in the horizontal and the vertical directions, re-

spectively. Position error SD is used to quantify variations of displacement error. Maximum

displacement error is used to investigate the worst-case scenarios of an estimated position.

Finally, final position error is often used to evaluate dead-reckoning systems, which have

localization errors accumulating with time, in navigation experiments where obtaining ref-

erence trajectories is challenging. For example, in many pedestrian navigation experiments

involving using foot-mounted IMUs [1], the trajectories could cover large indoor areas, on

the order of 50−100 [m], and include a combination of complex terrains, such as flat planes,

stairs, ramps, ladders, and elevators. Deploying a high-precision position reference system

like the Opti-Track [250] or the Vicon [15] in such environments can be very expensive, and

therefore, final position errors are used in these scenarios.

221

44

46

48

50

52

20

10

0

-5-10 05101520253035

Elevator

Staircase

Stairs

1F

2F
3F

Check points

8
6
4
2
0

20

10

0
-10

35

-50510152030 25

D
ow

n,
 m

UWB

Start (R)
Path (R)

End (R)

Start (L)
Path (L)

End (L)

Agent 3

Agent 2

Check points

(a)

(b)

1F

2F

3F

Start & End Location
Lat: 33.64324643
Lon: 117.84011346
Alt: 23 m

50 m

8 m

15 m

10 m

Staircase

Hallways

RampsElevator

Agent 1

Figure 8.5: (a) Point cloud map of the experimental scenario generated with LiDAR and
camera modules installed on iPhone 12 Max Pro. (b) The blue and the red curves represent
navigation solutions of the two feet of agent No.1 estimated by the developed PINDOC
implementing the ZUPT-aided INS augmented by altimeters, foot-to-foot ranging, and inter-
agent ranging measurements in the experiment discussed in Section 8.4. The blue star and
the red star marked the locations of stationary agent No.2 and agent No.3 in the navigation
frame. The green triangles represent checkpoints that were used to evaluate the in-trajectory
localization performance of the navigation solutions.

222

Table 8.1: LTE ENodeBs’ Charactestics

eNodeB

Carrier

frequency

[MHz]

NCell
ID

Bandwidth

[MHz]

Cellular

provider

1 2125 223 20 Verizon

2 1955 11 20 AT&T

3 2145 441 20 T-Mobile

4 2112.5 401 20 AT&T

8.4.2 Experiment #1: One Moving Agent, Two Stationary Agents

Experiment Descriptions

The experiment involved three agents. Agent No.1, shown in Figure 8.4, was equipped with

the deterministic, opportunistic, and cooperative hardware. Agent No.2 and agent No.3

were both equipped with a set of the cooperative module. Figure 8.5(a) illustrates the

experimental scenario, which is presented with point cloud points collected with a LiDAR

module and cameras installed in an iPhone 12 Max. At the beginning of the experiment,

agent No.1 stood outside of the first floor of the building for one minute to initialize the

system. The GNSS and the altimeter mounted on agent No.1 obtained the initial position

in latitude, longitude, and altitude during this period. The LTE receiver was initialized and

started to track signals transmitted from four eNodeBs. The eNodeBs’ characteristics are

summarized in Table 8.1. In the initialization process, accelerometer and gyroscope biases

of the IMUs were calibrated. Noise parameters used in the EKF for PINDOC are listed in

Table 8.2.

After the initialization step, agent No.1 walked inside the building with a trajectory repre-

sented by the blue and the red curves in Figure 8.5(b). The trajectory of the experiment

included flat planes, stairs, ramps, and elevators. The length of the path was around 600

223

Table 8.2: Parameters for the EKF

Hyper-parameter Value

σARW1 2.7221× 10−5

σVRW1 0.0017

σRRW1 8.3174× 10−7

σAcRW1 6.63× 10−6

σZUPT1 0.02

σALT1 0.1

σF2F1 0.1

σA2A1 1

σLTE1

√
c2 2.22×10−11

(C/N0)

σδtrxi 1.3× 10−22

σ̇δtrxi 7.8957× 10−25

meters, and the duration was approximately 14 minutes. During the experiment, agent No.1

passed by the checkpoints marked with the green triangles in Figure 8.5(b). The locations

of the checkpoints were measured with an industrial ruler. The experiment was recorded

using a smartphone camera, and the timestamps at which the agent passed through each

checkpoint were visually determined from the video. During the entire experiment, agent

No.2 and agent No.3 remained stationary at the location marked by the red and blue star

markers in Figure 8.5(b). The UWB sensors mounted on the right shoe of agent No.1 had an

LOS connection with agent No.2 from 250 s to 310 s and with agent No.3 from 430 s to 485

s. Communication was lost in other periods of time because the UWB modules were too far

apart and due to obstacles between the UWB modules. The measurements collected in this

experiment indicate that the maximum communication range for the UWBs was around 30

[m] when there was a clear path for signals to be transmitted.

224

Experimental Results

This section compares the navigation performance for agent No.1 using the developed PINDOC

implemented in different configurations. Different configurations of the PINDOC use the

ZUPT-aided INS, augmented by different combinations of various sensing modalities, namely

altimeter (ALT), foot-to-foot ranging (F2F), inter-agent ranging with agent No.2 (A2) and

agent No.3 (A3), and cellular LTE pseudorange measurements. Trajectories estimated by

the different configurations are presented in Figure 8.6.

To quantify the localization error at each checkpoint for each navigation solution, the seven

performance metrics discussed in Section 8.4.1 were used. Table 8.3 summarizes the perfor-

mance of the navigation solutions using the PINDOC implemented in different configura-

tions. The accuracy values presented in Table 8.3 were calculated based on the 38 checkpoints

marked by the green triangles in Figure 8.5. For the configurations where foot-to-foot rang-

ing measurements were not involved, the accuracy metrics were calculated based on solutions

of agent No.1’s right foot as inter-agent range measurements were collected with the UWB

module mounted on the right foot. The top item Table 8.3, which is PINDOC with con-

figuration G that uses ZUPT-aided INS augmented by ALT, F2F, A2, A3, and LTE had

the smallest RMSE of 0.93 [m]. The bottom item in Table 8.3, which is PINDOC with

configuration A, had the largest RMSE of 2.53 [m].

Discussion

The following remarks can be concluded from Table 8.3.

• It could be observed that enhancing the ZUPT-aided INS with more aiding methods

led to better navigation accuracy, however, with a trade-off of increasing computa-

tional complexity. The smallest displacement error was achieved with configuration

225

Figure 8.6: Navigation trajectories estimated by different configurations of the developed
PINDOC. In the plot of configuration K, only the trajectory associated with Agent 1’s right
foot was shown because, in the experiment, only the navigation solution of the right foot
was augmented with LTE pseudoranges. Error metrics of each of the configurations are
documented in TABLE 8.3.

226

Table 8.3: Navigation Performance of the developed PINDOC implemented in different
configurations.

ConFigure
INS Aiding Method Processing

RMSE [m]
2D ⊥

SD [m]
Max Final

ZUPT ALT F2F A2 A3 LTE Time (s) RMSE [m] RMSE [m] Error [m] Error [m]

G ✓ ✓ ✓ ✓ ✓ ✓ 231.7 0.93 0.69 0.62 0.44 2.23 1.28

F ✓ ✓ ✓ ✓ ✓ 211.6 0.93 0.69 0.62 0.44 2.23 1.32

D ✓ ✓ ✓ ✓ 211.0 0.94 0.71 0.62 0.43 2.23 1.32

E ✓ ✓ ✓ ✓ 210.9 0.95 0.72 0.62 0.46 2.23 1.68

I ✓ ✓ ✓ ✓ 227.0 0.96 0.74 0.62 0.45 2.23 1.64

C ✓ ✓ ✓ 210.3 0.97 0.75 0.62 0.46 2.23 1.76

J ✓ ✓ ✓ 234.0 1.07 0.87 0.62 0.48 2.44 1.51

B ✓ ✓ 207.4 1.64 1.52 0.59 0.75 2.9 2.55

K ✓ ✓ 227.9 1.97 1.65 0.67 0.88 7.74 3.2

H ✓ ✓ 222.0 2.48 0.90 2.32 1.87 10.02 10.02

A ✓ 191.5 2.53 0.49 2.48 1.9 10.3 10.3

G, which uses the INS aided by the ZUPT algorithm, altimeter, foot-to-foot ranging

measurements, the inter-agent range measurements from the other two agents, and

LTE pseudorange measurements.

• It could be observed that the maximum position errors did not always occur at the

end of the experiment. This could be because, for dead reckoning systems, estimation

errors on trajectory length get canceled out at return-to-home or loop-closure positions.

• In the configurations involving the LTE module, an innovation-based outlier detection

module, as discussed in Section 8.2.3, was used to produce the opportunistic naviga-

tion solutions. The outlier detection module detected if the LTE signal had large biases

caused by the multi-path effect. In the case of a positive detection, the LTE psuedo-

range measurement was not used to augment the navigation solutions. It is worth

mentioning that, in the experiment, it could be observed that the outlier detection

module indicated several positive detections, and therefore, not all the LTE signals

collected during the experiment were used in configuration G, H, I, and J. Neverthe-

less, when the outlier detection module showed negative detections, the opportunistic

solution provided compensation for absolute position errors, increasing navigation ac-

curacy.

227

• Configuration D and configuration E used deterministic solutions enhanced by inter-

agent measurements from only one agent, but the former configuration had a smaller

final displacement error. The difference was considered as a result of the experimental

setup that agent No.1 first passed by agent No.3 and then agent No.2. This setup

led to an advantage of configuration D that the position estimates were corrected by

the stationary agent at a later time, and therefore, the final position estimated by

configuration D had a smaller error than configuration E.

• In the cases of configurations A and H, where altimeter measurements were not used,

the final position errors are much larger than in the other configurations. For config-

uration A, the final error is larger because when operating in the moving elevator, the

stance phase detector used in the ZUPT algorithm would indicate that it is the stance

phase and correct the velocity to zero, while in reality, the altitude of the agent was

changing. In configuration H, it could be seen that augmenting the ZUPT-aided INS

with LTE measurements could reduce the error. However, the horizontal distance be-

tween the receiver is significantly larger than the altitude of the LTE towers. As such,

the agent’s cellular-based navigation solution Vertical Dilution Of Precision (VDOP)

will be large. Yet, LTE reduced the vertical errors slightly compared to standalone

ZUPT.

• In the developed PINDOC, aiding from LTE pseudorange measurements aims to com-

pensate for absolute position errors. In the presented experiment with a duration of 14

min and a trajectory length of 600 [m], the position errors in systems using only the

deterministic and cooperative approaches have not grown to large values. Therefore,

the compensation of errors provided by LTE signals was not significant. However, it is

expected that in navigation experiments with a longer duration, the LTE module will

play a significant role in bounding the position error growth of PINDOC and improving

navigation accuracy.

228

Cooperative
UWB module

Lab-On-Shoe Platform (Included
cooperative UWB module)

VectorNav IMU VN-200

Cooperative
UWB module

VectorNav IMU VN-200

Laptop

Laptop

Laptop

Agent No.1Agent No.2 Agent No.3

1.38 m 1.38 m

Figure 8.7: Experimental setup of the experiment discussed in Section 8.4.3.

8.4.3 Experiment #2: Three Moving Agents

Experiment Description

The second series of experiments involved three agents, all moving in the indoor environment

shown in Figure 8.5. The experimental setup is shown in Figure 8.7. Agent No.1 was

equipped with the Lab-On-Shoe platform integrated with the cooperative UWB modules

discussed in Section 8.3. Agent No.2 in Figure 8.7 mounted a VectorNav VN−200 IMU on

the left foot and attached a cooperative UWB module at the right shoulder. The position

of the UWB module was assumed to be 1.4 [m] above the foot-mounted IMU. Agent No.3

in Figure 8.7 mounted another VectorNav VN−200 IMU on the right foot and attached

another cooperative UWB module at the right shoulder. The position of the UWB module

on agent No.3 was assumed to be 1.3 [m] above the foot-mounted IMU. Both VN−200 IMUs

were configured to collect IMU measurements at a sampling rate of 800 Hz and altimeter

measurements at a sampling rate of 10 Hz. The UWB modules attached to agent No.2 and

agent No.3 were not connected with each other and were both programmed to be paired with

the cooperative UWB module integrated on the right shoe of the Lab-On-Shoe platform used

229

by agent No.1. In Figure 8.7, the location of agent No.1’s right foot was considered as the

origin of the local coordinate frame, which had the same global coordinates as the starting

position shown in Figure 8.5. The starting positions of the other two agents were 1.38 [m]

apart from the origin, as shown in Figure 8.7.

At the beginning of the experiment, the three agents stood stationary at their starting

positions for 15 seconds. During this period, all IMUs were calibrated. Then, agent No.3

first walked inside the building, followed by agent No.2 and then agent No.3. Figure 8.8

presents the trajectories of the three agents. The duration of the experiment was around

12.5 minutes and the lengths of the trajectories corresponding to agent No.1, agent No.2, and

agent No.3 were around 600 [m], 540 [m], and 550 [m], respectively. The three agents traveled

on different terrains, including flat planes, stairs, slopes, and elevators. From timestamps of

420 s to 443 s and from 568 s to 596 s, agent No. 2 entered office spaces and did not have

LOS UWB range measurements with agent No.1. From timestamps of 346 s to 422 s, agent

No.3 entered a laboratory space and did not have LOS UWB range measurements with agent

No.1. At the end of the experiment, the three agents returned to their starting positions.

Experimental Results

In this experiment, we used the loop-closure error, described in Section 8.4.1, as the accu-

racy metric to compare the PINDOC system implemented in different configurations. Four

different PINDOC configurations involving ZUPT, ALT, F2F, and CL, were used to produce

navigation solutions for agent No.1, and three different PINDOC configurations involving

ZUPT, ALT, and CL, were used to estimate navigation solutions for agent No.2 and agent

No.3. In the case of CL, inter-agent range measurements between agent No.1 and agent No.2

as well as the range measurements between agent No.1 and agent No.3 were used. Table 8.4

presents the navigation accuracy of the different configurations for different agents.

230

0
2
4
6
8

20

10

0

-10-10 -505101520253035

D
ow

n,
 m

0
2
4
6
8

20

10

0

-10-10 -505101520253035

D
ow

n,
 m

0
2
4
6
8

20

10

0

-10-10 -505101520253035

D
ow

n,
 m

Agent No.1Agent No.2 Agent No.3

Start (A1: R)

Path (A1: R)

End (A1: R)

Start (A1: L)

Path (A1:L)

End (A1: L)

Start (A3)

Path (A3)

End (A3)

Start (A2)

Path (A2)

End (A2)

0

2

4

6

8

20

10

0

-10-5-10 05101520253035

D
ow

n,
 m

3F

2F

1F

entered a room on 2F

Agent No.3 entered
a room on 2F

Agent No.2 entered a
room on 3F

35 30 25 20 15 10 5 0 5 -10

20

10

0

-10

8
6
4
2
0

35 30 25 20 15 10 5 0 5 -10

20

10

0

-10

8
6
4

0
2

35 30 25 20 15 10 5 0 5 -10

20

10

0

-10

8
6
4

0
2

35 30 25 20 15 10 5 0 5 -10

20

10

0

-10

8
6
4

0
2

Trajectories of three agents estimated by the PINDOC system in Experiment #2

Figure 8.8: The top plot shows the navigation solutions of the three agents produced by
the PINDOC system in the experiment discussed in Section 8.4.3. The bottom three plots
separately present the same navigation solution of each agent. Agent No.1’s trajectories were
generated with the ZUPT-aided INS augmented with altimeter measurements, foot-to-foot
ranging, and inter-agent ranging measurements. Agent No.2 and agent No.3’s trajectories
were generated with the ZUPT-aided INS augmented with altimeter measurements, and
inter-agent ranging measurements.

Discussion

Three remarks could be made based on the experimental results shown in Table 8.4.

• The navigation solutions of the three agents based on standalone ZUPT-aided INS

had the largest errors because the stance phase detector used in the ZUPT algorithm

indicated stationary phases when the agents were inside a moving elevator, leading to

falsely updating the velocity estimate to zero. The errors introduced by the elevator

were also discussed previously in Section 8.4.2. When altimeters were used to enhance

the navigation solutions, the errors associated with the three agents were reduced.

• when inter-agent range measurements were used, the errors of agent No. 2 and agent

231

Table 8.4: Navigation errors of the PINDOC implemented in different configurations in an
experiment discussed Section 8.4.3

Agent
INS Aiding Method Final

Error [m]ZUPT ALT F2F CL

No.1

✓ ✓ ✓ ✓ 0.35

✓ ✓ ✓ 0.44

✓ ✓ 0.84

✓ 10.27

No.2

✓ ✓ ✓ 0.82

✓ ✓ 4.25

✓ 13.41

No.3

✓ ✓ ✓ 1.15

✓ ✓ 4.38

✓ 15.83

No.3 were greatly reduced while the error of agent No.1 had only a marginal improve-

ment. This phenomenon was because, as compared to the IMUs on the Lab-On-Shoe

platform, the VectorNav IMUs mounted on agent No.2 and agent No.3 had higher noise

levels and biases, leading to position uncertainties growing faster than the uncertain-

ties of agent No.1. As a result, inter-agent range measurements had larger impacts on

positions of agent No.2 and agent No.3 in this experiment than those of agent No.1.

• Among all the PINDOC implementations used in the experiment, the implementation

using ZUPT-aided INS augmented with altimeter, foot-to-foot ranging, and inter-agent

ranging had the smallest loop-closure errors of 0.35 [m] for agent No.1, 0.82 [m] for

agent No.2, and 1.15 [m] for agent No.3. The trajectories of the three agents estimated

by the later PINDOC implementation are presented in Figure 8.8.

232

8.5 Conclusion

This chapter discussed the PINDOC, which is a multi-agent pedestrian navigation system

integrating the deterministic, the opportunistic, and the cooperative functionalities. The

deterministic module uses sensing modalities, including IMUs, altimeters, and foot-to-foot

range measurements. The opportunistic module utilizes cellular LTE pseudorange measure-

ments, corrects clock biases with a base/rover framework, and mitigates multipath effect by

LTE-SAN. The cooperative module enhances the navigation accuracy of each agent with

UWB-based inter-agent range measurements. A dedicated multi-sensor hardware platform

was developed and used to conduct an experiment with the platform to evaluate the nav-

igation performance of the developed PINDOC. The experiment was a 14-min and 600-m

indoor pedestrian navigation task involving three agents, two of which were stationary and

one of which was walking on terrains of flat surfaces, stairs, ramps, and elevators. This

chapter compared navigation accuracy using different configurations of the PINDOC for the

moving agent. The experimental results showed that the configuration using ZUPT-aided

INS enhanced by altimeters, foot-to-foot ranging, inter-agent ranging from the other two

agents, and LTE pseudoranges had an position RMSE of 0.93 [m] and a position error SD

of 0.44 [m], which are the best navigation accuracy, as compared to other configurations of

the developed PINDOC. We conclude that the developed PINDOC had a navigation error

of less than 1 meter in terms of position RMSE in the experiment. The results presented in

this chapter have been published in [83].

233

Chapter 9

On Estimation Filter − SLAMing With

UWB and Foot-mounted IMU

9.1 Introduction

This chapter discusses a SLAM framework based on foot-mounted IMUs and UWB, referred

to as the UWB-Foot-SLAM, that allows for bounding position error growth of a ZUPT-aided

INS along the 3-axis. The rest of this chapter is organized as follows. Section 9.2 presents

theory, implementation, and experimental validation of the UWB-Foot-SLAM, Section 9.3

presents the UWB-Foot-SLAM2 algorithm that uses two additional self-contained fusion

solutions to enhance the original UWB-Foot-SLAM, and Section 9.4 concludes this chapter

with a highlight of the experimental results.

234

Unlocalized
UWB Beacon

Localized
UWB Beacon

Accurate foot-mounted IMU
Bounded position error of

foot-mounted IMU

Mapping Localization

Updates
beacon
positions

Updates
IMU
positions

Figure 9.1: Concept of the developed UWB-Foot-SLAM.

9.2 The Original UWB-Foot-SLAM

In this section, we develop an algorithm of Simultaneous Localization And Mapping using

both UWBs and foot-mounted IMUs referred to as UWB-Foot-SLAM. The developed UWB-

Foot-SLAM, illustrated in Figure 9.1, is designed to use UWB range measurements to bound

position errors of ZUPT-aided INS using foot-mounted IMUs without the need to pre-deploy

and pre-survey the UWB beacons. The developed UWB-Foot-SLAM algorithm considers

that a pedestrian performing navigation is equipped with hardware consisting of a foot-

mounted platform that integrates an IMU and a UWB module and multiple standalone UWB

beacons. During a navigation task, the pedestrians deploy the unknown UWB beacons in

the environments. The developed UWB-Foot-SLAM algorithm sets locations of these UWB

beacons as states to be estimated in an EKF framework and leverages a property of the

ZUPT-aided INS that the system has very high position accuracy at the beginning of an

235

ZUPT

Environment-Deployed

UWB

Foot-mounted

IMU

Strapdown
INS

Stance phase
Detector

Estimated navigation results

Extended Kalman Filter

UWB Beacon NUWB Beacon 1 …

Range Range RangeVelocity

Orientation
Velocity
Position

UWB Beacon 2

Range

Figure 9.2: Block diagram illustrating the developed UWB-Foot-SLAM algorithm. The
algorithm involved a foot-mounted IMU, a foot-mounted UWB, and several UWB beacons
to be deployed in an operating environment during a navigation task.

operation. During this period, the localization solution of the ZUPT-aided INS is used

to estimate unknown UWB beacons’ locations based on range measurements between the

foot-mounted UWB and the UWB beacons. When the estimation uncertainty of the UWB

beacon’s location reaches a sufficiently low value, the UWB range measurements are used to

provide position compensation for the ZUPT-aided INS.

This section is organized as follows. Section 9.2.1 describes the algorithm of the developed

UWB-Foot-SLAM, Section 9.2.2 discusses a hardware prototype developed to validate the

developed algorithm, Section 9.2.3 presents the results of two different experiments and

concludes the section with a highlight of the results.

9.2.1 Algorithm Design

Overview

The developed UWB-Foot-SLAM simultaneously localizes a pedestrian’s positions and maps

positions of unknown beacons with measurements collected from a foot-mounted IMU, a foot-

mounted UWB sensor, and several UWB sensors to be deployed in a surrounding environment

236

during navigation. Figure 9.2 shows a block diagram illustrating the developed UWB-Foot-

SLAM algorithm. To differentiate UWB sensors for different usages, we will refer to a UWB

sensor mounted on the foot as a foot-mounted UWB and a UWB deployed in a navigation

environment as a UWB beacon in the rest of the text. We consider a UWB beacon to have two

statuses: unlocalized and localized. An unlocalized UWB beacon has an estimated position

uncertainty significantly larger than the position uncertainty of a foot-mounted IMU, while

the position uncertainty of a localized UWB beacon is similar to or smaller than that of the

foot-mounted IMU. All of the UWB beacons when first deployed are considered to be in the

unlocalized status.

In our developed UWB-Foot-SLAM, localization of a pedestrian utilizes a combination of

the ZUPT-aided INS and foot-to-beacon range measurements collected from a pair of foot-

mounted UWB and a localized UWB beacon. If a UWB beacon is in the unlocalized status,

its range measurements would have minimal numerical impacts on the estimated pedestrian’s

positions. Mapping of the developed UWB-Foot-SLAM estimates unlocalized beacons’ posi-

tions using the knowledge of a pedestrian’s current position and foot-to-beacon range mea-

surements collected from a pair of foot-mounted UWB and the unlocalized UWB beacons.

The localization and mapping steps are both achieved with an EKF. After initialization

of the EKF, the filter enters the mapping step. In this step, the uncertainties of the UWB

position states are reduced, and the uncertainties of the foot-mounted IMU position states in-

crease. After operating for a while, the filter performs the localization step, and the position

error growth of the foot-mounted IMU is bounded.

Extended Kalman Filter

The developed UWB-Foot-SLAM algorithm is realized in an EKF framework, shown in

Figure 9.2. N number of beacons are assumed to be involved in a navigation task.

237

Filter States The EKF uses states that includes orientations, velocities, and positions of

a foot-mounted IMU as well as the positions of UWB beacons. The states are expressed as

follows:

xk =

[
q⊤k v⊤k p⊤

k b⊤
g,k b⊤

a,k p⊤
B1,k

. . . p⊤
BN ,k

]⊤
,

where qk, vk, and pk ∈ R3×1 are the orientation, velocity, and position states of an agent

expressed in the navigation frame. bg,k and ba,k ∈ R3×1 are the gyroscope and accelerometer

biases along the three axes of the IMU body frame. pB1,k, . . . ,pBN ,k ∈ R3×1 represent the

position of the N UWB beacons being deployed.

Filter Initialization In the beginning of a navigation task, we assumed a pedestrian would

remain stationary for a short period. The initial roll angle, θ0, and pitch angle, ϕ0, are

expressed as follows:

θ0 = tan−1(
−āy
−āz

), ϕ0 = tan−1(
āx√

ā2y + ā2z

),

where āi indicate the averaged ith-axis accelerometer readings collected during the initial-

ization period. The initial yaw angle, ψ0, can be determined with additional sensors, such as

a magnetometer. The initial position, p0, and velocity, v0, can be determined with external

localization systems. Accelerometer states, ba,0, is set to zeros. Initial gyroscope biases, bg,0,

are expressed as

bg,0 =

[
ω̄x ω̄y ω̄z

]⊤
,

where ω̄i indicates the averaged ith-axis gyroscope readings collected during the initialization

period.

238

When a UWB beacon with an IDentification (ID) number j is first connected to the foot-

mounted UWB at time k, the developed UWB-Foot-SLAM sets the initial beacon positions,

denoted as pBj ,0
, with the current position of the foot-mounted IMU, pk. The corresponding

initial position uncertainties, σpBj
,0, are initialized with the size of a navigation environment.

pBj ,0
and σpBj

,0 are expressed as follows.

pBj ,0
= pk, σpBj

,0 = A,

where A is the dimension of a navigation environment.

Prediction Step In the prediction step of the EKF, the states corresponding to the foot-

mounted IMU, including qk, vk,pk,bg,k, and ba,k, are propagated with the strapdown INS

algorithm [198]. The position states of the beacons are assumed constant. The EKF propa-

gation matrix, denoted by Ak, is expressed as follows

Ak =

AINS,k 015×3N

03N×15 03N×3N

AINS,k =

03×3 03×3 03×3 −C(qk) 03×3

[
−→
f n×] 03×3 03×3 03×3 C(qk)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

.

Here, [
−→
f n×] is the skew-symmetric cross-product-operator of the accelerometer outputs of

the IMU, expressed in the navigation frame. C(q) is the Directional Cosine Matrix (DCM)

corresponding to the quaternion vector q. 0n×m indicates a zero matrix having n number of

rows and m number of columns. The corresponding process noise matrix, denoted as Qk, is

239

expressed as

Qk =

QINS,k 015×3N

03N×15 03N×3N

 ,
with QINS,k =

σ2
ARWI3×3 03×3 03×3 03×3 03×3

03×3 σ2
VRWI3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 σ2
AcRWI3×3 03×3

03×3 03×3 03×3 03×3 σ2
RRWI3×3

.

Here, In×n is the identity matrix having n number of rows and columns. σ2
ARW, σ2

VRW, σ2
RRW,

and σ2
AcRW are the ARW of the gyroscopes, the VRW of the accelerometers, the RRW of the

gyroscopes, and the AcRW of the accelerometers of the foot-mounted IMU.

Update Step When a stance phase is detected, the ZUPT algorithm is activated to com-

pensate for the velocity state in the update step of the EKF. The compensation is done

by feeding in pseudo-measurements of zero velocity along the three axes, which is denoted

as vZUPT,k = 03×1. In this section, the stance phase detection is achieved with the SHOE

detector [181], which determines a stance phase if a test statistics, T (un) =

1

M

∑
k∈Ωn

(
1

σ2
VRW

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ARW

∥ yωk ∥2) < γ,

where un = {yk}k=N−1
k=n with yk = [yαk , y

ω
k]

⊤, yαk is 3-axis accelerometer measurements at

time k, yωk is 3-axis gyroscope measurements at time k, g is the gravitational constant,

Ωn = {l ∈ N, n ≤ l < M − 1} is a collection of the sensor measurement indexes at time n

with a window of length M , and γ are user-defined thresholds.

240

The ZUPT measurement models, zZUPT,k, measurement matrices, HZUPT,k, and measurement

covariance matrices, RZUPT,k are expressed as follows:

zZUPT,k = vZUPT,k

HZUPT,k =

[
03×3 I3×3 0(9+3N)×3

]
RZUPT,k = σ2

ZUPTI3×3,

where σ2
ZUPT is the noise variance of the zero-velocity measurement vZUPT.

When a ith UWB measurement, denoted as rUWBi,k, becomes available, the measurements

are first classified into Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) cases, and only LoS

cases are used in the update step of the EKF. This section uses a probabilistic power metric

approach to differentiate LoS and NLoS UWB measurements [32]. The LoS measurements

are further processed with bias correction through a curve-fitting approach. The correspond-

ing foot-to-beacon range measurement model, zUWBi,k, measurement matrix, HUWBi,k, and

measurement noise matrix, RUWBi,k, are described as follows:

zUWBi,k = rUWBi,k

HUWBi,k =

06×1

∂||pk−pBi,k
||⊤

∂pk

0(6+3(i−1))×1

∂||pk−pBi,k
||⊤

∂pBi,k

03(N−i−1)×1

⊤

RUWBi,k = σ2
UWBi

,

where σ2
UWBi

is the noise variance of the foot-to-beacon range measurements between the

foot-mounted UWB and the ith UWB beacon.

241

IMU ADIS16497-3
IMU ADIS16497-3

SD card (16 GB)

SD card (16 GB)

Battery (1Ah)

Battery (1Ah)

Ultrasonic SRF-08

UWB
DWM1000

Microcontroller
Teensy 4.0

Microcontroller
Teensy 4.0

Altimeter
MS-5803-01BA

Altimeter
MS-5803-01BA

UWB DWM1000
UWB DWM1000

Microcontroller
Teensy 3.2

Microcontroller
Teensy 3.2

Battery

Reconfigurable multi-sensor pedestrian navigation testbed (Lab-On-Shoe platform)

PEdestrian ultra-wideBand Beacon Localization Enhancement Systems (PEBBLES)

Figure 9.3: Experimental setup. The setup included the Lab-On-Shoe platform and the
PEBBLE system. The Lab-On-Shoe platform included multiple sensing modalities. This
section only used the IMU and UWB mounted on the left foot.

9.2.2 System Design

To realize the developed UWB-Foot-SLAM algorithm, we developed a reconfigurable multi-

sensor pedestrian navigation testbed, referred to as the Lab-On-Shoe platform, and multiple

integrated UWB beacon units, referred to as PEdestrian ultra-wideBand Beacon Localization

Enhancement (PEBBLE) systems. This section discusses both the hardware and firmware

implementation of the developed prototype.

242

SPI

IMU
(ADIS16497-3)

Barometer
(MS5803-01BA)

Foot-to-foot Ultrasonic
Sensors (SRF02 & SRF08)

Anchor UWB
(DWM1000)

IMU
(ADIS16497-3)

Barometer
(MS5803-01BA)

Foot-to-foot Ultrasonic
Sensors (SRF02 & SRF08)

Tag UWB
(DWM1000)

Microcontroller
(Teensy 4.0)

Microcontroller
(Teensy 4.0)

Bluetooth
(HC-05)

Bluetooth
(HC-05)

Microcontroller
(Teensy 3.2)

Microcontroller
(Teensy 3.2)

UART

UART

SPI

SPI SPI I2C I2C

I2CI2CSPI

UART

UART

Microcontroller
(Teensy 3.6)

SD card
(16 GB)

Microcontroller
(Teensy 3.6)

SD card
(16 GB)

SPI

UART

UART

Tag UWB
(DWM1000)

Microcontroller
(Teensy 3.2)

SPI

Lab-On-Shoe platform

Left

Right

UWB Beacon 1

Tag UWB
(DWM1000)

Microcontroller
(Teensy 3.2)

SPI

UWB Beacon N

.

.

.

PEBBLE system

Figure 9.4: Block diagram illustrating firmware of the Lab-On-Shoe platform and the PEB-
BLE system.

Hardware Implementation

Figure 9.3 presents the developed experimental prototypes. The Lab-On-Shoe platform was

previously developed as a flexible hardware testbed at the Microsystem Laboratory at the

University of California, Irvine, with the purpose of investigating sensor fusion solutions for

integrated pedestrian inertial navigation system [83, 18, 82]. In this section, we upgraded

the platform. On each shoe, we integrated multiple COTS components, including three

Teensy micro-controllers, an Analog Device IMUs ADIS16497−3, a barometric altimeter

MS−5803−01BA, two ultrasonic range sensor SRF02, a UWB module DWM1000, and a

SD card. The three Teensy microcontrollers are Teensy 4.0, Teensy 3.6, and Teensy 3.2,

having CPU clock rates of 600 [MHz], 180 [MHz], and 96 [MHz], respectively. The SD card

module was a built-in module on the Teensy 3.6 microcontroller. All the components were

firmly mounted on a customized 3D-printed PolyLactic Acid (PLA) fixture. Each UWB

beacon in the PEBBLE system included a microcontroller Teensy 3.2 and a UWB module

DWM1000. The Lab-On-Shoe platform and the PEBBLE system were both powered up

with 5.0-V lithium-ion batteries.

243

Firmware Implementation

Figure 9.4 presents a block diagram describing firmware schematics implemented on the Lab-

On-Shoe platform and the PEBBLE system. On the Lab-On-Shoe platform, the Teensy 3.2

microcontroller collected information on the connected node ID number and measurements

of range, transmitter power, receiver first pulse power, and power metrics at a rate of 10 [Hz]

from the DWM1000 UWB module via the SPI communication protocol. The DWM1000

module mounted on the left shoe was programmed to operate in the anchor mode, and the

module mounted on the right shoe was in the tag mode. The collected measurements were

transmitted to the Teensy 4.0 microcontroller via the UART communication protocol. On the

Teensy 4.0 microcontroller, we implemented the SPI protocol to collect IMU measurements

at a rate of 1000 [Hz] as well as the I2C communication protocol to collect pressure and

thermal measurements from the MS5803−01BA barometer at a rate of 25 [Hz] and inter-

foot ranging measurements from the two SRF02 ultrasonic sensors at a rate of 25 [Hz]. After

all the sensor measurements were collected at each implementation loop, the Teensy 4.0

transmitted the measurements to the Teensy 3.6 microcontroller via UART communication

protocol. The Teensy 3.6 microcontroller implemented the SPI protocol to write all the

received measurements to an SD card.

On the PEBBLE system, the Teeny 3.2 microcontroller implemented the SPI communication

protocol to collect information on the connected node ID number and measurements of range,

transmitter power, receiver first pulse power, and power metrics at a rate of 10 [Hz]. All

the UWB modules in the developed PEBBLE system were programmed to operate in the

tag mode. A DWM1000 UWB operating in the tag mode can only be paired with a UWB

operated in the anchor mode, and the range measurements between the two UWBs were

obtained through a two-way ranging method. Therefore, all the UWB modules involved in

the PEBBLE system, when within a detectable range, were connected only to the UWB

mounted on the left shoe of the Lab-On-Shoe platform.

244

9.2.3 Experimental Validation

We conducted two experiments to validate the developed UWB-Foot-SLAM using the de-

veloped Lab-On-Shoe platform and the PEBBLE system.

Scenarios #1: A Small Area With Reference Motion Capture Cameras

In the first experiment, a subject was equipped with the Lab-On-Shoe platform and carried

two UWB beacons. Figure 9.5 shows the experimental scenario. The subject walked a close-

loop trajectory along a square shape in a 6 [m] by 6 [m] area for around 3 minutes, resulting

in a trajectory length of around 140 [m]. In the beginning of the experiment, the subject

stood still at the origin for 10 seconds. Two beacons, denoted as beacon #1 and beacon

#2, were deployed at the beginning of the experiment. The first LoS range measurements of

beacon #1 were collected at the 15 [s] timestamp, and the LoS measurements of beacon #2

were collected at the 20 [s] timestamp. A set of OptiTrack motion capture cameras was used

to obtain the ground truth positions of the two beacons and the subject’s feet. The sampling

rate of the camera system was 120 [Hz]. In this experiment, among all the measurements

produced by the Lab-On-Shoe platform, we only used the ones collected by the IMU and

UWB mounted on the left shoe.

We compared the navigation solutions computed by our developed UWB-Foot-SLAM algo-

rithm with a standalone ZUPT-aided INS. The initial yaw angle and positions used in the

estimated solutions were aligned with the coordinate system of the motion capture cameras.

The EKF parameters used in this section are summarized in TABLE 9.1. Figure 9.6 presents

the two navigation solutions. The ZUPT-aided INS solution only estimated the positions of

the agent while the developed UWB-Foot-SLAM estimated both the agent’s and beacons’

positions. We used ground truth positions provided by the motion capture cameras to eval-

uate the accuracy of the estimated navigation solutions. Agent’s positions estimated by the

245

42 OptiTrack motion capture cameras

Beacon #1
Beacon #2

Figure 9.5: Experimental scenario for the experiment discussed in Section 9.2.3. 42 Opti-
Track motion capture cameras were mounted on the ceiling of a warehouse and obtain the
ground truth position and orientation. Two beacons were placed on top of the orange barri-
cades during the experiment. A pedestrian performed the experiment by walking along the
light green trajectory.

ZUPT-aided INS had a 2D RMSE of 0.15 [m], a 2D final displacement error of 0.22 [m], and

a 2D maximum displacement error of 0.37 [m]. The positions estimated by the developed

UWB-Foot-SLAM had a 2D RMSE, 2D final displacement error, and a 2D maximum dis-

placement error of 0.15 [m], 0.27 [m], and 0.31 [m], respectively. Beacons’ positions estimated

by the developed UWB-Foot-SLAM had 2D final displacement errors of 0.28 [m] for beacon

#1 and 0.22 [m] for beacon #2.

Figure 9.7 presents the covariances associated with the position states of the agent and

the beacons when using the developed UWB-Foot-SLAM algorithm. We could see that the

uncertainties of the agent’s positions grew over time while the beacons’ position uncertainties

decreased. In this experiment, the developed UWB-Foot-SLAM was considered to operate in

246

the mapping mode, as the agent’s position uncertainties had not grown beyond the beacons’

position uncertainties at the end of the experiment. Therefore, the UWB range measurements

did not have significant numerical impacts on the agent’s estimated positions.

Scenarios #2: A large Area Including Multiple Floors

In the second experiment, the subject walked a closed-loop trajectory in a building on two

different floors covering terrains of flat planes, stairs, and ramps. The experimental scenario

had a physical dimension of approximately 70 [m] by 25 [m] by 6 [m]. The duration was

around 25 minutes, and the trajectory length was approximately 1.5 [km]. The subject

started the experiment on the second floor of the building and distributed four UWB beacons

at different locations on the first and second floors of the building. Beacon #1, #2, #3, and

#4 were deployed at timestamps of 21 [s], 72 [s], 197 [s], and 266 [s]. Beacon #1 and #2

were deployed on the first floor, and beacon #3 and #4 two were deployed on the second

floor.

Figure 9.8 shows the navigation solutions estimated by the standalone ZUPT-aided INS

and the developed UWB-Foot-SLAM. The 2D LCE of the agent’s positions was 11 [m] when

estimated by the ZUPT-aided INS and 1.49 [m] when estimated by our developed UWB-Foot-

SLAM algorithm. The vertical displacement error was 4.5 [m] in the case of the ZUPT-aided

Table 9.1: Parameters for the EKF

Hyper-parameter Value

σARW 2.7221× 10−5

σVRW 0.0017

σRRW 8.3174× 10−7

σAcRW 6.63× 10−6

σZUPT 0.02

σUWBi
0.5

247

-4 -2 0 2 4 6
East, [m]

-4

-3

-2

-1

0

1

2

3

4
UWB-Foot-SLAM

-4 -2 0 2 4 6
East, [m]

-4

-3

-2

-1

0

1

2

3

4
ZUPT-aided INS

G.T. path

G.T. end

G.T. B1

G.T. B2

Est. path

Est. B1

Est. B2

Est. end Path 3𝜎𝜎

B1 3𝜎𝜎

B2 3𝜎𝜎

N
or

th
, [

m
]

N
or

th
, [

m
]

Figure 9.6: Estimated (Est.) Navigation solutions computed with a standalone ZUPT-
aided INS and the developed UWB-Foot-SLAM in the experiment discussed in Section 9.2.3.
Items colored in black correspond to the Ground Truth (G.T.) collected by motion capture
cameras. The radius of each dashed circle represents three times the position standard
deviation. Positions of Beacon #1 (B1) and beacon #2 (B2) are marked with star and
diamond symbols, respectively.

INS and 1.09 [m] in the case of the UWB-Foot-SLAM. The positions of the deployed beacons

estimated by the developed UWB-Foot-SLAM at the end of the experiment were colored in

orange, green, yellow, and purple in Figure 9.8.

248

0 20 40 60 80 100 120 140 160
Time, [s]

-2

-1

0

1

2

3

4
Agent Estimated Position

0 20 40 60 80 100 120 140 160
Time, [s]

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160
Time, [s]

-15

-10

-5

0

5

10

15
Beacon 1 Estimated Position

0 20 40 60 80 100 120 140 160
Time, [s]

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120 140 160
Time, [s]

-15

-10

-5

0

5

10

15
Beacon 2 Estimated Position

0 20 40 60 80 100 120 140 160
Time, [s]

-15

-10

-5

0

5

10

15

Est.
G.T.
3𝜎𝜎

X,
 [

m
]

Y
, [

m
]

X,
 [

m
]

Y
, [

m
]

X,
 [

m
]

Y
, [

m
]

Figure 9.7: Position estimates and its associated covariances of the developed UWB-Foot-
SLAM algorithm in the experiment discussed in Section 9.2.3. It could be observed that the
covariances of the agent’s positions increased over time while the covariances of the beacons’
positions were reduced. At the end of this experiment, the covariances of the agent’s positions
were still less than that of the beacons’ locations.

Figure 9.9 shows the position uncertainties of different states predicted by the EKF in the

experiment. The horizontal position uncertainties in Figure 9.9 were computed by summing

the three times Standard Deviation (3σ) along the x- and the y-axis. The vertical uncertain-

ties were the 3σ along the z-axis. Three observations could be made in Figure 9.9. First,

when the UWB beacons of the PEBBLE system were connected to the UWB module on the

Lab-On-Shoe platform, the position uncertainties associated with the beacons were reduced.

Second, At timestamps of 145 [s], the position uncertainty of the agent becomes larger than

the position uncertainty of beacon #1 and #2. After this timestamp, the two beacons were

considered localized and would start compensating for the position errors of the agents.

Third, it could be seen that both the horizontal and vertical position uncertainties of the

agent in the ZUPT-aided INS follow increasing trends while the uncertainties in the case of

our developed UWB-Foot-SLAM were reduced and bounded by the localized beacons.

249

10

0

-10
-8

-20

-4

20

0

-30
10

-400

-10 -50

-20
-60

10

0

-10
-8

-20

-4

20

0

-30
10

-400

-10 -50

-20
-60

Beacon 1

Beacon 4

Beacon 2 Beacon 3

1F

2F

ZUPT-aided INSUWB-Foot-SLAM

20
10

0
-10

-20
-50

-40

-30

-20

-10

0

10

Y, [m]

X, [m]

Z,
 [m

] 0
-4
-8

-60

20
10

0
-10

-20
-50

-40

-30

-20

-10

0

10

Y, [m]

X, [m]

Z,
 [m

] 0
-4
-8

-60

Start

End

Start

End

Stairs

Ramps
Hallway

Figure 9.8: Navigation solutions estimated by the developed UWB-Foot-SLAM and a stan-
dalone ZUPT-aided INS in the experiment presented in Section 9.2.3.

The experimental results presented in Section 9.2.3 and Section 9.2.3 demonstrate that the

developed UWB-Foot-SLAM could simultaneously localize unknown beacons’ positions with

sufficiently high accuracy. Range measurements collected by the localized beacons could

provide position compensation in the developed approach, significantly improving long-term

pedestrian navigation accuracy, as compared to a standalone ZUPT-aided INS.

Discussion

Several remarks could be made during navigation testing of the developed UWB-Foot-SLAM:

• Initialization of UWB position states can affect accuracy of the beacon’s estimated

position. In the developed approach, a beacon’s position is initialized with an agent’s

current position. During the experiments presented in Section 9.2.3 and Section 9.2.3,

the agent deployed a beacon within reach, matching the design of our approach. How-

ever, the deployment could be done in a more flexible manner, such as by throwing

beacons to distant locations. In such cases, the initialization mechanism discussed in

this section could lead to the estimated beacons’ location being stuck in a statistical

local minimum, degrading the navigation performance. One potential approach to ad-

250

0 200 400 600 800 1000 1200
Time, [s]

2

4

6

8

10

12

14

16
Horizontal Position Uncertainty

UWB-Foot-SLAM
ZUPT-aided INS
Beacon 1
Beacon 2
Beacon 3
Beacon 4

0 200 400 600 800 1000 1200 1400
Time, [s]

0

2

4

6

8

10
Vertical Position Uncertainty

UWB-Foot-SLAM
ZUPT-aided INS
Beacon 1
Beacon 2
Beacon 3
Beacon 4

3𝜎𝜎
, [

m
]

3𝜎𝜎
, [

m
]

Started mapping Beacon 1

Started mapping Beacon 2

Started mapping Beacon 3

Started mapping Beacon 4

ZUPT-aided INS
unbounded position error

Beacon 1 & 2
localized

UWB-Foot-SLAM
bounded position error

UWB-Foot-SLAM
bounded position error

ZUPT-aided INS
unbounded position error

Mapping
mode

Mapping + Localization
mode

Beacon 1 & 2
localized

Figure 9.9: Propagation profile of the covariances associated with agent’s and beacon’s po-
sitions. It could be seen that the agent’s position uncertainties were bounded in the case of
the UWB-Foot-SLAM while the uncertainties in the case of the ZUPT-aided INS followed
an increasing trend.

dress this issue is to use multiple initial guesses of a beacon’s location, compute the

likelihood of each guess, and select the one with the highest likelihood.

251

• The pattern of a pedestrian’s navigation trajectory could affect the estimation accuracy

of beacons’ locations. This phenomenon is similar to the Position Dilution Of Preci-

sion (PDOP) in other RF-signal-based positioning systems [116]. During our testings

of the developed UWB-Foot-SLAM algorithm, we observed that, when a pedestrian

traveled only horizontally along a straight line, the estimated beacons’ positions had

significantly larger errors along the axes perpendicular to the direction of travel than

those in parallel to the direction. The large errors could exceed the associated covari-

ances, indicating existence of unmodeled errors in the estimation filter. It would be

beneficial for future research to develop a multi-model approach to mitigate this issue.

• The ability to identify and compensate for NLoS UWB range measurements directly

affects both the mapping and localization performance of our developed UWB-Foot-

SLAM. The experimental prototype discussed in Section 9.2.2 included foot-mounted

UWB modules. This configuration was designed to avoid the need to estimate rela-

tive positions between a UWB and an IMU attached to a pedestrian. However, as

compared to other mounting positions, such as head or shoulder, foot-mounted UWBs

had more difficulties in receiving LoS measurements, as the modules were close to the

ground and the direct signal path could be blocked by a pedestrian body part [32]. To

improve the UWB range measurement accuracy, advanced LoS/NLoS detection and

bias compensation approaches could be advantageous [262].

• The UWB-Foot-SLAM algorithm developed in this section was realized in a centralized

framework, where all the states were updated in every iteration of the EKF, even if

some of the beacons were not connected. The developed UWB-Foot-SLAM could be

extended to a de-centralized framework [264], which is computationally less expensive

and would be more friendly to be implemented in real-time on a microcontroller. It

would be beneficial to investigate the trade-offs between navigation performance and

computational complexity of the centralized and de-centralized realizations.

252

• The performance of localization of pedestrians and mapping unknown beacons in our

developed UWB-Foot-SLAM depends on the performance of the built-in ZUPT-aided

INS. Our developed approach could be improved with an enhanced ZUPT-aided INS.

The enhancement could be achieved on multiple different aspects of the system, includ-

ing robust stance phase detection [178, 93, 223], self-contained sensor fusion solutions

[94, 117, 82, 1], and IMU compensation [90, 87].

This section developed a UWB-Foot-SLAM algorithm that simultaneously localizes positions

of a pedestrian and maps locations of unknown beacons. We developed an experimental pro-

totype, including the Lab-On-Shoe platform and the PEBBLE system, and compared the

performance of the developed UWB-Foot-SLAM algorithm with a standalone ZUPT-aided

INS in two different experiments. The first experiment involved evaluating the navigation

solutions with a high-accuracy motion capture camera system. The ZUPT-aided INS had

a position RMSE of 0.15 [m] and an LoS of 0.22 [m]. The developed UWB-Foot-SLAM

had a position RMSE of 0.15 [m] and an LoS of 0.27 [m]. Positions of the two UWB bea-

cons estimated by the developed UWB-Foot-SLAM had displacement errors of 0.28 [m] and

0.22 [m], respectively. In the second experiment, the ZUPT-aided INS had an LoS of 11

[m] along the horizontal direction and 4.5 [m] along the vertical direction. The developed

UWB-Foot-SLAM algorithm achieved an LoS of 1.49 [m] along the horizontal direction and

1 [m] along the vertical direction. The experimental result also showed that the EKF covari-

ances associated with pedestrian’s positions in the case of the developed UWB-Foot-SLAM

were bounded. The experimental results show that the developed UWB-Foot-SLAM algo-

rithm could significantly improve the long-term positioning accuracy of a pedestrian inertial

navigation system using foot-mounted IMUs.

253

Unlocalized
UWB Beacon

Localized
UWB Beacon

Accurate foot-mounted IMU
w/ multi-sensor enhancement

Bounded position error of
foot-mounted IMU

Mapping Localization

Updates
beacon
positions

Updates
foot
positions

Foot-to-foot
ranging

Altimeter Foot-to-foot
ranging

Differential
Altimeter

Monitors
baseline
Air pressure

Figure 9.10: Concept of the developed UWB-Foot-SLAM2 algorithm.

9.3 UWB-Foot-SLAM2

This section develops an augmented UWB-Foot-SLAM framework, referred to as UWB-Foot-

SLAM2. The developed UWB-Foot-SLAM2, illustrated in Figure 9.10, considers pedestrian

navigation hardware consisting of a foot-mounted platform and a set of multiple beacons. The

two subsystems are integrated with IMUs, barometers, and UWB. The UWB-Foot-SLAM2

algorithm inherits the original UWB-Foot-SLAM algorithm’s characteristics of using UWB

beacons to bound the position error propagation of foot-mounted INS without the need to

pre-surveying the beacons and enhance the original algorithm with three additional mecha-

nisms: foot-to-foot ranging measurements, differential altimeters, beacon motion detection.

The foot-to-foot ranging approach uses UWB measurements of distances between the two

254

feet to enhance a dual foot-mounted INS configuration [32, 117]. The differential barometer

mechanism combines the foot-mounted barometer with barometers integrated into beacon

nodes to monitor barometric altitude errors due to ambient air pressure changes, aiming to

improve the reliability of altimeter measurements[238]. Beacon motion detection is included

in UWB-Foot-SLAM2 to avoid violating the assumption made by the original UWB-Foot-

SLAM that a beacon is always stationary. When a beacon experiences motion, the estimated

positions of the beacon are re-initialized and re-mapped.

This section is organized as follows. Section 9.3.1 describes the algorithm of the developed

UWB-Foot-SLAM2, Section 9.3.2 discusses a hardware prototype developed to validate the

developed algorithm, Section 9.3.3 presents the results of two different experiments and

concludes the section with a highlight of the results and suggests potential future research

directions.

9.3.1 Algorithm Design

This section first defines terminologies commonly used throughout the rest of this section,

discusses an overview of the developed UWB-Foot-SLAM2, and presents the detailed imple-

mentation of an EKF used to implement the developed approach.

Terminology Definition

We define the following terminologies and will use them in the rest of the text. A foot-

mounted localization system is referred to as two subsystems located on two separate feet of

a person. Each subsystem consists of an IMU, a barometer, and a UWB. A beacon is referred

to as a module to be deployed during a navigation environment, and one such module includes

an IMU, a barometer, and a UWB transceiver. An IMU mounted on the foot is called a

255

Foot-mounted

Estimated
navigation

results
Extended Kalman Filter

Right foot

ZUPT

UWBIMU

Strapdown
INS

Stance phase
Detector

RangeVelocity

Orientation
Velocity
Position

Barometer

Air
Pressure

IMU
bias

Left foot

ZUPT

UWBIMU

Strapdown
INS

Stance phase
Detector

RangeVelocity

Orientation
Velocity
Position

Barometer

Air
Pressure

IMU
bias

Environment-deployed

…

StatusAir
Pressure

UWB

Range

IMUBarometer

Stationary
Detector

Bias
Estimation

Bias
Compensation

UWB Beacon 1

StatusAir
Pressure

UWB

Range

IMUBarometer

Stationary
Detector

Bias
Estimation

Bias
Compensation

UWB Beacon N

Figure 9.11: Block diagram illustrating the developed UWB-Foot-SLAM2 algorithm. The
algorithm involved two IMUs, two barometers, two UWBs mounted on a foot-mounted lo-
calization system, as well as seeded UWBs, reference barometers, and event IMUs integrated
into beacons to be deployed in an operating environment during a navigation task.

foot-mounted IMU, and an IMU integrated into a beacon is defined as an event IMU. A

barometer co-located with a foot-mounted IMU is referred to as a foot-mounted barometer,

and a barometer integrated into a beacon is referred to as a reference barometer. A UWB

sensor mounted on foot is referred to as a foot-mounted UWB, and a UWB integrated

into a beacon is called a seeded UWB. Distance measurements collected from a pair of foot-

mounted UWBs located on two different feet are defined as foot-to-foot range measurements,

and distance measurements collected from a pair of a foot-mounted UWB and a seeded

UWB are referred to as foot-to-beacon range measurements. We consider a beacon to have

two statuses: unlocalized and localized. An unlocalized beacon has an estimated position

uncertainty significantly larger than the position uncertainty of a foot-mounted localization

system, while the position uncertainty of a localized UWB beacon is similar to or smaller

than that of the foot-mounted localization system.

256

Algorithm Overview

The developed UWB-Foot-SLAM2 simultaneously localizes a pedestrian’s positions and

maps positions of unknown beacons with measurements collected from all sensors integrated

into a foot-mounted localization system and multiple beacons. Figure 9.11 shows a block

diagram illustrating the developed UWB-Foot-SLAM2 algorithm. The algorithm is designed

to be implemented with an EKF framework. At the beginning of a navigation task, all the

beacons are considered to be in the unlocalized status, and the EKF initializes the position

of the beacons with very large uncertainties. Right after the initialization, the filter enters

the mapping mode, where the uncertainties of the unlocalized beacon position states are

reduced, and the uncertainties of position states associated with the foot-mounted localiza-

tion system increase. In this mode, the corresponding foot-to-beacon range measurements

would have minimal numerical impacts on the estimated pedestrian’s positions. When the

position uncertainties of the beacons become smaller than that of the foot-mounted system,

the beacons are localized, and the filter performs both mapping and localization modes. In

this mode, the position error growth of the foot-mounted localization system is bounded

with foot-to-beacon range measurements collected from a pair of foot-mounted UWB and

the localized seeded UWB.

In our developed UWB-Foot-SLAM2, localization of a pedestrian uses a combination of the

ZUPT-aided INS and measurements of foot-mounted barometers, reference barometers, foot-

to-foot ranges, and foot-to-beacon ranges. Reference barometers monitor baseline air pres-

sure changes and local pressure fluctuations and are used in combination with foot-mounted

barometers to achieve a differential altimeter mechanism. When a motion is detected by an

event IMU embedded on a beacon, the estimated beacon’s position can no longer be trusted,

and our developed algorithm re-initializes the associated positions and uncertainties.

In the following subsections, we present the EKF used to realize the developed UWB-Foot-

257

SLAM2 algorithm.

EKF States and Initialization

The developed UWB-Foot-SLAM2 algorithm is realized in an EKF framework, shown in

Figure 9.11. N denotes the number of deployed UWB beacons. The location of these beacons

are unknown. The pedestrian’s navigation system however, knows the unique Media Access

Control (MAC) addresses of the beacons. Therefore, UWB-Foot-SLAM2 does not need a

data associate step when measurements are taken from the beacons.

Filter States The EKF uses states that includes orientations, velocities, positions, biases

of two foot-mounted IMUs, biases of the two barometers, and the positions of beacons. The

states are expressed as follows:

xk = [q⊤L,k, v
⊤
L,k,p

⊤
L,k, b

⊤
g,L,k,b

⊤
a,L,k, bb,L,k, q

⊤
R,k, v

⊤
R,k,p

⊤
R,k,

b⊤
g,R,k,b

⊤
a,R,k, bb,R,k,p

⊤
B1,k

, . . . ,p⊤
BN ,k]

⊤ ∈ R(32+3N)×1,

where qL,k, vL,k, and pL,k ∈ R3×1 are the orientation, velocity, and position states of the

left foot of an agent expressed in the navigation frame. bg,L,k and ba,L,k ∈ R3×1 are the

gyroscope and accelerometer biases along the three axes of the body frame of the IMU

mounted on the left foot. bb,L,k represents barometric altitude biases experienced by the left

foot-mounted barometer. qR,k, vR,k, pR,k, bg,R,k, ba,R,k, and bb,R,k represent the orientation,

velocity, position, gyroscope bias, accelerometer bias, and barometric altitude bias states

associated with the right foot. pB1,k, . . . ,pBN ,k ∈ R3×1 represent the position of the N

beacons being deployed.

This section denotes the states computed in the EKF prediction step, discussed in Section

9.3.1, as xk|k−1, and the states calculated in the EKF update step, discussed in Section 9.3.1,

258

as xk|k. We denoted Pk|k−1 ∈ R(32+3N)×(32+3N) as the a priori estimate covariance matrix

that includes estimated accuracy of the states xk|k−1 and Pk|k ∈ R(32+3N)×(32+3N) as the

a posteriori estimate covariance matrix that includes estimated accuracy of the states xk|k.

Filter Initialization At the beginning of a navigation task, we assume a pedestrian remains

stationary for a short period of time. The initial roll angle, θL,0, and pitch angle, ϕL,0, of the

left foot are expressed as follows:

θL,0 = tan−1(
−āL,y
−āL,z

), ϕL,0 = tan−1(
āL,x√

ā2L,y + ā2L,z

),

where āL,i indicate the averaged readings collected by the ith-axis accelerometer of the left

IMU during the initialization period. The initial roll angle, θR,0, and pitch angle, ϕR,0, of the

right foot are computed similarly to the case of the left foot as follows:

θR,0 = tan−1(
−āR,y

−āR,z

), ϕR,0 = tan−1(
āR,x√

ā2R,y + ā2R,z

),

where āR,i indicate the averaged readings collected by the ith-axis accelerometer of the right

IMU during the initialization period. The initial yaw angles, ψL,0, ψR,0, can be determined

with additional sensors, such as a magnetometer. The initial positions, pL,0 and pR,0, and

velocities, vL,0 and vL,0, can be determined with external localization systems, such as GNSS

modules or vision systems. In a case where relative positions are of interest, we assume that

the initial yaw angles of the two feet are aligned with the north and initial positions and

velocities are zeros. Accelerometer states, ba,L,0 and ba,R,0, are set to zeros. Initial gyroscope

259

biases, bg,L,0 and bg,R,0, are expressed as

bg,L,0 =

[
ω̄L,x ω̄L,y ω̄L,z

]⊤
,

bg,R,0 =

[
ω̄R,x ω̄R,y ω̄R,z

]⊤
,

where ω̄L,i and ω̄R,i indicates the averaged readings collected by the ith-axis gyroscope of the

left and the right IMUs during the initialization period, respectively. The initial barometric

altitude bias, bb,L,k and bb,R,k, are both set to zeros.

When a seeded UWB with an identification (ID) number j is first connected to the foot-

mounted UWB at time k, the developed UWB-Foot-SLAM2 sets the initial beacon positions,

denoted as pBj ,0
, with the current estimated positions of the left foot-mounted IMU, pL,k.

The choice of the left foot is based on a pedestrian navigation testbed, discussed later in

Section 9.3.2, that seeded beacons are connected with the left foot-mounted UWB. The

corresponding initial position uncertainties, σpBj
,0, are initialized with the size of a navigation

environment. pBj ,0
and σpBj

,0 are expressed as follows.

pBj ,0
= pL,k, σpBj

,0 = D,

where D is the dimension of a navigation environment.

When a beacon’s onboard IMU detects that the beacon is experiencing a motion, the de-

veloped UWB-Foot-SLAM2 resets the beacon’s estimated positions and uncertainties to the

initial values. The motion detection mechanism follows the AMV detector [181], where a

motion is identified of the following inequality is violated:

T (ȳαk) =
1

M

∑
k∈Ωn

(
1

σ2
VRW

∥ yαk − ȳαk ∥2) < γbeacon,

where yαk is 3-axis accelerometer measurements of an event IMU at time k, Ωn = {l ∈ N, n ≤

260

l < M − 1} is a collection of the sensor measurement indexes at time n with a window of

length M , and γbeacon is a pre-defined thresholds.

EKF Prediction Step

In the prediction step of the EKF, the states corresponding to the foot-mounted IMUs, in-

cluding qL,k|k−1, vL,k|k−1, pL,k|k−1, bg,L,k|k−1, ba,L,k|k−1, qR,k|k−1, vR,k|k−1, pR,k|k−1, bg,R,k|k−1,

and ba,R,k|k−1 are propagated with the strapdown INS algorithm [198]. The barometric al-

titude biases are assumed unchanged, and the position states of the beacons are assumed

constant. The linearized continuous-time EKF propagation matrix, denoted by Ak, is ex-

pressed as follows

Ak =

AFoot,L,k 016×16 016×3N

016×16 AFoot,R,k 016×3N

03N×16 03N×16 03N×3N

 ,

AFoot,L,k =

AINS,L,k 015×1

01×15 0

 ,AFoot,R,k =

AINS,R,k 015×1

01×15 0

 ,
where

AINS,L,k =

03×3 03×3 03×3 −C(qL,k|k−1) 03×3

[
−→
f n

L,k×] 03×3 03×3 03×3 C(qL,k|k−1)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

,

261

and

AINS,R,k =

03×3 03×3 03×3 −C(qR,k|k−1) 03×3

[
−→
f n

R,k×] 03×3 03×3 03×3 C(qR,k|k−1)

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

.

Here, [
−→
f n×] is the skew-symmetric cross-product-operator of the accelerometer outputs

of the IMU, expressed in the navigation frame. C(q) is the DCM corresponding to the

quaternion vector q. 0n×m indicates a zero matrix having n number of rows and m number

of columns. The continuous-time propagation matrix, Ak, is converted to a discrete-time

propagation matrix, denoted as, Fk, as follows

Fk = exp (Akdt),

where dt is the sampling period of an IMU. The process noise matrix, denoted as Qk, is

expressed as

Qk =

QFoot,L,k 016×16 016×3N

016×16 QFoot,R,k 016×3N

03N×16 03N×16 03N×3N

 ,

QFoot,L,k =

QINS,L,k 015×1

01×15 σ2
b

 ,
QFoot,R,k =

QINS,R,k 015×1

01×15 σ2
b

 ,

262

where σ2
b is the process noise variance associated with barometer bias states of the two feet

and

QINS,L,k = QINS,R,k =

σ2
ARWI3×3 03×3 03×3 03×3 03×3

03×3 σ2
VRWI3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 σ2
AcRWI3×3 03×3

03×3 03×3 03×3 03×3 σ2
RRWI3×3

.

Here, In×n is the identity matrix having n number of rows and columns. σ2
ARW, σ2

VRW, σ2
RRW,

and σ2
AcRW are the ARW of the gyroscopes, the VRW of the accelerometers, the RRW of the

gyroscopes, and the AcRW of the accelerometers of the foot-mounted IMUs. This section

assumes that the two foot-mounted IMUs have identical noise characteristics.

At each iteration of the EKF prediction step, the a priori estimate covariance matrix of time

k, Pk|k−1, is computed as follows

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk,

where Pk−1|k−1 is the a posteriori estimate covariance matrix at time k− 1, computed in the

previous EKF update step. The update step is discussed in Section 9.3.1.

EKF Update Step

The update step of the EKF uses five different types of measurements, including pseudo

measurements of zero-velocity, barometric altimeters, barometric altitude biases, foot-to-

foot ranging, and foot-to-beacon ranging. The measurements of zero-velocity, barometric

altimeters, barometric altitude biases, and foot-to-foot ranging are implemented for both the

left and right feet of the foot-mounted localization system, and the foot-to-beacon ranging

263

measurements are used for all involved beacons.

Zero-velocity Updates When a stance phase is detected, the ZUPT algorithm is activated

to compensate for the velocity states corresponding to the stationary feet in the update

step of the EKF. Pseudo-measurements of zero velocity along the three axes, denoted as

vZUPT = 03×1 are feedback to the EKF. The stance phase detection can be formulated as a

hypothesis testing mechanism with input from different sensors [93, 88, 181, 223] or machine-

learning-based approaches with different mathematical models [178, 202]. This section adapts

the SHOE detector [181], which determines a stance phase if a test statistics, T (un) =

1

M

∑
k∈Ωn

(
1

σ2
VRW

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ARW

∥ yωk ∥2) < γ,

where un = {yk}k=N−1
k=n with yk = [yαk , y

ω
k]

⊤, yαk is 3-axis accelerometer measurements at

time k, yωk is 3-axis gyroscope measurements at time k, g is the gravitational constant,

Ωn = {l ∈ N, n ≤ l < M − 1} is a collection of the sensor measurement indexes at time n

with a window of length M , and γ are user-defined thresholds.

The ZUPT measurement models, zZUPT,L,k and zZUPT,R,k, measurement matrices, HZUPT,L,k

and HZUPT,R,k, and measurement covariance matrices, RZUPT,L,k and RZUPT,R,k, of the two

feet are expressed as follows:

zZUPT,L,k = vZUPT,k, zZUPT,R,k = vZUPT,k

HZUPT,L,k =

[
06×3 I3×3 0(23+3N)×3

]
HZUPT,R,k =

[
019×3 I3×3 0(10+3N)×3

]
RZUPT,L,k = RZUPT,R,k = σ2

ZUPTI3×3,

where σ2
ZUPT is the noise variance of the zero-velocity measurement vZUPT. It should be

264

noted that the variance could be different when mounting an IMU at different positions and

performing different activities [178, 153, 214, 218].

Barometric Altimeter Barometric altimeter measurements are used to provide compensa-

tion along the vertical displacements [91, 92]. A COTS electronic barometer usually has a

sampling rate much lower than a COTS IMU. This section feedbacks barometer measure-

ments to the EKF only when the measurements become available. A barometer measures air

pressure, denoted as Pk. This measurement can be converted to accurate altitude estimates

above sea level, h, when ambient air pressure is stable [154], as follows:

h = −RT0
gM

ln
Pk

P0

, (9.1)

where g is the gravitational constant, R is the universal gas constant, T0 is temperature,

M is molar mass of Earth’s air, and P0 = 1013.25 [mbar] is the standard pressure at sea

level. This section takes into account that the estimated height directly derived from a

single barometer could be affected by variations in baseline air pressure and local pressure

fluctuation due to opening doors/windows or air conditioning control in a building. These

effects are considered barometric altitude biases.

At timestamp k, altimeters mounted on the left and the right shoes provide measurements

of vertical displacements in the navigation frame, which are denoted as d⊥,L,k and d⊥,R,k,

respectively. The measurement models of the EKF corresponding to the altimeter on the

left and right feet, zALT,L,k and zALT,R,k, are described as follows:

zALT,L,k = d⊥,L,k = pL,D,k + bb,L,k,

zALT,R,k = d⊥,R,k = pR,D,k + bb,R,k,

where pL,D,k and pL,D,k are EKF states corresponding to the positions of the left and right

265

feet along the down direction in the navigation frame. The associated measurement matrices

are described as

HALT,L,k =

[
01×8 1 01×6 1 01×(16+3N)

]
HALT,R,k =

[
01×24 1 01×6 1 01×3N

]
.

The measurement noise covariance matrices are described as

RALT,L,k = RALT,R,k = σ2
ALT,

where σ2
ALT is the noise variance of the foot-mounted altimeter measurements.

Differential Barometer Reference barometers integrated into beacons are used to measure

barometric altitude biases for both the left and right feet. These measurements collected

from the ith beacon, denoted as Prefi,k, become available when the foot-mounted UWBs are

within the LoS connection with the seeded UWB. Altitude estimates computed using (9.1)

based on Prefi,k, are denoted as hrefi,k. When beacons are stationary, variations in hrefi,k are

considered barometric altitude biases. The EKF measurement model corresponding to the

barometric altitude biases is expressed as follows:

zALTi,k = hrefi,k − hrefi,0 = bb,L,k = bb,R,k,

where hrefi,0 is the first attitude measurement collected by the reference barometer on the

ith beacon. Corresponding measurement matrices Hb,L,k and Hb,R,k are expressed as follows:

Hb,L,k =

[
01×15 1 01×(16+3N),

]
Hb,R,k =

[
01×31 1 01×3N

]
,

266

and the measurement noise matrices are expressed as follows:

Rb,L,k = Rb,R,k = σ2
ALTi

,

where σ2
ALTi

is the measurement noise variance of a reference barometer.

Foot-to-foot Range Augmentation Distance measurements between the two feet, denoted

as rF2F,k, can be obtained from various different sensing modalities, including ultrasonic

sensors [213], foot-to-foot cameras [94], electromagnetic systems [222], and UWB [263, 32].

In this section, UWB-based foot-to-foot ranging measurements are used. The foot-to-foot

range measurements are classified into LoS and NLoS by a power metric-based approach

[264]. In this section, only LoS UWB measurements are used. The range measurements are

processed with bias correction. The processed foot-to-foot measurements are fused in the

update step of the EKF to compensate for relative distances between the two feet [117]. The

corresponding measurement model, zF2F,k, measurement matrix, HF2F,k, and measurement

noise covariance matrices, RF2F,k, are described as follows:

zF2F,k = rF2F,k = ||pL,k − pR,k||

HF2F,k =

06×1

∂||pL,k−pR,k||⊤

∂pL,k

016×1

∂||pL,k−pR,k||⊤

∂pR,k

0(7+3N)×1

⊤

,RF2F,k = σ2
F2F,

where σ2
F2F is the noise variance of the UWB foot-to-foot range measurements.

267

UWB Foot-to-beacon Range Updates We denoted the foot-to-beacon range measurements,

derived from wireless communication between a foot-mounted UWB and a seeded UWB on

the ith beacon, as rUWBi,k. When the range measurement becomes available, the measure-

ments are first classified into LoS and NLoS cases, and only LoS cases are used in the update

step of the EKF. This section uses a probabilistic power metric approach to differentiate

LoS and NLoS UWB measurements [32]. The LoS measurements are further processed with

bias correction through a curve-fitting approach. The corresponding foot-to-beacon range

measurement model, zUWBi,k, measurement matrix, HUWBi,k, and measurement noise matrix,

RUWBi,k, are described as follows:

zUWBi,k = rUWBi,k = ||pL,k − pBi,k
||

HUWBi,k =

06×1

∂||pL,k−pBi,k
||⊤

∂pL,k

0(23+3(i−1))×1

∂||pL,k−pBi,k
||⊤

∂pBi,k

03(N−i−1)×1

⊤

,RUWBi,k = σ2
UWBi

,

where σ2
UWBi

is the noise variance of the foot-to-beacon range measurements between the

foot-mounted UWB and the ith UWB beacon. Note that the left foot-mounted UWB was

chosen to be paired with seeded UWBs. This is a convenient choice based on a pedestrian

navigation testbed that will be discussed later in Section 9.3.2.

Update Step Summary In the EKF update step, when each of the sensing modalities dis-

cussed previously becomes available, the EKF stacks all available measurements and performs

the update step. For example, in a case where two feet are stationary, altimeter measure-

ments are available, and the 1st and 2nd seeded UWBs are connected to the left foot-mounted

UWB, the EKF measurement model, zk, measurement matrix, Hk, and measurement noise

268

IMU ADIS16497-3 IMU ADIS16497-3 SD card (16 GB)

SD card (16 GB)

Battery (1Ah)
Battery (1Ah)

Ultrasonic SRF-08

UWB
DWM1000

Microcontroller
Teensy 4.0

Microcontroller
Teensy 4.0Altimeter

MS-5803-01BA
Altimeter

MS-5803-01BA

Reconfigurable multi-sensor pedestrian navigation testbed (Lab-On-Shoe platform)

PEdestrian ultra-wideBand Beacon Localization Enhancement (PEBBLES) 2.0 Systems

UWB DWM1000

UWB DWM1000
UWB DWM1000

Battery Battery

BatteryAltimeter
MS-5803-01BA Altimeter

MS-5803-01BA

Altimeter
MS-5803-01BA

Microcontroller
ESP32

Microcontroller
ESP32

SD card

IMU
LSM9DS1

Figure 9.12: A picture showing prototypes of a Lab-On-Shoe platform and three beacons of
a PEBBLE 2.0 system. Firmware implementation of the two systems are discussed in Figure
9.13 and Figure 9.14.

269

covariance matrix, Rk, are expressed as follows:

zk =

zZUPT,L,k

zZUPT,R,k

zALT,L,k

zALT,R,k

zALT1,k

zALT2,k

zF2F,k

zUWB1,k

zUWB2,k

,Hk =

HZUPT,L,k

HZUPT,R,k

HALT,L,k

HALT,R,k

HALT1,k

HALT2,k

HF2F,k

HUWB1,k

HUWB2,k

,Rk = blkdiag(

RZUPT,L,k

RZUPT,R,k

RALT,L,k

RALT,R,k

RALT1,k

RALT2,k

RF2F,k

RUWB1,k

RUWB2,k

)

Settings of the noise parameters are determined based on noise characteristics of sensors

involved in the hardware implementation. TABLE 9.2 shows the EKF parameters used in

this section.

Table 9.2: Parameters for the EKF

Hyper-parameter Value

σARW 2.7221× 10−5

σVRW 0.0017

σRRW 8.3174× 10−7

σAcRW 6.63× 10−6

σb 2.2× 10−5

σZUPT 0.02

σALT 0.3

σF2F 0.1

σALTi
0.3

σUWBi
0.5

270

SPI

IMU
(ADIS16497-3)

Barometer
(MS5803-01BA)

Foot-to-foot Ultrasonic
Sensors (SRF02 & SRF08)

Anchor UWB
(DWM1000)

IMU
(ADIS16497-3)

Barometer
(MS5803-01BA)

Foot-to-foot Ultrasonic
Sensors (SRF02 & SRF08)

Tag UWB
(DWM1000)

Microcontroller
(Teensy 4.0)

Microcontroller
(Teensy 4.0)

Bluetooth
(HC-05)

Bluetooth
(HC-05)

Microcontroller
(Teensy 3.2)

Microcontroller
(Teensy 3.2)

UART

UART

SPI

SPI SPI I2C I2C

I2CI2CSPI

UART

UART

Microcontroller
(Teensy 3.6)

SD card
(16 GB)

Microcontroller
(Teensy 3.6)

SD card
(16 GB)

SPI

UART

UART

Lab-On-Shoe Platform Firmware Schematics

Left

Right

Figure 9.13: A block diagram illustrating firmware implemented on the Lab-On-Shoe plat-
form shown in Figure 9.12.

At each iteration of the EKF update step, the state, xk|k and the a posteriori estimate

covariance matrix at time k, Pk|k, are updated as follows

xk|k = xk|k−1 +Kk(zk −Hkxk|k−1)

Pk|k = (I−KkHk)Pk|k−1

where xk|k−1 and Pk|k−1 are the state and the a priori estimate covariance matrix calculated

in the EKF prediction step discussed in Section 9.3.1, I is the identity matrix having the

same dimension as Pk|k, and Kk is the Kalman gain computed as

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1.

271

9.3.2 System Design

To realize the developed UWB-Foot-SLAM2 algorithm, we developed a reconfigurable multi-

sensor pedestrian navigation testbed, referred to as the Lab-On-Shoe platform, and multiple

integrated UWB beacon units, referred to as PEdestrian ultra-wideBand Beacon Localization

Enhancement (PEBBLE) 2.0 systems. This section discusses both the hardware and firmware

implementation of the Lab-On-Shoe platform and PEBBLE 2.0 prototypes.

Hardware Implementation

Figure 9.12 presents the developed experimental prototypes. The Lab-On-Shoe platform was

previously developed as a flexible hardware testbed at the Microsystem Laboratory at the

University of California, Irvine, with the purpose of investigating sensor fusion solutions for

integrated pedestrian inertial navigation system [83, 18, 82, 89]. On each shoe, we integrated

PEBBLE 2.0 System Firmware Schematics

I2CSPI

Tag UWB
(DWM1000)

UWB Beacon 1

IMU
(LSM9DS1)

Barometer
(MS5803-14BA)

I2C

SD
card

SPI

Core 0 (240 [MHz]) Core 1 (240 [MHz])

ESP32 (w/FreeRTOS)

...

I2CSPI

Tag UWB
(DWM1000)

UWB Beacon N

IMU
(LSM9DS1)

Barometer
(MS5803-14BA)

I2C

SD
card

SPI

Core 0 (240 [MHz]) Core 1 (240 [MHz])

ESP32 (w/FreeRTOS)

Figure 9.14: A block diagram illustrating firmware implemented on each beacon in the
PEBBLE 2.0 system shown in Figure 9.12.

272

Table 9.3: Summary of navigation performance of a standalone ZUPT-aided INS and the
original UWB-Foot-SLAM algorithm in the experiments discussed in Section 9.3.3.

Trial

Trajectory profile ZUPT-aided INS UWB-Foot-SLAM

Shape Duration [s] Length [m]
Localization error [m] Localization error [m] Mapping error [m]

RMSE Max LCE RMSE Max LCE Beacon #1 Beacon #2

#1 Square 160 110 0.16 0.38 0.32 0.15 0.32 0.30 0.28 0.25

#2 Straight line 210 180 0.19 0.50 0.30 0.18 0.45 0.27 0.36 0.20

#3 Figure 8 500 430 0.17 0.47 0.47 0.15 0.37 0.37 0.36 0.21

multiple COTS components, including three Teensy micro-controllers, an Analog Device

IMUs ADIS16497−3, a barometric altimeter MS−5803−01BA, two ultrasonic range sensor

SRF02, a UWB module DWM1000, and a SD card. The three Teensy microcontrollers are

Teensy 4.0, Teensy 3.6, and Teensy 3.2, having CPU clock rates of 600 [MHz], 180 [MHz],

and 96 [MHz], respectively. The SD card module was a built-in module on the Teensy 3.6

microcontroller. All the components were firmly mounted on a customized 3D-printed PLA

fixture.

The PEBBLE 2.0 system is an upgraded version of the PEBBLE system described in [89]

that was used to realize the original UWB-Foot-SLAM. Each beacon in the PEBBLE 2.0

system included a dual-core microcontroller ESP32, an LSM9DS1 IMU, an MS5303−01BA

barometer, and a UWB module DWM1000. The Lab-On-Shoe platform and the PEBBLE

2.0 system were both powered up with 5.0-V lithium-ion batteries.

Firmware Implementation

Figure 9.13 and Figure 9.14 present block diagrams describing firmware schematics imple-

mented on the Lab-On-Shoe platform and the PEBBLE 2.0 system, respectively. On the

Lab-On-Shoe platform, the Teensy 3.2 microcontroller collected information on the con-

nected node ID number and measurements of range, transmitter power, receiver first pulse

power, and power metrics at a rate of 10 [Hz] from the DWM1000 UWB module via SPI

273

communication protocol. The DWM1000 module mounted on the left shoe was programmed

to operate in the anchor mode, and the module mounted on the right shoe was in the tag

mode. The collected measurements were transmitted to the Teensy 4.0 microcontroller via

the UART communication protocol. On the Teensy 4.0 microcontroller, we implemented the

SPI protocol to collect IMU measurements at a rate of 1000 [Hz] as well as the I2C com-

munication protocol to collect pressure and thermal measurements from the MS5803−01BA

barometer at a rate of 25 [Hz] and inter-foot ranging measurements from the two SRF02 ul-

trasonic sensors at a rate of 25 [Hz]. After all the sensor measurements were collected at each

implementation loop, the Teensy 4.0 transmitted the measurements to the Teensy 3.6 micro-

42 OptiTrack motion capture cameras

Beacon #1
Beacon #2

Figure 9.15: Experimental scenario for the experiment discussed in Section 9.3.3. 42 Opti-
Track motion capture cameras were mounted on the ceiling of a warehouse and obtain the
ground truth position and orientation. Two beacons were placed on top of the orange bar-
ricades during the experiment. The operation range of the motion capture camera system
was around 15 [m] × 15 [m].

274

controller via UART communication protocol. The Teensy 3.6 microcontroller implemented

the SPI protocol to write all the received measurements to an SD card.

On the PEBBLE 2.0 system, the ESP32 microcontroller was programmed in the FreeRTOS

framework with two cores, core0 and core1, each with a clock rate of 240 [MHz]. On core0, we

implemented the SPI communication protocol to collect information on the connected node

ID number and measurements of range, transmitter power, receiver first pulse power, and

power metrics at a rate of 10 [Hz]. All the UWB modules in the developed PEBBLE 2.0 sys-

tem were programmed to operate in the tag mode. A DWM1000 UWB operating in the tag

mode can only be paired with a UWB operated in the anchor mode, and the range measure-

ments between the two UWBs were obtained through a two-way ranging method. Therefore,

all the UWB modules involved in the PEBBLE 2.0 system, when within a detectable range,

were connected only to the UWB mounted on the left shoe of the Lab-On-Shoe platform. On

core1, we implemented the I2C communication protocol to collect data from the LSD9DS1

IMU and the ME5803−01BA barometer at a rate of 100 [Hz] and 25 [Hz]. All the collected

data, including IMU, barometer, and UWB, are logged into an SD card at a rate of 100 [Hz]

through the SPI protocol.

9.3.3 Experimental Validation

We conducted two experiments to validate the developed UWB-Foot-SLAM2 using the de-

veloped Lab-On-Shoe platform and the PEBBLE 2.0 system. The first experiment was

conducted in a small indoor area on a single floor with ground truth measurements collected

by high-accuracy motion capture cameras. The second experiment involved testing in a large

multi-floor building for a long duration of time.

275

G.T. path

G.T. B1 G.T. B2

Est. path

Est. B1 Est. B2G.T. end Est. end

Path 3𝜎𝜎 B1 3𝜎𝜎 B2 3𝜎𝜎

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

UWB-Foot-SLAM

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

UWB-Foot-SLAM

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

UWB-Foot-SLAM

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

ZUPT-aided INS

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

ZUPT-aided INS

-6 -4 -2 0 2 4 6 8
X, [m]

-8

-6

-4

-2

0

2

4

6

Y,
[m

]

ZUPT-aided INS

Trial #1: Square Trial #2: Straight line Trial #3: Figure 8

Figure 9.16: Estimated (Est.) Navigation solutions computed with a standalone ZUPT-aided
INS and the original UWB-Foot-SLAM in the experiment discussed in Section 9.3.3. Items
colored in black correspond to the Ground Truth (G.T.) collected by motion capture cameras.
It could be seen that the estimated and ground truth trajectories have small discrepancies.
Quantitative evaluation of the estimated solutions is summarized in TABLE 9.3. The radius
of each dashed circle represents three times the position standard deviation predicted by the
EKF at the end of the experiments. Positions of Beacon #1 (B1) and beacon #2 (B2) are
marked with star and diamond symbols, respectively.

Scenarios #1: A Small Area With Reference Motion Capture Cameras

Experimental Scenario The first experiment was conducted to extensively evaluate the

original UWB-Foot-SLAM discussed in [89] and investigate the repeatability of the naviga-

tion performance. A subject was equipped with the Lab-On-Shoe platform and carried two

276

Trial #3: Figure 8Trial #2: Straight lineTrial #1: Square

0 100 200 300 400 500 600
Time, [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Di
sp

la
ce

m
en

te
rro

r ,[
m

]

Agent Estimation Error

0 100 200 300 400 500 600
Time, [s]

-15

-10

-5

0

5

10

15

Di
sp

la
ce

m
en

te
rro

r ,[
m

]

Beacon Estimation Error

0 50 100 150 200 250
Time, [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Di
sp

la
ce

m
en

te
rro

r ,[
m

]

Agent Estimation Error

0 50 100 150 200 250
Time, [s]

-15

-10

-5

0

5

10

15

Di
sp

la
ce

m
en

te
rro

r ,[
m

]
Beacon Estimation Error

0 50 100 150
Time, [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Di
sp

la
ce

m
en

te
rro

r ,[
m

]

Agent Estimation Error

0 50 100 150
Time, [s]

-15

-10

-5

0

5

10

15

Di
sp

la
ce

m
en

te
rro

r ,[
m

]

Beacon Estimation Error

Error

3𝜎𝜎

Beacon #1 Error

Beacon #1 3𝜎𝜎

Beacon #2 Error

Beacon #2 3𝜎𝜎

Figure 9.17: Position estimates and its associated covariances of the original UWB-Foot-
SLAM algorithm in the experiment discussed in Section 9.3.3. It could be observed that the
covariances of the agent’s positions increased over time while the covariances of the beacons’
positions were reduced. At the end of this experiment, the covariances of the agent’s positions
were still less than that of the beacons’ locations. It could also be observed that the patterns
of a subject’s trajectories have impacts on the mapping performance.

beacons. Figure 9.15 shows the experimental scenario. The subject performed three differ-

ent trials consisting of close-loop trajectories with distinct patterns. TABLE 9.3 summarizes

details of the experimental processes. At the beginning of each trial, the subject stood still

at the origin for 10 seconds. Two beacons, denoted as beacon #1 and beacon #2, were

deployed at the beginning of the experiment. The first LoS range measurements of beacon

#1 were collected at the 15 [s] timestamp, and the first LoS measurements of beacon #2

were collected at the 20 [s] timestamp. When the two beacons were both within connection

range, their range measurements were processed sequentially. As a result, each iteration of

the EKF only processed one beacon at a time.

277

OptiTrack motion capture cameras shown in Figure 9.15 were used to obtain the ground

truth positions of the two beacons and the subject’s feet. The sampling rate of the camera

system was 120 [Hz]. In this experiment, among all the measurements produced by the

Lab-On-Shoe platform and the PEBBLE 2.0 system, we only used the ones collected by left

foot-mounted IMU, left foot-mounted UWB, and seeded UWBs.

Experimental Results We compared the navigation solutions computed by the original

UWB-Foot-SLAM algorithm with a standalone ZUPT-aided INS. The initial yaw angle and

positions used in the estimated solutions were aligned with the coordinate system of the

motion capture cameras. Ground truth positions provided by the motion capture cameras

are used to evaluate the accuracy of the estimated navigation solutions. We down-sampled

our solutions from 1000 [Hz] to 120 [Hz] to align with the sampling rate of the motion capture

cameras. 2D RMSEs, 2D final displacement errors, and 2D maximum displacement errors

were used as performance metrics in this experiment.

Figure 9.16 presents the two navigation solutions with position uncertainties predicted by

the EKF. Position uncertainties are expressed in terms of three times the Standard De-

viation (3σ). The ZUPT-aided INS solution only estimated the positions of the agent,

while the UWB-Foot-SLAM estimated both the agent’s and beacons’ positions. TABLE 9.3

summarizes the quantitative navigation performance of the ZUPT-aided INS and the orig-

inal UWB-Foot-SLAM. The experimental results show, in all three trials, that the original

UWB-Foot-SLAM algorithm had a smaller navigation error, as compared to the standalone

ZUPT-aided INS, and could achieve a mapping error of less than 0.5 [m]. Figure 9.17 presents

propagation profiles of the covariances associated with the position states of the subject and

the beacons when using the original UWB-Foot-SLAM algorithm. The experimental results

are discussed in the next subsection.

278

40

30

20

10

0

X, [m]

-10

-200
2

-30

4
6

Z,
 [m

]

8

20

Y, [m]

-4010

-500

3F

2F

1F

Elevator

Hallway

RampStairs

ID #15

3F (Hallway)

ID #11

2F (Hallway)

ID #9

1F (Hallway)

ID #13

1F (Handrail)

ID #1

2F (Office table)

ID #7

2F (Handrail)

ID #17

2F (Staircase)

Stairs

3F

2F

Ramp
Stairs

Stairs

Elevator

Hallway

HallwayHallway

Experiment description
- Trajectory length: ~3.5 [km]
- Duration: ~1 hour

UWB-Foot-SLAM2 Experiment Scenario Point Cloud

Figure 9.18: An illustration of the experimental scenario and process. Seven beacons were
deployed during the experiment discussed in Section 9.3.3 at different indoor locations. The
locations of the beacons shown in this figure were not pre-surveyed but estimated by our
developed UWB-Foot-SLAM2 algorithm. The point cloud representation of the experimental
scenario is used as a visual reference.

Discussion A few remarks can be made in this experiment:

• The foot trajectories generated by the OptiTrack motion capture system were dis-

continuous. When using the OptiTrack motion capture system, three retro-reflective

markers were mounted on each shoe of the Lab-On-Shoe platform and each of the two

beacons. We noticed multiple instances of discontinuities in the foot trajectories gen-

erated by the OptiTrack motion capture system. The discontinuities were caused by

the fact that the markers mounted on the shoes were blocked by the subject’s body

279

when performing normal walking activities.

• It could be observed in Figure 9.16 that the 3σ uncertainties of the two beacons at the

end of each trial had different values. The values are lower than 5 [m] in the case of the

square and the figure−8 shapes and larger than 5 [m] in the case of walking a straight

line. In our opinion, this phenomenon is similar to the PDOP in other RF-signal-

based positioning systems [116], and the differences are results of different observability

of the EKF with respect to foot-to-beacon range measurements. In the case of a

straight-line motion, using one-dimensional range measurements led to difficulties in

uniquely determining the positions of the beacon along the directions perpendicular

to the direction of the straight-line motion. To maximize the mapping performance of

the original UWB-Foot-SLAM algorithm, it is suggested to have a variety of motions.

• We could see in Figure 9.17 that the uncertainties of the agent’s positions follow an

increasing trend over time while the beacons’ position uncertainties decrease. In this

experiment, the original UWB-Foot-SLAM was considered to operate in the mapping

mode, as the agent’s position uncertainties had not grown beyond the beacons’ position

uncertainties at the end of the experiment. Therefore, the UWB range measurements

did not have significant numerical impacts on the agent’s estimated positions.

• Following the previous bullet point, the propagation of the 3σ uncertainties correspond-

ing to the subject’s positions before the uncertainties are bounded behaves similarly to

a standalone ZUPT-aided INS. An analytical expression of the position uncertainties

was derived in [217].

• It could be seen in TABLE 9.3 that although both the duration and trajectory length

of trial #2 were longer than trial #3, the RMSEs of the solution estimated either by

the ZUPT-aided INS or the original UWB-Foot-SLAM were larger in trial #2 than

in trial #3. The different sizes of the navigation environments cause this seeming

contradiction. In trial #2, the subject walked in an area of around 10 [m] × 12 [m]

280

while the area in trial #3 was 6 [m] × 8 [m]. When navigating in a large area, the error

sources of underestimated trajectory length and heading angle errors in a ZUPT-aided

INS become the dominant sources.

Scenarios #2: A Large Area Including Multiple Floors

Experimental Scenario In the second experiment, the subject walked inside the engineering

gateway building at the University of California, Irvine, on three different floors covering

terrains of flat planes, stairs, ramps, and an elevator. The experimental scenario had a

physical dimension of approximately 90 [m] by 25 [m] by 10 [m]. A point cloud representation

of the experimental scenario is shown in Figure 9.18.

The subject started the experiment on the first floor of the building by standing still for

around 10 seconds and then walked continuously along a similar closed-loop path for four

rounds. Each round lasted around 15 minutes, and the traveling distance was around 900

[m]. The duration of the entire experiment was around 1 hour, and the total trajectory

length was approximately 3.5 [km]. At the end of each round, the subject returned to the

starting location to evaluate an LCE.

Seven beacons of the PEBBLE 2.0 system were deployed during the first round at different

locations on the three floors of the building. Pictures of beacon deployment locations can be

found in Figure 9.18. Beacons with ID #13, #9, #7, #11, #1, #17 and #15 were deployed

at timestamps of 63 [s], 151 [s], 290 [s], 399 [s], 517 [s], 585 [s], and 786 [s], respectively.

Beacons with ID #9 and #13 were deployed on the first floor, beacons with ID #1, #7, and

#11 were deployed on the second floor, and beacons with ID #15 and #17 were deployed

on the third floor.

281

400
5

Z,
 [m

]
10

20
40

0

X, [m]

20

Y, [m]

-200
-20 -40

0

20

20

Z,
 [m

]

40
0

X, [m]

40

20

Y, [m]

-200
-40-20

0
5

10

20Z,
 [m

]

40
0

X, [m]

20

Y, [m]

-200
-40-20

0
5

10

Z,
 [m

]

20
40

0

X, [m]

20

Y, [m]

-200
-40-20

400
5

10

Z,
 [m

]

20
40

0

X, [m]

20

Y, [m]

-200
-40-20

40

20

0

X, [m]

-20
0
4

Z,
 [m

]

8

20

Y, [m]

-4010
0

40

20

0

X, [m]

-200
4

Z,
 [m

]

8

20

Y, [m]

-4010
0

40

20

0

X, [m]

-200
4

Z,
 [m

]

8

20

Y, [m]

-4010
0

Config. B: ZUPT w/barometer Config. C: ZUPT w/barometer+Config. A: ZUPT

Config. D: Deterministic Config. E: Deterministic+

Config. F: UWB-Foot-SLAM Config. G: UWB-Foot-SLAM+ Config. H: UWB-Foot-SLAM2

Path in the first 16 min
Path in rest of 44 min
Start
Destination after 16 min
Destination after 1 hour

Figure 9.19: Navigation solutions using eight different algorithms in the experiment discussed
in Section 9.3.3. The solutions listed from top left to bottom right are traditional ZUPT-
aided INS (ZUPT), ZUPT-aided INS augmented with a barometric altimeter (ZUPT /w
ALT), ZUPT-aided INS with a differential barometric altimeter (ZUPT w/ALT+), ZUPT-
aided INS augmented with barometric altimeters and foot-to-foot ranging (Deterministic),
ZUPT-aided INS augmented with differential barometric altimeters and foot-to-foot ranging
(Deterministic+), the original UWB-Foot-SLAM, the original UWB-Foot-SLAM augmented
with differential barometric altimeters (UWB-Foot-SLAM+), and the developed UWB-Foot-
SLAM2. The orange trajectories represent the estimated positions of the first loop of the
experiment, and the blue trajectories represent the rest of the estimated positions. The
duration of the experiment was around 1 hour, and the trajectory length was around 3.5
[km]. The developed UWB-Foot-SLAM2 had the minimum 3D mean absolute error of 0.48
[m], equivalent to 0.013% traveling distance based on a 3.5-[km]-long trajectory. Quantitative
evaluation of all the navigation solutions is presented in TABLE 9.4.

Experimental Results We compared the performance of eight different navigation solutions,

including the traditional ZUPT-aided INS, ZUPT-aided INS augmented with a barometric

altimeter (ALT), ZUPT-aided INS with a differential barometric altimeter (ALT+), ZUPT-

282

Table 9.4: Comparison of navigation performance using INS aided with different techniques.
Orders of this table are sorted from lowest 3D MAE to highest 3D MAE.

Config. Algorithm
ZUPT-aided INS Enhancement Method Mean Absolute Error (MAE) Loop-Closure Error (LCE)

ALT DALT F2F UWB-SLAM 3D [m] (%) 2D [m] ⊥ [m] 3D [m] (%) 2D [m] ⊥ [m]

H UWB-Foot-SLAM2 ✓ ✓ ✓ 0.48 (0.013) 0.41 0.21 0.62 (0.017) 0.62 0.06

G UWB-Foot-SLAM+ ✓ ✓ 0.55 (0.015) 0.42 0.28 0.54 (0.015) 0.49 0.23

F UWB-Foot-SLAM[89] ✓ 1.96 (0.055) 0.66 1.78 1.05 (0.030) 0.84 0.64

E Deterministic+ ✓ ✓ 9.65 (0.275) 9.62 0.65 19.80 (0.565) 19.78 0.94

D Deterministic[83] ✓ ✓ 9.94 (0.284) 9.86 1.05 20.59 (0.588) 20.34 3.20

C ZUPT w/ALT+ ✓ 12.76 (0.364) 12.74 0.76 21.28 (0.608) 21.25 1.11

B ZUPT w/ALT[91] ✓ 12.93 (0.369) 12.85 1.18 21.81 (0.623) 21.54 3.41

A ZUPT[216] 25.86 (0.738) 12.37 22.63 46.76 (1.335) 20.92 41.82

aided INS augmented with barometric altimeters and foot-to-foot ranging (Deterministic),

ZUPT-aided INS augmented with differential barometric altimeters and foot-to-foot ranging

(Deterministic+), the original UWB-Foot-SLAM, the original UWB-Foot-SLAM augmented

with differential barometric altimeters (UWB-Foot-SLAM+), and the developed UWB-Foot-

SLAM2. TABLE 9.4 summarizes the description of each navigation solution. Six different

performance metrics are used to evaluate the navigation solutions, including 3D, 2D, and

vertical Mean Absolute Errors (MAEs) and 3D, 2D, and vertical LCEs. The MAEs were

calculated based on the four estimated destinations at the end of each round of the close-loop

path.

Figure 9.18 and Figure 9.19 present the navigation solutions of the eight different approaches.

It should be mentioned that beacons’ locations in Figure 9.18 and Figure 9.19 were not pre-

surveyed but estimated by the corresponding algorithms. TABLE 9.4 shows quantitative

errors of the estimated navigation results. The LCEs of different approaches at the end of

each round are shown in Figure 9.20. Figure 9.21 shows the position uncertainties of different

states predicted by the EKF in the experiment. The horizontal position uncertainties in

Figure 9.21 were computed by summing the 3σ along the x- and the y-axis. Comparing all

the navigation approaches, the developed UWB-Foot-SLAM2 had the minimum 3D MAE

of 0.48 [m] in this experiment, equivalent to 0.013% traveling distance based on a 3.5-[km]-

283

long trajectory. Using 3D MAE as a comparison metric, the UWB-Foot-SLAM2 improved

navigation accuracy by ×3.08, ×19.7, and ×52.9, as compared to the original UWB-Foot-

SLAM, Deterministic navigation solution, and traditional ZUPT-aided INS. Discussions of

the experimental results are presented in the next subsection.

Discussion The following lessons can be learned by inspecting the experimental results

presented in Figure 9.19, Figure 9.20, Figure 9.21, and TABLE 9.4.

• All beacon’s locations could be estimated when the original UWB-Foot-SLAM, UWB-

Foot-SLAM+, and UWB-Foot-SLAM2 algorithms are used, and the estimated vertical

locations matched the floor heights where the beacons were deployed. However, we

could see in Figure 9.19 that the locations of the beacons estimated by the three

different approaches were slightly distinct. The locations estimated by the developed

UWB-Foot-SLAM2 had the smallest errors, as compared to the other two solutions.

• Following the previous bullet point, integrating barometers into the navigation solu-

tions can enhance both localization and mapping accuracy along the vertical direction

of the UWB-Foot-SLAM algorithm. The rationale behind the improvements is that

when the UWB-Foot-SLAM operates in the mapping mode, the algorithm’s perfor-

mance highly depends on the ZUP-aided INS. The ZUPT-aided INS is identified to

have position drifts faster along the vertical than the horizontal direction, and the

vertical drifts were contributed largely from insufficient FSR and bandwidth of COTS

IMU in the case of foot-mounted application [87]. Moreover, a standalone ZUPT-aided

INS has been pointed out to have difficulties in tracking vertical displacement when

operating in a moving elevator. The stance phase detection mechanism optimized for

walking motion often identifies a moving elevator as a stationary event [92]. Augment-

ing a ZUPT-aided INS with a barometer could greatly mitigate this issue.

• Reference barometers integrated into beacons could improve vertical displacement es-

284

D
is

pl
ac

em
en

t e
rro

r,
[m

]

1 [hr]
(loop #4)

43 [min]
(loop #3)

28 [min]
(loop #2)

16 [min]
(loop #1)

0 [min]
(start)

Traditional
ZUPT-aided INS

w/ sensor fusion
aiding techniques

UWB-Foot-SLAM

Elapsed time

0

10

20

30

40

50
Loop-Closure Error Comparison

Config. A
Config. B
Config. C
Config. D
Config. E
Config. F
Config. G
Config. H

Figure 9.20: Propagation of LCEs of different navigation solutions. It could be observed that
using self-contained aiding techniques for the ZUPT-aided INS could reduce the navigation
errors increase rate. The UWB-Foot-SLAM framework could effectively bound error growth,
allowing for high positioning accuracy in long-term navigation tasks.

timated by the foot-mounted barometer, and the improvements become significant in

long-term tasks. In our experiment, we could observe that a standalone foot-mounted

barometer had a height displacement error of around 1 [m] in the first 43 minutes of

the experiment. In the last 17 minutes of the experiment, the height estimated by

foot-mounted barometers had errors exceeding 3 [m]. These errors were reduced when

the differential barometer mechanism was used in a navigation solution, as shown in

TABLE 9.4. However, we would like to point out that using the reference barometer

could not completely remove attitude estimation errors in this experiment. We believe

the residual attitude errors were contributed by a combination of multiple factors,

including sensor errors, such as scale factors and biases, and the fact that in some sce-

narios where foot-mounted UWB and seeded UWB had a LoS connection, the baseline

285

air pressure experienced by the reference barometer and the foot-mounted barometer

may be different because the two barometers were physically far apart from each other.

Future research is encouraged to investigate the error characteristics of the differential

barometer mechanism.

• Inspecting the solutions without augmentation from beacons in Figure 9.19, which are

labeled as configurations A-E, we could observe that the first 16 minutes of trajecto-

ries, colored in orange, have significantly smaller errors than the rest of the trajectories,

colored in blue. This was due to the fact that position and yaw angle errors of con-

figurations A-E are not globally bounded. The unbounded error growth could also be

observed from another perspective in Figure 9.21, where the 3σ of the ZUPT-aided

INS and the Deterministic solutions continue to grow until the end of the experiment.

• It can be seen in Figure 9.20 that after one hour of operation, the eight navigation

solutions converge into three groups based on the levels of LCEs. The first group is the

traditional ZUP-aided INS, which had the largest LCEs among all the solutions. The

second group includes ZUPT-aided INS augmented with self-contained sensing modal-

ities. Although altimeters provide vertical compensation, the unbounded position and

yaw angle errors eventually lead to large navigation errors. The third group consists of

different implementations of the UWB-Foot-SLAM, which had bounded position error

growth, as compared other two groups.

• Observing the uncertainty propagation of beacons in Figure 9.21, we could see that

beacons involved at a later stage of the experiment converge to a larger value, as

compared to the ones that were involved at the early stage. This was because, in

the early stage of navigation, foot-mounted IMU had smaller position uncertainties,

allowing for updating positions of the beacon with a higher confidence level. At the

later stage, the position uncertainty of the IMU increased, and the confidence level

when estimating the beacon’s position was also reduced.

286

• As compared to the original UWB-Foot-SLAM, the developed UWB-Foot-SLAM2 us-

ing augmentation with reference barometer and foot-to-foot ranging measurements

achieves a smaller navigation error. This improvement was because, in the UWB-

Foo-SLAM framework, the localization performance of the foot-mounted localization

system directly affects the accuracy of both localization and mapping performance. In

this section, the UWB-Foot-SLAM2 was demonstrated to improve the navigation accu-

racy of the UWB-Foot-SLAM. This improvement was expected because the Determin-

istic navigation approach was experimentally validated to have a better performance

than a standalone ZUPT-aided INS [82]. Improving the ZUPT-aided INS can be done

through other aspects, such as innovative design and fabrication of high-performance

IMUs, machine-learning-enhanced stance phase detection, and additional sensor fusion

techniques.

The experimental results presented in Section 9.3.3 and Section 9.3.3 demonstrate that the

developed UWB-Foot-SLAM2 inherits the advantages of the original UWB-Foot-SLAM,

which could simultaneously localize unknown beacons’ positions with sufficiently high ac-

curacy, and uses the augmentation with sensor fusion solutions to further improve both lo-

calization and mapping accuracy. The developed UWB-Foot-SLAM2 algorithm significantly

outperformed the traditional ZUPT-aided INS in long-term pedestrian navigation accuracy

by 52×, achieving loop-closure error of less than 1 [m] after navigating for 3.5 [km] in 1 hour.

This section developed a UWB-Foot-SLAM2 algorithm that simultaneously localizes posi-

tions of a pedestrian and maps locations of unknown UWB beacons that are designed to be

deployed during a navigation task. The developed UWB-Foot-SLAM2 algorithm preserved

the characteristics of the original UWB-Foot-SLAM but is enhanced with multi-sensor fu-

sion involving differential barometer and foot-to-foot ranging. We developed an experimental

prototype, including the Lab-On-Shoe platform and the PEBBLE 2.0 system, and conducted

two series of experiments to compare the performance of the developed UWB-Foot-SLAM2

287

0 500 1000 1500 2000 2500 3000 3500 4000
Elapsed time, [s]

0

5

10

15

20

25

30

3𝜎𝜎
, [

m
]

Horizontal 𝟑𝟑𝟑𝟑 propagation

UWB-Foot-SLAM

Beacon ID#1
Beacon ID#7
Beacon ID#9
Beacon ID#11
Beacon ID#13
Beacon ID#15
Beacon ID#17

Deterministic navigation
Traditional ZUPT

Deterministic navigation
unbounded position error w/
reduced growth rate

ZUPT-aided INS
unbounded position error

UWB-Foot-SLAM
bounded position error

Timeline

Loop #1

948 [s]

Loop #2

1658 [s]

Loop #3

2550 [s]

Loop #4

3600 [s]

Start

0 [s]

All beacons
were localized

Mapping Mapping + Localization

Figure 9.21: Propagation profile of the covariances associated with agent’s and beacon’s
positions. It could be seen that the agent’s position uncertainties were bounded in the case
of the UWB-Foot-SLAM, while the uncertainties in the case of the ZUPT-aided INS followed
an increasing trend.

algorithm with the original UWB-Foot-SLAM and different implementations of ZUPT-based

INS. The first experiment involved evaluating the navigation solutions with a high-accuracy

motion capture camera system and a subject walking along different patterns. In the worse

case scenarios of this experiment, the ZUPT-aided INS had a position RMSE of 0.19 [m],

an LCE of 0.3 [m], and a maximum error of 0.5 [m]. The original UWB-Foot-SLAM had an

improved navigation performance with a position RMSE of 0.18 [m], an LCE of 0.27 [m], and

a maximum error of 0.45 [m]. Positions of the two UWB beacons estimated by the original

UWB-Foot-SLAM had displacement errors of 0.36 [m] and 0.25 [m], respectively. In the

288

second experiment, which involved a subject walking for approximately 3.5 [km] in one hour

on three different floors with seven beacons, the ZUPT-aided INS, the Deterministic naviga-

tion, the original UWB-Foot-SLAM, and the developed UWB-Foot-SLAM2 had 3D MAE of

25.86 [m], 9.94 [m], 1.96 [m], and 0.48 [m]. It was demonstrated that the EKF covariances

associated with pedestrian’s positions in the case of the UWB-Foot-SLAM framework were

bounded. The experimental results also show that the original UWB-Foot-SLAM algorithm

could significantly improve the long-term positioning accuracy of a pedestrian inertial nav-

igation system using foot-mounted IMUs, and the UWB-Foot-SLAM2 using sensor fusion

enhancement further extends the high accuracy performance.

9.4 Conclusion

This chapter presents the theory, implementation, and experimental validation of the two

UWB-Foot-SLAM frameworks, including the original UWB-Foot-SLAM algorithm and the

UWB-Foot-SLAM2 algorithm. The developed UWB-Foot-SLAM frameworks use environment-

deployed sensor-embedded beacons and foot-mounted inertial-based navigation systems. The

beacons do not need to be pre-deployed or pre-surveyed. They are designed to be distributed

during navigation tasks, and the foot-mounted navigation systems are used to determine the

locations of the beacons. Once the beacons are localized, measurements of ranges between

the foot and the beacons bound position error growth, enabling the foot-mounted navigation

systems to operate in long-term navigation tasks. The developed original UWB-Foot-SLAM

was experimentally demonstrated to map beacons’ locations with displacement RMSEs of

less than 0.3 [m] when evaluating with a motion capture camera system. In an experi-

ment where a pedestrian navigated in a two-floor indoor environment for around 2.5 [km]

in 25 minutes, the original UWB-Foot-SLAM achieved a loop-closure error of 1.49 [m] along

the horizontal direction and 1.09 [m] along the vertical direction. In the developed UWB-

289

Foot-SLAM2, three additional enhancements were implemented to augment the original

UWB-Foot-SLAM. The enhancements were a differential barometer mechanism, foot-to-foot

ranging augmentation, and IMU-based beacon motion detection. Navigation results collected

in an experiment involved a pedestrian walking for approximately 3.5 [km] in one hour on

three different floors with seven beacons, UWB-Foot-SLAM2 had a 3D mean absolute error

of 0.48 [m]. The research outlook along the direction of the developed UWB-Foot-SLAM

framework is presented in Chapter 10.2.

290

Chapter 10

Conclusion

This Ph.D. dissertation focused on the development pedestrian navigation system imple-

menting ZUPT-aided INS based on foot-mounted IMUs. New enhancement algorithmic and

system-level techniques that address the ZUPT-aided INS on aspects of motion sensor, al-

gorithm assumption, and estimation filter were developed, and a series of indoor pedestrian

navigation experiment was conducted to investigate the validity of each developed enhance-

ments. Specific contributions of the dissertation are summarized below.

10.1 Contribution of the Dissertation

Innovations on Motion Sensor

• Experimental evidence was provided in this thesis to demonstrate that COTS foot-

mounted inertial sensors could have inaccurate accelerometer readings during the heel-

strike phases due to insufficient FSR in daily pedestrian activities.

• This thesis developed a pedestrian inertial navigation simulation that combines a sim-

291

ulated IMU noise model and a relatively simple dynamic analytical model that mimics

swing and contact during the foot motions based on an inverted pendulum dynamical

system. The inverted pendulum model was developed by UCI Professor Alexander

Voloshina. The author of this thesis, Chi-Shih Jao, developed a simulation approach

generating foot-mounted IMU signals that considered deterministic noises, stochastic

noises, and sensor limitation and combined the simulation approach with the pendu-

lum mode. The developed pedestrian navigation simulation allowed for simulating the

effects of the high-frequency sampling of sensor readings and large-magnitude signals

during foot swing and contact on navigation performance. Navigation accuracy of the

ZUPT-aided INS using simulated and experimental foot-mounted IMU measurements

in walking scenarios had 6% different in position RMSEs. The developed model also

accurately predicted the drift in the vertical direction, matching well the reported ex-

periments. The simulation results show that insufficient FSR and bandwidth were

factors causing the drifts along the vertical direction.

• An algorithmic reconstruction filter targeting to mitigate the issue of insufficient FSR

and bandwidth was developed. This approach introduced an accelerometer measure-

ment model that considers the effects of insufficient FSR, developed a Gaussian process

regression to pre-process saturated accelerometer measurements for a ZUPT-aided INS,

and verified the developed approach with real-world indoor pedestrian navigation ex-

periments. The experimental results showed that when applying our developed recon-

struction filter to the saturated accelerometer’s measurements, the navigation accuracy

of the ZUPT-aided INS along horizontal and vertical directions was increased by 5%

and 50%, respectively, as compared to the case without using the developed approach.

• Prio-IMU was developed. The Prio-IMU was a systematic approach utilizing mul-

tiple IMUs to simultaneously increase sensor FSR and bandwidth while maintaining

great noise performance. A Prio-IMU prototype was built, and it was integrated with

292

three different inertial sensors. The experimental results involving walking and running

showed that both the horizontal and vertical RMSEs of the ZUPT-aided INS using the

Prio-IMU prototype were improved by 79% and 82%, as compared to the case of using

a single ICM−20948 IMU. The approach showed a method for resolving trade-offs in

selection of inertial sensors for foot-mounted IMUs in pedestrian navigation scenarios.

• A BPNN-based temperature compensation method was developed for enhancing ZUPT-

aided INS while operating in temperature-varying environments. Thermal hysteresis

effects were experimentally demonstrated, and the temperature compensation method

uses 12 separately trained feedforward NNs to predict thermal-induced errors, includ-

ing bias drifts and noise variations of accelerometers and gyroscopes along the three

reference axes of IMU. Pedestrian indoor walking experiments with a nominal length

of 85.2 [m] were conducted, and the experimental results showed that when operat-

ing in environments where ambient temperature changed between 20◦C and 50◦C, a

standalone ZUPT-aided INS had a position RMSE of 9.29 [m] while the developed

temperature-compensated ZUPT-aided INS achieved a RMSE of 0.57 [m].

Innovations on Algorithm Assumption

• A zero-velocity detector using both an IMU and a DVS, referred to as the DVS-SHOE,

was developed. We presented hardware design of a foot-mounted INS integrated with

a DVS, and analyzed the properties of the DVS firing rate during indoor navigation

experiments. The event-based camera-aided zero velocity detector was derived in a

Generalized Likelihood Ratio Test (GLRT) framework, and this thesis evaluated the

developed detector in terms of detection rate, false alarm rate, and navigation error.

The experimental results showed that the CEP of the case using DVS-SHOE is reduced

by around 25%, from 1.2 m to 0.9 m, as compared to the case of the traditional SHOE

detector.

293

• This thesis developed a UA-SHOE detector. Measurements of a foot-mounted IMU

and a downward-facing ultrasonic transducer were fused within a GLRT framework to

enhance stance phase detection robustness. Indoor navigation experiments involving

traveling at different speeds were conducted to evaluate the developed UA-SHOE de-

tector. In the running experiments, the UA-SHOE detector outperformed the original

SHOE detector by more than 50%.

• This dissertation introduced a log-likelihood ratio to quantify instability level of a

pedestrian’s foot, based on readings from inertial sensors. The foot instability metrics

were used to adapt the covariance of the zero-velocity measurements in different sce-

narios for the ZUPT-aided INS, and the adaptive mechanism was referred to as the

FIBA covariance. This thesis implemented the ZUPT-aided INS using the developed

FIBA covariance in an EKF framework without a stance phase detector and investi-

gated properties of EKF innovation sequences in the developed ZUPT-aided INS using

the FIBA covariance. Experimental results showed that using the FIBA covariance

showed a maximum improvement in navigation accuracy of 36% horizontally and 64%

vertically, as compared to the conventional ZUPT-aided INS.

Innovations on Estimation Filter

• An closed-form analytical estimation of the displacement error standard deviation in

the down direction was derived for ZUPT/altimeter-aided INS implemented in the

EKF. The analytical expression was verified by numerical simulation and experimental,

showing that the analytical estimation had an uncertainty of less than 20%.

• This thesis introduced for the first time a hybrid altimeter that uses both the ultra-

sonic altimeter and the barometer. This approach allowed a shoe-mounted ultrasonic

sensor to be used as an altimeter in the case of walking on a flat plane or stairs, and

an EKF framework was adopted to fuse the hybrid altimeter measurements with a

294

ZUPT-augmented Inertial Navigation System. The developed hybrid altimeter was

experimentally verified to significantly enhanced the reliability of vertical position es-

timation in temperature and air pressure varying environments, as compared to a

barometer.

• This dissertation presented a measurement model that uses self-contained vision mea-

surements to enhance the yaw angle observability of the ZUPT-aided INS implemented

in an EKF. A mechanism was provided to simulate the foot-to-foot relative position

measurements obtained by shoe-mounted cameras. We verified the developed system

with real-world experiments by comparing the results with a standalone ZUPT method

and the ZUPT aided by foot-to-foot relative distance measurements. Experimental re-

sults showed a maximum improvement of 85% in accumulated errors, verifying the

validity of the developed system in real-world environments.

• A PINDOC framework was developed in this thesis. The framework was a multi-agent

indoor navigation solution that utilizes deterministic, opportunistic, and cooperative

functionalities. A dedicated pedestrian navigation testbed was developed, integrating

multiple sensors including IMUs, barometers, UWBs, and LTE receivers. This thesis

compared the navigation accuracy of the developed systems implemented in different

configurations using a real-world pedestrian indoor navigation experiment and ana-

lyzed the SWaP+C of the different configurations. The PINDOC was a collaborative

contribution. Cooperative localization was developed by Ph.D. students Changwei

Chen and Mingwon Soo under UCI Professor Solmaz Kia’s supervision. The oppor-

tunistic approach were designed and independently tested by Ali Abdallah with Ohio

State University Professor Zak Kassas’s guidance. The author of this thesis, Chi-Shih

Jao, supervised by UCI professor Andrei Shkel, developed the deterministic localiza-

tion approach as well as integrated the deterministic, opportunistic, and cooperative

approaches.

295

• Two SLAM frameworks, UWB-Foot-SLAM and UWB-Foot-SLAM2, utilizing foot-

mounted IMUs and UWB were developed in this thesis. The developed UWB-Foot-

SLAM simultaneously localized a pedestrian’s positions and mapped positions of un-

known beacons with measurements collected from all sensors integrated into a foot-

mounted localization system and multiple beacons. This Thesis developed a hardware

system that realizes the implementation of the developed UWB-Foot-SLAM framework

and performed multiple real-world indoor pedestrian navigation experiments to vali-

date the navigation performance of the developed algorithm. One experiment involved

a subject walking for approximately 3.5 [km] in one hour on three different floors with

seven beacons. The ZUPT-aided INS, the Deterministic navigation, the original UWB-

Foot-SLAM, and the developed UWB-Foot-SLAM2 had 3D MAE of 25.86 [m], 9.94

[m], 1.96 [m], and 0.48 [m]. The experiments demonstrated that the UWB-Foot-SLAM

solutions had significantly improved long-term accuracy and reliability, as compared to

traditional pedestrian inertial navigation systems.

10.2 Future Research Directions

This part of the dissertation suggests future research directions corresponding to the devel-

oped approaches presented in the dissertation. The suggestions are discussed below.

10.2.1 Boosting FSR and Bandwidth of Inertial Sensors

Combination of Algorithmic and Syste-Level Approach

The developed approaches presented in Chapter 2 are suggested to be extended in the follow-

ing direction. First, the chapter’s reconstruction filter presented in Section 2.4 was designed

296

for only accelerometers. It would be beneficial to derive a counterpart of the reconstruction

for gyroscopes. Second, the reconstruction filter and the prioritizable IMU array, presented in

Section 2.5, can be combined to further increase the FSR and bandwidth of a foot-mounted

IMU system. These two methods have complementary properties. On the one hand, the

reconstruction filter could increase the FSR and bandwidth of a sensor to any value with

an assumption on the signal structure. On the other hand, the prioritizable IMU array in-

creases the FSR by using multiple sensors, but the increase is limited by the specification

of the available COTS devices. The combined approach has the potential to capture violent

motions experienced by the foot during navigation involving activities such as kicking doors,

tripping, stamping, and jumping.

Component-Level Realization of Multi-IMU Array

The developed prioritizable IMU array presented in Section 2.5 of Chapter 2 had performance

depend on the accuracy of the estimated relative positions between each on-board IMU, as

the relative positions were needed to compensate for the Euler forces and the centrifugal

forces experienced by IMUs mounted on different locations on a rigid body. In theory, the

closer the placement of these IMUs, the less the differences in magnitudes of the forces. The

developed prioritizable IMU array used inertial sensors with dimensions of a few millime-

ters. To reduce the relative positions with an order of magnitude, for example, to a few

micrometers, integrating multiple sensors must be conducted on the component level before

MEMS structures of inertial sensors are packaged. It is envisioned that the component-level

realization of the multi-IMU array is less subjective to the accuracy of the estimated relative

positions, which can improve the navigation performance of the ZUPT-aided INS using the

prioritizable IMU array.

297

10.2.2 Enhancing Stance Phase Detection With Deep/Machine Learning

Moving Object Recognition for DVS/IMU Stance Phase Detection

During the experimental validation process reported in Section 4.3.4 of Chapter 4, the de-

veloped DVS-SHOE detector was found to have detection performance sensitive to moving

objects presented within the FOV of the DVS and the complexity of visual patterns pro-

jected from navigating indoor environments. A potential technique to increase the reliability

of the current DVS-SHOE detector is to use firing rates derived from a specific region of

DVS’s FOV. Furthermore, the DVS is envisioned to enhance a foot-mounted INS not only

on the aspect of stance phase detection but also through other implementations, such as a

SLAM framework that allows loop-closure detection based on visual features of DVS to be

performed and bound position error growth.

Terrain Recognition for Downward-Ultrasonic/IMU Stance Phase Detection

The developed UA-SHOE detector, presented in Section 4.4 of Chapter 4, had a performance

impacted by the terrains of operations in its current implementation. Ideally, the downward-

facing ultrasonic range sensor is installed at a location that has contact with the ground.

However, it was experimentally observed that the contacting location is different when per-

forming different terrains. For example, when walking upstairs or climbing ladders, the toe

side of a person’s foot was usually the position in contact with the ground. In the case of

going downstairs, this contacting position was often on the heel side of the foot. It is envi-

sioned that this problem can be addressed through a system-level or machine-learning-aided

approach. The system-level approach integrates multiple downward-facing ultrasonic sensors

on different parts of a shoe. Likelihood statistics derived from measurements collected by

the different ultrasonic sensors are compared, and stance phase detection could be achieved

298

by selecting the one with the highest likelihood. The machine-learning-aided approach can

first classify pedestrian activities with machine learning or deep learning models, such as

a support vector machine, random forest, or artificial neural network, and then adjust a

hyper-parameter in the UA-SHOE the tune weighting ratios between measurements of the

IMU and the downward-facing ultrasonic sensor.

Human-Activity-Recognition-Enhanced Stance Phase Detection

In Chapter 4, non-inertial sensing modalities were fused with measurements of foot-mounted

IMU to modify the property of log-likelihood statistics in conventional IMU-based stance

phase detector. The settings of hyper-parameters used in the developed stance phase detector

may have different values when a person is performing different activities. It is envisioned

that including a Human Activity Recognition (HAR) mechanism in the developed stance

phase detectors could enhance detection performance. In such approaches, the HAR first

classifies the type of activities a person is performing, and then the values of the hyper-

parameters are adjusted to corresponding values to optimize detection performance.

10.2.3 Continuing FIBA Covariance

The following remarks are suggested for future research conducted along the direction of

developed FIBA covariance presented in Chapter 5.

Hyper-Parameter Selection for Different Pedestrian Activities

The hyper-parameter selection for the developed FIBA covariance was conducted based on

a series of walking-and-running experiments of 42.5 meters using a single subject. It is

necessary for future research to investigate the validity of the hyper-parameter selection in

299

different cases, including performing other common pedestrian activities, such as sprinting,

jumping, crawling, and side-stepping, on different terrains like stairs, sand, and grass. More-

over, in experiments discussed in Section 5.3, we could see that the innovation sequences

along the horizontal and vertical directions had different behaviors. The different behaviors

could be an indication that appropriate choices of the hyper-parameters, β mad γ, might

not be the same for two different directions.

Combination of the Adaptive Covariance With Stance Phase Detection

The developed ZUPT-aided INS using the FIBA covariance feedbacked the zero-velocity

measurements regardless of the stance phase or the swing phase. As discussed in Section

5.2.6, the zero-velocity measurements during the swing phases were highly correlated. The

correlation violateed the fundamental assumption of EKF on uncorrelated measurements.

In our developed FIBA covariance, the measurement covariance matrix was increased to a

significantly large value to minimize the impact of the correlated measurements. A potential

approach to further reduce the impact of violation of the EKF assumption on the correlation

of measurements is to develop a hybrid approach combining the conventional ZUPT-aided

INS with the developed FIBA covariance. The hybrid approach can work in a way that the

zero-velocity measurements with the FIBA covariance are applied in the update step only

when the likelihood of stance phase detection is below a high threshold and no measurement

updates are performed when the foot is certainly moving.

FIBA Covariance for Multi-Agent Pedestrian Navigation

As discussed in Section 5.2, the developed FIBA covariance aimed to avoid applying the zero-

velocity measurements with a high confidence when the foot was not completely stationary,

and the covariance had low values when the foot was stable and significantly high values when

300

the foot was unstable. In some common pedestrian activities, for example, sprinting, the foot

of a pedestrian is frequently unstable, even during the ground-contacting phases. In these

situations, the FIBA covariance would give a low confidence to zero-velocity measurements

and the accuracy of estimated velocities in the ZUPT-aided INS would start to decrease with

time due to unavoidable sensor noise. This problem could be potentially mitigated through

cooperative localization or sensor fusion solutions with other non-inertial sensing modalities.

Estimating Mean and Covariance of Stance-Phase Foot Residual Velocity

Chapter 5 presents the development of an adaptive mechanism to vary the covariance of

the zero-velocity measurements used in the ZUPT-aided INS implemented in the EKF. The

developed adaptive covariance mitigated the impact of unmodeled errors caused by residual

velocities during the stance phases of a human gait cycle on navigation accuracy. It would

be beneficial to extend this research direction to also estimate the statistical mean of the

residual velocities. One potential approach to perform the estimation is to model the motion

of a foot-mounted IMU during the stance phase as an inverted pendulum where the contact

point of the foot on the ground is a non-slipping pivot point and the radius is the height of

the IMU with respect to the ground.

10.2.4 Improving Hybrid Ultrasonic/Barometric Altimeters

It is envisioned that the approaches presented in Chapter 7 could be further extended in the

following directions. First, factors of inertial sensor’s FSR and bandwidth can be included

in the derivation of the analytical expression predicting the covariance of the vertical dis-

placement. Second, the developed hybrid altimeter, in its current implementation, had a

larger vertical positioning error when operating on stairs, as compared to flat planes, ramps,

and elevators. Additional development is needed to address this issue in order to utilize the

301

hybrid altimeter for long-term navigation tasks. Third, the size of the hardware developed to

realize the real-time system architecture can be significantly reduced and ruggedized against

heat and water. The miniaturized hardware can be embedded into the sole of a shoe. In such

a configuration, investigations need to be conducted to 1) determine the optimal locations

in a sole, 2) compensate for stress from human body weight applied on the hardware mod-

ule, 3) develop system-level or component-level heat dissipation mechanisms, and 4) design

water-resist protective cases that allow functional barometers.

10.2.5 Extending UWB-Foot-SLAM Framework

The developed UWB-Foot-SLAM framework, presented in Chapter 9, is envisioned to be

further improved with the following suggested approaches.

Initialization Mechanisms

Initialization of UWB position states could affect the accuracy of the beacon’s estimated

position. In the developed approach, a beacon’s position was initialized with an agent’s

current position. During the experiments presented in Section 9.3.3 and Section 9.3.3, the

agent deployed a beacon within reach, matching the design of our approach. However, the

deployment could be done in a more flexible manner, such as by throwing beacons to distant

locations. In such cases, the initialization mechanism discussed in this section could lead

to the estimated beacons’ location being stuck in a statistical local minimum, degrading

the navigation performance. One potential approach to address this issue is to use multiple

initial guesses of a beacon’s location, compute the likelihood of each guess, and select the

one with the highest likelihood.

302

Multi-Model Kalman Filter Implementation

It was demonstrated in Section 9.3.3 that the pattern of a pedestrian’s navigation trajectory

could affect the estimation accuracy of beacons’ locations, and we observed that, when a

pedestrian traveled only horizontally along a straight line, the estimated beacons’ positions

had significantly larger errors along the axes perpendicular to the direction of travel than

those in parallel to the direction. The large errors could exceed the associated covariances,

indicating existence of unmodeled errors in the estimation filter. It would be beneficial for

future research to develop a multi-model approach to mitigate this issue.

UWB Bias Compensation

The ability to identify and compensate for NLoS UWB range measurements directly affected

both the mapping and localization performance of our developed UWB-Foot-SLAM. The ex-

perimental prototype discussed in Section 9.3.2 included foot-mounted UWB modules. This

configuration was designed to avoid the need to estimate relative positions between a UWB

and an IMU attached to a pedestrian. However, as compared to other mounting positions,

such as head or shoulder, foot-mounted UWBs had more difficulties in receiving LoS mea-

surements, as the modules were close to the ground and the direct signal path could be

blocked by a pedestrian body part [32]. To improve the UWB range measurement accuracy,

advanced LoS/NLoS detection and bias compensation approaches could be advantageous

[262].

Analytical Prediction of Position Uncertainties

It was demonstrated in Section 9.3.3 that position uncertainties of a beacon estimated by the

UWB-Foot-SLAM framework were not fixed values but varying values due to the stochastic

303

nature of the EKF used to realize the UWB-Foot-SLAM. The position uncertainties of bea-

cons were affected by multiple factors, including settings of the process and measurement

noise covariance matrix, timestamps of the first LoS foot-to-beacon UWB measurements,

patterns of a pedestrian’s trajectory, a pedestrian’s activities, stance phase detection per-

formance, and noise performance of inertial sensors and UWB modules. Future research is

needed to determine an analytical relationship between the uncertainties and the contributing

factors. A numerical simulation for the UWB-Foot-SLAM framework could enable isolating

and characterizing error sources in the algorithm, facilitating designing corresponding error

mitigation approaches.

De-Centralized Implementation

The UWB-Foot-SLAM2 algorithm developed in Section 9.3 and the original UWB-Foot-

SLAM discussed in Section 9.2 were realized in a centralized framework, where all the states

were updated in every iteration of the EKF, even if some of the beacons were not connected.

The developed UWB-Foot-SLAM could be extended to a de-centralized framework [264],

which is computationally less expensive and would be more friendly to be implemented in

real-time on a microcontroller. Investigating the trade-offs between navigation performance

and computational complexity of centralized and de-centralized realizations would be bene-

ficial.

Hardware Upgrades for Real-Time Implementation

The developed UWB-Foot-SLAM2 algorithm can be implemented in real-time, although the

experimental results presented in Section 9.3.3 were obtained in a post-processing fashion.

The Lab-On-Shoe platform and PEBBLE 2.0 system presented in Section 9.3.2 were devel-

oped with a priority on flexibility, performance, and fast proof-of-concept prototyping. To

304

have a real-time implementation of the developed algorithm, modifications to the current

testbed are needed, as our current approach needs sensor data that are stored locally on an

SD card integrated into a beacon. One potential approach is to leverage the UWB modules

such that messages are exchanged wireless between two UWB modules when range measure-

ments between them are being collected. In such a case, each message packet should include

a beacon’s current estimated positions and corresponding uncertainties, onboard reference

barometer readings, and motion detection results.

Minimizing Power Consumption for Idle Beacons

The power consumption performance of the PEBBLE 2.0 system can be further improved.

In our current settings, a beacon after being deployed in a navigation environment only

provided range measurements to the foot-mounted system briefly and remained idle for the

majority of the time. During the idleness, the beacon can be designed to go into ”sleep”

mode, where much less power is consumed, and ”wake-up” by signals with a frequency range

lower than a UWB.

Enhancing UWB-Foot-SLAM With Augmentations for ZUPT-aided INS

The performance of localization of pedestrians and mapping unknown beacons in the UWB-

Foot-SLAM framework depended on the performance of the built-in ZUPT-aided INS. We

demonstrated in Section 9.3 that using self-contained enhancement for the ZUPT-aided INS

could altogether augment the performance of the original UWB-Foot-SLAM. In the literature

related to foot-mounted IMUs, many enhancement sources from multiple different aspects

of the system have been investigated, including robust stance phase detection [178, 93, 223],

additional sensor fusion solutions [1, 239], and IMU compensation [90, 87]. We believe

that combining some of the techniques with our UWB-Foot-SLAM framework could lead to

305

improvement in navigation performance and reliability, but further research is needed to have

experimental validation and quantitatively evaluate improvements brought by the additional

sensing modalities.

10.2.6 Foot-mounted-INS-Enabled Mapping and Path Planning

The thesis focused on the localization aspect of a pedestrian navigation system. The devel-

oped foot-mounted localization system can be leveraged to combine with additional wear-

able devices performing mapping and guidance, such as handheld scanning platforms or

head-mounted displays integrating Augmented/Virtual Reality technologies. As compared

to LiDAR- or camera-based mapping systems, foot-mounted localization systems based on

ZUPT-aided INS can operate through scenarios where lumination is low, environments are

filled with smoke or airborne particles, spatial geometry is symmetric, or background contains

insufficient visual feature landmarks. A combination of foot-mounted localization devices,

handheld scanning platforms, and head-mounted guidance systems can enable navigate a

person from point A to point B in a completely unknown and dynamic environment.

10.3 Commcercializable Solution: emergency Firefighter In-

door Navigation Systems (eFINS)

The approaches developed in this dissertation can be all integrated together to achieve an

accurate and reliable pedestrian navigation system. Such a system can be utilized for the

purposes of firefighter localization or other location-based services, including contact trac-

ing, gaming, shopping, rehabilitation, personal health monitoring, etc. This part of the

dissertation presents a system architecture that could potentially be commercialized.

306

Micro-controller

IMUUWB

Lithium
battery

Firefighter Localization Augmentation ModulE
(FLAME)

Micro-controller

GNSSUWB

Lithium
battery

FiretRuck UWB Initialization Tracking Systems
(FRUITS)

Micro-controller

GNSSUWB

Lithium
battery

IMUBarometer Magnetometer

Boot with One-meter errOr Tracking Systems
(BOOTS)

Bluetooth

Micro-controller

BluetoothLTE

Lithium
battery

Transmission Accurate Localization KitS
(TALKS)

(a) (b)

(d)

(c)

LCD

Figure 10.1: The concept of the proposed prototype eFINS. (a) FRUITS systems to be
installed on a firetruck. (b) BOOTS to be embedded inside the sole of a firefighter boot.
(c) TALKS for transmission and visualization of firefighter’s current locations. (d) FLAME
to be distributed in operating environments to further enhance navigation accuracy of the
BOOTS.

307

Addressing the Technology Gaps

a technology prototype, emergency Firefighter Indoor Navigation Systems (eFINS), aiming to

address the technology gap in firefighter location tracking. The eFINS are designed to lever-

age the augmented ZUPT-aided INS using foot-mounted IMUs with additional approaches to

address the six issues discussed in the previous paragraph. The eFINS is a wearable system

that provides real-time position data of firefighters, allowing outside incident commanders

or firefighters themselves to monitor their locations continuously.

The proposed eFINS provides real-time navigation solutions for firefighters and first respon-

ders. As compared to other indoor navigation technologies, our solutions have multiple

advantages, including 1) operating in an infrastructure-free manner, 2) requiring very short

to none installation time, 3) providing consistently available position data independent of op-

erating building types and environments, 4) allowing augmentation from some navigational

infrastructure when feasible, 5) having small form factors that do not affect firefighter’s mo-

tion, 6) having low power consumptions, and 7) integrating approaches addressing issues in

state-of-the-art foot-mounted INS technology to achieve navigation error of less than 1 meter

for an extended period.

Stance
phase

detector

Strapdown Inertial
Navigation System

Barometer IMU

Extended Kalman Filter

Estimated navigation results (Longitude, Latitude, and Altitude)

Ultra-Wide BandMagnetometer

SVM-based
activity

classification

Absolute
heading

Foot-to-foot
distance

Absolute
height

Zero-velocity
Measurements

Predicted
navigation

results

Estimated
IMU biases

Magnetometer
calibration

NLOS detection

ANN-based bias
compensation

Beacon
distance

Bias
compensation

Parameter
selection

GNSS

Accuracy
estimation

Psuedoranges

ANN-based
temperature

compensation

Thermometer

Thermal-dependent
bias

FIBA
covariance

Zero-velocity
Adaptive

covariance

Accelerometer reconstruction

Figure 10.2: Navigation solutions implemented on the micro-controller in the BOOTS mod-
ule.

308

System Design

The proposed system, eFINS, includes four different components: Boot with One-meter er-

rOr Tracking System (BOOTS), FiretRuck UWB Initialization Tracking Systems (FRUITS),

Firefighter Localization Augmentation ModulE (FLAME), and Transmission Accurate Lo-

calization Kits (TALKS). The concept of the proposed eFINS is illustrated in Figure 10.1.

It is worth mentioning that, in the eFINS, the BOOTS module produces real-time position

information of a person using self-contained foot-mounted INS technology, which operates

without any external signals from pre-deployed infrastructures. Previous research has shown

the technology to localize a person in a firefighter training center, which included different

buildings types and various environmental conditions [3].

Boot with One-meter errOr Tracking System (BOOTS)

Hardware The hardware of BOOTS is shown in Figure 10.1(b). The module integrates a

micro-controller, multiple COTS sensors, a Bluetooth transmitter on a PCB. The sensors

include an industrial-grade IMU, a barometer, a UWB, a GNSS receiver, and a magne-

tometer. Industrial-grade IMU is selected to achieve great sensor noise performance while

maintaining the cost of the system at a reasonable level. The module will be powered up

with a lithium-ion battery and protected with an aluminum case. The size of the entire unit

is expected to be on the order of 4 cm×4 cm×3 cm. The final form of this module will be

embedded in the sole of the firefighter’s boot. Each boot will have one such module.

Navigation algorithm The real-time navigation algorithm presented in Figure 10.2 is re-

alized in an EKF framework. The prediction step of the EKF implements the strapdown

INS algorithm. The update step of the EKF uses multiple aiding techniques. The ZUPT

algorithm is used to bound velocity errors. Altimeter measurements are used to bound

309

vertical errors. When operating in outdoor environments, where GNSS signals are avail-

able, and magnetometer interferences are minimal, GNSS pseudoranges and magnetometer

measurements are used to provide compensation of absolute positions and heading angles, re-

spectively. GNSS and INS will be integrated in a tightly coupled manner. The UWB devices

on two different boots of the same person will be paired to obtain foot-to-foot range measure-

ments to improve heading angle and position uncertainty. Furthermore, the UWB devices

on different firefighters will communicate to collect inter-agent ranging measurements.

There are issues in the ZUPT-aided INS that need to be addressed. We present solutions to

each of the problems in the following paragraphs. The ZUPT-aided INS has a filter incon-

sistency issue when the EKF is used. This issue arises because, in reality, the velocity of a

person’s foot during the stance phase is not exactly zero, which violates the assumptions in

the EKF. Previous research has demonstrated that using a Foot-Instability-Based Adaptive

covariance with the ZUPT algorithm can reduce the error resulting from the filter inconsis-

tency issue. In the proposed BOOTS, the FIBA covariance is implemented to enhance the

performance of the ZUPT-aided INS [4].

The detection performance of the stance phase detector used in the ZUPT algorithm signif-

icantly affects the navigation accuracy. A detector optimized for the case of walking might

not be optimal for other cases, such as running. To address this issue, a SVM-based activities

classification algorithm can be included to identify what activity is being performed using

IMU measurements. We will consider 14 common firefighter activities, including walking

slowly, normally, fast, jogging, running, sprinting, jumping, side-stepping, walking back-

ward, crawling, going up and downstairs. Based on the identified activities, parameters of

the EKF and thresholds for the stance phase detector are adapted to values that minimize

navigation errors. When the ZUPT-aided INS operates in activities involving foot striking

the ground intensely, such as sprinting, forces generated by the strikes can be larger than

20 g, which exceeds many the FSR of most high-performance COTS IMUs. To minimize

310

the impact of this issue, we will include a GPR-based accelerometer readings reconstruc-

tion module. This technique has been experimentally proven to reduce the navigation error

generated by the insufficient accelerometer FSR in a post-processing manner. We plan to

implement this technique in the real-time implementation of the BOOTS.

In a rescuing mission, firefighters often navigate in environments with significant temperature

variations. The temperature variations can degrade the accuracy of a traditional ZUPT-

aided INS because the variation introduces additional thermal-dependent biases in IMU

measurements. To solve this problem, we include an Artificial Neural Network (ANN) based

temperature compensation approach to minimize the thermal-dependent errors in the ZUPT-

aided INS. In this approach, the ANN will be trained in an offline manner. In the real-time

implementation, the ANN will be performing only the feed-forward step to predict thermal-

induced biases.

The proposed BOOTS are designed with the capability to operate without any pre-deployed

navigational infrastructure or the other three modules in the eFINS, including FRUITS,

FLAME, and TALKS. The final form of the BOOTS aims to provide navigation solutions

with 1-meter accuracy when performing different activities in extreme weather environments

for 15 minutes.

Firefighter Localization Augmentation ModulE (FLAME)

The FLAME is designed as add-on hardware to extend the 1-m navigation accuracy of the

BOOTS from around 15 minutes to an hour. The FLAME is a ruggedized unit that can

be distributed in environments during a navigation mission. The hardware of the module,

illustrated with a block diagram in Figure 10.1 (d), integrates a micro-controller, a low-

cost IMU, a UWB device, and a lithium-ion battery. The micron-controller handles sensor

data acquisition, stationary status detection, and UWB communications. The UWB device

311

is paired with the UWB modules on the BOOTS. The IMU on the FLAME is used to

determine if the module is stationary. The size of this module is estimated to be around 4

cm×4 cm×3 cm, and we will package the device with an aluminum shell.

After being distributed in an environment, our navigation algorithm initializes the location

of the FLAME with very large uncertainty. When the module becomes stationary, location

data and UWB ranging measurements will be transmitted to the BOOTS to perform a

SLAM algorithm. The estimated location data will be transmitted back to the FLAME

and stored in the micro-controller. When the IMU on the FLAME detects a motion, the

micro-controller will reset the position uncertainty to a very high value, and the location of

the FLAME will have to be re-determined by the BOOTS.

In a navigation task, the FLAME does not need to be pre-deployed, and its location does

not require pre-surveying. Multiple FLAMEs can be distributed in the environment on the

ground, wall, or civilian to the rescued. Existing COTS UWB devices, such as DWM1000,

can provide a distance accuracy on the level of a couple of centimeters. The BOOTS enhanced

with FLAME is expected to provide a position accuracy of less than 1 meter after navigating

for more than 30 minutes to an hour.

FiretRuck UWB Initialization Tracking Systems (FRUITS)

When accurate longitude, latitude, and altitude information is needed, initial localization

accuracy of a dead-reckoning navigation system becomes critical. FRUITS is a system de-

signed to provide accurate initial location information in terms of longitude, latitude, and

altitude for the BOOTS. Each module The FRUITS includes a micro-controller, a GNSS

receiver, a UWB device, and a battery. A block diagram of the hardware is presented in

Figure 10.1(a). The size of this module is estimated to be 5 cm×5 cm×3 cm.

To use the FRUITS, four or more modules will be placed on the top of a firetruck. In the

312

micro-controller of each module, we will obtain the location data based on the differential

GPS mechanism. This location data will be transmitted to the BOOTS via the UWBmodule.

In the initialization process of the BOOTS, the system performs trilateration based on the

received location data and UWB range measurements to determine the initial location.

Transmission Accurate Localization Kits (TALKS)

Figure 10.1(c) shows a block diagram of the TALKS hardware. The TALKS is designed

to enable extensibility and interoperability for the proposed eFINS, and this module allows

firefighters to visualize and transmit location information estimated by the BOOTS. The

TALKS module includes a micro-controller, a Liquid-Crystal Display (LCD), a LTE receiver,

Bluetooth, and a lithium-ion battery. The TALKS will be attached to the firefighter’s forearm

and display current firefighter’s 3D locations transmitted from the BOOTS via Bluetooth.

When LTE signals become available, the location information can be transmitted to an

outside incident commander to monitor all firefighters’ positions in the line of duty. The size

of this module is estimated to be around 15 cm×10 cm×1 cm.

Potential Technology Capacity

This part of the section presents the criteria and general metrics listed in Table 1 of the

FRST Challenge Rules document and the technical capabilities discussed in the document.

Location Tracking Accuracy

The proposed eFINS aims to provide real-time navigation solutions for each firefighter with

a position error of less than 1 meter along the x-, y-, and z-axes. In the eFINS, the BOOTS

implemented a self-contained approach based on the ZUPT-aided INS augmented with sev-

313

eral enhancement techniques, including an altimeter, inter-agent ranging measurements, and

pedestrian activity classification. In previous research, the standalone ZUPT-aided INS with

a consumer-grade IMU has been analytically predicted and experimentally demonstrated

with a navigation error of around 1% of total traveling distances in the case of walking. This

result indicates that the system is more accurate when initially deployed, but accumulated

errors decrease the system’s accuracy over time. Moreover, it has been pointed out that the

standalone ZUPT-aided INS has higher accuracy when standing still or walking than other

activities.

Our team will address these problems by enhancing the foot-mounted INS technology with

1) a pedestrian activity classification algorithm and 2) a UWB-SLAM algorithm. The clas-

sification will be realized with machine learning approaches, such as SVM, Random Forest

(RF), and ANN. We will consider activities of walking slowly, walking fast, jogging, running,

sprinting, walking backward, side-stepping, climbing, jumping, and going up and downstairs.

Parameters of the EKF and the stance phase detector used in the ZUPT-aided INS will be

optimized to minimize the position errors in each activity. With the augmentation of the

pedestrian activities classification, the accuracy of the ZUPT-aided INS in non-walking op-

erations is expected to be significantly increased.

To bound the position error growth within the 1-m standard for an extended period of

time, we use a UWB-SLAM algorithm based on the BOOTS and the FLAME in the eFINS.

Since the BOOTS at initial deployment and the LOS UWB range measurements both have

centimeter-level accuracy, the accuracy of the navigation solutions will be on the level of 50

cm to 1 meter when navigating for 30 minutes to an hour.

314

Ease of Deployment

The proposed eFINS is based on a self-contained and infrastructure-free solution. In the

eFINS, the BOOTS system can provide position data of a person with respect to the initial

position without any external devices or infrastructures. The final form of the BOOTS

device will be embedded in the sole of firefighter boots, and therefore, the position data

can be immediately collected in emergency situations. The FRUITS systems, designed to

provide initial longitude, latitude, and altitude information for the BOOTS, will be installed

on a firetruck. This module uses the GNSS as a dedicated navigational infrastructure. The

FLAME device is designed to be distributed in the environments during a firefighting mission.

We understand that a typical fire crew is comprised of three to five firefighters, including a

fire captain, a fire equipment operator, and firefighters. While the BOOTS will be equipped

on each crew member, the FLAME modules will be distributed by throwing or rolling in

the environments by the fire captain or the fire equipment operator during a mission. The

TALKS is intended to report current position data generated by the BOOTS in real-time to

firefighters or incident commanders. It is designed in the form of a forearm-attached device.

However, the design may be modified in other forms, such as integration with a hand-held

thermal camera or a small display inside firefighter’s gas masks.

Robustness/Ruggedization

The navigation algorithm of the eFINS system may be unreliable in two scenarios. First,

in activities where the foot strikes the ground violently, the magnitude of the forces can

exceed the full-scale range of most COTS IMUs. We address this problem by including a

signal reconstruction mechanism to preprocess IMU readings in the algorithm. Second, in

temperature-varying situations, IMU readings are contaminated by thermal-induced error.

We minimize the impact of the error by including a temperature compensation algorithm.

315

The communication involved in the proposed eFINS include the I2C, SPI, UART, and LTE.

The I2C and SPI protocol will be during sensor measurement acquisition processes with a

micro-controller. The UART protocol will be used to transmit position data via Bluetooth

from the BOOTS to the TALKS. With an assumption that the two devices will have a

maximum separation of 2 m during operation, this Bluetooth communication will be reliable.

The LTE protocol will be used to transmit the position data from the TALKS to an outside

command-and-control center when the signals are available.

The BOOTS module will be shelled with an aluminum package and embedded inside the

sole of a firefighter boot with one small opening for charging the battery. The other three

modules, FRUITS, FLAME, and TALKS, will all be packaged with cases made of PPE

material. Each of the modules includes a lithium-ion battery that can power up the device

for more than 1 hour.

User Experience

When off-duty, the FRUITS module will be installed on top of the firetruck. A bag of

FLAME devices will be attached to firefighting backpacks. At the beginning of a mission,

each member in a fire crew turns on the BOOTS and the TALKS modules next to a firetruck

and stands still for around 5 seconds. After this period, the system starts tracking firefighters’

positions. During the mission, the person who has the FLAME modules will turn on the

module and distribute, one at a time, the device in the operating environment. In the cases of

the proposed eFINS system used by other professions or roles, such as police SWAT team or

military personnel, the BOOTS, the FLAME, and the TALKS will be used in the same way

as firefighters. The FRUITS module has to be mounted on associated vehicles, for example,

police cars.

316

Extensibility & Interoperability

The proposed eFINS system can be used as a standalone and self-contained localization

system. In the current design of the system, we plan to transmit estimated position data

through Bluetooth or cellular LTE signals to an external device for extensibility and inter-

operability. The proposed BOOTS module also has a GNSS receive to improve navigation

accuracy when operating in outdoor environments. If integrating additional functionalities is

requireed, such as Wi-Fi, we will add the additional requested sensor module to the BOOTS

system.

317

Bibliography

[1] A. Abdallah, C.-S. Jao, Z. Kassas, and A. M. Shkel. A pedestrian indoor navigation
system using deep-learning-aided cellular signals and ZUPT-aided foot-mounted IMUs.
IEEE Sensors Journal, 22(6):5188–5198, 2022.

[2] A. Abdallah and Z. Kassas. Deep Learning-Aided Spatial Discrimination for Multipath
Mitigation. In IEEE/ION Position, Location and Navigation Symposium (PLANS),
pages 1324–1335, April, 2020.

[3] A. Abdallah and Z. Kassas. Multipath mitigation via synthetic aperture beamforming
for indoor and deep urban navigation. IEEE Transactions on Vehicular Technology,
70(9):8838–8853, September, 2021.

[4] A. Abdallah, J. Khalife, and Z. Kassas. Experimental characterization of received 5G
signals carrier-to-noise ratio in indoor and urban environments. In 93rd IEEE Vehicular
Technology Conference, Virtual conference, Apr. 25−19, 2021.

[5] A. Abdallah, K. Shamaei, and Z. Kassas. Indoor localization with LTE carrier phase
measurements and synthetic aperture antenna array. In 32nd International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), St.
Louis, MO, USA, Sep. 21−25, 2019.

[6] A. A. Abdallah, K. Shamaei, and Z. M. Kassas. Assessing real 5G signals for oppor-
tunistic navigation. In 33rd ION GNSS+, Portland, OR, USA, Sep. 25−29, 2020.

[7] M. H. Afzal, V. Renaudin, and G. Lachapelle. Assessment of indoor magnetic field
anomalies using multiple magnetometers. In 23rd ION GNSS+, Portland, OR, USA,
Sep. 21−24, 2010.

[8] D. B. Ahmed, E. M. Diaz, and S. Kaiser. Performance comparison of foot-and pocket-
mounted inertial navigation systems. In 7th IEEE International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Madrid, Spain, Oct.
4−7, 2016.

[9] D. B. Ahmed, L. E. Dı́ez, E. M. Diaz, and J. J. G. Domı́nguez. A survey on test and
evaluation methodologies of pedestrian localization systems. IEEE Sensors Journal,
20(1):479–491, 2019.

318

[10] R. M. Alexander. Simple Models of Human Movement. Applied Mechanics Reviews,
48(8):461–470, 08 1995.

[11] R. Ali, R. Liu, A. Nayyar, B. Qureshi, and Z. Cao. Tightly Coupling Fusion of UWB
Ranging and IMU Pedestrian Dead Reckoning for Indoor Localization. IEEE Access,
9:164206–164222, 2021.

[12] R. Alonso and M. D. Shuster. Complete linear attitude-independent magnetometer
calibration. The Journal of the Astronautical Sciences, 50:477–490, 2002.

[13] J. L.-F. Ang, W.-K. Lee, B.-Y. Ooi, T. W.-M. Ooi, and S. O. Hwang. Pedestrian
Dead Reckoning with correction points for indoor positioning and Wi-Fi fingerprint
mapping. Journal of Intelligent & Fuzzy Systems, 35(6):5881–5888, 2018.

[14] M. Angermann and P. Robertson. FootSLAM: Pedestrian simultaneous localization
and mapping without exteroceptive sensors—Hitchhiking on human perception and
cognition. Proceedings of the IEEE, 100(Special Centennial Issue):1840–1848, 2012.

[15] M. Angermann, P. Robertson, T. Kemptner, and M. Khider. A high precision reference
data set for pedestrian navigation using foot-mounted inertial sensors. In 1st IEEE
IPIN, Zurich, Switzerland, Sep. 15−17, 2010.

[16] G. Araghi et al. Temperature compensation model of MEMS inertial sensors based on
neural network. In IEEE/ION PLANS, Monterey, CA, USA, Apr. 23−26, 2018.

[17] C. T. Ardito, J. J. Morales, J. Khalife, A. Abdallah, Z. M. Kassas, et al. Perfor-
mance evaluation of navigation using LEO satellite signals with periodically transmit-
ted satellite positions. In International Technical Meeting of The Institute of Naviga-
tion (ION ITM), Reston, VA, USA, Jan. 28−31, 2019.

[18] S. Askari, C.-S. Jao, Y. Wang, and A. M. Shkel. A Laboratory Testbed for Self-
Contained Navigation. In IEEE International Symposium on Inertial Sensors and
Systems (INERTIAL), Naples, FL, USA, Apr. 1−5, 2019.

[19] A. Bahillo, I. Angulo, E. Onieva, A. Perallos, and P. Fernández. Low-cost Blue-
tooth foot-mounted IMU for pedestrian tracking in industrial environments. In IEEE
International Conference on Industrial Technology (ICIT), Seville, Spain, Mar. 17−19,
2015.

[20] A. Bahillo, A. Arambarri, I. Angulo, E. Onieva, P. Elejoste, and A. Perallos. Im-
plementing a Pedestrian Tracker Using Low-Cost Bluetooth Inertial Sensors. In In-
ternational Conference on Ubiquitous Computing and Ambient Intelligence, Belfast,
Northern Ireland, Dec. 2−5, 2014. Springer.

[21] J. B. Bancroft, G. Lachapelle, M. E. Cannon, and M. G. Petovello. Twin IMU-HSGPS
integration for pedestrian navigation. In 21st ION GNSS+, Savannah, GA, USA, Sep.
16−19, 2008.

319

[22] S. Beauregard. A helmet-mounted pedestrian dead reckoning system. In 3rd Interna-
tional Forum on Applied Wearable Computing, Bremen, Germany, Mar. 15−16, 2006.
VDE.

[23] J. Bird and D. Arden. Indoor navigation with foot-mounted strapdown inertial nav-
igation and magnetic sensors [emerging opportunities for localization and tracking].
IEEE Wireless Communications, 18(2):28–35, 2011.

[24] J. Borenstein, L. Ojeda, and S. Kwanmuang. Heuristic reduction of gyro drift in
imu-based personnel tracking systems. In Optics and Photonics in Global Homeland
Security V and Biometric Technology for Human Identification VI, volume 7306, pages
244–254. SPIE, 2009.

[25] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.”, 2008.

[26] T. J. Brand and R. E. Phillips. Foot-to-foot range measurement as an aid to personal
navigation. In 59th Annual Meeting of The Institute of Navigation and CIGTF 22nd
Guidance Test Symposium, Albuquerque, NM, USA, Jun. 23−25, 2003.

[27] L. Bruno and P. Robertson. WiSLAM: Improving FootSLAM with WiFi. In 2nd IEEE
IPIN, Guimarães, Portugal, Sep. 21−23, 2011.

[28] D. Buhaiov, V. Shelever, and V. Avrutov. Artificial Neural Networks application to
MMG temperature calibration. In 5th IEEE International Conference Actual Problems
of Unmanned Aerial Vehicles Developments (APUAVD), Kyiv, Ukraine, Oct. 22−24,
2019.

[29] H. Carlsson, I. Skog, and J. Jaldén. Self-calibration of inertial sensor arrays. IEEE
Sensors Journal, 21(6):8451–8463, 2021.

[30] W. Chai, C. Chen, E. Edwan, J. Zhang, and O. Loffeld. 2D/3D indoor navigation
based on multi-sensor assisted pedestrian navigation in Wi-Fi environments. In IEEE
Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS),
Helsinki, Finland, Oct. 3−4, 2012.

[31] C. Chen, C.-S. Jao, A. M. Shkel, and S. S. Kia. UWB sensor placement for foot-to-foot
ranging in dual-foot mounted ZUPT-aided INS. IEEE Sensors Letters, 2022.

[32] C. Chen, C.-S. Jao, A. M. Shkel, and S. S. Kia. UWB Sensor Placement for Foot-to-
Foot Ranging in Dual-Foot-Mounted ZUPT-Aided INS. IEEE Sensors Letters, 6(2):1–
4, 2022.

[33] C. Chen, X. Lu, A. Markham, and N. Trigoni. IONet: Learning to cure the curse of
drift in inertial odometry. AAAI Conference on Artificial Intelligence, Feb. 2−7, 2018.

[34] L. Chen, H. Kuusniemi, Y. Chen, L. Pei, T. Kröger, and R. Chen. Motion restricted
information filter for indoor bluetooth positioning. International Journal of Embedded
and Real-Time Communication Systems (IJERTCS), 3(3):54–66, 2012.

320

[35] L.-H. Chen, E. H.-K. Wu, M.-H. Jin, and G.-H. Chen. Intelligent fusion of Wi-Fi
and inertial sensor-based positioning systems for indoor pedestrian navigation. IEEE
Sensors Journal, 14(11):4034–4042, 2014.

[36] P. Chen, Y. Kuang, and X. Chen. A UWB/improved PDR integration algorithm
applied to dynamic indoor positioning for pedestrians. Sensors, 17(9):2065, 2017.

[37] S. Chen, Z. Lu, X. Xu, J. Liu, and Z. Bi. Foot-mounted Dual-sensor Single-board
Pedestrian Inertial Navigation System Based on Position and Velocity Constraints.
Sensors and Materials, 34(6):2075–2087, 2022.

[38] Y. Chen, R. Chen, L. Pei, T. Kröger, H. Kuusniemi, J. Liu, and W. Chen. Knowledge-
based error detection and correction method of a multi-sensor multi-network position-
ing platform for pedestrian indoor navigation. In IEEE/ION PLANS, Indian Wells,
CA, USA, May 3−6, 2010.

[39] Z. Chen, X. Pan, C. Chen, and M. Wu. Contrastive learning of zero-velocity detection
for pedestrian inertial navigation. IEEE Sensors Journal, 22(6):4962–4969, 2021.

[40] B. Cinaz and H. Kenn. HeadSLAM-simultaneous localization and mapping with head-
mounted inertial and laser range sensors. In 12th IEEE International Symposium on
Wearable Computers, Pittsburgh, PA, USA, Sep. 28−1, 2008.

[41] R. M. Coelho, J. Gouveia, M. A. Botto, H. I. Krebs, and J. Martins. Real-time walking
gait terrain classification from foot-mounted Inertial Measurement Unit using Convo-
lutional Long Short-Term Memory neural network. Expert Systems with Applications,
203:117306, 2022.

[42] U. Dauderstädt, P. Sarro, and P. French. Temperature dependence and drift of a
thermal accelerometer. Sensors and Actuators A: Physical, 66(1−3):244–249, 1998.

[43] F. de Ponte Müller. Survey on ranging sensors and cooperative techniques for relative
positioning of vehicles. Sensors, 17(2):271, 2017.

[44] E. M. Diaz, O. Heirich, M. Khider, and P. Robertson. Optimal sampling frequency and
bias error modeling for foot-mounted IMUs. In 4th IEEE IPIN, Montbeliard, France,
Oct. 28−31, 2013.

[45] P. D. Duong and Y. S. Suh. Foot pose estimation using an inertial sensor unit and two
distance sensors. Sensors, 15(7):15888–15902, 2015.

[46] M. El-Diasty, A. El-Rabbany, and S. Pagiatakis. Temperature variation effects on
stochastic characteristics for low-cost MEMS-based inertial sensor error. Measurement
Science and Technology, 18(11):3321, 2007.

[47] N. El-Sheimy and Y. Li. Indoor navigation: State of the art and future trends. Satellite
Navigation, 2(1):1–23, 2021.

321

[48] J. Elwell. Inertial navigation for the urban warrior. In Digitization of the Battlespace
IV, volume 3709, pages 196–204. SPIE, 1999.

[49] J. A. Farrell, F. O. Silva, F. Rahman, and J. Wendel. IMU Error Modeling for
State Estimation and Sensor Calibration:A Tutorial. IEEE Control Systems Maga-
zine, 42(6):40–66, 2021.

[50] B. Feng, W. Tang, G. Guo, and X. Jia. An improved pedestrian tracking method based
on Wi-Fi fingerprinting and pedestrian dead reckoning. Sensors, 20(3):853, 2020.

[51] C. Fischer and H. Gellersen. Location and navigation support for emergency respon-
ders: A survey. IEEE Pervasive Computing, 9(1):38–47, 2010.

[52] S. Flynn. The perfect fire, Mar. 9, 2017. [Retrieved 01-July−2022].

[53] R. Fontanella, D. Accardo, E. Caricati, S. Cimmino, and D. De Simone. An extensive
analysis for the use of back propagation neural networks to perform the calibration
of MEMS gyro bias thermal drift. In IEEE/ION PLANS, Savannah, GA, USA, Apr.
11−16, 2016.

[54] R. Fontanella, D. Accardo, E. Caricati, S. Cimmino, D. De Simone, and G. Lucignano.
Improving inertial attitude measurement performance by exploiting MEMS gyros and
neural thermal calibration. In AIAA Information Systems-AIAA Infotech @ Aerospace,
Grapevine, TX, USA, Jan. 9−13, 2017.

[55] R. Fontanella, D. Accardo, R. S. L. Moriello, L. Angrisani, and D. De Simone. MEMS
gyros temperature calibration through artificial neural networks. Sensors and Actua-
tors A: Physical, 279:553–565, 2018.

[56] R. Fontanella, D. Accardo, R. S. L. Moriello, L. Angrisani, and D. D. Simone. An
innovative strategy for accurate thermal compensation of Gyro Bias in inertial units
by exploiting a novel Augmented Kalman Filter. Sensors, 18(5):1457, 2018.

[57] E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer
Graphics and Applications, 25(6):38–46, 2005.

[58] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha. Visual simultaneous
localization and mapping: a survey. Artificial Intelligence Review, 43(1):55–81, 2015.

[59] K. G ↪adek and M. Jaraczewski. Novel ultrasonic distance measuring system based on
correlation method. Archives of Electrical Engineering, 63(3), 2014.

[60] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger,
A. J. Davison, J. Conradt, K. Daniilidis, et al. Event-based vision: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(1):154–180, 2020.

[61] E. Garćıa, P. Poudereux, Á. Hernández, J. Ureña, and D. Gualda. A robust UWB
indoor positioning system for highly complex environments. In IEEE ICIT, Seville,
Spain, Mar. 17−19, 2015.

322

[62] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman. The simplest walking model: sta-
bility, complexity, and scaling. ASME Journal Biomechanical Engineering, 120(2):281–
288, 1998.

[63] M. Garcia Puyol, P. Robertson, and O. Heirich. Complexity-reduced FootSLAM for
indoor pedestrian navigation using a geographic tree-based data structure. Journal of
Location Based Services, 7(3):182–208, 2013.

[64] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster. Automatic camera and range
sensor calibration using a single shot. In IEEE International Conference on Robotics
and Automation (ICRA), St Paul, MN, USA, May 14−19, 2007.

[65] R. Girisha, G. Prateek, K. Hari, and P. Händel. Fusing the navigation informa-
tion of dual foot-mounted zero-velocity-update-aided inertial navigation systems. In
International Conference on Signal Processing and Communications (SPCOM). Ban-
galore, India, Jul. 22−25, 2014.

[66] S. Godha and G. Lachapelle. Foot mounted inertial system for pedestrian navigation.
Measurement Science and Technology, 19(7):075202, 2008.

[67] S. Godha, G. Lachapelle, and M. E. Cannon. Integrated GPS/INS system for pedes-
trian navigation in a signal degraded environment. In 19th ION GNSS+, Fort Worth,
TX, USA, Sep. 26−29, 2006.

[68] E. Gökalp, O. Güngör, and Y. Boz. Evaluation of different outlier detection methods
for GPS networks. Sensors, 8(11):7344–7358, 2008.

[69] P. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Sys-
tems, Second Edition. Artech, 2013.

[70] Y. Gu, Q. Song, M. Ma, Y. Li, and Z. Zhou. Using iBeacons for trajectory initialization
and calibration in foot-mounted inertial pedestrian positioning systems. In 7th IEEE
IPIN, Alcalá de Henares, Spain, Oct. 4−7, 2016.

[71] Y. Gu, C. Zhou, A. Wieser, and Z. Zhou. Pedestrian positioning using WiFi fingerprints
and a foot-mounted inertial sensor. In IEEE European Navigation Conference (ENC),
Lausanne, Switzerland, May 9−12, 2017.

[72] Y. Gu, C. Zhou, A. Wieser, and Z. Zhou. WiFi based trajectory alignment, calibration
and crowdsourced site survey using smart phones and foot-mounted IMUs. In 8th
IEEE IPIN, Sapporo, Japan, Sep. 18−21, 2017.

[73] Y. Gu, C. Zhou, A. Wieser, and Z. Zhou. Trajectory estimation and crowdsourced radio
map establishment from foot-mounted IMUs, Wi-Fi fingerprints, and GPS positions.
IEEE sensors journal, 19(3):1104–1113, 2018.

[74] O. Guclu and A. B. Can. A comparison of feature detectors and descriptors in RGB-D
SLAM methods. In 17th International Conference Image Analysis and Recognition
(ICIAR), Niagara Falls, Canada, Jul. 22−24, 2015. Springer.

323

[75] R. Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE Com-
munications Surveys & Tutorials, 15(3):1281–1293, 2013.

[76] J. Haverinen and A. Kemppainen. Global indoor self-localization based on the ambient
magnetic field. Robotics and Autonomous Systems, 57(10):1028–1035, 2009.

[77] J. Heikkila, O. Silven, et al. A four-step camera calibration procedure with implicit
image correction. In Computer Vision and Pattern Recognition Conference (CVPR),
volume 97, page 1106. Citeseer, 1997.

[78] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in 2D LIDAR
SLAM. In IEEE ICRA, Stockholm, Sweden, May 16−21, 2016.

[79] G. P. Horn, R. M. Kesler, S. Kerber, K. W. Fent, T. J. Schroeder, W. S. Scott, P. C.
Fehling, B. Fernhall, and D. L. Smith. Thermal response to firefighting activities in res-
idential structure fires: impact of job assignment and suppression tactic. Ergonomics,
61(3):404–419, 2018.

[80] S. House, S. Connell, I. Milligan, D. Austin, T. L. Hayes, and P. Chiang. Indoor
localization using pedestrian dead reckoning updated with RFID-based fiducials. In
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Boston, MA, USA, Aug. 30−3, 2011. IEEE.

[81] M. Jacquelin Perry. Gait analysis: normal and pathological function. New Jersey:
SLACK, 2010.

[82] C.-S. Jao, A. A. Abdallah, C. Chen, M. Seo, S. S. Kia, Z. M. Kassas, and A. M. Shkel.
Sub-meter accurate pedestrian indoor navigation system with dual ZUPT-aided INS,
machine learning-aided LTE, and UWB signals. In International Technical Meeting of
the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO,
USA, Sep 19−23, 2022.

[83] C.-S. Jao, A. A. Abdallah, C. Chen, M.-W. Seo, S. S. Kia, Z. M. Kassas, and A. M.
Shkel. PINDOC: Pedestrian Indoor Navigation System Integrating Deterministic, Op-
portunistic, and Cooperative Functionalities. IEEE Sensors Journal, 2022.

[84] C.-S. Jao, A. Parrish, and A. M. Shkel. ”Sugar-Cube” PLT: A Real-time Pedestrian
Localization Testbed Utilizing Foot-mounted IMU/Barometer/Ultrasonic Sensors. In
IEEE Sensors, Virtual Conference, Oct. 31−4, 2021. IEEE.

[85] C.-S. Jao, E. Sangenis, P. Simo, A. Voloshina, and A. M. Shkel. An Inverted Pendulum
Model of Walking for Predicting Navigation Uncertainty of Pedestrian in Case of Foot-
mounted Inertial Sensors. In IEEE INERTIAL, Kauai, HI, USA, Mar. 28−31, 2023.

[86] C.-S. Jao and A. M. Shkel. Zupt-aided ins bypassing stance phase detection by using
foot-instability-based adaptive covariance. IEEE Sensors Journal, 21(21):24338–24348,
2021.

324

[87] C.-S. Jao and A. M. Shkel. A reconstruction filter for saturated accelerometer signals
due to insufficient FSR in foot-mounted inertial navigation system. IEEE Sensors
Journal, 22(1):695–706, 2022.

[88] C.-S. Jao, K. Stewart, J. Conradt, E. Neftci, and A. Shkel. Zero Velocity Detector
for Foot-mounted Inertial Navigation System Assisted by a Dynamic Vision Sensor.
In 2020 DGON Inertial Sensors and Systems (ISS), Virtual Conference, Sep. 15−16,
2020.

[89] C.-S. Jao, D. Wang, J. Grasso, and A. M. Shkel. UWB-Foot-SLAM: Bounding Position
Error of Foot-mounted Pedestrian INS with Simultaneously Localized UWB Beacons.
In IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA,
USA, Apr 24−27, 2023 (Accepted).

[90] C.-S. Jao, D. Wang, A. R. Parrish, and A. M. Shkel. A Neural Network Approach
to Mitigate Thermal-Induced Errors in ZUPT-aided INS. In 9th IEEE INERTIAL,
Avignon, France, May 8−11, 2022.

[91] C.-S. Jao, Y. Wang, S. Askari, and A. M. Shkel. A Closed-Form Analytical Estima-
tion of Vertical Displacement Error in Pedestrian Navigation. In IEEE/ION PLANS,
Portland, OR, USA, Apr. 20−23, 2020.

[92] C.-S. Jao, Y. Wang, Y.-W. Lin, and A. M. Shkel. A Hybrid Barometric/Ultrasonic
Altimeter for Aiding ZUPT-based Inertial Pedestrian Navigation Systems. In 33rd
ION GNSS+, Virtual Conference, Sep. 21−25, 2020.

[93] C.-S. Jao, Y. Wang, and A. M. Shkel. A Zero Velocity Detector for Foot-mounted In-
ertial Navigation Systems Aided by Downward-facing Range Sensor. In IEEE Sensors
Conference, Virtual Conference, Oct. 25−28, 2020.

[94] C.-S. Jao, Y. Wang, and A. M. Shkel. Pedestrian Inertial Navigation System Aug-
mented by Vision-Based Foot-to-foot Relative Position Measurements. In IEEE/ION
PLANS, Portland, OR, USA, Apr. 20−23, 2020.

[95] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of pedestrian dead-
reckoning algorithms using a low-cost MEMS IMU. In IEEE International Symposium
on Intelligent Signal Processing, Budapest, Hungary, Aug. 26−28, 2009.

[96] A. R. Jiménez, F. Seco, J. C. Prieto, and J. Guevara. Indoor pedestrian navigation
using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In 7th
IEEE Workshop on Positioning, Navigation and Communication (WPNC), Dresden,
Germany, Mar. 11−12, 2010.

[97] A. R. Jiménez, F. Seco, F. Zampella, J. C. Prieto, and J. Guevara. PDR with a
foot-mounted IMU and ramp detection. Sensors, 11(10):9393–9410, 2011.

[98] Y. Jiong, Z. Lei, D. Jiangping, S. Rong, and W. Jianyu. GPS/SINS/BARO integrated
navigation system for UAV. In IEEE International Forum on Information Technology
and Applications (IFITA), Kunming, China, Jul. 16−18, 2010.

325

[99] J. Johnson and C. Taylor. Relative Magnetic Position and Rotation Sensor Assisted
Dual Foot Pedestrian Dead Reckoning. In ION ITM, Mexico City, Mexico, Jan. 25−27,
2022.

[100] H. Ju, J. H. Lee, and C. G. Park. Pedestrian dead reckoning system using dual IMU
to consider heel strike impact. In International Conference on Control, Automation
and Systems (ICCAS), PyeongChang, GangWon Province, Korea, Oct. 17−20, 2018.

[101] H. Ju, M. S. Lee, S. Y. Park, J. W. Song, and C. G. Park. A pedestrian dead-reckoning
system that considers the heel-strike and toe-off phases when using a foot-mounted
IMU. Measurement Science and Technology, 27(1):015702, 2015.

[102] H. Ju and C. G. Park. A pedestrian dead reckoning system using a foot kinematic
constraint and shoe modeling for various motions. Sensors and Actuators A: Physical,
284:135–144, 2018.

[103] S. Kaiser. Integrating known locations in FootSLAM and investigating the influence
of different prior information. In 8th IEEE IPIN, Sapporo, Japan, Sep. 18−21, 2017.

[104] S. Kaiser and E. M. Diaz. PocketSLAM based on the principle of the FootSLAM
algorithm. In IEEE International Conference on Localization and GNSS (ICL-GNSS),
Gothenburg, Sweden, Jun. 22−24, 2015.

[105] S. Kaiser and C. Lang. Integrating moving platforms in a SLAM algorithm for pedes-
trian navigation. Sensors, 18(12):4367, 2018.

[106] S. Kaiser, M. G. Puyol, and P. Robertson. Maps-based angular PDFs used as prior
maps for FootSLAM. In IEEE PLANS, Myrtle Beach, SC, USA, Apr. 23−26, 2012.

[107] J. Käppi and K. Alanen. Pressure altitude enhanced AGNSS hybrid receiver for a
mobile terminal. In 18th ION GNSS+, Long Beach, CA, USA, Sep. 13−16, 2005.

[108] Z. Kassas. Navigation with cellular signals of opportunity. In J. Morton, F. van
Diggelen, J. Spilker, Jr., and B. Parkinson, editors, Position, Navigation, and Timing
Technologies in the 21st Century, volume 2, pages 1171–1223. Wiley-IEEE, 2021.

[109] Z. Kassas, J. Morales, K. Shamaei, and J. Khalife. LTE steers UAV. GPS World
Magazine, 28(4):18–25, April, 2017.

[110] J.-H. Kim, J. W. Starr, and B. Y. Lattimer. Firefighting robot stereo infrared vision
and radar sensor fusion for imaging through smoke. Fire Technology, 51(4):823–845,
2015.

[111] M. Klann. Tactical navigation support for firefighters: The LifeNet ad-hoc sensor-
network and wearable system. In International Workshop on Mobile Information Tech-
nology for Emergency Response, pages 41–56. Springer, 2008.

[112] L. Koval, J. Vaňuš, and P. Biĺık. Distance measuring by ultrasonic sensor. IFAC-
PapersOnLine, 49(25):153–158, 2016.

326

[113] A. Kuo. Energetics of actively powered locomotion using the simplest walking model.
ASME Journal Biomechanical Engineering, 124:113, 2002.

[114] A. D. Kuo. A simple model of bipedal walking predicts the preferred speed–step length
relationship. ASME Journal Biomechanical Engineering, 123(3):264–269, 2001.

[115] A. D. Kuo, J. M. Donelan, and A. Ruina. Energetic consequences of walking like
an inverted pendulum: step-to-step transitions. Exercise and sport sciences reviews,
33(2):88–97, 2005.

[116] R. B. Langley et al. Dilution of precision. GPS world, 10(5):52–59, 1999.

[117] M. Laverne, M. George, D. Lord, A. Kelly, and T. Mukherjee. Experimental valida-
tion of foot-to-foot range measurements in pedestrian tracking. In 24th ION GNSS+,
Portland, OR, USA, Sep. 20−23, 2011.

[118] F. Le Blancq. Diurnal pressure variation: the atmospheric tide. Weather, 66(11):306–
307, 2011.

[119] J. Le Scornec, M. Ortiz, and V. Renaudin. Foot-mounted pedestrian navigation ref-
erence with tightly coupled GNSS carrier phases, inertial and magnetic data. In 8th
IEEE IPIN, Sapporo, Japan, Sep. 18−21, 2017.

[120] J. H. Lee and C. G. Park. Mitigation of a Heading Drift in Pedestrian Dead-reckoning
Caused by the Sensor Bandwidth. International Journal of Control, Automation and
Systems, 19(8):2882–2890, 2021.

[121] M. S. Lee, C. Park, and C. W. Shim. A movement-classification algorithm for pedes-
trian using foot-mounted IMU. In ION ITM, Newport Beach, CA, USA, Jan. 30−1,
2012.

[122] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix. Vision-based SLAM: Stereo and
monocular approaches. International Journal of Computer Vision, 74(3):343–364,
2007.

[123] X. Li, Y. Wang, and D. Liu. Research on extended kalman filter and particle filter
combinational algorithm in uwb and foot-mounted imu fusion positioning. Mobile
Information Systems, 2018, 2018.

[124] Y. Li and J. J. Wang. A robust pedestrian navigation algorithm with low cost IMU.
In 3rd IEEE IPIN, Sydney, Australia, Nov. 13−15, 2012.

[125] Z. Li, C. Song, J. Cai, R. Hua, and P. Yu. An improved pedestrian navigation sys-
tem using imu and magnetometer. In IEEE International Conference on Computer
Systems, Electronics and Control (ICCSEC), Dalian, China, Dec. 19−21, 2017.

[126] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 × 128 120 dB 15 µs Latency
Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits,
43(2):566–576, 2008.

327

[127] H.-f. Liu, W. Ren, T. Zhang, J. Gong, J.-m. Liang, B. Liu, J.-w. Shi, and Z. Huang. An
adaptive selection algorithm of threshold value in zero velocity updating for personal
navigation system. In 33rd Chinese Control Conference, Nanjing, China, Jul. 28−30,
2014.

[128] R. Liu, C. Yuen, T.-N. Do, M. Zhang, Y. L. Guan, and U.-X. Tan. Cooperative posi-
tioning for emergency responders using self IMU and peer-to-peer radios measurements.
Information Fusion, 56:93–102, 2020.

[129] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski, and S. Sen. A
realistic evaluation and comparison of indoor location technologies: Experiences and
lessons learned. In 14th International Symposium on Information Processing in Sensor
Networks (IPSN), Seattle, WA, USA, Apr. 11−14, 2015.

[130] M. Ma, Q. Song, Y. Gu, Y. Li, and Z. Zhou. An adaptive zero velocity detection
algorithm based on multi-sensor fusion for a pedestrian navigation system. Sensors,
18(10):3261, 2018.

[131] M. Ma, Q. Song, Y. Li, and Z. Zhou. A zero velocity intervals detection algorithm based
on sensor fusion for indoor pedestrian navigation. In 2nd IEEE Information Technol-
ogy, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu,
China, Dec. 15−17, 2017.

[132] M. Maaref and Z. Kassas. Autonomous integrity monitoring for vehicular navigation
with cellular signals of opportunity and an IMU. IEEE Transactions on Intelligent
Transportation Systems, 2021. accepted.

[133] L. Mainetti, L. Patrono, and I. Sergi. A survey on indoor positioning systems. In
22nd IEEE International Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Split, Croatia, Sep. 17−19, 2014.

[134] J. Morales and Z. Kassas. Optimal collaborative mapping of terrestrial transmitters:
receiver placement and performance characterization. IEEE Transactions on Aerospace
and Electronic Systems, 54(2):992–1007, April, 2018.

[135] J. Morales, J. Khalife, and Z. Kassas. Information fusion strategies for collaborative
inertial radio SLAM. IEEE Transactions on Intelligent Transportation Systems, 2021.
accepted.

[136] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint Kalman filter for vision-
aided inertial navigation. In IEEE ICRA, Rome, Italy, Apr. 10−14, 2007.

[137] E. Mueggler, B. Huber, and D. Scaramuzza. Event-based, 6-DOF pose tracking for
high-speed maneuvers. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Chicago, IL, USA, Sep. 14−18, 2014.

[138] E. Munoz Diaz. Inertial pocket navigation system: Unaided 3D positioning. Sensors,
15(4):9156–9178, 2015.

328

[139] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[140] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

[141] J.-O. Nilsson, A. K. Gupta, and P. Händel. Foot-mounted inertial navigation made
easy. In 5th IEEE IPIN, Busan, Korea, Oct. 27−30, 2014.

[142] J.-O. Nilsson and I. Skog. Inertial sensor arrays—A literature review. In IEEE ENC,
Helsinki, Finland, May 30−2, 2016.

[143] J.-O. Nilsson, I. Skog, and P. Händel. A note on the limitations of ZUPTs and the
implications on sensor error modeling. In 3rd IPIN, Sydney, Australia, Nov. 13−15,
2012.

[144] J.-O. Nilsson, I. Skog, P. Händel, and K. Hari. Foot-mounted INS for everybody-an
open-source embedded implementation. In IEEE/ION PLANS, Myrtle Beach, SC,
USA, Apr. 23−26, 2012.

[145] J.-O. Nilsson, D. Zachariah, I. Skog, and P. Händel. Cooperative localization by dual
foot-mounted inertial sensors and inter-agent ranging. EURASIP Journal on Advances
in Signal Processing, 2013(1):1–17, 2013.

[146] X. Niu, Y. Li, J. Kuang, and P. Zhang. Data Fusion of Dual Foot-Mounted IMU for
Pedestrian Navigation. IEEE Sensors Journal, 19(12):4577–4584, 2019.

[147] X. Niu, Y. Li, H. Zhang, Q. Wang, and Y. Ban. Fast thermal calibration of low-grade
inertial sensors and inertial measurement units. Sensors, 13(9):12192–12217, 2013.

[148] A. Norrdine, Z. Kasmi, and J. Blankenbach. Step detection for ZUPT-aided inertial
pedestrian navigation system using foot-mounted permanent magnet. IEEE Sensors
Journal, 16(17):6766–6773, 2016.

[149] L. Ojeda and J. Borenstein. Non-GPS navigation for security personnel and first
responders. The Journal of Navigation, 60(3):391–407, 2007.

[150] F. Olsson, J. Rantakokko, and J. Nyg̊ards. Cooperative localization using a foot-
mounted inertial navigation system and ultrawideband ranging. In 5th IEEE IPIN,
Busan, South Korea, Oct. 27−30, 2014.

[151] M. Osman, F. Viset, and M. Kok. Indoor SLAM Using a Foot-mounted IMU and the
local Magnetic Field. arXiv preprint arXiv:2203.15866, 2022.

[152] S. Y. Park, H. Ju, and C. G. Park. Stance phase detection of multiple actions for
military drill using foot-mounted IMU. In 7th IEEE IPIN, Alcalá de Henares, Spain,
Oct. 4−7, 2016.

329

[153] A. R. Parrish, C.-S. Jao, and A. M. Shkel. Stance Phase Detection for ZUPT-Aided
INS Using Knee-Mounted IMU in Crawling Scenarios. IEEE Sensors Letters, 6(5):1–4,
2022.

[154] J. Parviainen, J. Kantola, and J. Collin. Differential barometry in personal navigation.
In IEEE/ION PLANS, Monterey, CA, USA, May 5−8, 2008.

[155] P. Pascacio, S. Casteleyn, J. Torres-Sospedra, E. S. Lohan, and J. Nurmi. Collaborative
indoor positioning systems: A systematic review. Sensors, 21(3):1002, 2021.

[156] P. Peltola, C. Hill, and T. Moore. Particle filter for context sensitive indoor pedestrian
navigation. In ICL-GNSS, Barcelona, Spain, Jun. 28−30, 2016. IEEE.

[157] A. Peruzzi, U. Della Croce, and A. Cereatti. Estimation of stride length in level
walking using an inertial measurement unit attached to the foot: A validation of the
zero velocity assumption during stance. Journal of Biomechanics, 44(10):1991–1994,
2011.

[158] D. D. Pham and Y. S. Suh. Pedestrian navigation using foot-mounted inertial sensor
and LIDAR. Sensors, 16(1):120, 2016.

[159] J. Pieniazek and P. Ciecinski. Thermal hysteresis in inertial sensors. In 7th IEEE
International Workshop on Metrology for AeroSpace (MetroAeroSpace), Virtual Con-
ference, Jun. 22−24, 2020.

[160] M. Placer and S. Kovačič. Enhancing indoor inertial pedestrian navigation using a
shoe-worn marker. Sensors, 13(8):9836–9859, 2013.

[161] G. Puyol and M. Jesus. Crowdsourcing Motion Maps based on FootSLAM for Reliable
Indoor Pedestrian Navigation in Multistory Environments. PhD thesis, Technische
Universität München, 2017.

[162] M. G. Puyol. Merging of maps obtained with human odometry based on footslam for
pedestrian navigation. Master’s Thesis, http://www. kn-s. dlr. de/indoomav/thesis-
MariaGarciaPuyol. pdf, University of Malaga, Spain, 2011.

[163] M. G. Puyol, D. Bobkov, P. Robertson, and T. Jost. Pedestrian simultaneous local-
ization and mapping in multistory buildings using inertial sensors. IEEE Transactions
on Intelligent Transportation Systems, 15(4):1714–1727, 2014.

[164] M. G. Puyol, P. Robertson, and O. Heirich. Complexity-reduced FootSLAM for indoor
pedestrian navigation. In 3rd IEEE IPIN, Sydney, Australia, Nov. 13−15, 2012.

[165] J. Rantakokko, J. Rydell, P. Strömbäck, P. Händel, J. Callmer, D. Törnqvist,
F. Gustafsson, M. Jobs, and M. Gruden. Accurate and reliable soldier and first re-
sponder indoor positioning: multisensor systems and cooperative localization. IEEE
Wireless Communications, 18(2):10–18, 2011.

330

[166] J. Rantanen, L. Ruotsalainen, M. Kirkko-Jaakkola, and M. Mäkelä. Height measure-
ment in seamless indoor/outdoor infrastructure-free navigation. IEEE Transactions
on Instrumentation and Measurement, 68(4):1199–1209, 2018.

[167] K. D. Rao. Integration of GPS and baro-inertial loop aided strapdown INS and radar
altimeter. IETE Journal of Research, 43(5):383–390, 1997.

[168] V. Renaudin, O. Yalak, P. Tomé, and B. Merminod. Indoor navigation of emergency
agents. European Journal of Navigation, 5(ARTICLE):36–45, 2007.

[169] G. Retscher. Altitude determination of a pedestrian in a multistorey building. In
Location Based Services and Telecartography, pages 119–130. Springer, 2007.

[170] G. Retscher and Q. Fu. Integration of RFID, GNSS and DR for ubiquitous positioning
in pedestrian navigation. In 20th ION GNSS+, Fort Worth, Texas, Sep. 25−28, 2007.

[171] P. Robertson, M. Angermann, and B. Krach. Simultaneous localization and map-
ping for pedestrians using only foot-mounted inertial sensors. In 11th International
Conference on Ubiquitous Computing (UbiComp), Orlando, FL, Sep. 30−3, 2009.

[172] P. Robertson, M. Frassl, M. Angermann, M. Doniec, B. J. Julian, M. G. Puyol,
M. Khider, M. Lichtenstern, and L. Bruno. Simultaneous localization and mapping
for pedestrians using distortions of the local magnetic field intensity in large indoor
environments. In 4th IEEE IPIN, Montbeliard-Belfort, France, Oct. 28−31, 2013.

[173] P. Robertson, M. G. Puyol, and M. Angermann. Collaborative pedestrian mapping of
buildings using inertial sensors and FootSLAM. In 24th ION GNSS+, Portland, OR,
USA, Sep. 20−23, 2011.

[174] A. R. J. Ruiz and F. S. Granja. Comparing ubisense, bespoon, and decawave uwb
location systems: Indoor performance analysis. IEEE Transactions on instrumentation
and Measurement, 66(8):2106–2117, 2017.

[175] A. R. J. Ruiz, F. S. Granja, J. C. P. Honorato, and J. I. G. Rosas. Accurate pedestrian
indoor navigation by tightly coupling foot-mounted IMU and RFID measurements.
IEEE Transactions on Instrumentation and measurement, 61(1):178–189, 2011.

[176] A. R. J. J. Ruiz, F. S. Granja, J. C. P. Honorato, and J. I. G. Rosas. Pedestrian indoor
navigation by aiding a foot-mounted IMU with RFID signal strength measurements.
In 1st IEEE IPIN, Zurich, Switzerland, Sep. 15−17, 2010.

[177] A. M. Sabatini and V. Genovese. A sensor fusion method for tracking vertical ve-
locity and height based on inertial and barometric altimeter measurements. Sensors,
14(8):13324–13347, 2014.

[178] E. Sangenis, C.-S. Jao, and A. M. Shkel. SVM-based Motion Classification Using Foot-
mounted IMU for ZUPT-aided INS. In IEEE Sensors, Dalla, TX, USA, Oct 30−2,
2022.

331

[179] E. Schubert and M. Scholz. Evaluation of wireless sensor technologies in a firefighting
environment. In 7th IEEE International Conference on Networked Sensing Systems
(INSS), pages 157–160, 2010.

[180] Y. Shu, Y. Huang, J. Zhang, P. Coué, P. Cheng, J. Chen, and K. G. Shin. Gradient-
based fingerprinting for indoor localization and tracking. IEEE Transactions on In-
dustrial Electronics, 63(4):2424–2433, 2015.

[181] I. Skog, P. Handel, J.-O. Nilsson, and J. Rantakokko. Zero-velocity detection—An
algorithm evaluation. IEEE Transactions On Biomedical Engineering, 57(11):2657–
2666, 2010.

[182] I. Skog, G. Hendeby, and F. Gustafsson. Magnetic odometry-a model-based approach
using a sensor array. In 21st IEEE 2018 21st International Conference on Information
Fusion (FUSION), Cambridge, United Kingdom, Jul. 10−13, 2018.

[183] I. Skog, J.-O. Nilsson, and P. Händel. An open-source multi inertial measurement
unit (MIMU) platform. In IEEE International Symposium on Inertial Sensors and
Systems (ISISS), Dana Point, USA, Feb. 25−26, 2014.

[184] I. Skog, J.-O. Nilsson, and P. Händel. Pedestrian tracking using an IMU array. In IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), Bangalore, India, Jul. 2−4, 2014.

[185] I. Skog, J.-O. Nilsson, P. Händel, and A. Nehorai. Inertial sensor arrays, maximum like-
lihood, and cramér–rao bound. IEEE Transactions on Signal Processing, 64(16):4218–
4227, 2016.

[186] I. Skog, J.-O. Nilsson, D. Zachariah, and P. Händel. Fusing the information from two
navigation systems using an upper bound on their maximum spatial separation. In 3rd
IEEE IPIN, Sydney, Australia, Nov. 13−15, 2012.

[187] V. S. Sokolovic, G. Dikic, and R. Stancic. Integration of INS, GPS, magnetometer and
barometer for improving accuracy navigation of the vehicle. Defence Science Journal,
63(5):451–455, 2013.

[188] A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. Modeling and inter-
polation of the ambient magnetic field by Gaussian processes. IEEE Transactions on
Robotics, 34(4):1112–1127, 2018.

[189] R. Stirling, J. Collin, K. Fyfe, and G. Lachapelle. An innovative shoe-mounted pedes-
trian navigation system. ENC GNSS, Apr. 22−24, 2003.

[190] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of RGB-D SLAM systems. In IEEE/RSJ IROS, Algarve, Portugal, Oct.
7−12, 2012.

332

[191] W. Sun, W. Ding, H. Yan, and S. Duan. Zero velocity interval detection based on a
continuous hidden markov model in micro inertial pedestrian navigation. Measurement
Science and Technology, 29(6):065103, 2018.

[192] Q. Tang, X. Wang, Q. Yang, and C. Liu. Static temperature analysis and compensation
of MEMS gyroscopes. International Journal of Metrology and Quality Engineering,
4(3):209–214, 2013.

[193] M. Tanigawa, H. Luinge, L. Schipper, and P. Slycke. Drift-free dynamic height sensor
using mems imu aided by mems pressure sensor. In 5th IEEE WPNC, Hannover,
Germany, Mar. 27, 2008.

[194] X. Tao, F. Zhu, X. Hu, W. Liu, and X. Zhang. An enhanced foot-mounted PDR method
with adaptive ZUPT and multi-sensors fusion for seamless pedestrian navigation. GPS
Solutions, 26(1):1–13, 2022.

[195] D. Tazartes. An historical perspective on inertial navigation systems. In IEEE ISISS,
Dana Point, USA, Feb. 25−26, 2014.

[196] D. A. Tazartes. Inertial navigation: From gimbaled platforms to strapdown sensors,
2011.

[197] X. Tian, J. Chen, Y. Han, J. Shang, and N. Li. A novel zero velocity interval detec-
tion algorithm for self-contained pedestrian navigation system with inertial sensors.
Sensors, 16(10):1578, 2016.

[198] D. Titterton, J. L. Weston, and J. Weston. Strapdown inertial navigation technology,
volume 17. IET, 2004.

[199] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Röning. Magnetic field-based SLAM
method for solving the localization problem in mobile robot floor-cleaning task. In 15th
IEEE International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, Jun.
20 - 23, 2011.

[200] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza. Ultimate SLAM?
Combining events, images, and IMU for robust visual SLAM in HDR and high-speed
scenarios. IEEE Robotics and Automation Letters, 3(2):994–1001, 2018.

[201] F. Viset, J. T. Gravdahl, and M. Kok. Magnetic field norm SLAM using Gaussian
process regression in foot-mounted sensors. In IEEE European Control Conference
(ECC), Virtual Conference, Jun. 29−2, 2021.

[202] B. Wagstaff and J. Kelly. LSTM-based zero-velocity detection for robust inertial nav-
igation. In 9th IEEE IPIN, Nantes, France, Sep. 24−27, 2018.

[203] B. Wagstaff, V. Peretroukhin, and J. Kelly. Improving foot-mounted inertial navigation
through real-time motion classification. In 8th IEEE IPIN, Sapporo, Japan, Sep.
18−21, 2017.

333

[204] J. Wahlström, A. Markham, and N. Trigoni. FootSLAM meets adaptive thresholding.
IEEE Sensors Journal, 20(16):9351–9358, 2020.

[205] J. Wahlström and I. Skog. Fifteen years of progress at zero velocity: A review. IEEE
Sensors Journal, 21(2):1139–1151, 2020.

[206] J. Wahlström, I. Skog, F. Gustafsson, A. Markham, and N. Trigoni. Zero-velocity detec-
tion—A Bayesian approach to adaptive thresholding. IEEE Sensors Letters, 3(6):1–4,
2019.

[207] U. Walder and T. Bernoulli. Context-adaptive algorithms to improve indoor positioning
with inertial sensors. In 1st IEEE IPIN, Zurich, Switzerland, Sep. 15−17, 2010.

[208] J. Wang, A. Hu, X. Li, and Y. Wang. An improved PDR/magnetometer/floor map
integration algorithm for ubiquitous positioning using the adaptive unscented Kalman
filter. ISPRS International Journal of Geo-Information, 4(4):2638–2659, 2015.

[209] L. Wang, Y. Hao, Z. Wei, and F. Wang. Thermal calibration of MEMS inertial sensors
for an FPGA-based navigation system. In 3rd IEEE International Conference on
Intelligent Networks and Intelligent Systems (ICINIS), Shenyang, China, Nov. 1−3,
2010.

[210] Q. Wang, Z. Guo, Z. Sun, X. Cui, and K. Liu. Research on the forward and reverse cal-
culation based on the adaptive zero-velocity interval adjustment for the foot-mounted
inertial pedestrian-positioning system. Sensors, 18(5):1642, 2018.

[211] Q. Wang, X. Zhang, X. Chen, R. Chen, W. Chen, and Y. Chen. A novel pedestrian
dead reckoning algorithm using wearable EMG sensors to measure walking strides. In
UPINLBS, Kirkkonummi, Finland, Oct. 14−15, 2010.

[212] Y. Wang. Pedestrian Inertial Navigation - Development of Sensors and Algorithms.
PhD thesis, University of California, Irvine, 2020.

[213] Y. Wang, S. Askari, C.-S. Jao, and A. M. Shkel. Directional ranging for enhanced
performance of aided pedestrian inertial navigation. In IEEE INERTIAL, Naples, FL,
USA, Apr. 1−5, 2019.

[214] Y. Wang, S. Askari, and A. M. Shkel. Study on Mounting Position of IMU for Better
Accuracy of ZUPT-Aided Pedestrian Inertial Navigation. In IEEE INERTIAL, Naples,
FL, USA, Apr. 1−5, 2019.

[215] Y. Wang, H. Cheng, and M. Q.-H. Meng. Inertial Odometry Using Hybrid Neural
Network with Temporal Attention for Pedestrian Localization. IEEE Transactions on
Instrumentation and Measurement, 2022.

[216] Y. Wang, A. Chernyshoff, and A. M. Shkel. Error analysis of ZUPT-aided pedestrian
inertial navigation. In 9th IEEE IPIN, Nantes, France, Sep. 24−27, 2018.

334

[217] Y. Wang, A. Chernyshoff, and A. M. Shkel. Study on estimation errors in zupt-aided
pedestrian inertial navigation due to imu noises. IEEE Transactions on Aerospace and
Electronic Systems, 56(3):2280–2291, 2019.

[218] Y. Wang, C.-S. Jao, and A. M. Shkel. Scenario-dependent zupt-aided pedestrian iner-
tial navigation with sensor fusion. Gyroscopy and Navigation, 12(1):1–16, 2021.

[219] Y. Wang and X. Li. The IMU/UWB fusion positioning algorithm based on a particle
filter. ISPRS International Journal of Geo-Information, 6(8):235, 2017.

[220] Y. Wang and X. Li. Graph-optimization-based zupt/uwb fusion algorithm. ISPRS
International Journal of Geo-Information, 7(1):18, 2018.

[221] Y. Wang, X. Li, K. S. Khoshelham, and P. Li. Robust iterated extended kalman filter
algorithm for foot-mounted inertial measurement units/ultrawideband fusion position-
ing. Journal of Applied Remote Sensing, 13(2):024510, 2019.

[222] Y. Wang, Y.-W. Lin, S. Askari, C.-S. Jao, and A. M. Shkel. Compensation of Sys-
tematic Errors in ZUPT-Aided Pedestrian Inertial Navigation. In IEEE/ION PLANS,
Portland, OR, USA, Apr. 20−23, 2020.

[223] Y. Wang and A. M. Shkel. Adaptive threshold for zero-velocity detector in ZUPT-aided
pedestrian inertial navigation. IEEE Sensors Letters, 3(11):1–4, 2019.

[224] Y. Wang and A. M. Shkel. A review on zupt-aided pedestrian inertial navigation.
In 27th Saint Petersburg International Conference on Integrated Navigation Systems
(ICINS), Saint Petersburg, Russia, May 25−27, 2020.

[225] Y. Wang and A. M. Shkel. Learning-Based Floor-Type Identification in the ZUPT-
Aided Pedestrian Inertial Navigation. IEEE Sensors Letters, 5(3):1–4, 2021.

[226] Y. Wang, D. Vatanparvar, A. Chernyshoff, and A. M. Shkel. Analytical Closed-Form
Estimation of Position Error on ZUPT-Augmented Pedestrian Inertial Navigation.
IEEE Sensors Letters, 2(4):1–4, 2018.

[227] Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee.
Mems-based gas flow sensors. Microfluidics and nanofluidics, 6:333–346, 2009.

[228] Z. Wang, X. Cheng, and J. Du. Thermal Modeling and Calibration Method in Complex
Temperature Field for Single-Axis Rotational Inertial Navigation System. Sensors,
20(2):384, 2020.

[229] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt. Event-based 3D SLAM
with a depth-augmented dynamic vision sensor. In IEEE ICRA, Hong Kong, May
31−5, 2014.

[230] D. Weikersdorfer, R. Hoffmann, and J. Conradt. Simultaneous localization and map-
ping for event-based vision systems. In International Conference on Computer Vision
Systems (ICVS), St. Petersburg, Russia, Jul. 16−18, 2013. Springer.

335

[231] K. Wen, K. Yu, Y. Li, S. Zhang, and W. Zhang. A new quaternion Kalman filter based
foot-mounted IMU and UWB tightly-coupled method for indoor pedestrian navigation.
IEEE Transactions on Vehicular Technology, 69(4):4340–4352, 2020.

[232] K. Witrisal, S. Hinteregger, J. Kulmer, E. Leitinger, and P. Meissner. High-accuracy
positioning for indoor applications: RFID, UWB, 5G, and beyond. In IEEE Interna-
tional Conference on RFID, shunde, China, Sep. 21−23, 2016.

[233] O. Woodman and R. Harle. Pedestrian localisation for indoor environments. In 10th
International Conference on UbiComp, Seoul, Korea, Sep. 21−24, 2008.

[234] X. Wu, Y. Wang, and G. Pottie. A non-ZUPT gait reconstruction method for ankle
sensors. In 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Chicago, IL, USA, Aug. 26−30, 2014.

[235] Y. Wu and W. Shi. On calibration of three-axis magnetometer. IEEE Sensors Journal,
15(11):6424–6431, 2015.

[236] www.trxsystems.com.

[237] D. Xia, S. Chen, S. Wang, and H. Li. Temperature effects and compensation-control
methods. Sensors, 9(10):8349–8376, 2009.

[238] H. Xia, X. Wang, Y. Qiao, J. Jian, and Y. Chang. Using multiple barometers to
detect the floor location of smart phones with built-in barometric sensors for indoor
positioning. Sensors, 15(4):7857–7877, 2015.

[239] N. Xiaoji, W. Yan, and K. Jian. A pedestrian pos for indoor mobile mapping system
based on foot-mounted visual–inertial sensors. Measurement, 199:111559, 2022.

[240] Z. Xinxi, Z. Rong, G. Meifeng, C. Gaofeng, N. Shulai, and L. Jinglong. The per-
formance impact evaluation on bias of gyro and accelerometer for foot-mounted INS.
In 12th IEEE International Conference on Electronic Measurement & Instruments
(ICEMI), Nanjing, Jiangsu Province, China, Nov. 2−4, 2015.

[241] D. Xu, Z. Yang, H. Zhao, and X. Zhou. A temperature compensation method for
MEMS accelerometer based on LM BP neural network. In IEEE SENSORS, Orlando,
FL, USA, Oct. 30−2, 2016.

[242] G. Xu, T. Meng, and H. Zhang. Height Estimation of Ultrasonic Array Based on
Integrated Navigation for UAVs. In IEEE Chinese Control And Decision Conference
(CCDC), Nanchang, China, Jun. 3−5, 2019.

[243] Y. Xu, T. Shen, X.-Y. Chen, L.-L. Bu, and N. Feng. Predictive adaptive Kalman filter
and its application to INS/UWB-integrated human localization with missing UWB-
based measurements. International Journal of Automation and Computing, 16(5):604–
613, 2019.

336

[244] Y. Xu, G. Tian, and X. Chen. Enhancing INS/UWB integrated position estimation
using federated EFIR filtering. IEEE Access, 6:64461–64469, 2018.

[245] A. Yaakov and J. L. Gruver. Dynamic hysteresis calibration algorithm for inertial
grade accelerometers. In 3rd IEEE ISISS, Laguna Beach, CA, USA, Feb. 23−25, 2016.

[246] C. Yang and H.-R. Shao. WiFi-based indoor positioning. IEEE Communications
Magazine, 53(3):150–157, 2015.

[247] D. Yang, J.-K. Woo, S. Lee, J. Mitchell, A. D. Challoner, and K. Najafi. A micro
oven-control system for inertial sensors. Journal of Microelectromechanical Systems,
26(3):507–518, 2017.

[248] T. Yang, K. Kaji, and N. Kawaguchi. Elevator acceleration sensing: Design and
estimation recognition algorithm using crowdsourcing. In 37th IEEE Annual Computer
Software and Applications Conference Workshops, Kyoto, Japan, Jul. 22−26, 2013.

[249] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and
E. Aboutanios. Recent advances in indoor localization: A survey on theoretical ap-
proaches and applications. IEEE Communications Surveys & Tutorials, 19(2):1327–
1346, 2016.

[250] Q. Yuan, I.-M. Chen, and A. Caus. Human velocity tracking and localization using
3 imu sensors. In 6th IEEE Conference on Robotics, Automation and Mechatronics
(RAM), Manila, Philippines, Dec. 12−15, 2013.

[251] F. Zampella, A. De Angelis, I. Skog, D. Zachariah, and A. Jimenez. A constraint
approach for UWB and PDR fusion. In 3rd IEEE IPIN, Sydney, Australia, Nov.
13−15, 2012.

[252] F. Zampella, F. Seco, et al. Robust indoor positioning fusing PDR and RF technologies:
The RFID and UWB case. In 4th IEEE IPIN, Montbeliard-Belfort, France, Oct.
28−31, 2013.

[253] J. Zhang, E. Edwan, J. Zhou, W. Chai, and O. Loffeld. Performance investigation of
barometer aided GPS/MEMS-IMU integration. In IEEE/ION PLANS, Myrtle Beach,
SC, USA, Apr. 23−26, 2012.

[254] K. Zhang, M. Zhu, G. Retscher, F. Wu, and W. Cartwright. Three-dimension indoor
positioning algorithms using an integrated RFID/INS system in multi-storey buildings.
In Location Based Services and TeleCartography II, pages 373–386. Springer, 2009.

[255] R. Zhang, F. Hoeflinger, O. Gorgis, and L. M. Reindl. Indoor localization using inertial
sensors and ultrasonic rangefinder. In International Conference on Wireless Commu-
nications and Signal Processing (WCSP), Nanjing, China, Nov. 9−11, 2011.

[256] R. Zhang, H. Yang, F. Höflinger, and L. M. Reindl. Adaptive zero velocity update based
on velocity classification for pedestrian tracking. IEEE Sensors Journal, 17(7):2137–
2145, 2017.

337

[257] W. Zhang, X. Li, D. Wei, X. Ji, and H. Yuan. A foot-mounted PDR system based on
IMU/EKF+ HMM+ ZUPT+ ZARU+ HDR+ compass algorithm. In 8th IEEE IPIN,
Sapporo, Japan, Sep. 18−21, 2017.

[258] Y. Zhang, X. Tan, and C. Zhao. UWB/INS integrated pedestrian positioning for robust
indoor environments. IEEE Sensors Journal, 20(23):14401–14409, 2020.

[259] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:1330–1334, 2000.

[260] C. Zhou, J. Downey, D. Stancil, and T. Mukherjee. A low-power shoe-embedded radar
for aiding pedestrian inertial navigation. IEEE Transactions on Microwave Theory
and Techniques, 58(10):2521–2528, 2010.

[261] J. Zhu and S. S. Kia. A loosely coupled cooperative localization augmentation to
improve human geolocation in indoor environments. In 9th IEEE IPIN, Nantes, France,
Sep. 24−27, 2018.

[262] J. Zhu and S. S. Kia. Bias compensation for UWB ranging for pedestrian geolocation
applications. IEEE Sensors Letters, 3(9):1–4, 2019.

[263] J. Zhu and S. S. Kia. An UWB-based communication protocol design for an
infrastructure-free cooperative navigation. In IEEE/ION PLANS, Portland, OR, USA,
Apr. 20−23, 2020.

[264] J. Zhu and S. S. Kia. Decentralized cooperative localization with LoS and NLoS UWB
inter-agent ranging. IEEE Sensors Journal, 22(6):5447–5456, 2021.

[265] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy. Smartphone-based indoor local-
ization with bluetooth low energy beacons. Sensors, 16(5):596, 2016.

[266] Z. Zuo, L. Liu, L. Zhang, and Y. Fang. Indoor positioning based on Bluetooth low-
energy beacons adopting graph optimization. Sensors, 18(11):3736, 2018.

[267] L. Zwirello, C. Ascher, G. F. Trommer, and T. Zwick. Study on UWB/INS integration
techniques. In 8th IEEE WPNC, Dresden, Germany, Apr. 7−8, 2011.

[268] L. Zwirello, X. Li, T. Zwick, C. Ascher, S. Werling, and G. F. Trommer. Sensor data
fusion in UWB-supported inertial navigation systems for indoor navigation. In IEEE
ICRA, Karlsruhe, Germany, May 6−10, 2013.

338

Appendix A

Pedestrian Navigation Testbeds

This appendix presents the hardware, firmware, and interface development of two multi-

sensor pedestrian navigation platforms, the Lab-On-Shoe platform and the Sugar-Cube plat-

form. Corresponding MATLAB, LabVIEW, and C/C++ Sources codes are included. Section

A.1 discusses different variations of the developed Lab-On-Shoe platform, and Section A.2

describes designs and implementations of the developed Sugar-Cube platform.

A.1 Lab-On-Shoe Platform

This section discusses the development of the Lab-On-Shoe platform. The Lab-On-Shoe

platform was designed to be a flexible system allowing fast investigation of the impacts of

different sensing modalities. There were two implementations of the Lab-On-Shoe platforms,

referred to as Lab-On-Shoe 1 and Lab-On-Shoe 2, respectively. Lab-On-Shoe 1 is presented

in Section A.1.1 and Lab-On-Shoe 2 is discussed in Section A.1.2.

339

A.1.1 Lab-On-Shoe 1: Packpack and Shoe Implementation

The Lab-On-Shoe 1 platform has nine different versions, including Lab-On-Shoe 1.0, Lab-

On-Shoe 1.1, Lab-On-Shoe 1.2, Lab-On-Shoe 1.3, Lab-On-Shoe 1.4, Lab-On-Shoe 1.5, Lab-

On-Shoe 1.6, Lab-On-Shoe 1.7, and Lab-On-Shoe 1.8. The version denoted with a larger

includes all the functionalities of the version denoted with a smaller number. In this section,

all eight versions of the Lab-On-Shoe 1 platform are discussed.

Lab-On-Shoe 1.0: FPGA Integrated With IMUs and Ultrasonic Transducers

Table A.1 lists COTS components used on the Lab-On-Shoe 1.0 system. This system included

a backpack and a pair of shoes. The processing unit, battery, and voltage regulators were

soldered and connected on a customized mother PCB, discussed later in this section, that

was mounted inside a backpack with a dimension of around 20 [in] ×15 [in] ×10 [in]. One

IMU and one pair of SONARs were mounted on each shoe of the system. The shoe-mounted

sensors were connected to the mother PCB with 1-[m]-long cables.

Table A.1: COTS components used in Lab-On-Shoe 1.0 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF08 4 Ranging

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Motherboard PCB The motherboard PCB (see Figure A.1 for schematic and Figure A.2

for the assembled board) inputs power source from the LiFePO4 rechargeable battery and

distributes power to the following circuit blocks: battery indicator, IMUs, and SONAR sen-

340

NI Compact Rio

Ultrasonic Transducer
(SRF08)

x4

Ultrasonic Receiver
(SRF08)

x4

ADIS16485
x2

ON

OFF

Motherboard
Ultrasonic Board

(SRF08) x4

Battery Indicator

ON

OFF

x2

ON

OFF

ON

OFF

LiFePO4 rechargeable
battery

IMU Signals

Po
w

er

SO
N

AR
 S

ig
na

ls

Regulator
(AN-1443 LM3100

Demo Board)

Regulator
(TPS7A1601EVM-046)

Figure A.1: Schematic of the motherboard PCB

sors. We placed two 3-port power switches (NKK Switch MS23BNW03-ND). One connects

to the battery and controls the operation of the entire motherboard, the other connects to

the battery indicator circuit and controls the operation of the indicator. We also placed

three 2-port power switches (NKK Switch AS12AP) to turn on or off the operation of the

IMU blocks and SONAR blocks, respectively.

The battery indicator circuit has five LEDs to show the battery level. Five LEDs illuminating

simultaneously for 100% battery level, four for 75%, and so on. The IMU blocks use a 3.3

[V] DC voltage and maximum 1.5A DC current regulator (AN−1443 LM3100 Demo Board)

for each of the IMUs. Each of the regulators was connected to two-port terminal blocks to

provide power for IMU. The Sonar sensor blocks use a 5 [V] DC voltage and a maximum of

100 [mA] DC current regulator (TPS7A1601EVM−046) to provide power to all the SONAR

sensors. This regulator was connected to four SRF08 SONAR sensor evaluation boards.

The SONAR sensor board has four input pins, one pair for transducers and the other for

341

Regulator
(AN-1443 LM3100 Demo Board)

Battery Indicator

Ultrasonic Board
(SRF08)

2 port switch

3 port switch

Power
input

Regulator
(TPS7A1601EVM-046)

SONAR signal

3 port switch

Figure A.2: The assembled motherboard PCB

receivers. We connected these pins on the four evaluation boards to 8 two-port terminal

blocks. The power, SCL, SDA, and GND pins on the four evaluation boards were connected,

respectively, and SCL and SDA were output to Compact-Rio via two SMA ports.

(a) (b) (c)

Figure A.3: (a) SONAR Sensor PCB layout. (b) SONAR Sensor PCB front view. (c)
SONAR Sensor PCB back view

PCB for SONAR Sensor This PCB was developed for the placement transducer and re-

ceiver of the SRF08 SONAR sensor. We manually detached the transducer and the receiver

342

from the SRF08 evaluation board and placed each on this PCB. The assembled part was

fixed on a specific face of the shoe fixture. On this PCB (see Figure A.3b and Figure A.3c),

we have two ports for the sensors. These two ports were connected to a two-pin jumper to

connect to the motherboard PCB via cables.

Lab-On-Shoe 1.1: Integrating With Altimeters

Table A.2: COTS components used in Lab-On-Shoe 1.1 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF08 4 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Table A.2 lists COTS components used on the Lab-On-Shoe 1.1 system, which was integrated

with two additional barometric altimeters, as compared to the Lab-On-Shoe 1.0 system. The

altimeters were included to investigate the algorithm of the ZUPT-aided INS augmented with

altimeters.

Altimeter Selection An altimeter (MS5803-series) was selected to be incorporated into the

Lab-On-Shoe 1.1 platform. The altimeter was designed to have SPI and I2C communi-

cation protocol, which provides easy integration with the flexible platform that includes NI

Compact-Rio, IMUs, and SONARs, presented in Figure A.4. In the case of the Lab-On-Shoe

1.1 platform, I2C communication protocol was ideal since it could be implemented on the

two ports of a NI−9402 module of the CompactRIO. The operating voltage of the MS5803

altimeter was 3.3 [V], provided by the voltage regulator (AN−1443 LM3100 demo board).

343

Figure A.4: Connection schematic of Lab-On-Shoe 1.1 platform.

Reset

Scale factors acquisition
• SENS
• OFF
• TCS
• TCO
• TREF
• TEMPSENS

Raw data acquisition
• raw air pressure
• Thermal data

Data
conversion

Output data (50 Hz)
(absolute air

pressure)

Time loop

Figure A.5: I2C communication flow for MS5803 altimeter.

344

Altimeter Firmware An I2C implementation flow chart for the MS5803−01BA altimeter

is shown in Figure A.5. Initialization was required for the I2C communication protocol

to ensure that both the SDA and SCL lines were in an idle mode. The initialization was

achieved by sending a reset command before implementing all the other commands. After the

initialization, six scale factors must be read from the sensor at least once for each operating

altimeter. These scale factors were used to calibrate the altimeter. Once the calibration

coefficients were acquired, we sent analog-to-digital conversion command to read raw air

pressure and temperature data in each iteration. These two data were then used with the

calibration coefficients in the calculation of temperature-compensated measurements of air

pressure.

The I2C for the MS5803 altimeter was implemented via LabVIEW on the Lab-On-Shoe 1.1

platform. Altimeter communication was implemented parallel to SONAR communication

(On the NI−9402 module, port #0 and port #1 were used by SONARs, and port #3 and

port #4 by altimeters). There was also a choice to connect altimeters in series with SONARs.

However, such a configuration would limit the overall sampling frequency of I2C to 10 [Hz],

which was considered insufficient in pedestrian navigation since each gait cycle was only

approximately 0.5 seconds. Using the parallel connection, the system achieved sampling

rates of 25 [Hz] for the integrated SONARs and 50 [Hz] for the altimeters, respectively.

PCB Design One D-sub cable of 25 pins was used to connect each shoe to the developed

mother PCB. Among these 25 pins, six pins were allocated for communication with IMUs

via SPI protocol, eight for SONAR sensors, and six for altimeter I2C communication.

The motherboard PCB, presented in Figure A.6, had four regulators to power IMUs, SONARs,

and altimeters. Regulator TPS7A1601EVM−046 provided power for SONARs, and Regu-

lator AN−1443 LM3100 Eval Board was used for IMUs and altimeters. Another PCB was

designed to be placed on the shoe, serving as a relay to connect the CompactRIO to foot-

345

Figure A.6: A picture shown the assembled motherboard PCB used on the Lab-On-Shoe 1.1
platform.

346

mounted sensors. The motherboard PCB gathered all the clock signals of the I2C and SPI,

sending them via the D-sub cable to the shoe PCB, and the shoe PCB then distributed

power and clock signals to the sensors. The sensor data was then transmitted back to the

shoe PCB, sending the data first back to the motherboard PCB via the D-sub cable, then

to the CompactRIO.

Altimeter Performance Testing According to the MS5803−01BA datasheet, measurements

of air pressure had a resolution of 0.2 [mbar]. To verify the resolutions of the altimeter, two

series of experiments were conducted. In the first series of experiments, the MS5803−01BA

altimeter remained stationary for approximately 4 hours to record data. These data were

used to perform the Allan deviation analysis of the sensor. The Allan deviation is shown in

Figure A.7.

10
0

10
2

 [sec]

0.2

0.3

0.4

0.5

0.6

0.7
0.8

(
)

Allan Deviation: (12 Hz)

Figure A.7: Allan deviation of MS5803-BA14.

The second series of experiments involved a subject carrying the altimeter, performing three

different trials: walking on indoor stairs, standing in a moving elevator, and walking on indoor

stairs. The results are shown in Figure A.8. The height of the building where the experiment

347

was performed was approximately 15 [m]. In the experiment of walking on indoor stairs, the

subject walked upstairs from the first floor to the fourth floor, stayed on the fourth floor for

two seconds, and then walked back down to the first floor. This procedure was repeated three

times. In the experiment of standing in the elevator, the subject stood inside an elevator,

and the elevator went from the first floor to the fourth floor. The procedure was repeated

three times. In the outdoor experiment, the subject repeated the same activities as in the

indoor experiment. It could be observed in Figure A.8 that the collected data appears to be

messy, as compared to the experiment conducted in indoors. The possible explanation was

that when the subject was performing the outdoor experiments, air flow due to wind had a

larger effect than the indoor environment.

0 50 100 150 200 250 300 350 400
Time, [m]

0

10

20

A
lti

tu
de

,[
m

]

Walking at indoor staircases

0 50 100 150 200 250
Time, [m]

0

10

20

Al
tit

ud
e,

[m
]

Standing in an elevator moving up and down

0 50 100 150 200 250 300
Time, [m]

0

10

20

Al
tit

ud
e,

[m
]

walking at outdoor staircases

Figure A.8: Altimeter data collected from walking experiments.

348

Lab-On-Shoe 1.2: Real-time Navigation Using ZUPT/Altimeters/Foot-to-foot-aided INS

The Lab-On-Shoe 1.2 platform had the same hardware architecture as the Lab-On-Shoe 1.1

platform and was upgraded with an additional capability to perform real-time navigation

based on a ZUPT-aided INS augmented with altimeters and SONAR-based foot-to-foot

ranging.

Firmware Architecture The architecture of the Lab-On-Shoe 1.2 system is given in Figure

A.9. The acquisitions of the sensors, including IMU, SONAR, and altimeter, were achieved

in the FPGA module of the NI CompactRIO. The collected sensor measurements were trans-

mitted to the Real-Time module of the NI CompactRIO. In this module, strap-down inertial

navigation and extended Kalman Filter were performed to estimate the current location of

an agent in a real-time fashion. The estimated location was then sent to a laptop or a mobile

tablet for visualization.

LabVIEW User Interface A front-end user interface was developed using LabVIEW to

control the navigation system and visualize data. The interface is shown in figure A.10. The

green button was the start button of the entire system. Once it was clicked, the navigation

system started the initialization step. In this step, it first collects gyroscope bias from the

IMUs for 5 seconds and then estimates the accelerometer bias from EKF for 30 seconds. Both

bias information were used to compensate for IMU measurements in the inertial navigation

algorithm. The system was initialized for navigation after this step.

Next to the start button was a red stop button, used to terminate the entire system. The

blue button next to the stop button was a reset button. It was used to reset the location

of the agent to its initial location at the origin. The estimated location was presented on

the plot titled North-East trajectory in Figure A.10. In the plot, the initial position was

349

Figure A.9: Architecture of the navigation system

the origin of the trajectory, and the current location was the end of the trajectory. The bar

indicator next to the North-East trajectory plot demonstrated the estimated altitude. The

position of the firefighter icon indicates the current altitude of the agent.

At the bottom of the front-end interface were four plots showing the altimeter readouts,

gyroscope readouts, accelerometer readouts, and ZUPT status, respectively. The elapsed

time of the system is shown in the box above the stop button. The ZUPT switch and

Altimeter switch were to determine whether EKF includes ZUPT or altimeter. For example,

if both are turned to ON condition, the EKF uses both ZUPT and altimeter measurement. If

ZUPT is ON, but the altimeter is OFF, the EKF uses only ZUPT, and the other way around

is the same. If both are turned OFF, the system performs standalone inertial navigation

without aiding techniques. Under the altimeter switch and ZUPT switch is an ON and OFF

indicator. This indicator shows the current status of ZUPT. For example, if the foot is on

350

Figure A.10: Front panel of the navigation system

the ground, it would show ON. Otherwise, it shows OFF.

The current position is shown on the left-hand side of the ZUPT indicator. The altimeter pa-

rameter control determines the variance of the altimeter sensor. According to MS5803−01BA

data sheets, the variance is 0.1 [m]. The LabVIEW interface was programmed to have the

option to set variance to different numbers. The smaller this number is, the more the naviga-

tion solution relies on altimeter readouts, as in the EKF, the correction of position estimates

is inverse proportional to the variance of the altimeter measurement.

Below the altimeter parameter control is the ZUPT threshold control. It is a scroll-down

window of six items: 1, 2, 3, 4, 5, and the user-defined. Options 1, 2, 3, 4, and 5 correspond

to set the ZUPT threshold as 200, 2000, 20000, 100000, and 200000, respectively. The

user-defined option is to set a number as the ZUPT threshold. The system and parameter

351

monitoring is designed to keep track of the status of the Inertial Navigation algorithm and

the EKF, ensuring the system operates under the correct conditions.

Lab-On-Shoe 1.3: Integrating With CMOS Monocular Cameras

The Lab-On-Shoe 1.3 system was upgraded based on the Lab-On-Shoe 1.1 platform and inte-

grated with two additional Complementary Metal-Oxide Semiconductor (CMOS) monocular

cameras. Table A.3 lists COTS components integrated on the Lab-On-Shoe 1.3 platform.

This section discusses the specification of the selected camera module, implementation of ob-

ject detection algorithms with the camera to extract positions and orientations of an object,

and validation of the performance of the camera as a ranging sensor to aid INS.

Table A.3: COTS components used in Lab-On-Shoe 1.3 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF08 4 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Selection of Camera A Gigabit Ethernet (GigE) camera acA800−200gc manufactured by

the Basler Camera was selected, based on consideration of image resolutions, Frame Per

Second (FPS), and power consumption, to perform the task. The camera has a resolution

of 600 × 800, a maximum FPS of 200, and a Power over Ethernet (PoE) port of 12/24V.

A 4mm focal length lens with a Field Of View (FOV) of 73◦ was selected, and the lens has

the least radial distortion among the short focal length lenses compatible with the chosen

camera.

352

Camera Installation on the Shoes The camera was installed on top of the IMU mounted

on the left shoe and a planar checkerboard pattern (referred to as the checkerboard in this

section) next to the IMU of the right shoe (more on the reason for placing the checkerboard

is discussed later in this section). Figure A.11 illustrates the physical characteristics of the

system with a SOLIDWORKS 3D model. This arrangement was chosen to minimize the

displacement between the left IMU and the camera, as well as the displacement between the

right IMU and the checkerboard. The camera was placed at [3, 0, 1] [cm] in the left IMU

frame, and the checkerboard is placed at [0,−1, 0] [cm] in the right IMU frame.

Feature pattern

IMU
Camera

SONAR

Altimeter

FOV

Left shoe

Right shoe

Figure A.11: A 3D model of the Lab-On-Shoe 1.3 system.

353

LabVIEW Firmware Implementation A LabVIEW interface was developed to simultane-

ously collect and save a sequence of images and IMU measurements in experiments. The

cameras were interfaced with the LabVIEW installed on the computer (referred to as the

computer vi in this section). The computer vi was designed to save and visualize collected

data as well as control the camera operation.

Figure A.12: Firmware architecture of the computer vi streaming data in a parallel imple-
mentation.

Figure A.13: Firmware architecture of the computer vi streaming data in a serial implemen-
tation.

One challenging part of the integration was that the time stamps of video data needed to

be aligned with the sensor measurements. The alignment was important when fusing visual

information with the inertial navigation system. In a parallel data streaming mechanism,

354

the Real-time module of the CompactRIO continuously uploaded the data collected from the

FPGA module to the stream network, and the computer vi continuously downloaded data

from the stream network once the data became available. Figure A.12 shows a part of the

LabVIEW program in the computer vi. This implementation performed the initialization

of the camera firmware and the creation of the stream network in parallel. The problem

with this implementation was that the stream network started to download data to its

buffer right after the stream was created at the computer vi while the camera was being

initialized. The initialization takes around three seconds, so the time stamp of the first

image being saved would correspond to the sensor data collected three seconds ago. This

would lead to misalignment of the video data and measurements of sensors. A serial data

streaming mechanism, shown in figure A.13, could avoid the misalignment issue by first

initializing camera firmware and then creating the data stream at the first iteration of each

implementation loop.

Figure A.14 shows a collection of snapshots from one of a walking experiment conducted

with the Lab-On-Shoe 1.3 system. The camera mounted on the left foot captured images of

the right foot. It is worth mentioning that the checkerboard was covered completely within

the FOV after frame 4 in figure A.14.

Object Detection A 6× 9 grid checkerboard, shown in figure A.15, was used as an object

for detection. The checkerboard was symmetric, and each grid had a physical size of a 5× 5

[mm] square, but other reference geometries or features, such as ApriTags, could also be used

for detection. The object detection first identified the intersection points on the checkerboard

and then estimated the position and orientation information of the checkerboard.

To identify the points on the checkerboard in each captured image, the checkerboard detec-

tion technique described in [64] was used. In such a method, the Harris corner detection is

first applied to identify the pixel locations of the corners. Next, an edge detection technique

355

Figure A.14: An example of the video collected during a walking experiment. The number
in each picture represents the frame number.

356

Figure A.15: A 6× 9 checkerboard for object detection.

is applied to the original image to refine the corners identified in the corner detection step.

Likelihoods of the corners are calculated in the Harris corner detection and the edge detec-

tion steps. Locations of the corners on the checkerboard are identified by selecting corners

with likelihoods higher than a pre-defined threshold.

Figure A.16: An example of detected intersecting points on the checkerboard. The first and
second points are marked with a yellow and a green circle, respectively, and the rest with
red circles.

Figure A.16 shows an example of the detected intersecting points on the checkerboard. For

this checkerboard, 40 points were identified. The first and second points are marked with

a yellow and a green circle, respectively, and the rest with red circles. The centers of the

circles are the pixel locations of the identified corners.

Object Geometric Information Extraction Camera extrinsic parameters were extracted

from the corner locations on the pixel level identified in the object detection step. The

357

Figure A.17: Camera extrinsic parameter extraction algorithm. The variables u, v indicate
the pixel located at uth row and vth column. fx and fy denotes parameters used to compensate
for the radial distortion. cx and cy are the parameters used to compensate for center point
offset. rij’s and ti’s in the extrinsic matrix are the parameters to determine the object’s
rotation and translation in the camera frame. The variables x, y, z denote the coordinates in
the real world. Note that the extrinsic matrix consists of a rotation matrix and a translation
vector.

358

extraction method is described in [259]. In this method, the pixel and real-world corner

locations are related by the relationship shown in A.17. Since the lens of the camera inte-

grated on the Lab-On-Shoe 1.3 platform had low distortion, the effect of center point offset

and radial distortion were omitted, and the intrinsic matrix was set to a 3× 3 identity ma-

trix. It was assumed that the checkerboard lies on a perfect plane in the real world, so the

z-coordinates of the corners on the checkerboard in the real-world frame were set to zero.

As a result, the extrinsic matrix is reduced to a 3 × 3 matrix. With this assumption, the

corner coordinates in the pixel and in the real world are known. All we need to do is to find

the nine unknowns in the extrinsic matrix, which could be estimated through optimization

techniques. Note that the outcome of the multiplication of the extrinsic matrix and the

corner coordinates in the real world are the corner coordinates in the camera frame. Since

a rotation matrix is an orthogonal matrix, the rotation matrix could be reconstructed from

the 3× 3 extrinsic matrix.

Figure A.18: Estimated position and orientation of a checkerboard.

359

A MATLAB program was developed to estimate the position and orientation of the checker-

board with a monocular camera. Figure A.18 shows a screenshot of the MATLAB program

estimating the location of the checkerboard in figure A.16. The red object in the figure in-

dicates the location of the camera, which is set at the origin, and the colorful points marked

the estimated locations of the corners on the checkerboard. The errors in such estimation are

contributed by several factors, including optimization errors, imprecise measurement of the

physical size of the grid on a checkerboard, the flatness of the checkerboard, and electronic

noise in the optical sensors.

Figure A.19: Profile of the distance between two shoes captured by the camera.

Camera foot-to-foot Ranging Measurements An indoor experiment was conducted to in-

vestigate the accuracy of the poistion and orientation extracted based on images captured by

the foot-mounted cameras. The experiment involved a subject equipped with the Lab-On-

Shoe 1.3 platform walking straight along the north for 53 meters. The true distance between

the two shoes of the Lab-On-Shoe 1.3 platform at the end of the experiment was 0.15 [m].

The developed camera ranging approach was used to measure the distances between two

shoes when the checkerboard was fully presented in the FOV of the camera. The readouts of

the camera ranging, shown in figure A.19, showed that at some of the time instances, there

was no data point. The missed data points were due to either the checkerboard was not

360

completely covered in the camera FOV or the corresponding image being so blurry that the

corners were failed to be identified.

Figure A.20: Navigation results of using ZUPT and ZUPT + ranging. The distance between
the two shoes at the end of the experiment using only the ZUPT algorithm is 4.88 [m] while
that using ZUPT and camera ranging is 0.186 [m].

The ranging measurements were used to augment the ZUPT-augmented INS in the EKF

framework. Figure A.20 compares the results of using a standalone ZUPT-aided INS (ZUPT

only) and ZUPT-aided INS augmented with the ranging measurements (ZUPT + Camera).

The red curve and the blue curve in Figure A.20 represent the trajectories of the left foot

and right foot, respectively. Note that in the case of the ZUPT + Camera ranging algorithm,

two trajectories almost overlap each other. In this experiment, using camera ranging as an

additional measurement improved the estimated distance between two shoes at the end of

the experiment from 4.88 [m] to 0.186 [m].

In the experiment reported in figure A.20, it was observed that the exposure time setting of

the camera was a key factor when using the camera as a ranging sensor. On the one hand,

a long exposure time would lead to a quite blurry image since the foot velocity could go up

to as fast as 3 [m/s]. Figure A.21 compares two frames taken using the exposure time of

10000 [µs] and 2000 [µs], respectively. The checkerboard detection failed in the 10000 [µs]

361

Figure A.21: Effect of exposure time of the camera in the walking experiment.

case and worked well in the 2000 [µs] case. On the other hand, if the exposure time is set

too short, the sensor would not capture enough light, and the resulting images do not have

clear corner features.

Controlling and Monitoring via an Android Mobile App An Android mobile App, Sensor

GraphX, for the Lab-On-Shoe 1.3 platform was developed by UCI undergraduate student

Anthony Skoury under the supervision of the author of this thesis Chi-Shih Jao. The App

displays the location of the platform in real-time and sends commands to reset its initial

location in event of a request for new navigation task.

The data transmission mechanism between the Lab-On-Shoe 1.3 platform and the Sensor

GraphX App is shown in figure A.22. On Lab-On-Shoe 1.3 platform, the CompactRIO

calculates the current location of its user, and the location data are saved as Shared Variables

in LabVIEW. These Shared Variables are published to a customized website with a specified

address in a local network. On the Sensor GraphX App, the App downloads data from the

website and displays it on the mobile phone. In the case of sending a command from the

phone to the platform, a reversed counterpart of the data transmission mechanism is sued.

362

Navigation
results

Control
commands

Figure A.22: The Android mobile App, Sensor GraphX, for real-time data visualization and
sending commands.

The phone updates the value of the Shared Variables for control, and the platform reads the

Shared Variables into the system.

Lab-On-Shoe 1.4: Integrating With Mass Flow Sensors

The Lab-On-Shoe 1.4 platform was upgraded based on the Lab-On-Shoe 1.3 platform with

an additional sensing modality of mass flow sensors. Table A.4 lists COTS components

integrated on the Lab-On-Shoe 1.4 platform. A mass flow sensor measures the flow rate using

the thermo-transfer principle. Its output data is flow rate [liter/min], which is proportional

to the velocity along the axis parallel to its tube. This section first discusses the integration

of a mass flow sensor with the Lab-on-Shoe 1.4 platform and then analyzes the performance

of the mass flow sensor in assisting the ZUPT algorithm.

Sensor Selection Mass flow sensor Renesas Electronics FS1012 was selected. The sensor is

shown in figure A.23. This sensor measures the flow rate using the thermo-transfer principle.

363

Table A.4: COTS components used in Lab-On-Shoe 1.4 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

Microcontroller Arduino Uno 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF08 4 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Mass Flow Sensor Renesas Electronics FS1012 2 Velocity

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

The output data is velocity along the axis parallel to the tube. It uses I2C as the communi-

cation protocol and requires a supply voltage 5 [V]. The sensor’s measurements are available

in both analog and digital formats. The Lab-On-Shoe 1.4 platform uses digital signals.

Figure A.23: FS1012 mass flow sensor and its operation principle [227]. The physics behind
this sensing element is that changes in air/liquid/gas flow disturb the temperature gradient.

Integration of a Mass Flow Sensor with Lab-On-Shoe The selected mass flow sensor was

connected to the I2C pins on an Arduino Uno board. The Arduino Uno Board was connected

to the CompactRIO processor, and the measurements acquired from the mass flow sensor

were transmitted from the Arduino board to the Compact-Rio. The sampling rate was set

to 15 [Hz].

364

A customized 3D fixture for housing the mass flow sensor was designed and 3D-printed by

UCI undergraduate student Manuel Aaron under the supervision of the author of this thesis,

Chi-Shih Jao. The fixture was mounted on the heel side of the shoe, under an IMU. The

configuration is shown in Figure A.24. Air flow data measured the sensor was collected by

the Arduino board placed at the toe side of the same shoe. This configuration allows the

mass flow sensor to detect the air flow rate along the direction parallel to the heading of the

shoe.

Detection tube

Mass flow sensor
FS1012

Figure A.24: Mass flow sensor integrated on the heel side of the Lab-On-Shoe 1.4 platform.

Performance of the Mass Flow Sensor When Used as a Velocity Estimator The mass

flow sensor readouts are proportional to the velocity along the axis parallel to its tube. To

test velocities estimated by the sensor, a series of experiments of walking straight toward

the north for 53 [m] in 70 [s] were conducted. Here, only the data collected from one of

the experiments is presented, but similar effects were observed in other runs of the same

experiments. The readouts of the mass flow sensor mounted on the left foot are shown in

Figure A.25. The velocity profiles along the north direction estimated from the left IMU

measurements are presented in Figure A.26. Figure A.27 compares a normalized version of

365

the readouts of the mass flow sensor shown in Figure A.25 and a normalized version of the

velocity profiles shown in Figure A.26. Comparing the two datasets, three remarks could

be made. First, it could be observed that each peak in Figure A.25 corresponded to a peak

velocity in a step in Figure A.26. Second, it could be observed that the mass flow sensor

failed to detect some of the steps. Third, even for the steps the sensor successfully detected,

their peak values were inconsistent. Therefore, it was concluded that using the mass flow

sensor as a velocity-aiding approach would not improve navigation solutions.

0 10 20 30 40 50 60 70 80
Time, [s]

0

0.05

0.1

0.15
Mass Flow Sensor Measurements

Fl
ow

 ra
te

, [
Li

te
r/M

in
]

Figure A.25: The readouts from the mass flow sensor.

0 10 20 30 40 50 60 70 80
Time, [s]

-1

0

1

2

3

4
Estimated Velocity along the north

Ve
lo

ci
ty

, [
m

/s
]

Figure A.26: The velocity along the north estimated by a ZUPT-aided INS algorithm.

366

0 10 20 30 40 50 60 70 80
Time, [s]

0

0.5

1
N

or
m

a l
iz

ed
da

ta
Mass Flow vs North Velocity

Mass Flow

Velocity

Figure A.27: The joint plot of the normalized version of the readouts from the mass flow
sensor and estimation of velocity along the north based on IMU readouts.

stance phase detector Aided by Mass Flow Sensor This section explores the usage of a

mass flow sensor as an aiding technique to improve stance phase detection used in a ZUPT-

aided INS algorithm. In FigureA.27, an interesting phenomenon could be noticed: the mass

flow sensor had measurements only when the shoe was moving. his phenomenon could be

used to reduce the mis-detection rate of a stance phase detector. In a conventional IMU-based

stance phase detector, a pre-defined fixed threshold was used to determine the stationary

status of the shoe. The conventional stance phase detector can be described as follows:

ZUPT status = H(
σa
σ̄a

+
σg
σ̄g

− γ), (A.1)

where σg and σa are the summation of variances of gyroscope readout and that of accelerom-

eter readout, H() is a Heaviside function, σ̄g and σ̄a are normalized amplitudes of VRW and

ARW. In the optimal implementation of the conventional ZUPT algorithm, different thresh-

olds should be applied to different walking patterns. Mis-detection could happen when the

ZUPT threshold is set to a value optimal for a walking speed higher than the actual walking

speed. An example of such a mis-detection event is shown in Figure A.28. In terms of ac-

cumulated navigation errors, the mis-detection can lead to an estimated trajectory shorter

367

than the nominal one.

Based on the observation of the mis-detection, the stance phase detector expressed in (A.1)

was modified by combining IMU measurements and the normalized mass flow sensor readouts

with an logic OR gate. The mathematical expression of the modified stance phase detector

is described as follows.

ZUPT status = H(
σa
σ̄a

+
σg
σ̄g

− γ) + H(si − α)− H(
σa
σ̄a

+
σg
σ̄g

− γ)× H(si − α),

where si is a mass flow readout at sample i and α is the minimum resolution of the sensor.

The modified stance phase detector is expected to reduce the mis-detection rate, as compared

to as conventional IMU-based stance phase detector.

A experiment was conducted to simulate a situation where the actual walking speed during

a pedestrian navigation task is lower than the nominal speed. This was done by adopting a

ZUPT threshold e8 that was higher than the threshold corresponding to normal walking speed

(usually e6). Accumulated navigation errors of ZUPT-aided INS that used the conventional

stance phase detector were compared to the errors in the case of using the modified stance

phase detector. The navigation results are shown in Figure A.29. The red curves in both

plots are the estimated trajectories of the left shoe. The nominal final position of the left foot

was [0, 53] [m]. With the conventional stance phase detector, the estimated final position

of the left foot trajectory was (0.084191, 45.0314) [m]. With the stance phase detector

augmented by the mass flow sensor, the estimated final position of the left foot trajectory

was [−0.07563, 48.4417] [m], showing an improvement of more than 40% in the accumulated

distance error.

This section explored the possibility of integrating mass flow sensors with the Lab-on-Shoe.

Based on the sensor readouts obtained in the walking experiments, it was concluded that it

would be unsuitable to use mass flow sensors as a velocity estimator in pedestrian navigation.

368

Mis-detection

ZUPT state vs Velocity vs Mass Flow

0 10 20 30 40 50 60 70 80
Time, [s]

0

0.5

1

1.5

N
or

m
al

iz
ed

da
t a

ZUPT status
Estimated Velocity
Mass Flow Sensor

ZUPT state vs Velocity vs Mass Flow

57 57.5 58 58.5 59 59.5 60 60.5
Time, [s]

0

0.5

1

1.5

N
or

m
al

i z
ed

da
t a

Figure A.28: The upper plot is a joint plot of ZUPT measurements, the normalized versions
of the estimation of velocity along the north, and the mass flow readouts. The lower plot
shows a zoomed-in view of the region where a mis-detection had happened. The blue area
in the plot indicates that, during the period, the stance phase detector determined a stance
phase. In the optimal implementation of the ZUPT algorithm, the blue area and the yellow
area should not overlap. Since the value of the ZUPT threshold was deliberately set to too
high in our experiment, we observed overlaps between the yellow area and the blue area,
which were the mis-detection.

369

ZUPT only ZUPT with Mass Flow

-5 0 5
Easting, m

0

5

10

15

20

25

30

35

40

45

50

N
or

t h
i n

g,
m

Estimated Path, North-East

-5 0 5
Easting, m

0

5

10

15

20

25

30

35

40

45

50

N
or

t h
i n

g,
m

Estimated Path, North-East

Figure A.29: The left plot shows the navigation results using the conventional stance phase
detector. The right plot shows navigation results using the modified stance phase detector.

But the sensor could be used to assist the stance phase detection in the ZUPT algorithm

in terms of reducing the the detector’s mis-detection rate. The accumulated navigation

errors using the modified stance phase detector showed an improvement of more than 40%,

compared to the conventional stance phase detector.

Lab-On-Shoe 1.5: Integrating With Dynamic Vision Sensor

In this section, we explored the performance of a DVS, also known as, an Event Camera,

and its communication protocol. The sensor is a new generation camera, with advantages of

1) fast sampling rate, 2) efficient data format, and 3) no issue with motion blur. Because of

these advantages, it is potentially beneficial for implementing real-time vision-aided Inertial

370

Navigation Systems. The DVS sensor was integrated on the Lab-On-Shoe platform, and the

integrated system is referred to as the Lab-On-Shoe 1.5 platform. Table A.5 lists COTS

components integrated on the the Lab-On-Shoe 1.5 platform.

Table A.5: COTS components used in Lab-On-Shoe 1.5 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

Microcontroller Arduino Uno 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF08 4 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Mass Flow Sensor Renesas Electronics FS1012 2 Velocity

Dynamic Vision Sensor IniLabs DVS128 1 Light Intensity Change

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Background of DVS A Dynamic Vision Sensor (DVS), also known as an event camera or

event-based camera, was designed based on the operation mechanism of human retina and

is a new generation of cameras that detect changes in light intensity on each pixel asyn-

chronously. The first commercial product was introduced in 2008. Due to its asynchronous

detection mechanism, it is capable of achieving an equivalent frame per second of 10 [kHz]

and minimizing the motion blur issue encountered in traditional CMOS cameras. Moreover,

the output data is more concise than conventional cameras because it only gives a measure-

ment of polarity (polarity +1 means light intensity increases, and −1 means the intensity

decreases) when a change of light intensity is detected by a pixel. Data produced by event

cameras is called an ”event.”

371

The DVS128 and its Data Structure ”.aedat” The event camera DVS128 is one of the

first-generation event-based cameras. It has a resolution of 128× 128, with a Field Of View

of 60o. There is open-source firmware for this sensor. jAER is the most popular one. With

jAER, not only can we visualize and log data but also apply real-time filters, such as noise

compensation or edge detection. The output of the logged files is saved in the standard

”.aedat” format.

Each event contains four pillars of information: 1) polarity (p), 2) pixel location in the x-axis

(x), 3) pixel location in the y-axis (y), and 4) timestamps of the local processor on the DVS

128 (t). The unit of the timestamps is µs. This information is embedded in binary format

with 6 bytes. Among the 6 bytes, polarity takes 1 bit, each of the pixel locations takes 7

bits, and the timestamp takes 32 bits. The four pieces of information are embedded with

the following configuration:

1yyyyyyy.pxxxxxxx.tttttttt.tttttttt.tttttttt.tttttttt.

The UART Communication Protocol The DVS128 can also be accessed with the UART

communication protocol. A USB-to-UART adapter module is used to achieve UART com-

munication from the USB port. The serial communication should be set up as follows: 1) 12

[MHz] for baud rate and 2) RTS/CTS for hardware control. Each UART command should

be followed by the new feed string (0xA).

The data can be configured in two formats. The first format is in binary form, introduced

in the last section. The second format is 21-bit data represented in ASCII code string. The

information p, x, y, and t take 1, 3, 3, and 6 characters in the string, respectively. Between

the four pieces of information, it is filled with the space string, and the new feed string

follows the end of the entire string.

372

Custom Firmware for CompactRIO Platform The DVS128 was integrated into the Lab-

On-Shoe 1.5 platform. A custom firmware was developed in LabVIEW for the camera.

The built-in serial communication package called NI-VISA was used to send commands for

multiple different serial communication protocols, such as I2C, SPI, and UART. In the case

of the DVS128, UART is used, and the corresponding commands provided in the DVS128

User Manual by IniLabs, are listed in Table A.6. Basic event acquisition requires only four

commands (presented in ASCII): 1) reset (R), 2) data format setup (!E6), 3) acquisition

starts, and 4) acquisition stops.

Command name function
E+/- enable/disable event sending
!Ex specify event data format, ??E to show options

(see below for more details)
!ET=x set current timestamp to x (default: 0)
!ETM[0,+] synch timestamp, master mode,

0: output stopped; +: output active
!ETS synch timestamp, slave mode
!ETI single retina, no external synch mode
!B[0−11]=x set bias register to value
!BF send bias settings to DVS (flush)
?Bx get bias register x current value
0,1,2 LED off/on/blinking
R reset board
?? display help menu
??E display Event data menu

Table A.6: UART commands for DVS128.

A custom user interface (UI) was developed in LabVIEW for acquisition and visualization

of events produced by the DVS128, connected to the NI-CompactRIO. Figure A.30 shows a

snapshot of the UI under operation during a rotating doted plate experiment. The smaller

plot on the right-hand side showed one frame of the events with a frame rate of 60 [Hz]. The

3D plot on the left-hand side presents the same set of events in 3 dimensions. The third

dimension is time. At the bottom of the 3D plot is a projection of the frame of events onto

the x-y plane. The projected image is identical to the 2D plot on the right-hand side. The

373

inner circle observed in the frame was the trail of the moving dot, and the outer circle was

caused by the paper plate not being a perfect circle. Figure A.31 displays an image taken

by a conventional camera that included all the objects within the FOV of the DVS128. The

acquisition was executed by a sequential read of 21-byte data at a rate of 1 [MHz]. For data

visualization, we designed two modes, frame and scatter. In the frame mode, a period is

selected, and all the data collected during the period are displayed. The amount of data

being shown in one frame is dynamic in this mode. In the scatter mode, a fixed number of

events are collected and then displayed so that the frame rate is dynamic. Note that the

choice of modes does not affect data acquisition or data logging.

Figure A.30: Customized LabVIEW user interface for the DVS128.

Event Visualization To understand the properties of the data collected from DVS128, we

first conducted an experiment, where the DVS128, mounted on one end of a small railway,

recorded a cart moving on the railway away from the sensor. The experimental setup is

374

Figure A.31: The FOV of the DVS128 represented in a conventional camera in the rotated
doted plate experiment.

shown in Figure A.32. The DVS128 was mounted on the red fixture, and the blue object

was the cart moving away from the sensor. The entire experiment lasted around 6 seconds.

The cart started to move after 2 seconds.

Figure A.33 shows the collected data. The sub-figure on the left-hand side is a 3D plot of

the entire data set, where x and y axes are pixel locations in x and y respectively, and z is

the time. Each event in the plot represents a change of light intensity at the corresponding

pixel. The black arrow indicates the time instance when the car started to move. It is not

hard to observe that when the cart started to move after 2 seconds, the number of events

being generated increased dramatically. We could also observe that before 2 seconds, some

events existed. These events are assumed to be the noise of the DVS128 sensor.

In Figure A.33, we could visualize the data by ”slicing” a portion of the data set along the

time axis. The three plots on the right hand side are the data sliced at t = 0 [s], t = 2 [s],

and t = 4 [s]. We could see that at t = 0 [s], only noise data existed. At t = 2, the collected

events depicted the shape of the cart. At t = 4 [s], the size of the shape became smaller due

to that it was moving away from the sensor.

375

Figure A.32: Setup for the cart experiment.

376

Figure A.33: DVS128 data from the cart experiment.

377

DVS128 Integrated With Lab-On-Shoe Platform One application of the DVS128 sensor is

to improve the stance phase detector in the Zero Velocity Update algorithm. The improve-

ment was envisioned because the generation of the events for event cameras is correlated

with the relative velocity of the sensor to the surrounding environment. To investigate the

validity of using the DVS128 to enhance traditional IMU-based stance phase detection, we

first conducted experiments to understand the properties of a shoe-mounted event camera.

Figure A.34 shows the integrated Lab-On-Shoe platform with the DVS128. The sensor was

mounted on top of the IMU and faced forward.

Figure A.34: Lab-On-Shoe 1.5 platform integrated with DVS128.

Figure A.35 presents the data collected with the integrated Lab-On-Shoe 1.5 platform in a

walking experiment. In the experiment, the agent walked four steps on a flat plane in an

indoor environment. The entire experiment lasted 16 seconds. In the first 6 seconds, the

agent stood still. The agent walked four steps from 6 [s] to 12[s]. For the remaining time,

the foot remained still. In Figure A.35, the periods with dense events corresponded to the

swing phase of a gait cycle. The other periods mapped to the stance phase. A sliced data

378

corresponding to the swing phase showed that the events captured some parts of the internal

structure of the surrounding. Notice that in this data, a group of events existed from the

beginning to around 13 seconds. These events corresponded to the ”EXIT” sign located in

the surrounding. Because the ”EXIT” sign was backlit with fluorescent light, which has a

constant change of light intensity. Therefore, it also could generate events even if the event

camera was not moving.

Figure A.35: DVS128 data from the walking experiment.

This section presents the Lab-On-Shoe 1.5 platform integrated with a DVS DVS128. We first

developed a custom firmware for the DVS128, and the rotated doted plate experiment tested

the firmware. To understand how to interpret the event data set, we experimented with

the moving cart. The experiment showed that the sensor could capture the outline of the

moving cart. We also noticed that when no object within the FOV was moving, the sensor

379

still produced events. These events were the noise data and needed to be minimized. Before

integrating the DVS128 with the Lab-On-Shoe platform, we investigated the properties of

the foot-mounted DVS128 with the indoor walking experiment. By visual observation, the

collected data showed that the number of events being generated during the swing phase

of a gait cycle was much higher than the amount during the stance phase. Moreover, the

collected events presented the outlines of the internal stricture of the indoor environment.

Based on these observations, the event camera is potentially a good candidate to be used

along with the Lab-On-Shoe system for indoor pedestrian navigation.

Lab-On-Shoe 1.6: Integrating With Magnetometer

Table A.7: COTS components used in Lab-On-Shoe 1.6 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

Microcontroller Arduino Uno 1 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF02 4 Ranging

SONAR Devantech SRF08 2 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Mass Flow Sensor Renesas Electronics FS1012 2 Velocity

Dynamic Vision Sensor IniLabs DVS128 1 Light Intensity Change

Magnetometer Triaxis Melexis MLX90393 2 Magnetic fields

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Lab-On-Shoe 1.6 system was integrated with two IMUs, two barometric altimeters, four foot-

to-foot ultrasonic transducers, two downward ultrasonic transducers, two CMOS cameras,

and a DVS, and two magnetometers. Table A.7 lists COTS components integrated into

the Lab-On-Shoe 1.6 platform. In previous sections of this appendix, it was experimentally

380

demonstrated that using measurements obtained from foot-to-foot ultrasonic sensors and

foot-to-foot cameras to aid ZUPT-based INS could reduce the error of the estimated heading

angles. However, the reduction was limited because the ultrasonic sensors and the cameras

provided relative orientation between the two feet instead of absolute orientations. The error

of the heading angle of the aided pedestrian INS still accumulated over time and exceeded

an acceptable bound after navigating for several minutes. To further enhance the navigation

performance of the pedestrian INS, magnetometers were integrated into the Lab-On-Shoe

1.6 platform for providing absolute heading measurements.

This section presents the development of the Lab-On-Shoe 1.6 platform. A calibration

method for the magnetometer in indoor environments is presented in this section.

The Lab-On-Shoe platform Integrated With Magnetometer MLX90393 A COTS 3-axis

magnetometer Melexis MLX90393 manufactured by Triaxis was chosen for the Lab-On-

Shoe 1.6 platform. The low-cost magnetometer has a small size, low power consumption,

high resolution (0.161 [µT]), and a large full-scale range (44000 [µT]). These properties are

favorable for the magnetometer to be integrated with pedestrian navigation systems. The

magnetometer was designed to be communicated via either SPI or I2C bus protocols. In our

implementation, we selected I2C as the communication protocol between the NI Compact-

Rio of the Lab-On-Shoe platform and the magnetometer. The firmware framework of the

Lab-On-Shoe platform integrated with the magnetometer is shown in Figure A.36(a). The

magnetometer is connected on the same I2C bus for the ultrasonic sensors SRF02 and SRF08

and the barometers MS5308−01BA. The maximum sampling rate of the magnetometer in

this configuration is 50 [Hz].

One magnetometer was mounted on top of the IMU on each shoe. The Lab-On-Shoe 1.6

platform integrated with the magnetometer is shown in Figure A.36(b). The x-axis, y-axis,

and z-axis of the magnetometer were visually aligned with the three axes of the IMU. Figure

381

IMU

SONAR

Barometer

Magnetometer

Control panel

Magnetometer Calibration

CMOS camera
acA800-200gc

Event-based
Camera
DVS128

Local Processor
NI Compact-Rio
(clock 40 MHz)

IMUs
ADIS16497-3

Ultrasonic
Transducers

SRF08

Ultrasonic
Transducers

SRF02

Barometer
MS5803-14BA

Magnetometer
MLX90393

Computer

I2C

SPI

W
iFi

UART

50 Hz20 Hz

25 Hz25 Hz

200 Hz

200 Hz

SONARIMU

SONAR

Magnetometer
Barometer

Lab-On-Shoe platform

(a) (b)

(c)

Figure A.36: (a) The communication diagram for the Lab-On-Shoe 1.6 platform. The blocks
with the blue frame show computation units. The blocks with the black frame indicate
sensors integrated into Lab-On-Shoe 1.6 platform. The red blocks present the magnetometer
integrated into Lab-On-Shoe 1.6 platform. (b) The integrated Lab-On-Shoe platform. (c)
LabVIEW user interface for the upgraded Lab-On-Shoe 1.6 platform.

382

A.36(c) presents the user interface for the upgraded Lab-On-Shoe platform. This firmware

allows for simultaneously collecting measurements of acceleration and angular velocity with

the IMUs, ambient air pressure with the barometers, foot-to-foot relative distance with

the foot-to-foot ultrasonic sensors, height relative to the ground with the downward-facing

ultrasonic sensors, and magnetic field with the magnetometers.

Calibration of Magnetometers in Indoor Environments

Magnetometer Measurement Model A magnetometer measures magnetic fields expressed

in the sensor body frame. The measurement model of a magnetometer can be expressed as

follows:

Bk = (I−Dk)
−1(AkHk + Bk + ϵk) = Ω−1Mk + B

′

k + ϵ
′

k, (A.2)

where Bk is magnetometer readings indicating the magnetic field in the sensor body frame,

Dk is the scale factor errors, also known as the soft iron distortion, Ak is the DCM between

the body frame and the Earth-fixed frame, Hk is the geomagnetic field w.r.t.the Earth-fixed

frame, Bk is the magnetometer bias, also known as the hard iron distortion, ϵk is the noise,

modeled as a zero-mean Gaussian process. Mk = AkHk is the geomagnetic field observed in

the body frame, Ω = I−Dk. B
′

k = Ω−1Bk, and ϵ
′

k = Ω−1ϵk. Note that in this measurement

model, we assumed that the three axes of a magnetometer are perfectly aligned.

To use Earth’s magnetic field to determine the orientation of a magnetometer, the measure-

ment model, expressed in (A.2), is alternatively presented as follows:

Mk = AkHk = Ω(Bk − B
′

k), (A.3)

where Mk is the error-free or calibrated magnetometer readings that only measure geomag-

383

netic field. Since the geomagnetic field expressed in the Earth-fixed frame is [0, κ, 0]T , where

κ is the strength of the geomagnetic field, when there is no tilt for the magnetometer, the

yaw (heading) angle α of the magnetometer can be estimated as follows:

α = tan−1(
Mk,y

Mk,x

) (A.4)

θ = tan−1(
−Mk,z√

M2
k,x +M2

k,y

) (A.5)

where Mk,x,Mk,y, and Mk,z are the calibrated magnetometer measurements along the x-axis,

y-axis, and z-axis, respectively.

In practical implementation, we do not have direct access to Mk because magnetic field inter-

ference contributed from the hard iron distortion and soft iron distortion effects contaminates

the magnetometer measurements. The hard iron distortion is generated by magnetic sources

other than the geomagnetic field. The sources could include permanent magnets and a power

supply. The soft iron distortion changes the magnitude and direction of the earth’s magnetic

field experienced by the magnetometer. This effect is enhanced when the magnetometer is

close to ferromagnetic objects, such as steel. To effectively use a magnetometer to determine

the orientation of a navigation system, calibration of the sensor is required. Based on the

magnetometer measurement model, the calibration process is equivalent to determining the

matrix Ω and the vector B
′

k in (A.3).

In-situ Calibration Magnetometers can be effectively calibrated by the TWOSTEP method

[12] in situations where orientation at a fixed location or in a small area is of interest. The

idea of the TWOSTEP method is that when an ideal (error-free) magnetometer is rotating

360◦ along the three axes, then the corresponding measurements will form a perfect sphere

whose center is at the origin, whereas a magnetometer suffering from hard and soft iron

distortions has measurements forming an ellipsoid. The calibration process uses a curve-

384

fitting technique to estimate a translation vector and an orientation matrix between the

sphere and the ellipsoid. The translation vector and the orientation matrix are the B
′

k and

the Ω in (A.3).

Raw magnetometer readings Calibrated magnetometer readings

(a) (c)(b)

Perfect sphere
centered at Origin

Ellipsoid centered
at the bias

0 1000 2000 3000 4000 5000 6000 7000
Time, sample

-150

-100

-50

0

50

100

150
x
y
z

M
ag

ne
tic

 fi
el

ds
, u

T

0 1000 2000 3000 4000 5000 6000 7000
Time, sample

-50

-40

-30

-20

-10

0

10

20

30

40

M
ag

ne
tic

 fi
el

ds
, u

T

x
y
z

Figure A.37: (a) Uncalibrated magnetometer readings. (b) Calibrated magnetometer read-
ings. (c) Comparison of the uncalibrated and calibrated measurements. Each data point
represents a measurement vector of the magnetometer collected at a specific time.

To verify the validity of the TWOSTEP method in our application, we performed an ex-

periment with the magnetometer MLX90393 mounted on the Lab-On-Shoe platform on the

second floor of the Engineering Gateway Building at the University of California, Irvine. In

the experiment, we rotated the magnetometer by hand for 360◦ on each of the three axes.

Figure A.37(a) shows the corresponding raw readouts of the magnetometer. Each of the blue

crosses in Figure A.37(b) represents a raw measurement vector plotted in 3D, which formed

an ellipsoid with a non-zero center. We applied the TWOSTEP calibration process to the

raw measurements to estimate hard and soft iron distortions. The results are summarized in

Table A.8. Figure A.37(c) presents calibrated magnetometer measurements. The calibrated

magnetometer measurements shown in Figure A.37(b) formed an ideal sphere centered at

the Origin.

Experimental Results To investigate the accuracy of the heading angles estimated based

on the calibrated untilted magnetometer measurements, we performed an indoor experiment

385

Axis x y z
Hard iron distortion 15.3794 −68.0464 92.9233
Soft iron distortion 0.95591 1.0703 0.97843

Table A.8: Estimated hard and soft iron distortions in the in-situ calibration experiment.

with the Lab-On-Shoe platform on the second floor of the Engineering Gateway Building

at the University of California, Irvine. At the beginning of the experiment, the Lab-On-

Shoe platform was placed on the ground, and the z-axes of the IMU and the magnetometer

mounted on the shoe were perpendicular to the ground. The starting position of this exper-

iment was the same as the last experiment conducted for magnetometer calibration. Thus,

we used the values for hard iron distortion and soft iron distortion specified in Table A.8 to

calibrate the magnetometer measurements collected in this experiment. The initial heading

angle was 134◦ w.r.t the North. Then, we moved to the shoe by hand for 2 [m] and rotated

the shoe for approximately 90◦ so that the heading direction became −136◦ w.r.t. the North.

Next, we moved the shoe for 1 [m] and rotated for 90◦ again. After the rotation, the heading

angle became −46◦ w.r.t. the North, and we moved the shoe for 2 [m] along this direction.

Next, the shoe was turned another 90◦, facing a direction of 44◦ w.r.t. the North, traveling

for 1 [m]. Lastly, the shoe returned to the original position and faced the original direction.

The duration of the experiment was 73 s. The reference trajectory of this experiment is

shown in Figure A.38(a).

We compared the yaw angles estimated by the magnetometer and the ZUPT-aided INS in

this experiment. Figure A.38(b) presents the results of the two methods. The yellow curve

in FigureA.38(b) indicates the nominal heading angles. We evaluate the accuracy of the yaw

angle estimations based on the Root Mean Square Error (RMSE) w.r.t. the nominal heading

angles. The RMSE of the heading angle estimated by the ZUPT-aided INS was 23◦, and the

RMSE for the magnetometer was 36◦. This experiment showed that the accuracy of heading

angles estimated by magnetometer measurements calibrated with the TWOSTEP method

386

𝛼𝛼 = 134°

𝛼𝛼 = −46°

𝛼𝛼 = 44°

𝛼𝛼 = 134° 𝛼𝛼 = −136° 𝛼𝛼 = −46° 𝛼𝛼 = 44° 𝛼𝛼 = 134°

Magnetometer
Error of 25°

Magnetometer
Error of 37°

Magnetometer
Gyroscope

Path
Start
End

(a) (b)

0 10 20 30 40 50 60 70 80
Time, s

-300

-200

-100

0

100

200

Ya
w,

de
gr

ee

Magnetometer vs. Gyroscope: Yaw

-1 -0.5 0 0.5 1 1.5
Easting, m

-2

-1.5

-1

-0.5

0

No
rth

in
g,

m
Path estimated by ZUPT-aided INS

𝛼𝛼 = −136°

Figure A.38: (a) The reference trajectory estimated by ZUPT-aided INS for the indoor
experiments. The different colors indicate different heading directions. (b) Comparison of
yaw angles estimated by the magnetometer and the gyroscope. The different colors indicate
different heading directions.

was worse than the estimation based on ZUPT-aided INS.

Three things can be noted from Figure A.38(b). First, the yaw angle estimated by the ZUPT-

aided INS does not have a large error because the IMU on the Lab-On-Shoe platform was

tactical-grade, and the experiment duration was only around one minute. Second, the yaw

angle estimation based on magnetometer measurements collected near the starting points

had higher accuracy. This implies that the TWOSTEP calibration method was valid in the

small area around the starting position. Third, at timestamps of 30 s and 55 s, the yaw

angles estimated by the magnetometer had noticeable errors of 25◦ and 37◦. These errors

come from the observation that hard iron distortion and soft iron distortion vary at different

indoor locations. We could observe the variation by repeating the experiment described in

Figure A.37 at other different locations, indicated in Figure A.39(a), in the same building.

The results collected at the six different places are presented in the table in Figure A.39(b).

Therefore, in the experiment shown in Figure A.38(a), the values specified in Table A.8 were

no longer valid to calibrate the magnetometer when operating at different locations. Based on

these experiments, we concluded that the TWOSTEP calibration method was insufficient for

the magnetometer to effectively provide the heading angle estimation for aiding pedestrian

387

navigation in indoor environments, and calibration methods that adapt to different locations

are required for the magnetometer in our application.

Location Distortion type X-axis Y-axis Z-axis

1
Hard 11.89 -65.98 94.83

Soft 0.89 1.38 0.81

2
Hard 19.56 -64.2 87.37

Soft 0.99 1.06 0.95

3
Hard 16.74 -63.57 91.41

Soft 0.95 1.14 0.91

4
Hard 12.49 -63.58 93.16

Soft 0.96 1.06 0.97

5
Hard 15.01 -57.68 97

Soft 0.96 1.1 0.99

6
Hard 18.98 -54.61 112.0

Soft 0.98 1.40 0.84

1 2 3 4

6 5

70 [m]

30 [m]

(a) (b)

Figure A.39: (a) The floor map of the second floor at the Engineering Gateway Building
at the University of California, Irvine, and the six locations where the experiments were
conducted. (b) Table summarizing the magnetic interference estimated at the six locations.

A magnetometer MLX90393 was integrated with the Lab-On-Shoe platform. The purpose of

integrating with the magnetometer is to provide compensation for the yaw angle for pedes-

trian INS. To minimize the effects of magnetic interference presented in indoor environments,

we applied the TWOSTEP algorithm to calibrate the magnetometer measurements. We ex-

perimentally tested the accuracy of heading angles estimated by the calibrated magnetometer

in an indoor environment. The experimental results showed that the heading angle estimated

by the magnetometer had a larger error than the ZUPT-aided INS. The larger errors were

caused by the fact that magnetic interference varies at different locations in indoor environ-

ments. Therefore, the TWOSTEP algorithm is insufficient for the magnetometer to be used

for indoor navigation, and calibration methods are required to adapt to different locations.

Generation of Reference Trajectory with Foot-mounted IMUs In order to obtain a reliable

magnetic interference map, a practical approach is to collect magnetometer measurements

at different locations and then estimate the magnetometer measurements at unexplored

388

locations. Since the earth’s magnetic field is uniform over a small area, we can deduce that

any magnitude of the measured magnetic field that is not equal to the local magnetic field

is generated by surrounding magnetic interference. In the first step of this approach, it is

necessary to determine the accurate locations where the magnetometer measurements are

collected. Since we use foot-mounted INS, it is important to develop an algorithm for the

system that achieves high-accuracy localization results.

Since we attempt to obtain a magnetic field map in an off-line manner, we can utilize known

foot motion to enhance the performance of the ZUPT-aided INS. In the data collection

process, we restricted the motion of a user of the Lab-On-Shoe platform so that the user

can only walk straight or turn 90◦. Since the motions are restricted, we can assume that the

heading angle during the stance phase in a step is either the same as the previous step or

has a 90◦ difference. Then, in the EKF, we can utilize this information to update the yaw

angle state. The novelty of the developed approach is in the EKF measurement model.

The measurement model that uses the ZUPT algorithm and the information on the known

foot motion is described as follows:

zfeet = γprevious step, zZUPT = vbn,

and the corresponding measurement matrices are

Hfeet =

[
0 0 1 01×12

]
,

HZUPT =

[
03×3 I3×3 03×9

]
.

389

The overall measurement model is

z =

γprevious step

vbn

 ,H =

 Hfeet

HZUPT

where γprevious step is the yaw angle estimates computed in the previous detected stance phase.

Figure A.40: A floor plane of the experiment field.

To test the localization performance of the proposed approach, we conducted an experiment

with the Lab-On-Shoe platform where a pedestrian passed by different locations in an indoor

environment at the Engineering Gateway building at the University Of California, Irvine. A

floor plan of the experiment field is shown in Figure A.40. In the experiment, the pedestrian

walked straight or turned 90◦. The walking speed was 60 [step/min], and the trajectory was

a closed loop. The duration of the experiment was 28 minutes.

Figure A.41 shows a comparison of trajectories estimated by the standalone ZUPT-aided INS

and the ZUPT-aided INS using known foot motion. In this experiment, the ZUPT-aided

INS had an accumulated displacement error of 92.8 [m], while the proposed approach had

390

Figure A.41: (a) Trajectory estimated by ZUPT-aided INS. (b) Trajectory estimated by
ZUPT-aided INS using known foot motions. The accumulated displacement error was re-
duced from 92.8 [m] to 1.2 [m]

an error of 1.2 [m]. The improvement in displacement error was a result of yaw angles being

corrected in every step.

In this section, an enhancement approach was presented to extend the usage of foot-mounted

IMU to generate a reliable and accurate reference trajectory. The concept of the enhance-

ment method was to increase the observability of the yaw angle. The generated reference

trajectories can be used to survey the magnetometer interference in indoor environments.

We demonstrated the enhanced ZUPT-aided INS could achieve a displacement error of 1.2

[m] after navigating for 28 minutes.

Lab-On-Shoe 1.7: Integrating With LTE Receiver

The Lab-On-Shoe 1.7 platform was upgraded based on the Lab-On-Shoe 1.6 platform and

was integrated with an additional software-defined LTE receiver. This platform was a col-

laborative effort. The Lab-On-Shoe platform was developed by the author of this thesis,

Chi-Shih Jao, under the supervision of UCI professor Andrei Shkel, and the LTE receiver

391

was developed by UCI graduate student Ali Abdallah, under the supervision of OSU profes-

sor (former UCI professor) Zak Kassas.

Table A.9: COTS components used in Lab-On-Shoe 1.7 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

Microcontroller Arduino Uno 1 Processing Unit

DSP National Instruments USRP−2955 1 Signal Processing

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF02 4 Ranging

SONAR Devantech SRF08 2 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Mass Flow Sensor Renesas Electronics FS1012 2 Velocity

Dynamic Vision Sensor IniLabs DVS128 1 Light Intensity Change

Magnetometer Triaxis Melexis MLX90393 2 Magnetic fields

LTE Antenna Laird Omni-direction 4 LTE receiver

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Hardware Description

Figure A.42(c) shows the Lab-On-Shoe 1.7 platform The receiver was equipped with two

consumer-grade cellular omni-directional Laird antennas to collect data from the same car-

rier frequency, which we connected to a dual-channel National Instruments (NI) universal

software radio peripherals (USRPs)−2954R to simultaneously down-mix and synchronously

sample LTE signals at 10 Msps. The sensors that were located on the Lab-On-Shoe platform

and were used in the experiment included the Analog Device IMU ADIS16497−3, barometric

altimeter MS5803−01BA, and ultrasonic transducer SRF08. The sampling rate of the IMU,

the altimeter, and the ultrasonic sensor was 120 Hz, 20 Hz, and 25 Hz, respectively. Table

A.9 lists COTS components included in the Lab-On-Shoe 1.7 platform. The Lab-On-Shoe

392

platform is referred to as the LONS in this section.

Experimental Layout and Experimental Setup

In this section, an experiment was conducted to evaluate the performance of the LONS-LTE

integrated system for both integration architectures. The experiment was conducted at the

Engineering Gateway building at the University of California, Irvine, USA. The pedestrian-

mounted receiver receives signals from three U.S. cellular providers: T-Mobile, Verizon, and

AT&T, transmitting at four different frequencies, as summarized in Table A.10. Locations of

the LTE eNodeBs are shown in Figure A.42(a). In this experiment, a pedestrian who carried

the Lab-On-Shoe platform moved the cart where the LTE receivers were mounted. The

experimental setup is shown in Figure A.42(c). During the experiment, the Lab-On-Shoe

platform and the LTE receivers simultaneously collected measurements. The pedestrian

walked in a straight line for 45 meters, turned 180 deg, and walked back to the starting

point. The ground true trajectory is illustrated with the red lines in Figure A.42(b). The

experimental results are presented in the next section.

Table A.10: LTE ENodeBs’ Characteristics

eNodeB

Carrier

frequency

[MHz]

NCell
ID

Bandwidth

[MHz]

Cellular

provider

1 1955 93 20 AT&T

2 2125 223 20 Verizon

3 1955 11 20 AT&T

4 1955 198 20 AT&T

5 2145 441 20 T-Mobile

6 2112.5 401 20 AT&T

393

Engineering Gateway

building

University of California, Irvine

eNodeBs 1 and 2

eNodeB 4

eNodeB 5

eNodeB 6

Ground truth trajectory

(b)(a)

2 Laird Antennas

Laptop

Quad-Channel
USRP-2955

IMU

Ultrasocin sensor

Battery

Processor

Shoe PCB

Motherboard

(c)

eNodeB 3

Figure A.42: Experimental layout and experimental setup for LONS-LTE experiment: (a)
LTE eNodeBs’ positions, (b) Engineering Gateway building where the experiment was per-
formed and the ground truth trajectory, and (c) experimental setup.

394

Experimental Results

The LTE data was processed in a post-processing manner, and the resulting pseudoranges,

which are plotted in Figure A.43, were extracted after removing the initial bias. The resulting

pseudoranges were fed to the EKF to generate the standalone LTE solution. Moreover,

the LONS sensors data was fed into the navigation framework. The standalone navigation

solutions are shown in Figure A.44. The results are summarized in Table A.11.

0 20 40 60 80 100 120

Time [s]

100

200

300

400

500

600

700

R
a

n
g

e
 [

m
]

Cell ID: 93

Cell ID: 223

Cell ID: 11

Cell ID: 198

Cell ID: 441

Cell ID: 401

Figure A.43: LTE-SAN-DNN pseudoranges after removing the initial bias using the ground
truth.

We would like to point out that, based on the estimated trajectories shown in Figure A.44,

the solutions produced by the Lab-On-Shoe platform seemed to have a higher accuracy

during the entire experiment than the standalone LTE system. However, the duration of

the experiments was around 3 minutes, and the pedestrian walked at a stable pace. Thus,

the amount of position drift existing in the ZUPT-aided INS was still at a low level. For

navigation tasks with longer duration and trajectories, we would expect that the displacement

395

error of the ZUPT-aided INS accumulates over time while the error of the LTE system is

bounded.

45 50 55 60 65 70 75 80 85

x [m]

-15

-10

-5

0

5

10

15

y
 [

m
]

True

LTE

LONS

Figure A.44: The LTE and the LONS standalone navigation solution.

Table A.11: Indoor Positioning Performance

Framework RMSE [m]
Standard

deviation [m]

Final

error [m]

LONS 1.20 0.60 1.51

LTE 2.36 1.26 3.87

Lab-On-Shoe 1.8: Integrating With UWB Transreceivers

The Lab-On-Shoe 1.8 platform was upgraded based on the Lab-On-Shoe 1.7 platform and

was integrated with additional UWB modules. The development of this platform was a

collaborative effort. The Lab-On-Shoe platform was developed by the author of this thesis,

Chi-Shih Jao, under the supervision of UCI professor Andrei Shkel, and the UWB modules

396

were developed by UCI graduate students Changwei Chen and Min-Won Seo, under the

supervision of UCI professor Solmaz Kia.

Table A.12: COTS components used in Lab-On-Shoe 1.8 platform.

Component Manufacturer Model Quantity Purpose

FPGA National Instruments CompactRIO−9039 1 Processing Unit

Microcontroller Arduino Uno 1 Processing Unit

DSP National Instruments USRP−2955 1 Signal Processing

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF02 4 Ranging

SONAR Devantech SRF08 2 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Camera Basler acA800−200gc 2 Image

Mass Flow Sensor Renesas Electronics FS1012 2 Velocity

Dynamic Vision Sensor IniLabs DVS128 1 Light Intensity Change

Magnetometer Triaxis Melexis MLX90393 2 Magnetic fields

LTE Antenna Laird Omni-direction 4 Signals of opportunity

UWB DecaWave DWM1000 2 Cooperative localization

Battery Powerizer LiFePO4 1 Power source

Voltage Regulator Texas Instruments LM3100EVAL 2 Power management

Voltage Regulator Texas Instruments TPS7A1601EVM−046 2 Power management

Hardware Description Table A.12 lists all COTS components integrated into the Lab-On-

Shoe 1.8 platform. To test the performance of cooperative localization with the Lab-On-Shoe

platform, we added a DWM1000 UWB module to the platform. The firmware level design for

the integrated Lab-On-Shoe platform is illustrated with the block diagram in Figure A.45(a).

When acquiring measurements from the UWB DWM1000, the sensor is first communicated

with an Arduino, which is an external micro-controller, via the communication protocol I2C,

and then the Arduino sends the measurements to a remote laptop to synchronize with sensor

measurements collected from the Lab-On-Shoe platform. A screenshot of the LabVIEW user

interface for the integrated Lab-On-Shoe platform is shown in Figure A.45(b). When the

system is running, measurements of IMUs, inter-foot ranging, barometer, magnetometer,

397

Figure A.45: (a) Hardware schematic for integration of the Lab-On-Shoe platform and a
UWB. (b) The user interface for the Lab-On-Shoe platform integrated with a DWM1000
UWB sensor.

398

and UWBs are simultaneously collected, saved, and displayed. The UWB measurements

include information about inter-agent ranges, signal power, and agent identification. In our

implementation, the obtained UWB signal power is used in the process of NLOS detection.

Figure A.46: The configuration of the integration experiment and scenario

Experimental Results We performed several integration experiments for validating hard-

ware/software integration of CL and Lab-On-Shoe by studying the cooperative localization

performance. One example scenario is shown in Figure A.46 (Left). In this experiment, two

agents in the Engineering Gateway Building at UCI walked along a reference trajectory si-

multaneously according to the schematic shown in Figure A.46 (Right). Here, agent 1 (A1) is

equipped with an IMU (ADIS 16497−3), a barometer (MS5803−01BA), two pairs of foot-to-

foot ultrasonic transducers (SRF02), and a UWB transceiver (DecaWave DWM1000), while

agent 2 (A2) is only equipped with an IMU (VectorNav VN−100) and a UWB transceiver

(DecaWave DWM1000). In this experiment, agent 1 sends its states and covariance to agent

2 using UWB at a rate of 10Hz. Agent 1 walked along a reference trajectory (green) as

shown in Figure A.46. At the same time, agent 2 walked along a reference trajectory (blue),

as shown in Figure A.46. During the test, inter-agent measurements between the two agents

were taken under Line-of-Sight (LoS) as well as Non-Line-of-Sight (NLoS) conditions, as

399

shown in Figure A.47. While both agents implemented the ZUPT-aided INS, the estimation

accuracy of agent 1 was higher than agent 2 because agent 1 used a better IMU and had

many complementary sensors. Therefore, we focused on agent 2’s localization performance

to verify the system and the performance of the cooperative localization.

Figure A.47: UWB ranging measurement, NLoS probability based on power identification,
and connection status during integration experiment.

To assess the performance of the cooperative localization performance of the heterogeneous

agents, we compared localization performance for agent 2 in two cases (executed in parallel):

(1) IMU/ZUPT and (2) IMU/ZUPT + DMV CL (with our bias compensation) as shown

in Figure A.48. In case (1), even though agent 2 walked slowly, ZUPT was not enough

400

to maintain the drift in the estimates. Thus the location estimate started to deviate from

the true trajectory (see case (1) in Figure A.48). In case (2), we used our proposed CL,

which includes a bias compensation measure for NLoS rangings, to improve the localization

accuracy of agent 2 by processing the inter-agent UWB range measurements. As we can

see CL leads clearly to considerable improvement in agent 2’s localization (see case (2) in

Figure A.48).

These experiments brought to our attention that ZUPTing feedback in its current form leads

to inconsistent reductions in the filter uncertainty (this can be observed by small size of the

uncertainty ellipsoids (3σ) shown on the trajectory that do not contain the ground truth). As

future work, we will revisit the ZUPTing feedback modeling and make appropriate changes

so that the final estimates are consistent.

Figure A.48: Agent 2’s localization results for 2 cases: (1) IMU/ZUPT, (2) IMU/ZUPT +
DMV CL (with our bias compensation)

In this section, we focused on the integration of the Lab-On-Shoe platform and cooperative

localization solutions. We added UWBs to the Lab-On-Shoe platform to obtain inter-agent

ranging measurements and used the integrated platform to conduct cooperative localization

experiments of two agents. The experimental results showed that the localization accuracy

of the agent equipped with a low-performance IMU was greatly improved when cooperative

401

localization was used.

A.1.2 Lab-On-Shoe 2: Everything on the Shoes

The Lab-On-Shoe 2 platforms are extended versions of the Lab-On-Shoe 1 platform with

modifications: 1) onboard processor choices from FPGAs to microcontrollers and 2) hardware

architecture from backpack-and-shoe implementation to only-shoe implementation. The Lab-

On-Shoe 2 platform has two variations, including the Lab-On-Shoe 2.0 platform discussed

in Section A.1.2 and the Lab-On-Shoe 2.1 platform discussed in Section A.1.2.

Lab-On-Shoe 2.0: Firmware on Teensy 4.0 Microcontroller

In this section, we discuss the development progress of the Lab-On-Shoe 2.0 platform. The

discussion includes hardware, firmware, and testing of the Lab-On-Shoe 2.0.

Hardware and Firmware Compared to the earlier version of the Lab-On-Shoe system, the

Lab-On-Shoe 2.0 system replaces the National Instruments CompactRIO controller with

microcontroller Teensy 3.2 and equips with additional Ultra-Wideband (UWB) devices. A

prototype of the Lab-On-Shoe 2.0 is shown in Figure A.49. Table A.13 lists all integrated

components of the platform. In the current implementation of the Lab-On-Shoe 2.0 system,

all the components are mounted on the shoes, and the backpack used for the previous version

is no longer needed. Each shoe is equipped with a deterministic module and a cooperative

module. The deterministic module includes a microcontroller teensy 3.2, a Bluetooth module,

an IMU, three ultrasonic transducers, and an altimeter. The cooperative module contains a

microcontroller teensy 3.2, a Bluetooth module, and a UWB.

A block diagram of firmware for Lab-On-Shoe 2.0 is presented in Figure A.50. The micro-

402

Table A.13: COTS components used in Lab-On-Shoe 2.0 platform.

Component Manufacturer Model Quantity Purpose

Microcontroller Teensy Teensy 3.2 2 Processing Unit

IMU Analog Device ADIS16497−3 2 Acceleration and angular rate

SONAR Devantech SRF02 4 Ranging

SONAR Devantech SRF08 2 Ranging

Altimeter TE Connectivity MS5803−01BA 2 Height

Magnetometer Triaxis Melexis MLX90393 2 Magnetic fields

UWB DecaWave DWM1000 2 Cooperative localization

Bluetooth HiLetgo HC−05 2 Data Transmission

Battery SparkFun Lithium-ion 2 Power source

Ultrasonic
SRF08 Ultrasonic

SRF08

Ultrasonic
SRF02

IMU
ADIS16497-3

Micro-controller
Teensy 3.2

Micro-controller
Teensy 3.2

UWB
DWM1000

Bluetooth
HC-05

Bluetooth
HC-05

Altimeter
MS5803-01BA

Lithium battery

Cooperative module
Cooperative module

Figure A.49: A prototype of the Lab-On-Shoe 2.0 platform.

403

controller in the cooperative module is used to acquire range measurements from the UWB

via SPI protocol at a rate of 10 [Hz]. The acquired UWB measurements are saved in a

local variable on the microcontroller. The value of the variable is sent via Bluetooth to the

microcontroller located in the deterministic module at a rate of 20 [Hz]. The microcontroller

in the deterministic module is responsible for collecting measurements from IMUs, ultrasonic

sensors, altimeters, and UWBs and transmitting the measurements via UART protocol on a

USB cable to a laptop at a rate of 1000 [Hz]. The sampling rates of the IMU, the ultrasonic

sensors, and the altimeters were 1000 [Hz], 100 [Hz], and 25 [Hz], respectively. In the current

implementation, the laptop is used for saving and visualizing acquired sensor measurements.

IMU

Ultrasonic

Altimeter

Micro-controller Micro-controller UWB

Deterministic module Cooperative module

SPI

SPI

I2C

Figure A.50: A block diagram describing the firmware deployed on the Lab-On-Shoe 2.0
platform.

Indoor Navigation Testing To test performance of the Lab-On-Shoe 2.0 platform, we con-

ducted the following two tests. The first test was two indoor pedestrian navigation ex-

periments that were conducted at the Engineering Gateway Building at the University of

California, Irvine. The two experiments, carried out by two different people, had similar tra-

404

jectory length, which was around 600 [m] and lasted about 700 [s]. Figure A.51(a) presents

the experimental setup, which included LTE and GPS receivers. It its worth mentioning that

the LTE and GPS measurements were not used in the results discussed in the next para-

graph. Figure A.51(b) illustrates activities and terrains the pedestrians experienced during

the experiments.

0s, (8m, E), flat plane, 1F
15s, (1m, E), (0.5m, D), downstairs, 1F

20s, (6m, E), flat plane, 1F
28s, (43m, N), flat plane, 1F

90s, (47m, S), flat plane, 1F
155s, (10m, W), (0.5m, U), ramp, 1F

183s, (10m, E), (3.5m, U), upstairs, 2F
237s, (10m, W), flat plane, 2F

250s, (4m, S), flat plane, 2F
255s, (1m, S), (0.5m, D), downstairs, 2F

262s, (4m, S), (0.5m, U), ramp, 2F

274s, (51m, N), flat plane, 2F
354s, (51m, S), flat plane, 2F

432s, (7m, E), (2m, U), upstairs, 2F
460s, (7m, W), (2m, U), upstairs, 3F

483s, (51m, N), flat plane, 3F
545s, (51m, S), flat plane, 3F

607s, (8m, W), flat plane, 3F
614s, (7.2m, D), flat plane, 1F

676s, (8m, W), flat plane, 1F
690s, end, 1F

N: North S: South E: East W: West D: Down U: Up

(a) Experimental setup (b) Experiment trajectory description

LTE receiver
GPS receiver

Lab-On-Shoe 2.0

Figure A.51

Figure A.52 demonstrates the navigation solutions estimated by a ZUPT-aided INS enhanced

by an altimeter and foot-to-foot ranging measurements. In the first experiment, the accu-

mulated position error was 1.5 [m] for the left foot and 1.3 [m] for the right foot. In the

second experiment, the accumulated position error was 1.8 [m] for the left foot and 2.0 [m]

for the right foot.

Notice that in the experiment shown in Figure A.52(b), two UWB-based beacons were placed

at locations indicated by a green triangle and a green cross. The one marked with the green

triangle was located on the second floor of the building, and the one marked with the green

405

cross was placed on the third floor. UWBs located on the beacons were paired with the

UWBs mounted on the Lab-On-Shoe 2.0 system, and connections between the devices were

established once the agent walked within the operation range of the UWBs. In the results

presented in this section, the range measurements between the pedestrian and the beacons

were not used to enhanced the navigation solutions.

-40 -30 -20 -10 0 10 20
East, m

-40

-30

-20

-10

0

10

Estimated Trajectories

Path (L)

start (L)
end (L)

Path (R)
start (R)

end (R)
agent 1

agent 2

-40 -30 -20 -10 0 10 20
East, m

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Estimated Trajectories

Path (L)
Path (R)

Start (L)
Start (R)

End (L)
End (R)

-1 0 1 2
East, m

-1.5

-1

-0.5

0

0.5
Estimated Destinations

-1 0 1 2
Easting, m

-0.5

0

0.5

1

1.5

Estimated Destinations

(a) Navigation results of the First experiment (b) Navigation results of the Second experiment

Accumulated
distance error [m]

Left 1.5

Right 1.3

Accumulated
distance error [m]

Left 1.8

Right 2.0

N
or

th
, m

N
or

th
, m

N
or

th
, m

N
or

th
, m

Figure A.52

Reliability Test In order to investigate the reliability of the microcontroller Teensy 3.2 and

the firmware on the Lab-On-Shoe 2.0 system, we tested the system with a long navigation

experiment. The path of the navigation experiment included indoor environments and out-

door environments, and the total duration was around one hour. The trajectory length was

around 2 [km].

Figure A.53 present the navigation solutions estimated by the ZUPT-aided INS using the

SHOE detector with a fixed threshold. The upper plot shown in Figure A.53 presents the

estimated trajectory expressed in the global coordinate, and the bottom plot presents the

navigation solution in the local NED frame. The accumulated position error at the end of

the experiments was around 50 [m]. It is worth pointing out that, by visual inspection, the

406

-300 -200 -100 0 100 200 300 400
Easting, m

-400

-300

-200

-100

0

100

N
or

t h
i n

g,
m

Estimated and True Path, Northing-Easting, m

Path
Start
End

1 hour
Distance Error: 50 m

40 mins,
Distance Error <5 m

Figure A.53: Estimated trajectory of in reliability test for the Lab-On-Shoe 2.0 platform.
The trajectory included indoor environments and outdoor environments. The total duration
was around one hour, and the total path length was about 2 [km]. Loop-closure displacement
error was 50 [m].

407

position error at time elapsing 40 minutes was around 5 [m]. This experiment demonstrated

that the firmware and the Teensy 3.2 microcontroller could handle navigation tasks for more

than one hour.

The hardware and firmware for the Lab-On-Shoe 2.0 navigation platform were developed.

The Lab-On-Shoe 2.0 platform uses microcontrollers to communicate with IMUs, ultrasonic

sensors, altimeters, and UWBs. Two tests were conducted to evaluate the accuracy and

reliability of the Lab-On-Shoe 2.0 platform. The first test showed that, based on the data

collected by the platform, the ZUPT-aided INS had an accumulated displacement error of

2 [m] after navigating in an indoor environment for 600 [m]. The second test demonstrated

that the firmware and the microcontroller on the Lab-On-Shoe 2.0 system could handle

navigation tasks for one hour.

Lab-On-Shoe 2.1: Compact PCB

In this section, we have upgraded the Lab-On-Shoe 2.0 system in two aspects. First, we

redesigned the hardware implementation of the system to improve its robustness and com-

pactness. Second, we modified the firmware of the system to add measurements of Ultra-

WideBand (UWB) receiver power and transmitter power. The upgraded system is referred

to as Lab-On-Shoe 2.1.

Hardware Architecture and Sensor Measurements The Lab-On-Shoe 2.1 system is shown

in Figure A.54. The system includes two different pieces of hardware: a foot-mounted

system and UWB beacon modules. In current implementation, the foot-mounted module is

installed on the toe side of each foot, and the module includes an Inertial Measurement Unit

(Analog Device ADIS16497−3), a barometric altimeter (MS5803−01BA), a UWB (Decawave

DWM1000), multiple ultrasonic sensors (SRF02), and a microcontroller (Teensy 4.0). All the

408

Lab-On-Shoe

UWB DWM1000

Bluetooth HC-05

UWB Beacons
Microcontroller
Teensy 4.0

Ultrasound SRF02

Optik-track marker

Barometer MS5803-01BA

Voltage regulator

Microcontroller
Teensy 4.0

UWB DWM1000

IMU ADIS16497-3

Figure A.54: The Lab-On-Shoe 2.1 system.

409

electronic devices, except for the ultrasonic sensors, of the foot-mounted modules are directly

installed on a Printed Circuit Board (PCB). The sampling rate of each sensor is 1000 Hz for

the IMU, 25 Hz for the barometer, 10 Hz for the UWB, and 50 Hz for the ultrasonic sensor.

The UWB beacon module includes a UWB (DWM1000) and a microcontroller (Teensy 3.2).

The UWB beacon modules are programmed to have two different types: tag and anchor.

Distance measurements between a pair of a tag and an anchor are determined based on the

two-way ranging approach. In the current setup, a tag can be connected to a maximum

number of four anchors. All the UWB beacon modules are programmed as anchors, and the

UWBs on the foot-mounted modules are programmed as tags.

Each foot-mounted module of the Lab-On-Shoe 2.1 provides 14 different measurements,

including accelerometers along the three axes (g), gyroscopes along the three axes (degree

per second), air pressure (mbar), temperature (◦C), ultrasonic range (cm), UWB range

(m), UWB power metric (dBm), UWB receiver power (dBm), and UWB transmitter power

(dBm).

Testing To test the performance of the Lab-On-Shoe 2.1 system, we conducted two indoor

navigation experiments.

The first experiment was conducted at the Engineering Gateway Building at the University

Of California, Irvine. In this experiment, an agent equipped with the Lab-On-Shoe 2.1

system started on the second floor of the building. The agent then proceeded to walk for

912 [m] in 13.1 minutes in both indoor and outdoor environments and between four different

floors. At the end of the experiment, the agent returned to the starting point. The trajectory

included terrains of flat planes, stairs, ramps, and elevators. Sensors measurements of the

Lab-On-Shoe 2.1 system were collected and saved on a laptop.

We used the ZUPT-aided INS augmented by altimeter measurements and foot-to-foot UWB

410

Estimated Path, Northing-Easting-Down

1F

2F

3F
4F

(a)

(b)

Estimated Path, Northing-Easting

Figure A.55: Navigation results in the experiment conducted at the Engineering Gateway
Building at the University of California, Irvine. The solution estimated by the ZUPT-aided
INS augmented by altimeter measurements and foot-to-foot range measurements.

411

Estimated Path, LLA, with Map m

20 m

-117.164 -117.1636 -117.1632 -117.1628 -117.1624

Longitude (o)

32.714

32.7142

32.7144

32.7146

32.7148

32.715

32.7152

La
tti

tu
de

(o)

Westin San Diego Gaslamp Quarter Hotel

-5

0

5

10

40

15

D
ow

n,
 m

20

25

Estimated Path, Northing-Easting-Down, m (L)

4020

Northing, m

20

Easting, m

0 0
-20

Path

Start

End

1F

2F

3F

4F

(a)

(b)

25

20

15

10

5

0

-5
40

20
0

-20
0

20
40

Estimated Path

East, [m]North, [m]

D
ow

n,
 [m

]

Figure A.56: Navigation results in the experiment conducted at the Westin San Diego
Gaslamp Quarter Hotel. Navigation solution estimated by the ZUPT-aided INS augmented
by altimeter measurements and foot-to-foot range measurements.

412

ranging measurements. Figure A.55(a) and (b) shows the 3D and horizontal navigation

solution of the experiment. The loop-closure error of this experiment was 1.43 [m].

The second experiment was conducted at the Westin San Diego Gaslamp Quarter Hotel. In

this experiment, the agent was equipped with the Lab-On-Shoe 2.1 system and started at the

lobby on the 1F. Then, the agent walked inside the hotel for 1.2 [km] in 17 minutes between

1F to 4F. At the end of the experiment, the agent walked back to the original location.

The trajectory included flat planes constructed with carpet and concrete, ramps, stairs, and

elevators.

Navigation results of this experiment were produced by the ZUPT-aided INS augmented by

altimeter measurements and foot-to-foot UWB ranging. Figure A.56(a) and (b) present the

3D and horizontal trajectory. The loop-closure error of this experiment was 1.3 meters.

Lab-On-Shoe 2.0 platform was upgraded to Lab-On-Shoe 2.1 platform. The upgraded Lab-

On-Shoe system had a smaller physical size and a more reliable wire connection. We tested

the system with two indoor navigation experiments at two different locations. The first

experiment had a loop-closure error of 1.43 [m] after walking for 912 [m] in 13.1 minutes.

The second experiment had a loop-closure error of 0.5 meters after navigating for 1.1 [km]

in 17 minutes.

Lab-On-Shoe: C/C++ Implementation

1 //

2 // April 2023

3 // Author: Chi-Shih Jao <chishihj@uci.edu>

4 //

5 // Lab_On_Shoe_2_0.ino

6 //

7 //

8 // Pinout for a Teensy 3.2 Development Board

9 // RST = D6

10 // SCK = D13/SCK

11 // CS = D10/CS

413

12 // DOUT(MISO) = D12/MISO

13 // DIN(MOSI) = D11/MOSI

14 // DR = D2

15 //

16 //

17 #include <ADIS16490.h>

18 #include <SPI.h>

19 #include <Wire.h>

20 #include <SRF08.h>

21

22 // Temporary Data Arrays

23 int16_t* sensorData;

24 float scaledData[7];

25

26 // Control registers

27 int MSC = 0;

28 int DECR = 0;

29

30 unsigned long StartTime = millis();

31 unsigned long PrevTime = StartTime;

32 unsigned long SONARPrevTime = StartTime;

33 unsigned long CurrentTime = StartTime;

34 double Period, fs, ElapsedTime = CurrentTime - StartTime, SONAR_fs = 200,

35 SONARElapsedTime = CurrentTime - StartTime;

36 double SONAR_Period = 1/SONAR_fs*1000;

37

38 // Delay counter variable

39 int printCounter = 0;

40

41 // Call ADIS16490 Class

42 ADIS16490 IMU(10,2,6); // Chip Select, Data Ready, Reset Pin Assignments

43 SRF08 SONAR(117); // Chip Select, Data Ready, Reset Pin Assignments

44 int range_reading = 0;

45

46 void setup()

47 {

48 Serial.begin(115200); // Initialize serial output via USB

49 IMU.configSPI(); // Configure SPI communication

50 delay(1000); // Give the part time to start up

51 IMU.regWrite(FNCTIO_CTRL, 0x0C); // Enable Data Ready, set polarity

52 delay(20);

53 IMU.regWrite(DEC_RATE, 0x00), // Disable decimation

54 delay(20);

55

56 // Read the control registers once to print to screen

57 MSC = IMU.regRead(FNCTIO_CTRL);

58 DECR = IMU.regRead(DEC_RATE);

414

59

60 // Configure SPI settings for IMU

61 IMU.configSPI();

62

63 // Attach interrupt to pin 2. Trigger on the rising edge

64 attachInterrupt(2, grabIMUData, RISING);

65 SONAR.configSensor();

66 }

67

68 // Function used to read register values when an ISR is triggered using the IMU’s

69 DataReady output

70 void grabIMUData()

71 {

72 sensorData = IMU.sensorRead();

73 }

74

75 // Function used to scale all acquired data (scaling functions are included in

76 ADIS16490.cpp)

77 void scaleIMUData()

78 {

79 scaledData[0] = IMU.gyroScale(sensorData[2]); // XGYRO

80 scaledData[1] = IMU.gyroScale(sensorData[3]); // YGYRO

81 scaledData[2] = IMU.gyroScale(sensorData[4]); // ZGYRO

82 scaledData[3] = IMU.accelScale(sensorData[5]); // XACCL

83 scaledData[4] = IMU.accelScale(sensorData[6]); // YACCL

84 scaledData[5] = IMU.accelScale(sensorData[7]); // ZACCL

85 scaledData[6] = IMU.tempScale(sensorData[8]); // TEMP

86 }

87

88 // Main loop. Print data to the serial port. Sensor sampling is performed in the

ISR

89 void loop()

90 {

91 printCounter ++;

92 if (printCounter >= 1) // Delay for writing data to the serial port

93 {

94 PrevTime = CurrentTime;

95 CurrentTime = millis();

96 ElapsedTime = ((float) CurrentTime - (float) StartTime)/1000;

97 Period = ((float) CurrentTime - (float) PrevTime);

98 fs = 1/Period*1000;

99 SONARElapsedTime = CurrentTime - SONARPrevTime;

100

101 scaleIMUData(); // Scale data acquired from the IMU

102

103 // Print Status Registers

104 Serial.print("DIAG_STS: ");

415

105 Serial.println(sensorData[0]);

106 Serial.print("DATA_CNT: ");

107 Serial.println(sensorData[1]);

108

109 // Print scaled temp data

110 Serial.print("TEMP: ");

111 Serial.println(scaledData[6]);

112

113 // Print scaled gyro data

114 Serial.print("XGYRO: ");

115 Serial.println(scaledData[0]);

116 Serial.print("YGYRO: ");

117 Serial.println(scaledData[1]);

118 Serial.print("ZGYRO: ");

119 Serial.println(scaledData[2]);

120

121 // Print scaled accel data

122 Serial.print("XACCL: ");

123 Serial.println(scaledData[3]);

124 Serial.print("YACCL: ");

125 Serial.println(scaledData[4]);

126 Serial.print("ZACCL: ");

127 Serial.println(scaledData[5]);

128 //Serial.println(" ");

129

130 Serial.print("Range: ");

131 Serial.println(range_reading);

132

133 Serial.print("Sampling Rate: ");

134 Serial.println(fs);

135

136 Serial.print("Period: ");

137 Serial.println(Period);

138

139 Serial.print("ElapsedTime: ");

140 Serial.println(ElapsedTime);

141

142 Serial.print("\n");

143 //Serial.println("Status Registers");

144

145 if (SONARElapsedTime > SONAR_Period) {

146 range_reading = SONAR.regRead();

147 SONAR.regWrite();

148 SONARPrevTime = CurrentTime;

149 Serial.print("SONAR Sampling Rate: ");

150 Serial.println((float) 1/SONARElapsedTime*1000);

151 }

416

152

153 #ifdef DEBUG

154 // Print unscaled gyro data

155 Serial.print("XGYRO: ");

156 Serial.println(sensorData[2]);

157 Serial.print("YGYRO: ");

158 Serial.println(sensorData[3]);

159 Serial.print("ZGYRO: ");

160 Serial.println(sensorData[4]);

161

162 // Print unscaled accel data

163 Serial.print("XACCL: ");

164 Serial.println(sensorData[5]);

165 Serial.print("YACCL: ");

166 Serial.println(sensorData[6]);

167 Serial.print("ZACCL: ");

168 Serial.println(sensorData[7]);

169 Serial.println(" ");

170

171 // Print unscaled temp data

172 Serial.print("TEMP: ");

173 Serial.println(sensorData[8]);

174 #endif

175 printCounter = 0;

176 grabIMUData();

177 //attachInterrupt(2, grabIMUData, RISING);

178 }

179 }

A.2 Sugar-Cube Platform

This section of the appendix presents the development of the Sugar-Cube platforms. The

platforms were designed to be miniaturized versions of pedestrian navigation testbeds pre-

sented in Section A.1 with selected electronic components and real-time navigation capabil-

ities. The rest of this section is organized as follows. Section A.2.1 presents the Sugar-Cube

1.0 platform, Section A.2.2 discusses the Sugar-Cube 2.0 platform, Section A.2.3 describes a

developed Android App used to visualized real-time localization solutions of the Sugar-Cube

2.0 platform, Section A.2.4 presents a demonstration procedure and a demonstration inter-

417

face for the platform, and Section A.2.5 provides C/C++ source codes implemented on the

microcontroller of the Sugar-Cube platforms.

A.2.1 Sugar-Cube 1.0: Real-Time Navigation Platform

This section presents the development of the Sugar-Cube navigation platform in firmware

and hardware levels. The developed Sugar-Cube navigation platform was used to conduct a

real-time localization task, and the experimental results are included in this section.

Hardware of Sugar-Cube Navigation Platform

The current version of the Sugar-Cube platform uses a micro-controller, Teensy 4.0, a 9-axis

IMU Invensense ICM−20948, a Bluetooth module HC−05, a voltage booster module, and

a lithium battery. Figure A.57(b) shows a prototype of the Sugar-Cube platform under

development, and Figure A.57(a) presents a Printed Circuit Board (PCB) realization of the

Sugar-Cube platform mounted on a shoe. The PCB shown in Figure A.57(a) was used for

reliable wire connection and circuit rerouting. The Teensy 4.0 has a clock rate of 600 MHz.

The ICM−20948 is a consumer-grade Inertial Measurement Unit (IMU) that contains a 3-

axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The lithium battery

shown in both Figure A.57(a) and Figure A.57(b) can support the Sugar-Cube platform to

run more than one hour when fully charged.

Firmware development

Current firmware implementation of the Sugar-Cube platform enables real-time localization.

The firmware includes two parts. The first part performs sensor measurement acquisitions,

and the second part estimates real-time navigation states based on the collected sensor mea-

418

IMU
ICM-20948

Bluetooth
HC-05

Voltage
booster

Lithium
battery

Micro-controller
Teensy 4.0

(a) Sugar-Cube Navigation platform on a PCB (b) Prototype of Sugar-Cube Navigation platform

Figure A.57

surements. Figure A.58 presents a block diagram of the firmware. In the sensor acquisition

module, the Teensy 4.0 communicates with the IMU and the magnetometer via I2C proto-

col. The sampling rates of the IMU and the magnetometer are set at 350 Hz and 50 Hz,

respectively.

After the system boots up, the sensor acquisition module starts to collect sensor measure-

ments and send the measurements to the navigation solutions module in the firmware. In the

first ten seconds of operation, the navigation solutions module is in an initialization stage,

where the algorithm assumes that the Sugar-Cube platform is stationary. In this stage, ac-

celerometer measurements are used to initialize roll and pitch angles, and magnetometers are

utilized for yaw angles. After initiation, the navigation solutions module calculates current

navigation states using a Zero velocity UPdaTe (ZUPT)-aided INS algorithm with the Stance

Hypothesis Optimal dEtection (SHOE) detector and produces the information at a rate of

419

350 Hz once sensor measurements are received. Then, the current navigation solution is sent

wireless to a remote display via Bluetooth using the UART communication protocol. The

Baud rate for the Bluetooth UART is set to 115200 Hz. In a single transmission, navigation

information is stacked and sent in a vector x, expressed as follows:

x = [t, a, g, q, v,p,T,Φ],

where t is current timestamp on a micro-controller, a is 3-axis accelerometer’s measurements,

g is 3-axis gyroscope’s measurements, q is orientation vector, containing roll, pitch, and yaw,

v is velocity vector, p is position vector, T is stance phase status, and Φ is stance phase

detection statistics. It is worth mentioning that the navigation state information is sent at

a rate of 10 Hz to a remote display in order to achieve reliable transmission via Bluetooth.

Sensor
Acquisition

IMU

Navigation
solutions

Magnetometer

Bluetooth Remote display
(Laptop)

Micro-controller

Initialization

Strapdown Inertial
Navigation Systems

Stance phase
detector

Extended
Kalman

FilterZero velocity
measurements

Sensor
readings

Navigation
states

Figure A.58: A block diagram describing the firmware of the Sugar-Cube navigation plat-
form.

420

Remote display Interface

Real-time localization solution estimated by the Sugar-Cube navigation platform is sent to a

remote device via Bluetooth for display. A device, such as a desktop, a laptop, a tablet, or a

smartphone, can be used to pair with the Sugar-Cube platform as long as it has a Bluetooth

module. In our current implementation, a laptop is used for this purpose, and a LabVIEW

User Interface (UI) was designed to facilitate data visualization.

Figure A.59 demonstrates the LabVIEW UI. The UI provide real-time positions in two

different coordinates. The first is local positions along the north, the east, and the down

directions. The second is the global coordinate in Longitude, Latitude, and Altitude (LLA).

The global positions of the Sugar-Cube platform are initialized at N33.6436o, W117.8402o,

and 41 [m] above sea level, which is the coordinate of the second floor of Engineering Gateway

Building at the University of California, Irvine. The global positions are displayed on a real-

time satellite map downloaded from Google Static Map API. The center of the map is the

current LLA provided by the Sugar-Cube platform. The map is updated every two seconds.

The red curve in Figure A.59(b) indicates the trajectory of the user.

(a) Local position (b) Global position

Figure A.59: An UI developed in LabVIEW for visualizing navigation solutions estimated
by the Sugar-Cube navigation platform.

421

Demonstration of Real-time Localization Task

To test the localization accuracy of the developed Sugar-Cube navigation platform, we con-

ducted five indoor walking experiments. In each experiment, the Sugar-Cube platform with

a PCB was mounted on the shoe of a pedestrian, and the pedestrian walked a closed-loop

trajectory. An example of the trajectory is shown and described in Figure A.60(b). Figure

A.60(a) demonstrates estimated destinations of the five experiments. The position Mean

Absolute Error (MAE) of the experiments was 3.2 meters. The experimental results showed

that the Sugar-Cube navigation platform provided real-time solutions with the same level of

accuracy as post-processing.

-8 -6 -4 -2 0 2 4 6 8
East, m

-4

-3

-2

-1

0

1

2

N
or

t h
, m

Estimated locations

Final locations
Ground truth

(a) Estimated final locations (b) An example of the experiment trajectory

20 m, SE, plane

0s 20s

12 m, SW, slope

35s

3 m, NE, stair 12 m, NW, plane 17 m, NW, plane

40s 55s 75s

Figure A.60

This section presents documentation of the hardware and firmware of the Sugar-Cube navi-

gation platform. The implementation of the Sugar-Cube platform was achieved in real-time,

allowing for estimation of the position of a user using the ZUPT-aided INS in local NED

frame and global LLA frame with an assumption that initial global coordinate is available.

A series of indoor navigation experiments were conducted to test the Sugar-Cube platform.

The position MAE in the 75-second-long experiments was 3.2 meters.

422

A.2.2 Sugar-Cube 2.0: Real-Time Sensor-Fusion-aided Navigation

This section discusses the documentation of Sugar-Cube 2.0 navigation platform. Sugar-

Cube 2.0 platform included a micro-controller, Teensy 4.0, an Inertial Measurement Units

(IMU), a barometer, and an ultrasonic sensor. The platform produced localization of a user

in real-time based on the altimeter-enhanced ZUPT-aided INS using the UA-SHOE detector.

This version of the platform provides a flexible plug-and-play architecture for hardware and

software development.

IMU

Inertial Navigation
Systems

Zero Velocity Update

Extended Kalman Filter

UltrasonicBarometer

+UA-SHOE
IMU biases

State PropagationReset velocity

Stance phase flag

Vertical displacement

Navigation Solutions

Initialization

System power-up

Read data from
sensors

Reboot?

Perform
localization

Transmit data

Yes

No

(a) (c)

Microcontroller
Teensy 4.0 (600

MHz)

IMU ICM-
20948 (350 Hz)

SONAR SRF08
(150 Hz)

Altimeter
MS-5803-

01BA (25 Hz)

Bluetooth
HC-05 (100

Hz)

USB2.0 (350
Hz)

Lithium
battery

(850 mAh)

UART

I2C

(b)

Figure A.61: (a) The runtime framework of the Sugar-Cube platform. (b) Sensor connec-
tion and communication mechanism on the Sugar-Cube platform. (c) Navigation algorithm
implemented on the on-board micro-controller.

423

Navigation Algorithm

The real-time navigation solution implemented on the current Sugar-Cube platform is the

ZUPT-aided INS enhanced by a barometric altimeter with the UA-SHOE detector. Figure

A.61(c) exhibits a block diagram of the algorithm, which is realized in an Extended Kalman

Filter (EKF) framework. The stance phase detector used in this system is the UA-SHOE

detector. The stance phase detector used in the navigation algorithm has the following form.

Th(zn) =
1

N

∑
k∈Ωn

(
1

σ2
α

∥ yαk − g
ȳαk

∥ ȳαk ∥
∥2 + 1

σ2
ω

∥ yωk ∥2 + 1

σ2
h

∥ yhk − h ∥2) < γh,

where zn = {yk}k=N−1
k=n , yαk is accelerometer measurements at time step k, yωk is gyroscope

measurements at time step k, yhk is ranging measurements provided by the downward-facing

ultrasonic sensor at time step k, σa is Velocity Random Walk (VRW), σg is Angular Random

Walk (ARW), σh is resolution of the ultrasonic sensor, h is the height of the ultrasonic

sensors above the ground when the shoe is in contact, Ωn = {l ∈ N, n ≤ l < N − 1} is

a collection of the sensor measurement indexes at time n with a window of length N , and

γh are user-defined thresholds. Table A.14 lists values of EKF parameters, including ARW

σg, VRW σa, Rate Random Walk (ARW) σr, Acceleration Random Walk (AcRW) σAc, and

threshold γh used for the UA-SHOE.

Table A.14: Parameters for the EKF

Hyper-parameter Value

σg 2.7221× 10−5

σa 0.0017
σr 8.3174× 10−7

σAc 6.63× 10−6

γh e−12

424

Bluetooth
HC-05

Ultrasonic
SRF08

Ultrasonic
SRF08

Lithium battery

Microcontroller
Teensy 4.0

Bluetooth
HC-05

Barometer
MS5803-01BA

IMU
ICM-20948

USB2.0

Figure A.62: Hardware of the Sugar-Cube navigation platform.

On-board sensors

A hardware prototype of the Sugar-Cube navigation platform is illustrated in Figure A.62.

The black box in Figure A.62 is a fixture for placing customized Printed Circuit Boards

(PCBs). A micro-controller Teensy 4.0, a consumer-grade 9-axis IMU ICM−20948, a baro-

metric altimeter MS5803−01BA, and a Bluetooth module HC−05 were located on the PCB.

A downward-facing ultrasonic sensor SRF08 was firmly attached at the backside of the red

extended fixture arm shown in Figure A.62. The nominal distance between the ultrasonic

sensor and the ground was 9 cm. In this configuration, the Sugar-Cube platform was mounted

at the toe side, but it can be detached and moved to other locations, such as the heel side.

The power source of the Sugar-Cube platform was an 850 mAh lithium battery with a 3.7

v output. The battery was connected to a voltage booster module located on the PCB to

bring the voltage up to 5 v.

425

Firmware architecture

A block diagram illustrating sensor connection and communication protocols on the Sugar-

Cube platform is shown in Figure A.61(b). The processing unit of the platform is the micro-

controller Teensy 4.0, which has a nominal clock rate of 600 MHz and can be boosted up to

1.008 GHz. In the current implementation, the Sugar-Cube platform was programmed with

language C/C++ through the Teensyduino library in the Arduino Integrated Development

Environment (IDE). The on-board IMU, ultrasonic sensor, and barometer were communi-

cated in I2C and had a sampling rate of 350 Hz, 150 Hz, and 25 Hz, respectively. Information,

including orientation, velocity, position, zero velocity states, and sensor readings, can be se-

lectively transmitted to a remote device, such as a smartphone or a computer, via Bluetooth

and USB2.0 port with up to 100 Hz and 350 Hz transmission frequency, respectively.

A flow chart describing a runtime framework of the Sugar-Cube platform is presented in

Figure A.61(a). In the initialization process, the Sugar-Cube platform is assumed completely

stationary for around 10 s. During this process, all communication protocols are initiated,

accelerometer biases are estimated by implementing the ZUPT algorithm, gyroscope biases

are calculated by taking the average of the measurements, and initial heading angle of the

system is calculated based on the on-board magnetometer. Then, the Sugar-Cube platform

enters a sensor data acquisition process. The obtained sensor readings are accessed by

the localization module, which produces locations of a user based on the ZUPT-aided INS

enhanced by a barometer with the UA-SHOE detector at a rate of 350 Hz. At the end of

each iteration, the system waits for user’s command to determine whether to continue the

next iteration or to re-initiate the entire system.

426

-1.5 -1 -0.5 0 0.5 1
X, m

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

,m

Circular Error Probable
True destination
Sugar-Cube est.
Sugar-Cube CEP (r = 0.76)
Lab-On-Shoe est.
Lab-On-Shoe CEP (r = 0.07)

⊥ RMSESugarCube: 0.24
⊥ RMSELab−On−Shoe: 0.16

Flat plane

Stairs

Slopes

Y

-1 0 1 2 3 4 5 6 7 8
X, m

-2

0

2

4

6

8

10

12

14

16

18

Y,
m

Navigation Solutions

Sugar-Cube
Sugar-Cube (end)
Lab-On-Shoe
Lab-On-Shoe (end)
Start & End

Figure A.63: The upper plot shows an example of the trajectories estimated by the Sugar-
Cube platform and Lab-On-Shoe platform, respectively. The bottom plot shows estimated
destination, CEPs, and RMSEs in the ten experiments discussed in Section A.2.2.

427

Performance Evaluation

To evaluate the navigation performance of the developed Sugar-Cube platform, we conducted

ten sets of indoor navigation experiments in the Engineering Gateway Building at the Uni-

versity of California, Irvine. In the experiments, the Sugar-Cube navigation platform was

mounted on a pedestrian’s right foot, and a Lab-On-Shoe platform was installed on the

pedestrian’s left shoe. In this section, the Lab-On-Shoe 2.0 system was used as a benchmark

provided by the navigation accuracy. In each experiment, the pedestrian started from a

marker placed on the ground, walked a closed-loop trajectory at a speed of 60 step/min on

terrains of flat planes, slopes, and stairs, and returned to the marker at the end of the exper-

iment. The duration of each of the experiments was 1 min, and the length of the trajectories

was 50 [m].

Figure A.63 presents the experimental results. The Sugar-Cube platform estimated naviga-

tion solutions in real-time, and the solutions provided by the Lab-On-Shoe were calculated

in a post-processing manner using the same algorithm implemented on the Sugar-Cube plat-

form. The upper plot in Figure A.63 displays an example of the trajectories estimated from

the two systems overlapped on a floor plan of the building. We could see that the real-time

solution obtained from the Sugar-Cube platform was able to depict the movement of the

pedestrian. The bottom plot presents CEPs, which are circles enclosing 50% of the esti-

mated horizontal destinations in the ten experiments, and RMSEs of the estimated vertical

displacements. The CEP’s Radius was 0.76 [m] in the case of the Sugar-Cube platform and

was 0.07 [m] in the case of the Lab-On-Shoe platform. The vertical RMSEs of the Sugar-Cube

and the Lab-On-Shoe platform were 0.24 [m] and 0.16 [m], respectively. In our opinion, the

Lab-On-Shoe platform had a higher accuracy mainly because the current configuration of the

Sugar-Cube platform used a consumer-grade IMU while the Lab-On-Shoe platform adopted

a near-tactical-grade IMU. Based on these experiments, we concluded that the Sugar-Cube

platform could collect measurements from an IMU, a barometer, and a downward-facing

428

ultrasonic sensor and perform real-time localization of a pedestrian with respect to an initial

location.

This section presents the Sugar-Cube navigation platform, which was capable of performing

real-time localization of a pedestrian based on a ZUPT-aided INS enhanced by an altimeter

with the UA-SHOE detector. A series of indoor walking experiments of 60 [s] were conducted,

and the experimental results demonstrated that the real-time navigation results of the Sugar-

Cube platform had a horizontal CEP of 0.76 [m] and a vertical RMSE of 0.24 [m].

A.2.3 Sugar-Cube: Android User Interface

This section presents a developed Android application to display real-time location infor-

mation produced by the Sugar-Cube platform. Workflow and User Interface (UI) of the

application are discussed in this section..

The Android application, shown in Figure A.64, was developed in Android Studio Integrated

Development Environment (IDE) and was designed to be paired to a Sugar-Cube platform

via Bluetooth connection. The Android application has a UI shown in Figure A.66. The

application and firmware implemented on a Sugar-Cube platform have integrated workflow

presented in Figure A.65.

After a sugar-Cube platform is powered up and the Android application is implemented, the

Sugar-Cube platform waits for an initial to be sent from the Android application. The user

can click the start button on the UI to send the initial command to the module, and the

module enters the initialization process. The initialization process takes five seconds. Then

the module starts collecting sensor measurements from the onboard IMU and barometer.

Then, the module calculates navigation solutions and transmits the solutions to the Android

application. The solutions are then displayed on the UI. At this point, if the user does

429

Android App for Sugar-Cube platform

2013 Blackberry

Figure A.64: Sugar Cube Android App Icon

430

Initialization

System power-up

Read data from
sensors

Reboot?

Perform
localization

Transmit data

Yes

No

Search for Available
Bluetooth Connection

Application power-up

Connection

Send Initial Command

Read Data from
Sugar-Cube platform

Lo
ca

liz
at

io
n

m
es

sa
ge

s

Send Control
Command

Display data

Bo
ol

ea
n

Read Initial
Command

Boolean

Sugar-Cube Platform Android Application

Figure A.65: Sugar-Cube Android application workflow.

431

Start Button Stop Button

Distance to OriginConnection status

X-Y Position plot Z-axis position

Current location
Origin location
Path on 1F…

Path on 2F…

Path on 3F…

Path on other floors…

Figure A.66: Sugar-Cube Android application UI.

not do anything on the UI, the sugar-cube module would continue transmitting real-time

localization messages to the Android application, and the display on the UI would be updated

based on the received data. Alternatively, the user can click the stop button on the UI to

stop the Bluetooth connection, and the sugar-cube platform would be re-initialized, waiting

for the next navigation task.

A.2.4 Sugar-Cube: A Demonstration Process

A real-time demonstration of the Sugar-Cube platform was conducted for the 2022 PSCR

conference. This section discusses a demonstration process and the results collected during

the three days of the conference.

432

Demonstration Process

Demonstration of the Sugar-Cube platform is based on Sugar-Cube V7, which integrated a

micro-controller Teensy 4.0 clocked at 600 Mhz, an IMU ICM−42605, a barometer ICP-20100,

a Bluetooth module HC−05, and a lithium-ion battery. On the micron-controller, we imple-

mented a ZUPT-aided INS enhanced with barometer measurements. Estimated positioning

solutions were transmitted to a laptop that ran a MATLAB program overlapping the po-

sitions with a LiDAR point cloud map of the conference room. The program saved all the

received positions.

Sugar-Cube
power up

Calibrate
gyroscope biases

Align heading
angle

Real-time
Localization

Stay stationary
for 5 seconds

Walk straight line
for 3 meters

Figure A.67: Sugar-Cube platform demonstration process in the 2022 PSCR conference.

Figure A.67 presents a demonstration process of the Sugar-Cube platform at the 2022 PSCR

conference. In each demon run, a Sugar-Cube platform was attached to the toe side of

a demo participant with double-sided tape and powered up. The demo participant was

asked to remain stationary for 5 seconds and walk a straight line for 3 meters. Gyroscope

and accelerometer biases were in the stationary period, and we visually aligned the heading

angles of the Sugar-Cube platform with the conference point cloud map. Once the heading

angles were determined, all position solutions received on the laptop were multiplied with

a corresponding rotation matrix. Then, the participant could casually walk around and

eventually return to the starting point to evaluate position errors.

During the three days-session of the conference, 30 different demo trials were conducted.

Figure A.68(a) shows the trajectories estimated by the Sugar-Cube platform. Figure A.68(b)

433

CEP
0.53 m

RMSE
0.68 m

Max Error
2.4 m

0 0.5 1 1.5 2 2.5

Loop-Closure Error, m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
r c

e
n
t a

g
e

Sugar-Cube error CDF at PSCR 2022

CEP=0.53 m

-3 -2 -1 0 1 2

X, m

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Y
,
m

Sugar-Cube Estimated Final Position at PSCR 2022 Demo

(c)

(b)

-15 -10 -5 0 5 10 15

X, m

-20

-15

-10

-5

0

5

Y
,

m

Sugar-Cube Estimated Trajectory at PSCR 2022 Demo

-2
-1
0

Z
,

m

0 15
10

Y, m

5

X, m

-10 0
-5

-10
-20 -15

(a)

Starting position

UCI Demo Table

Figure A.68: (a) Trajectories produced by the Sugar-Cube platform in the 30 demo trials.
(b) Estimated final destinations. (c) CDF of loop-closure errors.

434

presents the estimated final destinations of the 30 trials. The loop-closure errors had a

Circular Error Probable (CEP) of 0.53 m. Figure A.68(c) shows a Cumulative Distribution

Function (CDF) of the loop-closure errors. We could see that, in all the trials, the position

Root Mean Squared Error (RMSE) was 0.68 m, and the maximum error was 2.4 m.

Demo Interface MATLAB Source Codes

1 % parsing sugar-cube platform

2 close all

3 clear all

4 clc

5

6 hWaitbar = waitbar(0, ’Iteration 1’, ’Name’, ’Solving

problem’,’CreateCancelBtn’,’delete(gcbf)’);

7 numData = 500000;

8

9 % Sugar Cube Labeled as 5 is COM6

10 % Sugar Cube Labeled as 2 is COM 18

11 % Unlabeled (good) Sugar Cube is COM25

12 device = serialport("COM25",115200);

13 flush(device)

14 position = nan(3,numData);

15 figure;

16 p_plot_ini = plot3(0,0,0,’rs’,’MarkerSize’,5);hold on

17 patch([1 -1 -1 1]*100, [1 1 -1 -1]*100, [0 0 0 0],’k’)

18 alpha(0.2)

19 p_plot = plot3(position(1,:),position(2,:),-position(3,:),’b’);

20 % p_plot = plot(position(1,:),position(2,:),’b’);hold on

21

22 p_plot_tip =

plot3(position(1,1),position(2,1),-position(3,1),’b^’,’MarkerSize’,5);

23 grid on

24 % p_plot_tip = plot(position(1,1),position(2,1),’b^’,’MarkerSize’,5);

25

26 xlim([min(position(1,1),-10)-5 max(position(1,1),10)+5])

27 ylim([min(position(2,1),-10)-5 max(position(2,1),10)+5])

28 zlim([min(-position(3,1),-10)-5 max(-position(3,1),10)+5])

29 xlabel(’X [m]’)

30 ylabel(’Y [m]’)

31 zlabel(’Z [m]’)

32 dataStreamArray = nan(21,numData);

33 saveDate = date;

34 saveTimeStamp = datestr(now,’HH-MM-SS-FFF’);

435

35 tic

36 dataline = ’’;

37 for ii = 1:numData

38 dataline = read(device,1,’char’);

39 while dataline(end)~= char(10)

40 % disp(dataline(end))

41 dataline = [dataline read(device,1,’char’)];

42 end

43 dataline = string(dataline(1:end-1));

44

45

46 dataStream = double(split(dataline,’,’));

47 if length(dataStream) == 21

48 dataStreamArray(:,ii) = dataStream;

49 position(:,ii) = dataStream(14:16)’;

50 position(2,ii) = -position(2,ii);

51 if mod(ii,1) == 0

52 delete(p_plot)

53 delete(p_plot_tip)

54 p_plot = plot3(position(1,:),position(2,:),-position(3,:),’b’);hold on

55 % p_plot = plot(position(1,:),position(2,:),’b’);hold on

56

57 p_plot_tip =

plot3(position(1,ii),position(2,ii),-position(3,ii),’b^’,’MarkerSize’,5);

58 % p_plot_tip =

plot(position(1,ii),position(2,ii),’b^’,’MarkerSize’,5);

59

60 xlim([min(min(position(1,1:ii)),-10)-5

max(max(position(1,1:ii)),10)+5])

61 ylim([min(min(position(2,1:ii)),-10)-5

max(max(position(2,1:ii)),10)+5])

62 zlim([min(min(-position(3,1:ii)),-10)-5

max(max(-position(3,1:ii)),10)+5])

63 title([’Elapsed Time: ’ num2str(floor(toc)) ’ s’])

64 drawnow

65 end

66 end

67 if ~ishandle(hWaitbar)

68 % Stop the if cancel button was pressed

69 disp(’Stopped by user’);

70 break;

71 end

72 dataline = ’’;

73

74 end

75

76 if ~exist([’dataset\’ date])

436

77 mkdir([’dataset\’ date])

78 end

79

80 kk = numel(dir([’dataset\’ saveDate ’*.mat’]));

81

82 save([’dataset\’ saveDate ’\exp’ num2str(kk) ’00_’ saveTimeStamp

’.mat’],’dataStreamArray’)

83

84 % close(hWaitbar)

85 figure;plot3(position(1,:),position(2,:),-position(3,:),’b’);hold on

86 plot3(position(1,ii),position(2,ii),-position(3,ii),’b^’);

87 plot3(0,0,0,’rs’);

88 axis equal

89

90 clear device

This section presents a demonstration process developed for the Sugar-Cube platform. The

demonstration process allowed for visualizing real-time positioning solutions in a point cloud

map of the environment. 30 trials of the demonstration were conducted over the 3-day

conference session, and the navigation performance of the Sugar-Cube had a CEP of 0.53 m,

an RMSE of 0.68 m, and a maximum error of 2.4 m.

A.2.5 Sugar-Cube: C/C++ Implementation

The Main Script

1 //

2 // April 2023

3 // Author: Chi-Shih Jao <chishihj@uci.edu>

4 //

5 // Sugar_Cube_Platform.ino

6 //

7 #include "src\ICM42605-master\ICM42605.h"

8 #include "src\ICM42605-master\I2Cdev.h"

9 #include "src\ExtendedKalmanFilter.h"

10 #include "src\ICP20100_Custom_Library\ICP20100.h"

11

12 #define ICP_CLK_Rate 12000000

13 #define ICP_CS_Pin 16

437

14 #define ICP_INT_PIN 17

15

16 #define SPI_PORT SPI // Your desired SPI port. Used only when "USE_SPI" is

17 defined

18 #define CS_PIN 2 // Which pin you connect CS to. Used only when "USE_SPI" is

19 defined

20

21 #define WIRE_PORT Wire // Your desired Wire port. Used when "USE_SPI" is

22 not defined

23 #define AD0_VAL 1 // The value of the last bit of the I2C address. 0:

24 0x68,1: 0x69

25 #define ICM42605_intPin1 20 // interrupt1 pin definitions, significant motion

26

27 #ifdef USE_SPI

28 ICM_20948_SPI myICM; // If using SPI create an ICM_20948_SPI object

29 #else

30 ICM_20948_I2C myICM; // Otherwise create an ICM_20948_I2C object

31 #endif

32

33 #define I2C_BUS Wire // Define the I2C bus (Wire instance) you wish to use

34

35 I2Cdev i2c_0(&I2C_BUS); // Instantiate the I2Cdev object and point to the

desired I2C

36 bus

37

38 // declare neccesary variables

39 double CurrentTime = 0, PrevTime = 0, loopPeriod = 0, InitialTime = micros(),

40 ElapsedTime = 0;

41 extern double yaw_Deg, zupt, a, e2, cLat, sLat, ax, R_N, R_M, h, g, dt;

42 extern int cal;

43 extern double f_u, f_v, f_w, gB_l_x, gB_l_y, gB_l_z, roll, pitch, roll_Deg,

pitch_Deg,

44 latDeg, lonDeg;

45 extern ArrayMatrix<4, 1, double> q_b2n_0, q_e2N0_l, q_e2N_l;

46 extern ArrayMatrix<3, 1, double> V_0, w_e2i_n_l, aB_l, gB_l;

47 extern ArrayMatrix<1, 3, double> e3;

48 extern ArrayMatrix<1, 15, double> x, Q_diag;

49 extern ArrayMatrix<15, 15, double> P, Q, Id;

50 extern ArrayMatrix<15, 1, double> dx_l;

51 extern ArrayMatrix<3, 15, double> H;

52 extern ArrayMatrix<3, 3, double> R, O33, I33, A_11;

53 extern ArrayMatrix<1, 10, double> zupt_l;

54 extern gyroStruct gyro;

55 extern acclStruct accl;

56 extern ArrayMatrix<3, 1> r_e_n, g_n, LLA_0;

57 extern estimationStruct est;

58 extern NaviStatus input_cal, input;

438

59 extern IMUreadings sensor;

60 extern trueStruct true_t;

61 extern setting_constructed_data simdata;

62 extern zuptStruct zuptState;

63 double u[15], u_mean[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

mag_bias[3]

64 = {0, 0, 0}, smoothed_mag[3] = {0, 0, 0}, mag_heading = 0;

65 ;

66 ArrayMatrix<W, 6, double> v;

67 double kk = 0, ini_cal = 3000;

68 ArrayMatrix<3, 1, double> NED;

69 String outputString, outputWirelessString = String(), subString1, subString2,

70 subString3, subString4, subString5;

71

72 uint8_t Ascale = AFS_16G, Gscale = GFS_2000DPS, AODR = AODR_500Hz, GODR =

GODR_500Hz;

73

74 float aRes, gRes;

75 // scale resolutions per LSB for the accel and gyro sensor

76 int16_t ICM42605Data[7];

77 // Stores the 16-bit signed sensor output

78 float Gtemperature;

79 // Stores the real internal gyro temperature in degrees Celsius

80 float ax_icm42065, ay_icm42065, az_icm42065, gx_icm42065, gy_icm42065,

gz_icm42065;

81 // variables to hold latest accel/gyro data values

82 uint8_t ICM42605status;

83 bool newICM42605Data = false;

84 ICM42605 ICM42605(&i2c_0); // instantiate ICM42605 class

85

86 float abs_pressure, raw_temperature, abs_pressure_based, altittude_delta;

87 bool icp_change = 0;

88 // Sensor is an ICP20100 object

89 ICP20100 ICP_sensor(ICP_CLK_Rate, ICP_CS_Pin); // clock rate, chip select pin

90

91 void myinthandler1()

92 {

93 newICM42605Data = true;

94 }

95

96 void ICP_Interrupt(void)

97 {

98 if (ICP_sensor.measure())

99 {

100 icp_change = 1;

101 }

102 }

439

103

104 void setup()

105 {

106

107 // initialize sensor

108 SERIAL_PORT_USB.begin(115200);

109 SERIAL_PORT.begin(115200);

110

111 pinMode(ICM42605_intPin1, INPUT);

112

113 Wire.begin(); // set master mode - on Teensy will defaut to Pin 19 - SCL

114 and Pin 18 - SDA

115 Wire.setClock(1000000); // I2C frequency at 400 kHz

116 delay(1000);

117

118 i2c_0.I2Cscan();

119

120 // Read the ICM42605 Chip ID register, this is a good test of communication

121 Serial.println("ICM42605 accel/gyro...");

122 byte c = ICM42605.getChipID(); // Read CHIP_ID register for ICM42605

123 Serial.print("ICM42605 ");

124 Serial.print("I AM ");

125 Serial.print(c, HEX);

126 Serial.print(" I should be ");

127 Serial.println(0x42, HEX);

128 Serial.println(" ");

129 delay(1000);

130

131 ICM42605.reset(); // software reset ICM42605 to default registers

132

133 // get sensor resolutions, only need to do this once

134 aRes = ICM42605.getAres(Ascale);

135 gRes = ICM42605.getGres(Gscale);

136

137 ICM42605.init(Ascale, Gscale, AODR, GODR);

138

139 if (c != 0x42)

140 Serial.println(" ICM42605 not functioning!");

141

142 attachInterrupt(ICM42605_intPin1, myinthandler1, RISING); // define interrupt

for

143 intPin1 output of ICM42605

144

145 ICM42605.status();

146

147 delay(1000);

148 if (newICM42605Data == true)

440

149 {

150 newICM42605Data = false; // reset newData flag

151 ICM42605status = ICM42605.status(); // INT1 cleared on status read

152

153 PrevTime = CurrentTime;

154 CurrentTime = micros();

155 loopPeriod = CurrentTime - PrevTime;

156 ElapsedTime = CurrentTime - InitialTime;

157

158 ICM42605.readData(ICM42605Data);

159

160 convertAGMT2Array(ICM42605Data, ElapsedTime, loopPeriod / 1000000, u, 0);

161 printMeasurementArray(u);

162 }

163

164 ICP_sensor.begin();

165 }

166 int loop_counter = 0;

167 bool mag_ini_status = false;

168 void loop()

169 {

170

171 if (loop_counter < 200 && mag_ini_status == false)

172 {

173 loop_counter++;

174 }

175 else if (loop_counter == 200 && mag_ini_status == false)

176 {

177 mag_heading = 0;

178 // mag_heading =

179 -atan((smoothed_mag[1]-mag_bias[1])/(smoothed_mag[0]-mag_bias[0]))*r2d;

180 SERIAL_PORT_USB.println("Magnetometer calibration done!");

181 mag_ini_status = true;

182 loop_counter = 0;

183 }

184 else

185 {

186

187 if (newICM42605Data == true)

188 {

189 newICM42605Data = false; // reset newData flag

190 ICM42605status = ICM42605.status(); // INT1 cleared on status read

191

192 PrevTime = CurrentTime;

193 CurrentTime = micros();

194 loopPeriod = CurrentTime - PrevTime;

195 ElapsedTime = CurrentTime - InitialTime;

441

196

197 ICM42605.readData(ICM42605Data);

198

199 convertAGMT2Array(ICM42605Data, ElapsedTime, loopPeriod / 1000000, u,

200 altittude_delta);

201

202 attachInterrupt(digitalPinToInterrupt(ICP_INT_PIN), ICP_Interrupt, LOW);

203 if (icp_change)

204 {

205 abs_pressure = ICP_sensor.getPressuremBar(); // Get Pressure in [mBar]

206 raw_temperature = ICP_sensor.getTemperatureC(); // Get Temperature in [C]

207 altittude_delta = local_altitude(abs_pressure, abs_pressure_based);

208 icp_change = 0;

209 }

210 detachInterrupt(digitalPinToInterrupt(ICP_INT_PIN));

211

212 // printMeasurementArray(u);

213 if (kk < W)

214 {

215 v(kk, 0) = u[0] * 9.817269086191379;

216 v(kk, 1) = u[1] * 9.817269086191379;

217 v(kk, 2) = u[2] * 9.817269086191379;

218 v(kk, 3) = u[3] * d2r;

219 v(kk, 4) = u[4] * d2r;

220 v(kk, 5) = u[5] * d2r;

221

222 u_mean[0] += u[0];

223 u_mean[1] += u[1];

224 u_mean[2] += u[2];

225 u_mean[3] += u[3];

226 u_mean[4] += u[4];

227 u_mean[5] += u[5];

228 u_mean[6] += u[6];

229 u_mean[7] += u[7];

230 u_mean[8] += u[8];

231 u_mean[9] += u[9];

232 u_mean[10] += u[10];

233 u_mean[11] += u[11];

234 u_mean[12] += u[12];

235 u_mean[13] += u[13];

236 u_mean[14] += u[14];

237 // Serial.println("Initialization: Stage 1");

238 abs_pressure_based = abs_pressure;

239 kk++;

240 }

241 else

242 {

442

243 v.Submatrix(Slice<0, W - 1>(), Slice<0, 6>()) = v.Submatrix(Slice<1, W>(),

244 Slice<0, 6>()) + 0;

245 v(W - 1, 0) = u[0] * 9.817269086191379;

246 v(W - 1, 1) = u[1] * 9.817269086191379;

247 v(W - 1, 2) = u[2] * 9.817269086191379;

248 v(W - 1, 3) = u[3] * d2r;

249 v(W - 1, 4) = u[4] * d2r;

250 v(W - 1, 5) = u[5] * d2r;

251 // printMeasurementArray(v);

252 if (kk >= W && kk < (ini_cal))

253 {

254 u_mean[0] += u[0];

255 u_mean[1] += u[1];

256 u_mean[2] += u[2];

257 u_mean[3] += u[3];

258 u_mean[4] += u[4];

259 u_mean[5] += u[5];

260 u_mean[6] += u[6];

261 u_mean[7] += u[7];

262 u_mean[8] += u[8];

263 u_mean[9] += u[9];

264 u_mean[10] += u[10];

265 u_mean[11] += u[11];

266 u_mean[12] += u[12];

267 u_mean[13] += u[13];

268 u_mean[14] += u[14];

269 // Serial.println("Initialization: Stage 2");

270 // Serial.print(u_mean[14]);

271 }

272 else if (kk == (ini_cal))

273 {

274 u_mean[0] = u_mean[0] / kk;

275 u_mean[1] = u_mean[1] / kk;

276 u_mean[2] = u_mean[2] / kk;

277 u_mean[3] = u_mean[3] / kk;

278 u_mean[4] = u_mean[4] / kk;

279 u_mean[5] = u_mean[5] / kk;

280 u_mean[6] = u_mean[6] / kk;

281 u_mean[7] = u_mean[7] / kk;

282 u_mean[8] = u_mean[8] / kk;

283 u_mean[9] = u_mean[9] / kk;

284 u_mean[10] = u_mean[10] / kk;

285 u_mean[11] = u_mean[11] / kk;

286 u_mean[12] = u_mean[12] / kk;

287 u_mean[13] = u_mean[13] / kk;

288 u_mean[14] = u_mean[14] / kk;

289 NavigationInitialization(u_mean, mag_heading);

443

290 }

291 else if (kk > (ini_cal) && kk <= cal)

292 {

293 NavigationInitialIteration(v, u);

294 }

295 else

296 {

297 NavigationIteration(v, u);

298 if ((loop_counter % 5) == 0)

299 {

300 if (outputWirelessString.length() == 0)

301 {

302 outputWirelessString =

303 printAndOutputMeasurementAndNavigationSolutionsNEDAndLLA(sensor,

304 zuptState, est);

305 }

306 SERIAL_PORT.print(outputWirelessString.substring(0, min(

307 outputWirelessString.length(), 2)));

308 if (outputWirelessString.length() > 2)

309 {

310 outputWirelessString = outputWirelessString.substring(2);

311 }

312 else

313 {

314 outputWirelessString = "";

315 }

316 }

317 }

318 kk++;

319 }

320 }

321 loop_counter++;

322 }

323 }

324

325 // Below here are some helper functions to print the data nicely!

326 void printPaddedInt16b(int16_t val)

327 {

328 if (val > 0)

329 {

330 SERIAL_PORT.print(" ");

331 if (val < 10000)

332 {

333 SERIAL_PORT.print("0");

334 }

335 if (val < 1000)

336 {

444

337 SERIAL_PORT.print("0");

338 }

339 if (val < 100)

340 {

341 SERIAL_PORT.print("0");

342 }

343 if (val < 10)

344 {

345 SERIAL_PORT.print("0");

346 }

347 }

348 else

349 {

350 SERIAL_PORT.print("-");

351 if (abs(val) < 10000)

352 {

353 SERIAL_PORT.print("0");

354 }

355 if (abs(val) < 1000)

356 {

357 SERIAL_PORT.print("0");

358 }

359 if (abs(val) < 100)

360 {

361 SERIAL_PORT.print("0");

362 }

363 if (abs(val) < 10)

364 {

365 SERIAL_PORT.print("0");

366 }

367 }

368 SERIAL_PORT.print(abs(val));

369 }

370

371 void printRawAGMT(ICM_20948_AGMT_t agmt)

372 {

373 SERIAL_PORT.print("RAW. Acc [");

374 printPaddedInt16b(agmt.acc.axes.x);

375 SERIAL_PORT.print(", ");

376 printPaddedInt16b(agmt.acc.axes.y);

377 SERIAL_PORT.print(", ");

378 printPaddedInt16b(agmt.acc.axes.z);

379 SERIAL_PORT.print("], Gyr [");

380 printPaddedInt16b(agmt.gyr.axes.x);

381 SERIAL_PORT.print(", ");

382 printPaddedInt16b(agmt.gyr.axes.y);

383 SERIAL_PORT.print(", ");

445

384 printPaddedInt16b(agmt.gyr.axes.z);

385 SERIAL_PORT.print("], Mag [");

386 printPaddedInt16b(agmt.mag.axes.x);

387 SERIAL_PORT.print(", ");

388 printPaddedInt16b(agmt.mag.axes.y);

389 SERIAL_PORT.print(", ");

390 printPaddedInt16b(agmt.mag.axes.z);

391 SERIAL_PORT.print("], Tmp [");

392 printPaddedInt16b(agmt.tmp.val);

393 SERIAL_PORT.print("]");

394 // SERIAL_PORT.println();

395 }

396

397 void printFormattedFloat(float val, uint8_t leading, uint8_t decimals)

398 {

399 float aval = abs(val);

400 if (val < 0)

401 {

402 SERIAL_PORT.print("-");

403 }

404 else

405 {

406 SERIAL_PORT.print(" ");

407 }

408 for (uint8_t indi = 0; indi < leading; indi++)

409 {

410 uint32_t tenpow = 0;

411 if (indi < (leading - 1))

412 {

413 tenpow = 1;

414 }

415 for (uint8_t c = 0; c < (leading - 1 - indi); c++)

416 {

417 tenpow *= 10;

418 }

419 if (aval < tenpow)

420 {

421 SERIAL_PORT.print("0");

422 }

423 else

424 {

425 break;

426 }

427 }

428 if (val < 0)

429 {

430 SERIAL_PORT.print(-val, decimals);

446

431 }

432 else

433 {

434 SERIAL_PORT.print(val, decimals);

435 }

436 }

437

438 void printScaledAGMT(ICM_20948_AGMT_t agmt)

439 {

440 SERIAL_PORT.print("Scaled. Acc (mg) [");

441 printFormattedFloat(myICM.accX(), 5, 2);

442 SERIAL_PORT.print(", ");

443 printFormattedFloat(myICM.accY(), 5, 2);

444 SERIAL_PORT.print(", ");

445 printFormattedFloat(myICM.accZ(), 5, 2);

446 SERIAL_PORT.print("], Gyr (DPS) [");

447 printFormattedFloat(myICM.gyrX(), 5, 2);

448 SERIAL_PORT.print(", ");

449 printFormattedFloat(myICM.gyrY(), 5, 2);

450 SERIAL_PORT.print(", ");

451 printFormattedFloat(myICM.gyrZ(), 5, 2);

452 SERIAL_PORT.print("], Mag (uT) [");

453 printFormattedFloat(myICM.magX(), 5, 2);

454 SERIAL_PORT.print(", ");

455 printFormattedFloat(myICM.magY(), 5, 2);

456 SERIAL_PORT.print(", ");

457 printFormattedFloat(myICM.magZ(), 5, 2);

458 SERIAL_PORT.print("], Tmp (C) [");

459 printFormattedFloat(myICM.temp(), 5, 2);

460 SERIAL_PORT.print("]");

461 }

462

463 void printNumberAGMT(ICM_20948_AGMT_t agmt)

464 {

465 printFormattedFloat(myICM.accX(), 5, 2);

466 SERIAL_PORT.print(", ");

467 printFormattedFloat(myICM.accY(), 5, 2);

468 SERIAL_PORT.print(", ");

469 printFormattedFloat(myICM.accZ(), 5, 2);

470 SERIAL_PORT.print(", ");

471 printFormattedFloat(myICM.gyrX(), 5, 2);

472 SERIAL_PORT.print(", ");

473 printFormattedFloat(myICM.gyrY(), 5, 2);

474 SERIAL_PORT.print(", ");

475 printFormattedFloat(myICM.gyrZ(), 5, 2);

476 SERIAL_PORT.print(", ");

477 printFormattedFloat(myICM.magX(), 5, 2);

447

478 SERIAL_PORT.print(", ");

479 printFormattedFloat(myICM.magY(), 5, 2);

480 SERIAL_PORT.print(", ");

481 printFormattedFloat(myICM.magZ(), 5, 2);

482 SERIAL_PORT.print(", ");

483 printFormattedFloat(myICM.temp(), 5, 2);

484 }

485

486 void convertAGMT2Array(int16_t *ICM42605Data, double elapsedTime, double

loopPeriod,

487 double *u, double altittude_meas)

488 {

489 u[0] = (float)ICM42605Data[1] * aRes;

490 u[1] = (float)ICM42605Data[2] * aRes;

491 u[2] = (float)ICM42605Data[3] * aRes;

492 u[3] = (float)ICM42605Data[4] * gRes;

493 u[4] = (float)ICM42605Data[5] * gRes;

494 u[5] = (float)ICM42605Data[6] * gRes;

495 u[6] = 0;

496 u[7] = elapsedTime;

497 u[8] = altittude_meas;

498 u[9] = 0;

499 u[10] = loopPeriod;

500 u[11] = 0;

501 u[12] = 0;

502 u[13] = 0;

503 u[14] = 0;

504 }

505

506 void printMeasurementArray(double *u)

507 {

508 SERIAL_PORT_USB.print("Sensor = [");

509 SERIAL_PORT_USB.print(u[0], 5);

510 SERIAL_PORT_USB.print(", ");

511 SERIAL_PORT_USB.print(u[1], 5);

512 SERIAL_PORT_USB.print(", ");

513 SERIAL_PORT_USB.print(u[2], 5);

514 SERIAL_PORT_USB.print(", ");

515 SERIAL_PORT_USB.print(u[3], 5);

516 SERIAL_PORT_USB.print(", ");

517 SERIAL_PORT_USB.print(u[4], 5);

518 SERIAL_PORT_USB.print(", ");

519 SERIAL_PORT_USB.print(u[5], 5);

520 SERIAL_PORT_USB.print(", ");

521 SERIAL_PORT_USB.print(u[11], 5);

522 SERIAL_PORT_USB.print(", ");

523 SERIAL_PORT_USB.print(u[12], 5);

448

524 SERIAL_PORT_USB.print(", ");

525 SERIAL_PORT_USB.print(u[13], 5);

526 SERIAL_PORT_USB.print(", ");

527 SERIAL_PORT_USB.print(u[14], 5);

528 SERIAL_PORT_USB.print(", ");

529 SERIAL_PORT_USB.print(u[10], 5);

530 SERIAL_PORT_USB.print("]");

531 SERIAL_PORT_USB.println();

532 }

533

534 void printMeasurementArray(ArrayMatrix<W, 6, double> vArray)

535 {

536 SERIAL_PORT_USB.print("Sensor = [");

537 SERIAL_PORT_USB.print(vArray(0, 0));

538 SERIAL_PORT_USB.print(", ");

539 SERIAL_PORT_USB.print(vArray(0, 1));

540 SERIAL_PORT_USB.print(", ");

541 SERIAL_PORT_USB.print(vArray(0, 2));

542 SERIAL_PORT_USB.print(", ");

543 SERIAL_PORT_USB.print(vArray(0, 3));

544 SERIAL_PORT_USB.print(", ");

545 SERIAL_PORT_USB.print(vArray(0, 4));

546 SERIAL_PORT_USB.print(", ");

547 SERIAL_PORT_USB.print(vArray(0, 5));

548 SERIAL_PORT_USB.print("]");

549 SERIAL_PORT_USB.println();

550 }

551

552 double local_altitude(double P_mbar, double P0_mbar)

553 // Given a pressure measurement P (mbar) and the pressure at a baseline P0

(mbar),

554 // return altitude (meters) above baseline.

555 {

556 return (44330.0 * (1 - pow(P_mbar / P0_mbar, 1 / 5.255)));

557 }

Strapdown Inertial Navigation Systems

1 #include "StrapDownInertialNavigationSystems.h"

2

3 NaviStatus navSLN_ZUPT(IMUreadings sensor, NaviStatus input){

4 setting_constructed_data simdata;

5 NaviStatus output;

6 ArrayMatrix<4,1,double> q_b2n, q_e2n, q, q_b2nNm_wErth;

449

7 ArrayMatrix<3,1,double> w_b2i_b, f_b, LLA, v_nWrtE_n, delta_b_Prev,

delta_n_Prev, delta_n2e_Prev, w_e2i_n, dotLLA, w_n2e_n, dTheta_b, w_n2i_n,

dTheta_n, r_e_n, g_n, dg_centropital, gl_n, w_aux, f_n, dTheta_n2e_n, temp;

8 double dt, Omega, a, e2, cLat, sLat, ax, R_N, R_M, h, lonDeg, latDeg;

9 TwoElementStruct tempStruct;

10 TwoVectorStruct tempVectorStruct;

11

12 simdata = para_settings_initilize();

13

14 w_b2i_b = sensor.w_b2i_b;

15 f_b = sensor.f_b;

16 dt = sensor.dt;

17

18 q_b2n = input.q_b2n;

19 q_e2n = input.q_e2n;

20 LLA = input.LLA; // [lonRad; latRad; alt]

21 v_nWrtE_n = input.v_nWrtE_n;

22 // No use

23 delta_b_Prev = input.delta_b_Prev;

24 delta_n_Prev = input.delta_n_Prev;

25 delta_n2e_Prev = input.delta_n2e_Prev;

26

27 // ---

28 Omega = simdata.earthrate; // rad/s (earth’s rate)

29 a = 6378137.0; // m (semi-major axis)

30 e2 = 6.694380004260835e-3; // EarthEccentricitySq

31 // ---

32

33 // ---

34 cLat = cos(LLA(1,0));

35 sLat = sin(LLA(1,0));

36 temp = {

37 cLat,

38 0,

39 sLat*(-1)

40 };

41

42 w_e2i_n = temp*Omega;

43

44

45 ax = 1-e2*pow(sLat,2);

46 R_N = a/sqrt(ax);

47 R_M = R_N*(1-e2)/ax;

48 h = LLA(2,0);

49 dotLLA(2,0) = v_nWrtE_n(2,0)*(-1);

50 w_n2e_n(0,0) = v_nWrtE_n(1,0)/a;

51 w_n2e_n(1,0) = v_nWrtE_n(0,0)/a*(-1);

450

52 w_n2e_n(2,0) = 0;

53

54 // ===

55 // Attitude

56 // ===

57

58 dTheta_b = w_b2i_b * dt;

59 tempVectorStruct = qintegrator(q_inv(q_b2n), dTheta_b, delta_b_Prev,0);

60 q = tempVectorStruct.OneVector;

61 delta_b_Prev = tempVectorStruct.TwoVector;

62 q_b2nNm_wErth = q_inv(q);

63 w_n2i_n = w_e2i_n + w_n2e_n;

64 dTheta_n = w_n2i_n * dt;

65

66 tempVectorStruct = qintegrator(q_b2nNm_wErth, dTheta_n, delta_n_Prev,0);

67 q_b2n = tempVectorStruct.OneVector;

68 delta_n_Prev = tempVectorStruct.TwoVector;

69 // ==

70 // Vel.& Pos.

71 // ===

72 // gravity

73 r_e_n = {R_N*e2*sLat*cLat*(-1),

74 0,

75 R_N*ax*(-1) - h};

76 g_n = gravityModel(LLA(1,0), vectorNorm(r_e_n), a, e2);

77 dg_centropital = crossProduct(w_e2i_n, crossProduct(w_e2i_n, r_e_n));

78 gl_n = g_n - dg_centropital;

79 // ===

80 w_aux = w_e2i_n * 2 + w_n2e_n;

81 f_n = quatRot(q_b2n, f_b);

82 v_nWrtE_n = v_nWrtE_n + (f_n - crossProduct(w_aux, v_nWrtE_n) + gl_n) * dt ;

83 // ===

84 dotLLA(2,0) = -v_nWrtE_n(2,0);

85 w_n2e_n(0,0) = v_nWrtE_n(1,0)/a;

86 w_n2e_n(1,0) = -v_nWrtE_n(0,0)/a;

87 w_n2e_n(2,0) = 0;

88 // ===

89 dTheta_n2e_n = w_n2e_n * dt;

90 tempVectorStruct = qintegrator(q_e2n, dTheta_n2e_n, delta_n2e_Prev,0);

91 q_e2n = tempVectorStruct.OneVector;

92 delta_n2e_Prev = tempVectorStruct.TwoVector;

93 tempStruct = q_e2N_toLonLatDeg(q_e2n);

94 lonDeg = tempStruct.One;

95 latDeg = tempStruct.Two;

96 LLA(0,0) = lonDeg*M_PI/180.0;

97 LLA(1,0) = latDeg*M_PI/180.0;

98 LLA(2,0) = LLA(2,0) + dotLLA(2,0) * dt;

451

99 // ===

100 output.q_b2n = q_b2n;

101 output.q_e2n = q_e2n;

102 output.LLA = LLA;

103 output.v_nWrtE_n = v_nWrtE_n;

104 output.delta_b_Prev = delta_b_Prev;

105 output.delta_n_Prev = delta_n_Prev;

106 output.delta_n2e_Prev = delta_n2e_Prev;

107 // ===

108 return output;

109 };

110

111 //ICM20948

112 setting_constructed_data para_settings_initilize (void){

113

114 setting_constructed_data simdata;

115

116 simdata.timespan=3600.0;

117 simdata.altitude=41.0;

118 simdata.latitude=33.64304*M_PI/180.0;

119 simdata.longitude=-117.84004*M_PI/180.0;

120 simdata.Ts=1.0/370.0;

121 simdata.M=10.0;

122 simdata.N = round(simdata.timespan/simdata.Ts)+1;

123 simdata.init_heading= 0*M_PI/180.0;

124 simdata.init_vel = {

125 0,

126 0,

127 0

128 };

129 simdata.earthrate=7.2921150e-5;

130 simdata.a=6378137.0;

131 simdata.e2=6.694380004260835e-3;

132 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 50;

133 simdata.sigma_g=0.18*M_PI/180/60*sqrt(simdata.Ts)*10;

134 simdata.gyro=simdata.sigma_g;

135 simdata.accel=simdata.sigma_a;

136 simdata.zupt_window=0.05;

137 simdata.Window_size=round(simdata.zupt_window/simdata.Ts);

138 simdata.Window_size_for_step_detector=simdata.Window_size*5;

139 simdata.gamma=3e5;

140 simdata.threshold=6;

141 simdata.factor=exp(simdata.threshold);

142 simdata.factor_step=exp(6);

143 simdata.sigma_initial_acc_bias = {0,0,0};

144 simdata.sigma_initial_gyro_bias = {0,0,0};

145 simdata.sigma_initial_pos = {0,0,0};

452

146 simdata.sigma_initial_vel = {0,0,0};

147 simdata.sigma_initial_att = {0,0,0};

148 simdata.sigma_initial_acc_scale = {0.0001,0.0001,0.0001};

149 simdata.sigma_initial_gyro_scale = {0.0001,0.0001,0.0001};

150 simdata.acc_bias_driving_noise=13e-6*9.81*sqrt(simdata.Ts)*1;

151 simdata.gyro_bias_driving_noise=3.3/3600*M_PI/180*sqrt(simdata.Ts)*1;

152 simdata.acc_SF_driving_noise = 1e-10;

153 simdata.gyro_SF_driving_noise = 1e-10;

154 simdata.acc_ortho_driving_noise = 1e-8;

155 simdata.gyro_rot_driving_noise = 1e-8;

156 simdata.gyro_ortho_driving_noise = 1e-8;

157 simdata.sigma_vel = {

158 0.02,

159 0.02,

160 0.02

161 };

162 simdata.sigma_dis=0.1;

163 simdata.sigma_mag=10.0;

164 simdata.ALT_rate = 20.0;

165 simdata.alt_resolution = 0.1;

166 simdata.cam_dis_std = 0.01;

167 simdata.cam_dis_vx = 0.001;

168 simdata.cam_dis_vy = 0.001;

169 simdata.cam_dis_vz = 0.001;

170 simdata.cam_roll_std = 0.01;

171 simdata.cam_pitch_std = 0.01;

172 simdata.cam_yaw_std = 0.01;

173 simdata.alpha = -pow(exp(9),1);

174 simdata.theta = 800.5;

175 simdata.beta = 0;

176 simdata.Window_size_nlos=50.0;

177 simdata.threshold_nlos = 0.000000001;

178 simdata.factor_nlos = exp(simdata.threshold_nlos);

179 simdata.UWB_std = 1.0;

180

181 return simdata;

182 };

EKF Library

1 #include "ExtendedKalmanFilter.h"

2

3 double yaw_Deg, zupt, a, e2, cLat, sLat, ax, R_N, R_M, h, g, dt;

4 int cal;

453

5 double f_u, f_v, f_w, gB_l_x, gB_l_y, gB_l_z, roll, pitch, roll_Deg, pitch_Deg,

6 latDeg, lonDeg;

7 ArrayMatrix<4, 1, double> q_b2n_0, q_e2N0_l, q_e2N_l;

8 ArrayMatrix<3, 1, double> V_0, w_e2i_n_l, aB_l, gB_l;

9 ArrayMatrix<1, 3, double> e3;

10 ArrayMatrix<1, 15, double> x, Q_diag;

11 ArrayMatrix<15, 15, double> P, Q, Id, Q_mtx;

12 ArrayMatrix<15, 1, double> dx_l;

13 ArrayMatrix<3, 15, double> H_ZUPT;

14 ArrayMatrix<1, 15, double> H_ALT;

15 ArrayMatrix<3, 3, double> R_ZUPT, O33, I33, A_11;

16 ArrayMatrix<1, 1, double> R_ALT;

17 ArrayMatrix<1, W, double> zupt_l;

18 gyroStruct gyro;

19 acclStruct accl;

20 ArrayMatrix<3, 1, double> r_e_n, g_n, LLA_0;

21 estimationStruct est;

22 NaviStatus input_cal, input;

23 IMUreadings sensor;

24 trueStruct true_t;

25 setting_constructed_data simdata;

26 zuptStruct zuptState;

27 ArrayMatrix<4, 4, double> blkdiag(ArrayMatrix<3, 3, double> tempMTX1,

ArrayMatrix<1, 1

28 , double> tempMTX2)

29 {

30 ArrayMatrix<4, 4, double> tempMTXout;

31 tempMTXout.Fill(0);

32 for (int kk = 0; kk < 3; kk++)

33 {

34 tempMTXout(kk, kk) = tempMTX1(kk, kk);

35 }

36 tempMTXout(3, 3) = tempMTX2(0, 0);

37 return tempMTXout;

38 }

39 ArrayMatrix<15, 15, double> eye(ArrayMatrix<15, 15, double> IdMTX)

40 {

41 IdMTX.Fill(0);

42 for (int jj = 0; jj < 15; jj++)

43 {

44 IdMTX(jj, jj) = 1;

45 }

46 return IdMTX;

47 }

48 ArrayMatrix<3, 3, double> eye(ArrayMatrix<3, 3, double> IdMTX)

49 {

50 IdMTX.Fill(0);

454

51 for (int jj = 0; jj < 3; jj++)

52 {

53 IdMTX(jj, jj) = 1;

54 }

55 return IdMTX;

56 }

57 ArrayMatrix<15, 15, double> diag(ArrayMatrix<1, 15, double> xVec)

58 {

59 ArrayMatrix<15, 15, double> tempMTX;

60 tempMTX.Fill(0);

61 for (int kk = 0; kk < 15; kk++)

62 {

63 tempMTX(kk, kk) = xVec(0, kk);

64 }

65 return tempMTX;

66 }

67 ArrayMatrix<15, 15, double> diag(ArrayMatrix<15, 1, double> xVec)

68 {

69 ArrayMatrix<15, 15, double> tempMTX;

70 tempMTX.Fill(0);

71 for (int kk = 0; kk < 15; kk++)

72 {

73 tempMTX(kk, kk) = xVec(kk);

74 }

75 return tempMTX;

76 }

77 ArrayMatrix<1, 15, double> diag(ArrayMatrix<15, 15, double> tempMTX)

78 {

79 ArrayMatrix<1, 15, double> tempx;

80 tempx.Fill(0);

81 for (int kk = 0; kk < 15; kk++)

82 {

83 tempx(0, kk) = tempMTX(kk, kk);

84 }

85 return tempx;

86 }

87 ArrayMatrix<3, 3, double> diag(ArrayMatrix<1, 3, double> xVec)

88 {

89 ArrayMatrix<3, 3, double> tempMTX;

90 tempMTX.Fill(0);

91 for (int kk = 0; kk < 3; kk++)

92 {

93 tempMTX(kk, kk) = xVec(0, kk);

94 }

95 return tempMTX;

96 }

97 ArrayMatrix<3, 3, double> diag(ArrayMatrix<3, 1, double> xVec)

455

98 {

99 ArrayMatrix<3, 3, double> tempMTX;

100 tempMTX.Fill(0);

101 for (int kk = 0; kk < 3; kk++)

102 {

103 tempMTX(kk, kk) = xVec(kk, 0);

104 }

105 return tempMTX;

106 }

107 ArrayMatrix<1, 3, double> diag(ArrayMatrix<3, 3, double> tempMTX)

108 {

109 ArrayMatrix<1, 3, double> tempx;

110 tempx.Fill(0);

111 for (int kk = 0; kk < 3; kk++)

112 {

113 tempx(0, kk) = tempMTX(kk, kk);

114 }

115 return tempx;

116 }

117 ArrayMatrix<1, 15, double> mtxElementSquare(ArrayMatrix<1, 15, double> xVec)

118 {

119 ArrayMatrix<1, 15, double> x_square;

120 x_square.Fill(0);

121 for (int kk = 0; kk < 15; kk++)

122 {

123 x_square(0, kk) = pow(xVec(0, kk), 2);

124 }

125 return x_square;

126 }

127 ArrayMatrix<1, 3, double> mtxElementSquare(ArrayMatrix<1, 3, double> xVec)

128 {

129 ArrayMatrix<1, 3, double> x_square;

130 x_square.Fill(0);

131 for (int kk = 0; kk < 3; kk++)

132 {

133 x_square(0, kk) = pow(xVec(0, kk), 2);

134 }

135 return x_square;

136 }

137 ArrayMatrix<1, W, double> mtxElementSquare(ArrayMatrix<1, W, double> xVec)

138 {

139 ArrayMatrix<1, W, double> x_square;

140 x_square.Fill(0);

141 for (int kk = 0; kk < W; kk++)

142 {

143 x_square(0, kk) = pow(xVec(0, kk), 2);

144 }

456

145 return x_square;

146 }

147 ArrayMatrix<1, 15, double> mtxElementSquare(ArrayMatrix<15, 1, double> xVec)

148 {

149 ArrayMatrix<1, 15, double> x_square;

150 x_square.Fill(0);

151 for (int kk = 0; kk < 15; kk++)

152 {

153 x_square(0, kk) = pow(xVec(kk, 0), 2);

154 }

155 return x_square;

156 }

157 ArrayMatrix<1, 3, double> mtxElementSquare(ArrayMatrix<3, 1, double> xVec)

158 {

159 ArrayMatrix<1, 3, double> x_square;

160 x_square.Fill(0);

161 for (int kk = 0; kk < 3; kk++)

162 {

163 x_square(0, kk) = pow(xVec(kk, 0), 2);

164 }

165 return x_square;

166 }

167 ArrayMatrix<1, W, double> mtxElementSquare(BLA::Matrix<W, 1> xVec)

168 {

169 ArrayMatrix<1, W, double> x_square;

170 x_square.Fill(0);

171 for (int kk = 0; kk < W; kk++)

172 {

173 x_square(0, kk) = pow(xVec(kk), 2);

174 }

175 return x_square;

176 }

177 ArrayMatrix<15, 15, double> multipleM(ArrayMatrix<15, 15, double> M,

ArrayMatrix<15,

178 15, double> N)

179 {

180 ArrayMatrix<15, 15, double> output;

181 output.Fill(0);

182 for (int i = 0; i < 15; i++)

183 {

184 for (int j = 0; j < 15; j++)

185 {

186 for (int k = 0; k < 15; k++)

187 {

188 output(i, j) += M(i, k) * N(k, j);

189 }

190 }

457

191 }

192 return output;

193 }

194 ArrayMatrix<15, 15, double> powM(ArrayMatrix<15, 15, double> M, int n)

195 {

196 ArrayMatrix<15, 15, double> output;

197 output = eye(output);

198 if (n == 0)

199 {

200 return output;

201 }

202 else

203 {

204 for (int kk = 0; kk < n; kk++)

205 {

206 output = multipleM(output, M);

207 }

208 }

209 return output;

210 }

211 ArrayMatrix<15, 15, double> expoM(ArrayMatrix<15, 15, double> M)

212 {

213 ArrayMatrix<15, 15, double> M_exp;

214 double factorial_list[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,

3628800};

215 M_exp.Fill(0);

216 for (int kk = 0; kk < 7; kk++)

217 {

218 M_exp = M_exp + powM(M, kk) factorial_list[kk];

219 }

220 return M_exp;

221 }

222 void NavigationInitialization(double u_mean[], double mag_heading_ini)

223 {

224 simdata = para_settings_initilize();

225 yaw_Deg = mag_heading_ini;

226 cal = 8 * 500; Number of initial time steps for calibration zupt=1;

227 ZUPT switch 1 is on, 10 is off f_u = 0;

228 f_v = 0;

229 f_w = 0;

230 gB_l_x = 0;

231 gB_l_y = 0;

232 gB_l_z = 0;

233 gravity a = 6378137.0;

234 m(semi - major axis) e2 = 6.694380004260835e-3;

235 EarthEccentricitySq cLat = cos(simdata.latitude);

236 sLat = sin(simdata.latitude);

458

237 ax = 1 - e2 * pow(sLat, 2);

238 R_N = a sqrt(ax);

239 R_M = R_N * (1 - e2) ax;

240 h = simdata.altitude;

241 r_e_n = {-R_N * e2 * sLat * cLat, 0, -R_N * ax - h};

242 g_n = gravityModel(simdata.latitude, vectorNorm(r_e_n), a, e2);

243 g = vectorNorm(g_n);

244 f_u = u_mean[0] * g;

245 f_v = u_mean[1] * g;

246 f_w = u_mean[2] * g;

247 gB_l_x = u_mean[3] * d2r;

248 gB_l_y = u_mean[4] * d2r;

249 gB_l_z = u_mean[5] * d2r;

250 roll = atan2(-f_v, -f_w);

251 pitch = atan2(f_u, sqrt(f_v * f_v + f_w * f_w));

252 roll_Deg = roll * r2d;

253 pitch_Deg = pitch * r2d;

254 q_b2n_0 = Imu2YPRdeg_to_qb2n(roll_Deg, pitch_Deg, yaw_Deg);

255 latDeg = simdata.latitude * r2d;

256 lonDeg = simdata.longitude * r2d;

257 h = simdata.altitude;

258 V_0.Fill(0);

259 dt = simdata.Ts;

260 true_t.t = u_mean[7];

261 q_e2N0_l = lonLatDegTo_q_e2N(lonDeg, latDeg);

262 Quaternion of navigation to earth frame combined with transport rate q_e2N_l =

263 integVel_into_q_e2N(q_e2N0_l, h, V_0, dt);

264 LLA_0 = {simdata.longitude, simdata.latitude, h};

265 input.q_b2n = q_b2n_0;

266 input.q_e2n = q_e2N_l;

267 input.LLA = LLA_0;

268 input.v_nWrtE_n = V_0;

269 input.delta_b_Prev.Fill(0);

270 input.delta_n_Prev.Fill(0);

271 input.delta_n2e_Prev.Fill(0);

272 sensor.dt = dt;

273 true_t.dt = dt;

274 est.t = true_t.t;

275 n = length(est.t);

276 est.q_b2n_l = input.q_b2n;

277 est.q_e2n_l = input.q_e2n;

278 est.LLA_l = input.LLA;

279 est.v_nWrtE_n_l = input.v_nWrtE_n;

280 set gyro noise characteristics gyro.sigma_AWN = 2e-4 * d2r * 0;

281 rad gyro.sigma_ARW = simdata.sigma_g sqrt(simdata.Ts) * 1;

282 rad sqrt(s) gyro.sigma_RRW = simdata.gyro_bias_driving_noise sqrt(simdata.Ts) *

1;

459

283 (rad s) sqrt(s) gyro.Bias = ~(simdata.sigma_initial_gyro_bias);

284 rad s set accel noise characteristics accl.sigma_VWN = 4.5e-4 * 0;

285 m s accl.sigma_VRW = simdata.sigma_a sqrt(simdata.Ts) * 1;

286 m s sqrt(s) accl.sigma_AcRW = simdata.acc_bias_driving_noise sqrt(simdata.Ts) *

1;

287 m s ^ 2 sqrt(s) accl.Bias = ~(simdata.sigma_initial_acc_bias);

288 m s ^ 2 w_e2i_n_l = earthRateInBody(0, 0, 0, LLA_0(1, 0) * 180.0 M_PI);

289 att, vel, pos, gB, aB e3.Fill(1);

290 Q_diag = ((((e3 * pow(gyro.sigma_ARW, 2) || e3 * pow(accl.sigma_VRW, 2)) || e3

* 0)

291 || e3 * pow(gyro.sigma_RRW, 2)) || e3 * pow(accl.sigma_AcRW, 2)) * true_t.dt;

292 noise matrix in the EKF x = ((((simdata.sigma_initial_att || simdata.

293 sigma_initial_vel) || simdata.sigma_initial_pos) ||

simdata.sigma_initial_gyro_bias

294 3.0) || simdata.sigma_initial_acc_bias 3.0);

295 initialize state in the EKF P = diag(mtxElementSquare(x));

296 H_ZUPT.Fill(0);

297 H_ZUPT(0, 3) = 1;

298 H_ZUPT(1, 4) = 1;

299 H_ZUPT(2, 5) = 1;

300 H_ALT.Fill(0);

301 H_ALT(0, 8) = 1;

302 R_ZUPT = diag(mtxElementSquare(simdata.sigma_vel));

303 R_ALT(0, 0) = simdata.alt_resolution;

304 aB_l.Fill(0);

305 gB_l = {gB_l_x, gB_l_y, gB_l_z};

306 dx_l.Fill(0);

307 Id = eye(Id);

308 zupt_l.Fill(0);

309 zupt_l(0, 0) = 1;

310 O33.Fill(0);

311 I33 = eye(I33);

312 A_11 = skew(w_e2i_n_l) * (-1);

313 input_cal = input;

314 return;

315 }

316 void printMatrix(ArrayMatrix<15, 15, double> X_mtx)

317 {

318 for (int ii = 0; ii < 15; ii++)

319 {

320 for (int jj = 0; jj < 15; jj++)

321 {

322 OUTPUT_PORT.print(X_mtx(ii, jj), 15);

323 OUTPUT_PORT.print("");

324 }

325 OUTPUT_PORT.println(" ");

326 }

460

327 OUTPUT_PORT.println("");

328 }

329

330 void printMatrix(ArrayMatrix<3, 3, double> X_mtx)

331 {

332 for (int ii = 0; ii < 3; ii++)

333 {

334 for (int jj = 0; jj < 3; jj++)

335 {

336 OUTPUT_PORT.print(X_mtx(ii, jj), 15);

337 OUTPUT_PORT.print(" ");

338 }

339 OUTPUT_PORT.println("");

340 }

341 OUTPUT_PORT.println(" ");

342 }

343 void NavigationInitialIteration(ArrayMatrix<W, 6, double> v, double u[])

344 {

345 zuptStruct zuptState;

346 ArrayMatrix<3, 3, double> A14, A21;

347 ArrayMatrix<15, 15, double> A, F_mtx, Q_mtx, test1, test2;

348 sensor.w_b2i_b

349 << v(0, 3),

350 v(0, 4), v(0, 5);

351 sensor.w_b2i_b = sensor.w_b2i_b - gB_l;

352 sensor.f_b = {v(0, 0), v(0, 1), v(0, 2)};

353 sensor.f_b = sensor.f_b - aB_l;

354 zuptState = SHOE_detector(~v);

355 sensor.dt = u[10];

356 input_cal = navSLN_ZUPT(sensor, input_cal);

357 A14 = quat2dcos(input_cal.q_b2n) * (-1);

358 A21 = skew(A14 * sensor.f_b * (-1));

359 A = (((((((A_11 || O33) || O33) || A14) || O33) && ((((A21 || O33) || O33) ||

O33)

360 || A14 * (-1))) && ((((O33 || I33) || O33) || O33) || O33)) && ((((O33 || O33) ||

361 O33) || O33) || O33)) && ((((O33 || O33) || O33) || O33) || O33);

362 F_mtx = expoM(A * sensor.dt);

363 Q_mtx = diag(Q_diag);

364 P = ((F_mtx * P) * (~F_mtx)) + Q_mtx;

365 ArrayMatrix<4, 4, double> S;

366 ArrayMatrix<15, 4, double> K;

367 ArrayMatrix<4, 1, double> z;

368 bool zupt_on = false, alt_on = false;

369 ArrayMatrix<1, 1, double> z_ALT = {u[8] + simdata.altitude - input_cal.LLA(2,

0)};

370 if (true)

371 {

461

372 z = input_cal.v_nWrtE_n && z_ALT;

373 ArrayMatrix<4, 15, double> H = H_ZUPT && H_ALT;

374 ArrayMatrix<4, 4, double> R = blkdiag(R_ZUPT, R_ALT);

375 S = (((H * P) * (~H)) + R);

376 K = (P * (~H)) * S.Inverse();

377 P = (Id - K * H) * P;

378 dx_l = K * z;

379 gB_l = gB_l + dx_l.Submatrix(Slice<9, 12>(), Slice<0, 1>());

380 aB_l = aB_l + dx_l.Submatrix(Slice<12, 15>(), Slice<0, 1>());

381 input_cal.LLA(1, 0) = input_cal.LLA(1, 0) - dx_l(6, 0) simdata.a;

382 input_cal.LLA(0, 0) = input_cal.LLA(0, 0) - (dx_l(7, 0)

simdata.a)cos(input_cal.

383 LLA(1, 0));

384 input_cal.LLA(2, 0) = input_cal.LLA(2, 0) + dx_l(8, 0);

385 input_cal.q_e2n = lonLatDegTo_q_e2N(input_cal.LLA(0, 0) * r2d,

input_cal.LLA(1, 0)

386 * r2d);

387 input_cal.v_nWrtE_n = input_cal.v_nWrtE_n - dx_l.Submatrix(Slice<3, 6>(),

Slice<0,

388 1>());

389 input_cal.q_b2n = q_mult(input_cal.q_b2n, theta2quat(dx_l.Submatrix(Slice<0,

3>(),

390 Slice<0, 1>()) * (-1)));

391 }

392 P = (P + (~P))2.0;

393 est.q_b2n_l = input_cal.q_b2n;

394 est.q_e2n_l = input_cal.q_e2n;

395 est.LLA_l = input_cal.LLA;

396 est.v_nWrtE_n_l = input_cal.v_nWrtE_n;

397 }

398 void NavigationIteration(ArrayMatrix<W, 6, double> v, double u[])

399 {

400 ArrayMatrix<3, 3, double> A14, A21;

401 ArrayMatrix<15, 15, double> A, F_mtx;

402 sensor.w_b2i_b = {v(0, 3), v(0, 4), v(0, 5)};

403 sensor.w_b2i_b = sensor.w_b2i_b - gB_l;

404 sensor.f_b = {v(0, 0), v(0, 1), v(0, 2)};

405 sensor.f_b = sensor.f_b - aB_l;

406 zuptState = SHOE_detector(~v);

407 sensor.dt = u[10];

408 input = navSLN_ZUPT(sensor, input);

409 A14 = quat2dcos(input.q_b2n) * (-1);

410 A21 = skew((A14)*sensor.f_b * (-1));

411 A = (((((((A_11 || O33) || O33) || A14) || O33) && ((((A21 || O33) || O33) ||

O33)

412 || A14 * (-1))) && ((((O33 || I33) || O33) || O33) || O33)) && ((((O33 || O33) ||

413 O33) || O33) || O33)) && ((((O33 || O33) || O33) || O33) || O33);

462

414 F_mtx = expoM(A * sensor.dt);

415 P = ((F_mtx * P) * (~F_mtx)) + diag(Q_diag);

416 bool zupt_on = false, alt_on = false;

417 int z_size = 0;

418 if (zuptState.zupt_l == zupt)

419 {

420 z_size = z_size + 3;

421 zupt_on = true;

422 }

423 if (!isnan(u[8]))

424 {

425 z_size = z_size + 1;

426 alt_on = true;

427 }

428 if (zupt_on || alt_on)

429 {

430 if (z_size == 4)

431 {

432 ArrayMatrix<4, 4, double> S;

433 ArrayMatrix<15, 4, double> K;

434 ArrayMatrix<4, 15, double> H;

435 ArrayMatrix<4, 4, double> R;

436 ArrayMatrix<4, 1, double> z;

437 ArrayMatrix<1, 1, double> z_ALT = {u[8] + simdata.altitude - input.LLA(2,

0)};

438 z = input.v_nWrtE_n && z_ALT;

439 H = H_ZUPT && H_ALT;

440 R = blkdiag(R_ZUPT, R_ALT);

441 S = (((H * P) * (~H)) + R);

442 K = (P * (~H)) * S.Inverse();

443 P = (Id - K * H) * P;

444 dx_l = K * z;

445 gB_l = gB_l + dx_l.Submatrix(Slice<9, 12>(), Slice<0, 1>());

446 aB_l = aB_l + dx_l.Submatrix(Slice<12, 15>(), Slice<0, 1>());

447 input.LLA(1, 0) = input.LLA(1, 0) - dx_l(6, 0) simdata.a;

448 input.LLA(0, 0) = input.LLA(0, 0) - dx_l(7, 0) simdata.a cos(input.LLA(1,

0));

449 input.LLA(2, 0) = input.LLA(2, 0) + dx_l(8, 0);

450 input.q_e2n = lonLatDegTo_q_e2N(input.LLA(0, 0) * r2d, input.LLA(1, 0) *

r2d);

451 input.v_nWrtE_n = input.v_nWrtE_n - dx_l.Submatrix(Slice<3, 6>(), Slice<0,

452 1>());

453 input.q_b2n = q_mult(input.q_b2n, theta2quat(dx_l.Submatrix(Slice<0, 3>(),

454 Slice<0, 1>()) * (-1)));

455 }

456 else if (z_size == 3)

457 {

463

458 ArrayMatrix<3, 3, double> S;

459 ArrayMatrix<15, 3, double> K;

460 ArrayMatrix<3, 15, double> H;

461 ArrayMatrix<3, 3, double> R;

462 ArrayMatrix<3, 1, double> z;

463 ArrayMatrix<1, 1, double> z_ALT = {u[8] + simdata.altitude - input.LLA(2,

0)};

464 z = input.v_nWrtE_n;

465 H = H_ZUPT;

466 R = R_ZUPT;

467 S = (((H * P) * (~H)) + R);

468 K = (P * (~H)) * S.Inverse();

469 P = (Id - K * H) * P;

470 dx_l = K * z;

471 gB_l = gB_l + dx_l.Submatrix(Slice<9, 12>(), Slice<0, 1>());

472 aB_l = aB_l + dx_l.Submatrix(Slice<12, 15>(), Slice<0, 1>());

473 input.LLA(1, 0) = input.LLA(1, 0) - dx_l(6, 0) simdata.a;

474 input.LLA(0, 0) = input.LLA(0, 0) - dx_l(7, 0) simdata.a cos(input.LLA(1,

0));

475 input.LLA(2, 0) = input.LLA(2, 0) + dx_l(8, 0);

476 input.q_e2n = lonLatDegTo_q_e2N(input.LLA(0, 0) * r2d, input.LLA(1, 0) *

r2d);

477 input.v_nWrtE_n = input.v_nWrtE_n - dx_l.Submatrix(Slice<3, 6>(), Slice<0,

478 1>());

479 input.q_b2n = q_mult(input.q_b2n, theta2quat(dx_l.Submatrix(Slice<0, 3>(),

480 Slice<0, 1>()) * (-1)));

481 }

482 else

483 {

484 ArrayMatrix<1, 1, double> S;

485 ArrayMatrix<15, 1, double> K;

486 ArrayMatrix<1, 15, double> H;

487 ArrayMatrix<1, 1, double> R;

488 ArrayMatrix<1, 1, double> z;

489 ArrayMatrix<1, 1, double> z_ALT = {u[8] + simdata.altitude - input.LLA(2,

0)};

490 z = z_ALT;

491 H = H_ALT;

492 R = R_ALT;

493 S = (((H * P) * (~H)) + R);

494 K = (P * (~H)) * S.Inverse();

495 P = (Id - K * H) * P;

496 dx_l = K * z;

497 gB_l = gB_l + dx_l.Submatrix(Slice<9, 12>(), Slice<0, 1>());

498 aB_l = aB_l + dx_l.Submatrix(Slice<12, 15>(), Slice<0, 1>());

499 input.LLA(1, 0) = input.LLA(1, 0) - dx_l(6, 0) simdata.a;

464

500 input.LLA(0, 0) = input.LLA(0, 0) - dx_l(7, 0) simdata.a cos(input.LLA(1,

0));

501 input.LLA(2, 0) = input.LLA(2, 0) + dx_l(8, 0);

502 input.q_e2n = lonLatDegTo_q_e2N(input.LLA(0, 0) * r2d, input.LLA(1, 0) *

r2d);

503 input.v_nWrtE_n = input.v_nWrtE_n - dx_l.Submatrix(Slice<3, 6>(), Slice<0,

504 1>());

505 input.q_b2n = q_mult(input.q_b2n, theta2quat(dx_l.Submatrix(Slice<0, 3>(),

506 Slice<0, 1>()) * (-1)));

507 }

508 }

509 P = (P + (~P))2.0;

510 est.q_b2n_l = input.q_b2n;

511 est.q_e2n_l = input.q_e2n;

512 est.LLA_l = input.LLA;

513 est.v_nWrtE_n_l = input.v_nWrtE_n;

514 }

515 ArrayMatrix<6, 1, double> MatrixRowSum(ArrayMatrix<6, W, double> tempMtx)

516 {

517 ArrayMatrix<6, 1, double> tempMean;

518 tempMean.Fill(0);

519 for (int kk = 0; kk < W; kk++)

520 {

521 tempMean(0, 0) = tempMean(0, 0) + tempMtx(0, kk);

522 tempMean(1, 0) = tempMean(1, 0) + tempMtx(1, kk);

523 tempMean(2, 0) = tempMean(2, 0) + tempMtx(2, kk);

524 tempMean(3, 0) = tempMean(3, 0) + tempMtx(3, kk);

525 tempMean(4, 0) = tempMean(4, 0) + tempMtx(4, kk);

526 tempMean(5, 0) = tempMean(5, 0) + tempMtx(5, kk);

527 }

528 return tempMean;

529 }

530 ArrayMatrix<3, 1, double> MatrixRowSum(ArrayMatrix<3, W, double> tempMtx)

531 {

532 ArrayMatrix<3, 1, double> tempMean;

533 tempMean.Fill(0);

534 for (int kk = 0; kk < W; kk++)

535 {

536 tempMean(0, 0) = tempMean(0, 0) + tempMtx(0, kk);

537 tempMean(1, 0) = tempMean(1, 0) + tempMtx(1, kk);

538 tempMean(2, 0) = tempMean(2, 0) + tempMtx(2, kk);

539 }

540 return tempMean;

541 }

542 double ArraySum(ArrayMatrix<1, W, double> tempArray)

543 {

544 double tempMean = 0;

465

545 for (int kk = 0; kk < W; kk++)

546 {

547 tempMean = tempMean + tempArray(0, kk);

548 }

549 return tempMean;

550 }

551 double ArraySum(ArrayMatrix<3, 1, double> tempArray)

552 {

553 double tempMean = 0;

554 for (int kk = 0; kk < 3; kk++)

555 {

556 tempMean = tempMean + tempArray(kk, 0);

557 }

558 return tempMean;

559 }

560 zuptStruct SHOE_detector(ArrayMatrix<6, W, double> u)

561 {

562 zuptStruct zuptStateTemp;

563 double total_x, total_y, total_z, c = W, sigma2_a, sigma2_g, g, total, zuptTemp;

564 ArrayMatrix<3, 1, double> u_n;

565 ArrayMatrix<3, 1, double> test_x;

566 BLA::Matrix<2, 1> test_y;

567 ArrayMatrix<3, W, double> tempSubMTX;

568 ArrayMatrix<1, W, double> tempSubArrayOne, tempSubArrayTwo;

569 total_x = 1;

570 total_y = 1;

571 total_z = 1;

572 test_x.Fill(0);

573 test_y = test_x.Submatrix(Slice<0, 2>(), Slice<0, 1>());

574 c = W;

575 sigma2_a = pow((simdata.sigma_a / simdata.Ts), 2);

576 sigma2_g = pow((simdata.sigma_g / simdata.Ts), 2);

577 g = 9.796;

578 tempSubMTX = u.Submatrix(Slice<0, 3>(), Slice<0, W>());

579 u_n = MatrixRowSum(tempSubMTX) / W;

580 u_n = u_n / vectorNorm(u_n);

581 Unit vector along the specific force u.Submatrix(Slice<0, 1>(), Slice<0, W>()) =

582 u.Submatrix(Slice<0, 1>(), Slice<0, W>()) - u_n(0, 0) * g;

583 u.Submatrix(Slice<1, 2>(), Slice<0, W>()) = u.Submatrix(Slice<1, 2>(), Slice<0,

584 W>()) - u_n(1, 0) * g;

585 u.Submatrix(Slice<2, 3>(), Slice<0, W>()) = u.Submatrix(Slice<2, 3>(), Slice<0,

586 W>()) - u_n(2, 0) * g;

587 tempSubArrayOne = u.Submatrix(Slice<0, 1>(), Slice<0, W>());

588 tempSubArrayTwo = u.Submatrix(Slice<3, 4>(), Slice<0, W>());

589 total_x = ArraySum(mtxElementSquare(tempSubArrayOne)) / sigma2_a +

590 ArraySum(mtxElementSquare(tempSubArrayTwo)) sigma2_g;

591 tempSubArrayOne = u.Submatrix(Slice<1, 2>(), Slice<0, W>());

466

592 tempSubArrayTwo = u.Submatrix(Slice<4, 5>(), Slice<0, W>());

593 total_y = ArraySum(mtxElementSquare(tempSubArrayOne)) / sigma2_a +

594 ArraySum(mtxElementSquare(tempSubArrayTwo)) sigma2_g;

595 tempSubArrayOne = u.Submatrix(Slice<2, 3>(), Slice<0, W>());

596 tempSubArrayTwo = u.Submatrix(Slice<5, 6>(), Slice<0, W>());

597 total_z = ArraySum(mtxElementSquare(tempSubArrayOne)) / sigma2_a +

598 ArraySum(mtxElementSquare(tempSubArrayTwo)) sigma2_g;

599 total_x = total_x / c;

600 total_y = total_y / c;

601 total_z = total_z / c;

602 total = total_x + total_y + total_z;

603 if (total < simdata.factor)

604 {

605 zuptTemp = 1;

606 }

607 else

608 {

609 zuptTemp = 0;

610 }

611 zuptStateTemp = (zuptStruct){.zupt_l = zuptTemp, .sum_IMU = total, .sum_IMU_x =

612 total_x, .sum_IMU_y = total_y, .sum_IMU_z = total_z};

613 return zuptStateTemp;

614 }

615 ArrayMatrix<3, 1, double> LLA2NED(ArrayMatrix<3, 1, double> LLA_cur)

616 {

617 ArrayMatrix<3, 1, double> NED;

618 NED(0, 0) = (LLA_cur(1, 0) - LLA_0(1, 0)) * simdata.a;

619 NED(1, 0) = (LLA_cur(0, 0) - LLA_0(0, 0)) * cos(LLA_cur(1, 0)) * simdata.a;

620 NED(2, 0) = (LLA_cur(2, 0) - LLA_0(2, 0)) * (-1);

621 return NED;

622 }

623 void printNavigationSolutionLLA(ArrayMatrix<3, 1, double> LLA_cur)

624 {

625 OUTPUT_PORT.print("Longtitude, Lattitude, Alttitude:");

626 OUTPUT_PORT.print(" [");

627 OUTPUT_PORT.print(LLA_cur(0, 0), 10);

628 OUTPUT_PORT.print(",");

629 OUTPUT_PORT.print(LLA_cur(1, 0), 10);

630 OUTPUT_PORT.print(" ,");

631 OUTPUT_PORT.print(LLA_cur(2, 0), 10);

632 OUTPUT_PORT.print("]");

633 OUTPUT_PORT.println("");

634 OUTPUT_PORT.print("(Initial)Longtitude, Lattitude, Alttitude:");

635 OUTPUT_PORT.print(" [");

636 OUTPUT_PORT.print(LLA_0(0, 0), 10);

637 OUTPUT_PORT.print(",");

638 OUTPUT_PORT.print(LLA_0(1, 0), 10);

467

639 OUTPUT_PORT.print(" ,");

640 OUTPUT_PORT.print(LLA_0(2, 0), 10);

641 OUTPUT_PORT.print("]");

642 OUTPUT_PORT.println("");

643 }

644 void printNavigationSolution(ArrayMatrix<3, 1, double> NED)

645 {

646 OUTPUT_PORT.print("North, East, Down (m):");

647 OUTPUT_PORT.print(" [");

648 OUTPUT_PORT.print(NED(0, 0), 2);

649 OUTPUT_PORT.print(",");

650 OUTPUT_PORT.print(NED(1, 0), 2);

651 OUTPUT_PORT.print(" ,");

652 OUTPUT_PORT.print(NED(2, 0), 2);

653 OUTPUT_PORT.print("]");

654 OUTPUT_PORT.println("");

655 }

656 void printVelocity(ArrayMatrix<3, 1, double> vel_sol)

657 {

658 OUTPUT_PORT.print("Velocities (m s):");

659 OUTPUT_PORT.print(" [");

660 OUTPUT_PORT.print(vel_sol(0, 0), 2);

661 OUTPUT_PORT.print(",");

662 OUTPUT_PORT.print(vel_sol(1, 0), 2);

663 OUTPUT_PORT.print(" ,");

664 OUTPUT_PORT.print(vel_sol(2, 0), 2);

665 OUTPUT_PORT.print("]");

666 OUTPUT_PORT.println("");

667 }

668 void printOrientation(ThreeElementStruct oreintationVec)

669 {

670 OUTPUT_PORT.print("Roll, pitch, yaw (deg):");

671 OUTPUT_PORT.print(" [");

672 OUTPUT_PORT.print(oreintationVec.One, 2);

673 OUTPUT_PORT.print(",");

674 OUTPUT_PORT.print(oreintationVec.Two, 2);

675 OUTPUT_PORT.print(" ,");

676 OUTPUT_PORT.print(oreintationVec.Three, 2);

677 OUTPUT_PORT.print("]");

678 OUTPUT_PORT.println("");

679 }

680 void printMeasurementAndNavigationSolutions(IMUreadings currentSensor, zuptStruct

681 currentZUPT, estimationStruct estNavSolution)

682 {

683 ArrayMatrix<3, 1, double> posVec;

684 ThreeElementStruct oreintationVec;

685 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

468

686 posVec = LLA2NED(estNavSolution.LLA_l);

687 OUTPUT_PORT.print(currentSensor.dt, 4);

688 OUTPUT_PORT.print(’,’);

689 OUTPUT_PORT.print(currentSensor.f_b(0), 4);

690 OUTPUT_PORT.print(’ ,’);

691 OUTPUT_PORT.print(currentSensor.f_b(1), 4);

692 OUTPUT_PORT.print(’ ,’);

693 OUTPUT_PORT.print(currentSensor.f_b(2), 4);

694 OUTPUT_PORT.print(’ ,’);

695 OUTPUT_PORT.print(currentSensor.w_b2i_b(0), 4);

696 OUTPUT_PORT.print(’ ,’);

697 OUTPUT_PORT.print(currentSensor.w_b2i_b(1), 4);

698 OUTPUT_PORT.print(’ ,’);

699 OUTPUT_PORT.print(currentSensor.w_b2i_b(2), 4);

700 OUTPUT_PORT.print(’ ,’);

701 OUTPUT_PORT.print(oreintationVec.One, 4);

702 OUTPUT_PORT.print(’ ,’);

703 OUTPUT_PORT.print(oreintationVec.Two, 4);

704 OUTPUT_PORT.print(’ ,’);

705 OUTPUT_PORT.print(oreintationVec.Three, 4);

706 OUTPUT_PORT.print(’ ,’);

707 OUTPUT_PORT.print(estNavSolution.v_nWrtE_n_l(0), 4);

708 OUTPUT_PORT.print(’ ,’);

709 OUTPUT_PORT.print(estNavSolution.v_nWrtE_n_l(1), 4);

710 OUTPUT_PORT.print(’ ,’);

711 OUTPUT_PORT.print(estNavSolution.v_nWrtE_n_l(2), 4);

712 OUTPUT_PORT.print(’ ,’);

713 OUTPUT_PORT.print(posVec(0), 4);

714 OUTPUT_PORT.print(’ ,’);

715 OUTPUT_PORT.print(posVec(1), 4);

716 OUTPUT_PORT.print(’ ,’);

717 OUTPUT_PORT.print(posVec(2), 4);

718 OUTPUT_PORT.print(’ ,’);

719 OUTPUT_PORT.print(currentZUPT.zupt_l, 4);

720 OUTPUT_PORT.print(’ ,’);

721 OUTPUT_PORT.print(currentZUPT.sum_IMU, 4);

722 OUTPUT_PORT.println();

723 }

724

725 String printAndOutputMeasurementAndNavigationSolutions(IMUreadings currentSensor,

726 zuptStruct currentZUPT,

727 estimationStruct

728 estNavSolution)

729 {

730

731 String ouputString = "";

732

469

733 ArrayMatrix<3, 1, double> posVec;

734 ThreeElementStruct oreintationVec;

735 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

736 posVec = LLA2NED(estNavSolution.LLA_l);

737 ouputString = String(ouputString + String(currentSensor.dt, 4));

738 ouputString = String(ouputString + String(","));

739 ouputString = String(ouputString + String(currentSensor.f_b(0), 4));

740 ouputString = String(ouputString + String(","));

741 ouputString = String(ouputString + String(currentSensor.f_b(1), 4));

742 ouputString = String(ouputString + String(","));

743 ouputString = String(ouputString + String(currentSensor.f_b(2), 4));

744 ouputString = String(ouputString + String(","));

745 ouputString = String(ouputString + String(currentSensor.w_b2i_b(0), 4));

746 ouputString = String(ouputString + String(","));

747 ouputString = String(ouputString + String(currentSensor.w_b2i_b(1), 4));

748 ouputString = String(ouputString + String(","));

749 ouputString = String(ouputString + String(currentSensor.w_b2i_b(2), 4));

750 ouputString = String(ouputString + String(","));

751 ouputString = String(ouputString + String(oreintationVec.One, 4));

752 ouputString = String(ouputString + String(","));

753 ouputString = String(ouputString + String(oreintationVec.Two, 4));

754 ouputString = String(ouputString + String(","));

755 ouputString = String(ouputString + String(oreintationVec.Three, 4));

756 ouputString = String(ouputString + String(","));

757 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(0), 4));

758 ouputString = String(ouputString + String(","));

759 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(1), 4));

760 ouputString = String(ouputString + String(","));

761 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(2), 4));

762 ouputString = String(ouputString + String(","));

763 ouputString = String(ouputString + String(posVec(0), 4));

764 ouputString = String(ouputString + String(","));

765 ouputString = String(ouputString + String(posVec(1), 4));

766 ouputString = String(ouputString + String(","));

767 ouputString = String(ouputString + String(posVec(2), 4));

768 ouputString = String(ouputString + String(","));

769 ouputString = String(ouputString + String(currentZUPT.zupt_l, 0));

770 ouputString = String(ouputString + String(","));

771 ouputString = String(ouputString + String(currentZUPT.sum_IMU, 0));

772 ouputString = String(ouputString + String("\n"));

773 return ouputString;

774 }

775

776 String printAndOutputMeasurementAndNavigationSolutionsLLA(IMUreadings

currentSensor,

777 zuptStruct currentZUPT,

778 estimationStruct

470

779 estNavSolution)

780 {

781

782 String ouputString = "";

783

784 ArrayMatrix<3, 1, double> posVec;

785 ThreeElementStruct oreintationVec;

786 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

787 ouputString = String(ouputString + String(currentSensor.dt, 4));

788 ouputString = String(ouputString + String(","));

789 ouputString = String(ouputString + String(currentSensor.f_b(0), 4));

790 ouputString = String(ouputString + String(","));

791 ouputString = String(ouputString + String(currentSensor.f_b(1), 4));

792 ouputString = String(ouputString + String(","));

793 ouputString = String(ouputString + String(currentSensor.f_b(2), 4));

794 ouputString = String(ouputString + String(","));

795 ouputString = String(ouputString + String(currentSensor.w_b2i_b(0), 4));

796 ouputString = String(ouputString + String(","));

797 ouputString = String(ouputString + String(currentSensor.w_b2i_b(1), 4));

798 ouputString = String(ouputString + String(","));

799 ouputString = String(ouputString + String(currentSensor.w_b2i_b(2), 4));

800 ouputString = String(ouputString + String(","));

801 ouputString = String(ouputString + String(oreintationVec.One, 4));

802 ouputString = String(ouputString + String(","));

803 ouputString = String(ouputString + String(oreintationVec.Two, 4));

804 ouputString = String(ouputString + String(","));

805 ouputString = String(ouputString + String(oreintationVec.Three, 4));

806 ouputString = String(ouputString + String(","));

807 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(0), 4));

808 ouputString = String(ouputString + String(","));

809 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(1), 4));

810 ouputString = String(ouputString + String(","));

811 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(2), 4));

812 ouputString = String(ouputString + String(","));

813 ouputString = String(ouputString + String(estNavSolution.LLA_l(0) * r2d, 8));

814 ouputString = String(ouputString + String(","));

815 ouputString = String(ouputString + String(estNavSolution.LLA_l(1) * r2d, 8));

816 ouputString = String(ouputString + String(","));

817 ouputString = String(ouputString + String(estNavSolution.LLA_l(2), 4));

818 ouputString = String(ouputString + String(","));

819 ouputString = String(ouputString + String(currentZUPT.zupt_l, 0));

820 ouputString = String(ouputString + String(","));

821 ouputString = String(ouputString + String(currentZUPT.sum_IMU, 0));

822 ouputString = String(ouputString + String("\n"));

823 return ouputString;

824 }

825

471

826 String printAndOutputMeasurementAndNavigationSolutionsNEDAndLLA(IMUreadings

827 currentSensor,

828 zuptStruct

829 currentZUPT,

830 estimationStruct

831 estNavSolution)

832 {

833

834 String ouputString = "";

835

836 ArrayMatrix<3, 1, double> posVec;

837 ThreeElementStruct oreintationVec;

838 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

839 posVec = LLA2NED(estNavSolution.LLA_l);

840

841 ouputString = String(ouputString + String(currentSensor.dt, 4));

842 ouputString = String(ouputString + String(","));

843 ouputString = String(ouputString + String(currentSensor.f_b(0), 4));

844 ouputString = String(ouputString + String(","));

845 ouputString = String(ouputString + String(currentSensor.f_b(1), 4));

846 ouputString = String(ouputString + String(","));

847 ouputString = String(ouputString + String(currentSensor.f_b(2), 4));

848 ouputString = String(ouputString + String(","));

849 ouputString = String(ouputString + String(currentSensor.w_b2i_b(0), 4));

850 ouputString = String(ouputString + String(","));

851 ouputString = String(ouputString + String(currentSensor.w_b2i_b(1), 4));

852 ouputString = String(ouputString + String(","));

853 ouputString = String(ouputString + String(currentSensor.w_b2i_b(2), 4));

854 ouputString = String(ouputString + String(","));

855 ouputString = String(ouputString + String(oreintationVec.One, 4));

856 ouputString = String(ouputString + String(","));

857 ouputString = String(ouputString + String(oreintationVec.Two, 4));

858 ouputString = String(ouputString + String(","));

859 ouputString = String(ouputString + String(oreintationVec.Three, 4));

860 ouputString = String(ouputString + String(","));

861 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(0), 4));

862 ouputString = String(ouputString + String(","));

863 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(1), 4));

864 ouputString = String(ouputString + String(","));

865 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(2), 4));

866 ouputString = String(ouputString + String(","));

867 ouputString = String(ouputString + String(posVec(0), 4));

868 ouputString = String(ouputString + String(","));

869 ouputString = String(ouputString + String(posVec(1), 4));

870 ouputString = String(ouputString + String(","));

871 ouputString = String(ouputString + String(posVec(2), 4));

872 ouputString = String(ouputString + String(","));

472

873 ouputString = String(ouputString + String(currentZUPT.zupt_l, 0));

874 ouputString = String(ouputString + String(","));

875 ouputString = String(ouputString + String(currentZUPT.sum_IMU, 0));

876 ouputString = String(ouputString + String(","));

877 ouputString = String(ouputString + String(estNavSolution.LLA_l(0) * r2d, 8));

878 ouputString = String(ouputString + String(","));

879 ouputString = String(ouputString + String(estNavSolution.LLA_l(1) * r2d, 8));

880 ouputString = String(ouputString + String(","));

881 ouputString = String(ouputString + String(estNavSolution.LLA_l(2), 4));

882 ouputString = String(ouputString + String("\n"));

883 return ouputString;

884 }

885

886 String printAndOutputMeasurementAndNavigationSolutionsShort(IMUreadings

887 currentSensor, zuptStruct currentZUPT, estimationStruct estNavSolution)

888 {

889

890 String ouputString = "";

891

892 ArrayMatrix<3, 1, double> posVec;

893 ThreeElementStruct oreintationVec;

894 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

895 posVec = LLA2NED(estNavSolution.LLA_l);

896

897 ouputString = String(ouputString + String(currentSensor.dt, 4));

898 ouputString = String(ouputString + String(","));

899 ouputString = String(ouputString + String(currentSensor.f_b(0), 3));

900 ouputString = String(ouputString + String(","));

901 ouputString = String(ouputString + String(currentSensor.f_b(1), 3));

902 ouputString = String(ouputString + String(","));

903 ouputString = String(ouputString + String(currentSensor.f_b(2), 3));

904 ouputString = String(ouputString + String(","));

905 ouputString = String(ouputString + String(currentSensor.w_b2i_b(0), 3));

906 ouputString = String(ouputString + String(","));

907 ouputString = String(ouputString + String(currentSensor.w_b2i_b(1), 3));

908 ouputString = String(ouputString + String(","));

909 ouputString = String(ouputString + String(currentSensor.w_b2i_b(2), 3));

910 ouputString = String(ouputString + String(","));

911 ouputString = String(ouputString + String(posVec(0), 2));

912 ouputString = String(ouputString + String(","));

913 ouputString = String(ouputString + String(posVec(1), 2));

914 ouputString = String(ouputString + String(","));

915 ouputString = String(ouputString + String(posVec(2), 2));

916 ouputString = String(ouputString + String(","));

917 ouputString = String(ouputString + String(currentZUPT.zupt_l, 0));

918 ouputString = String(ouputString + String("\n"));

919 return ouputString;

473

920 }

921

922 String printAndOutputMeasurementAndNavigationSolutionsSplit(IMUreadings

923 currentSensor, zuptStruct currentZUPT, estimationStruct estNavSolution)

924 {

925

926 String ouputString = "";

927

928 ArrayMatrix<3, 1, double> posVec;

929 ThreeElementStruct oreintationVec;

930 oreintationVec = qb2nImu2YPRdeg(estNavSolution.q_b2n_l);

931 posVec = LLA2NED(estNavSolution.LLA_l);

932

933 ouputString = String(ouputString + String(currentSensor.dt, 4));

934 ouputString = String(ouputString + String(","));

935 ouputString = String(ouputString + String(currentSensor.f_b(0), 3));

936 ouputString = String(ouputString + String(","));

937 ouputString = String(ouputString + String(currentSensor.f_b(1), 3));

938 ouputString = String(ouputString + String(","));

939 ouputString = String(ouputString + String(currentSensor.f_b(2), 3));

940 ouputString = String(ouputString + String(","));

941 ouputString = String(ouputString + String(currentSensor.w_b2i_b(0), 3));

942 ouputString = String(ouputString + String(","));

943 ouputString = String(ouputString + String(currentSensor.w_b2i_b(1), 3));

944 ouputString = String(ouputString + String(","));

945 ouputString = String(ouputString + String(currentSensor.w_b2i_b(2), 3));

946 ouputString = String(ouputString + String(","));

947

948 ouputString = String(ouputString + String(oreintationVec.One, 2));

949 ouputString = String(ouputString + String(","));

950 ouputString = String(ouputString + String("@"));

951 ouputString = String(ouputString + String(oreintationVec.Two, 2));

952 ouputString = String(ouputString + String(","));

953

954 ouputString = String(ouputString + String(oreintationVec.Three, 2));

955 ouputString = String(ouputString + String(","));

956 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(0), 2));

957 ouputString = String(ouputString + String(","));

958 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(1), 2));

959 ouputString = String(ouputString + String(","));

960 ouputString = String(ouputString + String(estNavSolution.v_nWrtE_n_l(2), 2));

961 ouputString = String(ouputString + String(","));

962 ouputString = String(ouputString + String(posVec(0), 1));

963 ouputString = String(ouputString + String(","));

964 ouputString = String(ouputString + String(posVec(1), 1));

965 ouputString = String(ouputString + String(","));

966 ouputString = String(ouputString + String(posVec(2), 1));

474

967 ouputString = String(ouputString + String(","));

968 ouputString = String(ouputString + String(currentZUPT.zupt_l, 0));

969 ouputString = String(ouputString + String(","));

970 ouputString = String(ouputString + String(currentZUPT.sum_IMU, 0));

971 ouputString = String(ouputString + String("&"));

972 return ouputString;

973 }

Utility Library

1 #include "INS_lib.h"

2

3 ThreeElementStruct b321tang(ArrayMatrix<3,3,double> b) {

4 // [roll,pitch,yaw] = b321tang(b)

5 // Input:

6 // b = coordinate transformation matrix obtained by 321 rotation

7 // sequence, that is first rotate about 3-axis by ’yaw’ angle,

8 // next rotate aboue 2-axis by ’pitch’ angle, and finally

9 // rotate about 1-axis by ’roll’ angle.

10 // Output:

11 // roll = ’roll’ angle about 1-axis (x-axis), deg,

12 // pitch = ’pitch’ angle about 2-axis (y-axis), deg,

13 // yaw = ’yaw’ angle about 3-axis (z-axis), deg,

14 //

15 // Note that there is an ambiguity in roll and yaw when pitch is +/- 90 deg.

16 ThreeElementStruct oreintation_in_degree;

17 double roll_deg, aux, pitch_deg, yaw_deg;

18

19 roll_deg = atan2(b(1,2), b(2,2)) * r2d;

20 aux = sqrt(1.0 - pow(b(0,2),2));

21 pitch_deg = atan2(-b(0,2), aux) * r2d;

22 yaw_deg = atan2(b(0,1), b(0,0)) * r2d;

23 oreintation_in_degree = (ThreeElementStruct){.One = roll_deg, .Two =

pitch_deg, .

24 Three = yaw_deg};

25 return oreintation_in_degree;

26 }

27

28 TwoElementStruct Ce2n_toLLA(ArrayMatrix<3,3,double> C_e2n){

29

30 TwoElementStruct Lon_Lat_deg;

31

32 double D13, D23, Lon_deg, D31, D32, D33, aux, Lat_deg;

33

475

34 D13 = C_e2n(2,0);

35 D23 = C_e2n(2,1);

36

37 Lon_deg = atan2(-D23,-D13)*180.0/M_PI;

38

39 D31 = C_e2n(0,2);

40 D32 = C_e2n(1,2);

41 D33 = C_e2n(2,2);

42

43 aux = sqrt(D31*D31 + D32*D32);

44

45 Lat_deg = atan2(-D33, aux)*180.0/M_PI;

46

47 Lon_Lat_deg.One = Lon_deg;

48 Lon_Lat_deg.Two = Lat_deg;

49

50 return Lon_Lat_deg;

51 }

52

53 int sgn(double v) {

54 if (v < 0) {return -1;}

55 if (v > 0) {return 1;}

56 return 0;

57 }

58

59 double vectorNorm(ArrayMatrix<4,1,double> v){

60 return sqrt(v(0)*v(0) + v(1)*v(1) + v(2)*v(2) + v(3)*v(3));

61 }

62

63 double vectorNorm(ArrayMatrix<3,1,double> v){

64 return sqrt(v(0)*v(0) + v(1)*v(1) + v(2)*v(2));

65 }

66

67 double vectorNorm(ArrayMatrix<2,1,double> v){

68 return sqrt(v(0)*v(0) + v(1)*v(1));

69 }

70

71 double vectorNorm(ArrayMatrix<1,4,double> v){

72 return sqrt(v(0,0)*v(0,0) + v(0,1)*v(0,1) + v(0,2)*v(0,2) + v(0,3)*v(0,3));

73 }

74

75 double vectorNorm (ArrayMatrix<1,3,double> v){

76 return sqrt(v(0,0)*v(0,0) + v(0,1)*v(0,1) + v(0,2)*v(0,2));

77 }

78

79 double vectorNorm(ArrayMatrix<1,2,double> v){

80 return sqrt(v(0,0)*v(0,0) + v(0,1)*v(0,1));

476

81 }

82

83 SevenElementAndVectorStruct dcos2quat(ArrayMatrix<3,3,double> d){

84 // ===

85 // convert 3x3 direction cosine matrix d to 4-vector quaternion q.

86 // If q maps frame A to frame B, then d maps vectors in

87 // frame A to frame B. q & d represent the orientation of B with

88 // respect to A.

89 // NOTE: In theory, the resulting quaternion should be a unit

90 // quaternion. But normalization is used.

91 //

92 // d = 3x3 direction cosine matrix mapping frame A to frame B.

93 //

94 // q = quaternion state vector (4 elements), representing the

95 // orientation of frame B with respect to frame A. In terms of

96 // the Euler rotation of theta radians about the unit vector e

97 // which maps frame A to frame B:

98 //

99 // q(1:3) = e(1:3)*sin(theta/2) = V = vector part of q

100 // q(4) = cos(theta/2) = S = scalar part of q

101 //

102 // any orientation has two associated quaternions, one of which is -1*the

103 // other. The canonical one is the one for which q(4) is non-negative,

104 // and corresponds to an Euler angle in the range 0 - pi.

105 // the variable "fix", below, is used to negate the quaternion on

106 // the fly, if necessary.

107 //

108 // Reference: eq 12-14, p. 415, Wertz, "Spacecraft Attitude

109 // Determination and Control"

110 //

111 // ===

112 SevenElementAndVectorStruct output;

113 ArrayMatrix<4,1,double> q;

114 double a1,a2,a3,a4,b,ei, inv_4ei, fix;

115

116 q.Fill(0);

117 // select combination of diagonal dir cos elements that give largest

118 // denominator in initial quaternion equations to avoid numerical problems

119 a1 = d(0,0) + d(1,1) + d(2,2);

120 a2 = d(0,0) - d(1,1) - d(2,2);

121 a3 = -d(0,0) + d(1,1) - d(2,2);

122 a4 = -d(0,0) - d(1,1) + d(2,2);

123

124 b = max(max(max(a1, a2), a3), a4);

125

126 ei = 0.5*sqrt(1 + b); // this is equation 12-14a from Wertz p. 415

127 inv_4ei = 0.25/ei;

477

128 // now compute initial quaternions using formulas which are appropriate given

129 // the denominator element just selected

130 if (b == a1){

131 q(0) = (d(1,2) - d(2,1))*inv_4ei;

132 q(1) = (d(2,0) - d(0,2))*inv_4ei;

133 q(2) = (d(0,1) - d(1,0))*inv_4ei;

134 q(3) = ei;

135 }

136 else if (b == a2) {

137 q(0) = ei;

138 q(1) = (d(0,1) + d(1,0))*inv_4ei;

139 q(2) = (d(2,0) + d(0,2))*inv_4ei;

140 q(3) = (d(1,2) - d(2,1))*inv_4ei;

141 }

142 else if (b == a3) {

143 q(0) = (d(0,1) + d(1,0))*inv_4ei;

144 q(1) = ei;

145 q(2) = (d(1,2) + d(2,1))*inv_4ei;

146 q(3) = (d(2,0) - d(0,2))*inv_4ei;

147 }

148 else {

149 q(0) = (d(2,0) + d(0,2))*inv_4ei;

150 q(1) = (d(2,1) + d(1,2))*inv_4ei;

151 q(2) = ei;

152 q(3) = (d(0,1) - d(1,0))*inv_4ei;

153 }

154 // ensure q is canonical

155 fix = sgn(q(3));

156 if (fix==0){

157 fix=1;

158 }

159

160 q(0) = fix*q(0);

161 q(1) = fix*q(1);

162 q(2) = fix*q(2);

163 q(3) = fix*q(3);

164

165 if (abs(vectorNorm(q)) > 1e-40){

166 q = q/vectorNorm(q);

167 }

168 else{

169 q = {0,

170 0,

171 0,

172 1

173 };

174 }

478

175 output.OneVector = q;

176 output.Two = a1;

177 output.Three = a2;

178 output.Four = a3;

179 output.Five = a4;

180 output.Six = b;

181 output.Seven = ei;

182 return output;

183 }

184

185 ArrayMatrix<3,3,double> skew(ArrayMatrix<3,1,double> x){

186

187 ArrayMatrix<3,3,double> S_temp;

188 S_temp = {0, -x(2), x(1),

189 x(2),0,-x(0),

190 -x(1),x(0),0};

191 return (S_temp);

192 }

193

194 ArrayMatrix<3,3,double> trueCosine(ArrayMatrix<3,1,double> vArray){

195

196 // ---

197 ArrayMatrix<3,3,double> I3,C,Ex,EEt;

198 ArrayMatrix<3,1,double> e_th;

199 double norm_v, cosTh, sinTh;

200 I3 << 1,0,0,

201 0,1,0,

202 0,0,1;

203 norm_v = vectorNorm(vArray);

204 if (norm_v < 1e-15){

205 C = I3;

206 return C;

207 }

208

209 e_th = vArray/norm_v;

210 EEt = (e_th*(~e_th));

211 Ex = skew(e_th);

212 cosTh = cos(norm_v);

213 sinTh = sin(norm_v);

214 // ---

215 C = I3*cosTh + (e_th*(~e_th))*(1-cosTh) - skew(e_th)*sinTh;

216 // ---

217 return C;

218 }

219

220 ArrayMatrix<3,1,double> earthRateInBody(double roll,double pitch,double

yaw,double

479

221 latitude){

222

223 ArrayMatrix<3,3,double> C_roll, C_pitch, C_yaw, C_n2b;

224 ArrayMatrix<3,1,double> w_e2i_b, w_e2i_n, temp_vector;

225 double Omega = 7.292115060085166e-005, scl, lat_rad, roll_rad, pitch_rad,

yaw_rad;

226

227 scl = M_PI/180.0;

228

229 lat_rad = latitude*scl;

230 roll_rad = roll*scl;

231 pitch_rad = pitch*scl;

232 yaw_rad = yaw*scl;

233

234 w_e2i_n = {cos(lat_rad),

235 0,

236 -sin(lat_rad)};

237

238 w_e2i_n = w_e2i_n*Omega;

239

240 temp_vector = { roll_rad,

241 0,

242 0

243 };

244 C_roll = trueCosine(temp_vector);

245 temp_vector = { 0,

246 pitch_rad,

247 0

248 };

249 C_pitch = trueCosine(temp_vector);

250 temp_vector = { 0,

251 0,

252 yaw_rad

253 };

254 C_yaw = trueCosine(temp_vector);

255

256 C_n2b = C_roll * C_pitch * C_yaw;

257

258 w_e2i_b = C_n2b * w_e2i_n;

259 return w_e2i_b;

260 }

261

262 ArrayMatrix<3,3,double> euler1(double i, double a){

263 // function m=euler1(i,a)

264 // Calculates elementary rotation matrix corresponding to

265 // rotation thru angle a (in radians) about axis i.

266 // Copied from John L. Junkins presentation AAS 89-060

480

267 // m (3,3) maps the vector in original coordinates to new coordinates

268 // i.e, Vnew = m * Voriginal

269 double ca, sa;

270 ArrayMatrix<3,3,double> m;

271 ca=cos(a);

272 sa=sin(a);

273

274 if (i==1){ // rotation about x-axis

275 m={1, 0, 0,

276 0, ca, sa,

277 0,-sa, ca};

278 }

279 if (i==2){ // rotation about y-axis

280 m={ca, 0,-sa,

281 0, 1, 0,

282 sa, 0, ca};

283 }

284 if (i==3){ // rotation about z-axis

285 m={ ca, sa, 0,

286 -sa, ca, 0,

287 0, 0, 1};

288 }

289 return m;

290 }

291

292 ArrayMatrix<3,1,double> gravityModel(double Lat, double P, double a, double e2) {

293

294 double GM, c20, Latc, P2, a2, ax, GMoverP2, sLatc, cLatc, g_n, g_d, Alpha,

cAlpha,

295 sAlpha, g_N, g_D;

296 ArrayMatrix<3,1,double> g;

297

298 GM = 3.986005e14; // m^3/s^2 GravitationalConstant

299

300 c20 = -sqrt(5)*4.8416685e-4;

301 Latc = atan((1-e2)*tan(Lat));

302

303 // geocentric

304 P2 = P*P;

305 a2 = a*a;

306 ax = 3*c20*a2/P2;

307 GMoverP2 = GM/P2;

308 sLatc = sin(Latc);

309 cLatc = cos(Latc);

310 g_n = -GMoverP2 * ax*sLatc*cLatc;

311 g_d = GMoverP2 * (1 + ax/2.0*(3*pow(sLatc,2)-1));

312

481

313 g_n = -1.0 * g_n; // match Savage’s model ?

314

315 // geodetic

316 Alpha = Lat - Latc;

317 cAlpha = cos(Alpha);

318 sAlpha = sin(Alpha);

319 g_N = g_n*cAlpha + g_d*sAlpha;

320 g_D = -g_n*sAlpha + g_d*cAlpha;

321

322 g = {g_N,

323 0,

324 g_D};

325

326 return g;

327 }

328

329 ArrayMatrix<4,1,double> q_canonicalize(ArrayMatrix<4,1,double> q_in){

330

331 ArrayMatrix<4,1,double> q_out;

332 q_out = q_in;

333 //k = find(q_in(4,:) < 0);

334 if (q_in(3) < 0){

335 q_out = q_out*(-1);

336 }

337 return q_out;

338 }

339

340 ArrayMatrix<4,1,double> Imu2YPRdeg_to_qb2n(double roll_deg, double pitch_deg,

double

341 yaw_deg){

342 //

343 // Rotation 3-2-1 from nav. to b-frame

344 // Yaw (Heading) -> Pitch -> Roll

345 SevenElementAndVectorStruct tempStruct;

346 ArrayMatrix<4,1,double> q_b2n, q;

347 ArrayMatrix<3,3,double> Cz, Cy, Cx, C_n2b;

348 double en;

349

350 en = 1;

351

352 q_b2n = {0,

353 0,

354 0,

355 0};

356

357 Cz = euler1(3,yaw_deg*d2r);

358 Cy = euler1(2,pitch_deg*d2r);

482

359 Cx = euler1(1,roll_deg*d2r);

360 C_n2b = Cx*Cy*Cz;

361 tempStruct = dcos2quat((~C_n2b));

362 q = tempStruct.OneVector;

363 q_b2n = q_canonicalize(q);

364

365 return q_b2n;

366 }

367

368 ArrayMatrix<4,1,double> theta2quat(ArrayMatrix<3,1,double> theta){

369 // theta in rad.

370 ArrayMatrix<3,1,double> x, rotAxs;

371 ArrayMatrix<4,1,double> q;

372 double xNorm, sAnglDiv2, cAnglDiv2;

373 x = theta;

374 xNorm = sqrt(x(0)*x(0)+x(1)*x(1)+x(2)*x(2));

375 rotAxs.Fill(0);

376 if (xNorm>0){

377 rotAxs = {x(0)/xNorm,

378 x(1)/xNorm,

379 x(2)/xNorm};

380 }

381 sAnglDiv2 = sin(xNorm/2);

382 cAnglDiv2 = cos(xNorm/2);

383 q = { rotAxs(0)* sAnglDiv2,

384 rotAxs(1)* sAnglDiv2,

385 rotAxs(2)* sAnglDiv2,

386 cAnglDiv2};

387 return q;

388 }

389

390 ArrayMatrix<4,1,double> q_mult(ArrayMatrix<4,1,double> a,

ArrayMatrix<4,1,double> b){

391 //

392 // This function performs: q = q * q where q is a quaternion

393 // c a b

394 // ---

395 double a1,a2,a3,a4,b1,b2,b3,b4,d1,d2,d3,d4;

396 ArrayMatrix<4,1,double> c, c_out;

397

398 a1 = a(0);

399 a2 = a(1);

400 a3 = a(2);

401 a4 = a(3);

402

403 b1 = b(0);

404 b2 = b(1);

483

405 b3 = b(2);

406 b4 = b(3);

407

408 d1 = a4*b1 - a3*b2 + a2*b3 + a1*b4 ;

409 d2 = a3*b1 + a4*b2 - a1*b3 + a2*b4 ;

410 d3 = - a2*b1 + a1*b2 + a4*b3 + a3*b4 ;

411 d4 = - a1*b1 - a2*b2 - a3*b3 + a4*b4 ;

412

413 c = {d1,

414 d2,

415 d3,

416 d4};

417

418 c_out = q_canonicalize(c);

419 return c_out;

420 }

421

422 ArrayMatrix<4,1,double> integVel_into_q_e2N(ArrayMatrix<4,1,double> q_e2N0,

double h,

423 ArrayMatrix<3,1,double> Vn, double dt){

424

425 double a;

426 ArrayMatrix<3,1,double> dth;

427 ArrayMatrix<4,1,double> dq, q_e2N;

428 a = 6378137.0 + h;

429 dth = {Vn(1)/a,

430 -Vn(0)/a,

431 0};

432 dth = dth*dt;

433 dq = theta2quat(dth);

434 q_e2N.Fill(0);

435 q_e2N = q_e2N0;

436

437 return q_e2N;

438 }

439

440 ArrayMatrix<3,1,double> LLA2rWrtEinE(ArrayMatrix<3,1,double> LLA){

441

442 double EarthSemiMajorAxis = 6378137.0, EarthEccentricitySq =

443 6.694380004260835e-003, cLon, sLon, cLat, sLat, h, R_N;

444 ArrayMatrix<3,1,double> r_wrtE_e;

445

446 cLon = cos(LLA(0));

447 sLon = sin(LLA(0));

448 cLat = cos(LLA(1));

449 sLat = sin(LLA(1));

450

484

451 R_N = EarthSemiMajorAxis/sqrt(1-EarthEccentricitySq*pow(sLat,2));

452

453 h = LLA(2);

454

455 r_wrtE_e = {(R_N + h)*cLat*cLon,

456 (R_N + h)*cLat*sLon,

457 (R_N*(1-EarthEccentricitySq) + h)*sLat};

458

459 return r_wrtE_e;

460 }

461

462 ArrayMatrix<3,1,double> LLA2rWrtEinE(ArrayMatrix<3,1,double> LLA, double

463 EarthSemiMajorAxis, double EarthEccentricitySq){

464

465 double cLon, sLon, cLat, sLat, h, R_N;

466 ArrayMatrix<3,1,double> r_wrtE_e;

467

468 cLon = cos(LLA(0));

469 sLon = sin(LLA(0));

470 cLat = cos(LLA(1));

471 sLat = sin(LLA(1));

472

473 R_N = EarthSemiMajorAxis/sqrt(1-EarthEccentricitySq*pow(sLat,2));

474

475 h = LLA(2);

476

477 r_wrtE_e = {(R_N + h)*cLat*cLon,

478 (R_N + h)*cLat*sLon,

479 (R_N*(1-EarthEccentricitySq) + h)*sLat};

480

481 return r_wrtE_e;

482 }

483

484 ArrayMatrix<4,1,double> lonLatDegTo_q_e2N(double lonDeg, double latDeg){

485

486 ArrayMatrix<4,1,double> q_e2N;

487 ArrayMatrix<3,3,double> C_e2N;

488 double cLon, sLon, cLat, sLat;

489 SevenElementAndVectorStruct tempMtx;

490 q_e2N.Fill(0);

491

492 cLon = cosd(lonDeg);

493 sLon = sind(lonDeg);

494 cLat = cosd(latDeg);

495 sLat = sind(latDeg);

496

497 C_e2N = {sLat*cLon*(-1), sLat*sLon*(-1), cLat,

485

498 sLon*(-1), cLon, 0,

499 cLon*cLat*(-1), cLat*sLon*(-1), sLat*(-1)};

500 tempMtx = dcos2quat(C_e2N);

501 q_e2N = tempMtx.OneVector;

502 return q_e2N;

503 }

504

505 ArrayMatrix<3,3,double> quat2dcos(ArrayMatrix<4,1,double> q){

506 // compute direction cosine matrix from quaternion

507 //--

508 double q1,q2,q3,q4,a11,a12,a13,a21,a22,a23,a31,a32,a33;

509 ArrayMatrix<3,3,double> aa;

510 q1 = q(0,0);

511 q2 = q(1,0);

512 q3 = q(2,0);

513 q4 = q(3,0);

514

515 a11 = q1*q1 - q2*q2 - q3*q3 + q4*q4;

516 a12 = (q1*q2 + q3*q4)*2;

517 a13 = (q1*q3 - q2*q4)*2;

518 a21 = (q1*q2 - q3*q4)*2;

519 a22 = -q1*q1 + q2*q2 - q3*q3 + q4*q4;

520 a23 = (q2*q3 + q1*q4)*2;

521 a31 = (q1*q3 + q2*q4)*2;

522 a32 = (q2*q3 - q1*q4)*2;

523 a33 = -q1*q1 - q2*q2 + q3*q3 + q4*q4;

524

525 aa = {a11,a12,a13,

526 a21,a22,a23,

527 a31,a32,a33};

528 return aa;

529 }

530

531 TwoElementStruct q_e2N_toLonLatDeg(ArrayMatrix<4,1,double> q_e2N){

532

533 TwoElementStruct output;

534 double lonDeg, latDeg;

535 ArrayMatrix<3,3,double> C_e2n;

536

537 lonDeg = 0;

538 latDeg = 0;

539 C_e2n = quat2dcos(q_e2N);

540 output = Ce2n_toLLA(C_e2n);

541

542 return output;

543 }

544

486

545 ArrayMatrix<4,1,double> q_inv(ArrayMatrix<4,1,double> q_in){

546 ArrayMatrix<4,1,double> q_out;

547 q_out = q_in;

548 q_out(0) = q_out(0) * (-1);

549 q_out(1) = q_out(1) * (-1);

550 q_out(2) = q_out(2) * (-1);

551 return q_out;

552 }

553

554 ThreeElementStruct qb2nImu2YPRdeg(ArrayMatrix<4,1,double> q_b2n, ArrayMatrix<3,3,

555 double> C_bRef2b){

556 // Rotation 3-2-1 from nav. to b-frame

557 // Yaw (Heading) -> Pitch -> Roll

558 // If specified C_bRef2b then

559 // Rotation 3-2-1 from nav. to bRef-frame where

560 // C_bRef2b is constant offset from b-frame

561 ThreeElementStruct output;

562 double roll_deg, pitch_deg, yaw_deg, nq;

563 ArrayMatrix<4,1,double> q_b2n_use;

564 ArrayMatrix<3,3,double> C_bRef2n, C_b2n;

565

566 roll_deg = 0;

567 pitch_deg = roll_deg;

568 yaw_deg = roll_deg;

569

570 nq = vectorNorm(q_b2n);

571 q_b2n_use = q_b2n;

572 if (nq>0.0){

573 q_b2n_use = q_b2n_use/nq;

574 }

575 C_b2n = quat2dcos(q_b2n_use);

576 C_bRef2n = C_b2n * C_bRef2b;

577 output = b321tang((~C_bRef2n));

578

579 return output;

580 }

581

582 ThreeElementStruct qb2nImu2YPRdeg(ArrayMatrix<4,1,double> q_b2n){

583

584 // Rotation 3-2-1 from nav. to b-frame

585 // Yaw (Heading) -> Pitch -> Roll

586 // If specified C_bRef2b then

587 // Rotation 3-2-1 from nav. to bRef-frame where

588 // C_bRef2b is constant offset from b-frame

589 ThreeElementStruct output;

590 double roll_deg, pitch_deg, yaw_deg, nq;

591 ArrayMatrix<4,1,double> q_b2n_use;

487

592 ArrayMatrix<3,3,double> C_bRef2n, C_b2n, C_bRef2b;

593

594 C_bRef2b << 1,0,0,

595 0,1,0,

596 0,0,1;

597

598 roll_deg = 0;

599 pitch_deg = roll_deg;

600 yaw_deg = roll_deg;

601

602 nq = vectorNorm(q_b2n);

603 q_b2n_use = q_b2n;

604 if (nq>0.0){

605 q_b2n_use = q_b2n_use/nq;

606 }

607 C_b2n = quat2dcos(q_b2n_use);

608 C_bRef2n = C_b2n * C_bRef2b;

609 output = b321tang((~C_bRef2n));

610

611 return output;

612 }

613

614

615 TwoVectorStruct qintegrator(ArrayMatrix<4,1,double> q, ArrayMatrix<3,1,double>

dTheta,

616 ArrayMatrix<3,1,double> deltaPrev, int flag) {

617 // --

618 // Input :

619 // q (4 x 1) initial quaternion

620 // dTheta (3 x 1) current angle increment

621 // deltaPrev (3 x 1) increment used in propagating quaternion

622 // Output :

623 // q_o (4 x 1) propagated quaternion

624 // delta (3 x 1) increment for the next cycle

625 // --

626

627 TwoVectorStruct output;

628 ArrayMatrix<4,1,double> q0,q_o, q1, q2;

629 ArrayMatrix<3,1,double> delta, e;

630 ArrayMatrix<4,1,double> dq0;

631 ArrayMatrix<4,4,double> E,dTh,Id4;

632 ArrayMatrix<1,1,double> tempValue;

633 double nrm_dth;

634

635 delta.Fill(0);

636

637 switch (flag) {

488

638 case 0 :

639 nrm_dth = vectorNorm(dTheta);

640

641 if (nrm_dth < 1e-40) {

642 e.Fill(0);}

643 else{

644 e = dTheta/nrm_dth;

645 }

646 dq0 = {e(0)*sin(nrm_dth/2.0),

647 e(1)*sin(nrm_dth/2.0),

648 e(2)*sin(nrm_dth/2.0),

649 cos(nrm_dth/2.0)};

650 q0 = q_mult(q, dq0);

651 q_o = q0;

652 break;

653 case 1 :

654 nrm_dth = vectorNorm(dTheta);

655 if (nrm_dth < 1e-40){

656 e.Fill(0);}

657 else{

658 e = dTheta/nrm_dth;

659 }

660 E = {0, e(2), -e(1), e(0),

661 -e(2), 0, e(0), e(1),

662 e(1), -e(0), 0, e(2),

663 -e(0), -e(1), -e(2), 0};

664 dTh = E*nrm_dth;

665 q1 = q + dTh*q*0.5;

666 q_o = q1;

667 break;

668 case 2 :

669 nrm_dth = vectorNorm(dTheta);

670 if (nrm_dth < 1e-40){

671 e.Fill(0);}

672 else{

673 e = dTheta/nrm_dth;

674 }

675 E = {0, e(2), -e(1), e(0),

676 -e(2), 0, e(0), e(1),

677 e(1), -e(0), 0, e(2),

678 -e(0), -e(1), -e(2), 0};

679 Id4 = {1, 0, 0, 0,

680 0, 1, 0, 0,

681 0, 0, 1, 0,

682 0, 0, 0, 1};

683 q2 = (Id4*cos(nrm_dth/2.0)+E*sin(nrm_dth/2.0))*q;

684 q_o = q2;

489

685 break;

686 default:

687 break;

688 }

689 tempValue = ((~q_o)*q_o);

690 q_o = q_o * (1.5 - tempValue(0,0)*0.5);

691 output.OneVector = q_o;

692 output.TwoVector = delta;

693

694 return output;

695 }

696

697 ArrayMatrix<3,1,double> quatRot(ArrayMatrix<4,1,double> q,

ArrayMatrix<3,1,double> V){

698 // This function performs: W_vec = q * V where

699 // q is a quaternions (4, N) (actully matrix)

700 // V is vector (3 x N)

701 // W_vec is matrix (3, N);

702 // The i-th column in W_vec(:,i) is rotated by q(:,i) vector v

703 //! ===

704 double q0, q1, q2, q3, ax0, ax12, ax30, ax23, ax20, ax13, ax10, Q11, Q12, Q13,

Q21

705 , Q22, Q23, Q31, Q32, Q33, w1, w2, w3;

706 ArrayMatrix<3,1,double> W_vec;

707 ArrayMatrix<1,3,double> X;

708 q0 = q(3,0);

709 q1 = q(0,0);

710 q2 = q(1,0);

711 q3 = q(2,0);

712

713 ax0 = 2*pow(q0,2);

714 ax12 = 2*q1*q2;

715 ax30 = 2*q3*q0;

716 ax23 = 2*q2*q3;

717 ax20 = 2*q2*q0;

718 ax13 = 2*q1*q3;

719 ax10 = 2*q1*q0;

720

721 Q11 = ax0-1+ 2*pow(q1,2);

722 Q12 = ax12 + ax30;

723 Q13 = ax13 - ax20;

724

725 Q21 = ax12 - ax30;

726 Q22 = ax0 - 1 + 2*pow(q2,2);

727 Q23 = ax23 + ax10;

728

729 Q31 = ax13 + ax20;

490

730 Q32 = ax23 - ax10;

731 Q33 = ax0 - 1 + 2*pow(q3,2);

732

733 //w1 = [Q11(:) Q12(:) Q13(:)] * v;

734 //w2 = [Q21(:) Q22(:) Q23(:)] * v;

735 //w3 = [Q31(:) Q32(:) Q33(:)] * v;

736

737 X = ~V;

738 w1 = Q11* X(0,0) + Q12* X(0,1) + Q13*X(0,2);

739 w2 = Q21* X(0,0) + Q22* X(0,1) + Q23*X(0,2);

740 w3 = Q31* X(0,0) + Q32* X(0,1) + Q33*X(0,2);

741

742 W_vec = {w1,

743 w2,

744 w3};

745

746 return W_vec;

747 }

748

749 ArrayMatrix<3,1,double> quatToAngl(ArrayMatrix<4,1,double> qArray){

750

751 ArrayMatrix<3,1,double> thetaArray, x, theta;

752 ArrayMatrix<4,1,double> q;

753 double angl, xNorm;

754

755 thetaArray.Fill(0);

756

757 q = qArray;

758 x(0) = q(0);

759 x(1) = q(1);

760 x(2) = q(2);

761 //x = q(1:3);

762 xNorm = vectorNorm(x);

763 theta.Fill(0);

764 if (xNorm>0){

765 angl = atan2(xNorm, q(3))*2;

766 theta = x/xNorm*angl;

767 }

768 thetaArray = theta;

769

770 return thetaArray;

771 }

772

773 ArrayMatrix<3,1,double> crossProduct(ArrayMatrix<3,1,double> v_A,

ArrayMatrix<3,1,

774 double> v_B) {

775 ArrayMatrix<3,1,double> c_P;

491

776 c_P(0) = v_A(1) * v_B(2) - v_A(2) * v_B(1);

777 c_P(1) = -(v_A(0) * v_B(2) - v_A(2) * v_B(0));

778 c_P(2) = v_A(0) * v_B(1) - v_A(1) * v_B(0);

779 return c_P;

780 }

492

Appendix B

MATLAB Codes

B.1 ZUPT-aided INS With Sensor Fusion

B.1.1 The Main Script

1 clc;

2 clear;

3 close all;

4

5 progress_bar = waitbar(0,’Initialization...’);

6 tic

7

8 currDir = pwd;

9 datasetDir = [currDir, ’\dataset’,’\2021_11_16’];

10

11 IMU_select = 11;

12 filename = ’exp1600’;

13 if IMU_select == 1

14 data_filename = [filename ’_VN’];

15 elseif IMU_select == 11

16 data_filename = [filename ’_L’];

17 elseif IMU_select == 12

18 data_filename = [filename ’_R’];

19 end

20

21 addpath([currDir, ’\lib\INS_lib’]);

493

22 addpath([currDir, ’\lib\EKF_lib’]);

23 addpath([currDir, ’\lib\utility_lib’]);

24 addpath([currDir, ’\lib\plot_lib’]);

25 addpath([currDir, ’\lib\temp_com_lib’]);

26 addpath([currDir, ’\lib\Stance Phase Detectors’]);

27 addpath(datasetDir);

28 load([data_filename ’.mat’]);

29

30 if isfile([datasetDir ’\’ data_filename ’_GT.mat’])

31 GT_file_exit = 1;

32 load([data_filename ’_GT.mat’]);

33 else

34 GT_file_exit = 0;

35 end

36

37 figDspl = [];

38 dspl.enblCov = 1;

39 simdata=settings_constructed_data(IMU_select);

40 d2r = pi/180;

41 r2d = 180/pi;

42 % gravity

43 g = GravityConstant();

44

45 u = u(:,100:end); % elimintate random initial readings from Lab-On-Shoe

46 u(8,:) = u(8,:) - u(8,1);

47

48 IMU_dt = floor(mean(1./u(11,100:200)));

49

50 % origin of the navigation frame

51 LLA_origin = [simdata.longitude; simdata.latitude; simdata.altitude];

52

53 % set initial position

54 if GT_file_exit

55 ini_pos = est_GT.pos(:,1);

56 % t_ini = timeMismatchFromAccel(u,est_GT);

57 yaw_Deg = initialYaw(est_GT);

58 if IMU_select == 1

59 ini_yaw_table = table2struct(readtable(’initial_yaw_VN.xlsx’));

60 yaw_Deg = 0;

61 ini_time_table = table2struct(readtable(’initial_time_VN.xlsx’));

62 t_ini = ini_time_table.(filename);

63 if isnan(t_ini)

64 t_ini = timeMismatchFromAccel(u,est_GT);

65 end

66 elseif IMU_select == 11

67 ini_yaw_table = table2struct(readtable(’initial_yaw_L.xlsx’));

68 yaw_Deg = ini_yaw_table.(filename);

494

69 ini_time_table = table2struct(readtable(’initial_time_L.xlsx’));

70 t_ini = ini_time_table.(filename);

71 if isnan(t_ini)

72 t_ini = timeMismatchFromAccel(u,est_GT);

73 end

74 elseif IMU_select == 12

75 % yaw_Deg = yaw_Deg;

76 ini_yaw_table = table2struct(readtable(’initial_yaw_R.xlsx’));

77 yaw_Deg = ini_yaw_table.(filename);

78 ini_time_table = table2struct(readtable(’initial_time_R.xlsx’));

79 t_ini = ini_time_table.(filename);

80 if isnan(t_ini)

81 t_ini = timeMismatchFromAccel(u,est_GT);

82 end

83 end

84 else

85 ini_pos = [0;0;0];

86 yaw_Deg = 0;

87 t_ini = 0;

88 end

89 % t_ini = 0;

90 simdata.latitude = simdata.latitude + ini_pos(2)/simdata.a;

91 simdata.longitude = simdata.longitude + ini_pos(1)/simdata.a...

92 /cos(simdata.latitude);

93 simdata.altitude = simdata.altitude + ini_pos(3);

94 u(8,:) = u(8,:) + t_ini;

95

96 %% --

97 % ---

98 %

99 % Estimated Navigation Solution

100 %

101 % ---

102 % ---

103 cal = 5*IMU_dt; % Number of initial time steps for calibration

104

105 zupt = 1; % ZUPT switch 1 is on, 10 is off

106 ifALT = 1;

107 sol_name = ’INS’;

108

109 if zupt == 1

110 sol_name = [sol_name ’_ZUPT’];

111 end

112 if ifALT == 10

113 sol_name = [sol_name ’_ALT’];

114 end

115

495

116 % converting accelerometer readouts to m/s^2 and gyroscope to rad/s

117 v = averageIMUReadings(u,1);

118 v = convertAltimeterReadings(u,v,simdata);

119

120 v = convertIMUReadings(v,g);

121

122 % calculating initial states for the EKF

123 input = initializeEKFState(v(2:cal,1:3),zeros(3, 1),yaw_Deg,simdata);

124 IMUBiasState = initializeIMUBias(zeros(3,1),mean(v(cal-400+1:cal, 4:6))’);

125

126 sensor.dt = simdata.Ts;

127 true.t = u(8,1:end-1);

128 true.dt = simdata.Ts;

129

130 n = length(true.t);

131

132 est = initializeEstimationState(true,input,n);

133

134 % Set up EKF

135 [Q_diag,P] = setEKFProcessNoiseMTX(true.dt,simdata);

136 [H_ZUPT,R_ZUPT] = constructZUPTMeasurementMTX(size(P,1),simdata);

137 [H_ZARU,R_ZARU] = constructZARUMeasurementMTX(size(P,1),simdata);

138 [H_ALT,R_ALT] = constructALTMeasurementMTX(size(P,1),simdata);

139

140 ZUPTDetection = initializeDetectionState(n);

141 ZARUDetection = initializeDetectionState(n);

142

143 dx = zeros(size(P,1),1);

144 W = simdata.Window_size; % ZUPTing window size

145

146 dx_hist = nan(length(dx),n);

147

148 input_cal = input;

149

150 progress_bar_res = floor(0.01*n);

151

152 % fine alignment

153 for i=2:cal

154

155 if mod(i,progress_bar_res) == 0

156 waitbar(floor(i/n*100)/100,progress_bar,[’Estimating solution... ’,...

157 num2str(round(toc,1)),’ s’]);

158 end

159 sensor = getNthIMUMeasurements(v,u,IMUBiasState,i);

160 sensor = getNthALTMeasurements(sensor,v,i);

161 if i < n - W + 2

162 [ZUPTDetection.state(i:i+W-1),ZUPTDetection.statistics(i:i+W-1),...

496

163 ZUPTDetection.statistics_x(i:i+W-1),ZUPTDetection.statistics_y(i:i+W-1),...

164 ZUPTDetection.statistics_z(i:i+W-1)] = SHOE_detector(v(i:i+W-1,

:)’,simdata);

165 [ZARUDetection.state(i:i+W-1),ZARUDetection.statistics(i:i+W-1),...

166 ZARUDetection.statistics_x(i:i+W-1),ZARUDetection.statistics_y(i:i+W-1),...

167 ZARUDetection.statistics_z(i:i+W-1)] = ZARU_detector(v(i:i+W-1,

:)’,simdata);

168 end

169 input_cal = navSLN_ZUPT(sensor, input_cal);

170 A = setEKFPropagationMTX(sensor,input_cal,simdata);

171 P = EKFPropagationStep(A,Q_diag,P,sensor);

172

173 z = [];

174 H = [];

175 R = [];

176 if 1

177 [z,H,R] = addEKFMeasurements(z,H,R,input_cal.v_nWrtE_n,H_ZUPT,...

178 R_ZUPT*0.001); % ZUPT

179 end

180 if 1 && ZARUDetection.state(i) == 1 %&& i > cal - 400

181 [z,H,R] = addEKFMeasurements(z,H,R,sensor.w_b2i_b,H_ZARU,R_ZARU); % ZARU

182 end

183

184

185 if ~isempty(z)

186

187 [P,S,dx] = EKFUpdateStep(z,H,R,P);

188 [input_cal,IMUBiasState] =

UpdateEKFState(input_cal,IMUBiasState,dx,simdata);

189

190 dx_hist(:,i) = dx;

191 end

192 P = (P+P’)/2;

193 est.q_b2n(:,i) = input_cal.q_b2n;

194 est.q_e2n(:,i) = input_cal.q_e2n;

195 est.LLA(:,i) = input_cal.LLA;

196 est.v_nWrtE_n(:,i) = input_cal.v_nWrtE_n;

197 kf.dx(:,i) = dx;

198 kf.gBias(:,i) = IMUBiasState.gBias;

199 kf.aBias(:,i) = IMUBiasState.aBias;

200 kf.diagP(:,i) = diag(P);

201 end

202

203 for i=cal+1:length(est.t)

204

205 if mod(i,progress_bar_res) == 0

206 waitbar(floor(i/n*100)/100,progress_bar,[’Estimating solution... ’,...

497

207 num2str(round(toc,1)),’ s’]);

208 end

209

210 sensor = getNthIMUMeasurements(v,u,IMUBiasState,i);

211 sensor = getNthALTMeasurements(sensor,v,i);

212

213 if i < n - W + 2

214 [ZUPTDetection.state(i:i+W-1),ZUPTDetection.statistics(i:i+W-1),...

215 ZUPTDetection.statistics_x(i:i+W-1),ZUPTDetection.statistics_y(i:i+W-1),...

216 ZUPTDetection.statistics_z(i:i+W-1)] = SHOE_detector(v(i:i+W-1,

:)’,simdata);

217 [ZARUDetection.state(i:i+W-1),ZARUDetection.statistics(i:i+W-1),...

218 ZARUDetection.statistics_x(i:i+W-1),ZARUDetection.statistics_y(i:i+W-1),...

219 ZARUDetection.statistics_z(i:i+W-1)] = ZARU_detector(v(i:i+W-1,

:)’,simdata);

220 end

221

222 input = navSLN_ZUPT(sensor, input);

223

224 A = setEKFPropagationMTX(sensor,input,simdata);

225

226 P = EKFPropagationStep(A,Q_diag,P,sensor);

227

228 z = [];

229 H = [];

230 R = [];

231 if (ZUPTDetection.state(i) == zupt)

232 zZUPT = input.v_nWrtE_n;

233 [z,H,R] = addZUPTMeasurements(z,H,R,zZUPT,H_ZUPT,R_ZUPT);

234 else

235 zZUPT = nan(3,1);

236 end

237 if 1 && ifALT == 1 && ~isnan(sensor.alt)

238 zALT = sensor.alt - input.LLA(3);

239 [z,H,R] = addEKFMeasurements(z,H,R,zALT,H_ALT,R_ALT);

240 else

241 zALT = nan;

242 end

243 if ~isempty(z)

244 %

245 [P,S,dx] = EKFUpdateStep(z,H,R,P);

246

247 [input,IMUBiasState] = UpdateEKFState(input,IMUBiasState,dx,simdata);

248

249 dx_hist(:,i) = dx;

250 end

251 P = (P+P’)/2;

498

252 est.q_b2n(:,i) = input.q_b2n;

253 est.q_e2n(:,i) = input.q_e2n;

254 est.LLA(:,i) = input.LLA;

255 est.v_nWrtE_n(:,i) = input.v_nWrtE_n;

256 kf.dx(:,i) = dx;

257 kf.gBias(:,i) = IMUBiasState.gBias;

258 kf.aBias(:,i) = IMUBiasState.aBias;

259 kf.diagP(:,i) = diag(P);

260 end

261 % ---

262 est.pos = LLAToNED(est.LLA,LLA_origin,simdata);

263 est.Northing = est.pos(2,:);

264 est.Easting = est.pos(1,:);

265 est.Down = est.pos(3,:);

266 est.rpyDeg = quaternionB2NToDegree(est.q_b2n);

267 %

268 disp([’Implementation elapsed time: ’ num2str(round(toc,2)) ’ s’])

269

270 %% Compare with Ground Truth

271 if GT_file_exit

272 waitbar(1,progress_bar,’Calculating errors...’);

273 est.pos(3,:) = -est.pos(3,:);

274

275 [est_align,est_GT_align] = alignTrajectory(est,est_GT);

276 error = computeNavigationError(est_align,est_GT_align);

277 error_info = errorComputation(error.pos,est.pos);

278

279 if 1

280 figure

281 plotEstvsRefPath(est_align,est_GT_align,"3D");

282 end

283 if 1

284 figure

285 plotEstvsRefPath(est_align,est_GT_align,"Z");

286 end

287 end

288 %% --

289 % ---

290 %

291 % Results Plotting

292 %

293 % ---

294 % ---

295 waitbar(1,progress_bar,’Ploting...’);

296 if (1)

297 figure

298 plotAccelReadings(u,cal,length(est.t))

499

299 end

300 % ---

301 if (1)

302 figure

303 plotGyroReadings(u,cal,length(est.t))

304 end

305 % ---

306 if (1)

307 figure

308 plotAccelvsZUPT(u,ZUPTDetection,cal,length(est.t)-1)

309 end

310 % ---

311 if (1)

312 figure

313 plotGyrovsZUPT(u,ZUPTDetection,cal,length(est.t)-1)

314 end

315 % ---

316 if (1)

317 figure

318 plotTemperatureReadings(u,cal,length(est.t))

319 end

320 % ---

321 if (1)

322 figure

323 plotAltimeterReadings(u,cal,length(est.t))

324 end

325 if (1)

326 figure

327 plotAltimeterHeight(v,est,cal,length(est.t))

328 end

329 % ---

330 if (1)

331 figure

332 plotAngleUncertainty(est,kf,cal,length(est.t))

333 end

334 % ---

335 if (0) % turn this on later

336 figure

337 plotAngleWUncertainty(est,kf,cal,length(est.t))

338 end

339 % ---

340 if (1)

341 figure

342 plotAngleEstimates(est,cal,length(est.t))

343 end

344 % ---

345 if (1)

500

346 figure

347 plotVelocityEstimates(est,ZUPTDetection,cal,length(est.t)-1);

348 end

349 % ---

350 if (1)

351 figure

352 plotVelocityCorrection(est,kf,ZUPTDetection,cal,length(est.t))

353 end

354 % ---

355 if (1)

356 figure

357 plotVelocityUncertainty(est,kf,ZUPTDetection,cal,length(est.t))

358 end

359 %% ---

360 if (0)

361 figure

362 plotPositionUncertainty(est,kf,ZUPTDetection,cal,length(est.t))

363 end

364

365 %% --

366 if (1)

367 figure

368 plotHorizontalPath(est,cal,length(est.t))

369 end

370 % ---

371 if(1)

372 figure

373 plotPathLLA(est,cal,length(est.t))

374 end

375 % ---

376 if (1)

377 figure

378 plot3DPath(est,cal,length(est.t),’r’,’’)

379 end

380 % ---

381 if (0) % anamation

382 figure

383 animatePath(est,cal,length(est.t))

384 end

385 % ---

386 if (1)

387 align_time = 48;

388 figure

389 plot3DRotatedPath(est,cal,length(est.t),align_time*IMU_dt)

390 figure

391 plot2DRotatedPath(est,cal,length(est.t),align_time*IMU_dt)

392 end

501

393 % ---

394 if (1)

395 figure

396 plotPositionUncertainty(est,kf,ZUPTDetection,cal,length(est.t))

397 end

398 % ---

399 if GT_file_exit

400 figure

401 plotDisplacementError(error)

402 figure

403 plotDisplacementXError(error)

404 figure

405 plotDisplacementYError(error)

406 figure

407 plotDisplacementZError(error)

408 end

409 %% ---

410 if (1)

411 figure

412 plotAccelBias(est,kf,cal,length(est.t))

413 end

414 % ---

415 if (1) % turn this on later

416 figure

417 plotGyroBias(est,kf,cal,length(est.t))

418 end

419 % ---

420 if (1)

421 figure

422 plotZUPTStatistics(est,ZUPTDetection,cal,length(est.t),simdata)

423 end

424 % ---

425 if (1)

426 figure

427 plotZARUStatistics(est,ZARUDetection,cal,length(est.t),simdata)

428 end

429 % display navigation results

430 dispNavigationResults(est,cal,length(est.t))

431

432 % save navigation results

433 INS_info.IMU_readouts = u(1:6,2:end);

434 INS_info.ZUPT_flags = ZUPTDetection.state;

435 INS_info.velocity = est.v_nWrtE_n;

436 INS_info.trajectory = [est.Northing;est.Easting;est.Down];

437 INS_info.heading = est.rpyDeg; % roll pitch yaw

438 INS_info.timestamp = est.t;

439 INS_info.covariance_mtx = kf.diagP;

502

440 close(progress_bar);

B.1.2 Parameter Settings

1 function s=settings_constructed_data

2 s=0;

3 %%%

4 %% IMU Selection %%

5 %%%

6 % selecting what IMU is chosen

7 % 0 = MPU9250,

8 % 1 = VN-200,

9 % 2 = ADIS16485,

10 % 3 = ADIS16497-3,

11 % 4 = SmartBug

12 % 5 = simulated comsumer-grade device,

13 % 6 = simulated industrial-grade

14 % device,

15 % 7 = simulated tactical-grade device,

16 % 8 = simulated

17 % navigation-grade device,

18 % 9 = VN-100,

19 % 10 = ADIS16497-3 with ADIS_EVAL,

20 % 11 = Lab-On-Shoe 2.0,

21 % 12 = Sugar-Cube Lab (ICM-20948),

22 % 13 = Open Shoe (4xMPU-9150)

23 % other number = simulated device,

24 imu_id = 12;

25 if imu_id == 0

26 disp(’----MPU9250----’)

27 elseif imu_id == 1

28 disp(’----VN-200----’)

29 elseif imu_id == 2

30 disp(’----ADIS16485----’)

31 elseif imu_id == 3

32 disp(’----ADIS16497-3 w/ Lab-On-Shoe----’)

33 elseif imu_id == 4

34 disp(’----SmartBug----’)

35 elseif imu_id == 5

36 disp(’----Simulated comsumer-grade device----’)

37 elseif imu_id == 6

38 disp(’----Simulated industrial-grade device----’)

39 elseif imu_id == 7

40 disp(’----Simulated tactical-grade device----’)

503

41 elseif imu_id == 8

42 disp(’----Simulated navigation-grade device----’)

43 elseif imu_id == 9

44 disp(’----VN-100----’)

45 elseif imu_id == 10

46 disp(’----ADIS16497-3 w/ ADIS_EVAL----’)

47 elseif imu_id == 11

48 disp(’----ADIS16497-3 w/ Lab-On-Shoe 2.0----’)

49 elseif imu_id == 12

50 disp(’----Sugar-Cube Lab (ICM-20948)----’)

51 elseif imu_id == 13

52 disp(’----Open Shoe (4xMPU-9150)----’)

53 else

54 disp(’----Simulated device----’)

55 end

56

57 %%%

58 %% GENERAL PARAMETERS %%

59 %%%

60

61 global simdata;

62

63 simdata.c = 299792458; % speed of light, m/s

64

65 % Total time span [s]

66 simdata.timespan=3600;

67

68 simdata.altitude=0; % Ali’s Lab

69

70 simdata.latitude = 33.642576800000000*pi/180;

71

72 simdata.longitude = -1.178447567000000e+02*pi/180;

73

74 % Sampling period [s]

75 if imu_id == 0

76 simdata.Ts=1/100; % for MPU-9250

77 elseif imu_id == 1

78 simdata.Ts=1/800; % for VN-200

79 elseif imu_id == 2

80 simdata.Ts=1/120; % for ADIS16485

81 elseif imu_id == 3

82 simdata.Ts=1/120; % for Lab-On-Shoe

83 elseif imu_id == 4

84 simdata.Ts=1/100; % for SmartBug

85 elseif imu_id == 5

86 simdata.Ts=1/200; % for comsumer

87 elseif imu_id == 6

504

88 simdata.Ts=1/200; % for industrial

89 elseif imu_id == 7

90 simdata.Ts=1/200; % for tactical

91 elseif imu_id == 8

92 simdata.Ts=1/200; % for navigation

93 elseif imu_id == 9

94 simdata.Ts=1/400; % for VN-100

95 elseif imu_id == 10

96 simdata.Ts=1/(4250/5)*1; % for ADIS_EVAL

97 elseif imu_id == 11

98 simdata.Ts=1/1000; % for Lab-On-Shoe 2.0

99 elseif imu_id == 12

100 simdata.Ts=1/370; % for Sugar-Cube

101 elseif imu_id == 13

102 simdata.Ts=1/300; % for OpenShoe

103 else

104 simdata.Ts = 1/800; % for Simulated device

105 end

106

107 disp([’|Sampling Freq = ’,num2str(round(1/simdata.Ts)),’Hz |’]);

108

109 % Number of iteration for DCM update

110 simdata.M=10;

111

112 % Time steps

113 simdata.N = round(simdata.timespan/simdata.Ts)+1;

114

115 % Initial orientatoin [rad] (North is zero degrees)

116 simdata.init_heading= 0*pi/180;

117

118 % Initial velocity (u, v, w)-axis [m/s]

119 simdata.init_vel=[0 0 0]’;

120

121 % Earth rotation rate [rad/s]

122 simdata.earthrate=7.2921150e-5;

123

124 % Earth radius [m]

125 simdata.a=6378137;

126

127 %%%

128 %% ZUPTING SETUPS %%

129 %%%

130

131 % Standard deviation of the acceleromter noise [m/s^2]. This is used to

132 % control the zero-velocity detectors trust in the accelerometer data.

133

134 if imu_id == 0

505

135 simdata.sigma_a=300e-6*9.81*sqrt(simdata.Ts);

136 % for MPU-9250

137 elseif imu_id == 1

138 simdata.sigma_a=0.14e-3*9.81*sqrt(simdata.Ts) * 10;

139 % for VN-200

140 elseif imu_id == 2

141 simdata.sigma_a=0.023/60*sqrt(simdata.Ts) * 1;

142 % ADIS16485

143 elseif imu_id == 3

144 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 1;

145 % for Lab-On-Shoe

146 elseif imu_id == 4

147 simdata.sigma_a=70e-6*9.81*sqrt(simdata.Ts) * 500;

148 % SmartBug

149 elseif imu_id == 5

150 simdata.sigma_a=70e-6*9.81*sqrt(simdata.Ts) * 1;

151 % for comsumer

152 elseif imu_id == 6

153 simdata.sigma_a=7e-6*9.81*sqrt(simdata.Ts) * 1;

154 % for industrial

155 elseif imu_id == 7

156 simdata.sigma_a=0.7e-6*sqrt(simdata.Ts) * 1;

157 % for tactical

158 elseif imu_id == 8

159 simdata.sigma_a=0.07e-6*sqrt(simdata.Ts) * 1;

160 % for navigation

161 elseif imu_id == 9

162 simdata.sigma_a=0.14e-3*9.81*sqrt(simdata.Ts) * 1;

163 % for VN-100

164 elseif imu_id == 10

165 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 50;

166 % ADIS16497 for ADIS_EVAL

167 elseif imu_id == 11

168 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 50;

169 % ADIS16497 for Lab-On-Shoe 2.0

170 elseif imu_id == 12

171 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 50;

172 % for ICM-20948

173 elseif imu_id == 13

174 simdata.sigma_a=0.14e-3*9.81*sqrt(simdata.Ts) * 500;

175 % Open Shoe

176 else

177 simdata.sigma_a=0.04/60*sqrt(simdata.Ts) * 1;

178 % Simulated device

179 end

180

181 % Standard deviation of the gyroscope noise [rad/s]. This is used to

506

182 % control the zero-velocity detectors trust in the gyroscope data.

183

184 if imu_id == 0

185 simdata.sigma_g=0.01*pi/180*sqrt(simdata.Ts);

186 % MPU-9250

187 elseif imu_id == 1

188 simdata.sigma_g=0.21 *pi/180/60*sqrt(simdata.Ts)*10;

189 % VN-200

190 elseif imu_id == 2

191 simdata.sigma_g=0.3 *pi/180/60*sqrt(simdata.Ts)*1;

192 % ADIS16485

193 elseif imu_id == 3

194 simdata.sigma_g=0.18*pi/180/60*sqrt(simdata.Ts)*1;

195 % ADIS16497 for Lab-On-Shoe

196 elseif imu_id == 4

197 simdata.sigma_g=0.0028*pi/180*sqrt(simdata.Ts)*10;

198 % SmartBug

199 elseif imu_id == 5

200 simdata.sigma_g=0.5*pi/180/60*sqrt(simdata.Ts);

201 % comsumer

202 elseif imu_id == 6

203 simdata.sigma_g=0.5*pi/180/60*sqrt(simdata.Ts)*1;

204 % industrial

205 elseif imu_id == 7

206 simdata.sigma_g=0.05 *pi/180/60*sqrt(simdata.Ts)*1;

207 % tactical

208 elseif imu_id == 8

209 simdata.sigma_g=0.001*pi/180/60*sqrt(simdata.Ts)*1;

210 % navigation

211 elseif imu_id == 9

212 simdata.sigma_g=0.21 *pi/180/60*sqrt(simdata.Ts)*1;

213 % VN-100

214 elseif imu_id == 10

215 simdata.sigma_g=0.18*pi/180/60*sqrt(simdata.Ts)*10;

216 % ADIS16497 for ADIS_EVAL

217 elseif imu_id == 11

218 simdata.sigma_g=0.18*pi/180/60*sqrt(simdata.Ts)*10;

219 % ADIS16497 for Lab-On-Shoe 2.0

220 elseif imu_id == 12

221 simdata.sigma_g=0.18*pi/180/60*sqrt(simdata.Ts)*10;

222 % ICM-20948

223 elseif imu_id == 13

224 simdata.sigma_g=0.21 *pi/180/60*sqrt(simdata.Ts)*500;

225 % Open Shoe

226 else

227 simdata.sigma_g=10/60*pi/180*sqrt(simdata.Ts)*1;

228 % Simulated device

507

229 end

230

231 % For ZUPT detector

232

233 simdata.gyro = simdata.sigma_g; % ARW

234 simdata.accel = simdata.sigma_a; % VRW

235

236 % Window size of the zero-velocity detector [samples]

237 % Sampling period [s]

238 zupt_window = 0.05;%seconds

239

240 if imu_id == 0

241 simdata.Window_size=round(zupt_window/simdata.Ts);

242 simdata.Window_size_for_step_detector = simdata.Window_size*5;

243 elseif imu_id == 1

244 simdata.Window_size=round(zupt_window/simdata.Ts/1)*1;

245 simdata.Window_size_for_step_detector = simdata.Window_size*5;

246 elseif imu_id == 2

247 simdata.Window_size=round(zupt_window/simdata.Ts);

248 simdata.Window_size_for_step_detector = simdata.Window_size*5;

249 elseif imu_id == 3

250 simdata.Window_size=round(zupt_window/simdata.Ts);

251 simdata.Window_size_for_step_detector = simdata.Window_size*5;

252 elseif imu_id == 4

253 simdata.Window_size=round(zupt_window/simdata.Ts)*2;

254 simdata.Window_size_for_step_detector = simdata.Window_size*5;

255 elseif imu_id == 5

256 simdata.Window_size=round(zupt_window/simdata.Ts);

257 simdata.Window_size_for_step_detector = simdata.Window_size*5;

258 elseif imu_id == 6

259 simdata.Window_size=round(zupt_window/simdata.Ts);

260 simdata.Window_size_for_step_detector = simdata.Window_size*5;

261 elseif imu_id == 7

262 simdata.Window_size=round(zupt_window/simdata.Ts);

263 simdata.Window_size_for_step_detector = simdata.Window_size*5;

264 elseif imu_id == 8

265 simdata.Window_size=round(zupt_window/simdata.Ts);

266 simdata.Window_size_for_step_detector = simdata.Window_size*5;

267 elseif imu_id == 9

268 simdata.Window_size=round(zupt_window/simdata.Ts);

269 simdata.Window_size_for_step_detector = simdata.Window_size*5;

270 elseif imu_id == 10

271 simdata.Window_size=round(zupt_window/simdata.Ts/1);

272 simdata.Window_size_for_step_detector = simdata.Window_size*5;

273 elseif imu_id == 11

274 simdata.Window_size=round(zupt_window/simdata.Ts/1);

275 simdata.Window_size_for_step_detector = simdata.Window_size*5;

508

276 elseif imu_id == 12

277 simdata.Window_size=round(zupt_window/simdata.Ts/1);

278 simdata.Window_size_for_step_detector = simdata.Window_size*5;

279 elseif imu_id == 13

280 simdata.Window_size=round(zupt_window/simdata.Ts/1);

281 simdata.Window_size_for_step_detector = simdata.Window_size*5;

282 else

283 % simdata.Window_size=5*10; % for Simulated device

284 simdata.Window_size=round(zupt_window/simdata.Ts/2);

285 simdata.Window_size_for_step_detector = simdata.Window_size*5;

286 end

287

288 simdata.Window_size_for_step_detector = simdata.Window_size*5;

289 simdata.Window_size_for_dynamic_covariance = simdata.Window_size/5;

290

291 % Threshold used in the zero-velocity detector. If the test statistics are

292 % below this value the zero-velocity hypothesis is chosen.

293 simdata.gamma=0.3e5;

294 simdata.gamma=3e5;

295

296 if imu_id == 0

297 simdata.factor = exp(11); % for MPU-9250

298 elseif imu_id == 1

299 threshold = 5;

300 simdata.factor = exp(threshold); % for VN-200

301 simdata.factor_step = exp(6.3);

302 elseif imu_id == 2

303 threshold = 11;

304 simdata.factor = exp(threshold); % for ADIS16485

305 simdata.factor_step = exp(11);

306 elseif imu_id == 3

307 threshold = 4.6;

308 simdata.factor = exp(threshold); % for Lab-On-Shoe

309 simdata.factor_step = exp(14);

310 elseif imu_id == 4

311 threshold = 12.2;

312 simdata.factor = exp(threshold); % for SmartBug

313 simdata.factor_step = exp(14);

314 elseif imu_id == 5

315 threshold = 6.2;

316 simdata.factor = exp(threshold); % for comsumer

317 simdata.factor_step = exp(11);

318 elseif imu_id == 6

319 threshold = 9.1;

320 simdata.factor = exp(threshold); % for industrial

321 simdata.factor_step = exp(11);

322 elseif imu_id == 7

509

323 threshold = 16.8;

324 simdata.factor = exp(threshold); % for tactical

325 simdata.factor_step = exp(11);

326 elseif imu_id == 8

327 threshold = 8;

328 simdata.factor = exp(threshold); % for navigation

329 simdata.factor_step = exp(11);

330 elseif imu_id == 9

331 threshold = 13;

332 simdata.factor = exp(threshold); % for VN-100

333 simdata.factor_step = exp(11);

334 elseif imu_id == 10

335 threshold = 5.5;

336 simdata.factor = exp(threshold); % for ADIS_EVAL

337 simdata.factor_step = exp(12);

338 elseif imu_id == 11

339 threshold = 2.0;

340 simdata.factor = exp(threshold); % for Lab-On-Shoe 2.0

341 simdata.factor_step = exp(5);

342 elseif imu_id == 12

343 threshold = 6;

344 simdata.factor = exp(threshold); % for Sugar-Cube Lab 20948

345 simdata.factor_step = exp(14);

346 elseif imu_id == 13

347 threshold = -7.4; % for stationary case

348 simdata.factor = exp(threshold); % for OpenShoe

349 simdata.factor_step = exp(14);

350 else

351 threshold = 7;

352 simdata.factor = exp(threshold); % for Simulated device

353 simdata.factor_step = exp(10.5);

354 end

355

356 disp([’ZUPT thresholds = ’,num2str(threshold)])

357

358 % Thresholds when other sensors are included

359 simdata.factor2 = exp(6);

360 simdata.factorDVS = exp(14); % DVS-aided SHOE Detector

361

362 if imu_id == 0

363 simdata.factor = exp(11); % for MPU-9250

364 elseif imu_id == 1

365 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

366 simdata.factorShoeHeight = 0.045; % USPD Detector

367 elseif imu_id == 2

368 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

369 simdata.factorShoeHeight = 0.045; % USPD Detector

510

370 elseif imu_id == 3

371 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

372 simdata.factorShoeHeight = 0.045; % USPD Detector

373 elseif imu_id == 4

374 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

375 simdata.factorShoeHeight = 0.045; % USPD Detector

376 elseif imu_id == 5

377 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

378 simdata.factorShoeHeight = 0.045; % USPD Detector

379 elseif imu_id == 6

380 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

381 simdata.factorShoeHeight = 0.045; % USPD Detector

382 elseif imu_id == 7

383 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

384 simdata.factorShoeHeight = 0.045; % USPD Detector

385 elseif imu_id == 8

386 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

387 simdata.factorShoeHeight = 0.045; % USPD Detector

388 elseif imu_id == 9

389 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

390 simdata.factorShoeHeight = 0.045; % USPD Detector

391 elseif imu_id == 10

392 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

393 simdata.factorShoeHeight = 0.045; % USPD Detector

394 elseif imu_id == 11

395 simdata.factorDownwardSONAR = exp(1.2); % UA-SHOE Detector

396 simdata.factorShoeHeight = 0.09; % USPD Detector

397 elseif imu_id == 12

398 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

399 simdata.factorShoeHeight = 0.045; % USPD Detector

400 elseif imu_id == 13

401 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

402 simdata.factorShoeHeight = 0.045; % USPD Detector

403 else

404 simdata.factorDownwardSONAR = exp(12); % UA-SHOE Detector

405 simdata.factorShoeHeight = 0.045; % USPD Detector

406 end

407

408 % Diagonal elements of the initial state covariance matrix (P).

409 % MPU9250: Turn on bias: 5 deg/s 60 mg for x&y 80 mg for z 60 mg = 0.59 m/s^2

410 simdata.sigma_initial_acc_bias=1e-4*ones(1,3)*10; % Accelerometer biases [m/s^2]

411 simdata.sigma_initial_gyro_bias=5*pi/180/3600*ones(1,3); % Gyroscope biases

[rad/s]

412 simdata.sigma_initial_pos=1e-3*ones(1,3)*0.1; % Position [m]

413 simdata.sigma_initial_vel=1e-3*ones(1,3)*1; % Velocity [m/s]

414 simdata.sigma_initial_att=(2* pi/180*ones(1,3))*0.1; % 2 deg Attitude [rad]

415 simdata.sigma_initial_acc_scale=0.0001*ones(1,3); % Accelerometer scale factors

511

416 simdata.sigma_initial_gyro_scale=0.00001*ones(1,3); % Gyroscope scale factors

417

418 %%

419 % For initial state matrix Q %

420 %%

421

422 % Process noise for modeling the drift in accelerometer biases (x,y,z

423 % platform coordinate axis) [m/s^2]. (In-Run Bias Stability)

424

425 if imu_id == 0

426 simdata.acc_bias_driving_noise=8e-3*9.81*sqrt(simdata.Ts);

427 % 8mg no data for MPU-9250

428 elseif imu_id == 1

429 simdata.acc_bias_driving_noise=40e-6*9.81*sqrt(simdata.Ts)*1;

430 % 0.04mg VN-200

431 elseif imu_id == 2

432 simdata.acc_bias_driving_noise=32e-6*9.81*sqrt(simdata.Ts);

433 % 32ug for ADIS16485

434 elseif imu_id == 3

435 simdata.acc_bias_driving_noise=13e-6*9.81*sqrt(simdata.Ts)*1;

436 % 13ug for Lab-On-Shoe

437 elseif imu_id == 4

438 simdata.acc_bias_driving_noise=700e-6*9.81*sqrt(simdata.Ts);

439 % 0.70mg for SmartBug

440 elseif imu_id == 5

441 simdata.acc_bias_driving_noise=50e-3*9.81*sqrt(simdata.Ts);

442 % >50mg for comsumer-grade device

443 elseif imu_id == 6

444 simdata.acc_bias_driving_noise=1e-3*9.81*sqrt(simdata.Ts);

445 % 1~50mg for industrial-grade device

446 elseif imu_id == 7

447 simdata.acc_bias_driving_noise=0.05e-3*9.81*sqrt(simdata.Ts);

448 % 0.05~1mg for tactical-grade device

449 elseif imu_id == 8

450 simdata.acc_bias_driving_noise=0.001e-3*9.81*sqrt(simdata.Ts);

451 % <0.05mg for navigation-grade device

452 elseif imu_id == 9

453 simdata.acc_bias_driving_noise=40e-6*9.81*sqrt(simdata.Ts)*100;

454 % 0.04mg VN-100

455 elseif imu_id == 10

456 simdata.acc_bias_driving_noise=13e-6*9.81*sqrt(simdata.Ts)*0.1;

457 % 13ug for ADIS_EVAL

458 elseif imu_id == 11

459 simdata.acc_bias_driving_noise=13e-6*9.81*sqrt(simdata.Ts)*1;

460 % 13ug for Lab-On-Shoe

461 elseif imu_id == 12

462 simdata.acc_bias_driving_noise=13e-6*9.81*sqrt(simdata.Ts)*1;

512

463 % Sugar-Cube Lab ICM-20948

464 elseif imu_id == 13

465 simdata.acc_bias_driving_noise=40e-6*9.81*sqrt(simdata.Ts)*1;

466 % Open Shoe

467 else

468 simdata.acc_bias_driving_noise=4.9e-6*9.81*sqrt(simdata.Ts)*0.1;

469 % 4.9ug for Simulated device

470 end

471

472 % Process noise for modeling the drift in gyroscope biases (x,y,z platform

473 % coordinate axis) [rad/s]. (In-Run Bias Stability)

474 if imu_id == 0

475 simdata.gyro_bias_driving_noise= 0.1 *pi/180*sqrt(simdata.Ts);

476 % 0.1 degree/s for MPU-9250

477 elseif imu_id == 1

478 simdata.gyro_bias_driving_noise= 10/3600 *pi/180*sqrt(simdata.Ts)*1;

479 % 10 degree/hr for VN-200

480 elseif imu_id == 2

481 simdata.gyro_bias_driving_noise= 6.25/3600 *pi/180*sqrt(simdata.Ts);

482 % 6.25 degree/hr for ADIS16485

483 elseif imu_id == 3

484 simdata.gyro_bias_driving_noise= 3.3/3600 *pi/180*sqrt(simdata.Ts)*0.35;

485 % 3.3 degree/hr for ADIS16497-3 for Right Lab-On-Shoe

486 elseif imu_id == 4

487 simdata.gyro_bias_driving_noise= 0.028 *pi/180*sqrt(simdata.Ts)*1;

488 % 0.028 degree/s for SmartBug

489 elseif imu_id == 5

490 simdata.gyro_bias_driving_noise= 100/3600 *pi/180*sqrt(simdata.Ts)*10;

491 % > 100 degree/h for comsumer-grade device

492 elseif imu_id == 6

493 simdata.gyro_bias_driving_noise= 10/3600 *pi/180*sqrt(simdata.Ts)*1;

494 % 10~100 degree/h for industrial-grade device

495 elseif imu_id == 7

496 simdata.gyro_bias_driving_noise= 0.1/3600 *pi/180*sqrt(simdata.Ts);

497 % 0.01~10 degree/h for tactical-grade device

498 elseif imu_id == 8

499 simdata.gyro_bias_driving_noise= 0.001/3600 *pi/180*sqrt(simdata.Ts);

500 % <0.01 degree/h for navigation-grade device

501 elseif imu_id == 9

502 simdata.gyro_bias_driving_noise= 10/3600 *pi/180*sqrt(simdata.Ts)*0.1;

503 % 10 degree/hr for VN-100

504 elseif imu_id == 10

505 simdata.gyro_bias_driving_noise= 3.3/3600 *pi/180*sqrt(simdata.Ts)*0.1;

506 % 3.3 degree/hr for ADIS16497-3 for Left Lab-On-Shoe

507 elseif imu_id == 11

508 simdata.gyro_bias_driving_noise= 3.3/3600 *pi/180*sqrt(simdata.Ts)*0.35;

509 % 3.3 degree/hr for ADIS16497-3 for Right Lab-On-Shoe

513

510 elseif imu_id == 12

511 simdata.gyro_bias_driving_noise= 3.3/3600 *pi/180*sqrt(simdata.Ts)*0.35;

512 % Sugar-Cube Lab ICM-20948

513 elseif imu_id == 13

514 simdata.gyro_bias_driving_noise= 10/3600 *pi/180*sqrt(simdata.Ts)*1;

515 % Open Shoe

516 else

517 simdata.gyro_bias_driving_noise= 8e-4 *pi/180*sqrt(simdata.Ts)*0.1;

518 % for Simulated device

519 end

520

521 % Process noise for modeling the scale factor errors in accelerometers

522 simdata.acc_SF_driving_noise = 1e-10;

523

524 % Process noise for modeling the scale factor errors in gyroscopes

525 simdata.gyro_SF_driving_noise = 1e-10;

526

527 % Process noise for modeling the non-orthogonality in accelerometers

528 simdata.acc_ortho_driving_noise = 1e-8;

529

530 % Process noise for modeling the rotation misalignment in gyroscopes

531 simdata.gyro_rot_driving_noise = 1e-8;

532

533 % Process noise for modeling the non-orthogonality in gyroscopes

534 simdata.gyro_ortho_driving_noise = 1e-8;

535

536 % Pseudo zero-velocity update measurement noise covariance (R). The

537 % covariance matrix is assumed diagonal.

538 % Errors in the velocity measurement

539

540 if imu_id == 0 % for MPU-9250

541 simdata.sigma_vel=[1 1 1]*0.001; %[m/s]

542 elseif imu_id == 1 % VN-200

543 simdata.sigma_vel=[1 1 1]*0.05; %[m/s]

544 elseif imu_id == 2 % for ADIS16485

545 simdata.sigma_vel=[1 1 1]*0.001; %[m/s]

546 elseif imu_id == 3 % for Lab-On-Shoe

547 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

548 elseif imu_id == 4 % for SmartBug

549 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

550 elseif imu_id == 5 % for Comsumer-grade

551 simdata.sigma_vel=[1 1 1]*0.003; %[m/s]

552 elseif imu_id == 6 % for industrial-grade

553 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

554 elseif imu_id == 7 % for tactical-grade

555 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

556 elseif imu_id == 8 % for navigation-grade

514

557 simdata.sigma_vel=[1 1 1]*0.001; %[m/s]

558 elseif imu_id == 9 % VN-100

559 simdata.sigma_vel=[1 1 1]*0.005; %[m/s]

560 elseif imu_id == 10 % for ADIS_EVAL

561 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

562 elseif imu_id == 11 % for Lab-On-Shoe

563 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

564 elseif imu_id == 12 % for Sugar-Cube Lab

565 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

566 elseif imu_id == 13 % VN-200

567 simdata.sigma_vel=[1 1 1]*0.001; %[m/s]

568

569 else

570 simdata.sigma_vel=[1 1 1]*0.02; %[m/s]

571 end

572

573 % Errors in the displacement measurement in ranging sensor

574 simdata.sigma_dis=1; %[m] for UWB

575

576 % Errors in the magnetic field measurement in magnetometer

577 simdata.sigma_mag=10; %[nT]

578

579 %%%

580 %% Altimeter SETUPS %%

581 %%%

582 if imu_id == 0

583 % How many IMU data per Altimeter data

584 simdata.ALT_rate = 20;

585 % altimeter resolution

586 simdata.alt_resolution = 0.1; % meters

587 elseif imu_id == 1

588 % How many IMU data per Altimeter data

589 simdata.ALT_rate = 20;

590 % altimeter resolution

591 simdata.alt_resolution = 0.1; % meters

592 elseif imu_id == 2

593 % How many IMU data per Altimeter data

594 simdata.ALT_rate = 20;

595 % altimeter resolution

596 simdata.alt_resolution = 0.1; % meters

597 elseif imu_id == 3

598 % How many IMU data per Altimeter data

599 simdata.ALT_rate = 20;

600 % altimeter resolution

601 simdata.alt_resolution = 0.1; % meters

602 elseif imu_id == 4

603 % How many IMU data per Altimeter data

515

604 simdata.ALT_rate = 20;

605 % altimeter resolution

606 simdata.alt_resolution = 0.1; % meters

607 elseif imu_id == 5

608 % How many IMU data per Altimeter data

609 simdata.ALT_rate = 20;

610 % altimeter resolution

611 simdata.alt_resolution = 0.1; % meters

612 elseif imu_id == 6

613 % How many IMU data per Altimeter data

614 simdata.ALT_rate = 20;

615 % altimeter resolution

616 simdata.alt_resolution = 0.1; % meters

617 elseif imu_id == 7

618 % How many IMU data per Altimeter data

619 simdata.ALT_rate = 20;

620 % altimeter resolution

621 simdata.alt_resolution = 0.1; % meters

622 elseif imu_id == 8

623 % How many IMU data per Altimeter data

624 simdata.ALT_rate = 20;

625 % altimeter resolution

626 simdata.alt_resolution = 0.1; % meters

627 elseif imu_id == 9

628 % How many IMU data per Altimeter data

629 simdata.ALT_rate = 20;

630 % altimeter resolution

631 simdata.alt_resolution = 0.1; % meters

632 elseif imu_id == 10

633 % How many IMU data per Altimeter data

634 simdata.ALT_rate = 20;

635 % altimeter resolution

636 simdata.alt_resolution = 0.1; % meters

637 elseif imu_id == 11

638 % How many IMU data per Altimeter data

639 simdata.ALT_rate = 20;

640 % altimeter resolution

641 simdata.alt_resolution = 100; % meters

642 elseif imu_id == 12

643 % How many IMU data per Altimeter data

644 simdata.ALT_rate = 20;

645 % altimeter resolution

646 simdata.alt_resolution = 0.1; % meters

647 elseif imu_id == 13

648 % How many IMU data per Altimeter data

649 simdata.ALT_rate = 20;

650 % altimeter resolution

516

651 simdata.alt_resolution = 0.1; % meters

652 else

653 % How many IMU data per Altimeter data

654 simdata.ALT_rate = 20;

655 % altimeter resolution

656 simdata.alt_resolution = 0.1; % meters

657 end

658

659 %%%

660 %% relative position SETUPS %%

661 %%%

662 simdata.cam_dis_std = 1.5;

663 simdata.cam_dis_vx = 0.001;

664 simdata.cam_dis_vy = 0.001;

665 simdata.cam_dis_vz = 0.001;

666

667 %%%

668 %% relative orientation SETUPS %%

669 %%%

670 simdata.cam_roll_std = 0.01;

671 simdata.cam_pitch_std = 0.01;

672 simdata.cam_yaw_std = 0.01;

673

674 %%%

675 %% Adaptive ZUPT setup %%

676 %%%

677 simdata.alpha = -exp(9)^1;

678 simdata.theta = 800.5;

679 simdata.beta = 0;

680

681 %%%

682 %% UWB setup %%

683 %%%

684 simdata.Window_size_nlos=50; % for MPU-9250

685 threshold_nlos = 0.000000001;

686 simdata.factor_nlos = exp(threshold_nlos); % for Lab-On-Shoe

687 simdata.UWB_std =1.5;

688

689 %%

690 %% Dynamic Covariance %%

691 %%

692

693 % for Sugar-Cube

694 simdata.dynamic_variance_hyper_para_alpha = [0 0 0]+(exp(-4.7));

695 simdata.dynamic_variance_hyper_para_gamma = 1.8;

696 simdata.dynamic_variance_hyper_para_beta = [1 1 1]*0.02;

697 simdata.dynamic_variance_hyper_para_psi = [-1,-1,-1]*6;

517

698

699 end

B.2 Pedestrian Navigation Simulation

B.2.1 The Main Script

1 tic

2 %%%

3 % Start of the code

4 %%%

5 clc;

6 clear;

7 close all;

8

9 currDir = pwd;

10 datasetDir = [currDir, ’\dataset’,’\combineSet’];

11

12 addpath(datasetDir);

13 addpath([currDir, ’\lib\utility\’])

14 addpath([currDir, ’\lib\INS\’])

15 addpath([currDir, ’\lib\plot\’])

16 addpath([currDir, ’\lib\walker\’])

17 addpath([currDir, ’\lib\runner\’])

18 addpath([currDir, ’\lib\FFT_analysis\’])

19 addpath([currDir, ’\lib\IMU_noise_model\’])

20 addpath([currDir, ’\lib\navigation\’])

21 addpath([currDir, ’\lib\gait_analysis\’])

22 addpath([currDir, ’\lib\stance_phase_detection\’])

23 addpath([currDir, ’\lib\vicon\’])

24

25 %% Model Parameters:

26 model = 0; % if 0 walker, otherwise, runner

27 algorithm = 2; % 0: INS, 1:ZUPT, 2:EKF-ZUPT

28 numSteps = 28;

29

30 %% Noise Parameters:

31 sensorModel = ’VectorNav’; % Options: ICM_20948, VectorNav

32 device = 2; % Add Noise to the IMU model: if 1 add Noise: if 2, real

33 %% Experiment parameter

34 expSensorName = ’VN’;

35

518

36 %% Plot Parameters:

37 % Speed Animation: 500 samples jump in the for loop for animation

38 speed = 100;

39 % Animation of the walker: 0 = no plot; 1 = plot;

40 ifPlotWalker = 1;

41 ifPlotNavigation = 0;

42 ifPlotSave = 0;

43 % Local Frame Animation: 0 = no local frame plot; 1 = local frame plot;

44 ifLocalFrame = 0;

45 tcpUnity = 0; % Enable/Disable TCP communication with unity:

46

47 %% Navigation Parameters:

48 d2r = pi/180;

49 r2d = 180/pi;

50 fs = 800; % Sampling rate of simulated IMU measurements

51 lattitude_ini = 0.587173734015058; % Degree % starting at Irivne

52 longitude_ini = -2.056779010626648; % Degree

53 earth_radius = 6378137; % Earth radius

54 earthrate=7.2921150e-5; % Earth rate, rad/s

55 g = 9.8198; % Gravity

56 e2 = 6.694380004260835e-3; % EarthEccentricitySq

57

58 %% operation loop

59 resultTable = zeros(1,16);

60 % simTrialVector = 0:(2^16-1);

61 % simTrialVector = [128,64,32,224,240,248,232,228,252,254,253,255];

62 simTrialVector = 0b11111111;

63 % expTrialVector = 1:20;

64 expTrialVector = 1;

65 repeatNum = 20;

66 for kk=1:length(simTrialVector)

67 noiseSettingInd = decimalToBinaryVector(simTrialVector(kk),8);

68 noiseSettings.whiteNoise = noiseSettingInd(1);

69 noiseSettings.flickerNoise = noiseSettingInd(2);

70 noiseSettings.randomWalk = noiseSettingInd(3);

71 noiseSettings.misalignment = noiseSettingInd(4);

72 noiseSettings.scaleFactor = noiseSettingInd(5);

73 noiseSettings.iniBias = noiseSettingInd(6);

74 noiseSettings.FSR = noiseSettingInd(7);

75 noiseSettings.bandWidth = noiseSettingInd(8);

76 resultsubTable = zeros(repeatNum,9);

77 close all;

78 figure(100);

79 figure(101);

80 figure(102);

81 for jj = 1:repeatNum

82 clc

519

83 if device ==2

84 dataname = [’exp’ num2str(expTrialVector(jj)) ’00’];

85 disp(dataname);

86 else

87 disp([’Trial #’ num2str(jj) ’, Configuraion #’ ...

88 num2str(simTrialVector(kk))]);

89 end

90 %% Pre-processing trajectory obtained from camera

91 if model == 0

92 fs_GT = 2286; % Sampling rate of the ground truth dataset

93 bodyPose = generateFootPoseRigidWalker(numSteps,speed, ...

94 ifLocalFrame,ifPlotWalker,tcpUnity);

95

96 leftleg_legnth = vecnorm(([bodyPose(1).x,bodyPose(1).y, ...

97 bodyPose(1).z]-[bodyPose(3).x,bodyPose(1).y, ...

98 bodyPose(3).z])’);

99 rightleg_legnth = vecnorm(([bodyPose(2).x,bodyPose(2).y, ...

100 bodyPose(2).z]-[bodyPose(3).x,bodyPose(2).y, ...

101 bodyPose(3).z])’);

102 else

103 fs_GT = 2226; % Sampling rate of the ground truth dataset

104 bodyPose = generateFootPoseSpringyWalker(numSteps,speed, ...

105 ifLocalFrame,ifPlotWalker,tcpUnity);

106

107 leftFoot2Knee_length = vecnorm(([bodyPose(1).x,bodyPose(1).y, ...

108 bodyPose(1).z]-[bodyPose(3).x,bodyPose(3).y, ...

109 bodyPose(3).z])’);

110 rightFoot2Knee_length = vecnorm(([bodyPose(2).x,bodyPose(2).y, ...

111 bodyPose(2).z]-[bodyPose(4).x,bodyPose(4).y, ...

112 bodyPose(4).z])’);

113 leftKnee2Hip_length = vecnorm(([bodyPose(3).x,bodyPose(3).y, ...

114 bodyPose(3).z]-[bodyPose(5).x,bodyPose(3).y, ...

115 bodyPose(5).z])’);

116 rightKnee2Hip_length = vecnorm(([bodyPose(3).x,bodyPose(3).y, ...

117 bodyPose(3).z]-[bodyPose(5).x,bodyPose(4).y, ...

118 bodyPose(5).z])’);

119 leftleg_legnth = leftFoot2Knee_length + leftKnee2Hip_length;

120 rightleg_legnth = rightFoot2Knee_length + rightKnee2Hip_length;

121 end

122

123 % synchronized sample rate of simulation with IMU measurements

124 groundTrue = groundTruthGeneration(bodyPose(2),fs_GT,fs);

125

126 %% reconstruct IMU measurements

127

128 % calculate IMU measurement from ground truth position

129 [sensor_raw,groundTrueStates_raw] = simulateIMUFromPose(groundTrue, ...

520

130 fs,longitude_ini,lattitude_ini);

131 if device == 0

132 disp(’No noise applied on the synthetic IMU’)

133 sensor = sensor_raw;

134 groundTrueStates = groundTrueStates_raw;

135 elseif device == 1

136 disp([’Noise sensor model: ’ sensorModel])

137 noise_sensor = addIMUNoise(sensor_raw,sensorModel,noiseSettings);

138 sensor = noise_sensor;

139 groundTrueStates = groundTrueStates_raw;

140 elseif device == 2

141 % Load experimental data

142 [real_sensor,sim_sensor,groundTrueStatesSensor] = loadRealIMUData(...

143 dataname,expSensorName,lattitude_ini,longitude_ini);

144 disp(’Real sensor’)

145 sensor = real_sensor;

146 groundTrueStates = groundTrueStatesSensor;

147 end

148 if ifPlotNavigation==1

149 figure

150 plotSimulatedIMU(sensor)

151 end

152 %% implement navigation equations based on simulated IMU measurements

153

154 if algorithm == 0

155 disp(’Standalone INS’)

156 est = strapDownINS(sensor,groundTrueStates);

157 elseif algorithm == 1

158 disp(’ZUPT-aided INS’)

159 est = INSVelocityReset(sensor,groundTrueStates);

160 if ifPlotNavigation==1

161 plotZUPTAndIMU(sensor,est);

162 end

163 else

164 disp(’ZUPT-aided INS with ESKF’)

165 est = ZUPTwEKF(sensor,groundTrueStates,ifLocalFrame);

166 if ifPlotNavigation==1

167 plotZUPTAndIMU(sensor,est);

168 end

169 end

170

171 angleToNorth = calculateAngleToNorth(est,groundTrueStates,30);

172 est_North = rotateNavigation(est,angleToNorth);

173 est_Plot = est_North; % chose which cooridinate to plot

174 %% Compute errors

175 error = computeNavErrorWRef(groundTrueStates,est_Plot);

176 if ifPlotNavigation==1

521

177 figure

178 plotNavError(error)

179 disp([’Distance to Origin: ’, num2str(norm(error.pos(:,end))) ...

180 , ’ [m]’]);

181

182 figure;

183 plot(est_Plot.timestamps(1:length(est_Plot.dotv_n)), ...

184 est_Plot.dotv_n’);

185 legend(’x’,’y’,’z’)

186 title(’Acceleration From Motion’)

187 xlabel(’time, s’)

188 ylabel(’m/s^2’)

189

190 figure;

191 plot(est_Plot.timestamps(1:length(est_Plot.w_n2b_b)), ...

192 est_Plot.w_n2b_b’*180/pi);

193 legend(’x’,’y’,’z’)

194 title(’Angular Rate From Motion’)

195 xlabel(’time, s’)

196 ylabel(’dps’)

197 end

198 end_ind = length(error.pos)-round(0.05/sensor.dt(1));

199 resultsubTable(jj,:) = [max(max(error.pos(:,1:end_ind))),...

200 sum(vecnorm(error.pos(:,1:end_ind)))/end_ind...

201 sum(vecnorm(error.pos(1:2,1:end_ind)))/end_ind, ...

202 sum(error.pos(3,1:end_ind))/end_ind, norm(error.pos(:,end_ind)),...

203 norm(error.pos(1:2,end_ind)), est_Plot.pos(:,end_ind)’];

204 %% Plot Grouth True results and INS results

205 % plot velocity

206 GT_plot = groundTrueStates_raw;

207 if ifPlotNavigation==1

208 figure

209 plotComparedVelocity(GT_plot,est_Plot)

210 % plot orientation

211 figure

212 plotComparedOrientation(GT_plot,est_Plot)

213 % plot position

214 figure;

215 plotComparedPath(groundTrueStates,est);

216 figure

217 plotComparedPostion(GT_plot,est_Plot)

218 % ylim([-1 1])

219 % zlim([-1 2])

220 end

221

222 figure(100);

223 plotPostion(est_Plot);hold on

522

224 drawnow

225 figure(101);

226 plotXYPostion(est_Plot);hold on

227 drawnow

228 figure(102);

229 plotXZPostion(est_Plot);hold on

230 drawnow

231 end

232 if ifPlotSave == 1

233 if device == 2

234 saveas(figure(100),[pwd ’\result plots\sim_figure\exp_’ ...

235 expSensorName,’.fig’]);

236 saveas(figure(101),[pwd ’\result plots\sim_figure\exp_’ ...

237 expSensorName,’XY.fig’]);

238 saveas(figure(102),[pwd ’\result plots\sim_figure\exp_’ ...

239 expSensorName,’XZ.fig’]);

240 save([pwd ’\result plots\sim_result\exp_’ expSensorName,’.mat’], ...

241 ’resultsubTable’);

242 else

243 saveas(figure(100),[pwd ’\result plots\sim_figure\simConfiguration’ ...

244 num2str(simTrialVector(kk)),’.fig’]);

245 saveas(figure(101),[pwd ’\result plots\sim_figure\simConfiguration’ ...

246 num2str(simTrialVector(kk)),’XY.fig’]);

247 saveas(figure(102),[pwd ’\result plots\sim_figure\simConfiguration’ ...

248 num2str(simTrialVector(kk)),’XZ.fig’]);

249 save([pwd ’\result plots\sim_result\simConfiguration’ ...

250 num2str(simTrialVector(kk)),’.mat’],’resultsubTable’);

251 end

252 end

253 resultTable(kk,:) = [noiseSettingInd,max(resultsubTable(:,1)),...

254 sum(resultsubTable(:,2))/repeatNum,...

255 sum(resultsubTable(:,3))/repeatNum,sum(resultsubTable(:,4))/repeatNum,...

256 sum(resultsubTable(:,5))/repeatNum,...

257 sum(resultsubTable(:,6))/repeatNum, sum(resultsubTable(:,9))/repeatNum,...

258 median(resultsubTable(:,6))];

259 end

260 if ifPlotSave == 1

261 if device == 2

262 save([pwd ’\result plots\sim_result\expTotal.mat’],’resultTable’);

263 else

264 save([pwd ’\result plots\sim_result\simTotal.mat’],’resultTable’);

265 end

266 end

267 %% end of code

268 toc

523

B.3 Custom Libraries

B.3.1 Inertial Navigation Library

DCM orthogonalization

1 function C_out = DCM_othogonalization(C_in)

2

3 r_x = C_in(1,:);

4 r_y = C_in(2,:);

5 error = sum(r_x.*r_y);

6 t_0 = r_x-1/2*error*r_y;

7 t_1 = r_y-1/2*error*r_x;

8 t_2 = (skew(t_0)*t_1’)’;

9

10 C_out = [t_0;t_1;t_2];

11

12 end

DCM to Euler Angle conversion

1 function eul_vect = dcm2eulrCSJ(DCMbn)

2 %EULR2DCM Euler angle vector to direction cosine

3 % matrix conversion.

4 %

5 % eul_vect = dcm2eulrCSJ(DCMbn)

6 %

7 % INPUTS

8 % DCMbn = 3x3 direction cosine matrix providing the

9 % transformation from the body frame

10 % to the navigation frame

11 % OUTPUTS

12 % eul_vect(1) = roll angle in radians

13 %

14 % eul_vect(2) = pitch angle in radians

15 %

16 % eul_vect(3) = yaw angle in radians

17 %

18 %

19 phi = atan2(DCMbn(3,2),DCMbn(3,3));

20 theta = atan2(-DCMbn(3,1),sqrt(DCMbn(3,2)^2+DCMbn(3,3)^2));

524

21 psi = atan2(DCMbn(2,1),DCMbn(1,1));

22 eul_vect = [phi theta psi];

DCM to Quaternion conversion

1 function qua_vec = dcm2quaCSJ(DCMbn)

2 %DCM2QUA Direction cosine matrix to quaternion conversion.

3 %

4 % INPUTS

5 % DCMbn = 3x3 direction cosine matrix providing the

6 % transformation from the body frame

7 % to the navigation frame

8 %

9 % OUTPUTS

10 % qua_vec = 4 element quaternion vector

11 % = [a b c d]

12 % where: a = cos(MU/2)

13 % b = (MUx/MU)*sin(MU/2)

14 % c = (MUy/MU)*sin(MU/2)

15 % d = (MUz/MU)*sin(MU/2)

16 % where: MUx, MUy, MUz are the components of the angle vector

17 % MU is the magnitude of the angle vector

18 %

19 % NOTE

20 % The algorithm assumes small angular displacements.

21 %

22

23 % REFERENCE: Titterton, D. and J. Weston, STRAPDOWN

24 % INERTIAL NAVIGATION TECHNOLOGY, Peter

25 % Peregrinus Ltd. on behalf of the Institution

26 % of Electrical Engineers, London, 1997.

27

28 if nargin<1,error(’insufficient number of input arguments’),end

29 %

30 a = 0.5*sqrt(1+DCMbn(1,1)+DCMbn(2,2)+DCMbn(3,3));

31 tmp = inv(4*a);

32 b = tmp*(DCMbn(3,2)-DCMbn(2,3));

33 c = tmp*(DCMbn(1,3)-DCMbn(3,1));

34 d = tmp*(DCMbn(2,1)-DCMbn(1,2));

35

36 qua_vec = [a b c d];

525

Euler Angle to DCM Angle conversion

1 function DCMnb = eulr2dcmCSJ(eul_vect)

2 %EULR2DCM Euler angle vector to direction cosine

3 % matrix conversion.

4 %

5 % DCMnb = eulr2dcm(eul_vect)

6 %

7 % INPUTS

8 % eul_vect(1) = roll angle in radians

9 %

10 % eul_vect(2) = pitch angle in radians

11 %

12 % eul_vect(3) = yaw angle in radians

13 %

14 % OUTPUTS

15 % DCMnb = 3x3 direction cosine matrix providing the

16 % transformation from the navigation frame

17 % to the body frame

18 %

19

20 % REFERENCE: Titterton, D. and J. Weston, STRAPDOWN

21 % INERTIAL NAVIGATION TECHNOLOGY, Peter

22 % Peregrinus Ltd. on behalf of the Institution

23 % of Electrical Engineers, London, 1997.

24 %

25 if nargin<1,error(’insufficient number of input arguments’),end

26

27 phi = eul_vect(1); theta = eul_vect(2); psi = eul_vect(3);

28

29 cpsi = cos(psi); spsi = sin(psi);

30 cthe = cos(theta); sthe = sin(theta);

31 cphi = cos(phi); sphi = sin(phi);

32

33 C1 = [cpsi spsi 0; ...

34 -spsi cpsi 0; ...

35 0 0 1];

36 C2 = [cthe 0 -sthe; ...

37 0 1 0; ...

38 sthe 0 cthe];

39 C3 = [1 0 0; ...

40 0 cphi sphi; ...

41 0 -sphi cphi];

42

43 DCMnb = C3*C2*C1;

526

Euler Angle to Quaternion conversion

1 function qua_vec = eulr2quaCSJ(eul_vect)

2 %EULR2QUA Euler angle vector to quaternion conversion.

3 %

4 % qua_vec = eulr2quaAMS(eul_vect)

5 %

6 % INPUTS

7 % eul_vect(1) = roll angle in radians

8 %

9 % eul_vect(2) = pitch angle in radians

10 %

11 % eul_vect(3) = yaw angle in radians

12 %

13 % OUTPUTS

14 % qua_vec = 4 element quaternion vector

15 % = [a b c d]

16 % where: a = cos(MU/2)

17 % b = (MUx/MU)*sin(MU/2)

18 % c =

19 % d =

20 % where: MUx, MUy, MUz are the components of the angle vector

21 % MU is the magnitude of the angle vector

22 %

23

24 % October 2009: Corrected sign error in computation of ’d’

25 %

26 % REFERENCE: Titterton, D. and J. Weston, STRAPDOWN

27 % INERTIAL NAVIGATION TECHNOLOGY, Peter

28 % Peregrinus Ltd. on behalf of the Institution

29 % of Electrical Engineers, London, 1997.

30

31 if nargin<1,error(’insufficient number of input arguments’),end

32

33 phi = eul_vect(1); theta = eul_vect(2); psi = eul_vect(3);

34

35 cpsi2 = cos(psi/2); spsi2 = sin(psi/2);

36 cthe2 = cos(theta/2); sthe2 = sin(theta/2);

37 cphi2 = cos(phi/2); sphi2 = sin(phi/2);

38

39 a = cphi2*cthe2*cpsi2 + sphi2*sthe2*spsi2;

40 b = sphi2*cthe2*cpsi2 - cphi2*sthe2*spsi2;

41 c = cphi2*sthe2*cpsi2 + sphi2*cthe2*spsi2;

42 d = cphi2*cthe2*spsi2 + sphi2*sthe2*cpsi2;

43

44 qua_vec = [a b c d];

527

Quaternion to DCM conversion

1 function DCMbn = qua2dcmCSJ(qua_vec)

2 % DCMbn = qua2dcmAMS(qua_vec)

3 %

4 % INPUTS

5 % qua_vec = 4 element quaternion vector

6 % = [a b c d]

7 % where: a = cos(MU/2)

8 % b = (MUx/MU)*sin(MU/2)

9 % c = (MUy/MU)*sin(MU/2)

10 % d = (MUz/MU)*sin(MU/2)

11 % where: MUx, MUy, MUz are the components of the angle vector

12 % MU is the magnitude of the angle vector

13 %

14 % OUTPUTS

15 % DCMbn = 3x3 direction cosine matrix providing the

16 % transformation from the body frame

17 % to the navigation frame

18

19 a = qua_vec(1);b = qua_vec(2);c = qua_vec(3);d = qua_vec(4);

20

21 DCMbn = [a^2+b^2-c^2-d^2, 2*(b*c-a*d), 2*(b*d+a*c);

22 2*(b*c+a*d), a^2-b^2+c^2-d^2, 2*(c*d-a*b);

23 2*(b*d-a*c), 2*(c*d+a*b), a^2-b^2-c^2+d^2];

Gimbal Rate to Body Rate conversion

1 function w_b2n_n = gimbalRate2bodyRate(euler_vect_kp1,euler_vect_k,dt)

2

3 roll_kp1 = euler_vect_kp1(1);

4 pitch_kp1 = euler_vect_kp1(2);

5 yaw_kp1 = euler_vect_kp1(3);

6

7 roll_k = euler_vect_k(1);

8 pitch_k = euler_vect_k(2);

9 yaw_k = euler_vect_k(3);

10

11 C3 = [cos(roll_k) 0 -sin(roll_k);0 1 0;sin(roll_k) 0 cos(roll_k)];

12 C2 = [1 0 0;0 cos(pitch_k) sin(pitch_k);0 -sin(pitch_k) cos(pitch_k)];

13

14 dot_roll = (roll_kp1-roll_k)/dt;

15 dot_pitch = (pitch_kp1-pitch_k)/dt;

16 dot_yaw = (yaw_kp1-yaw_k)/dt;

528

17

18 M = [0 sin(roll_k) cos(roll_k);0 cos(roll_k)*cos(pitch_k)

-sin(roll_k)*cos(pitch_k);...

19 cos(pitch_k) sin(roll_k)*sin(pitch_k) cos(roll_k)*sin(pitch_k)];

20 w_b2n_n = cos(pitch_k)*(M)^-1*[dot_roll;dot_pitch;dot_yaw];

21

22 end

Compute Gravity Model

1 function [g] = gravityModel(Lat, P, a, e2);

2

3 GM = 3.986004418e14; % m^3/s^2 GravitationalConstant

4

5 c20 = -sqrt(5)*4.8416685e-4;

6 Latc = atan((1-e2)*tan(Lat));

7

8 % geocentric

9 P2 = P*P;

10 a2 = a*a;

11 ax = 3*c20*a2/P2;

12 GMoverP2 = GM/P2;

13 sLatc = sin(Latc);

14 cLatc = cos(Latc);

15 g_n = -GMoverP2 * ax*sLatc*cLatc;

16 g_d = GMoverP2 * (1 + ax/2*(3*sLatc^2-1));

17

18 g_n = -1.0 * g_n; % match Savage’s model ?

19

20 % geodetic

21 Alpha = Lat - Latc;

22 cAlpha = cos(Alpha);

23 sAlpha = sin(Alpha);

24 g_N = g_n*cAlpha + g_d*sAlpha;

25 g_D = -g_n*sAlpha + g_d*cAlpha;

26

27 g = [g_N; 0; g_D];

28

29 %keyboard

30

31 return

32

33 % gravity model

34 Omega = 7.292115e-5; % rad/s (earth’s rate)

529

35 a = 6378137; % m (semi-major axis)

36 b = 6356752.3142;

37 f = (a-b)/a;

38 e2 = f*(2-f);

39 GM = 3.986005e14; % m^3/s^2

40

41 P = a;

42

43 Latc = (0:100)/100*pi/2;

44

45 % -------------------------------

46 sLatc = sin(Latc);

47 cLatc = cos(Latc);

48

49 b2 = b*b;

50

51 % affect of centropital accel.

52 w_e2i_n = [Omega*cos(Lat);

53 zeros(size(Lat));

54 -Omega*sin(Lat)];

55

56 ax = 1-e2*sin(Lat).^2;

57 R_N = a./sqrt(ax);

58 h = 0;

59

60 % ---------------------------------

61 g = GM/a2;

62

63 (gD(end)-gD(1))/g * 1e3

64

65 close all

66

67 figure

68 plot(Latc*180/pi, gN/g*1e3,’b’); hold

69 plot(Latc*180/pi, gD/g*1e3,’r’);

70

71 plot(Latc*180/pi, dg_cross(1,:)/g*1e3,’k--’);

72 plot(Latc*180/pi, dg_cross(2,:)/g*1e3,’g--’);

73 plot(Latc*180/pi, dg_cross(3,:)/g*1e3,’m--’);

74

75 title(’ Geodetic, deltas g(North) & g(Down), [mg]’)

76

77 dgT = dg_cross;

78 dgT(1,:) = dgT(1,:)+gN;

79 dgT(3,:) = dgT(3,:)+gD;

80

81 (dgT(3,end)- dgT(3,1))/g * 1e3

530

82

83 figure

84 plot(Latc*180/pi, dgT(1,:)/g*1e3,’b’); hold

85 plot(Latc*180/pi, dgT(2,:)/g*1e3,’g’);

86 plot(Latc*180/pi, dgT(3,:)/g*1e3,’r’);

87

88 title(’Geodetic, total deltas g(N)[blue],g(E)[green],g(D)[red], [mg]’)

Integrating Euler Angle

1 function [dotPhi,dotTheta,dotPsi] = integrateEuler(euler_k,omega,dt)

2

3 phi = euler_k(1);

4 theta = euler_k(2);

5 psi = euler_k(3);

6 w1 = omega(1);

7 w2 = omega(2);

8 w3= omega(3);

9 cTheta = cos(theta);

10 dotPsi = (sin(phi)*w2+cos(phi)*w3)*dt/cTheta+psi;

11 dotTheta = (cos(phi)*sin(theta)*w2-sin(phi)*cos(theta)*w3)*dt/cTheta + theta;

12 dotPhi = (cos(theta)*w1+sin(phi)*sin(theta)*w2+cos(phi)*sin(theta)*w3)*dt/cTheta

+ phi;

13 end

Global Frame to Earth Frame conversion

1 function r_wrtE_e = LLA2rWrtEinE(LLA, ...

2 EarthSemiMajorAxis, EarthEccentricitySq)

3 if (nargin == 1)

4 EarthSemiMajorAxis = 6378137.0;

5 EarthEccentricitySq = 6.694380004260835e-003;

6 end

7

8 cLon = cos(LLA(1,:));

9 sLon = sin(LLA(1,:));

10 cLat = cos(LLA(2,:));

11 sLat = sin(LLA(2,:));

12

13 R_N = EarthSemiMajorAxis./sqrt(1-EarthEccentricitySq*sLat.^2);

14 h = LLA(3,:);

15 r_wrtE_e = [(R_N + h).*cLat.*cLon;

531

16 (R_N + h).*cLat.*sLon;

17 (R_N*(1-EarthEccentricitySq) + h).*sLat];

18 end

Skew-symmetric Matrix Construction

1 function skew_mtx = skew(x)

2 skew_mtx=[0 -x(3) x(2) ; x(3) 0 -x(1) ; -x(2) x(1) 0];

3 end

From Reference Trajectory to IMU Readings

1 function [sensor,GTStates] =

simulateIMUFromPose(GTPose,fs,longitude_ini,lattitude_ini)

2 % Description: Inversed Inertial Navigation System to obtain IMU measurements

from

3 % positionestimates

4 %

5 % Input:

6 % - GTPose: seven attributeTypes

7 % - x:column vector, meter

8 % - y:column vector, meter

9 % - z:column vector, meter

10 % - roll:column vector, radian

11 % - pitch:column vector, radian

12 % - yaw:column vector, radian

13 % - name

14 % - fs: simulated IMU sampling rate

15 % - longitude_ini: longitude of the starting point

16 % - lattitude_ini: lattitude of the starting point

17 % Output:

18 % - sensor: four attributeType

19 % - f_b2i_b: accelerometer measurements, m/s^2, 3xN

20 % - w_b2i_b: gyroscope measurements, rand/s, 3xN

21 % - dt: sampling period, s, row vector

22 % - name

23 % - GTStates: seven attributeTypes

24 % - x:column vector, meter

25 % - y:column vector, meter

26 % - z:column vector, meter

27 % - roll:column vector, radian

28 % - pitch:column vector, radian

532

29 % - yaw:column vector, radian

30 % - name

31

32 earth_radius = 6378137; % earth radius

33 earthrate=7.2921150e-5; % rad/s

34 e2 = 6.694380004260835e-3; % EarthEccentricitySq

35 g = 9.8198;

36 dt = 1/fs;

37 GTStates.pos = [GTPose.x;GTPose.y;GTPose.z];

38 GTStates.lattitude = GTStates.pos(1,:)/earth_radius + lattitude_ini;

39 GTStates.longitude = GTStates.pos(2,:)./cos(GTStates.lattitude)/earth_radius +

longitude_ini;

40 % extract velocity based on true displacement

41 GTStates.v_n(1,:) = [0 diff(GTStates.pos(1,:))/dt];

42 GTStates.v_n(2,:) = [0 diff(GTStates.pos(2,:))/dt];

43 GTStates.v_n(3,:) = [0 diff(GTStates.pos(3,:))/dt];

44 GTStates.euler_vect = [GTPose.roll; GTPose.pitch;GTPose.yaw];

45 GTStates.timestamps = GTPose.timestamps;

46 GTStates.name = GTPose.name;

47

48 %% reconstruct IMU measurements

49

50 N = length(GTStates.pos);

51

52 GTStates.dot_v_n = [];

53 GTStates.C_b2n = eulr2dcmCSJ(GTStates.euler_vect(:,1))’;

54 GTStates.w_n2b_b = [];

55 GTStates.w_e2n_n = [];

56 GTStates.w_i2e_n = [];

57

58 sensor.f_b2i_b = [];

59 sensor.w_b2i_b = [];

60 sensor.dt = [];

61 sensor.name = GTStates.name;

62 C_n2b = GTStates.C_b2n’;

63 for kk = 1:N-1

64 cLat = cos(GTStates.lattitude(kk));

65 sLat = sin(GTStates.lattitude(kk));

66 h = GTStates.pos(3,kk);

67 sensor.dt(kk) = dt;

68 w_i2e_n = [earthrate*cLat; 0 ; -earthrate*sLat];

69 w_e2n_n =

[GTStates.v_n(2,kk)/(earth_radius);-GTStates.v_n(1,kk)/(earth_radius);0];

70 GTStates.w_e2n_n(:,kk) = w_e2n_n;

71 GTStates.w_i2e_n(:,kk) = w_i2e_n;

72 GTStates.dot_v_n(:,kk) =

(GTStates.v_n(:,kk+1)-GTStates.v_n(:,kk))/sensor.dt(kk);

533

73 % compute local gravity, w/ or w/o centrifugal forces

74 ax = 1-e2*sLat^2;

75 R_N = earth_radius./sqrt(ax);

76 r_e_n = [-R_N*e2*sLat*cLat; 0; -R_N*ax - h];

77 r_wrtE_e_l =

LLA2rWrtEinE([GTStates.longitude(kk);GTStates.lattitude(kk);GTStates.pos(3,kk)]);

78 dg_centropital_l = cross(w_i2e_n, cross(w_i2e_n, r_e_n));

79 g_vector = gravityModel(GTStates.lattitude(kk), norm(r_e_n), earth_radius,

e2);

80 g_l_n = g_vector - dg_centropital_l;

81 GTStates.w_n2b_b(:,kk) =

gimbalRate2bodyRate(GTStates.euler_vect(:,kk+1),GTStates.euler_vect(:,kk),dt);

82 sensor.w_b2i_b(:,kk) = GTStates.w_n2b_b(:,kk)+C_n2b*(w_i2e_n+w_e2n_n);

83 C_n2b = eulr2dcmCSJ(GTStates.euler_vect(:,kk+1));

84 GTStates.C_b2n(:,:,kk+1) = C_n2b’;

85 sensor.f_b2i_b(:,kk) =

C_n2b*(GTStates.dot_v_n(:,kk)+cross(2*w_i2e_n+w_e2n_n,GTStates.v_n(:,kk))-g_l_n);

86 end

87 sensor.timestamps = GTStates.timestamps(1:end-1);

B.3.2 Navigation Library

Strapdown Inertial Navigation System

1 function est = strapDownINS(sensor,groundTrueStates)

2

3 earth_radius = 6378137; % earth radius

4 earthrate=7.2921150e-5; % eearth rate, rad/s

5 g = 9.8198; % gravity

6 e2 = 6.694380004260835e-3; % EarthEccentricitySq

7

8 lattitude_ini = groundTrueStates.lattitude(1);

9 longitude_ini = groundTrueStates.longitude(1);

10 accel_ini = mean(sensor.f_b2i_b(1:3,1:200)’)’;

11

12 % accel_ini = mean(sensor.f_b2i_b(1:3,2:3)’)’ - earthrate^2*(earth_radius...

13 % +groundTrueStates.pos(3,1))/2*[sin(2*groundTrueStates.lattitude(1));0;1...

14 % +cos(2*groundTrueStates.lattitude(1))];

15

16 %initialization

17 % roll_ini = atan2(accel_ini(2),accel_ini(3)); %

18 % pitch_ini = atan2(-accel_ini(1),sqrt(accel_ini(2)^2+accel_ini(3)^2));

19

534

20 roll_ini = atan2(-accel_ini(2),-accel_ini(3)); %

21 pitch_ini = atan2(accel_ini(1),sqrt(accel_ini(2)^2+accel_ini(3)^2));

22

23 % roll_ini = groundTrueStates.euler_vect(1,1); %

24 % pitch_ini = groundTrueStates.euler_vect(2,1); %

25 yaw_ini = groundTrueStates.euler_vect(3,1); %

26 est.euler_vect(:,1) = [roll_ini;pitch_ini;yaw_ini];

27 est.q_b2n(:,1) = eulr2quaCSJ(est.euler_vect(:,1));

28 est.vel(:,1) = [0;0;0];

29 est.pos(:,1) = [0;0;0]; % [N,E,D]

30 est.dotv_n(:,1) = [0;0;0]; % [N,E,D]

31 est.w_n2b_b(:,1) = [0;0;0]; % [N,E,D]

32 est.w_e2n_n(:,1) = [0;0;0]; % [N,E,D]

33 est.w_i2e_n(:,1) = [0;0;0]; % [N,E,D]

34 C_b2n = eulr2dcmCSJ(est.euler_vect(:,1))’;

35 est.C_b2n(:,:,1) = C_b2n;

36 est.LLA(:,1) = [lattitude_ini;longitude_ini;0]; % lattitude, longitude

37 M = length(sensor.f_b2i_b);

38 est.timestamps = groundTrueStates.timestamps;

39

40 for kk = 1:M

41 cLat = cos(est.LLA(1,kk));

42 sLat = sin(est.LLA(1,kk));

43 h = est.LLA(3,kk);

44 ax = 1-e2*sLat^2;

45 R_N = earth_radius./sqrt(ax);

46 r_e_n = [-R_N*e2*sLat*cLat; 0; -R_N*ax - h];

47

48 w_i2e_n = [earthrate*cos(est.LLA(1,kk)); 0 ; ...

49 -earthrate*sin(est.LLA(1,kk))];

50 w_e2n_n = [est.vel(2,kk)/(earth_radius);...

51 -est.vel(1,kk)/(earth_radius);...

52 0];

53

54 est.w_e2n_n(:,kk) = w_e2n_n;

55 est.w_i2e_n(:,kk) = w_i2e_n;

56

57 w_n2b_b = sensor.w_b2i_b(:,kk) - C_b2n’*(w_i2e_n+w_e2n_n);

58 est.w_n2b_b(:,kk) = w_n2b_b;

59 C_b2n = C_b2n*(eye(3) + skew(w_n2b_b)*sensor.dt(kk)); % small angle

60 C_b2n = eulr2dcmCSJ(dcm2eulrCSJ(C_b2n))’;

61 est.C_b2n(:,:,kk+1) = C_b2n;

62 est.q_b2n(:,kk+1) = dcm2quaCSJ(C_b2n);

63 est.euler_vect(:,kk+1) = dcm2eulrCSJ(C_b2n);

64

65 % compute local gravity, w/ or w/o centrifugal forces

66 r_wrtE_e_l = LLA2rWrtEinE(est.LLA([2,1,3],kk));

535

67 dg_centropital_l = cross(w_i2e_n, cross(w_i2e_n, r_e_n));

68 g_vector = gravityModel(est.LLA(1,kk), norm(r_e_n), earth_radius, e2);

69 g_l_n = g_vector - dg_centropital_l;

70 dot_v_n = C_b2n*sensor.f_b2i_b(:,kk)...

71 -cross(2*w_i2e_n+w_e2n_n,est.vel(:,kk))+g_l_n;

72 est.dotv_n(:,kk) = dot_v_n;

73 est.vel(:,kk+1) = est.vel(:,kk) + dot_v_n*sensor.dt(kk);

74 est.pos(:,kk+1) = est.pos(:,kk) + est.vel(:,kk)*sensor.dt(kk) +

dot_v_n*sensor.dt(kk)^2;

75

76 lattitude_temp = est.pos(1,kk+1)/earth_radius + lattitude_ini;

77 longitude_temp = est.pos(2,kk+1)./cos(lattitude_temp)/earth_radius...

78 + longitude_ini;

79 height_temp = est.pos(3,kk+1);

80 est.LLA(:,kk+1) = [lattitude_temp;longitude_temp;height_temp];

81 end

Naive Zero-velocity Reset

1 function est = INSVelocityReset(sensor,groundTrueStates)

2

3 % constant defined

4 earth_radius = 6378137; % earth radius

5 earthrate=7.2921150e-5; % eearth rate, rad/s

6 g = 9.8198; % gravity

7 e2 = 6.694380004260835e-3; % EarthEccentricitySq

8

9 % stance phase detection

10 threshold = exp(-3);

11 % -3.996 for no noise,

12 % -3 for noise,

13 % -1.2 for real,

14 % -3.5 for exp400

15 ZUPTdetector = @accelMovVarDetector;

16 % ZUPTdetector = @accelMoveVarGyroEnergyDetector;

17 cal_period = 3*round(1/mean(sensor.dt));

18 % Detector Choice:

19 % - accelMovVarDetector for simulation

20 % - accelMoveVarGyroEnergyDetector for experiment

21

22 %initialization

23

24 lattitude_ini = groundTrueStates.lattitude(1);

25 longitude_ini = groundTrueStates.longitude(1);

536

26 accel_ini = mean(sensor.f_b2i_b(1:3,1:200)’)’;

27 roll_ini = atan2(-accel_ini(2),-accel_ini(3)); %

28 pitch_ini = atan2(accel_ini(1),sqrt(accel_ini(2)^2+accel_ini(3)^2));

29

30 % roll_ini = groundTrueStates.euler_vect(1,1); %

31 % pitch_ini = groundTrueStates.euler_vect(2,1); %

32 yaw_ini = groundTrueStates.euler_vect(3,1); %

33 est.euler_vect(:,1) = [roll_ini;pitch_ini;yaw_ini];

34 est.q_b2n(:,1) = eulr2quaCSJ(est.euler_vect(:,1));

35 est.vel(:,1) = [0;0;0];

36 est.pos(:,1) = [0;0;0]; % [N,E,D]

37 est.dotv_n(:,1) = [0;0;0]; % [N,E,D]

38 est.w_n2b_b(:,1) = [0;0;0]; % [N,E,D]

39 est.w_e2n_n(:,1) = [0;0;0]; % [N,E,D]

40 est.w_i2e_n(:,1) = [0;0;0]; % [N,E,D]

41 C_b2n = eulr2dcmCSJ(est.euler_vect(:,1))’;

42 est.C_b2n(:,:,1) = C_b2n;

43 est.LLA(:,1) = [lattitude_ini;longitude_ini;0]; % lattitude, longitude

44 M = length(sensor.f_b2i_b);

45 est.timestamps = groundTrueStates.timestamps;

46 % est.test_statistics = accelMovVarDetector(sensor);

47 est.test_statistics = ZUPTdetector(sensor); %

48 est.threshold = threshold;

49

50 est.accRoll = [];

51 est.accPitch = [];

52

53 for kk = 1:M

54 cLat = cos(est.LLA(1,kk));

55 sLat = sin(est.LLA(1,kk));

56 h = est.LLA(3,kk);

57 ax = 1-e2*sLat^2;

58 R_N = earth_radius./sqrt(ax);

59 r_e_n = [-R_N*e2*sLat*cLat; 0; -R_N*ax - h];

60

61 w_i2e_n = [earthrate*cos(est.LLA(1,kk)); 0 ; ...

62 -earthrate*sin(est.LLA(1,kk))];

63 w_e2n_n = [est.vel(2,kk)/(earth_radius);...

64 -est.vel(1,kk)/(earth_radius);...

65 0];

66

67 est.w_e2n_n(:,kk) = w_e2n_n;

68 est.w_i2e_n(:,kk) = w_i2e_n;

69

70 w_n2b_b = sensor.w_b2i_b(:,kk) - C_b2n’*(w_i2e_n+w_e2n_n);

71 est.w_n2b_b(:,kk) = w_n2b_b;

72 C_b2n = C_b2n*(eye(3) + skew(w_n2b_b)*sensor.dt(kk)); % small angle

537

73 C_b2n = eulr2dcmCSJ(dcm2eulrCSJ(C_b2n))’;

74 est.C_b2n(:,:,kk+1) = C_b2n;

75 est.q_b2n(:,kk+1) = dcm2quaCSJ(C_b2n);

76 est.euler_vect(:,kk+1) = dcm2eulrCSJ(C_b2n);

77

78 % compute local gravity, w/ or w/o centrifugal forces

79 r_wrtE_e_l = LLA2rWrtEinE(est.LLA([2,1,3],kk));

80 dg_centropital_l = cross(w_i2e_n, cross(w_i2e_n, r_e_n));

81 g_vector = gravityModel(est.LLA(1,kk), norm(r_e_n), earth_radius, e2);

82 g_l_n = g_vector - dg_centropital_l;

83

84 dot_v_n = C_b2n*sensor.f_b2i_b(:,kk)...

85 -cross(2*w_i2e_n+w_e2n_n,est.vel(:,kk))+g_l_n;

86 est.dotv_n(:,kk) = dot_v_n;

87 est.vel(:,kk+1) = est.vel(:,kk) + dot_v_n*sensor.dt(kk);

88 est.pos(:,kk+1) = est.pos(:,kk) + est.vel(:,kk)*sensor.dt(kk) +

dot_v_n*sensor.dt(kk)^2;

89

90 lattitude_temp = est.pos(1,kk+1)/earth_radius + lattitude_ini;

91 longitude_temp = est.pos(2,kk+1)./cos(lattitude_temp)/earth_radius...

92 + longitude_ini;

93 height_temp = est.pos(3,kk+1);

94 est.LLA(:,kk+1) = [lattitude_temp;longitude_temp;height_temp];

95

96 % calculate roll and picth angle

97 est.accRoll(kk) = [atan2(-sensor.f_b2i_b(2,kk),-sensor.f_b2i_b(3,kk))];

98 est.accPitch(kk) =

[atan2(sensor.f_b2i_b(1,kk),sqrt(sensor.f_b2i_b(2,kk)^2+sensor.f_b2i_b(3,kk)^2))];

99 C_b2n_update = eulr2dcmCSJ([est.accRoll(kk),...

100 est.accPitch(kk),...

101 est.euler_vect(3,kk)])’;

102

103 % velocity reset if

104 if est.test_statistics(kk)<threshold

105 est.vel(:,kk+1) = 0;

106 C_b2n = C_b2n_update;

107 end

108

109 end

Zero-velocity Update in EKF

1 function est = ZUPTwEKF(sensor,groundTrueStates,ifLocalFrame)

2

538

3 % navigation constant

4 earth_radius = 6378137; % earth radius

5 earthrate=7.2921150e-5; % eearth rate, rad/s

6 g = 9.8198; % gravity

7 e2 = 6.694380004260835e-3; % EarthEccentricitySq

8

9 % % filter parameter settings

10 % ramdomly selected

11 % sensor_arw = 0.0005;

12 % sensor_vrw = 0.01;

13 % sensor_rrw = 1e-8;

14 % sensor_acrw = 1e-5;

15 % zupt_std = 0.02;

16

17 % VN-200

18 sensor_arw = 6.1087e-04; % 6.1087e-04

19 sensor_vrw = 0.0137; % 0.0137

20 sensor_rrw = 4.8481e-05; % 4.8481e-05

21 sensor_acrw = 3.9240e-04; % 3.9240e-04

22 zupt_std = 0.05;

23 zaru_std = 0.02;

24

25 threshold_ZUPT = exp(-2.5);

26 threshold_ZART = exp(-4.1);

27

28 ZUPTdetector = @accelMovVarDetector;

29 % ZUPTdetector = @accelMoveVarGyroEnergyDetector;

30 cal_period = 5*round(1/mean(sensor.dt));

31 % Detector Choice:

32 % - accelMovVarDetector for simulation

33 % - accelMoveVarGyroEnergyDetector for experiment

34

35 %initialization

36 lattitude_ini = groundTrueStates.lattitude(1);

37 longitude_ini = groundTrueStates.longitude(1);

38 accel_ini = mean(sensor.f_b2i_b(1:3,1:cal_period),2);

39

40 roll_ini = atan2(-accel_ini(2),-accel_ini(3)); %

41 pitch_ini = atan2(accel_ini(1),sqrt(accel_ini(2)^2+accel_ini(3)^2));

42

43 % roll_ini = groundTrueStates.euler_vect(1,1); %

44 % pitch_ini = groundTrueStates.euler_vect(2,1); %

45 % yaw_ini = groundTrueStates.euler_vect(3,1); %

46 yaw_ini = 0*pi/180; %

47 % yaw_ini = (-20+15.99)*pi/180; %

48

49 est.euler_vect(:,1) = [roll_ini;pitch_ini;yaw_ini];

539

50 est.q_b2n(:,1) = eulr2quaCSJ(est.euler_vect(:,1));

51 est.vel(:,1) = [0;0;0];

52 est.pos(:,1) = [0;0;0]; % [N,E,D]

53 est.dotv_n(:,1) = [0;0;0]; % [N,E,D]

54 est.w_n2b_b(:,1) = [0;0;0]; % [N,E,D]

55 est.w_e2n_n(:,1) = [0;0;0]; % [N,E,D]

56 est.w_i2e_n(:,1) = [0;0;0]; % [N,E,D]

57 C_b2n = eulr2dcmCSJ(est.euler_vect(:,1))’;

58 est.C_b2n(:,:,1) = C_b2n;

59 est.LLA(:,1) = [lattitude_ini;longitude_ini;0]; % lattitude, longitude

60 M = length(sensor.f_b2i_b);

61 est.timestamps = groundTrueStates.timestamps;

62 est.test_statistics = ZUPTdetector(sensor); %

63 est.threshold = threshold_ZUPT;

64 est.threshold_ZART = threshold_ZART;

65

66 est.accRoll = [];

67 est.accPitch = [];

68 est.b_g = mean(sensor.w_b2i_b(:,cal_period-400:cal_period),2);

69 est.b_a = zeros(3,1);

70

71 kf.P(:,:,1) = diag([zeros(1,15)]);

72 kf.Q = diag([sensor_arw*ones(1,3),sensor_vrw*ones(1,3),zeros(1,3),...

73 sensor_rrw*ones(1,3),sensor_acrw*ones(1,3).*[1 1 1]].^2)*sensor.dt(1);

74 kf.R = eye(3)*(zupt_std.^2);

75 kf.R_ZART = eye(3)*(zaru_std.^2);

76

77 kf.H_ZUPT = zeros(3,15);

78 kf.H_ZUPT(:,4:6) = eye(3);

79 kf.H_ZART = zeros(3,15);

80 kf.H_ZART(:,10:12) = eye(3);

81 kf.dx = zeros(15,1);

82 O33 = zeros(3,3);

83 I33 = eye(3);

84 I1515 = eye(15);

85

86 treadmillAngle = 0; % treadmill angle (degree) wrt to IMU,

87

88 treadmillVel = rotz(treadmillAngle)*movmean(groundTrueStates.v_n’,50)’;

89 for kk = 1:M

90

91 % compensate sensor measurement with bias

92 sensor.w_b2i_b(:,kk) = sensor.w_b2i_b(:,kk) - est.b_g(:,kk);

93 sensor.f_b2i_b(:,kk) = sensor.f_b2i_b(:,kk) - est.b_a(:,kk);

94

95 % Inertial Naivgation

96 cLat = cos(est.LLA(1,kk));

540

97 sLat = sin(est.LLA(1,kk));

98 h = est.LLA(3,kk);

99 ax = 1-e2*sLat^2;

100 R_N = earth_radius./sqrt(ax);

101 r_e_n = [-R_N*e2*sLat*cLat; 0; -R_N*ax - h];

102

103 w_i2e_n = [earthrate*cLat; 0 ; ...

104 -earthrate*sLat];

105 w_e2n_n = [est.vel(2,kk)/(earth_radius);...

106 -est.vel(1,kk)/(earth_radius);0];

107

108 est.w_e2n_n(:,kk) = w_e2n_n;

109 est.w_i2e_n(:,kk) = w_i2e_n;

110

111 w_n2b_b = sensor.w_b2i_b(:,kk) - C_b2n’*(w_i2e_n+w_e2n_n);

112 est.w_n2b_b(:,kk) = w_n2b_b;

113 % Integration in discrete time

114 C_b2n = C_b2n*expm(skew(w_n2b_b)*sensor.dt(kk)); % small angle

115 C_b2n = normalizeMTX(C_b2n);

116 est.C_b2n(:,:,kk+1) = C_b2n;

117 est.q_b2n(:,kk+1) = dcm2quaCSJ(C_b2n);

118 est.euler_vect(:,kk+1) = dcm2eulrCSJ(C_b2n);

119

120 % compute local gravity, w/ or w/o centrifugal forces

121 r_wrtE_e_l = LLA2rWrtEinE(est.LLA([2,1,3],kk));

122 dg_centropital_l = cross(w_i2e_n, cross(w_i2e_n, r_e_n));

123 g_vector = gravityModel(est.LLA(1,kk), norm(r_e_n), earth_radius, e2);

124 g_l_n = g_vector - dg_centropital_l;

125

126 dot_v_n = C_b2n*sensor.f_b2i_b(:,kk)...

127 -cross(2*w_i2e_n+w_e2n_n,est.vel(:,kk))+g_l_n;

128 est.dotv_n(:,kk) = dot_v_n;

129 est.vel(:,kk+1) = est.vel(:,kk) + dot_v_n*sensor.dt(kk);

130 est.pos(:,kk+1) = est.pos(:,kk) + est.vel(:,kk)*sensor.dt(kk) +

dot_v_n*sensor.dt(kk)^2;

131

132 lattitude_temp = est.pos(1,kk+1)/earth_radius + lattitude_ini;

133 longitude_temp = est.pos(2,kk+1)./cos(lattitude_temp)/earth_radius...

134 + longitude_ini;

135 height_temp = est.pos(3,kk+1);

136 est.LLA(:,kk+1) = [lattitude_temp;longitude_temp;height_temp];

137

138 % Error State EKF

139 % Prediction step:

140 A = [-skew(w_i2e_n+w_e2n_n) O33 O33 -C_b2n O33;

141 skew(C_b2n*sensor.f_b2i_b(:,kk)) -skew(2*w_i2e_n+w_e2n_n) O33 O33 C_b2n;

142 O33 I33 O33 O33 O33;

541

143 O33 O33 O33 O33 O33;

144 O33 O33 O33 O33 O33];

145 F = expm(A*sensor.dt(kk));

146

147 kf.P(:,:,kk+1) = F*kf.P(:,:,kk)*F’+kf.Q;

148

149 % EKF Update step: Zero Velocity Update

150 z = []; % measurement

151 R = []; % measurement noise matrix

152 H = []; % measurement model

153 dx = zeros(15,1); % error state

154 % calculate roll and picth angle (not used here)

155 est.accRoll(kk) = [atan2(-sensor.f_b2i_b(2,kk),-sensor.f_b2i_b(3,kk))];

156 est.accPitch(kk) = [atan2(sensor.f_b2i_b(1,kk),sqrt(sensor.f_b2i_b(2,kk)^2...

...

157 +sensor.f_b2i_b(3,kk)^2))];

158

159 % zero velocity update

160 if est.test_statistics(kk)<est.threshold && 1

161 if ifLocalFrame % if on treadmill

162 z = [z;treadmillVel(:,kk+1)-est.vel(:,kk+1)];

163 H = [H;kf.H_ZUPT];

164 R = diag([diag(R),diag(kf.R).^0.00001]);

165 else

166 z = [z;0-est.vel(:,kk+1)];

167 H = [H; kf.H_ZUPT];

168 R = diag([diag(R);diag(kf.R)]);

169 end

170 end

171

172 if ~isempty(z)

173 Sk = H*kf.P(:,:,kk+1)*H’+R;

174 Kk = kf.P(:,:,kk+1)*H’*inv(Sk);

175 kf.P(:,:,kk+1) = (I1515-Kk*H)*kf.P(:,:,kk+1);

176 dx = Kk*z;

177 end

178 kf.P(:,:,kk+1) = (kf.P(:,:,kk+1)+kf.P(:,:,kk+1)’)/2;

179 kf.dx(:,kk) = dx;

180 % finish estimating errors, update navigation solutions

181 % orientation

182 C_b2n = (I33-skew(dx(1:3)))*C_b2n;

183 est.C_b2n(:,:,kk+1) = C_b2n;

184 est.q_b2n(:,kk+1) = dcm2quaCSJ(C_b2n);

185 est.euler_vect(:,kk+1) = dcm2eulrCSJ(C_b2n);

186 % velocity

187 est.vel(:,kk+1) = est.vel(:,kk+1)+dx(4:6);

188 % position

542

189 est.pos(:,kk+1) = est.pos(:,kk+1)+dx(7:9);

190 lattitude_temp = est.pos(1,kk+1)/earth_radius + lattitude_ini;

191 longitude_temp = est.pos(2,kk+1)./cos(lattitude_temp)/earth_radius...

192 + longitude_ini;

193 height_temp = est.pos(3,kk+1);

194 est.LLA(:,kk+1) = [lattitude_temp;longitude_temp;height_temp];

195 % IMU biases

196 est.b_g(:,kk+1) = est.b_g(:,kk) - dx(10:12);

197 est.b_a(:,kk+1) = est.b_a(:,kk) - dx(13:15);

198 end

199

200 disp(’Implementation Ends’)

B.3.3 IMU Noise Library

Deterministic Noise

1 function noise_sensor = addDeterministicErrors(raw_sensor,noiseSettings,ifRandom)

2

3 % mode 0: no deterministic noise

4 % mode 1: w/ turn-on biases

5 % mode 2: w/ scale factor inconsistency

6 % mode 3: w/ mis-alignment

7 % mode 4: w/ g-sensitivity

8 % mode 5: w/ the point of percussion correction factor

9

10 noise_sensor = raw_sensor;

11 bias_sensor = raw_sensor;

12

13 mis_align_angle = 0.03; % deg

14 accel_bias = 0.01; % g

15 gyro_bias = 0.3; % deg/s

16

17 if ifRandom == 1

18 accel_SF_error = sin(mis_align_angle*randn(1,3)*pi/180);

19 gyro_SF_error = sin(mis_align_angle*randn(1,3)*pi/180);

20

21 accel_ML_error = sin(mis_align_angle*randn(1,3)*pi/180);

22 gyro_ML_error = sin(mis_align_angle*randn(1,3)*pi/180);

23

24 accel_turn_on_bias = accel_bias*9.81*randn(3,1); % m/s^2

25 gyro_turn_on_bias = gyro_bias*pi/180*randn(3,1); % rad

26

543

27 accel_SF_error_M = diag(accel_SF_error); % accel scale factor

28 gyro_SF_error_M = diag(gyro_SF_error); % gyro scale factor

29

30 accel_ML_error_M = skew(accel_ML_error); % accel misalignment

31 gyro_ML_error_M = skew(gyro_ML_error); % gyro misalignment

32 else

33 accel_turn_on_bias = accel_bias*9.81*randn(3,1); % m/s^2, bias always ramdom

34 gyro_turn_on_bias = gyro_bias*pi/180*randn(3,1); % rad

35

36 accel_SF_error = sin(mis_align_angle*ones(1,3)*pi/180);

37 gyro_SF_error = sin(mis_align_angle*ones(1,3)*pi/180);

38

39 accel_ML_error = sin(mis_align_angle*ones(1,3)*pi/180);

40 gyro_ML_error = sin(mis_align_angle*ones(1,3)*pi/180);

41

42 accel_SF_error_M = diag(accel_SF_error); % accel scale factor

43 gyro_SF_error_M = diag(gyro_SF_error); % gyro scale factor

44

45 accel_ML_error_M = skew(accel_ML_error); % accel misalignment

46 gyro_ML_error_M = skew(gyro_ML_error); % gyro misalignment

47 end

48

49 if noiseSettings.iniBias == 1

50 disp([’Set Accel Turn-on bias to ’ num2str(accel_turn_on_bias’) ’ [m/s^2]’])

51 disp([’Set Gyro Turn-on bias to ’ num2str(gyro_turn_on_bias’) ’ [rad/s]’])

52 bias_sensor.f_b2i_b = bias_sensor.f_b2i_b + accel_turn_on_bias;

53 bias_sensor.w_b2i_b = bias_sensor.w_b2i_b + gyro_turn_on_bias;

54 end

55

56 if noiseSettings.scaleFactor == 1

57 disp([’Set Accel SF error to ’ num2str(accel_SF_error) ’ [deg]’])

58 disp([’Set Gyro SF error to ’ num2str(gyro_SF_error) ’ [deg]’])

59 noise_sensor.f_b2i_b = noise_sensor.f_b2i_b +

accel_SF_error_M*bias_sensor.f_b2i_b;

60 noise_sensor.w_b2i_b = noise_sensor.w_b2i_b +

gyro_SF_error_M*bias_sensor.w_b2i_b;

61 end

62

63 if noiseSettings.misalignment == 1

64 disp([’Set Accel ML error to ’ num2str(accel_ML_error) ’ [deg]’])

65 disp([’Set Gyro ML error to ’ num2str(gyro_ML_error) ’ [deg]’])

66 noise_sensor.f_b2i_b = noise_sensor.f_b2i_b +

accel_ML_error_M*bias_sensor.f_b2i_b;

67 noise_sensor.w_b2i_b = noise_sensor.w_b2i_b +

gyro_ML_error_M*bias_sensor.w_b2i_b;

68 end

544

FSR and bandwidth

1 function noise_sensor = SimSaturateIMU(raw_sensor,noiseSettings, accelFSR,

gyroFSR, accelBW, gyroBW)

2

3 noise_sensor = raw_sensor;

4 fs = 1/(raw_sensor.timestamps(2));

5

6 % try IIR filter LP

7 if noiseSettings.bandWidth == 1

8

9 disp([’Set Accel BW to ’ num2str(accelBW) ’ [Hz]’]);

10

11 % accel bandwidth

12 fc = accelBW;

13 filter_order = 6;

14 [b,a] = butter(filter_order,fc/(fs/2));

15

16 noise_sensor.f_b2i_b(1,:) = filter(b,a,noise_sensor.f_b2i_b(1,:));

17 noise_sensor.f_b2i_b(2,:) = filter(b,a,noise_sensor.f_b2i_b(2,:));

18 noise_sensor.f_b2i_b(3,:) = filter(b,a,noise_sensor.f_b2i_b(3,:));

19

20 % gyro bandwidth

21

22 disp([’Set Gyro BW to ’ num2str(gyroBW) ’ [Hz]’]);

23 fc = gyroBW;

24

25 [b,a] = butter(filter_order,fc/(fs/2));

26 noise_sensor.w_b2i_b(1,:) = filter(b,a,noise_sensor.w_b2i_b(1,:));

27 noise_sensor.w_b2i_b(2,:) = filter(b,a,noise_sensor.w_b2i_b(2,:));

28 noise_sensor.w_b2i_b(3,:) = filter(b,a,noise_sensor.w_b2i_b(3,:));

29 end

30

31 % FIR LP

32 if noiseSettings.bandWidth == 1 && 0

33 % accel bandwidth

34 disp([’Set Accel BW to ’ num2str(accelBW) ’ [Hz]’]);

35 fc = accelBW;

36

37 noise_sensor.f_b2i_b(1,:) = lowpass(noise_sensor.f_b2i_b(1,:),fc,fs);

38 noise_sensor.f_b2i_b(2,:) = lowpass(noise_sensor.f_b2i_b(2,:),fc,fs);

39 noise_sensor.f_b2i_b(3,:) = lowpass(noise_sensor.f_b2i_b(3,:),fc,fs);

40

41 % gyro bandwidth

42

43 fc = gyroBW;

44 disp([’Set Gyro BW to ’ num2str(gyroBW) ’ [Hz]’]);

545

45 noise_sensor.w_b2i_b(1,:) = lowpass(noise_sensor.w_b2i_b(1,:),fc,fs);

46 noise_sensor.w_b2i_b(2,:) = lowpass(noise_sensor.w_b2i_b(2,:),fc,fs);

47 noise_sensor.w_b2i_b(3,:) = lowpass(noise_sensor.w_b2i_b(3,:),fc,fs);

48 end

49

50 if noiseSettings.FSR ==1

51 disp([’Set Accel FSR to ’ num2str(accelFSR/9.81) ’ [g]’]);

52 % accel FSR

53 noise_sensor.f_b2i_b(3,noise_sensor.f_b2i_b(3,:)>accelFSR) = accelFSR;

54 noise_sensor.f_b2i_b(3,noise_sensor.f_b2i_b(3,:)<-accelFSR) = -accelFSR;

55

56 % gyro FSR

57 disp([’Set Gyro FSR to ’ num2str(gyroFSR*180/pi), ’[dps]’]);

58 noise_sensor.w_b2i_b(1,noise_sensor.w_b2i_b(1,:)>gyroFSR) = gyroFSR;

59 noise_sensor.w_b2i_b(2,noise_sensor.w_b2i_b(2,:)>gyroFSR) = gyroFSR;

60 noise_sensor.w_b2i_b(3,noise_sensor.w_b2i_b(3,:)>gyroFSR) = gyroFSR;

61 noise_sensor.w_b2i_b(1,noise_sensor.w_b2i_b(1,:)<-gyroFSR) = -gyroFSR;

62 noise_sensor.w_b2i_b(2,noise_sensor.w_b2i_b(2,:)<-gyroFSR) = -gyroFSR;

63 noise_sensor.w_b2i_b(3,noise_sensor.w_b2i_b(3,:)<-gyroFSR) = -gyroFSR;

64 end

B.3.4 Plotting Library

Animate Navigation Solution

1 function animatePath(path)

2

3 plot3(path.x,path.y,path.z,’b’,’LineWidth’,2);grid on;hold on;

4 plot3(path.x(end),path.y(end),path.z(end),’r^’,’LineWidth’,2)

5 plot3(path.x(1),path.y(1),path.z(1),’ks’,’LineWidth’,2)

6 title(’Trajectory’)

7 xlabel(’North, m’)

8 ylabel(’East, m’)

9 zlabel(’Down, m’)

10 % xlim([-1 5])

11 ylim([-1 1])

12 zlim([-1 1])

13 axis equal

14

15 x_arrow = [1,0,0]’;

16 y_arrow = [0,1,0]’;

17 z_arrow = [0,0,1]’;

18 current_pos = [path.x(1) path.y(1) path.z(1)];

546

19 current_dcm = eulr2dcmCSJ([path.roll(1), path.pitch(1), path.yaw(1)])’;

20 h_x =

mArrow3(current_pos,current_pos+(current_dcm*x_arrow)’,’color’,’red’,’stemWidth’,0.03,’facealpha’,1);

21 h_y =

mArrow3(current_pos,current_pos+(current_dcm*y_arrow)’,’color’,’green’,’stemWidth’,0.03,’facealpha’,1);

22 h_z =

mArrow3(current_pos,current_pos+(current_dcm*z_arrow)’,’color’,’blue’,’stemWidth’,0.03,’facealpha’,1);

23 legend(’Path’,’End’,’Start’,’b-frame x’,’b-frame y’,’b-frame z’)

24 title(’Trajectory’)

25 % view(60,15)

26

27 for kk = 1:1000:length(path.x)

28 delete(h_x)

29 delete(h_y)

30 delete(h_z)

31 current_pos = [path.x(kk) path.y(kk) path.z(kk)];

32 current_dcm = eulr2dcmCSJ([path.roll(kk), path.pitch(kk), path.yaw(kk)])’;

33 h_x =

mArrow3(current_pos,current_pos+(current_dcm*x_arrow)’,’color’,’red’,’stemWidth’,0.03,’facealpha’,1);

34 h_y =

mArrow3(current_pos,current_pos+(current_dcm*y_arrow)’,’color’,’green’,’stemWidth’,0.03,’facealpha’,1);

35 h_z =

mArrow3(current_pos,current_pos+(current_dcm*z_arrow)’,’color’,’blue’,’stemWidth’,0.03,’facealpha’,1);

36 title([’Trajectory, frame = ’,num2str(kk)]);

37 legend(’Path’,’End’,’Start’,’b-frame x’,’b-frame y’,’b-frame z’)

38 % xlim([-1 5])

39 ylim([-1 1])

40 zlim([-1 1])

41 % view(60,15)

42 drawnow

43 end

44 end

Generate 3D Arrow

1 function h = mArrow3(p1,p2,varargin)

2 %mArrow3 - plot a 3D arrow as patch object (cylinder+cone)

3 %

4 % syntax: h = mArrow3(p1,p2)

5 % h = mArrow3(p1,p2,’propertyName’,propertyValue,...)

6 %

7 % with: p1: starting point

8 % p2: end point

9 % properties: ’color’: color according to MATLAB specification

547

10 % (see MATLAB help item ’ColorSpec’)

11 % ’stemWidth’: width of the line

12 % ’tipWidth’: width of the cone

13 %

14 % Additionally, you can specify any patch object properties. (For

15 % example, you can make the arrow semitransparent by using

16 % ’facealpha’.)

17 %

18 % example1: h = mArrow3([0 0 0],[1 1 1])

19 % (Draws an arrow from [0 0 0] to [1 1 1] with default properties.)

20 %

21 % example2: h = mArrow3([0 0 0],[1 1

1],’color’,’red’,’stemWidth’,0.02,’facealpha’,0.5)

22 % (Draws a red semitransparent arrow with a stem width of 0.02 units.)

23 %

24 % hint: use light to achieve 3D impression

25 %

26 propertyNames = {’edgeColor’};

27 propertyValues = {’none’};

28 %% evaluate property specifications

29 for argno = 1:2:nargin-2

30 switch varargin{argno}

31 case ’color’

32 propertyNames = {propertyNames{:},’facecolor’};

33 propertyValues = {propertyValues{:},varargin{argno+1}};

34 case ’stemWidth’

35 if isreal(varargin{argno+1})

36 stemWidth = varargin{argno+1};

37 else

38 warning(’mArrow3:stemWidth’,’stemWidth must be a real number’);

39 end

40 case ’tipWidth’

41 if isreal(varargin{argno+1})

42 tipWidth = varargin{argno+1};

43 else

44 warning(’mArrow3:tipWidth’,’tipWidth must be a real number’);

45 end

46 otherwise

47 propertyNames = {propertyNames{:},varargin{argno}};

48 propertyValues = {propertyValues{:},varargin{argno+1}};

49 end

50 end

51 %% default parameters

52 if ~exist(’stemWidth’,’var’)

53 ax = axis;

54 if numel(ax)==4

55 stemWidth = norm(ax([2 4])-ax([1 3]))/300;

548

56 elseif numel(ax)==6

57 stemWidth = norm(ax([2 4 6])-ax([1 3 5]))/300;

58 end

59 end

60 if ~exist(’tipWidth’,’var’)

61 tipWidth = 3*stemWidth;

62 end

63 tipAngle = 22.5/180*pi;

64 tipLength = tipWidth/tan(tipAngle/2);

65 ppsc = 50; % (points per small circle)

66 ppbc = 250; % (points per big circle)

67 %% ensure column vectors

68 p1 = p1(:);

69 p2 = p2(:);

70 %% basic lengths and vectors

71 x = (p2-p1)/norm(p2-p1); % (unit vector in arrow direction)

72 y = cross(x,[0;0;1]); % (y and z are unit vectors orthogonal to arrow)

73 if norm(y)<0.1

74 y = cross(x,[0;1;0]);

75 end

76 y = y/norm(y);

77 z = cross(x,y);

78 z = z/norm(z);

79 %% basic angles

80 theta = 0:2*pi/ppsc:2*pi; % (list of angles from 0 to 2*pi for small circle)

81 sintheta = sin(theta);

82 costheta = cos(theta);

83 upsilon = 0:2*pi/ppbc:2*pi; % (list of angles from 0 to 2*pi for big circle)

84 sinupsilon = sin(upsilon);

85 cosupsilon = cos(upsilon);

86 %% initialize face matrix

87 f = NaN([ppsc+ppbc+2 ppbc+1]);

88 %% normal arrow

89 if norm(p2-p1)>tipLength

90 % vertices of the first stem circle

91 for idx = 1:ppsc+1

92 v(idx,:) = p1 + stemWidth*(sintheta(idx)*y + costheta(idx)*z);

93 end

94 % vertices of the second stem circle

95 p3 = p2-tipLength*x;

96 for idx = 1:ppsc+1

97 v(ppsc+1+idx,:) = p3 + stemWidth*(sintheta(idx)*y + costheta(idx)*z);

98 end

99 % vertices of the tip circle

100 for idx = 1:ppbc+1

101 v(2*ppsc+2+idx,:) = p3 + tipWidth*(sinupsilon(idx)*y + cosupsilon(idx)*z);

102 end

549

103 % vertex of the tiptip

104 v(2*ppsc+ppbc+4,:) = p2;

105 % face of the stem circle

106 f(1,1:ppsc+1) = 1:ppsc+1;

107 % faces of the stem cylinder

108 for idx = 1:ppsc

109 f(1+idx,1:4) = [idx idx+1 ppsc+1+idx+1 ppsc+1+idx];

110 end

111 % face of the tip circle

112 f(ppsc+2,:) = 2*ppsc+3:(2*ppsc+3)+ppbc;

113 % faces of the tip cone

114 for idx = 1:ppbc

115 f(ppsc+2+idx,1:3) = [2*ppsc+2+idx 2*ppsc+2+idx+1 2*ppsc+ppbc+4];

116 end

117 %% only cone v

118 else

119 tipWidth = 2*sin(tipAngle/2)*norm(p2-p1);

120 % vertices of the tip circle

121 for idx = 1:ppbc+1

122 v(idx,:) = p1 + tipWidth*(sinupsilon(idx)*y + cosupsilon(idx)*z);

123 end

124 % vertex of the tiptip

125 v(ppbc+2,:) = p2;

126 % face of the tip circle

127 f(1,:) = 1:ppbc+1;

128 % faces of the tip cone

129 for idx = 1:ppbc

130 f(1+idx,1:3) = [idx idx+1 ppbc+2];

131 end

132 end

133 %% draw

134 fv.faces = f;

135 fv.vertices = v;

136 h = patch(fv);

137 for propno = 1:numel(propertyNames)

138 try

139 set(h,propertyNames{propno},propertyValues{propno});

140 catch

141 disp(lasterr)

142 end

143 end

Plot 3D Orientation

550

1 function plotComparedOrientation(groundTrueStates,est)

2 d2r = pi/180;

3 r2d = 180/pi;

4 subplot(3,1,1)

5 plot(groundTrueStates.timestamps,groundTrueStates.euler_vect(1,:)*r2d);hold on

6 plot(est.timestamps,est.euler_vect(1,:)*r2d);

7 title([’Roll, ’, groundTrueStates.name])

8 legend(’Simulated’,’Estimated’)

9 xlabel(’Time, s’)

10 ylabel(’Degree’)

11 subplot(3,1,2)

12 plot(groundTrueStates.timestamps,groundTrueStates.euler_vect(2,:)*r2d);hold on

13 plot(est.timestamps,est.euler_vect(2,:)*r2d);

14 title([’Pitch, ’, groundTrueStates.name])

15 legend(’Simulated’,’Estimated’)

16 xlabel(’Time, s’)

17 ylabel(’Degree’)

18 subplot(3,1,3)

19 plot(groundTrueStates.timestamps,groundTrueStates.euler_vect(3,:)*r2d);hold on

20 plot(est.timestamps,est.euler_vect(3,:)*r2d);

21 title([’Yaw, ’, groundTrueStates.name])

22 legend(’Simulated’,’Estimated’)

23 xlabel(’Time, s’)

24 ylabel(’Degree’)

Plot Path

1 function plotComparedPath(groundTrueStates,est)

2

3 subplot(3,1,1)

4 plot(groundTrueStates.timestamps,groundTrueStates.pos(1,:));hold on

5 plot(est.timestamps,est.pos(1,:));

6 title([’North, ’, groundTrueStates.name])

7 legend(’Simulated’,’Estimated’)

8 xlabel(’Time, s’)

9 ylabel(’m’)

10 subplot(3,1,2)

11 plot(groundTrueStates.timestamps,groundTrueStates.pos(2,:));hold on

12 plot(est.timestamps,est.pos(2,:));

13 title([’East, ’, groundTrueStates.name])

14 legend(’Simulated’,’Estimated’)

15 xlabel(’Time, s’)

16 ylabel(’m’)

17 subplot(3,1,3)

551

18 plot(groundTrueStates.timestamps,groundTrueStates.pos(3,:));hold on

19 plot(est.timestamps,est.pos(3,:));

20 title([’Down, ’, groundTrueStates.name])

21 legend(’Simulated’,’Estimated’)

22 xlabel(’Time, s’)

23 ylabel(’m’)

Plot Position Comparison

1 function plotComparedPostion(groundTrueStates,est)

2

3 plot3(est.pos(1,:),est.pos(2,:),est.pos(3,:),’b’,’LineWidth’,2);grid on;hold on

4 plot3(est.pos(1,end),est.pos(2,end),est.pos(3,end),’b^’,’LineWidth’,2)

5 plot3(est.pos(1,1),est.pos(2,1),est.pos(3,1),’bs’,’LineWidth’,2)

6 plot3(groundTrueStates.pos(1,:),groundTrueStates.pos(2,:),groundTrueStates.pos(3,:),’r’,’LineWidth’,2);grid

on;hold on;

7 plot3(groundTrueStates.pos(1,end),groundTrueStates.pos(2,end),groundTrueStates.pos(3,end),’ro’,’LineWidth’,2)

8 plot3(groundTrueStates.pos(1,1),groundTrueStates.pos(2,1),groundTrueStates.pos(3,1),’rs’,’LineWidth’,2)

9 legend(’Estimated Path’,’Estimated End’,’Estimated Start’,’True Path’,’True

End’,’True Start’)

10 title([’True vs Estimated trajectory, ’, groundTrueStates.name])

11 xlabel(’North, m’)

12 ylabel(’East, m’)

13 zlabel(’Down, m’)

Plot Velocity Comparison

1 function plotComparedVelocity(groundTrue,est)

2

3 subplot(3,1,1)

4 plot(groundTrue.timestamps,groundTrue.v_n(1,:));hold on

5 plot(est.timestamps,est.vel(1,:));

6 title([’Simulated Velocity along the North, ’, groundTrue.name])

7 legend(’Simulated’,’Estimated’)

8 xlabel(’time, s’)

9 ylabel(’m/s’)

10

11 subplot(3,1,2)

12 plot(groundTrue.timestamps,groundTrue.v_n(2,:));hold on

13 plot(est.timestamps,est.vel(2,:));

14 title([’Simulated Velocity along the East, ’, groundTrue.name])

15 legend(’Simulated’,’Estimated’)

552

16 xlabel(’time, s’)

17 ylabel(’m/s’)

18

19 subplot(3,1,3)

20 plot(groundTrue.timestamps,groundTrue.v_n(3,:));hold on

21 plot(est.timestamps,est.vel(3,:));

22 title([’Velocity along the Down, ’, groundTrue.name])

23 legend(’Simulated’,’Estimated’)

24 xlabel(’time, s’)

25 ylabel(’m/s’)

Plot Ground Truth Path

1 function plotGroundTruePath(groundTrue,name)

2

3 if nargin<2

4 name = ’’;

5 end

6

7 plot3(groundTrue.x,groundTrue.y,groundTrue.z,’b’,’LineWidth’,2);grid on;hold on;

8 plot3(groundTrue.x(end),groundTrue.y(end),groundTrue.z(end),’r^’,’LineWidth’,2)

9 plot3(groundTrue.x(1),groundTrue.y(1),groundTrue.z(1),’ks’,’LineWidth’,2)

10 legend(’Path’,’End’,’Start’)

11 title([’Trajectory: ’ name])

12 xlabel(’x, m’)

13 ylabel(’y, m’)

14 zlabel(’z, m’)

15 axis equal

Plot Navigation Error

1 function plotNavError(error)

2

3 subplot(3,1,1)

4 plot(error.timestamps,error.pos);

5 legend(’x’,’y’,’z’)

6 title(’Position Error’)

7 xlabel(’Time, s’)

8 ylabel(’m’)

9

10 subplot(3,1,2)

11 plot(error.timestamps,error.orientation*180/pi);

553

12 legend(’roll’,’pitch’,’yaw’)

13 title(’Orientation Error’)

14 xlabel(’Time, s’)

15 ylabel(’Degree’)

16

17 subplot(3,1,3)

18 plot(error.timestamps,error.vel);

19 legend(’x’,’y’,’z’)

20 title(’Velocity Error’)

21 xlabel(’Time, s’)

22 ylabel(’m/s’)

Plot Simulated IMU Readings

1 function plotSimulatedIMU(sensor)

2

3 subplot(2,1,1)

4 plot(sensor.timestamps,sensor.f_b2i_b/9.81);

5 xlabel(’Time, s’)

6 ylabel(’g’)

7 title([’Simulated Accelerometer readings, ’, sensor.name])

8 legend(’x’,’y’,’z’)

9 subplot(2,1,2)

10 plot(sensor.timestamps,sensor.w_b2i_b*180/pi);

11 xlabel(’Time, s’)

12 ylabel(’deg/s’)

13 title([’Simulated Gyroscope readings, ’ sensor.name])

14 legend(’x’,’y’,’z’)

Plot 3D Position

1 function plotPostion(est)

2

3 end_ind = length(est.pos)-round(0.05/(est.timestamps(2)-est.timestamps(1)));

4

5 plot3(est.pos(2,1:end_ind),est.pos(1,1:end_ind),-est.pos(3,1:end_ind),’Color’,...

6 [0.00,0.45,0.74],’LineWidth’,2);grid on;hold on

7 plot3(est.pos(2,end_ind),est.pos(1,end_ind),-est.pos(3,end_ind),’^’,’Color’,...

8 [0.85,0.33,0.10],’LineWidth’,2)

9 plot3(est.pos(2,1),est.pos(1,1),-est.pos(3,1),’ks’,’LineWidth’,2)

10 legend(’Path’,’End’,’Start’)

11 title([’Estimated trajectory’])

554

12 ylabel(’North, m’)

13 xlabel(’East, m’)

14 zlabel(’Down, m’)

Plot Position on XY Plane

1 function plotXYPostion(est)

2

3 end_ind = length(est.pos)-round(0.05/(est.timestamps(2)-est.timestamps(1)));

4

5 plot(est.pos(2,1:end_ind),est.pos(1,1:end_ind),’Color’,[0.00,0.45,0.74],’LineWidth’,2);grid

on;hold on

6 plot(est.pos(2,end_ind),est.pos(1,end_ind),’^’,’Color’,[0.85,0.33,0.10],’LineWidth’,2)

7 plot(est.pos(2,1),est.pos(1,1),’ks’,’LineWidth’,2)

8 legend(’Path’,’End’,’Start’)

9 title([’Horizontal trajectory’])

10 ylabel(’North, m’)

11 xlabel(’East, m’)

Plot Position on XZ Plane

1 function plotXZPostion(est)

2

3 end_ind = length(est.pos)-round(0.05/(est.timestamps(2)-est.timestamps(1)));

4

5 plot(est.pos(1,1:end_ind),est.pos(3,1:end_ind),’Color’,[0.00,0.45,0.74],’LineWidth’,2);grid

on;hold on

6 plot(est.pos(1,end_ind),est.pos(3,end_ind),’^’,’Color’,[0.85,0.33,0.10],’LineWidth’,2)

7 plot(est.pos(1,1),est.pos(3,1),’ks’,’LineWidth’,2)

8 legend(’Path’,’End’,’Start’)

9 title([’Vertical trajectory’])

10 xlabel(’North, m’)

11 ylabel(’Down, m’)

Plot IMU Readings and Stance Phase Status

1 function plotZUPTAndIMU(sensor,est)

2 figure;

3 subplot(2,1,1)

555

4 area(est.timestamps(1:end-1), (est.test_statistics<est.threshold)*50);hold on

5 alpha(0.2)

6 plot(sensor.timestamps,sensor.f_b2i_b’);

7 title(’Stance Phase Test Statistics’)

8 ylabel(’Log Likelihood’)

9 xlabel(’Time, s’)

10

11 subplot(2,1,2)

12 plot(est.timestamps(1:end-1), log(est.test_statistics));hold on

13 plot([est.timestamps(1) est.timestamps(end-1)],[log(est.threshold)

log(est.threshold)]);

14 title(’Stance Phase Test Statistics’)

15 ylabel(’Log Likelihood’)

16 xlabel(’Time, s’)

B.3.5 Stance Phase Detection Library

Accelerometer Moving Variance Detector

1 function test_statistics = accelMovVarDetector(sensor)

2 test_statistics = movvar(sensor.f_b2i_b(3,:),1/sensor.dt(1)/4);

3 % for fs = 10000;

4 end

Accelerometer Moving Variance And Gyroscope Energy Detector

1 function test_statistics = accelMoveVarGyroEnergyDetector(sensor)

2 window_size = 100;

3 test_statistics = sum(movvar(sensor.f_b2i_b(1:3,:),window_size,0,2)) ...

4 +

sum(movmean(abs(sensor.w_b2i_b(1:3,:)-mean(sensor.w_b2i_b(1:3,1:100),2))...

5 ,window_size,2));

6 end

SHOE detector

1 function [zupt,total,total_x,total_y,total_z] = SHOE_detector(u,simdata)

556

2 % ---

3 % This function calculated adaptive threshld for ZUPT detector

4 % Input: u: IMU readouts at current time step

5 % xi: Uncertainty of estimated velocity

6 % dt: Time differnce beween last time ZUPT is on and current step

7 % ZUPT: ZUPT state of previous time step

8 % thre1: Threshold of previous time step

9 % shock: Maximum shock level of last step

10 % ---

11

12 total_x = 1;

13 total_y = 1;

14 total_z = 1;

15

16 [r, c] = size(u);

17 W=simdata.Window_size;

18 sigma2_a = (simdata.sigma_a/simdata.Ts)^2;

19 sigma2_g = (simdata.sigma_g/simdata.Ts)^2;

20 g = 9.796;

21 u_n = mean(u(1:3, :), 2);

22 u_n = u_n / norm(u_n); % Unit vector along the specific force

23 for i = 1:3

24 u(i, :) = u(i, :) - g*u_n(i);

25 end

26 total_x = sum(sum(u(1,:).^2))/sigma2_a+sum(sum(u(4,:).^2))/sigma2_g;

27 total_y = sum(sum(u(2,:).^2))/sigma2_a+sum(sum(u(5,:).^2))/sigma2_g;

28 total_z = sum(sum(u(3,:).^2))/sigma2_a+sum(sum(u(6,:).^2))/sigma2_g;

29

30 total = sum(sum(u(1:3,:).^2))/sigma2_a+sum(sum(u(4:6,:).^2))/sigma2_g;

31 total = total/c;

32

33 if(total < simdata.factor)

34 zupt = ones(1, simdata.Window_size);

35 else

36 zupt = zeros(1, simdata.Window_size);

37 end

38 end

1 function [zupt,LR,thre2] = adaptive_detector_w_downward_ultrasnoic(u, xi, ...

2 dt, ZUPT, thre1, shock, shoe_height)

3 % ---

4 % This function calculated adaptive threshld for ZUPT detector

5 % Input: u: IMU readouts at current time step

6 % xi: Uncertainty of estimated velocity

7 % dt: Time differnce beween last time ZUPT is on and current step

8 % ZUPT: ZUPT state of previous time step

9 % thre1: Threshold of previous time step

557

10 % shock: Maximum shock level of last step

11 % shoe_height: readouts from downward-facing shoe-mounted ultrasonic

12 % sensor

13 % Output: zupt: Detected ZUPT state. 1 is stance and 0 is swing

14 % LR: Likelihood ratio

15 % thre2: Actual adaptive threshold

16 % ---

17 global simdata;

18 alpha = simdata.alpha;

19 theta = simdata.theta;

20 beta = simdata.beta*0;

21 p = [0.0364 7.9276]; % Derived from experimental results

22 p = [0.032 7.9276]; % Adjusted according to differnet subjects

23 temp = exp(p(1)*shock + p(2));

24 [r, c] = size(u);

25 W=simdata.Window_size;

26 sigma2_a = (simdata.sigma_a/simdata.Ts)^2;

27 sigma2_g = (simdata.sigma_g/simdata.Ts)^2;

28 sigma2_shoe = 1;

29 g = 9.796;

30 u_n = mean(u(1:3, :), 2);

31 u_n = u_n / norm(u_n); % Unit vector along the specific force

32 for i = 1:3

33 u(i, :) = u(i, :) - g*u_n(i);

34 end

35 total = sum(sum(u(1:3,:).^2))/sigma2_a+sum(sum(u(4:6,:).^2))/sigma2_g ...

36 + sum(shoe_height.^2)/sigma2_shoe;

37 total = total/c;

38 thre2 = alpha + theta*temp*log(dt/0.0083) - beta*xi;

39 % Hold the threshold during the stance phase

40 if (ZUPT == 0)

41 thre2 = alpha + theta*temp*log(dt/0.0083) - beta*xi;

42 elseif ZUPT ==1

43 thre2 = thre1;

44 end

45 if(thre2 < 1000)

46 thre2 = 1000;

47 end

48 if(total < thre2)

49 zupt = 1;

50 else

51 zupt = 0;

52 end

53 LR = total;

54 end

1 function [zupt,LR,thre2] = adaptive_detector_w_DVS(u, xi, dt, ZUPT, thre1, ...

558

2 shock, firing_rate)

3 % ---

4 % This function calculated adaptive threshld for ZUPT detector

5 % Input: u: IMU readouts at current time step

6 % xi: Uncertainty of estimated velocity

7 % dt: Time differnce beween last time ZUPT is on and current step

8 % ZUPT: ZUPT state of previous time step

9 % thre1: Threshold of previous time step

10 % shock: Maximum shock level of last step

11 % firing_rate: readouts from side-facing shoe-mounted DVS128

12 % Output: zupt: Detected ZUPT state. 1 is stance and 0 is swing

13 % LR: Likelihood ratio

14 % thre2: Actual adaptive threshold

15 % ---

16 global simdata;

17 alpha = simdata.alpha;

18 theta = simdata.theta;

19 beta = simdata.beta*0;

20 p = [0.0364 7.9276]; % Derived from experimental results

21 p = [0.032 7.9276]; % Adjusted according to differnet subjects

22 temp = exp(p(1)*shock + p(2));

23 [r, c] = size(u);

24 W=simdata.Window_size;

25 sigma2_a = (simdata.sigma_a/simdata.Ts)^2;

26 sigma2_g = (simdata.sigma_g/simdata.Ts)^2;

27 sigma2_DVS = 1;

28 g = 9.796;

29 u_n = mean(u(1:3, :), 2);

30 u_n = u_n / norm(u_n); % Unit vector along the specific force

31 for i = 1:3

32 u(i, :) = u(i, :) - g*u_n(i);

33 end

34 total = sum(sum(u(1:3,:).^2))/sigma2_a+sum(sum(u(4:6,:).^2))/sigma2_g ...

35 + sum(firing_rate.^2)/sigma2_DVS;

36 total = total/c;

37 thre2 = alpha + theta*temp*log(dt/0.0083) - beta*xi;

38 % Hold the threshold during the stance phase

39 if (ZUPT == 0)

40 thre2 = alpha + theta*temp*log(dt/0.0083) - beta*xi;

41 elseif ZUPT ==1

42 thre2 = thre1;

43 end

44 if(thre2 < 1000)

45 thre2 = 1000;

46 end

47 if(total < thre2)

48 zupt = 1;

559

49 else

50 zupt = 0;

51 end

52 LR = total;

53 end

B.3.6 Utility Library

Add Noise to IMU Readings

1 function noise_sensor = addIMUNoise(raw_sensor,IMU_model_name,noiseSettings)

2

3 Fs = 1/raw_sensor.dt(2);

4 L_n = length(raw_sensor.f_b2i_b);

5 noise_sensor = raw_sensor;

6 IMU_char = zeros(6,4);

7

8 % generate stochastic error

9 if isfile([pwd, ’\lib\IMU_noise_model\’ ’noise_model_’ IMU_model_name ’.mat’])

10 load([’noise_model_’ IMU_model_name ’.mat’])

11 else

12 load([’exp000_’ IMU_model_name ’.mat’])

13 signals = u(1:6,740000:end)’.*[9.8198;9.8198;9.8198;pi/180;pi/180;pi/180]’;

14 Fs_cal = round(1/mean(u(11,:)));

15 IMU_char(1,:) = opt_NBK_search(signals(:,1),Fs_cal,1);

16 IMU_char(2,:) = opt_NBK_search(signals(:,2),Fs_cal,1);

17 IMU_char(3,:) = opt_NBK_search(signals(:,3),Fs_cal,1);

18 IMU_char(4,:) = opt_NBK_search(signals(:,4),Fs_cal,1);

19 IMU_char(5,:) = opt_NBK_search(signals(:,5),Fs_cal,1);

20 IMU_char(6,:) = opt_NBK_search(signals(:,6),Fs_cal,1);

21 save([pwd, ’\lib\IMU_noise_model\’ ’noise_model_’ IMU_model_name ’.mat’] ...

22 ,’IMU_char’);

23 end

24

25 % manually setting noise

26 IMU_char(1:3,:) = ones(3,4).*[(0.04/1000*9.81)^2, 10, (0.14/1000*9.81)^2,

27 1.03373018045034e-08];

28 IMU_char(4:6,:) = ones(3,4).*[(10/3600*pi/180)^2, 10, (0.01*pi/180)^2,

29 2.0084484247909e-8];

30

31 [stochasticAccelNoise(:,1),~] = generateStochasticIMUnoise(IMU_char(1,:), ...

32 Fs,L_n,noiseSettings,0);

33 [stochasticAccelNoise(:,2),~] = generateStochasticIMUnoise(IMU_char(2,:), ...

560

34 Fs,L_n,noiseSettings,0);

35 [stochasticAccelNoise(:,3),~] = generateStochasticIMUnoise(IMU_char(3,:), ...

36 Fs,L_n,noiseSettings,0);

37 [stochasticGyroNoise(:,1),~] = generateStochasticIMUnoise(IMU_char(4,:), ...

38 Fs,L_n,noiseSettings,0);

39 [stochasticGyroNoise(:,2),~] = generateStochasticIMUnoise(IMU_char(5,:), ...

40 Fs,L_n,noiseSettings,0);

41 [stochasticGyroNoise(:,3),~] = generateStochasticIMUnoise(IMU_char(6,:), ...

42 Fs,L_n,noiseSettings,0);

43

44 % add both errors to the simulated IMU measurements

45 disp(’Add Stochastic Noise’)

46 noise_sensor.f_b2i_b = noise_sensor.f_b2i_b + stochasticAccelNoise’;

47 noise_sensor.w_b2i_b = noise_sensor.w_b2i_b + stochasticGyroNoise’;

48

49 % simulate insufficient range and BW

50 disp(’Simulate Reading Constraints’)

51 % raw_sensor,ifFSR, ifBW, accelFSR, gyroFSR, accelBW, gyroBW

52 noise_sensor = SimSaturateIMU(noise_sensor,noiseSettings, 16*9.81, ...

53 2000*pi/180, min(260,floor(Fs-1)), min(260,floor(Fs-1)));

54

55 % generate deterministic error

56 disp(’Add Deterministic Noise’)

57 % raw_sensor,ifBias, ifSF, ifML,ifRandom

58 noise_sensor = addDeterministicErrors(noise_sensor,noiseSettings,1);

Calculate Headings of a Set of Paths

1 function angleToNorth = calculateAngleToNorth(est,groundTrueStates,time2align)

2 Fs = 1/mean(diff(est.timestamps));

3 sample2Align = round(Fs*time2align);

4

5 angleToNorthEst = -atan2(est.pos(2,sample2Align), ...

6 est.pos(1,sample2Align))*180/pi;

7 angleToNorthGT = -atan2(groundTrueStates.pos(2,sample2Align), ...

8 groundTrueStates.pos(1,sample2Align))*180/pi;

9 angleToNorth = angleToNorthEst;

10 end

Computer Navigation Error With Reference

561

1 function error = computeNavErrorWRef(groundTrueStates,est)

2

3 error.pos = est.pos - groundTrueStates.pos;

4 error.orientation = est.euler_vect - groundTrueStates.euler_vect;

5 error.vel = est.vel - groundTrueStates.v_n;

6 error.timestamps = groundTrueStates.timestamps;

7 end

Find Time Offset Between Two Solutions

1 function deltaTau = findTimeOffSet(real_sensor,sim_sensor)

2 % compute initial time delay based on correlation

3 endTmp = min(length(real_sensor.f_b2i_b(1,:)),length(sim_sensor.f_b2i_b(1,:)));

4 deltaTau = finddelay(vecnorm(real_sensor.f_b2i_b), ...

5 vecnorm(sim_sensor.f_b2i_b));

6 end

Generate Ground Truth

1 function GT_aligned = groundTruthGeneration(GT_raw,fs_GT,fs)

2 % Description: interpolate ground truth position and orientation to desired

3 % sampling rate

4 %

5 % Input:

6 % - GT_raw: seven attributeTypes

7 % - x:column vector, meter

8 % - y:column vector, meter

9 % - z:column vector, meter

10 % - roll:column vector, radian

11 % - pitch:column vector, radian

12 % - yaw:column vector, radian

13 % - name

14 % Output:

15 % - GT_aligned: seven attributeTypes

16 % - x:column vector, meter

17 % - y:column vector, meter

18 % - z:column vector, meter

19 % - roll:column vector, radian

20 % - pitch:column vector, radian

21 % - yaw:column vector, radian

22 % - name

23

562

24

25 N = length(GT_raw); % number of objects

26

27 for kk = 1:N

28 % convert from mm to m

29 GT_aligned(kk).x = (GT_raw(kk).x-GT_raw(kk).x(1));

30 GT_aligned(kk).y = (GT_raw(kk).y-GT_raw(kk).y(1));

31 GT_aligned(kk).z = (GT_raw(kk).z-GT_raw(kk).z(1));

32 GT_aligned(kk).roll = GT_raw(kk).roll;

33 GT_aligned(kk).pitch = GT_raw(kk).pitch;

34 GT_aligned(kk).yaw = GT_raw(kk).yaw;

35 GT_aligned(kk).timestamps = (0:length(GT_aligned(kk).x)-1)/fs_GT;

36 GT_aligned(kk).name = GT_raw(kk).name;

37

38 interpl_method = ’spline’; % ’spline’ ’linear’

39 GT_aligned(kk).x =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).x)),...

40 GT_aligned(kk).x(~isnan(GT_aligned(kk).x)),GT_aligned(kk).timestamps, ...

41 interpl_method,"extrap");

42 GT_aligned(kk).y =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).y)),...

43 GT_aligned(kk).y(~isnan(GT_aligned(kk).y)),GT_aligned(kk).timestamps, ...

44 interpl_method,"extrap");

45 GT_aligned(kk).z =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).z)),...

46 GT_aligned(kk).z(~isnan(GT_aligned(kk).z)),GT_aligned(kk).timestamps, ...

47 interpl_method,"extrap");

48 GT_aligned(kk).roll =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).roll)),...

49 GT_aligned(kk).roll(~isnan(GT_aligned(kk).roll)),GT_aligned(kk).timestamps,

...

50 interpl_method,"extrap");

51 GT_aligned(kk).pitch =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).pitch)),...

52 GT_aligned(kk).pitch(~isnan(GT_aligned(kk).pitch)),GT_aligned(kk).timestamps,

...

53 interpl_method,"extrap");

54 GT_aligned(kk).yaw =

interp1(GT_aligned(kk).timestamps(~isnan(GT_aligned(kk).yaw)),...

55 GT_aligned(kk).yaw(~isnan(GT_aligned(kk).yaw)),GT_aligned(kk).timestamps,

...

56 interpl_method,"extrap");

57

58 %% generate smooth IMU data by signal processing

59 if 1

60 timestamps_interp1 =

(0:(fs_GT/fs):length(GT_aligned(kk).timestamps)-1)/fs_GT;

563

61 down_sample_window = 1;

62 true_temp.x = GT_aligned(kk).x(1:down_sample_window:end);

63 true_temp.y = GT_aligned(kk).y(1:down_sample_window:end);

64 true_temp.z = GT_aligned(kk).z(1:down_sample_window:end);

65 true_temp.roll = GT_aligned(kk).roll(1:down_sample_window:end);

66 true_temp.pitch = GT_aligned(kk).pitch(1:down_sample_window:end);

67 true_temp.yaw = GT_aligned(kk).yaw(1:down_sample_window:end);

68 timestamps_raw = GT_aligned(kk).timestamps(1:down_sample_window:end);

69

70 interpl_method = ’spline’;

71

72 GT_aligned(kk).x = interp1(timestamps_raw,true_temp.x,timestamps_interp1,

...

73 interpl_method,"extrap");

74 GT_aligned(kk).y = interp1(timestamps_raw,true_temp.y,timestamps_interp1,

...

75 interpl_method,"extrap");

76 GT_aligned(kk).z = interp1(timestamps_raw,true_temp.z,timestamps_interp1,

...

77 interpl_method,"extrap");

78 GT_aligned(kk).roll =

interp1(timestamps_raw,true_temp.roll,timestamps_interp1, ...

79 interpl_method,"extrap");

80 GT_aligned(kk).pitch =

interp1(timestamps_raw,true_temp.pitch,timestamps_interp1, ...

81 interpl_method,"extrap");

82 GT_aligned(kk).yaw =

interp1(timestamps_raw,true_temp.yaw,timestamps_interp1, ...

83 interpl_method,"extrap");

84 GT_aligned(kk).timestamps = timestamps_interp1;

85 end

86 end

87 end

Align Path to North

1 function est_North = rotateNavigation(est,rotAngle)

2 earth_radius = 6378137; % earth radius

3 rotMTX = [cos(rotAngle*pi/180) -sin(rotAngle*pi/180) 0;

4 sin(rotAngle*pi/180) cos(rotAngle*pi/180) 0;

5 0 0 1];

6 est_North = est;

7

8 % orientation

564

9 for k = 1:length(est.euler_vect)

10 C_b2n_tmp = rotMTX*eulr2dcmCSJ(est.euler_vect(:,k))’;

11 est_North.euler_vect(:,k) = dcm2eulrCSJ(C_b2n_tmp);

12 est_North.q_b2n(:,k) = dcm2quaCSJ(C_b2n_tmp);

13 est_North.C_b2n(:,:,k) = C_b2n_tmp;

14 end

15

16 est_North.dotv_n = rotMTX*est.dotv_n;

17 est_North.vel = rotMTX*est.vel;

18 est_North.pos = rotMTX*est.pos;

19

20 est_North.LLA(1,:) = est_North.pos(1,:)/earth_radius + est.LLA(1,1);

21 est_North.LLA(2,:) = est_North.pos(2,:)./cos(est_North.LLA(1,:))...

22 /earth_radius + est.LLA(2,1);

23 end

B.3.7 Sensor Fusion Library

Downward-Facing Ultrasonic Sensor

1 function flags = elevator_detector(accel_z_array, g)

2 if sum((accel_z_array-g)>0) == length(accel_z_array)

3 flags = 1;

4 elseif sum((accel_z_array-g)<0) == length(accel_z_array)

5 flags = -1;

6 else

7 flags = 0;

8 end

9

10 end

1 function elevator_ON = MovingElevatorDetection(accel_z)

2

3 elevator_flags = zeros(1,length(accel_z));

4 window_size = 1*700;

5 elevator_flags(1:window_size) = 0;

6 ini_z_axis_accel = mean(accel_z(1:100));

7 for kk = 1:length(accel_z)

8 if kk >= window_size+1

9 elevator_flags(kk-window_size:kk) =

elevator_detector(accel_z(kk-window_size:kk),

ini_z_axis_accel);%|elevator_flags(kk-window_size:kk);

565

10 end

11 end

12

13 elevator_ON = zeros(1,length(elevator_flags));

14

15 elevator_on = 0;

16 current_state = 0;

17 for kk = 1:length(elevator_ON)

18 elevator_ON(kk) = elevator_on;

19 if elevator_on == 0 && current_state == 0 && elevator_flags(kk) == 1

20 elevator_on = 1;

21 elevator_ON(kk) = elevator_on;

22 elseif elevator_on == 0 && current_state == 0 && elevator_flags(kk) == -1

23 elevator_on = -1;

24 elevator_ON(kk) = elevator_on;

25 end

26

27 if elevator_on == 1 && current_state == -1 && elevator_flags(kk) == 0

28 elevator_on = 0;

29 elevator_ON(kk) = elevator_on;

30 elseif elevator_on == -1 && current_state == 1 && elevator_flags(kk) == 0

31 elevator_on = 0;

32 elevator_ON(kk) = elevator_on;

33 end

34 current_state = elevator_flags(kk);

35 end

Barometer

1 function [P_cal,b_cal] = calibratePressure(P,P_ref,t,t_ref)

2 P_align = interp1(t(~isnan(P)),P(~isnan(P)),t_ref);

3 fit_ind = ~isnan(P_align)&~isnan(P_ref);

4 b_cal = [ones(length(P_align(fit_ind)),1) P_align(fit_ind)’]\P_ref(fit_ind)’;

5 P_cal = P*b_cal(2) + b_cal(1);

6 end

1 function P = height2pressure(h,T,P0)

2 P = exp(-h*(0.02896*9.807)./(273.15+T)/8.3143)*P0;

3 end

1 function h = pressure2height(P,T,P0)

2 h = -log((P)/P0)*8.3143.*(273.15+T)/(0.02896*9.807);

3 end

566

Adaptive Covariance

1 function [zupt,total,total_x,total_y,total_z,zupt_variance] =

ZUPTDynamicCovariance(u)

2 % ---

3 % This function calculated adaptive coravirance for ZUPT measurements

4 % ---

5 global simdata;

6

7 total_x = 1;

8 total_y = 1;

9 total_z = 1;

10

11 [r, c] = size(u);

12 W=simdata.Window_size;

13 sigma2_a = (simdata.sigma_a/simdata.Ts)^2;

14 sigma2_g = (simdata.sigma_g/simdata.Ts)^2;

15 g = 9.817269086191379;

16 u_n = mean(u(1:3, :), 2);

17 u_n = u_n / norm(u_n); % Unit vector along the specific force

18 for i = 1:3

19 u(i, :) = u(i, :) - g*u_n(i);

20 end

21

22 total_x = sum(sum(u(1,:).^2))/sigma2_a+sum(sum(u(4,:).^2))/sigma2_g;

23 total_y = sum(sum(u(2,:).^2))/sigma2_a+sum(sum(u(5,:).^2))/sigma2_g;

24 total_z = sum(sum(u(3,:).^2))/sigma2_a+sum(sum(u(6,:).^2))/sigma2_g;

25

26 total = sum(sum(u(1:3,:).^2))/sigma2_a+sum(sum(u(4:6,:).^2))/sigma2_g;

27 total = total/c;

28

29 if(total < simdata.factor)

30 zupt = ones(1, simdata.Window_size_for_dynamic_covariance);

31 else

32 zupt = zeros(1, simdata.Window_size_for_dynamic_covariance);

33 end

34

35 zupt_variance =

(([total,total,total]).*simdata.dynamic_variance_hyper_para_alpha)...

36 .^simdata.dynamic_variance_hyper_para_gamma...

37 .*simdata.dynamic_variance_hyper_para_beta*1;

38 end

567

B.3.8 Temperature Compensation Library

B.3.9 Neural Network Library

1 function [u,tem_sigma] = batchTemperautreCompensation(u,type,ifUse)

2 if ifUse

3 if 1

4 disp(’*Offline temperature compensation using Temperature and differential

temperature*’)

5 ind = 1:1:length(u(15,:));

6 temp_delta = diff(movmean(u(15,ind),1000));

7 temp = movmean(u(15,ind),1000);

8 temp = temp(1:end-1);

9 rel_temp = temp-u(15,1);

10 u = u(:,1:end-1);

11 feature = [temp;temp_delta];

12

13 [temp_bias,tem_sigma] = predTempError(feature);

14

15 if type == "dbias"

16 temp_bias.a_x = cumsum(temp_bias.a_x);

17 temp_bias.a_y = cumsum(temp_bias.a_y);

18 temp_bias.a_z = cumsum(temp_bias.a_z);

19 temp_bias.g_x = cumsum(temp_bias.g_x);

20 temp_bias.g_y = cumsum(temp_bias.g_y);

21 temp_bias.g_z = cumsum(temp_bias.g_z);

22 end

23 % remove bias from IMU

24 u(1,:) = u(1,:) - temp_bias.a_x;

25 u(2,:) = u(2,:) - temp_bias.a_y;

26 u(3,:) = u(3,:) - temp_bias.a_z;

27 u(4,:) = u(4,:) - temp_bias.g_x;

28 u(5,:) = u(5,:) - temp_bias.g_y;

29 u(6,:) = u(6,:) - temp_bias.g_z;

30

31 tem_sigma.a_x = tem_sigma.a_x/tem_sigma.a_x(1);

32 tem_sigma.a_y = tem_sigma.a_y/tem_sigma.a_y(1);

33 tem_sigma.a_z = tem_sigma.a_z/tem_sigma.a_z(1);

34 tem_sigma.g_x = tem_sigma.g_x/tem_sigma.g_x(1);

35 tem_sigma.g_y = tem_sigma.g_y/tem_sigma.g_y(1);

36 tem_sigma.g_z = tem_sigma.g_z/tem_sigma.g_z(1);

37 else

38 disp(’*Offline temperature compensation using Temperature*’)

39 rel_temp = u(15,:)-u(15,1);

40 feature = rel_temp;

41

568

42 accel_x_bias = myNeuralNetworkFunctionForAccelX_bias(feature);

43 accel_y_bias = myNeuralNetworkFunctionForAccelY_bias(feature);

44 accel_z_bias = myNeuralNetworkFunctionForAccelZ_bias(feature);

45 gyro_x_bias = myNeuralNetworkFunctionForGyroX_bias(feature);

46 gyro_y_bias = myNeuralNetworkFunctionForGyroY_bias(feature);

47 gyro_z_bias = myNeuralNetworkFunctionForGyroZ_bias(feature);

48

49 u(1,:) = u(1,:) - accel_x_bias;

50 u(2,:) = u(2,:) - accel_y_bias;

51 u(3,:) = u(3,:) - accel_z_bias;

52 u(4,:) = u(4,:) - gyro_x_bias;

53 u(5,:) = u(5,:) - gyro_y_bias;

54 u(6,:) = u(6,:) - gyro_z_bias;

55

56 % predict noise level

57 tem_sigma.a_x = myNeuralNetworkFunctionForAccelX_SD(feature);

58 tem_sigma.a_y = myNeuralNetworkFunctionForAccelY_SD(feature);

59 tem_sigma.a_z = myNeuralNetworkFunctionForAccelZ_SD(feature);

60 tem_sigma.g_x = myNeuralNetworkFunctionForGyroX_SD(feature);

61 tem_sigma.g_y = myNeuralNetworkFunctionForGyroY_SD(feature);

62 tem_sigma.g_z = myNeuralNetworkFunctionForGyroZ_SD(feature);

63

64 tem_sigma.a_x = tem_sigma.a_x/tem_sigma.a_x(1);

65 tem_sigma.a_y = tem_sigma.a_y/tem_sigma.a_y(1);

66 tem_sigma.a_z = tem_sigma.a_z/tem_sigma.a_z(1);

67 tem_sigma.g_x = tem_sigma.g_x/tem_sigma.g_x(1);

68 tem_sigma.g_y = tem_sigma.g_y/tem_sigma.g_y(1);

69 tem_sigma.g_z = tem_sigma.g_z/tem_sigma.g_z(1);

70 end

71 else

72 disp(’No temperature compensation’)

73 tem_sigma.a_x = 0*u(1,:) + 1;

74 tem_sigma.a_y = 0*u(2,:) + 1;

75 tem_sigma.a_z = 0*u(3,:) + 1;

76 tem_sigma.g_x = 0*u(4,:) + 1;

77 tem_sigma.g_y = 0*u(5,:) + 1;

78 tem_sigma.g_z = 0*u(6,:) + 1;

79 end

1

2 function performance = train_ANN(x,t,node_num,sel_axis,mode)

3

4 % Solve an Input-Output Fitting problem with a Neural Network

5 % Script generated by Neural Fitting app

6 % Created 13-Oct-2021 23:47:17

7 %

8 % This script assumes these variables are defined:

569

9

10 % Choose a Training Function

11 % For a list of all training functions type: help nntrain

12 % ’trainlm’ is usually fastest.

13 % ’trainbr’ takes longer but may be better for challenging problems.

14 % ’trainscg’ uses less memory. Suitable in low memory situations.

15 trainFcn = ’trainlm’; % Levenberg-Marquardt backpropagation.

16

17 % Create a Fitting Network

18 hiddenLayerSize = node_num*ones(1,1);

19

20 % net = cascadeforwardnet(hiddenLayerSize,trainFcn);

21 net = fitnet(hiddenLayerSize,trainFcn);

22

23 % Set training stopping condition

24 net.trainParam.goal = 0;

25 net.trainParam.min_grad = 1.0000e-11;

26 net.trainParam.max_fail = 20;

27 net.trainParam.time = Inf;

28 % net.trainParam.mu = 10e-9;

29 net.trainParam.epochs = 1000;

30

31 % Choose Input and Output Pre/Post-Processing Functions

32 % For a list of all processing functions type: help nnprocess

33 net.input.processFcns = {’removeconstantrows’,’mapminmax’};

34 net.output.processFcns = {’removeconstantrows’,’mapminmax’};

35

36 % Setup Division of Data for Training, Validation, Testing

37 % For a list of all data division functions type: help nndivision

38 net.divideFcn = ’dividerand’; % Divide data randomly

39 net.divideMode = ’sample’; % Divide up every sample

40 net.divideParam.trainRatio = 70/100;

41 net.divideParam.valRatio = 15/100;

42 net.divideParam.testRatio = 15/100;

43

44 % Choose a Performance Function

45 % For a list of all performance functions type: help nnperformance

46 net.performFcn = ’mse’; % Mean Squared Error

47

48 % Choose Plot Functions

49 % For a list of all plot functions type: help nnplot

50 net.plotFcns = {’plotperform’,’plottrainstate’,’ploterrhist’, ...

51 ’plotregression’, ’plotfit’};

52

53 % Train the Network

54 [net,tr] = train(net,x,t,’useParallel’,’yes’,’showResources’,’no’,’useGPU’,’no’);

55

570

56 % Test the Network

57 y = net(x);

58 e = gsubtract(t,y);

59 performance = perform(net,t,y);

60

61 % Recalculate Training, Validation and Test Performance

62 trainTargets = t .* tr.trainMask{1};

63 valTargets = t .* tr.valMask{1};

64 testTargets = t .* tr.testMask{1};

65 trainPerformance = perform(net,trainTargets,y);

66 valPerformance = perform(net,valTargets,y);

67 testPerformance = perform(net,testTargets,y);

68

69 % View the Network

70 % view(net)

71

72 % Plots

73 % Uncomment these lines to enable various plots.

74 %figure, plotperform(tr)

75 %figure, plottrainstate(tr)

76 %figure, ploterrhist(e)

77 %figure, plotregression(t,y)

78 %figure, plotfit(net,x,t)

79

80 % Deployment

81 % Change the (false) values to (true) to enable the following code blocks.

82 % See the help for each generation function for more information.

83 if mode == "big"

84 % Generate MATLAB function for neural network for application

85 % deployment in MATLAB scripts or with MATLAB Compiler and Builder

86 % tools, or simply to examine the calculations your trained neural

87 % network performs.

88 genFunction(net,’TempCompNet’,’MatrixOnly’,’yes’);

89 y = TempCompNet(x);

90 end

91 if mode == "medium"

92 % Generate MATLAB function for neural network for application

93 % deployment in MATLAB scripts or with MATLAB Compiler and Builder

94 % tools, or simply to examine the calculations your trained neural

95 % network performs.

96 if sel_axis == 1

97 genFunction(net,’TempCompNet_bias’,’MatrixOnly’,’yes’);

98 y = TempCompNet_bias(x);

99 elseif sel_axis == 2

100 genFunction(net,’TempCompNet_SD’,’MatrixOnly’,’yes’);

101 y = TempCompNet_SD(x);

102 end

571

103 end

104 if mode == "small"

105 % Generate a matrix-only MATLAB function for neural network code

106 % generation with MATLAB Coder tools.

107 if sel_axis == 1

108 genFunction(net,’TempCompNet_accl_bias_x’,’MatrixOnly’,’yes’);

109 elseif sel_axis == 2

110 genFunction(net,’TempCompNet_accl_bias_y’,’MatrixOnly’,’yes’);

111 elseif sel_axis == 3

112 genFunction(net,’TempCompNet_accl_bias_z’,’MatrixOnly’,’yes’);

113 elseif sel_axis == 4

114 genFunction(net,’TempCompNet_gyro_bias_x’,’MatrixOnly’,’yes’);

115 elseif sel_axis == 5

116 genFunction(net,’TempCompNet_gyro_bias_y’,’MatrixOnly’,’yes’);

117 elseif sel_axis == 6

118 genFunction(net,’TempCompNet_gyro_bias_z’,’MatrixOnly’,’yes’);

119 elseif sel_axis == 7

120 genFunction(net,’TempCompNet_accl_SD_x’,’MatrixOnly’,’yes’);

121 elseif sel_axis == 8

122 genFunction(net,’TempCompNet_accl_SD_y’,’MatrixOnly’,’yes’);

123 elseif sel_axis == 9

124 genFunction(net,’TempCompNet_accl_SD_z’,’MatrixOnly’,’yes’);

125 elseif sel_axis == 10

126 genFunction(net,’TempCompNet_gyro_SD_x’,’MatrixOnly’,’yes’);

127 elseif sel_axis == 11

128 genFunction(net,’TempCompNet_gyro_SD_y’,’MatrixOnly’,’yes’);

129 elseif sel_axis == 12

130 genFunction(net,’TempCompNet_gyro_SD_z’,’MatrixOnly’,’yes’);

131 end

132 end

133 if (false)

134 % Generate a Simulink diagram for simulation or deployment with.

135 % Simulink Coder tools.

136 gensim(net);

137 end

138 end

1 % Solve an Input-Output Time-Series Problem with a Time Delay Neural Network

2 % Script generated by Neural Time Series app.

3 % Created 07-Oct-2021 21:28:45

4 %

5 % This script assumes these variables are defined:

6 %

7 % temp - input time series.

8 % smooth_error - target time series.

9

10 X = tonndata(temp,true,false);

572

11 T = tonndata(smooth_error,true,false);

12

13 % Choose a Training Function

14 % For a list of all training functions type: help nntrain

15 % ’trainlm’ is usually fastest.

16 % ’trainbr’ takes longer but may be better for challenging problems.

17 % ’trainscg’ uses less memory. Suitable in low memory situations.

18 trainFcn = ’trainlm’; % Levenberg-Marquardt backpropagation.

19

20 % Create a Time Delay Network

21 inputDelays = 1:1;

22 hiddenLayerSize = 10;

23 net = timedelaynet(inputDelays,hiddenLayerSize,trainFcn);

24

25 % Prepare the Data for Training and Simulation

26 % The function PREPARETS prepares timeseries data for a particular network,

27 % shifting time by the minimum amount to fill input states and layer

28 % states. Using PREPARETS allows you to keep your original time series data

29 % unchanged, while easily customizing it for networks with differing

30 % numbers of delays, with open loop or closed loop feedback modes.

31 [x,xi,ai,t] = preparets(net,X,T);

32

33 % Setup Division of Data for Training, Validation, Testing

34 net.divideParam.trainRatio = 70/100;

35 net.divideParam.valRatio = 15/100;

36 net.divideParam.testRatio = 15/100;

37

38 % Train the Network

39 [net,tr] = train(net,x,t,xi,ai);

40

41 % Test the Network

42 y = net(x,xi,ai);

43 e = gsubtract(t,y);

44 performance = perform(net,t,y)

45

46 % View the Network

47 view(net)

48

49 % Plots

50 % Uncomment these lines to enable various plots.

51 %figure, plotperform(tr)

52 %figure, plottrainstate(tr)

53 %figure, ploterrhist(e)

54 %figure, plotregression(t,y)

55 %figure, plotresponse(t,y)

56 %figure, ploterrcorr(e)

57 %figure, plotinerrcorr(x,e)

573

58

59 % Step-Ahead Prediction Network

60 % For some applications it helps to get the prediction a timestep early.

61 % The original network returns predicted y(t+1) at the same time it is

62 % given x(t+1). For some applications such as decision making, it would

63 % help to have predicted y(t+1) once x(t) is available, but before the

64 % actual y(t+1) occurs. The network can be made to return its output a

65 % timestep early by removing one delay so that its minimal tap delay is now

66 % 0 instead of 1. The new network returns the same outputs as the original

67 % network, but outputs are shifted left one timestep.

68 nets = removedelay(net);

69 nets.name = [net.name ’ - Predict One Step Ahead’];

70 view(nets)

71 [xs,xis,ais,ts] = preparets(nets,X,T);

72 ys = nets(xs,xis,ais);

73 stepAheadPerformance = perform(nets,ts,ys)

574

Appendix C

List of Vendors

Adobe Inc.

Address: 345 Park Avenue San Jose, CA 95110−2704

Phone: (408) 537−6000

Email: adobepr@adobe.com

Website: https://www.adobe.com/

Videos demonstrating navigation solutions were edited in Adobe software solution Premiere

Pro.

Analog Devices

Address: One Analog Way Wilmington, MA 01887

Phone: (781) 935−5565

Website: https://www.analog.com/

IMUs integrated into the Lab-On-Shoe platforms are available from this vendor.

Arduino

Address: 25 Via Andrea Appiani Monza, Monza, Lombardia, 20900, Italy

Phone: +39 1119116387

575

Website: https://www.arduino.cc/

Microcontrollers Arduino Uno, Uno WiFi Rev2, Due, Yun Rev 2, and Nano Every used in

the Lab-On-Shoe and Sugar-Cube platforms are available from Arduino.

AXON Cable Inc.

Address: 1314 N. Plum Grove Rd Schaumburg IL 60173−4546

Phone: (847) 230−7800

Email: sales@axon-cable.com

Website: https://www.axon-cable.com/

Industrial cables manufactured by AXON Cable were selected to connect shoe PCBs and

mother PCB on the Lab-On-Shoe 1 platform.

Boot Barn

Address: 23762 Mercury Rd Ste B, Lake Forest, CA 92630

Phone: (949) 455−0211

Website: https://www.bootbarn.com

Steel-toe boots for the Lab-On-Shoe platform are available from Boot Barn.

Dell Inc.

Address: 1 Dell Way Round Rock, TX 78682

Phone: (800) 289−3355

Website: https://www.dell.com/en-us

Computers, XPS Tower Special Edition, laptops, Latitude 7420, and monitors P2419H, used

to analyze, implemented, design, and demonstrate the work presented in this thesis were

purchased from Dell.

DFRobot

Address: Rm 602, Bld. Puruan, No. 2 Boyun Rd, Pudong, Shanghai(201203), China

Phone: +86 (21)−61620183

576

Email: store@dfrobot.com

Website: https://www.dfrobot.com/

Devantech Ultrasonic sensors SRF02 integrated into the Lab-On-Shoe platform are available

from this vendor.

Digi-Key Corp

Address: One Technology Way PO BOX 9106, Norwood, MA 02062 Phone: (800) 344−4539

Website: http://www.digikey.com/

Retails electronic components and supplies various development boards.

Electromaker

Location: Poole, Dorset

Email: hello@electromaker.io

Website: https://www.electromaker.io/

Retails electronic components and supplies various development boards.

Garmin Ltd.

Address: 1200 E 151st St, Olathe, KS

Website: https://www.garmin.com/en-US/

Laser range finders Garmin Lite v3 are available from this vendor.

Ideal Aerosmith, Inc.

Address: 2205 W Lone Cactus Dr Suite 7, Phoenix, AZ 85027 Phone: (701) 757−5601

Website: http://www.ideal-aerosmith.com/

Precision two-axis and three-axis positioning and rate table systems for inertial sensor char-

acterization are available from this vendor.

JLCPCB

Address: 2788 San Tomas Expy, Santa Clara, CA 95051

Phone: (800) 262−5643

577

Website: https://jlcpcb.com/

Email: support@jlcpcb.com

Customized PCBs used on the Lab-On-Shoe and Sugar-Cube platforms were fabricated by

JLCPCB.

McMASTER-CARR

Address: 2788 San Tomas Expy, Santa Clara, CA 95051

Phone: (562) 692−5911

Website: https://www.mcmaster.com/

Email: sales@mcmaster.com

Supplier of miscellaneous hardware components used for prototype hardware developed in

this thesis.

NVIDIA

Address: 2788 San Tomas Expy, Santa Clara, CA 95051

Phone: (408) 486−2000

Website: https://www.nvidia.com/

Email: info@nvidia.com

NVIDIA Jetson Nano processor and its developer kit used to implement real-time computer

vision algorithm for the Lab-On-Shoe 1 platform were purchased from NVIDIA.

Meta Platforms, Inc.

Address: One Hacker Way Menlo Park, CA 94025

Phone: (650) 543−4800

Website: https://about.meta.com/

Oculus Quest 2 was purchased from this vendor.

Polhemus

Address: 40 Hercules Drive Colchester, Vermont 05446

578

Phone: (800) 357−4777

Email: sales@polhemus.com

Website: https://polhemus.com/

Polhemus specializes in magnetic motion tracking technology. PATRIOT 6DOF motion

tracker available from this vendor was used in the characterization of the motion of feet.

RapidTech

Address: 444 Engineering Tower, 4242 Campus Dr, Irvine, CA 92697

Phone: (949) 824−4105

Website: https://manufacturing.uci.edu/index.php/rapidtech/

Email: dolanb@uci.edu (Benjamin Dolan, Technical Director)

Camera fixtures used to mount cameras on the Lab-On-Shoe 1 platform were fabricated by

RapidTech.

Robotshop Inc.

Address: 18005 Rue Lapointe, Mirabel, Quebec, J7J 0G2, Canada

Phone: (450) 420−1446

Website: https://www.robotshop.com/

Arducam 8MP Sony IMX219 camera module w/ CS lens 2718, compatible with Raspberry

Pi microcontroller and NVIDIA Jetson Nano, is available from this vendor.

Sensory Lab

Address: 707 S. Grand Ave Bozeman MT 59715

Phone: (406) 585−5925

Email: christine@sensorylabs.com (Christine Raymond)

Website: https://sensorylabs.com/

Basler cameras, acA800−200gc, and lenses with 4mm, 2.5mm and 6mm integrated into the

Lab-On-Shoe 1 platform were purchased from Sensory Lab.

579

SparkFun Electronics

Address: 6333 Dry Creek Parkway, Niwot, CO 80503

Phone: (303) 284−0979

Website: https://www.sparkfun.com/

Electronic breakout boards, jumper wires, lithium-ion batteries, voltage regulators, barome-

ters, IMU, UWB, and microcontrollers, used on the Lab-On-Shoe platforms and Sugar-Cube

platforms were purchased from SparkFun Electronics.

Stereolabs

Address: 6333 Dry Creek Parkway, Niwot, CO 80503

Email: support@stereolabs.com

Website: https://www.stereolabs.com/

ZED 2 Stereo Camera and ZED Mini were purchased from this vendor to investigate vision

SLAM algorithms.

TDK InvenSense, Inc.

Address: 1745 Technology Dr #200, San Jose, CA 95110

Phone: (408) 988−7339

Website: https://invensense.tdk.com/

COTS IMUs ICM−20948, ICM−20649, and ICM−42605 integrated into the Sugar-Cube

platforms are available from this vendor.

VectorNav Technologies

Address: 10501 Markison Rd, Dallas, TX 75238

Phone: (512) 772−3615

Website: https://www.vectornav.com/

VectorNav VN−200 IMUs are available from this vendor.

580

	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Pedestrian Localization in Extreme Scenarios
	Navigation System Requirements for Worst case Scenarios

	Background
	A Brief History of Pedestrian Inertial Navigation Systems
	Why Foot mounted IMUs?
	Zero velocity Update Algorithm
	Traditional ZUPT aided INS

	Problem Statement
	Challenges on Foot mounted Sensors
	Challenges on Algorithm Assumptions
	Challenges on Estimation Filter

	Literature Review
	Enhancements On Motion Sensor
	Enhancements On Algorithm Assumption
	Enhancements On Estimation Filter

	Thesis Overview

	On Motion Sensor Overcoming Insufficient Sensor FSR and Bandwidth
	Introduction
	Experimental Investigation of FSR Requirements
	Confirmation Using Pedestrian Simulation Model
	An Analytical Walking Model Based on an Inverted Pendulum
	Synthesizing Noise Free IMU Readings
	IMU Noise Model
	Comparing Simulated and Experimental Results

	Algorithmic Reconstruction of Saturated Signals
	Properties of Saturated Foot mounted IMU Measurements
	A Reconstruction Filter
	Experimental Validation

	System Level Enhancement Using Prioritizable IMU
	Measurement Model for Multiple Inertial Sensors
	Alignment of Multiple Inertial Sensors
	Prioritization Mechanism
	Experimental Validation

	Conclusion

	On Motion Sensor Mitigating Thermal Induced Errors
	Introduction
	Thermal Compensation Using a Neural Network
	Sensor Measurement Model
	Thermal induced Errors
	Back Propagation Neural Network
	Thermal compensated ZUPT aided INS

	Experimental Validation
	Experimental Setup
	Experimental Results

	Conclusion

	On Algorithm Assumption Reinforcing Stance Phase Detection
	Introduction
	False Alarm in Traditional IMU based Detection
	Aiding by a Dynamic Vision Sensor
	Dynamic Vision Sensor Overview
	Foot mounted Dynamic Vision Sensor
	DVS aided Zero Velocity Detection (DVS SHOE)
	Experimental Results

	Aiding by Downward facing Range Sensor
	Detector Derivation With General Likelihood Ratio Test
	Performance Evaluation

	Conclusion

	On Algorithm Assumption Bypassing Binarism by Using Adaptive Covariance
	Introduction
	ZUPT aided INS Using FIBA Covariance
	Concept Overview
	Modeling Instability of Foot Dynamics
	The Foot Instability Based Adaptive (FIBA) Covariance
	Hyper Parameter Selection
	Discussion
	The Zero velocity Measurement Model

	Experimental Validation
	Different Traveling Speeds
	Different Terrains

	Conclusion

	On Estimation Filter Increasing Yaw Angle Observability
	Introduction
	ZUPT aided INS Augmented by Self contained Vision based Foot to foot Measurements
	Foot to foot Kinematics
	Structure of the EKF States
	Prediction Model: Strapdown Inertial Navigation using Dual IMUs
	Measurement Model

	Simulation and Experimental Results
	Simulation Results
	Experimental Results

	Conclusion

	On Estimation Filter Compensating Vertical Position
	Introduction
	ZUPT aided INS Augmented With an Altimeter
	EKF Prediction Step
	EKF Update Step

	Analytically Predicting Vertical Displacement Error
	Estimation of Error Covariance in the Down Direction
	Simulation and Experiment

	A Hybrid Barometric/Ultrasonic Altimeter
	Ultrasonic Altimeter
	Hybrid Altimeter
	Experimental Verification For Hybrid Altimeter

	Real Time Implementation of ZUPT Altimeter aided INS
	The Sugar Cube Navigation Platform
	Real time Performance Evaluation

	Conclusion

	On Estimation Filter Bounding Position Error With Self Contained Approach
	Introduction
	Integrating Deterministic, Opportunistic, and Cooperative Functionalities
	Deterministic
	Cooperative
	Opportunistic
	The EKF for PINDOC

	System Hardware
	Lab On Shoe Platform
	LTE Receivers and Processing Modules
	Cooperative UWB Modules

	Experiment Validation
	Performance Metrics
	Experiment #1: One Moving Agent, Two Stationary Agents
	Experiment #2: Three Moving Agents

	Conclusion

	On Estimation Filter SLAMing With UWB and Foot mounted IMU
	Introduction
	The Original UWB Foot SLAM
	Algorithm Design
	System Design
	Experimental Validation

	UWB Foot SLAM2
	Algorithm Design
	System Design
	Experimental Validation

	Conclusion

	Conclusion
	Contribution of the Dissertation
	Future Research Directions
	Boosting FSR and Bandwidth of Inertial Sensors
	Enhancing Stance Phase Detection With Deep/Machine Learning
	Continuing FIBA Covariance
	Improving Hybrid Ultrasonic/Barometric Altimeters
	Extending UWB Foot SLAM Framework
	Foot mounted INS Enabled Mapping and Path Planning

	Commcercializable Solution: emergency Firefighter Indoor Navigation Systems (eFINS)

	Bibliography
	Appendix Pedestrian Navigation Testbeds
	Lab On Shoe Platform
	Lab On Shoe 1: Packpack and Shoe Implementation
	Lab On Shoe 2: Everything on the Shoes

	Sugar Cube Platform
	Sugar Cube 1.0: Real Time Navigation Platform
	Sugar Cube 2.0: Real Time Sensor Fusion aided Navigation
	Sugar Cube: Android User Interface
	Sugar Cube: A Demonstration Process
	Sugar Cube: C C++ Implementation

	Appendix MATLAB Codes
	ZUPT aided INS With Sensor Fusion
	The Main Script
	Parameter Settings

	Pedestrian Navigation Simulation
	The Main Script

	Custom Libraries
	Inertial Navigation Library
	Navigation Library
	IMU Noise Library
	Plotting Library
	Stance Phase Detection Library
	Utility Library
	Sensor Fusion Library
	Temperature Compensation Library
	Neural Network Library

	Appendix List of Vendors

