
UC Irvine
ICS Technical Reports

Title
MOL620: a machine oriented language and language compiler for the varian data
620/l

Permalink
https://escholarship.org/uc/item/8g20w1s3

Authors
Hopwood, Marsha D.
Hopwood, Gregory L.

Publication Date
1971

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g20w1s3
https://escholarship.org
http://www.cdlib.org/

MOL620_
A MACHINE "oriented LANGUAGE

AND LANGUAGE COMPILER

FOR THE VARIAN DATA 620/1

MARSHA DRAPKIN JOPWOOD
GREGORY L. KOPWOOD ~

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

TECHNICAL REPORT NO. 1

SEPTEMBER 1971*

DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA, IRVINE

*THIS IS A MAJOR REVISION OF TECHNICAL REPORT NO. 1, APRIL 1969, BY
MARSHA A. DRAPKIN. THE WORK DESCRIBED IN THAT REPORT WAS SUPPORTED

BY A GRANT FROM THE CARNEGIE CORPORATION OF NEW YORK.

g\M(^

IniiyliiM sirlT ;coti

l)9lyotoiCj 9fl V
wfJ triQhvqi.'O .

' (.3.2.U \r 5iji" z

C3
ViO, \

TABLE OF CONTENTS.

INTRODUCTION

SYNTAX OF THE M0L620 LANGUAGE

SEMANTICS OF THE MOL6SO LANGUAGE
ASSIGNMENT STATEMENT
BUMP STATEMENT

NULL STATEMENT

60 TO STATEMENT AND LABELS
CALL STATEMENT
RETURN STATEMENT

STOP STATEMENT
IF STATEMENT

FOR STATEMENT

WHILE STATEMENT
COMPOUND STATEMENT (BLOCK)
DAS STATEMENT
PROCEDURE

DECLARATIONS

COMMENTS

PROGPIAM ORI GIN

PRO GRAM

HINTS. PITFALLS AND MISCELLANY
SYMBOLS

OPERATORS AND EXPRESSION EVALUATION
MINIMUM 620/1 CONFIGURATION

HOW TO COPE WITH THE M0L620 COMPILER
RUNNING THE COMPILER ON THE UCI

PDP-IO SYSTEM

HISTORY
DESIGN CRITERIA
COMPARISON WITH OTHER MACHINE ORIENTED

LANGUAGES

BIBLIOGRAPHY J

APPENDIX I
SAMPLE M0L620 PROGRAM
OUTPUT OF THE M0L620 COMPILER FOR SAMPLE

PRO GRAM

APPENDIX II
M0L620 COMPILER LISTING

PAGE 0

PAGE 1

M0L620S A MACHINE ORIENTED LANGUAGE AND LANGUAGE COMPILER FOR
THE VARIAN DATA 620/1

INTRODUCTION

THE PURPOSE OF M0L620 15 TO PROVIDE A HI GH LEVEL ALGOL-LIKE
LANGUAGE VITH VHICH ONE CAN CONVENIENTLY REPRESENT ALGORITHMS

FOR EXECUTION ON THE VARIAN DATA 620/I> A 16-BIT MINI-COMPUTER.

THE ABILITY TO EXPRESS ALGORITHMS IN THE BASIC ASSEMBLY LANGUAGE
OF THE MACHINE IS ALSO PROVIDED.

A HIGH LEVEL LANGUAGE IS ADVANTAGEOUS SINCE PROGRAMS CAN BE MORE
EASILY VRITTEN AND DEBUGGED THAN IN ASSEMBLY LANGUAGE.
THE PROGRAMMER AVOIDS MANY ERRORS HE VOULD NORMALLY
MAKE IN THE COURSE OF VRITING A PROGRAM IN ASSEMBLY LANGUAGE
BCAUSE M0L620 PROVIDES THE FACILITIES FOR DESCRIBING A
COMPUTATION VI TH FAR FEVER SYMBOLS AND THE LOGICAL FLOV OF THE
PROGRAM IS NATURALLY DESCRIBED BY THE SYNTAX OF THE PROGRAM
ITSELF.

THE M0L620 TRANSLATOR ACCEPTS AS INPUT A PROGRAM VRITTEN
IN THE M0L62O LANGUAGE AND OUTPUTS A PROGRAM TO BE ASSEMBLED
BY THE VARIAN DATA 620/1 ASSEMBLER.

THE CURRENT VERSION OF THE M0L620 COMPILER IS VRITTEN IN TREE-
META AND EXECUTES ON THE DIGITAL EQUIPMENT CORPORATION

PDP-10 COMPUTER UNDER THE STANDARD MONITOR.

THE FIRST VERSION OF THE M0L620 COMPILER WAS WRITTEN IN FORTRAN IV-H
AND EXECUTED ON AN IBM 360/50 UNDER OS.

PAGE 2

SYNTAX OF M0L620 LANGUAGE.

THE SYNTAX IS DESCRIBED USING A METALANGUAGE SIMILAR TO BACKUS
NAUR FORM.

THE CATEGORY NAME APPEARS ON THE LEFT OF THE EQUAL
SIGN AND THE SYNTACTIC ALTERNATIVES APPEAR ON THE RIGHT.
LITERALS ARE SURROUNDED BY QUOTES C") AND CATEGORY
NAMES ARE NOT. FOR EXAMPLE "DONE" IS A LITERAL STRING.
UNIT IS A CATEGORY NAME.

ALTERNATIVES IN A DEFINITION ARE SEPARATED BY A SLASH </)
INSTEAD OF THE CUSTOMARY VERTICAL BAR. A DEFINITION
IS TERMINATED BY A SEMI-COLON Cl). ALTERNATIVES ARE FACTORED
BY THE USE OF PARENTHESES. FOR EXAMPLE. THE DEFINITION

ASSIO^S = DESIG / "=") EXP ;
IS EQUIVALENT TO

ASSIGNS = DESIG EXP / DESIG EXP I

ITERATION OF A COMPONENT IN A RULE IS INDICATED BY THE
MSNC...) CONSTRUCT. VHICH SAYS THAT THE COMPONENT IN
PARENTHESES IS TO OCCUR AT LEAST M AND AT MOST N TIMES.
IF M DOES NOT APPEAR. ZERO IS ASSUMED. IF N DOES NOT APPEAR.
INFINITY IS ASSUMED. FOR EXAMPLE. THE DEFINITION

DESIG = STOLOC $C"." STOLOC) 5
SAYS THAT A DESIG ISA STOLOC FOLLOVED BY ZERO OR MORE
OCCURRENCES OF " STOLOC. I.E. A DESIG IS A STOLOC OR
STOLOC.STOLOC.....STOLOC.

AN ALTERNATIVE ENCLOSED IN ANQ-E BRACKETS Co) IS AN INFORMAL
DEFINITION OF THE ALTERNATIVE.

PROGRAM s

ID0R6 =

UNIT «

PROC =

PROCHEAD=

FORMPART=

COMSTMS =

COMMENT =

DEC «

ASSDEC «

A ITEM B

DECLARE «

ITEM B

STMNT B

LABELID B

USTMNT B

IDORG SCUNIT) "DONE."
$(DEC / COMMENT) <I DEN "ORG" VALUE "J" / EMPTY);
PROC / 1S<DEC / COMMENT) I
PROCHEAD FORMPART "I" (COMSTMS / EMPTY) "ENDP" "S" i
("PROCEDURE" / "PROC") I DEN i
"(" CIDEN / EMPTY) ("." (I DEN / EMPTY) / EMPTY)
("." CIDEN / EMPTY) / EMPTY) ")" /
empty;

1$(DEC / STMNT / COMMENT);
DAS ";"/<STRING OF CHARACTERS ENCLOSED IN PERCENT SI OIS (X)>;
DECLARE / ASSDEC;

("SET" / "EGU") AITEM AITEM) 5
I DEN "a" VALUE ;
("DECLARE" / "DECL") ITEM $("." ITEM) " ;
IDEN ("E" (VALUE "l" / EMPTY) VALUE "3" / EMPTY)
("=" VALUE / EMPTY) ;

(LABELID / EMPTY) USTMNT "I" ;
IDEN "t" ;

IFS / FORS / WHILES / BLOCKS / ASSI <3^S / NULLS /
GOTOS / CALLS / RETURNS / BIWPS / STOPS / DAS ;

CONSTANTS

PAGE 3

"IF" EXP "THEN" USTMNT ("ELSE" USTMNT / EMPTY) J

"FOR" STOLOC ("*-" / "«") EXP

(("STEP" EXP / EMPTY) ("UNTIL" / "WHILE") EXP)

"DO" USTMNT ;

"VHILE" EXP "DO" USTMNT I

DESIG ("-" / "=") EXP ;

STOLOC $("#" STOLOC) ;

"NULL" 5

"BEGIN" BODY "END" ;

COMSTMS / EMPTY $

"GO" "TO" JMPLOC ;

"CALL" JMPLOC CAR6LIST / EMPTY) ;

"RETURN" (ARGLIST / EMPTY) ("FROM" JMPLOC / EMPTY) i
"(" (EXP / EMPTY)

(•S" (EXP / EMPTY) / EMPTY)

CS" (EXP / EMPTY) / EMPTY) ")" I

<STRING OF CHARACTERS ENCLOSED IN QUOTES (")> i

"BUMP" STOLOC $("," STOLOC) ;

"STOP" / "HALT" ;

INTRSECT $(("XOR" / "OR") INTRSECT) ;

NEGATION $<"AND" NEGATION) i

"NOT" NEGATION / RELATION ;

SUM $((">«" / ">" / "=" / "<=" / "<" / "#") SUM) ;

PRODUCT $(("+" / "-") PRODUCT) ;

FACTOR S(("*" / "/") FACTOR) ;

BITAND $(("BOR" / "BXR") BITAND) ;

SHIFT $("BAND" SHIFT) ;

PRIMARY $(""" I DEN """ VALUE) ;

I DEN ("C" EXP "3" / EMPTY) /

JMPLOC ARGLIST /

"(" (REGISTER / SWITCH / EXP) ")" /

CONSTANT /

"C" EXP "3" /
c"+" / ••-••) primary /

"8" I DEN ;

("+" / "-" / EMPTY) NUMBER /

<STRING IN QUOTES (")> /

<ONE OR TWO CHARACTERS IN PRIMES (•)> /

"C" (I DEN / NUMBER) "3" 1
"AR" / "BR" / "XR" / "OF" i

"SSI" / "SS2" / "SS3" i
IDEN ("C" EXP "3" / EMPTY) /

"(" REGISTER ")" / CONSTANT / "C" EXP "3" I

IDEN ("C" EXP "3" / EMPTY) /

CONSTANT / "C" EXP "3" i

IDEN / CONSTANT / "-" IDEN t

<STRING OF LETTERS AND DIGITS STARTING WITH LETTER> i

<STRING OF DIGITS> ;

<NULL STRING; NOTHING> J

PAGE 4

SEMANTICS OF THE M0L620 LANGUAGE.

ASSIGNMENT STATEMENT.

AN ASSIGNMENT STATEMENT CONSISTS OF THREE PARTSi
(1) A LIST OF STORAGE LOCATIONS#

C2) AN ASSIGNMENT OPERATOR CEITHER ' OR •=')#

<3) AN EXPRESSION TO BE EVALUATED AND STORED IN
THE LOCATIONS INDICATED BY C1).

EXAMPLES!

a-b;

C# D# E-ALPHA/BETAJ

LINKCXD^X-LINKCYi;

<XRI-F< 1# 3# A-B)-Q32J

CY+U » CN-2)*7;

T=-i;

REACT-A OR B AND NOT C;

THE LIST OF STORAGE LOCATIONS IS SEPARATED BY COMMAS.
STORAGE OF THE EXPRESSION VALUE AND EVALUATION OF ANY EXPRESSION
ON THE LEFT OF THE ASSIGNMENT IS DONE RIGHT TO LEFT.
THUS# THE STATEMENT

LINKCX3#X-LINKCY:j

IS EQUIVALENT TO
T-LINKCY35 X*-T; LINKCX3-T5

FOR SOME TEMPORARY LOCATION T.

AN EXPRESSION ENCLOSED IN SQUARE BRACKETS PRECEDED BY AN
IDENTIFIER IS AN ARRAY REFERENCE. AN EXPRESSION ENCLOSED IN
SQUARE BRACKETS BUT NOT PRECEDED BY AN IDENTIFIER IS AN
ADDRESS SPECIFED BY INDIRECTION. FOR EXAMPLE# CY+13 - 3S SAYS THAT
THE CONSTANT 3 IS TO BE STORED IN THE LOCATION VHOSE ADDRESS
IS TO BE FOUND BY CALCULATING THE VALUE OF THE EXPRESSION Y+1.
IF THE CONTENTS OF Y IS 100 WE STORE 3 IN LOCATION 101.

TO REFER TO REGISTERS OR SENSE SWITCHES IN AN EXPRESSION OR ON THE
LEFT OF AN ASSIGNMENT# ENCLOSE THE NAME CAR# BR# XR# OF#
SS1#5S2#SS33 IN PARENTHESES.

A FUNCTION CALL IS INDICATED BY A FUNCTION NAME FOLLOWED BY
A LIST OF ZERO TO THREE ARGUMENTS ENCLOSED IN PARENTHESES. IF
THE FUNCTION HAS NO ARGtMENTS THE PARENTHESES ARE STILL REQUIRED.
A FUNCTION RETURNS ITS VALUE IN THE A-REGISTER.

THE VALUE OF A LOGICAL OR RELATIONAL EXPRESSION IS ZERO IF THE
EXPRESSION IS FALSE5 OTHERWISE IT IS NONZERO.

BUMP STATEMEMT.
PAGE

THE BUMP STATEMENT ALLOVS THE PROGRAMMER TO TAKE ADVANTAGE OF
THE MACHINE INSTRUCTION 'INR' WHICH WILL ADD ONE TO THE CONTENTS
OF ANT MEMORY LOCATION.

EXAMPLES!

BUMP 15

BUMP A,B, CCI-5]#CT3#"GAMMA+5"5

THE LIST OF STORAGE LOCATIONS IS SIMILAR TO THAT

WHICH MAY APPEAR ON THE LEFT OF AN ASSIGNMENT STATEMENT.
THE LOCATIONS ARE INCREMENTED LEFT TO RI GIT ON THE LIST.

NOTE THE EXAMPLE OF A STORAGE LOCATION INDICATED BY SOME
DAS ADDRESS EXPRESSION ENCLOSED IN QUOTES. BUMP "GAMMA+5" SAYS
TO INCREMENT THE MEMORY LOCATION FIVE WORDS UP FROM THE
LOCATION WITH THE NAME GAMMMA.CjINR,GAMMA+5 IN DAS CODE).
SO IF THE ADDRESS OF GAMMA IS 3A9 THEN LOCATION 35A IS INCREMENTED.

NULL STATEMENT.

THE NULL STATEMENT GENERATES NO MACHINE CODE.
' IT MAY BE USED AS A DUMMY IN AN IF. .. THEN. .. ELSE STATEMENT OR

AS SOMETHING TO WHICH A LABEL CAN BE ATTACHED.

EXAMPLES:

LABEL! null;
IF A=5 THEN IF B=3 THEN CALL SUB3 ELSE NULL ELSE CALL SUBS;

GO TO STATEMENT AND LABELS.

A LABEL MAY BE ASSOCIATED WITH A STATEMENT BY PRECEDING THE
STATEMENT WITH AN IDENTIFIER AND A COLON.
UNCONDITIONAL TRANSFER OF CONTROL IS DONE WITH THE GO TO
STATEMENT.

EXAMPLES!

L! GO TO l;

GOTO loop;

GO TO "FIRST-5";

LOOP! GO TO s;

GOTO CJi;

GOTO XCN3;

THE GOTO MAY BE WRITTEN AS ONE WORD OR TWO. THE BRANCH MAY BE TO
A PARTICULAR LOCATION GIVEN BY A NUMBER> SAY LOCATION 5. THE GO TO
MAY ALSO BRANCH INDIRECTLY THROUGH SOME OTHER ADDRESS.
THE LAST EXAMPLE WILL CAUSE CONTROL TO BE TRANSFERRED TO THE NTH
ELEMENT OF ARRAY X.

PAGE 6

CALL STATEMENT.

A SUBROUTINE IS INVOKED USING THE CALL STATEMENT.

EXAMPLES:

CALL SUBli

CALL ABCCX#Y>;

CALL HELP (I);
CALL CHARCejJ;

CALL FNXC5#J^K);

CALL CQKL>;

AN ARGUMENT LIST MAY OPTIONALLY FOLLOW THE SUBROUTINE NAME. IT
CORRESPONDS IN FORM TO THE ARGUMENT LIST OF A FUNCTION.

WHEN A FUNCTION OR SUBROUTINE IS INVOKED, THE FIRST ARGUMENT IS
EVALUATED AND LOADED IN THE A-REGISTER, THE SECOND ARGUMENT IN THE
B-REGISTER, AND THE THIRD ARGUMENT IN THE X-REGISTER.

IN THE LAST EXAMPLE ABOVE, THE NAME OF THE SUBROUTINE IS SPECIFIED
INDIRECTLY.

TO PASS AN ADDRESS TO A PROCEDURE, OR TO DO SOME CALCULATION
ON THE ADDRESS OF A VARIABLE, USE THE VARIABLE NAME

t PRECEDED BY AN *0* SI FOR EXAMPLE, R*-0S; SAYS TO STORE THE
ADDRESS OF S IN R.

RETURN STATEMENT.

AN EXIT FROM A SUBROUTINE, OPTIONALLY RETURNING AN ARGUMENT LIST,
IS DONE WITH THE RETURN STATEMENT.

EXAMPLES:

return;

RETURN (A*6>;

RETURN CX,,Y);

RETURN FROM LOC ;
RETURN <X,Y,Z) FROM HEAD?

IF AN ARGUMENT LIST APPEARS, THE FIRST ARGUMENT IS EVALUATED AND
PUT IN THE A-REGISTER, THE SECOND IN THE B-REGISTER, THE THIRD
IN THE X-REGISTER. AN INDIRECT GOTO WITH ARGUMENT PASSING
CAN BE ACCOMPLISHED WITH THE RETURN...FROM.•. FORM.
•RETURN FROM LOC;' IS EQUIVALENT TO 'GO TO CLOCi;'.

STOP STATEMENT.

THE STOP STATEMENT IS USED TO CAUSE THE MACHINE TO HALT AT
RUN TIME.

EXAMPLES:

stop;

halt;

PAGE 7

IF STATEMENT-

CONDITIONAL EXECUTION OF A STATEMENT CAN BE ACCOMPLISHED THROUGH
USE OF THE IF STATEMENT.

EXAMPLES:

IF AeB THEN H-1 ELSE H*-2l
IF FCN) THEN CALL SUBICN);
IF ALPHA THEN BEGIN A-l; GR—77; K-OJ END!
IF BETA>=7 AND BETA<a76 THEN CALL PRINT(BETA>;
IF <SS1) THEN GOTO TESTl ELSE IF (SS2) AND COF> THEN A3-YJ
IF Z=Y THEN BEGIN Z=Y-l; BUMP Zi END;

THE EXPRESSION FOLLOWING THE WORD 'IF* IS EVALUATED TO A
BOOLEAN RESULT. IF THE RESULT IS TRUE THE 'THEN* PART IS
EXECUTED. IF THE RESULT IS FALSE AND THERE IS
NO 'ELSE* PARTj THE STATEMENT FOLLOWING THE 'IF* IS EXECUTED.
IF THE RESULT OF THE 'IF' EXPRESSION IS FALSE AND THERE
IS AN 'ELSE' PART> THAT IS EXECUTED. NOTE THAT STATEMENTS MAY BE
GROUPED TOGETHER WITH THE BEGIN...END CONSTRUCT.

'ELSE' CLAUSES IN NESTED 'IF' STATEMENTS ARE ASSOCIATED
WITH THE CLOSEST PRECEDING 'IF' THAT HAS NO 'ELSE' ASSOCIATED
WITH IT.

FOR STATEMENT.

A 'FOR' STATEMENT IS USED FOR ITERATION ACROSS A STATEMENT OR
BLOCK OF STATEMENTS. THE STORAGE LOCATION INDICATED IN THE
ASSIGNMENT PART OF THE STATEMENT IS CALLED THE INDEX VARIABLE.
IT IS INITIALIZED^ AND THEN THE TEST OF THE 'FOR* STATEMENT IS
PERFORMED. IF THE TEST IS AN 'UNTIL' FORM THE VALUE OF THE INDEX
VARIABLE IS COMPARED WITH THE 'UNTIL' EXPRESSION. IF THE INDEX
VARIABLE IS LESS THAN OR EQUAL TO THE VALUE OF THE EXPRESSION
(GREATER THAN OR EQUAL IF THE STEP EXPRESSION IS NEGATIVE)# THEN
THE 'DO' PART IS EXECUTED. OTHERWISE# CONTROL PASSES TO THE STATEMENT
AFTER THE 'FOR' STATEMENT.

IF THE TEST IS A 'VHILE' FORM# THE VALUE OF THE 'VHILE' EXPRESSION IS
COMPUTED. IF THE VALUE OF THE EXPRESSION IS TRUE# THE 'DO' PART IS
EXECUTED. OTHERWISE# CONTROL PASSES TO THE STATEMENT AFTER THE
•FOR' STATEMENT.

WHENEVER THE 'DO' PART HAS BEEN EXECUTED# THE INDEX VARIABLE
IS INCREMENTED BY THE VALUE OF THE 'STEP' EXPRESSION.
THE 'STEP' EXPRESSON IS REEVALUATED EACH TIME THROUGH THE LOOP.
IF THE 'STEP' EXPRESSION IS MISSING# THEN THE INDEX VARIABLE IS
INCREMENTED BY ONE. AFTER THE INDEX VARIABLE IS INCREMENTED#
CONTROL PASSES BACK TO THE 'UNTIL' OR 'WILE' TEST AND THE
THE LOOP BEGINS AGAIN.

PAGE 8

EXAMPLESi

FOR 1-1 UNTIL 10 DO ACID-I*I5
FOR I-N STEP -1 UNTIL 1 DO AC 13-AC I3/CI*1)i
FOR J-K-3 STEP M+J VHILE V<R DO V-V+JI
FOR I-l WHILE A+B>C DO BEGIN CALL SCI); MCI3-MCn-i; END!

THE FIRST STATEMENT WILL SET AC 13 =1*1 FOR 1<=I<=10.
THE SECOND IS AN EXAMPLE OF COUNTING THE INDEX VARIABLE DOWN.
THE THIRD USES A •WHILE* TEST FOR TERMINATION OF THE LOOP. THE LAST
HAS A BEGIN BLOCK AS THE 'DO* PART.

WHILE STATEMENT.

THIS STATEMENT PROVIDES A MEANS OF PERFORMING A STATEMENT AS
LONG AS SOME CONDITION IS TRUE.

EXAMPLES;
VHILE A<B DO CALL SUB1(®A,©B>;
WHILE I<=N DO BEGIN ACI3-I; BUMP i;
WHILE X#0 DO X-LINKCX3;

end;

'THE •WHILE' CONDITION IS TESTED. IF THE RESULT IS TRUE THEN
THE 'DO* PART IS EXECUTED. THE TEST AND EXECUTION ARE REPEATED
UNTIL THE 'WHILE* EXPRESSION IS FALSE. CONTROL THEN PASSES TO THE
NEXT STATEMENT.

COMPOUND STATEMENT CBLOCK).

A BLOCK IS A GROUP OF STATEMENTS PRECEDED BY THE WORD 'BEGIN*
AND FOLLOWED BY THE VX)RD •END*. A BLOCK IS USED TO GROUP STATEMENTS
LOGICALLY TOGETHER FOR THE 'IF*# 'VHILE* AND 'FOR* STATEMENTS.
BLOCKS MAY BE NESTED TO ANY LEVEL.

EXAMPLESI

BEGIN A-i; B-2; c-3; end;
FOR I-l UNTIL N DO BEGIN ACI3-I; BCI3-0; END;
IF X=0 THEN BEGIN F-7; GO TO LABELl; END;

DAS STATEMENT.

A DAS STATEMENT IS A STRING OF CHARACTERS ENCLOSED IN QUOTES (")
THE STRING IS COPIED TO THE OUTPUT FILE WITHOUT QUOTES.
THUS ASSEMBLY LANGUAGE CDAS) STATEMENTS MAY BE INSERTED INTO
M0L620 PROGRAMS.

EXAMPLESi
'•j SEN>0101#*+A";
"♦ THIS COMMENT IS PUT IN THE DAS PROGRAM";
"#EXC»031";

PAGE 9

PROCEDURE.

A PROCEDURE ISA CLOSED SUBROUTINE OR FUNCTION. A PROCEDURE MAY

NOT CONTAIN ANOTHER PROCEDURE. A PROCEDURE CONSISTS OF

THREE PARTSt

Cn HEAD

<2> BODT

<35 CLOSE-

THE PROCEDURE HEAD CONSISTS OF THE VORD 'PROC* <0R 'PROCEDURE*)
FOLLOWED BY AN IDENTIFIER WHICH SERVES AS THE PROCEDURE NAME, FOLLOWED

BY AN OPTIONAL LIST OF 0 TO 3 IDENTIFIERS ENCLOSED IN PARENTHESES.

EXAMPLES OF PROCEDURE HEADSt

PROC ALPHACX)i

PROCEDURE FCQ1,R, V);

PROC SUBl;

PROCEDURE SUBK)

PROC G3CX,,Z);

IF A PARAMETER LIST APPEARS IN THE PROCEDURE HEADING, THEN ON ENTRY TO

THE PROCEDURE THE A-REGISTER IS STORED IN THE LOCATION

SPECIFIED BY THE FIRST PARAMETER, THE B-REGISTER IN THE SECOND,

THE X-REGISTER IN THE THIRD. THE PARAMETERS ARE NOT

DUMMIES IN THE SENSE THAT THEY ARE NOT LOCAL TO THE PROCEDURE BUT

HAVE SCOPE OVER THE ENTIRE DAS PROGRAM GENERATED.

THE BODY OF A PROCEDURE IS EMPTY OR CONSISTS OF A SEQUENCE OF

STATEMENTS, COMMENTS, AND DECLARATIONS.

A PROCEDURE IS CLOSED BY THE VORD 'ENDP;'.

AS THE RETURN STATEMENT WITH NO ARGUMENTS.

THIS HAS THE SAME EFFECT

EXAMPLES:

PROCEDURE ADD (ARG1,ARG2);

RETURN (ARG1 + ARG2>;

DECLARE ARG1,ARG2;

ENDP;

PROCEDURE LINEARSEARCH C FIRST, N, VALUE) ;

XTHE ARGLWENTS ARE;

FIRST = ADDRESS OF VECTOR TO BE SEARCHED

N = SIZE OF ARRAY (1 TO N)

VALUE = VALUE TO BE FOUND.

WE USE A LINEAR SEARCH TECHINIQUE TO RETURN

THE INDEX OF THE VECTOR ELEMENT WHICH

CONTAINS THE VALUE. (ASSUME IT IS THERE)%

LAST-FIRST+N-l; %ADDR OF LAST VORD IN VECTORS

FOR I-FIRST UNTIL LAST DO

IF CI3=VALUE THEN RETURN <I-FIRST+1);

DECLARE FIRST,LAST, I,N,VALUEJ

ENDP;

A PROCEDURE SHOULD ONLY BE ENTERED VIA A FUNCTION CALL OR SUBROUTINE

CALL, AND NOT BY FALLING INTO IT FROM PRECEDING CODE.

PAGE 10

declarations.

THE USER MUST DECLARE STORAGE FOR VARIABLES VHICH ARE SCALARS OR

ONE DIMENSIONAL VECTORS. AN INITIAL VALUE MAY ALSO BE SPECIFIED

FOR THESE VARIABLES- DECLARATIONS ARE GLOBAL TO THE WHOLE

M0L620 PROGRAM.

examples:
DECLARE Aj B, C> D«l> EC 103>FC-5t 6DI

THIS GENERATES THE FOLLOWING CODE:

jJMP#$A

A, DATA,0

B,DATA,0

C,DATA,0
D,DATA,1

E,DATA,0

,0RG, E+10

F, EQU,++5

, ORG, F+ 6+ 1

SA, EQU,*

,JMP,$5

6, EQU,*-1

,DATA, 1,2,3,4, 5

, OHG, G+ 5+ 1

TEXT, DATA, "ABCDEFGIIJK*

$5, EQU,#

NOTE THE UNCONDITIONAL JUMPS AROUND THE DECLARATIONS.

EXECUTION OF DECLARATIONS CANNOT OCCUR BY FALLING INTO THEM FROM

PRECEDING CODE.

THE USER MAY PROVIDE FOR THE INDEXING OF VECTORS USING

A VALUE OF AN INDEX FROM M TO N BY DECLARING THE VECTOR

CSAY V) AS VCM;N3 WHERE M AND N HAVE VALUES AT ASSEMBLY TIME.

SINCE M0L620 GENERATES CONDITIONAL ASSEMBLY STATEMENTS FOR

INDEXED INSTRUCTIONS, ARRAY NAMES MUST BE DECLARED BEFORE THEY

ARE USED IF THE ASSEMBLY TIME VALUE OF THE NAME IS

GREATER THAN 511 C 777 BASE 8). OTHERWISE, PHASE ERRORS WILL

RESULT.

TO DECLARE SYMBOLS TO HAVE A CERTAIN VALUE AT ASSEMBLY TIME

VE HAVE ANOTHER FORM OF THE DECLARATION*

EXAMPLES:

SET A=0, B=7> Da 61

EQU Ea5,Fa01777;

GENERATES THE DAS CODE

»SET,

,SET,

,SET,

#EQU>

0

7

6

5

01777

PAGE 11

COMMENTS>

COMMENTS ARE OF TVO TYPES:

Cn STRINGS ENCLOSED IN PERCENT SIGNS C%)- THESE ARE MERELY

ANNOTATIONS AND DO NOT APPEAR IN THE OUTPUT OF M0L620.

<2) STRINGS ENCLOSED IN QUOTESC") AND FOLLOVED BY A SEMI

COLON. THE QUOTES ARE REMOVED AND THE STRING IS COPIED

TO THE OUTPUT FILE. (SEE DAS STATEMENT).

PROGRAM ORIGIN.

IN ORDER TO GIVE THE DAS PROGRAM AN ORIGIN ADDRESS# THE PROGRAM

MAY CONTAIN A CONSTRUCT TO INDICATE THE ORG LOCATION.

THE ORG APPEARS BEFORE ANY EXECUTABLE STATEMENTS OF THE PROGRAM.

EXAMPLES:

P3 ORG 013000;

MAIN ORG 5000;

IF THE ORG ADDRESS IS AN ADDRESS EXPRESSION INVOLVING VARIABLES#

THESE VARIABLES MUST BE DECLARED PREVIOUSLY WITH A SET OR

EQU.

EXAMPLE:

SET B=013000# 0=0257;

ALPHA ORG B+C;

IN THIS CASE ALPHA IS SET AT LOCATION 013257 AT ASSEMBLY TIME.

PROGRAM

A PROGRAM ISA SET OF COMMENTS# DECLARATIONS AND PROCEDURES

OPTIONALLY PRECEDED BY THE PROGRAM ORIGIN.

P/^GE 12

M0L620 COMPILER AND LANGUAGE. HINTS# PITFALLS# AND MISCELLANY.

SYMBOLS.

M0L62O VILL ACCEPT AN IDENTIFIER (IDEN> OF INDEFINITE LENGTH#
HOVJEVER# DAS WILL NOT DIFFERENTIATE BETWEEN SYMBOLS IF THE FIRST
FOUR CHARACTERS ARE IDENTICAL.

DO NOT USE SYMBOLS BEGINNING WITH A DOLLAR SIGN ($>. M0L620
RESERVES SUCH SYMBOLS FOR GENERATING LABELS.

A PERCENT Sia^I C%) MAY ONLY BE USED AS A COMMENT DELIMITER.

A ZERO IN FRONT OF A NUMBER INDICATES THE NUMBER IS EXPRESSED
IN BASE 8.

A CARRIAGE RETURN MAY NOT APPEAR IN A STRING OF CHARACTERS
DELIMITED BY DOUBLE QUOTES <").

OPERATORS AND EXPRESSION EVALUATION.

THE HIERARCHY OF THE PRIMITIVE OPERATORS OF M0L620 I St

UNARY +# UNARY - (HIGHEST BINDING)
"I DEN" (.E.G. "ASRA"# "LLRL"# "MUL"# I.E.

ANY DAS OPCODE IN QUOTES)

BAND

BOR# BXR

*# /

+# "

># >a# B# <s# <# #

NOT

AND

OR# XOR (LOWEST BINDING)

BAND# BOR# AND BXR PERFORM THE BITWISE AND# OR# AND EXCLUSIVE OR
OF THE rm OPERANDS.

THE ONE'S COMPLEMENT OF A VALUE V CAN BE COMPUTED AS V BXR -1.

THE LOGICAL AND RELATIONAL OPERATORS RETURN A VALUE OF
TRUE (NON-ZERO) OR FALSE (ZERO).

THE OVERFLOW INDICATION IN MULTIPLICATION IS NOT SI ©J ALL ED.

A VALUE V MAY BE LOADED INTO THE A-REGISTER AND SHIFTED RIGHT 7
PLACES BY V "LSRA" 7. (IN DAS CODEt #LDA#V #LSRA# 7)

PAGE 13

TVO OPERATORS MAY NOT APPEAR TOGETHER. VRITE P*-Q AS P*(-Q).

IN M0L6S0# MULTIPLICATION BY AND 256 IS DONE BY
THE APPROPRIATE ARITHMETIC SHIFT. NO OVERFLOW IS INDICATED.

DIVISION BY 2 IS DONE BY AN ARITHMETIC SHIFT RIGHT.

DIVISION OF NEGATIVE NUMBERS MAY BE IN ERROR DUE TO HARDWARE
DIVIDE PROBLEMS ON THE 620/1.

THE VALUE OF AN EXPRESSION OF AND'S AND OR'S IS COMPUTED ONLY

SO FAR AS necessary TO ASSURE A CORRECT RESULT. FOR
EXAMPLE# THE EXPRESSION A AND B AND C IS EVALUATED LEFT TO

RIGHT. IF A IS FALSE# THEN THE EXPRESSION IS FALSE AND THE OTHER

OPERANDS ARE NOT EVALUATED. IF A IS TRUE# THEN B IS EVALUATED#

AND SO ON.

THE ORDER OF EVALUATION OF ARITHMETIC EXPRESSIONS IS NORMALLY

LEFT TO RIGHT IF THE EXPRESSION IS NOT PARENTHESIZED.
HOWEVER# THE ORDER OF OPERATIONS MAY BE REARRANGED BY THE COMPILER

FOR THE SAKE OF EFFICIENCY. CARE MUST BE EXERCISED VHEN
TAKING ADVANTAGE OF THE SIDE EFFECTS OF ANY EXPRESSION EVALUATION

OR WHEN YOU WANT NORMALLY COMMUTATIVE OPERATIONS TO BE DONE
IN A SPECIFIC ORDER. IT MAY BE NECESSARY TO CHECK THE OUTPUT OF THE

COMPILER TO MAKE CERTAIN THAT A SPECIFIC ORDER OF EVALUATION

WAS FOLLOWED.

WHENEVER AN EXPRESSION APPEARS IN A PROGRAM # THE CODE

WHICH IS GENERATED WILL LOAD THE VALUE OF THAT EXPRESSION INTO THE

A-REGISTER OF THE MACHINE. THEREFORE ALL EXPRESSIONS MUST EVALUATE

TO A 16 BIT VALUE. IN THE CASE OF MULTIPLICATION# WHICH HAS A TWO

WORD RESULT WHEN DONE BY THE HARDWARE# THE A-REGISTEH CONTAINS THE

PRODUCT MOD 2**15. FOR DIVISION# THE QUOTIENT IS DEVELOPED IN

THE A-REGISTER AND THE INTEGER REMAINDER IS IN THE B-REGISTER.

FINALLY# IF IT IS UNCLEAR WHAT CODE A CERTAIN SYNTACTIC CONSTRUCT

WILL GENERATE# RUN THE COMPILER AND SEE. (INPUT DEVICEaTTYl#
OUTPUT DEVICE»TTYI).

MINIMUM 620/1 CONFIGURATION.

TO SUCCESSFULLY RUN M0L620 PROGRAMS THE 620/1 MUST
BE EQUIPPED WITH THE EXTENDED ADDRESSING--HARDWARE MULTIPLY/DIVIDE

OPTION. THE COMPILER COULD BE ALTERED IN ABOUT ONE MAN HOUR TO REMOVE

THIS RESTRICTION. LOW CORE INDIRECT ADDRESSING AND A PROGRAM CALL TO

A MULTIPLY/DIVIDE ROUTINE WOULD THEN APPEAR IN THE OUTPUT OF M0L620.

PACE 14

HOW TO COPE WITH THE M0L620 COMPILER.

M0L620 EXPECTS AN INPUT FILE WRITTEN IN M0L620 LANGUAGE

AND OUTPUTS A FILE VHICH IS THE DAS ASSEMBLY LANGUAGE TRANSLATION

OF THE INPUT.

IF A SYNTAX ERROR OCCURS# M0L620 WILL LIST THE LINE IN ERROR

AND STOP. FIX THE ERROR AND COMPILE IT AGAIN. M0L620 ONLY

DETECTS ONE ERROR AT A TIME. THE USE OF A LINE-ORIENTED TEXT EDITOR

(SUCH AS QED OR TECO) IS HELPFUL AS THE STATEMENTS IN ERROR ARE

INDICATED BY THEIR POSITION FROM THE START OF THE FILE. THE

ERROR MESSAGE NUMBERS GIVEN BY M0L620 ARE MEANINGLESS.

SOME (NOT MANY) ERRORS CAUSE AN ILLEGAL TERMINATION OF THE COMPILER

WITH NO INDICATION OF WHAT CAUSED THE ERROR. EXAMINE THE PARTIALLY

BUILT OUTPUT FILE TO SEE WHERE THE COMPILER WAS WHEN IT BLEW UP

OR RUN IT AGAIN WITH THE OUTPUT TO THE TELETYPE.

. M0L620 RUNS IN ABOUT 15K UNDER THE STANDARD DEC PDP-IO MONITOR

AND COMPILED THE 100 LINE EXAMPLE IN THE APPENDIX IN 4 SECONDS OF

CPU TIME.

RUNNING THE M0L620 COMPILER ON THE UCI PDP-10 SYSTEM.

(1) PREPARE THE SOURCE PROGRAM AND STORE IT ON DSKi FILE.MOL.

(2) TYPE THE FOLLOWING:

.RUN DSK:M0L620CXXX#YYY3

♦INPUT.DAS-FILE.MOL

(3) THE COMPILER SHOULD RUN AND OUTPUT THE DAS CODE

TO INPUT.DAS.

(4) RUN PIP TO GET A PAPER TAPE COPY TO ASSEMBLE ON THE VARIANt

.AS PTP

.R PIP

♦PTP:-INPUT.DAS

♦ fC

•DEAS PTP

PAGE 15

(5) ASSEMBLE YOUR DAS PROGRAM ON THE PDP-10 AND PUNCH THE BINARY TAPEi

.R PIP

♦/X^INPUT.DAS/A

*tC

.RUN DSKlDAS10CXXX#YYY3
*$ (ESCAPE OR ALTMODE)

.AS PTP

.R PIP

♦PTPl-BINARY.DAS/I

♦ tC

.DEAS PTP

THE DAS LISTING IS IN FILE INPUT.LST. THE BINARY OUTPUT IS IN
FILE BINARY.DAS. XXX>YYY IN THE ABOVE PROTOCOL IS THE
USER NUMBER OF THE ACCOUNT WHERE THE M0L620 COMPILER
RESIDES.

PAGE 16

HISTORY

DESIGN CRITERIA,

THE PURPOSE OF THE M0L620 PROJECT, WHICH BEGAN IN 1968, WAS TO

DESIGN AND IMPLEMENT A TRANSLATOR FOR THE DEPARTMENT OF INFORMATION

AND COMPUTER SCIENCE VARIAN DATA 620/1, AN 8K, 16 BIT/WORD

MINI-COMPUTER, THE ONLY TRANSLATOR THEN AVAILABLE WAS A SIMPLE

TWO-PASS ASSEMBLER.

IT WAS ENVISIONED THAT BOTH FACULTY AND STUDENTS WOULD BE INTERESTED

IN USING THE 620/1 SO IT WAS NECESSARY TO DESIGN A LANGUAGE AND

IMPLEMENTATION THAT WOULD BE EASY FOR INEXPERIENCED STUDENTS TO USE,

YET VERSATILE ENOUGH TO BE USED IN SIGNIFICANT RESEARCH, GIVEN THE

EXPECTED CLASS OF USERS, THE TYPE OF WORK THEY WOULD BE INTERESTED

IN DOING, AND THE NATURE OF THE COMPUTER AVAILABLE, THE FOLLOWING
CRITERIA FOR THE LANGUAGE DESIGN SEEMED APPROPRIATE!

Cn THE LANGUAGE SHOULD BE EASY TO LEARN AND MASTER,

THIS WAS ESPECIALLY IMPORTANT SINCE THE MAJORITY OF USERS WERE

EXPECTED TO BE STUDENTS WHO WOULD PROBABLY DEVOTE NO MORE THAN A

WEEK OR TWO TO LEARNING THE LANGUAGE. SYNTACTICALLY CORRECT CON

STRUCTS SHOULD HAVE OBVIOUS MEANINGS; CONSTRUCTIONS WHICH SEEM NATURAL
AND SEEM TO HAVE STRAI OITFORWARD MEANINGS SHOULD NOT BE EXCLUDED.

C2) THE SYNTAX SHOULD BE AS SIMPLE AS POSSIBLE. A WELL-

CONSTRUCTED SYNTAX WHICH CLEARLY REFLECTS THE STRUCTURE OF THE

LANGUAGE IS USEFUL FOR CHECKING THE CORRECTNESS OF STATEMENTS

BEFORE ATTEMPTING TO TRANSLATE THEM AND FOR PINNING DOWN

SYNTACTIC ERRORS DETECTED BY A TRANSLATOR.

C3) THE LANGUAGE SHOULD BE EASY TO READ YET SHOULD BE

ORIENTED TOWARD SIMPLE TELETYPE KEYBOARD ENCODINGS. SOMEONE

WITH LITTLE OR NO EXPOSURE TO THE LANGUAGE SHOULD BE ABLE TO PICK

UP A LISTING AND MAKE A REASONABLE GUESS ABOUT WHAT THE PROGRAM

DOES. THE NEW USER SHOULD NOT BE FRIGHTENED BY AN AWESOME

DISPLAY OF ASTERISKS, SHARP SIGNS, BRACKETS, DOLLAR SIGNS,

QUOTES AND OTHER SYMBOLS ONLY OCCASIONALLY INTERSPERSED WITH

RECOGNIZABLE WORDS. SIMPLICITY OF ENCODINGS IS IMPORTANT

SINCE THE TELETYPE IS SLOW AND AWKWARD TO USE, BUT READABILITY

OF THE LANGUAGE IS MORE IMPORTANT.

(A) ALGORITHMS SHOULD HAVE CLEAR ENCODINGS IN THE LANGUAGE;

FLOW OF CONTROL SHOULD ALSO BE CLEAR. PROGRAMMING IN

ASSEMBLY LANGUAGE IS TEDIOUS AND THE RESULTING PROGRAM IS OFTEN
DIFFICULT TO FOLLOW, EVEN IF EXTENSIVa^Y COMMENTED. A LANGUAGE

MORE STRUCTURED THAN ASSEMBLY LANGUAGE, E.G. WITH AN ALGOL-LIKE

STRUCTURE, IS MUCH EASIER TO FOLLOW. IN ADDITION, A PROGRAM IN

A STRUCTURED LANGUAGE WILL BE PARTIALLY SELF-DOCUMENTING, I.E.

A PROGRAM WILL NOT SUFFER AS BADLY IF THERE IS LITTLE OR NO

DOCUMENTATION. IT IS OFTEN EASIER IN A STRUCTURED PROGRAMMING

PAGE 17
LANGUAGE THAN IN ASSEMBLY LANGUAGE FOR THE PROGRAMMER TO DETECT
AND CORRECT HIS ERRORS.

<5) THE LANGUAGE SHOULD ALSO REFLECT THE STRUCTURE OF THE
TARGET COMPUTER SO THAT, WHEN NECESSARY, OPTIMAL USE CAN BE MADE
OF THE LIMITED AMOUNT OF MEMORY AVAILABLE.

ONE TYPE OF LANGUAGE WHICH MET THESE CRITERIA IS A MACHINE ORIENTED
LANGUAGE. SOME OF THE FEATURES OF SUCH A LANGUAGE ARE:

<n THE LANGUAGE IS MORE STRUCTURED THAN ASSEMBLY LANGUAGE.
(2) ALL MEMORY LOCATIONS AND MACHINE REGISTERS ARE DIRECTLY

ACCESSIBLE.

C3) THE LANGUAGE ALLOWS THE SPECIFICATION OF GENERAL
COMPUTATIONS AND ASSIGNMENTS AT A MACHINE-INDEPENDENT LEVEL,
WITH THE DETAILS LEFT TO THE LANGUAGE TRANSLATOR.

<4) THE LANGUAGE ALLOWS THE ENTRY OF ASSEMBLY LANGUAGE
CODE DIRECTLY.

(5) THE LANGUAGE DOES NOT MASK ANY OF THE CAPABILITIES
OF ASSEMBLY LANGUAGE, BUT MAKES EASIER AND MORE EXPLICIT THE
EXPRESSION OF THOSE CAPABILITIES USED MOST FREQUENTLY.

M0L620 WAS DESIGNED TO INCLUDE THE CAPABILITIES COMMON TO MOST MACHINE
ORIENTED LANGUAGES AND TO MEET THE CRITERIA DESCRIBED ABOVE. THIS

ORIGINAL DESIGN HAS BEEN FOLLOWED THROUGH TWO IMPLEMENTATIONS.

COMPARISON WITH OTHER MACHINE ORIENTED LANGUAGES.

SEVERAL MACHINE ORIENTED LANGUAGES CMOLS), IN PARTICULAR MOL-32
FOR THE Q-32 COMPUTER AT SYSTEM DEVELOPMENT CORPORATION, M0L940 FOR
THE SDS 9A0 COMPUTER AT STANFORD RESEARCH INSTITUTE, AND PL360
FOR THE IBM 360/67 COMPUTER AT STANFORD UNIVERSITY, WERE EXAMINED
AND THE LIMITATIONS AND PECULIARITIES OF THE DATA 620/1 WERE
CONSIDERED. A LIST OF THE FEATURES TO BE INCLUDED IN A MOL FOR THE
620/1 CHEREAFTER CALLED M0L620) WAS THEN PRODUCED. THIS LIST WAS THEN
PRUNED TO VHAT APPEARED TO BE NECESSARY FOR A USABLE FIRST PASS.

WHAT REMAINED INCLUDED DECLARATION AND INITIALIZATON OF VARIABLES,
COMMENTS, and CONDITIONAL, LOOP, ASSIGNMENT, NULL, BLOCK (BEGIN-END),
SUBROUTINE CALL, SUBROUTINE RETURN, INCREMENT, AND ASSEMBLY LANGUAGE
STATEMENTS.

SEVERAL FORMS WERE PROPOSED FOR EACH OF THE LANGUAGE CONSTRUCTS
AND ALTERNATIVES WERE DISCARDED PRIMARILY ON AESTHETIC GROUNDS.
ALTHOUGI THE TYPES OF CONSTRUCTS REMAINING REFLECT MACHINE STRUCTURE
TO SOME DEGREE, THE FORMS OF THE CONSTRUCTS DO NOT. IN MANY CASES
IMPLEMENTATION COULD HAVE BEEN SIMPLIFIED IF SLIGHT BUT OBSCURE
(FROM THE USER'S POINT OF VIEW) AND POSSIBLY ANNOYING CHANGES IN
THE FORM OF CONSTRUCTS HAD BEEN MADE; THIS APPROACH WAS REJECTED.
OTHER MOLS, E.G. M0L940, REQUIRE SOMEWHAT AWKWARD CONSTRUCTS.
FOR EXAMPLE, IN M0L940 A LABEL MUST BE ENCLOSED IN PARENTHESES AND
FOLLOWED BY A COLON.

PAGE 18

M0L620 RESEMBLES M0L9A0 MORE THAN PL360 OR M0L-3S FOR TWO REASONS:

(1) THE VARIAN DATA 620/1 HAS SOME RESEMBLANCE TO THE SDS 9A0.
BOTH MACHINES HAVE THREE USER ACCESSIBLE REGISTERS AND HAVE
SIMILAR ORDER CODES*

<2) M0L9A0 COMBINES SOME OF THE BEST FEATURES OF EARLIER
MACHINE ORIENTED LANGUAGES. MUCH OF THE DESIGN SEEMED
WORTH FOLLOWING.

M0L620 DIFFERS FROM MOL9AO IN EXTENT AND INTENT. M0L940 IS
A MORE EXTENSIVE LANGUAGE THAN M0L620. M0L940 INCLUDES SEVERAL
CONSTRUCTS WHICH ALLOW THE USER TO AFFECT THE OPTIMALITY OF THE
OUTPUT CODE. IT ALSO REFLECTS THE POWER OF THE 940 ASSEMBLER.
THE M0L940 LANGUAGE AND COMPILER ARE ORIENTED TOWARD PRO

DUCING EFFICIENT AND CONCISE CODE ON A DI SPLAY-ORI ENTED TIME-SHARING
COMPUTER. IN THE M0L620 LANGUAGE AND COMPILER^ THE CHIEF

CONCERNS ARE EASE OF USE AND EASE OF MODIFICATION. THE PACKAGE IS
NOT INTENDED TO BE STRICTLY DIRECTED TOWARD EXPERIENCED PROGRAMMERS.
A STUDENT SHOULD BE ABLE TO USE THE COMPILER FOR CLASS PROJECTS.
THUS THE LANGUAGE AND LANGUAGE COMPILER ARE VIEWED BOTH AS A
VEHICLE FOR DOING USEFUL WORK AND AS A LEARNING TOOL.

i i '

PAGE 19

BIBLIOGRAPHY

<n BOOK* E. AND D. V. SCHORRE* "A HIGHER-LEVEL MACHINE-
ORIENTED LANGUAGE AS AN ALTERNATIVE TO ASSEMBLY LANGUAGE*"
TECH MEMO 308 6/001/00* SYSTHM DEVELOPMENT CORPORATION.

<2> CARR* C. STEPHEN ET.AL.* "THE TREE-META COMPILER-COMPILER SYSTEM*'
UNIVERSITY OF UTAH.

C3) HAY* R.E. AND J.F. RULIFSON* "M0L9A0J PRELIMINARY SPECIFICATION
FOR AN ALGOL-LIKE MACHINE-ORIENTED LANGUAGE FOR THE SDS 9AO*"
INTERIM TECHNICAL REPOP.T 2* SRI PROJECT 5890*
STANFORD RESEARCH INSTITUTE.

(4) RULIFSON* J.F.* "A TREE META FOR THE XDS 940*" AUGMENTATION
RESEARCH CENTER* STANFORD RESEARCH INSTITUTE* MENLO PARK*
CALIFORNIA* APRIL 19 68.

, <5> "VARIAN DATA 6S0/I COMPUTER MANUAL*" VARIAN DATA MACHINES.

<6> VIRTH* N.* "PL360* A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS*"
JOURNAL OF THE ACM* JANUARY 19 68.

APPENDIX I--SAMPLE M0L620 PROGRAM

SPACE ORG 0120; %DyNAMIC STORAGE ALLOC BOUTINES%

SFIRST FIT method; BLOCKS KEPT ON ONE LIST IN
DESCENDING ORDER BY BLOCK ADDRESS* SECOND TO LAST
VORD IN BLOCK IS BLOCK SIZE> LAST VORD IS ADDRESS OF
NEXT BLOCK-

IF BLOCKS OF SIZE ONE COME UP* THEY ARE PUT ON
THE SINGLES LIST.%

EQU LINK=1>SIZE=0*ERR=012*STATS=013*EMPTY = 016;
"* ORG* 030";

"* DATA* CREATEPOOL* BFREE* LFREE* RES* SFREE";
"*ORG* SPACE";

XFREE IS NUMBER OF FREE UDRDS AVAILABLE IN THE SYSTEMS

PROC CREATEP00LCX*N); %SET UP FREE STORAGE AREAS
XX POINTS TO BASE OF FREE STORAGE

N IS NUMBER OF WORDS UP FROM THAT ADDRESS TO BE
AVAILABLEX

^ stats-@free;
FREE* EMPTY* SINGLES^O;

"HEAD+LINK"* Q-0NI L;

CALL BFREECX*N); XPUT BLOCK ON LISTS
EN dp;

PROC BFREE(X*N); SFREE a BLOCK OF N WORDSS
SX POINTS TO LOW ORDER ADDRESS OF BLOCKS
IF X=0 OR N<=:0 THEN RETURN;

X-X+N-B; SMAKE X point to high order end of BLOCKS
free-free+n;

IF Q>X then c-q else c-§head;
b-linkccd;

while B>X do SSEARCH FOR LOWER ADDRESS THAN XS
begin c-b; B-LINKEB3; end;

LINKCX3-B; SIZECXI-N; LINKCCD-X; SPUT BLOCK INS
Q-X; SREMEMBER VHERE WE LAST PUT IN A BLOCK* IT MIGHT

SAVE US SOME TIME ON NEXT BFREE CALLS
EN dp;

PROC LFREECLF); SFREE LIST LF OF 2 WORD BLOCKSS
WHILE LF#0 DO

BEGIN T*-LINKCLF3; CALL BFHEECLF*2>; LF*-T; END;
EN dp;

PROC SFREECSF); SFREE A STRING IN NORMAL FORMS
N^CSF3/2; CALL BFREECSF*N+(BH)+I);
EN dp;

IF N<=0 THEN return;

q-§nil; %play it safe, we mi git be giving up block q points to%
COMBINED-O;

if FREE-N<50 then EMPTY-l;
RESAj

S-eHEAD; R-LINKCS3;

while sizecrkn do
begin s-r; r»-linkcri; end; xfind first fit%

IF R#@NIL THEN

begin

ri-sizecr]-n; u-r-n+ i;

IF R1 = 0 THEN LINKC S3-LINKCR3; %PERFECT Fl Tj UNLINK BLOCK%
ELSE

IF Rl=l THEN %PUT LAST WORD ON SINGLES# UNLINK BLOCKS
BEGIN CU3-SIN6LES; SINGLES«-U; LI NKC SD-LINKC R3 I FREE-FREE-l; END;
ELSE %WE ONLY NEED PART OF BLOCKS

BEGIN T>LINKC S3-R-N; SIZECT3^Ri; LINKC T] «-LINKC R3 ; END;
SZERO OUT BLOCK TO BE RETURNEDS
BUMP R#u;

FOR I-U UNTIL R DO CII^O;
free»-free-n;

RETUHNCU); SADDRESS OF BLOCKS
end;

SOTHERWISE WE TRY TO COMBINE BLOCKS TOGETHERS
IF COMBINED SALREADY TRIEDS THEN CALL CERR3C4);

P-@HEAD; R-LINKCP3; L-LINKCR3;

WHILE L#@NIL DO

BEGIN

S-SIZECR3;

IF R-S=L THEN

BEGIN SIZECR3-S+SIZECL3; LINKCR3-LINKCL3; END;
ELSE

BEGIN p-r; r-l; end;

L-LINKCL3;

end;

COMBINED^!;

GOTO RESA; STRY TO FIND A BLOCK BIG ENOUGI NOWS
EN dp;

DECL X#N#HEADC23>C#B#FREE,C0MBINED#NILC S3 ="0 77777# NIL'
S#RjRl#I#SINGLES#LF#SF#L#T#P# Q# U;

DONE.

APPENDIX I--OUTPUT OF THE COMPILER FOR SAMPLE PROGRAM

COMPILED BY M0L620 VERSION 2.15 <17-SEPT-71)
« SMKY^

SPACEj0RG>0120

S* EQVs*

LINK,EQUj 1

SIZE# EQU#0

ERR# EQU#012

STATS# EeU#013

EMPTy#EQU#016

#0RG#030

DATA# CREATEPOOL# BFREE# LFREE# RES# SFREE

#ORG# SPACE

$PO#EQU# +

CREATEPOOL#NOP# <<<<<PR0CEDURE CREATEP00L>>»>
#STA,X

STB#N

#LDAI#FREE

STA# STATS

#TZA#

STA# SINGLES

STA# EMPTY

STA# FREE

#LDAI#NIL

STA# Q

STA#HEAIHLINK

#LDA#X

#LDB#N

JMPM# BFREE

#JMP## SPO

$T0#EQU#*-1

#BSS#0

$P1#EQU#*

BFREE#NOP# <<<<<PROCEDURE BFREE>>>>>

STA,X

#STB#N

#LDA#X

JAZ # *+ 3

DECR#1

#IAR#

#JAZ#*+A

JMP# 51

#LDA#N

#DAR,

#LSRA#15

$1#EQU#*

#JAZ# $2

#JMP+# $P1

£2# EQU# ^

#LDA#X

#ADD#N

SUBI# 2

#STA#X

#LDA#FREE

•ADD.M

STA# FREE

LDA, Q

SUB#X

DAR,

JANj S3

LDA,Q

STA^ C

JMP> SA

3# EQU>*

LDAIjHEAD

STA, C

EQU^*

LDX^C

IFT,LINK# 512> 512

LDA,LINK# 1

IFT>511^LINK,LINK

LDAE,LINK#1

STA,B

5* EQU**

LDA, B

SUB,X

DAR,

JAN# S6

LDA#B

STA#C

Lnx#B

IFT#LINK# 512# 512

LDA#LINK#1

I FT# 511#LINK#LINK

LDAE#LINK# 1

STA#B

JMP# $5

6# EQU#*

LDA#B

LDX#X

IFT#LINK# 512# 512

STA#LINK,1

IFT# 511#LINK#LINK
STAE#LINK#1

LDA#N

LDX#X

IFT# SIZE# 512# 512
STA# SIZE# 1

IFT# 51 1# SIZE# SIZE

STAE# SIZE# 1

LDA#X

LDX# C

IFT#LINK# 512# 512

STA#LINK#1

IFT# 51 1#LINK#LINK

STAE#LINK#1

LDA#X

STA#Q

JMP*# $P1

STi#EQU#*-l

#BSS#0

%PQ,EOU>*

LFREEiNOP#<<<<<PROCEDURELFREE>>>>>
,STA,LF

%1,EQU**

#LDA,LF

«JAZ#S8

>LEK#LF

jIFT^LINK#512*512

#LDA*LINK*l

*IFT*511*LINK*LINK

*LDAE*LINK*1

*STA*T

*LDA*LF

*LDBI*2

*JMPM*BFREE

#LDA,T

#STA*LF

JMP$7

$8*Eeu**

*JMP**$P2

ST2*EQU#*-1

*BSS*0

SP3*EQU**

SFREE*NOP*<<<<<PROCEDURESFREE>>>>>
*STA*SF

*LDAE*CSF)*

TAB

jLASH*I

*ASRB,lA

*STA,N

TBA

*ADD*N

IAR

*TAB,

*LDA*SF

*JMPMjBFREE

*JMP**SP3

ST3*EQU**-l

*BSS*0

$P4*EQU**

RES*NOP*<<<<<PROCEDURERES»>>>
*STA*N

*LDA*N

DAR

JAP$9

*JMP**SPA

S9*EGU**

*LDAI*NIL

*STA,Q

TZA

*STA*COMBINED

*LDA*FREE

*SUB*N

*SUBI*50

,JAP*$10

*INCR*I

*STA*EMPTY

$10*EQU**

RESA*EQU**

*LDAI*HEAD

*STA*S

<<<<<PROCEDURERES»>>>

LDX> S

IFT^LINK# 512^ 512

LDA,LINK,1

IFT, 51 1^LINK,LINK

LDAE,LINK# 1

STA,R

11,EQU^*

LDJC#R

IFT* SIZE, 512# 512
LDA,SIZE, 1

IFT#511# SIZE, SIZE

LDAE, SIZE, 1

SUB,N

JAP,$12

LDA, R

STA, S

LDX,R

I FT,LINK, 512*512

LDA,LINK,1

IFT,511,LINK,LINK

LDAE, LINK, 1

STA,R

JMP,$11

; 12, EQU, *

LDA,R

SUBI,NIL

JAZ,$13

LDX,H

IFT, SIZE, 512, 512
LDA, SIZE, 1
IFT,511,SIZE, SIZE

LDAE, SIZE, 1

. SUB,N

STA,HI

LDA,R

• SUB,N

. lAR,

. STA,U

.LDA,R1

. JAZ,*+4

-JMP,$14

rLn?C,R

.IFT,LINK,512,512

r LDA, LINK, 1

• IFT, 51 1,LINK,LINK
• LDAE,LINK, 1

.LDX, S

• IFT,LINK, 512, 512

• STA,LINK,1

• IFT, 511,LINK,LINK

• STAE,LINK, 1

» JMP, $15

El4, EQU,+

»LDA,R1

» SUBI,1

• JAZ,*+4

•JMP,$16

• LDA, SINGLES

• STAE, (U)*

• LDA,U

• STA, SINGLES

,LDK,R

#IFT#LINK#512j512

#LDA>LINK*1

#IFT> 51 WLINK^LINK

#LDAE,LINK* 1

#LDX# S

IFT>LINK^ 5I2j 512

»STA,LINK,1

#IFT^ 51IjLINK^LINK

*STAE,LINK> 1

,LDA,FREE

DAR>

,STA, FREE

> JMP, $17

$16^ EQU#*

jLDA#R

SUB,N

jLEK^ S

»IFT,LINK,512,512

,STA,LINK^1
IFT* 511#LINK#LINK

» STAE^LINK* 1

,STA,T

,LDA,R1

*LDX#T

j IFT,SIZEj 512# 512

j STA#SIZE# 1

#IFT#511#SIZE#SIZE

#STAE, SIZE# 1

#LDX#R

#IFT#LINK# 512# 512

#LDA#LINK# 1

IFT# 511#LINK#LINK

#LDAE#LINK# 1

#LDX#T

#IFT#LINK#512#512

STA#LINK#1

#IFT#511#LINK#LINK

STAE#LINK# I

$17# EQU##

$15# EGU#*

#INR#R

#INR#U

#LDA#U

STA#I

$18# EQU#*

#LDA#I

SUB#R

DAR#

#LSRA#15

JAZ#$19

TZA#

STAE#CI)*

#INR#I

JMP#S18

S19#EQU#*

#LDA,FREE

#SUB#N

#STA,FREE

#LDA#U

#JMP»# SPA

$13# EQU#*

#LDA# COMBINED

>JAZ« S20

>LDAI,4

,JMPM>CERR)*

S20* EQU**

,LDAI,HEAD

> STA,P

#LDX#P

#IFT#LINK# 512,512

,LDA,LINK,1

, IFT, 51 1,LINK,LINK

,LDAE,LINK,1

,STA,R

jLDX,R

,IFT,LINK,512,512

,LDA,LINK,1

,IFT,511,LINK,LINK

,LDAE,LINK, 1

, STA,L

S21,E€1U,*

,LDA,L

, SUBI,NIL

,JAZ,$22

,LDX,R

,IFT,SIZE,512,512

,LDA, SIZE, 1

,IFT,511,SIZE, SIZE

,LDAE,SIZE, 1

,STA,S

,LDA,R

, SUB, S

, SUB,L

,JAZ,*+4

,JMP,$23

,Lnx,L

,IFT,SIZE, 512,512

,LDA, SIZE, 1

,IFT,511,SIZE, SIZE

,LDAE, SIZE, 1

, ADD, S

,LDX,R

,IFT, SIZE, 512, 512

, STA, SIZE, 1

,IFT, 511, SIZE, SIZE

, STAE, SIZE, 1

,Lnx,L

,IFT,LINK,512,512

,LDA,LINK, 1

, IFT, 511,LINK,LINK
,LDAE,LINK, 1

,LDX,R
,IFT,LINK,512,512

,STA,LINK,1

,IFT,511,LINK,LINK
, STAE,LINK, 1

,JMP,$24

$23, EQU,*
,LDA,R

, STA,P

, LDA, L

, STA,R

$24, EQU,*

• i.nx.i.

#IFT^LINK* 512> 512

* LDA#LINKj 1

#IFT> 511^LINK#LINK

,LDAE,LINK* 1

* STAjL

#JMP* S21

S22, EQU>*

>INCRj1

* STA,COMBINED

>JMPjRESA

,JMP*> SPA

STA> EQU>*-1

#BSS^O

* JMP, S25
DATA>0

N* DATA,0

H EAD,DATA* 0

*0RG*HEAI>2

C* DATA,0

B,DATA,0

FREE, DATA, 0

COMBINED, DATA, 0

NIL, DATA, 077777,NIL

,0RG,NIL+2

S,DATA,0
H,DATA,0

R1,DATA,0

I,DATA,0

SINO-ES, DATA,0

LF, DATA,0

SF, DATA,0

L,DATA,0

T,DATA,0

P,DATA,0

Q,DATA, 0

U,DATA,0

$2 5, EQU,*

, END, $

APPENDIX II—M0L620 COMPILER LISTING

.META PROGRAM (K=100*M=800jN=1500>S=AOO)

% COMPILER FOR M0L620 PROGRAMS%

% OUTPUTS DAS ASSEMBLY LANGUAGE %

X STARTED NOVEMBER 8* 1970%

X VRITTEN IN PDP-10 TREE-META VERSION 1.5%

% PRODUCERS GREGORY L. HOPWOODX

% DIRECTOR: MARSHA DRAPKIN HOPWOODX

X CONSULTANT! WILLIAM M. NEVMANX

% ADAPTED FROM THE ORIGINAL M0L620 COMPILERX

X WRITTEN IN FORTRAN FOR THE S/360 AND%

% DESCRIBED IN UNIV OF CALIF* IRVINEX

% INFO AND COMPUTER SCIENCE DEPARTMENTX

X TECHNICAL MEMO #1* ENTITLED %

% "M0L620: A MACHINE ORIENTED LANGUAGE AND LANGUAGE COMPILERX

X FOR THE VARIAN DATA 620/1 COMPUTER" X
% BY MARSHA A. DRAPKINX

PROGRAM = HEAD IDORG SCUNIT) "DONE."
?"???? IN BEGIN...END BLOCK OR MISSING 'DONE.'"?

C"* END* $"\i;

XPATCHES TREE-META TO USE '$' AS BASE FOR GENERATED LABELSX

HEAD = !C "HRR B*A1"\"ADDI B, t D20"\"M0VE A* C JFCLD "\"M0 VEM A*CB>"\

"MOVEM A* 1(BV\"M0UE A* C 2200000000003 "\"MO VEM A*A<B)"\)

•EMPTY :VERSI0NC03*;

ID0H6 = SCDEC* / COMMENT*) C-IDEN "ORG" VALUE '5 SXORGC23 * /

.EMPTY C"$*EQU**"\3) *'
UNIT e PHOC / 1$C-DEC * / COMMENT ♦) I

PROC = PRCHEAD FORMPART *5 CCOMSTMS / .EMPTY) "ENDP"

E"* JMP** $P"-WC\ "ST"-WC+WC "*EQU**-1"\ "* BSS* "? WA$WA\ 31

PRCHEAD = ^(-"PROCEDURE"/"PROC") I DEN

C"$P".WC"* EQU**"\

*SO"*NOP* <<<<<PROCEDURE " *S0 ">»»"\3;

FORMPART = «- •(0$2<**> ') /

•< CIDEN C"*STA*"*S0\3 / .EMPTY)

< •* CIDEN C "* STB* "*S0\3 / .EMPTY) / .EMP1Y)

(•* <IDEM C"*STX*"*S0\3 / .EMPTY) / .EMPTY) ") /

.EMPTY

COMSTMS = I$C-DEC */ -STMNT */ -COMMENT*) S

COMMENT = DAS 'S I

DEC = -(DECLARE / ASSDEC) ;

ASSDEC = - CSETSTM / EQUSTM) ;

SETSTM = - "SET" IITEM SXSETC23 $C '* 11TEM SXSETC33) 5

EQUSTM = - "EQU" IITEM SXEQUC23 $< '* IITEM SXEQUC33)!
IITEM = - I DEN •= VALUE ;

DECLARE = (-"DECLARE" /-"DECL") ITEM IXDECC13 $C '* ITEM SXDECC23)

•; szDECcn;

ITEM e - IDEN (-•C(-VALUE 'J/.EMPTY SXMTC03) VALUE '3 /

• EMPTY SXMTC03 :XMTC03)

(•= VALUE / .EMPTY SX2EROC03) SXITEMCA3 1
STMNT = -(LABELID SXLABELIDC13 / -EMPTY 1XMTC03) USTMNT '3 tXSTMN

LABELID = -.ID 't 3

*SO"*NOP*

FORMPART = -

.EMPTY)

/ .EMPTY)

/ .EMPTY)

EMPTY)

EMPTY)

IITEM SXSETC33

IITEM IXEQUC33

ITEM SXDECCn ITEM SXDECC23)

:XSTMNTC23

USTMNT a IFS /

FORS /

WHILES /

BLOCKS /

ASSI GNS /

NULLS /

GOTOS /

CALLS /

RETURNS /

BUMPS /

STOPS /

DAS ;

IFS a ^"IF" EXP JXEXPCn "THEN" USTMNT

<C-'5 "ELSE" / "ELSE") USTONT / .EMPTY :XMTC 03) sXMTC 0) SXI FC A3 5

FORS = -"FOR" STOLOC ;XDESI6C13 C '-/'=) EXP IXST0C23
(("STEP" EXP:XSUMC03sXSUBC03:XSTEPC 33/• EMPTY:XMTC 03)

("UNTIL" EXP :XLEC03:XGEC03xXUNTILC33/"WHILE" EXP))

"DO" USTMNT :XF0RCA3 ;

WHILES = -"VHILE" EXP SXEXPC13 "DO" USTMNT :XMTC 03 ;X VHILEE 33 5

ASSIGNS =-DESIG ('- / '=) EXP tXST0C23 ;

DESIG a-STOLOC IXDESIGC13 $('>STOLOC :XDESIGC23) I

NULLS = -"NULL" tXMTC03;

BLOCKS a -"BEGIN" BODY "END")

BODY = - (DEC / STMNT / COMMENT) :XB0DC13

$((DEC / STMNT / COMMENT) ;XB0DC23) / .EMPTY tXMTCOIi

GOTOS a .-••GO" "TO" JMPLOC :XG0T0C13;

CALLS a -"CALL" JMPLOC CARGLIST / .EMPTY :XMTC03) JXCALLC23;

RETURNS a .-"RETURN" (ARGLIST / .EMPTY 8XMTC03)

("FROM" JMPLOC / .EMPTY :XMTC03) :XRETC235

ARGLIST a .- •((.-EXP / .EMPTY :XMTC03) 8X1ARGC13

(-•> (EXP / .EMPTY :XMTC03) / .EMPTY :XMTC03) :X3ARGC13
•) :XARGLISTC33;

DAS a - .SR :XDASC135 %RECOGNIZE "STRING"%

BUMPS a .- ••BUMP" BMPLOC :XBUMPC13 SC BMPLOC :XBUMPC23)5

STOPS a .-("STOP" / "HALT") :XST0PC03;

EXP a.-lNTRSECT $("XOR" INTRSECT tXXORC 23/"OR" INTRSECT :X0RC23);

INTRSECT a - NEGATION $("AND" NEGATION ;XANDC23);

NEGATION a .-••NOT" NEGATION ;XN0TC13 / -RELATION ;

RELATION a - SUM S((">=" :XGEC03 / *> ;XGTC03 /

•a SXEQC03 / '•<a" ;XLEC03 /
•< tXLTC03 / •# SXNECO)) SUM :ZRELC33);

SUM a .- PRODUCT $((•+ tXSUMC03 / IXSUBC03) PRODUCT ;20PRn33)J

PRODUCT a - FACTOR $(('* :XMULC03/ V :XDIVC03) FACTOR JZMULC33);

FACTOR a .-BITAND $((-"BOR" :XB0RC03 / "BXR'* ;XBXRC03) BITAND ;20PRC33);

BITAND a - SHIFT SC'BAND" :XBANDC03 SHIFT :ZOPRC33)i

SHIFT a - PRIMARY $('" I DEN '" VALUE IXSHIFTC33)I

PRIMARY a -I DEN 'C EXP '3 tXMTE03 JXARRAYC33 /
-JMPLOC ARGLIST :XCALLC23 /

-I DEN :XADDRC13 /

-•((REGISTER / SWITCH) •) tXREGCU /

•(EXP •) tXEXPCn /

- CONSTANT /

- 'C EXP '3 JZINDIRC 13 /
- •- PRIMARY /

•- PRIMARY SXPMINUSCn /
•+ PRIMARY /

•§ I DEN :XREFCn ;

CONSTANT

REGI STER

SVITCH 3

STOLOC =

BMPLOC

JMPLOC =

VALUE =-

= NUMBER /

- •- CONSTANT /

%RECOGNIZE "STRING"%

-.SR XXADDRCn /

XTHE NEXT ALTERNATIVE RECOGNIZES 'STRING'*
.CHR .CHR " SXALPHAC23 / %AS IN 'XY'%

" .CHR " tXALPHACn / %AS IN 'X'*

•-'E CIDEN XXADDRC 13 / NUMBER) '3 IXINDIRC13 ;
a .-"AR" SXARC03 / -"BR" :XBRC03 / -"XR" :XXRC03 /

-"OF" xxoFco: ;

-"SSI" IXSSU03 / -"SS2" :XSS2C03 / -"SS3" :XSS3C03 5
-IDEN C 'C EXP '3 IXDESIGC03 SXARRAYC33 /

.EMPTY tXADDRCn) /

-•C REGISTER ') / -CONSTANT / - "C EXP '3 tZINDIRCn ;
-IDEN ('C EXP '3 XXBUMPC03 ZXARRAYC33/

• EMPTY :XADDRC13) /
- •(REGISTER •) / -CONSTANT / -'C EXP '3 IZINDIRC13 5
-IDEN C 'C EXP '3 :XMTC03 XXARRAYC 33 / .EMPTY XXADDRCU) /
-CONSTANT / 'C EXP *3 XZlNDIRCn;

IDEN XXNUMCn / -CONSTANT/ -VALUE / -'- IDE^ XXMINUSC13;

IDEN = .id;

NUMBER = .NUM / - •- .NUM tXMINUSCl3 / -'+ .NUM;

XUNPARSE RULES FOLLOW*

VERSI0NC3 => SWASWC <"M0L620 VERSION 2.15 < 1 7-SEPT-19 71) "\>\
"* COMPILED BY M0L620 VERSION 2.15 C 1 7-SEPT-71) "\ "#SMRY#"\;

XORGC-^-3 => *1 'SORG," *2\ "$,EQU,*"\ ;
XDASC-3 => *1 \;

XST0C->-3 => YLDAC*23 *11

ZDECC-3 => "*JMP^"#1\ *1 #rSEQU>*"\;
XDECC-#-3 => *1 XDECC+23

c-3 => *i;

XSETC->-3 => *1 "#SET^" *2 \
C-#-#-3 »> »1 XSETC*2#*33 S

XEQUC-»-3 => *1 ".EGU*" *2 \
-> *1 xEQUC*2#*33 ;

XDESIGC-»-3 => XDESIGC + 23 *1

CXARRAYC-^->-33 => CYTYPEC * 1: *23 / Z ARRAYC * 1X*23 /
XMTC*n STA, $T".WC"+"+WA. WA\) *1

CXMTC33 => .EMPTY
CXARC33 => .EMPTY

CXBRC3 3 => "#TAB,'
CXXRC3 3 => "^TAX/'

CXOFC33 => •SROF>"\ ",JAZ,*+3"\ "*SOF^"\
CZINDIRC-33 => STA, $T".WC"+"+WA. WA\ YLDAC*1:*13

"* STA# $T". WC"+"+VA. VA- WA\",LDA^ IT". WC"+". WAN
"* STAE, (IT". WC"+"+ WA. VA-VA-WA")*"\

CXINDIRC-33 => 'SSTAE," *1\
C-3 => 'SSTA#" *1 \;

XITEMC->XMTC3#XMTC3#-3 => *1 DATA," *4 \
C-,XMTC 3,-,-l => *1 "jDATAj" *4\ ",ORG," *1 '+ *3\
C-, .NUM, .NUM,-3 => *l ",EQU,*-" *2\",DATA," *4N

",ORG," *1 •+ *3 "+1"\

C-,XMlNUSC-3, .NUM,-3 => *l ",EQU,*+" *2x*lN
",DATA," *4\ ",0RG,"*1 '+ *3 "+1"N

C-# .NUM>XMINUSC-3 => XI TEMC* U*3^*2#*43
C-^XMINUSC-3*XMINUSC-3>-D => *1 "^EQU***" *2:*1\

•SDATA," ♦AX ",ORG>" ♦! ♦3!+l\

C-*->-^-3 «> <"ERROR IN DECLARATION OF " ♦l\>;

XBOMPCXARC3 3 => 'MAR, "\

CXBRC3 3 => 'MBR#"\

CXXRC3 3 => 'MXR^'^X

CXOFC3 3 => ">SOF, "\

CXARRAyC-*-^-33 -> ♦!

CZINDIRC-33 a> YLDAC^1: + 13 "* STA, ST". WC"+"+VJA. V!A\
'MNRE, ($T". WC"+"- V?A- WA")^"\

C-*-3 e> ♦! XBl)MPC^23

CXINDIRC-33 => 'MNRE," ♦IX

C-3 => "MNR*" ♦! X;

XZER0E3 => *0 J

XMT /=> .empty;

XARGLISTC->->-3 => YTYPEC♦1: ♦ 1 3 (YTYPEC+2: ♦ 1 3 CYTYPEC♦3l* 13 *1 *2 ♦G
/ *3:+l 'STAX^"X ♦! ♦P)

/YTYPEC + 3:*13 ♦2: + l "# TAB# "X ♦! *3

/*2:^1 "#STA#$T".V/C"+"+WA. VAX+3: + l "# TAX# "X
",LDB, $T". WC"+". WA-WAX ♦!>

/YTYPEC + 2: + n CYTYPEE ♦ 3: ♦ 13 ♦I;*! *2 *3 / ♦It + l
"# STA# ST".WC"+"+ WA.WAX*3;*1 "# TAX#"X"#LDA# $T".WG"+".WA-WAX *2)

/YTYPEC*3:* 13 ♦I:*! "# STA# $T". WC"+"+WA. WAX
*21*1 "#TAB#"X *3 "#LDA# $T". WC"+". WA-WAX

/* 1: * 1 "# STA# $T". WC"+"+ WA. WAX

*2S*1 "# STA# $T". WC"+"+WA. WAX

*3:*1 "#TAX#"X

"#LDB# ST". WC"+". WA-WAX "#LDA# ST". WC"+". WA-WAXi

X1ARGCXMTC3 3 => .EMPTY

C-3 => YLDAC*13;

X2ARGCXMTC33 => .EMPTY

C-3 => "#LDB" YM0DEC*13X ;

X3ARGCXMTC33 => .EMPTY
C-] => "#LnX" YM0DEC*13X ;

XNUMC-3 => *15

XMINUSCXMINUSC-33 => *1:*1
C-3 => •- *l;

XPMINUSCXPMINUSC-33 => YLDAC*1:*13
CXMINUSC-33 => YLDAC*1:*13

C-3 => YLDAC*n "#CPA#"X "#IAR#"X;
XALPHAC-3 => *1:C

C-,-3 => +1jG *2tG i

XINDIRC-3 => •(*1 ")*" ;

ZINDIRC-3 => YLDAC*13 "# STA# ST". WG"+"+WA. WAX"#LDAE# ($T". WC"+"
• VA-wA ">*" x;

XADDRC-3 => *i;

Xarray

C-#ZOPRC-#XSUMC3#"l"3#-3 => ZARRAYC*23 "#LDX" YMODEC*2:* 13X "#IXR#"X
ZARRAYC*1#*33 / Z ARRAYC * 1 # *2# *33

C-#ZOPRC-#XSUBC3#"l"3#-3 => ZARRAYC*23 "#LDX" YMODEC*2;*13 X
"#DXR#" X ZARRAYC*1#*33 / ZARRAYC + 1 #*2# + 33

C-#XARRAYC-#-»-3#-3 => ZARRAYC*23 "#LDX" YMODEC*2s*23X
"#IFT#" *2:*1 "#512#512"X "#LDX#" *2t*l "# 1"X

"#IFT#511#" *2:*1 •# *2:*1X "#LDXE#" *2:*1 "# 1"X
ZARRAYC*1#*33 / Z ARRAYC * 1# *2# *33

C-#-#-3 => ZARRAYC*1#*2#*33;
YARRAYC-#-#XDESI GC3 3 => <YTYPEC*23 /XMTC*33 "#LDA# $T". WC"+". WA-WAX)

"#IFT#" *1 "#512#512"X "#STA#" *1 '

"# I FT# 511#" *1 •# *1X "#STAE#" *1 "#

C-#-#XBUMPC33 => "#IFT#" *1 "#512#512"X "#INR#" *1 'M"X
"#IFT#511#" *1 •# *1X "#INRE#" *1 "#1"X

B> 'MFT," *1 5l2s bl2"\ 'SLDA," *l l"\

•MFTiSll," *1 % iclN ",LDAE," *1 1"\;

ZARRAyCZOPRC-#XSUMC3>"l"33 => YTyPEC*ll + 13
CZOPRE-*XSUBC3#"r'3J e> YTYPEC*ll*13

C">XDESIGC33 = > 'MFT#" *1 512,512"\ "# STA#" *1 i"\

'MFT^511>" *1 S *1\ "SSTAE," *1 ",l"\

CXARRAYC-^-#-33 => YTYPEC*U*23

C-#XBUMPC33 => 'MFT*" *1 •S512>512"\ ",INR," *1

C->-3 =>

*1 s *1N "#INRE#" *1 "# 1 "N

*1 "#512#512"N "jLDA# *1 "sV'S

*1 •> *1N "#LDAE#" *1 "# 1 "N

a> Y1YPEC*23 YMODEC*23\ YARRAYC * 1> *2* * 33

*2 "*TAX*" \ YARRAYC*U*2^*33 ;

XREFC-3 => *li

XREGC-3 => *1 ;

XARC3 a> .empty;

XBRC3 => 'STBAi^n;

XXRC3 => "#TXA,"\;

XSHIFTC-,-,-3 => YLDAC*13 'j *2 S *3 \;

XEXPC-3 => YLDAC*n ;

XLABELIDC-3 => »1 ",EQU^*"\ ;

XSTMNTC-^-3 => *1 *2 ;

XV?HILECXEXPCZRELC-#-j-33^-*-3 => #2 "*EQU^*"\

ZRELC»1:*1:*1**3>*1:*1 J*33 XI FC* 1 s* 1:#23 #I\
2 'SJMPj" #2\ #1 ",EGlU + "\

C-»-^-3 => #2 EQU>*"\ *l •SJAZ#"#^ *2
"*JMP,"#2\ #1 ",EQU^*"\;

XG0T0EXARRAYC-^-*-3 3 => YJMPC* 1: * * 11*23 'S JMP*^ $T". V/C"+". WA-WA\
CZINDIRC-33 => ZJMPC*1:*13 JMP*> $T". WC"+". WA-VA\

C-3 -> 'SJMP," *i\;

XCALLCXARRAYC-^-*-3>-3 => YJMPC* 11 * * 11 *23 *2 JMPM*^ $T". VC"+". WA-VA\
CZINDIRC-3^-3 => ZJMPC*1:*13 *2 JMPM*, $T". VC"+". \.;A-liJA\
C-,-3 => *2 ">JMPMj" *i\;

XRETC-jXMTC3 3 => *1 "#JMP*J$P" . VJC\

C-jXARRAYC->-*-33 => YJMPC*2i*l,*2:*23 *1 JMP*,$T".WC"+".WA-WAN

C->ZINDIRC-33 => ZJMPC + 28*13 *1 JMP*, $T". WC"+". WA-VAN

C-^-3 => *1 "jJMP*," *2n;

YJMPC-^-3 => YLDAC*2D ",ADDI>" *1N STA, $T"-WC"+"+VA. VAN;

ZJMPC-3 => YLDAC*13 'S STA, $T". VC"+"+WA. WAN;
XST0PC3 => "jHLT#"N;

XIFCXEXPCZRELC->-^-33^-^XMTC 3^-3 => ZRELC * 1 :* 18 * *4j * 1: * 11 *33
XIFC*l8*l8*23 01 \ *2 #1 ">EQU>*"N

C-#-iXMTC3^-3 => *1 'SJAZ*"#1N *2 #r',EQU#*"N

CXEXPCZRELC-j-j-33^->-^-3 => ZRELC * 1: * 1: * 1* *4# * 11 * 1 8 * 33
XIFC*l8*lS*23 #1N *2 ••,JMP,"#2N #1 •SEQU^*"N *3 #2 •SEQU#*"N

-3 c> *1 ",JAZ*"#1N *2 ">JMP,"#2N

#rSEQU#*"N *3 #2'%EQU>*"N

CXGTC3 3 =>

CXGEC33 =>

CXEQC33 =>

CXNECD3 =>

JAN#"

'# JAZ#* + 4"N

'# JAZ#"

'# JMP# "

CXLEC3 3 => "#DAR,"N "#JAP#"

XF0RC-#-3 => *1 *2

C-#XMTC3#XUNTILC-#-#-3#-3 => *1 #1"#EQU#*"N

ZRELC*lt*l8*l#*3:*2#*3:*n "# JAZ,"if(2N

*4 XBUMPC*18*18*13

"#JMP#"tflN #2 "#EQU#*"N

C-#XMTC 3#-#-3 => *1 #1 "#EQU#*"N

YLDAC*33 "#JAZ#" #2N
*4 XBUMPC*1:*1:*13

•SJMP#" #1N #2 "#EQU#*"N

C-*-*XUNTILC-#-.»-]^-3 => *1 «?1*SEQU**"\

<YSTE:PC*8:*13 ZHELC*l8*lt* W*3:*2**3:*n "*JAZ,"#2\/

ZSTEPC*2;*n ZRELC +1J + 1J* 1 #♦ 3:*3^*3l* 13 "#JAZ#" »2\/

ZOPRC*! J*l:*l^*2:*3^ + 3:*n %AR<-<V-C) A STEP B UNTIL Cl

*S STA, $T". WC"+"+WA. WA\

YLDAC*2:*13 'SASRA, 15"\ 'SORAI^r'N %SI GN OF B%
"#TAB,"\ ",T2A,"\ ",MULi$T". VC"+"-VA-WA\ %(U-C)*SI GNCB) X

">JAZ**+A"\ "*JAP#" #2\) %CONTINUE IF AR<«G X

♦ A Z0PRC*l:*l:*U*2j*2^ + 2:*13 *l:*l

"#JMP>"#1\ #2 'SEQU^*"\
=> *1 #1",EQU#*"\

YLDAC + 33 ">JAZ," #2\
*A Z0PRC*l:*ls*l^*2:*2**2:*n *1:*1

•SJMP, "#1\ #2 + ;

YSTEPC*NUM3 => -EMPTY

CXREFC-33 => -EMPTY!

ZSTEPCXMINUSC-33 -> -EMPTY!
XSTEP /=> -EMPTY!

XUNTIL / = > -EMPIY!

XB0DC->-3 => *1 *2

C-3 => *1!

YM0DEC.NUM3 => "I," *1

CXMINUSC-33 «> "Is" *1

CXADDRC-3D => S *1

CXREFC-33 => "I*" *1

CXALPHAC-33 => "I*" *1

CXALPHAC-»-33 => "Is" *1
EXINDIRC-3D => "E," *1!

YTYPEC.NLM3 => -EMPTY

CXMINUSC-33 => -EMPTY

EXADDRC-33 => -EMPTY

CXREFC-3 3 => -EMPTY

EXALPHAC-3 3 => -EMPTY

CXALPHAC-j-3 3 => -EMPTY

CXINDIRC-33 => -EMPTY

CXNUME-33 => -EMPTY

CXMTC 3 3 => -EMPTY !

YABELIANCXSUMC33=> -EMPTY

CXBANDC33 => -EMPTY

EXBORC33 => -EMPTY

CXBXRC33 => -EMPTY!

YLDAC"0"3 => ">TZA>"\
C"l"3 => 'MNCR^r'N
CXMINUSE"1"33 => 'SDECR, 1"\

C-3 => YTYPEC*13 'SLDA" YM0DEC*13\ / *1 !

XBANDC3 => 'SANA" !

XB0RC3 => ",ORA"!
XBXR C3 => ">ERA"!

XSUBC3 => ">SUB"!

XGTC3 => "jDAR, CPA, "X'^LSRA, 15"\i

XGEC3 => CPA, "X",LSRA, 15"X!

XEQC3 => ", JAZ,*+3"X",DECR, l"X*MAR,"Xi

XLEC3 => ",DAR,"X",LSRA, 15"X!

XLTC3 => ",LSRA, 15"X!

XNEC3 => -EMPTY!

XMULC3 => -EMPTY!

XDIVC3 => -EMPTY!

XNOTCXNOTC-33 => *!:*!

C-3 B> YLDAC*13 XEQC3 !

= > 'MNCR, r'\'^ JSSU*+3"\'MZA,"\J

= > 'MNCR^ 1"\'S JSS2»*+3"\'STZA,"\;

= > INCH, 1"\", JSS3,*+3"\"# TZA,

*-l => YLDAC*n "jJAZ^" #1\ YLDAC + 83 #1 ">EQU#*"\;

j-2 YLDAC + 2] STA, ST". WC"+"+WA* VJA\ YLDAC*!]

"> JAZ^+ + 8"\"^LDB, $T". WC"+". WA\". JBZ^*+5"\

•S TZA* "*S JMP#*+3"\". ERA, ST". WC"+". WA-VA\;

-3 => YLDAC*n ",JAZ,+ + A"\ ",JMPj"#1\ yLDAC*23 #1 ",EQU,*"\;

•,-,"0"3 => YLDAC + 13 *2
.,-,-3 => CYTYPEC*13CYTYPEC*33 ",LDA" YMODEC* n\", SUB" YMODEC*33\/

3 STA, ST". WC"+"+VA. VAN",LDA"YMODEC 1 3\

SUB, $T".VC"+".VA-VA\) /

YTYPEC + 33 *i ",SUB" YM0DEC*33N /

*3 ", STA, $T".VC"+"+ViA.WA\+l ", SUB, ST". WC"+". WA-WAN) *2 ;

•,XSUMC3,"1"3 => YLDAC*13 ",IAR,"N

•,XSUBC3,"1"3 => YLDAE*n ", DAR, "N
=> YTYPEC*nCYTYPEC*33 YLDAC+lD *2 YMODEC*33N/

YABELIANC*23 *3 *2 YMODEC*n N/

*3 ", STA, $T".WC"+"+WA. WA N YLDAC*13

*2 ",ST".WC"+".WA-van) /

YTYPEC + 33 *1 *2 YMODEC + 33 N /

YABELIANC*23 *1 STA, ST".VC •+ +VA. WAN
♦ 3 *2 ", ST".VC •+ .WA-WAN /

*3 STA, $T".WC"+"+VA.VAN *1 *2 ", $T". VC"+". VA-VAN ;

,XMULC3,"2"3 => YLDAC*n "*ASLA, 1"N
,XMULC3,"A"] =:> YLDAC*n ",ASLA,2"N

,XMULC3*"8"3 => YLDAC+13 ",ASLA,3"N

,XMULC3,"16"3=> YLDAC+13 ",ASLA,4"N

,XMULC3,"256"3=> YLDAC#13 ",ASLA,8"N

^XMULC3#"3 => YLDAC*13 ", TAB, "N", TZA, "N

(YTYPEC + 33 ",MUL" YMODEC*33 N/

STA, ST". VC"+"+WA. VAN *3 ", TAB, "N ",TZA,"N ",MUL, ST". VC"+". VA-WAN)

",LASL, 15"N

,XDIVCD,"2"3 => YLDAC*13 ", TAB, "N ",LASR, 1"N ",ASRB, 14"N

•,XDIVC3>-3 => YTYPEC + 33 CYLDAE*13

",LASR, 15"N ", DIV" YMODEC + 33N YDV2C3> /
♦ 3 ", STA, $T".VC"+"+WA. VAN

YLDAC*13 ",LASR, 1 5"N

", DIV, ST". VC"+".VA-WAN YDV2C3 J
= > ",TAX^"N ", TBA, "N "> TXB, "N 3YDV2C3

• END

