UC Irvine
ICS Technical Reports

Title

MOL620: a machine oriented language and language compiler for the varian data
620/

Permalink
https://escholarship.org/uc/item/8g20wl1s3
Authors

Hopwood, Marsha D.
Hopwood, Gregory L.

Publication Date
1971

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/8g20w1s3
https://escholarship.org
http://www.cdlib.org/

L
1
0.
‘MOL62¢ Vo |
A MACHINE ORIENTED LANGUAGE
AND LANGUAGE COMPILER
FOR THE VARIAN DATA 620/I

MARSHA DRAPKIN HOPWOOD
GREGORY L. HOPWOOD

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

TECHNICAL REPORT NO. 1
SEPTEMBER 1971%
DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA, IRVINE

*THIS IS A MAJOR REVISION OF TECHNICAL REPORT NO. 1, APRIL 1969, BY

MARSHA A. DRAPKIN. THE WORK DESCRIBED IN THAT REPORT WAS SUPPORTED
BY A GRANT FROM THE CARNEGIE CORPORATION OF NEW YORK.

i

TABLE OF CONTENTS.

INTRODUCTION

SYNTAX OF THE MOL620 LANGUAGE

SEMANTICS OF THE MOL620 LANGUAGE

HINTS.

HOW TO COPE WITH THE MOL620 COMPILER
RUNNING THE COMPILER ON THE UCI
PDP-10 SYSTEM

HISTORY

ASSI GNMENT STATEMENT

BUMP STATEMENT

NULL STATEMENT

GO TO STATEMENT AND LABELS
CALL STATEMENT

RETURN STATEMENT

STOP STATEMENT

IF STATEMENT

FOR STATEMENT

WHILE STATEMENT

COMPOUND STATEMENT (BLOCK)
DAS STATEMENT

PROCEDURE

DECLARATIONS

COMMENTS

PROGRAM ORI GIN

PRO GRAM

PITFALLS AND MI SCELLANY

SYMBOLS

OPERATORS AND EXPRESSION EVALUATION
MINIMUM 620/1 CONFI GURATION

DESIGN CRITERIA

COMPARI SON WITH OTHER MACHINE ORIENTED
LAN GUAGES

BIBL10OGRAPHY

APPENDIX I

SAMPLE MOL620 PROGRAM

vy sEr D

bt b Pt it
- O

12
12
12
13
14
14

16
16

19

OUTPUT OF THE MOL620 COMPILER FOR SAMPLE

PRO GRAM

APPENDIX 11

MOL 620 COMPILER LISTING

PAGE 1

MOL620: A MACHINE ORI ENTED LANGUAGE AND LANGUAGE COMPILER FOR
THE VARIAN DATA 62071

INTRODUCTION.

THE PURPOSE OF MOL620 IS TO PROVIDE A HIGH LEVEL ALGOL-LIKE
LANGUAGE WITH WHICH ONE CAN CONVENIENTLY REPRESENT ALGORI THMS
FOR EXECUTION ON THE VARIAN DATA 620/1, A 16-BIT MINI-COMPUTER.
THE ABILITY TO EXPRESS ALGORITHMS IN THE BASIC ASSEMBLY LANGUAGE
OF THE MACHINE IS ALSO PROVIDEDe.

A HIGH LEVEL LANGUAGE IS ADVANTAGEOUS SINCE PROGRAMS CAN BE MORE
EASILY WRITTEN AND DEBUGGED THAN IN ASSEMBLY LANCUACGE.
THE PROGRAMMER AVOI DS MANY ERRORS HE WOULD NORMALLY
MAKE IN THE COURSE OF WRITING A PROGRAM IN ASSEMBLY LANGUACE

' BCAUSE MOL620 PROVIDES THE FACILITIES FOR DESCRIBING A
COMPUTATION VWITH FAR FEWER SYMBOLS AND THE LOGICAL FLOW OF THE
PROGRAM IS NATURALLY DESCRIBED BY THE SYNTAX OF THE PROGRAM
ITSELF.

THE MOL620 TRANSLATOR ACCEPTS AS INPUT A PROGRAM UWRITTEN
IN THE MOL620 LANGUAGE AND OUTPUTS A PROGRAM TO BE ASSEMBLED
BY THE VARIAN DATA 620/ ASSEMBELER.

THE CURRENT VERSION OF THE MOL620 COMPILER IS WRITTEN IN TREE-
META AND EXECUTES ON THE DIGITAL EQUIPMENT CORPORATION
PDP-10 COMPUTER UNDER THE STANDARD MONITOR.

THE FIRST VERSION OF THE MOL620 COMPILER WAS WRITTEN IN FORTRAN 1V-H
AND EXECUTED ON AN IBM 360/50 UNDER 0S.

PAGE 2
SYNTAX OF MOL620 LANGUAGE.

THE SYNTAX 1S DESCRIBED USING A METALANGUAGE SIMILAR TO BACKUS
NAUR FORM.

THE CATEGORY NAME APPEARS ON THE LEFT OF THE EQUAL

SICGN AND THE SYNTACTIC ALTERNATIVES APPEAR ON THE RIGHT.
LITERALS ARE SURROUNDED BY QUOTES (') AND CATEGORY
NAMES ARE NOT. FOR EXAMPLE "DONE" IS A LITERAL STRING,
UNIT IS A CATEGORY NAME.

ALTERNATIVES IN A DEFINITION ARE SEPARATED BY A SLASH (/)
INSTEAD OF THE CUSTOMARY VERTICAL BAR. A DEFINITION
IS TERMINATED BY A SEMI-COLON (3). ALTERNATIVES ARE FACTORED
BY THE USE OF PARENTHESES. FOR EXAMPLE, THE DEFINITION
ASSIGNS = DESIG ("' / '=") EXP ;3
1S EQUIVALENT TO
ASSIGNS = DESIG "~'" EXP / DESIG "=" EXP ; s

1 TERATION OF A COMPONENT IN A RULE 1S INDICATED BY THE
MSNCees) CONSTRUCT» WHICH SAYS THAT THE COMPONENT IN
PARENTHESES IS TO OCCUR AT LEAST M AND AT MOST N TIMES.
IF M DOES NOT APPEAR, ZERO 1S ASSUMED. IF N DOES NOT APPEAR,
INFINITY IS ASSUMED. FOR EXAMPLE, THE DEFINITION

DESIG = STOLOC $C*,* STOLOC) 3
SAYS THAT A DESIG IS A STOLOC FOLLOWED BY ZERO OR MORE
OCCURRENCES OF "," STOLOC, I1.E. A DESIG IS A STOLOC OR
STOLOCs STOLOC» » «»5» STOLOC.

AN ALTERNATIVE ENCLOSED IN ANGLE BRACKETS (<>) IS AN INFORMAL
DEFINITION OF THE ALTERNATIVE.

PROGRAM = IDORG SCUNIT) "DONE."

I DORG = $(DEC / COMMENT) (IDEN "ORG" VALUE "3;" / EMPTY);
UNIT = PROC s 1%C(DEC / COMMENT) 3

.PROC = PROCHEAD FORMPART '"3;* (COMSTMS / EMPTY) "ENDP" "3 "3

PROCHEAD= ("PROCEDURE" / "PROC'") IDEN 3

FORMPART= "('" (IDEN / EMPTY) ("," (IDEN / EMPTY) / EMPTY)
¢"," (IDEN / EMPTY) / EMPTY) 'O)" 7/
EMPTY 3

COMSTMS = 1$(DEC / STMNT / COMMENT)3

COMMENT = DAS "3'"/<STRING OF CHARACTERS ENCLOSED IN PERCENT SIGNS (%)>;

DEC = DECLARE / ASSDEC;

ASSDEC = ("SET" / "EQU"™) AITEM $("," AITEM) 3

AITEM = IDEN "=" VALUE ;

DECLARE = ("DECLARE" / “DECL'") ITEM $("," ITEM) "3" 3

ITEM = IDEN (*["™ (VALUE ":" / EMPTY) VALUE "1" / EMPTY)
("=" VALUE / EMPTY) 3

STMNT = (LABELID / EMPTY) USTMNT "3 3

LABELID = IDEN ":* 3

USTMNT = IFS 7/ FORS / WHILES / BLOCKS / ASSIGNS / NULLS /

GOTOS 7 CALLS 7/ RETURNS / BUMPS / STOPS / DAS 3

NULLS
BLOCKS
BODY
GOTOS
CALLS
RETURNS
ARGLIST

DAS
BUMPS
STOPS
EXP

INTRSECT=
NEGATION=
RELATION=

SUM
PRODUCT
FACTOR
BI TAND
SHIFT
PRIMARY

CONSTANT=

REGI STER=

SWITCH
STOLOC

JMPLOC

VALUE
I DEN
NUMBER
EMPTY

-
=

nnunn

PAGE 3
“IF" EXP “THEN" USTMNT ("ELSE" USTMNT / EMPTY) ;
"FOR" STOLOC ("+" / "=") EXP
(C"STEP" EXP / EMPTY) ("UNTIL" / "VWHILE") EXP)
"DO" USTMNT ;3
“WHILE" EXP "DO" USTMNT ;

DESIG ("«'" / "=") EXP ;
STOLOC &(','" STOLOC) 3
"NULL" 3

"BEGIN" BODY "END" ;3
COMSTMS / EMPTY ;
"GO" "TO" JMPLOC ;3
“CALL" JMPLOC (ARGLIST / EMPTY) ;
"RETURN" (ARGLIST / EMPTY) C"FROM" JMPLOC / EMPTY) ;
"¢ (EXP / EMPTY)
¢"," (EXP / EMPTY) / EMPTY)
(", CEXP / EMPTY) / EMPTY) "™ ;
<STRING OF CHARACTERS ENCLOSED IN QUOTES ("™)> ;
"BUMP" STOLOC $("," STOLOC) 3
"STOP" / "HALT" ;
INTRSECT $CC"XOR" / "OR") INTRSECT) ;
NEGATION $("AND" NEGATION) ;
"NOT" NEGATION / RELATION ;
S[m s((l!:___'l / ||>|. / 'I=ll / .l<=|l / l|<ll / 'I‘.‘) Sm) ;
PRODUCT $C(™+" / "-*) PRODUCT) ;
FACTOR $CC"#" / '/") FACTOR) ;
BITAND $CC("BOR" / “BXR") BITAND) ;
SHIFT $C"BAND" SHIFT) ;
PRIMARY $C "' IDEN """ VALUE) ;
IDEN ("C" EXP "1" / EMPTY) /
JMPLOC ARGLIST /
"¢" C(REGISTER / SVWITCH / EXP) ")" /
CONSTANT /
l't'. EXP ll]ll /
("+* 7 "=") PRIMARY /
"@" IDEN ;
¢"+* s “-" / EMPTY) NUMBER /
<STRING IN QUOTES (')> /
<ONE OR TWO CHARACTERS IN PRIMES C')> /
“C* (IDEN / NUMBER) "1" ;
'IAR" / IIBRII / llxRIl / IIOFII 5
“SS1™ / "SS2" / "S53 ;
IDEN ¢"[" EXP "1" / EMPTY) /
"(" REGISTER '")" / CONSTANT / "C" EXP "1" ;
IDEN ("C" EXP "1" / EMPTY) /
CONSTANT / “C* EXP "1" ;
IDEN / CONSTANT / *-" IDEN 3
<STRING OF LETTERS AND DIGITS STARTING WITH LETTER> ;
<STRING OF DIGITS> ;3
<NULL STRING; NOTHING> ;

SEMANTICS OF THE MOL620 LANGUAGE.

ASSI GNMENT STATEMENT.

AN ASSI GNMENT STATEMENT CONSISTS OF THREE PARTSS
(1) A LIST OF STORAGE LOCATIONS,
(2) AN ASSI GNMENT OPERATOR (EITHER °*~' OR '="),
(3) AN EXPRESSION TO BE EVALUATED AND STORED IN
THE LOCATIONS INDICATED BY (1).
EXAMPLES:
A+~B;
C» Ds E-ALPHA/BETA;
LINKLX),X~LINKLY];
(XR)+~F(1, 3, A-B)-Q32;
[Y+1] = (N=-2)%7;
T==13
REACT~A OR B AND NOT Cs

THE LIST OF STORAGE LOCATIONS IS SEPARATED BY COMMAS.
STORAGE OF THE EXPRESSION VALUE AND EVALUATION OF ANY EXPRESSION
ON THE LEFT OF THE ASSI ®NMENT IS DONE RIGHT TO LEFT.
THUS, THE STATEMENT
LINKCX),X+~LINKCY]S
IS EQUIVALENT TO
T-LINKCLY13 X«T; LINK[X]+T;
FOR SOME TEMPORARY LOCATION T.

AN EXPRESSION ENCLOSED IN SQUARE BRACKETS PRECEDED BY AN
IDENTIFIER IS AN ARRAY REFERENCE. AN EXPRESSION ENCLOSED IN

SQUARE BRACKETS BUT NOT PRECEDED BY AN IDENTIFIER IS AN

ADDRESS SPECIFED BY INDIRECTION. FOR EXAMPLE, [Y+1] « 33 SAYS THAT
THE CONSTANT 3 IS TO BE STORED IN THE LOCATION WHOSE ADDRESS

1S TO BE FOUND By CALCULATING THE VALUE OF THE EXPRESSION Y+1.

1F THE CONTENTS OF Y IS 100 WE STORE 3 IN LOCATION 101.

TO REFER TO REGISTERS OR SENSE SWITCHES IN AN EXPRESSION OR ON THE
LEFT OF AN ASSI GNMENT, ENCLOSE THE NAME (AR,BR,XR,OF,
551,552,553 IN PARENTHESES.

A FUNCTION CALL IS INDICATED BY A FUNCTION NAME FOLLOWED BY

A LIST OF ZERO TO THREE ARGUMENTS ENCLOSED IN PARENTHESES. IF
THE FUNCTION HAS NO ARGUMENTS THE PARENTHESES ARE STILL REQUIRED.
A FUNCTION RETURNS ITS VALUE IN THE A-REGI STER.

THE VALUE OF A LOGICAL OR RELATIONAL EXPRESSION 15 ZERO IF THE
EXPRESSION 1S FALSE; OTHERWISE IT 1S NONZERO.

PAGE 5
BUMP STATEMENT.

THE BUMP STATEMENT ALLOWS THE PROGRAMMER TO TAKE ADVANTAGE OF
THE MACHINE INSTRUCTION ‘INR® WHICH WILL ADD ONE TO THE CONTENTS
OF ANY MEMORY LOCATION.

EXAMPLES:
BUMP I3
BUMP AsB,CLI=5])5CT1,"GAMMA+5";

THE LIST OF STORAGE LOCATIONS IS SIMILAR TO THAT
WHICH MAY APPEAR ON THE LEFT OF AN ASSI GNMENT STATEMENT.
THE LOCATIONS ARE INCREMENTED LEFT TO RIGHT ON THE LIST.

NOTE THE EXAMPLE OF A STORAGE LOCATION INDICATED BY SOME

DAS ADDRESS EXPRESSION ENCLOSED IN QUOTES. BUMP '"GAMMA+5" SAYS

TO INCREMENT THE MEMORY LOCATION FIVE WORDS UP FROM THE

LOCATION VWITH THE NAME GAMMMA.(,INR, GAMMA+S IN DAS CODE).

SO0 IF THE ADDRESS OF GAMMA IS 349 THEN LOCATION 354 IS INCREMENTED.

NULL STATEMENT.

THE NULL STATEMENT GENERATES NO MACHINE CODE.
IT MAY BE USED AS A DUMMY IN AN IFe..THENe++ELSE STATEMENT OR
AS SOMETHING TO WHICH A LABEL CAN BE ATTACHED.

EXAMPLES:
LABEL: NULL3
IF A=5 THEN IF B=3 THEN CALL SUB3 ELSE NULL ELSE CALL SUBS:

GO TO STATEMENT AND LABELSe.

A LABEL MAY BE ASSOCIATED WITH A STATEMENT BY PRECEDING THE
STATEMENT WITH AN IDENTIFIER AND A COLON.

UNCONDI TIONAL TRANSFER OF CONTROL IS DONE WITH THE GO TO
STATEMENT.

EXAMPLES:
L: GO TO L;
GOTO LOOP;

GO TO "FIRST=-5";
LOOP: GO TO 5;
GOTO CJI;

GOTO XCN1s

THE GOTO MAY BE WRITTEN AS ONE WORD OR TWO. THE BRANCH MAY BE TO

A PARTICULAR LOCATION GIVEN BY A NUMBER, SAY LOCATION 5. THE GO TO
MAY ALSO BRANCH INDIRECTLY THROUGH SOME OTHER ADDRESS.

THE LAST EXAMPLE WILL CAUSE CONTROL TO BE TRANSFERRED TO THE NTH
ELEMENT OF ARRAY X.

PAGE 6
CALL STATEMENT.

A SUBROUTINE IS INVOKED USING THE CALL STATEMENT.

EXAMPLES:
CALL SUBI1;
CALL ABC(X,Y);
CALL HELP (I);
CALL CHAR(®@J);
CALL FNX(5,J,K);
CALL C[QICL);

AN ARGUMENT LIST MAY OPTIONALLY FOLLOW THE SUBROUTINE NAME. IT
CORRESPONDS IN FORM TO THE ARGUMENT LIST OF A FUNCTION.

WHEN A FUNCTION OR SUBROUTINE IS INVOKED, THE FIRST ARGUMENT IS
EVALUATED AND LOADED IN THE A-REGISTER, THE SECOND ARGUMENT IN THE
B-REGISTERs AND THE THIRD ARGUMENT IN THE X-REGISTERe.

IN THE LAST EXAMPLE ABOVE, THE NAME OF THE SUBROUTINE IS SPECIFIED
INDIRECTLY »

TO PASS AN ADDRESS TO A PROCEDURE, OR TO DO SOME CALCULATION
ON THE ADDRESS OF A VARIABLE, USE THE VARIABLE NAME

PRECEDED BY AN ‘@' SIGN. FOR EXAMPLE, R~8S3 SAYS TO STORE THE
ADDRESS OF S IN Re.

RETURN STATEMENT.

AN EXIT FROM A SUBROUTINE, OPTIONALLY RETURNING AN ARGUMENT LIST»
IS DONE WITH THE RETURN STATEMENT.

EXAMPLESS
RETURNS
RETURN (A*6)3
RETURN (X»2Y);
RETURN FROM LOC 3
RETURN (X,Y»,Z) FROM HEAD;

IF AN ARGUMENT LIST APPEARS, THE FIRST ARGUMENT IS EVALUATED AND
PUT IN THE A-REGISTER, THE SECOND IN THE B-REGISTER, THE THIRD
IN THE X-REGISTER. AN INDIRECT GOTO WITH ARGUMENT PASSING

CAN BE ACCOMPLISHED WITH THE RETURNee«.FROM««e. FORM.

*RETURN FROM LOC; * IS EQUIVALENT TO °'GO TO CLO€1; ‘.

STOP STATEMENT.

THE STOP STATEMENT IS USED TO CAUSE THE MACHINE TO HALT AT
RUN TIME.

EXAMPLES:
STOP;
HALTS

PAGE 7
1F STATEMENT.

CONDI TIONAL EXECUTION OF A STATEMENT CAN BE ACCOMPLISHED THROUGH
USE OF THE IF STATEMENT.

EXAMPLES:
IF A=B THEN H~1 ELSE H+~2}
IF F(N) THEN CALL SUB1(N);
IF ALPHA THEN BEGIN A«l3 GH~-77; Ke<03 END;
1F BETA>=7 AND BETA<=76 THEN CALL PRINT(BETA);
IF ¢(SS1) THEN GOTO TEST1 ELSE IF (SS2) AND (OF) THEN A3+Y3
IF Z=Y THEN BEGIN Z=Y-1; BUMP Z; END;

THE EXPRESSION FOLLOWING THE WORD °‘IF' 1S EVALUATED TO A

BOOLEAN RESULT. IF THE RESULT IS TRUE THE 'THEN' PART IS
EXECUTED. 1F THE RESULT IS FALSE AND THERE IS

NO °'ELSE' PART, THE STATEMENT FOLLOVWING THE °IF' IS EXECUTED.

1F THE RESULT OF THE °'IF' EXPRESSION IS FALSE AND THERE

1S AN °*ELSE' PART, THAT 1S EXECUTED. NOTE THAT STATEMENTS MAY BE
GROUPED TOGETHER WITH THE BEGIN...END CONSTRUCT.

*ELSE' CLAUSES IN NESTED °'IF' STATEMENTS ARE ASSOCIATED
WITH THE CLOSEST PRECEDING 'IF' THAT HAS NO 'ELSE" ASSOCIATED
WITH IT.

FOR STATEMENT.

A °'FOR' STATEMENT IS USED FOR ITERATION ACROSS A STATEMENT OR

BLOCK OF STATEMENTS. THE STORAGE LOCATION INDICATED IN THE

ASSI GNMENT PART OF THE STATEMENT IS CALLED THE INDEX VARIABLE.

IT IS INITIALIZED, AND THEN THE TEST OF THE °'FOR' STATEMENT IS
PERFORMED. IF THE TEST IS AN 'UNTIL' FORM THE VALUE OF THE INDEX
VARIABLE IS COMPARED WITH THE 'UNTIL' EXPRESSION. IF THE INDEX
VARIABLE IS LESS THAN OR EQUAL TO THE VALUE OF THE EXPRESSION

¢ GREATER THAN OR EQUAL IF THE STEP EXPRESSION IS NEGATIVE)», THEN

THE 'DO' PART 1S EXECUTED. OTHERWISE, CONTROL PASSES TO THE STATEMENT
AFTER THE 'FOR' STATEMENT.

IF THE TEST IS A 'VHILE®' FORM, THE VALUE OF THE 'WHILE' EXPRESSION IS
COMPUTEDe IF THE VALUE OF THE EXPRESSION IS TRUE, THE 'DO' PART IS
EXECUTEDs OTHERWI SE» CONTROL PASSES TO THE STATEMENT AFTER THE

FOR STATEMENT.

WHENEVER THE °'DO* PART HAS BEEN EXECUTED, THE INDEX VARIABLE

1S INCREMENTED BY THE VALUE OF THE °*STEP' EXPRESSION.

THE °*STEP' EXPRESSON 1S REEVALUATED EACH TIME THROUGH THE LOOP.
IF THE 'STEP' EXPRESSION IS MISSING, THEN THE INDEX VARIABLE IS
INCREMENTED BY ONE. AFTER THE INDEX VARIABLE IS INCREMENTED.,
CONTROL PASSES BACK TO THE 'UNTIL® OR 'WHILE' TEST AND THE

THE LOOP BEGINS AGAIN.

PAGE 8
EXAMPLES:
FOR I+~1 UNTIL 10 DO ACIJ~I*I;
FOR I~N STEP -1 UNTIL 1 DO AC1)~ACI1/CI*I);
FOR J~K-3 STEP M+J WHILE V<R DO V«VU+J;3
FOR I~1 WHILE A+B>C DO BEGIN CALL SCI>3 MCI]-M(IJ-13 END;

THE FIRST STATEMENT WILL SET ACIJ=I%*I FOR 1<=I<=10.

THE SECOND IS AN EXAMPLE OF COUNTING THE INDEX VARIABLE DOWN.

THE THIRD USES A 'WHILE® TEST FOR TERMINATION OF THE LOOP. THE LAST
HAS A BEGIN BLOCK AS THE °'DO' PART.

WHILE STATEMENT.

THIS STATEMENT PROVIDES A MEANS OF PERFORMING A STATEMENT AS
LONG AS SOME CONDITION IS TRUE.

EXAMPLES:
WILE A<B DO CALL SUBl1(eA,@B);
WHILE I<=N DO BEGIN ACIl~I; BUMP I3 END;
WHILE X#0 DO X+~LINK(X3J3

THE °*WHILE®' CONDITION IS TESTED. IF THE RESULT IS TRUE THEN

THE 'DO' PART 1S EXECUTED. THE TEST AND EXECUTION ARE REPEATED
UNTIL THE 'WHILE' EXPRESSION IS FALSE. CONTROL THEN PASSES TO THE
NEXT STATEMENT.

COMPOUND STATEMENT (BLOCK).

A BLOCK 1S A GROUP OF STATEMENTS PRECEDED BY THE WORD °'BEGIN'

AND FOLLOWED BY THE WORD 'END'. A BLOCK 1S USED TO GROUP STATEMENTS
LOGICALLY TOGETHER FOR THE 'IF', °*WHILE® AND 'FOR' STATEMENTS.
BLOCKS MAY BE NESTED TO ANY LEVEL.

EXAMPLES:
BEGIN A~13 B~2; C+3; END;
FOR I~1 UNTIL N DO BEGIN ACIl~I3 BLI]~0; END3
IF X=0 THEN BEGIN F~7; GO TO LABEL1; END;

DAS STATEMENT.

A DAS STATEMENT IS A STRING OF CHARACTERS ENCLOSED IN QUOTES ("™
THE STRING IS COPIED TO THE OUTPUT FILE WITHOUT QUOTES.

THUS ASSEMBLY LANGUAGE (DAS) STATEMENTS MAY BE INSERTED INTO
MOL620 PROGRAMS.

EXAMPLES:
",SEN,01015%+4";
"y THIS COMMENT IS PUT IN THE DAS PROGRAM"3
", EXC»031";

PROCEDURE.

A PROCEDURE IS A CLOSED SUBROUTINE OR FUNCTION. A PROCEDURE MAY
NOT CONTAIN ANOTHER PROCEDURE. A PROCEDURE CONSISTS OF
THREE PARTS:

(1) HEAD

(2) BODY

(3) CLOSE.

THE PROCEDURE HEAD CONSISTS OF THE VWORD °*PROC®' (OR °'PROCEDURE")
FOLLOWED BY AN IDENTIFIER WHICH SERVES AS THE PROCEDURE NAME, FOLLOWED
BY AN OPTIONAL LIST OF O TO 3 IDENTIFIERS ENCLOSED IN PARENTHESES.

EXAMPLES OF PROCEDURE HEADS:
PROC ALPHA(X):;
PROCEDURE F(Ql1,R»V);
PROC SUB1;

PROCEDURE SUB1()
PROC G3(X»»Z)3

IF A PARAMETER LIST APPEARS IN THE PROCEDURE HEADING, THEN ON ENTRY TO
THE PROCEDURE THE A-REGISTER IS STORED IN THE LOCATION

SPECIFIED BY THE FIRST PARAMETER, THE B-REGISTER IN THE SECOND.

THE X-REGISTER IN THE THIRD. THE PARAMETERS ARE NOT

DUMMIES IN THE SENSE THAT THEY ARE NOT LOCAL TO THE PROCEDURE BUT
HAVE SCOPE OVER THE ENTIRE DAS PROGRAM GENERATED.

THE BODY OF A PROCEDURE IS EMPTY OR CONSISTS OF A SEQUENCE OF
STATEMENTS, COMMENTS, AND DECLARATIONS.

A PROCEDURE IS CLOSED BY THE WORD 'ENDP; '« THIS HAS THE SAME EFFECT
AS THE RETURN STATEMENT WITH NO ARGUMENTS.

EXAMPLES:
PROCEDURE ADD (ARG1, ARG2);
RETURN (ARG1+ARG2);
DECLARE ARG1,ARGZ2;
ENDP;

PROCEDURE LINEARSEARCH (FIRST»N, VALUE);
Z#THE ARGUMENTS ARE:
FIRST = ADDRESS OF VECTOR TO BE SEARCHED
N = SIZE OF ARRAY (1 TO N
VALUE = VALUE TO BE FOUND.
WE USE A LINEAR SEARCH TECHINIQUE TO RETURN
THE INDEX OF THE VECTOR ELEMENT WHICH
CONTAINS THE VALUE. (ASSUME IT IS THERE)Z
LAST-FIRST+N-13 ZADDR OF LAST WORD IN VECTORZ
FOR I~FIRST UNTIL LAST DO
IF [I1]J=VALUE THEN RETURN (I-FIRST+1);
DECLARE FIRST,LAST»I,N,VALUE;
ENDP3

A PROCEDURE SHOULD ONLY BE ENTERED VIA A FUNCTION CALL OR SUBROUTINE
CALL, AND NOT BY FALLING INTO IT FROM PRECEDING CODE.

PAGE 10
DECLARATIONS.

THE USER MUST DECLARE STORAGE FOR VARIABLES WHICH ARE SCALARS OR
ONE DIMENSIONAL VECTORS. AN INITIAL VALUE MAY ALSO BE SPECIFIED
FOR THESE VARIABLES. DECLARATIONS ARE CGLOBAL TO THE WHOLE

MOL 620 PROGRAM.

EXAMPLES:
DECLARE A»B»C»D=1,ECL101,FC(~-5261;
DECL G[L1:51="1,2,3,4,5", TEXT="""ABCDEFHIJK'";

THIS GENERATES THE FOLLOWING CODE:

s JMPs $4
A, DATAS O
B, DATA, O

C, DATA, O

D, DATA, 1

Es DATA, O

»0RG>E+10

Fs EQUs %+ 5

»0ORG, F+6+1

$4, EQU> *

s JMPs 85

Gs EQUs %=1

s DATA» 1,253,455

»0RGsy G+5+1
TEXT, DATA, "ABCDEFGHIJK*
$5, EQU» *

NOTE THE UNCONDI TIONAL JUMPS AROUND THE DECLARATIONS.
EXECUTION OF DECLARATIONS CANNOT OCCUR BY FALLING INTO THEM FROM
PRECEDING CODE.

THE USER MAY PROVIDE FOR THE INDEXING OF VECTORS USING

A VALUE OF AN INDEX FROM M TO N BY DECLARING THE VECTOR

(SAY U) AS VLM:N] WHERE M AND N HAVE VALUES AT ASSEMBLY TIME.
SINCE MOL620 GENERATES CONDI TIONAL ASSEMBLY STATEMENTS FOR
INDEXED INSTRUCTIONS, ARRAY NAMES MUST BE DECLARED BEFORE THEY
ARE USED 1F THE ASSEMBLY TIME VALUE OF THE NAME IS

GREATER THAN 511 (777 BASE 8). OTHERVISE, PHASE ERRORS WILL
RESULT.

TO DECLARE SYMBOLS TO HAVE A CERTAIN VALUE AT ASSEMBLY TIME
WE HAVE ANOTHER FORM OF THE DECLARATION:

EXAMPLES:
SET A=0s B=7s D=63
EQU E=5,F=01777;

GENERATES THE DAS CODE

»SET> O
» SET» 7
» SETs 6
»EQU, S5
+EQU, 01777

Moo

PAGE 11
COMMENTS.

COMMENTS ARE OF TWO TYPES:
(1) STRINGS ENCLOSED IN PERCENT SIGNS (%). THESE ARE MERELY
ANNOTATIONS AND DO NOT APPEAR IN THE OUTPUT OF MOL620.
(2) STRINGS ENCLOSED IN QUOTES(') AND FOLLOWED BY A SEMI-
COLON. THE QUOTES ARE REMOVED AND THE STRING IS COPIED
TO THE OUTPUT FILE. (SEE DAS STATEMENT).

PROGRAM ORIGIN.

IN ORDER TO GIVE THE DAS PROGRAM AN ORI GIN ADDRESS, THE PROGRAM
MAY CONTAIN A CONSTRUCT TO INDICATE THE ORG LOCATION.
THE ORG APPEARS BEFORE ANY EXECUTABLE STATEMENTS OF THE PROGRAM.

EXAMPLES:
P3 ORG 013000;
MAIN ORG 5000;

IF THE ORG ADDRESS IS AN ADDRESS EXPRESSION INVOLVING VARIABLES,
THESE VARIABLES MUST BE DECLARED PREVIOUSLY WITH A SET OR
EQU.
EXAMPLE:
SET B=013000,C=0257;3
ALPHA ORG B+C:;

IN THIS CASE ALPHA 1S SET AT LOCATION 013257 AT ASSEMBLY TIME.

PROGRAM .

A PROGRAM IS A SET OF COMMENTS, DECLARATIONS AND PROCEDURES
OPTIONALLY PRECEDED BY THE PROGRAM ORI GIN.

PAGE 12

MOL620 COMPILER AND LANGUAGE. HINTS, PITFALLS, AND MISCELLANY .

SYMBOLS.

MOL 620 WILL ACCEPT AN IDENTIFIER (IDEN) OF INDEFINITE LENGTH»
HOWEVER, DAS WILL NOT DIFFERENTIATE BETWEEN SYMBOLS IF THE FIRST
FOUR CHARACTERS ARE IDENTICAL.

DO NOT USE SYMBOLS BEGINNING WITH A DOLLAR SIGN (%). MOL620
RESERVES SUCH SYMBOLS FOR GENERATING LABELS.

A PERCENT SIGN (%) MAY ONLY BE USED AS A COMMENT DELIMITER.

A ZERO IN FRONT OF A NUMBER INDICATES THE NUMBER 1S EXPRESSED
IN BASE 8.

A CARRIAGE RETURN MAY NOT APPEAR IN A STRING OF CHARACTERS
DELIMITED BY DOUBLE QUOTES ('),

OPERATORS AND EXPRESSION EVALUATION.
THE HI ERARCHY OF THE PRIMITIVE OPERATORS OF MOL620 ISt

UNARY +, UNARY - (HI GHEST BINDING

"I DEN" («E«Gs "ASRA'", "LLEL"> "MUL"> I.E.
ANY DAS OPCODE IN QUOTES)

BAND

BORs BXR

*, /

4+ =

>y >=y =3 <=, <, ¥

NOT

AND

ORs XOR (LOWEST BINDING)

BAND, BOR, AND BXR PERFORM THE BITWISE AND, OR», AND EXCLUSIVE OR
OF THE TVO OPERANDS.
THE ONE'S COMPLEMENT OF A VALUE V CAN BE COMPUTED AS V BXR ~-1.

THE LOGICAL AND RELATIONAL OPERATORS RETURN A VALUE OF
TRUE (NON-ZERO) OR FALSE (ZERQ).

THE OVERFLOV INDICATION IN MULTIPLICATION IS NOT SIGNALLED.

A VALUE V MAY BE LOADED INTO THE A-REGISTER AND SHIFTED RIGHT 7
PLACES BY V "LSRA" 7. (IN DAS CODE: ,LDA,V »LSRA, T)

PAGE 13
TWO OPERATORS MAY NOT APPEAR TOGETHER. WRITE P*-Q AS P*(-Q).

IN MOL620» MULTIPLICATION BY 2,4,8,16, AND 256 IS DONE BY
THE APPROPRIATE ARITHMETIC SHIFTe. NO OVERFLOW IS INDICATED.

DIVISION BY 2 IS DONE BY AN ARITHMETIC SHIFT RIGHT.

DIVISION OF NEGATIVE NUMBERS MAY BE IN ERROR DUE TO HARDWARE
DIVIDE PROBLEMS ON THE 620/I1.

THE VALUE OF AN EXPRESSION OF AND'S AND OR'S IS COMPUTED ONLY

SO FAR AS NECESSARY TO ASSURE A CORRECT RESULTe. FOR

EXAMPLE, THE EXPRESSION A AND B AND C IS EVALUATED LEFT TO
RIGHT. IF A IS FALSE, THEN THE EXPRESSION IS FALSE AND THE OTHER
OPERANDS ARE NOT EVALUATED. IF A IS TRUE, THEN B IS EVALUATED.
AND SO ON.

THE ORDER OF EVALUATION OF ARITHMETIC EXPRESSIONS IS NORMALLY

LEFT TO RIGHT IF THE EXPRESSION IS NOT PARENTHESIZED.

HOVEVER, THE ORDER OF OPERATIONS MAY BE REARRANGED BY THE COMPILER
FOR THE SAKE OF EFFICIENCY. CARE MUST BE EXERCISED WHEN

TAKING ADVANTAGE OF THE SIDE EFFECTS OF ANY EXPRESSION EVALUATION
OR WHEN YOU WANT NORMALLY COMMUTATIVE OPERATIONS TO BE DONE

IN A SPECIFIC ORDER. IT MAY BE NECESSARY TO CHECK THE OUTPUT OF THE
COMPILER TO MAKE CERTAIN THAT A SPECIFIC ORDER OF EVALUATION

WAS FOLLOVED.

WHENEVER AN EXPRESSION APPEARS IN A PROGRAM » THE CODE

WHICH IS GENERATED WILL LOAD THE VALUE OF THAT EXPRESSION INTO THE
A-REGI STER OF THE MACHINE. THEREFORE ALL EXPRESSIONS MUST EVALUATE
TO A 16 BIT VALUE. IN THE CASE OF MULTIPLICATION, WHICH HAS A TWO
WORD RESULT WHEN DONE BY THE HARDWARE, THE A-REGISTER CONTAINS THE
PRODUCT MOD 2%%15« FOR DIVISION, THE QUOTIENT IS DEVELOPED IN

THE A-REGISTER AND THE INTEGER REMAINDER IS IN THE B-REGI STER.

FINALLY, IF IT IS UNCLEAR WHAT CODE A CERTAIN SYNTACTIC CONSTRUCT
WILL GENERATE, RUN THE COMPILER AND SEE. (INPUT DEVICE=TTY:.»
OUTPUT DEVICE=TTY2).

MINIMUM 620/1 CONFI GURATION.

TO SUCCESSFULLY RUN MOL620 PROCRAMS THE 620/1 MUST

BE EQUIPPED WITH THE EXTENDED ADDRESSING--HARDWARE MULTIPLY/DIVIDE
OPTION. THE COMPILER COULD BE ALTERED IN ABOUT ONE MAN HOUR TO REMOVE
THIS RESTRICTION. LOW CORE INDIRECT ADDRESSING AND A PROGRAM CALL TO
A MULTIPLY/DIVIDE ROUTINE WOULD THEN APPEAR IN THE OUTPUT OF MOL620.

PAGE 14

HOW TO COPE WITH THE MOL620 COMPILERe.

MOL620 EXPECTS AN INPUT FILE WRITTEN IN MOL 620 LANGUAGE
AND OUTPUTS A FILE WHICH IS THE DAS ASSEMBLY LANGUAGE TRANSLATION
OF THE INPUT.

IF A SYNTAX ERROR OCCURS, MOL620 WILL LIST THE LINE IN ERROR

AND STOP. FIX THE ERROR AND COMPILE IT AGAIN. MOL620 ONLY

DETECTS ONE ERROR AT A TIME. THE USE OF A LINE-ORIENTED TEXT EDITOR
(S5UCH AS QED OR TECO> IS HELPFUL AS THE STATEMENTS IN ERROR ARE
INDICATED BY THEIR POSITION FROM THE START OF THE FILE. THE

ERROR MESSAGE NUMBERS GIVEN BY MOL620 ARE MEANINGLESS.

SOME (NOT MANY) ERRORS CAUSE AN ILLEGAL TERMINATION OF THE COMPILER
WITH NO INDICATION OF WHAT CAUSED THE ERROR. EXAMINE THE PARTIALLY
BUILT OUTPUT FILE TO SEE WHERE THE COMPILER WAS WHEN IT BLEW UP

OR RUN IT AGAIN WITH THE OUTPUT TO THE TELETYPE.

MOL620 RUNS IN ABOUT 15K UNDER THE STANDARD DEC PDP-10 MONITOR

AND COMPILED THE 100 LINE EXAMPLE IN THE APPENDIX IN 4 SECONDS OF
CPU TIME.

RUNNING THE MOL620 COMPILER ON THE UCI PDP-10 SYSTEMe.

(1> PREPARE THE SOURCE PROGRAM AND STORE IT ON DSK:FILE.MOL.
(2) TYPE THE FOLLOVING:

+RUN DSK:MOL620LXXX>YYY]
*¥INPUT«DAS+~FILE.MOL

(3> THE COMPILER SHOULD RUN AND OUTPUT THE DAS CODE
TO INPUT.DAS.

C(4) RUN PIP TO GET A PAPER TAPE COPY TO ASSEMBLE ON THE VARIAN?
«AS PTP
«R PIP
*PTP:«INPUT.DAS
*xtC
« DEAS PTP

(5

PAGE 15

ASSEMBLE YOUR DAS PROGRAM ON THE PDP-10 AND PUNCH THE BINARY TAPE:

«R PIP

*/X+~INPUT.DAS/A

*tC

«RUN DSK:DASIOLXXX,YYY]
*$ (ESCAPE OR ALTMODE)
«AS PTP

«R PIP
*PTP:+~BINARY « DAS/1I

*tC

« DEAS PTP

THE DAS LISTING IS IN FILE INPUT.LST. THE BINARY OUTPUT IS IN
FILE BINARY.DAS. XXX,YYY IN THE ABOVE PROTOCOL IS THE

USER NUMBER OF THE ACCOUNT WHERE THE MOL 620 COMPILER

RESIDES.

PAGE 16

HI STORY «

DESIGN CRITERIA.

THE PURPOSE OF THE MOL620 PROJECT, WHICH BEGAN IN 1968, WAS TO
DESIGN AND IMPLEMENT A TRANSLATOR FOR THE DEPARTMENT OF INFORMATION
AND COMPUTER SCIENCE VARIAN DATA 620/1, AN 8K, 16 BIT/VUWORD
MINI-COMPUTER. THE ONLY TRANSLATOR THEN AVAILABLE WAS A SIMPLE
TWO-PASS ASSEMBLER.

IT WAS ENVISIONED THAT BOTH FACULTY AND STUDENTS WOULD BE INTERESTED
IN USING THE 620/I SO IT WAS NECESSARY TO DESIGN A LANGUAGE AND
IMPLEMENTATION THAT WOULD BE EASY FOR INEXPERIENCED STUDENTS TO USE,
YET VERSATILE ENOUGH TO BE USED IN SIGNIFICANT RESEARCH. GIVEN THE
EXPECTED CLASS OF USERS, THE TYPE OF WORK THEY WOULD BE INTERESTED
IN DOING, AND THE NATURE OF THE COMPUTER AVAILABLE, THE FOLLOWING
CRITERIA FOR THE LANGUAGE DESICGN SEEMED APPROPRIATE:

(1) THE LANGUAGE SHOULD BE EASY TO LEARN AND MASTER.
THIS WAS ESPECIALLY IMPORTANT SINCE THE MAJORITY OF USERS WERE
EXPECTED TO BE STUDENTS WHO WOULD PROBABLY DEVOTE NO MORE THAN A
WEEK OR TWO TO LEARNING THE LANGUAGE. SYNTACTICALLY CORRECT CON-
STRUCTS SHOULD HAVE OBVIOUS MEANINGS; CONSTRUCTIONS WHICH SEEM NATURAL
AND SEEM TO HAVE STRAI GHTFORWARD MEANINGS SHOULD NOT BE EXCLUDED.

(2) THE SYNTAX SHOULD BE AS SIMPLE AS POSSIBLE. A VWELL-
CONSTRUCTED SYNTAX WHICH CLEARLY REFLECTS THE STRUCTURE OF THE
LANGUAGE IS USEFUL FOR CHECKING THE CORRECTNESS OF STATEMENTS
BEFORE ATTEMPTING TO TRANSLATE THEM AND FOR PINNING DOWN
SYNTACTIC ERRORS DETECTED BY A TRANSLATOR.

(3) THE LANGUAGE SHOULD BE EASY TO HEAD YET SHOULD BE
ORI ENTED TOWARD SIMPLE TELETYPE KEYBOARD ENCODINGS. SOMEONE
WITH LITTLE OR NO EXPOSURE TO THE LANGUAGE SHOULD BE ABLE TO PICK
UP A LISTING AND MAKE A REASONABLE GUESS ABOUT WHAT THE PROCGRAM
DOES. THE NEW USER SHOULD NOT BE FRIGHTENED BY AN AWESOME
DISPLAY OF ASTERISKS, SHARP SIGNS», BRACKETS, DOLLAR SIGNS»
.QUOTES AND OTHER SYMBOLS ONLY OCCASIONALLY INTERSPERSED WITH
RECOGNIZABLE WORDS. SIMPLICITY OF ENCODINGS IS IMPORTANT
SINCE THE TELETYPE IS SLOW AND AWKWARD TO USE, BUT READABILITY
OF THE LANGUAGE IS MORE IMPORTANT.

(4) ALGORITHMS SHOULD HAVE CLEAR ENCODINGS IN THE LANGUAGE;
FLOW OF CONTROL SHOULD ALSO BE CLEARe PROGRAMMING IN
ASSEMBLY LANGUAGE IS TEDIQUS AND THE RESULTING PROGRAM IS OFTEN
DIFFICULT TO FOLLOW, EVEN IF EXTENSIVELY COMMENTEDe. A LANGUAGE
MORE STRUCTURED THAN ASSEMBLY LANGUAGE, E.Ges WITH AN ALGOL-LIKE
STRUCTURE, IS MUCH EASIER TO FOLLOVW. 1IN ADDITION, A PROGRAM IN
A STRUCTURED LANGUAGE WILL BE PARTIALLY SELF-DOCUMENTING, I<Ee.
A PROGRAM VILL NOT SUFFER AS BADLY IF THERE IS LITTLE OR NO
DOCUMENTATION. IT IS OFTEN EASIER IN A STRUCTURED PROGRAMMING

PAGE 17
LANGUAGE THAN IN ASSEMBLY LANGUAGE FOR THE PROGRAMMER TO DETECT
AND CORRECT HIS ERRORS.

(5) THE LANGUAGE SHOULD ALSO REFLECT THE STRUCTURE OF THE
TARGET COMPUTER SO THAT, WHEN NECESSARY, OPTIMAL USE CAN BE MADE
OF THE LIMITED AMOUNT OF MEMORY AVAILABLE.

ONE TYPE OF LANGUAGE WHICH MET THESE CRITERIA IS A MACHINE ORIENTED
LANGUAGE. SOME OF THE FEATURES OF SUCH A LANGUAGE ARE:

(1) THE LANGUAGE IS MORE STRUCTURED THAN ASSEMELY LANGUAGE.

(2) ALL MEMORY LOCATIONS AND MACHINE REGISTERS ARE DIRECTLY
ACCESSIBLE.

(3) THE LANGUAGE ALLOWS THE SPECIFICATION OF GENERAL
COMPUTATIONS AND ASSICNMENTS AT A MACHINE-INDEPENDENT LEVEL,
WITH THE DETAILS LEFT TO THE LANGUAGE TRANSLATOR.

(4) THE LANGUAGE ALLOWS THE ENTRY OF ASSEMBLY LANGUAGE
CODE DIRECTLY.

(5) THE LANGUAGE DOES NOT MASK ANY OF THE CAPABILITIES
OF ASSEMBLY LANGUAGE, BUT MAKES EASIER AND MORE EXPLICIT THE
EXPRESSION OF THOSE CAPABILITIES USED MOST FREQUENTLY.

MOL620 WAS DESIGNED TO INCLUDE THE CAPABILITIES COMMON TO MOST MACHINE
ORIENTED LANGUAGES AND TO MEET THE CRITERIA DESCRIBED ABOVE. THIS
ORI GINAL DESI GN HAS BEEN FOLLOWED THROUGH TWO IMPLEMENTATIONS.

COMPARISON WITH OTHER MACHINE ORIENTED LANGUAGES.

SEVERAL MACHINE ORIENTED LANGUAGES (MOLS), IN PARTICULAR MOL-32

FOR THE Q@-32 COMPUTER AT SYSTEM DEVELOPMENT CORPORATION, MOL940 FOR
THE SDS 940 COMPUTER AT STANFORD RESEARCH INSTITUTE, AND PL360

FOR THE IBM 360/67 COMPUTER AT STANFORD UNIVERSITY, WERE EXAMINED
AND THE LIMITATIONS AND PECULIARITIES OF THE DATA 620/1 WERE
CONSIDEREDe A LIST OF THE FEATURES TO BE INCLUDED IN A MOL FOR THE
620/1 (HEREAFTER CALLED MOL620) WAS THEN PRODUCED. THIS LIST WAS THEN
PRUNED TO WHAT APPEARED TO BE NECESSARY FOR A USABLE FIRST PASS.

WHAT REMAINED INCLUDED DECLARATION AND INITIALIZATON OF VARIABLES,
COMMENTS, AND CONDITIONAL, LOOP, ASSIGNMENT, NULL, BLOCK (BEGIN-END),
SUBROUTINE CALL» SUBROUTINE RETURN, INCREMENT, AND ASSEMBLY LANGUAGE
STATEMENTS.

SEVERAL FORMS WERE PROPOSED FOR EACH OF THE LANGUAGE CONSTRUCTS

AND ALTERNATIVES WERE DISCARDED PRIMARILY ON AESTHETIC GROUNDS.
ALTHOUGH THE TYPES OF CONSTRUCTS REMAINING REFLECT MACHINE STRUCTURE
TO SOME DEGREE, THE FORMS OF THE CONSTRUCTS DO NOT. IN MANY CASES
IMPLEMENTATION COULD HAVE BEEN SIMPLIFIED IF SLIGHT BUT OBSCURE
(FROM THE USER'S POINT OF VIEW) AND POSSIBLY ANNOYING CHANGES IN

THE FORM OF CONSTRUCTS HAD BEEN MADE; THIS APPROACH WAS REJECTED.
OTHER MOLSs, E.Ge MOL940, REQUIRE SOMEWHAT AWKWARD CONSTRUCTS.

FOR EXAMPLE, IN MOL940 A LABEL MUST BE ENCLOSED IN PARENTHESES AND
FOLLOWED BY A COLON.

PAGE 18
MOL 620 RESEMBLES MOL940 MORE THAN PL360 OR MOL-32 FOR TWO REASONS:

(1) THE VARIAN DATA 620/1 HAS SOME RESEMBLANCE TO THE SDS 940.
BOTH MACHINES HAVE THREE USER ACCESSIBLE REGI STERS AND HAVE
SIMILAR ORDER CODES.

(2) MOL940 COMBINES SOME OF THE BEST FEATURES OF EARLIER
MACHINE ORIENTED LANGUAGES. MUCH OF THE DESI GN SEEMED
WORTH FOLLOWING.

MOL 620 DIFFERS FROM MOL940 IN EXTENT AND INTENT. MOLO40 IS

A MORE EXTENSIVE LANGUAGE THAN MOL620. MOL940 INCLUDES SEVERAL
CONSTRUCTS WHICH ALLOW THE USER TO AFFECT THE OPTIMALITY OF THE
OUTPUT CODE. IT ALSO REFLECTS THE POWER OF THE 940 ASSEMBLER.

THE MOL940 LANGUAGE AND COMPILER ARE ORIENTED TOWARD PRO-

DUCING EFFICIENT AND CONCISE CODE ON A DISPLAY-ORIENTED TIME-SHARING
COMPUTER. IN THE MOL620 LANGUAGE AND COMPILER, THE CHIEF

CONCERNS ARE EASE OF USE AND EASE OF MODIFICATION. THE PACKAGE IS
NOT INTENDED TO BE STRICTLY DIRECTED TOWARD EXPERIENCED PROGRAMMERS.
A STUDENT SHOULD BE ABLE TO USE THE COMPILER FOR CLASS PROJECTS.
THUS THE LANGUAGE AND LANGUAGE COMPILER ARE VIEWED BOTH AS A
VEHICLE FOR DOING USEFUL VWORK AND AS A LEARNING TOOL.

PAGE 19

BIBLIO GRAPHY «

(9 D)

2)

3

C4)

(5

(6l

BOOK, E. AND D.V. SCHORRE, "A HI GHER-LEVEL MACHINE-
ORI ENTED LANGUAGE AS AN ALTERNATIVE TO ASSEMBLY LANGUAGE,"
TECH MEMO 3086/001/00, SYSTEM DEVELOPMENT CORPORATION.

CARRs Ce STEPHEN ET.ALe.s "THE TREE-META COMPILER-COMPILER SYSTEM,"
UNIVERSITY OF UTAH.

HAYs ReEe AND JeF. RULIFSON, '"™MOL940: PRELIMINARY SPECIFICATION
FOR AN ALGOL-LIKE MACHINE-ORIENTED LANGUAGE FOR THE SDS 940,"
INTERIM TECHNICAL REPORT 2, SRI PROJECT 5890,

STANFORD RESEARCH INSTITUTE.

RULIFSONs Je«Fe» "A TREE META FOR THE XDS 940,' AUGMENTATION
RESEARCH CENTER, STANFORD RESEARCH INSTITUTE, MENLO PARK»
CALIFORNIA, APRIL 1968.

“UARIAN DATA 620/1 COMPUTER MANUAL,'" VARIAN DATA MACHINES.

WIRTH» Nes "PL360, A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS,"
JOURNAL OF THE ACM, JANUARY 1968.

APPENDIX I--SAMPLE MOL620 PROGRAM

SPACE ORG 01203 %DYNAMIC STORAGE ALLOC ROUTINESZ
ZFIRST FIT METHOD; BLOCKS KEPT ON ONE LIST IN
DESCENDING ORDER BY BLOCK ADDRESS. SECOND TO LAST
WORD IN BLOCK 1S BLOCK SIZE, LAST WORD IS ADDRESS OF
NEXT BLOCKe.
IF BLOCKS OF SIZE ONE COME UP», THEY ARE PUT ON
THE SINGLES LIST.Z%

EQU LINK=1, SIZE=0, ERR=012, STATS=013, EMPTY=016;
">»0RG»030";

", DATAs CREATEPOOL » BFREE, LFREE, RES, SFREE";

", 0RGs SPACE";

TFREE 1S NUMBER OF FREE WORDS AVAILABLE IN THE SYSTEMZ

PROC CREATEPOOL(X»,N)3; ZSET UP FREE STORAGE AREAZ
%ZX POINTS TO BASE OF FREE STORACE
N IS NUMBER OF WORDS UP FROM THAT ADDRESS TO BE
AVAILABLEZ
STATS+~@FREE;
FREE, EMPTY» SINGLES+03
“"HEAD+LINK", Q-@NIL:
CALL BFREE(X,N); %PUT BLOCK ON LISTZ
ENDP;

PROC BFREE(X,N)3; ZFREE A BLOCK OF N WORDSZ

%X POINTS TO LOW ORDER ADDRESS OF BLOCKZ

IF X=0 OR N<=0 THEN RETURN;

XeX+N-2; ZMAKE X POINT TO HIGH ORDER END OF BLOCKZ

FREE~FREE+N3;

IF @>X THEN C-Q ELSE C~@HEAD;

B+«LINKCCJ;

WHILE B>X DO %SEARCH FOR LOWER ADDRESS THAN X2
BEGIN C+~B; B+<LINKL[B]l; END;

LINKCX)+B; SIZECX1+-N; LINKCCI+~X3 ZPUT BLOCK INZ
Q-X: ZREMEMBER WHERE VWVE LAST PUT IN A BLOCK, IT MIGHT

SAVE US SOME TIME ON NEXT BFREE CALLZ
ENDP;3

PROC LFREE(LF); %FREE LIST LF OF 2 WORD BLOCKSZ
WHILE LF#0 DO

BEGIN T+LINKCLFJ3 CALL BFREE(LF,2); LF«T; END;
ENDP;3

PROC SFREE(SF); ZFREE A STRING IN NORMAL FORMZ
N[SF1/2; CALL BFREE(SF,N+(BR)+1);
ENDP;

»
IF N<=0 THEN RETURN:;

Q«-eNIL; ZPLAY IT SAFE. WE MIGHT BE GIVING UP BLOCK @ POINTS TO%
COMBINED+«O;
IF FREE-N<S50 THEN EMPTY~1;
RESA:
S«~@HEAD; R<LINK[S1;
WHILE SIZECR]I<N DO
BEGIN S~R; R~LINKCR]3 END; ZFIND FIRST FITZ
IF R#@NIL THEN
BEGIN
R1«SIZECRJ=N3 U«~R=-N+1;
I1F Ri=0 THEN LINKC S]~LINKCRI]S ZPERFECT FITs UNLINK BLOCKZ
ELSE
IF Rl=1 THEN %PUT LAST WORD ON SINGLES, UNLINK BLOCKZ
BEGIN C(U]l-~SINCGLES; SINGLES~U; LINKLS1~LINKCR]3 FREE-FREE-1; END3
ELSE %WE ONLY NEED PART OF BLOCKZ
BEGIN T»LINKC[SJ]~R-N3 SIZECLTl~R1; LINKLTI~LINKCLRl; END;
2ZERO OUT BLOCK TO BE RETURNEDZ
BUMP R, Us
FOR I«U UNTIL R DO CI]+03
FREE~FREE-N3
RETURNCUY3 %ADDRESS OF BLOCKZ
END;
ZOTHERWISE WE TRY TO COMBINE BLOCKS TOGETHERZ
1F COMBINED ZALREADY TRIEDZ THEN CALL [ERRIC4);
P+~@HEAD; R<~LINKC[P13 L«LINKCRI1;
WHILE L#eNIL DO
+ BEGIN
S«SIZECR];
IF R-S=L THEN
BEGIN SIZECR]~S+SIZECL]s LINKLRI-LINKCL]; END;
EL SE
BEGIN P«~R; Re«L3 END;
L-LINKCLJ?
END;
COMBINED+13;
GOTO RESA; 2ZTRY TO FIND A BLOCK BIG ENOUGH NOVWZ
ENDP;

DECL XsN,HEAD[21,CsBs FREE, COMBINED,NILL21=""077777sNIL">
SsRsR15I>SINGALESsLF,SF>L,T>Ps Qs Us
DONE.

APPENDIX I--QUTPUT OF THE COMPILER FOR SAMPLE PROGRAM

* COMPILED BY MOL620 VERSION 2.15 (17-SEPT-T71)
» SMEY »
SPACEsORG» 0120
%, EQU» *

LINK, EQUs 1
SIZE, EQU,O0
ERR», EQU>012
STATS>sEQU»013
EMPTY» EQU»016
»0RG, 030

» DATA; CREATEPOOL» BFREEs LFREEs RESs, SFREE
»ORGs SPACE
$P0, EQUs *
CREATEPOOL»NOP>» <<<<<PROCEDURE CREATEPOOL>>>>>
» STAsX

» STBsN

» LDAI » FREE

» STA» STATS

s TZAs

» STA, SINGLES

» STA, EMPTY

» STA, FREE

s LDAILNIL

» STA»Q

» STALHEAD+LINK
sLDAsX

»LDBsN

2 JMPM s BFREE

» JMP*, $SPO

$TO0s» EQUs %=1
»BSS,0
$P1,EQUs *
BFREE,NOP» <<<<<PROCEDURE BFREE>>>>>
» STA»X

» STBsN

sLDA,X

2 JAZ s %+ 3

» DECR» 1

»1AR>

s JAZ s %+ 4

» JMPs 51

»LDAsN

» DAR»

»LSRA, 15

$1, EQU, *

2 JAZ, $2

» JMP*,s $P1

$2, EQUs %
»LDA,X

» ADD> N

» SUBI, 2

» STASX

»L.DA, FREE

»s ADD, N

» STAs FREE

2LDA,Q

» SUB» X

» DAR»

» JANs $3

sLDA>Q

» STA,C

» JMPs $4

$3, EQUs *

+»LDAI ,HEAD
»STAsC

$4, EQUs *

2LDXsC

»IFT,LINK, 512,512
»LDA,LINK, 1
2IFT>511,LINK,LINK
sLDAE,LINK, 1

» STA,B

$5, EQUs *

»LDA,B

» SUBs X

» DAR»

s JANSs $6

2LDA,B

» STA,C

»LDX»B

2 IFT-LINK, 512,512
»LDA>LINK>, 1

2 IFT,511,LINK,LINK
sLDAE,LINK, 1

» STA» B

» JMPs $5

$6> EQU» *

»LDA,B

2LDXsX

2 IFT,LINK»S512s 512
» STA>LINK, 1
»IFT>511,LINK,LINK
» STAE, LINK, 1
2LDASN

sLDX»X

2»IFT,SIZE», 512,512
2 STAs SIZEs 1
21IFT»511,S1ZE,SIZE
» STAE, SIZE» 1
sLDAX

sLDX5C
»IFT,LINKs, 512, 512
» STASLINK, 1
»IFT»511,LINK>LINK
» STAE,LINK, 1
»LDAX

" 2 STA»Q

» JMP%, $P1
$T1, EQUs %=1
»BSS»0

-

SIg1S *

AVIH Iva1®

* “[103 ‘USHY
*“N10d ‘01 %

AL “YL1S ¢

I HONI ¢

01g °dur ¢

QS f1dNS ¢
N€dNnsS ¢
AAHA 9 T1°
ANIGHNOD ULS ¢
‘VZ-L [2

D YIS "
TIN*IVATT®

* €104 €63

7dS fkdNC €

6% ‘dur ¢

HYa "

NfYa1e

- N€YLS ¢
<<<<<STY FHNAIDQHUd>>>>> fdONSHY
*fN10H ‘i7dS
0fssda -
IT=-%“N0DHA “ELS
€d% xdNC ¢
AdYAG RN ¢
AS ‘ga1e”

‘YL ¢

fHY 1€

Neaqav ¢

‘ygql *

NfJ1LS *

71 €dUSV ¢

[“HSV1°*

gyl *

* (A4S) “AvVdT*
AS YLS
<<<<<HIYAS JHNAIIQHd>>>>> fdON“IIHAS
* “10J ‘€4S
Qfssdg -
T1=-%N0J ‘2L
2d$ “xdWr ¢

* 19 3%

LS Al *
AT€HLIS ¢
legairc

qAH AL FWNdNC ¢
cfIdae
ATe9dT1”

1 eJLS €

T *UNIT“3vd1*
MNITHUNITTIG“LAI
T UNITI“Ya1”
SIS ‘SIS “MNIT LAI ¢
ATXATS

8% 22U €
AT19d1e

*“NDA ‘LS
AT€9LS ¢
<<<<<qAYUAT AHNAAIOHd>>>>> FAONHIAHAT
*“N10J “2d$

2LDX» 5

»IFT>LINKs 5125512
»LDA,LINK, 1
»IFT>511,LINK,LINK
s LDAE,LINK, 1

» STAsR

$11, EQUs*

s LDXsR

»IFT,SIZE» 512,512
s LDA,SIZE» 1
2IFT»511,5IZE, SIZE
»LDAE, SIZEs 1

s SUBsN

»JAP» %12

sLDAsR

» STA» S

»LDX> R

+»IFTsLINK, 5185512
s LDASLINK, 1
»IFT>511,LINK,LINK
»LDAE,LINK, 1

» STAsR

s JMPs» 511

$125, EQUs *

sLDASR

» SUBISNIL

s JAZ 5 %13

»LDXsR

s IFT»,SIZEs 5125512
»L.DA, SIZE» 1
s1FT»511,5IZE, SIZE
s LDAE, SIZE» 1

» SUBs>N

» STASR1

»LDASR

» SUB>N

» 1AR»

» STA, U

»LDAsR1

s JAZ s ¥+ 4

» JMPs 514

sLDXs»R

»IFT,LINK, 512,512
+LDA,LINK, 1
»IFT»511,LINK,LINK
sLDAE,LINK, 1
+LDX>» S

»IFT,LINK, 512,512
» STA,LINK» 1
sIFT»,511,LINK,LINK
» STAE,LINK,» 1

» JMP, 15

$14, EQUs *

»LDAsRI1

2 SUBI> 1

2 JAZ s %+ 4

" 2 JMP, %16

»LDA, SINGLES
» STAE, (U)X *
2LDASU

» STA, SINGLES
sLDX>R

+»IFT,LINK,S512,512
»LDALLINK, 1
»IFT»511,LINK,LINK
s LDAE,LINK, 1
2LDX» S

»IFT,LINK, 512,512
» STALINK, 1

2 IFT>»511,LINK,LINK
» STAE,LINK, 1

» LDAs FREE

» DAR»

» STA, FREE

2 JMP» 3517

$165 EQU» *

sLDAsR

» SUBs»N

2LDX5 5

»IFT,LINK, 512,512
» STA>LINK» 1

2 IFT, 511,LINK,LINK
» STAEsLINK, 1

2 STA T

s LDA,RI1

2LDX, T

»IFT,SIZEs 512,512
» STA, SIZEs 1
»2IFTs511,SIZE, SIZE
» STAE, SIZE, 1
»LDXsR

» IFTLINK» 512,512
2 LDALINK, 1
2IFT>511,LINK-LINK
s LDAE,LINK, 1
2LDX, T

»IFT,LINK, 512,512
» STA;LINK, 1
2IFTs511,LINKsLINK
» STAE,LINK, 1

$17, EQUs *

$15, EQUs *

s INRsR

»INR,U

»LDAU

2 STAS I

$18, EQUs*

»LDA,I

» SUB»R

» DAR,

»LSRA, 15

2 JAZ 5,519

» TZ A,

» STAE, (I)*

»INR,1I

2 JMPs 518

$19, EQUs *

» LDA, FREE

» SUBsN

» STA, FREE

»LDA,U

» JMP%x, 3P4

$13, EQUs *

»LDA, COMBINED

2+ JAZ» 520

+LDAL, 4

» JMPM, (ERR) *

$20, EQUs *

» LDAI ,HEAD

» STASP

sLDXs P

»IFT>LINKs 5125512
»LDA,LINK, 1
»IFT>511,LINK>,LINK
+LDAE,LINK» 1

» STASR

»LDXs>R

sIFT,LINK, 512,512
s LDA,LINK, 1

»IFTs 511,LINK,LINK
»LDAE,LINK, 1

» STAS L

$21, EQUs*

»LDAsL

» SUBISNIL

s JAZ » 822

+LLDXsR

2IFT»SIZEs 5125512
»LDA, SIZE, 1
»IFTs511,SIZE, SIZE
»LDAE, SIZEs 1

» STA» S

s LDAsR

» SUB» S

» SUBsL

» JAZ s 4+ 4

» JMPs $23

+»LDXsL

»IFT>,SIZEs 5125512
+»LLDA, SIZEs 1
sIFT>511,SIZE, SIZE
»LDAE, SIZE> 1

» ADD» S

sLDXsR

»1IFTsSIZE» 5125512
s STA>SIZE» 1
2»IFT»511,51IZE, SIZE
» STAE, SIZE» 1

s LDXsL,

»IFT-LINK» 512,512
+LDASLINK>» 1
»IFT>,511,LINK,LINK
s LDAE,LINK, 1
sLDXsR
»sIFT,LINK,S512,512
» STASLINK, 1
»IFT,511,LINKsLINK
» STAE,LINKs 1

» JMP, 324

$23; EQUs *

+LDAsR

s STA, P

2LDASL

» STA>R

$24, EQUs *

o 1.NX 1.

»IFT,LINK, 512,512
s LDASLINK» 1
»IFT»511,LINKsLINK
s LDAE,LINK, 1

» STASL

» JMP»s 521

$22, EQU» *

» INCR» 1

» STA, COMBINED

» JMP,s RESA

» JMP*, P4

$T4, EQUs %=1
»BSS,0

» JMPs 525

X s DATA»OQ
N»DATA>O

HEAD, DATAS O

s ORG,HEAD+2

Cs DATASO

B, DATA, O

FREEs DATA»O
COMBINEDs DATA, O
NIL»DATA,O077777-NIL
s ORGsNIL+2

S» DATA» O

R» DATASO
R1,DATA,O
I1,DATA>O
SINGLESs DATA>O
LFs DATA,O

SF», DATA,O
L»DATA»O

T» DATA,O

P> DATA>O

Qs DATASO

U, DATA»O

$25, EQU»s *

» END> $

APPENDIX II--MOL620 COMPILER LISTING

+«META PROGRAM (K=100,M=800,N=1500, S=400)
COMPILER FOR MOL620 PROGRAMSZ
QUTPUTS DAS ASSEMBLY LANGUAGE Z%
STARTED NOVEMBER 8, 1970%
WRITTEN IN PDP-10 TREE-META VERSION 1.5%
PRODUCER: GREGORY L. HOPWOODZ
DIRECTOR: MARSHA DRAPKIN HOPWOODZ
CONSULTANT: VWILLIAM M. NEWANZ
ADAPTED FROM THE ORI GINAL MOL 620 COMPILERZ
WRITTEN IN FORTRAN FOR THE S/360 AND%#%
DESCRIBED IN UNIV OF CALIF, IRVINEZ
INFO AND COMPUTER SCIENCE DEPARTMENTZ
TECHNICAL MEMO #1, ENTITLED %
"MOL620: A MACHINE ORIENTED LANGUAGE AND LANGUAGE COMPILERZ
FOR THE VARIAN DATA 620/1 COMPUTER"™ %
BY MARSHA A. DRAPKINZ%
ROGRAM = HEAD IDORG $C(UNIT) "DONE."
y Add dr v 34 IN BEGINe«e««END BLOCK OR MISSING °‘DONE. *"?
L', ENDs $'"\ 13
ZPATCHES TREE-META TO USE '$' AS BASE FOR GENERATED LABELSZ
HEAD = !¢ "HRR Bs41"\"ADDI B, tD20"\'"MOVE A,[JFCLI"\"MOVEM A, (B)"\
"MOVEM A, 1(BY'"\'"MOVE A,[2200000000001"\"MOVEM A, 4(B)"\)
« EMPTY $VERSIONLOJ*3
IDORG = $C(DEC* / COMMENT#*) («IDEN "ORG" VALUE '; :$XORGL2] * /
«EMPTY ["%»,EQUs*"\1) 3
UNIT = PROC / 1%(«~DEC * / COMMENT *) 3
PROC = +« PRCHEAD FORMPART °*; (COMSTMS / .EMPTY) "ENDP"™ ';
L' JMP¥s SP"e WC\ "ST". UC+WC "5 EQUs*=1"\ ",BSSs"7? WATWA\]:
PRCHEAD = «(+«"PROCEDURE"/"PROC') IDEN
C"SP" . WC™s EQUs k"N
*50",NOP» <<<<<PROCEDURE " %S0 ">>>>>"\1;
FORMPART = « 'C 0%2C"'s) %) /
*C C(IDEN ["sSTA»"*S0\] / EMPTY)
C*'s CIDEN C",STB»"%S0\] / EMPTY) / «EMPTY)
(* CIDEN [",STX,"%SO0\1 / EMPTY) / EMPTY)Y %) /

‘U 28 34 29 29 29 29 29 29 29 29 29 29 22 28 24

«EMPTY &3
COMSTMS = 1%(~DEC */ «STMNT %/ «~COMMENT*) 3
COMMENT = DAS '; 3

DEC = «(DECLARE / ASSDEC) ;
ASSDEC = « (SETST™M / EQUSTM)Y '5 3
SETSTM = « "SET" IITEM $XSETC2]1 $C's IITEM tXSETCL3]) 3

EQUSTM « "EQU" IITEM :XEQUC2] $C's IITEM $XEQUL3])3
IITEM = « IDEN '= VALUE ;
DECLARE = (+«"DECLARE'" /«"DECL") ITEM :XDECL1] $C°'s ITEM :XDECL21)

*s tZDECC11]1;s
ITEM = « IDEN (+'[(~VALUE '$/.EMPTY :XMTLOl) VALUE '] /
« EMPTY ¢XMTLO] :XMTCLOJ)
('= VALUE / .EMPTY $:XZEROCOJ) :XITEMC 43} H
STMNT = «(LABELID :XLABELIDC1] / EMPTY $XMTCLO]) USTMNT '3 :XSTMNTCZ2] 3
LABELID = «.ID ': 3

1FS /
FORS /
WHILES 7/
BLOCKS /
ASSIGNS /
NULLS 7/
GOTOS 7/
CALLS /
RETURNS /
BUMPS /
STOPS 7/
DAS 3
IFS = «"IF" EXP tXEXP(1)
(Ce-*3 "ELSE"™ /
FORS = «"FOR" STOLOC
((IISTEPII
("UNTIL" EXP
"DO" USTMNT
WHILES = «"WHILE" EXP
ASSI GNS =«DESIG ('~ /

USTMNT =

"THEN' USTMNT
"ELSE'") USTMNT /
¢XDESICGL 1] ('+«/'=) EXP :$XSTOLZ2]

EXP:XSUMLO1:XSUBLOJ:XSTEPL 31/ EMPTY:XMTL01)
¢$XLE[LOl:XGE[OlsXUNTILL 3)/"WHILE"
¢t XFORL 4]
sXEXPL 1]
‘=) EXP

« EMPTY ¢XMTCLOJ):XMTLOJ:XIFC 4]

EXP))

»

"DO" USTMNT
$XSTOCLR2] 3

sXMTLOJ:sXWHILEL 313

DESIG =«STOLOC :XDESIGL11 %(C',STOLOC :XDESIGL2]1) 3
NULLS = «"NULL" :XMTCLO1;
BLOCKS = «"BEGIN' BODY "END";
BODY = « (DEC / STMNT / COMMENT) :XBODC11]
$C((DEC 7 STMNT / COMMENT) :XBODC2]) / «EMPTY $XMTCO]1;
GOTOS = «"GO" "TO" JMPLOC :XCGOTOC11];
CALLS = «"CALL" JMPLOC (ARGLIST / «EMPTY :XMTLO0]> :XCALLCZ2];
RETURNS = «"RETURN'" (ARGLIST / -EMPTY $XMTCO1)
("FROM" JMPLOC / «EMPTY $XMTCOl) :XRETC23]3
ARCLIST = « '((«EXP / «EMPTY :XMTLOJ) :X1ARGL1]
(«'s (EXP / «EMPTY :XMTLO]) / ~EMPTY :XMTCLOJ]) :X2ARG[1]
(' (EXP / «EMPTY :XMTLO0]) / ~EMPTY :XMTLOJ) :X3ARGL11]
') ¢XARGLISTLC 313
DAS = « «SR :XDASC113 ZRECOCNIZE "STRING"Z
BUMPS = « "BUMP"™ BMPLOC :XBUMPL1] $C', BMPLOC :XBUMPL2])3
STOPS = «("STOP" / "HALT") :XSTOPLOI1:
EXP =«INTRSECT $('"XOR"™ INTRSECT :XXOR[L21/"O0R' INTRSECT :XORC21);
INTRSECT = « NEGATION S$("AND'" NEGATION :XANDC21);
NEGATION = «"NOT" NEGATION :XNOTC1] / +~RELATION 3
RELATION = « SUM $((C ">=" :XGECLO3 / '> :XGTCO] /
'= $XEQLO1 7/ "<=" :XLELO] /
‘< $XLTCLOY 7 *# :XNE[LO] > SUM :ZRELL31);
SUM = « PRODUCT $C(('+ :XSUMLO]l / '- $XSUBLOJ) PRODUCT :ZOPRC31);
PRODUCT = « FACTOR $C(C ' :XMULLO1/ '/ :XDIVLO]l)> FACTOR :ZMULL31);
FACTOR = «BITAND $((«'"BOR" :XBORLO] / "BXR" :XBXR[LO0J> BITAND :ZOPRL31):
BITAND = « SHIFT $("BAND" :XBANDCLO] SHIFT :ZOPRL 3])J;
SHIFT = « PRIMARY $('" IDEN '" VALUE :XSHIFTL3] J);
PRIMARY = «IDEN 'C EXP '] :XMTLO] $XARRAYL 3] /
«JMPLOC ARGLIST :XCALLLZ2]1 /
«IDEN :XADDRL11 7/
«*'C (REGISTER / SWITCH) ') ¢XREG[1] /
'C EXP ') :XEXPLC1] /
« CONSTANT /
«'C EXP ') :ZINDIRC1] /
« '- '« PRIMARY /
'« PRIMARY :XPMINUSLC11 /

*+ PRIMARY /
‘@ IDEN s$XREFC1]

5

CONSTANT = NUMBER /
- '= '=- CONSTANT /
ZRECOGNIZE "STRING"Z
+~+«SR :XADDRC1]1 /
ZTHE NEXT ALTERNATIVE RECOGNIZES 'STRING'Z
«'" ,CHR «CHR '' :XALPHAL2] / ZAS IN 'XY'Z%
«'* _CHR '' :XALPHAC1]) / ZAS IN 'X'Z
«'C (IDEN :XADDRCL 1] / NUMBER) '] :XINDIRC1] 3
REGISTER = «"AR" $XAR[0] / «"BR" 3$XBRLO] / «"XR" :XXRLO] /
«"OF" :XOFCO] 3
SWITCH = «"SS1"™ :XSSI[0] 7/ «"SS2'" $XSS2(0) / +'"SS3" :XS553C01]
STOLOC «IDEN C('C EXP '] :XDESIGLO] :XARRAY[31 /
« EMPTY $XADDRL11) /
~'C REGISTER ') / «CONSTANT / «'C EXP '] :ZINDIRC1)]
«IDEN C°'C EXP '] :XBUWPLO] :XARRAYL 31/
« EMPTY :XADDRL11) /
~ 'C REGISTER ') / +~CONSTANT / «°'C EXP '] $ZINDIRL1] 3
«IDEN C°'fC EXP '] :XMTCLO] :XARRAYL 31 / EMPTY :XADDRL11) /
«CONSTANT 7/ *[EXP '] :ZINDIRL131;
VALUE =«IDEN :XNUMC1] / ~CONSTANT/ +~'- '- VALUE / «'- IDEN $XMINUSC1];

.o

L1}

BMPLOC

JMPLOC

IDEN = OID;
NUMBER = «NUM / «'= NUM $XMINUSC1] / « '+ NUM3
%R
z7%
zZ
zX
b9 4
z2
ZUWNPARSE RULES FOLLOWZ
2%
2%
ZZ
VERSIONC] => $WASWC <'MOL620 VERSION 215 (17-SEPT-1971)"\>\
"y COMPILED BY MOL620 VERSION 2.15 (17-SEPT-71)>"\ ", SMRY»"\;
XORGL=-5-1 => *1 ",0RG>" %2\ "%, EQUs*"\
XDAS[L=-1 => %1 \3
XSTOL=5=1 => YLDAL*2] *1;
ZDECL=1 => ", JMP,"#1I\ *x1 #1", EQU»*"\;
XDEC[=»-1 => *1 XDECL*2]
(=] => %13
XSETL=5=] => %1 ",SET," *2 \
[=s=5=] => %1 XSETC[*2,%3]
XEQUL=s=-] => %1 ", EQU," *2 \
[=»s=-5-1 => %1 XEQUL*2,%3] 3
XDESIGL=-5>=-] => XDESIGL#*2]1 *1
[XARRAY[=»=5-31 => (YTYPE[*1:%2] / ZARRAY[*1:%2] /
XMTL*1] "5 STAs 3T« WC"+ "+ WA« WAN) *1
CXMTL]1] => <EMPTY
[XARL1] => «EMPTY
CXBRL1]) => ", TAB»"\
CXXRL11 => ", TAX,"\
CXOFC11 => ", ROF, "\ ",JAZ,%+3"\ ", SOF,"\
CZINDIRL=1] => ", STA, $T"« WC"+"+ WA. WA\ YLDA[*1:%1]
N, STA $T" e WC™+ "+ VAe WA= WAN "5 L DA, ST"« WC'+ "« WA\
M, STAE; ($T" s WC"+ "+ VA. WA= WA= WA")% "™\
CXINDIRL=11 => ", STAE,"™ *]1\
[=1 => ", STA," *1 \3
XITEML=XMTLIoXMTLI»=] => %1 ">,DATA,"™ *4 \
C=sXMTC1s=5-3 => %1 "DATA," %4\ ",0RG»" *1 "+ *3\
C=» e NUMs e NUMs =1 => %1 ", EQUs*="" *2\", DATA, " *4\
l., ORG’ (1] * l '+ * 3 |I‘+ 1‘.\
C=sXMINUSC=1s «NUMs=1 => %1 ", EQUs*+" *22% 1\
",DATA, "™ %4\ "H,0RG,"*1 '+ %3 "+1"\

L= e NUMs XMINUSL=15=] => XITEML*15%35%2,%4]
[=>XMINUSL=-1,XMINUSL=1s=1 => %1 ", EQUs*k+" *22%1\
", DATA," *4\ ">0RG»" *]1 ‘= *32%k1\
[=s=s=5=] => <"ERROR IN DECLARATION OF " *I\>;
XBWPLXARC]]) => "> I1AR,"\
[XBRCJ1] => ",IBR,»"\
CXXR[1]) => ",IXH»"\
CXOFC1] => "5 SO0F,"\
[XARRAY[=s=»-1] => %1
CZINDIRL=~]] => YLDAL*1:%1] "5 STA» $T"« WC*"+"+ WA« UA\
,INRE> (ST WC'+ "0 WA= WA I %"\
[=»=] => *] XBUMP(*2]
CXINDIRL=11 => ",INRE," *I1\
L=] => ", INR," %1 \;
XZEROL] => '0 3
XMT /=> EMPTYS
XARGLISTC=s=5=1 => YTYPE[*12%1]1(YTYPE[*2s%1JC(YTYPE[#32%1] *1 %2 %3
/ %32kl "2 TAX,"\ *x1 *x2)
/YTYPEC#*3:%1] *2:%1 ", TAB»"™\ %1 %3
/%23%1 ", STAs ST« WC"+ "+ WA« WAN® 3% 1 "y TAX, "\
U,LDBs $T"e WC"+" e WA~ WA\ *1)
/YTYPEL*2:%1] C(YTYPEL#3:%1] *ls*x1 %2 %3 / %1z*k]
B, STA, ST« WC™+""+ WA, WANR 32 %1 "5 TAX, "\",LDA, $T"« WC'"+" e WA- WA\ *2)
JYTYPEL*32%1] *13%1 ", STA,3T"« WC"+"+ WA« WA\
*2:%1 "> TAB»"\ %3 "sLDAy ST". WC"+ "« WA~ KA\
12k] ", STA, $T"e WC"+ "+ WA WA\
% *2e%1 ", STAs ST WC"+ "+ WA WA\
#33%1 ", TAX, "'\
",LDB, $T"s WC'"+"e WA= WA\ *",LDA, $T". WC"+". WA= WANS
X1ARGLXMTLI] => «EMPTY
-1 => YLDAC*113
X2ARGLXMTC1] => EMPTY
_ =1 => ",LDB" YMODEL*11\
X3ARGLXMTCL 1] => «EMPTY
[=1 => ",LDX" YMODEC*11\
XNOML=] => *1;
XMINUSCXMINUSL=1] => *12*1
[=] => "= %13
XPMINUSLCXPMINUSC-1] => YLDA[*1:%1]
[XMINUSC=1] => YLDAC*1:%1]
(-3 => YLDA[C*1] "s CPAS"\ "5I1ARs"\;
XALPHA[_J = " eee *1:0 T ene
[=5=] => "' x1:C %2:C "' ;
XINDIRL=1 => 'C %1 ")=%" ;
ZINDIRL-] => YLDAC*11 ", STA, ST« WC"+"+VWA. UA\"S>LDAE, ($T". WC*'+"
e WA=-WA ")%" \;
XADDRL =] => %13
XARRAY
[=sZOPRL-,XSUML]1,"1"]5=1 => ZARRAY[#2] "LLDX" YMODECL*2:%11I\ "sIXR,"\
ZARRAY[*1,% 3] / ZARRAY[*1,%2,%3]
[=»ZOPRL=»XSUBLJ»"1"1,~-] => ZARRAY(*2] ",LDX'" YMODE[*2:%1] \
",DXR»" \ ZARRAY[C*1,%3] / ZARRAY[*1,%2,%3]
[-»XARRAY[=5=3=1>-] => ZARRAY[*2] ",LDX" YMODE[*23:%2]\
“,IFT," *2:%1 ",512,512"\ ",LDX," *2s%1 ", 1"\
YL,IFT>511," %23%]1 ', *k2:%k1I\ "LLDKE," %*22%1 ", 1"\
ZAORRAY(*1,%3]) / ZARRAYL*1,%2,%3]
[=s=5=]) => ZARRAY[*15%2,%3]3
YARRAY[-»-»XDESIGL]1] => (YTYPE[*2] / XMTL*31 ",LDA, $T"« WC"+" . WA~ WA\)
YW,IFT,™ *1 ",512,512"\ ",STA," *1 *, l-":%__t:__;,‘}..."?:?
",IFT>511," *1 ', %1\ ",STAE," *1 ":i'-“)\{',,f-"
[(=»=sXBUMPL]] => ",IFT,"™ %1 "»512,512"\ ",INR," %1 ", 1"\
YoIFTs5115" %1 *s 1\ ",INRE,"™ %1 "5 1°'\

e

‘.o

-

C=s=3=] => ",IFT," %1 "5»512,512"\ ",LDA," *1 ", 1"\
",IFT,511," %1 ', %1\ ",LDAE,"™ %1 ",1"\;

ZARRAYCZOPRL-,XSUMC[J1,""1"]] => YTYPE[*131%1]
LZOPR[->XSUBL1,'"1"1] => YTYPE[C*12%1]

[=»XDESIGL]]=> "L IFT," %1 ",512,5128"\ ",STA," %1 ", 1"\
", IFT» 511" *1 '» %1\ ", STAE," %1 ", 1"\

[XARRAY[=s=»=1] => YTYPE[*1:%2)

[=>XBUMPL 1] => "L,IFT," %1 "5512,512"\ ",INR," *1 ", 1"\
YS>IFT>5115" %1 's %1\ ",INRE,"™ *1 ", 1"\

C=»=] => ", IFT," *1 ",512,512"\ ",LDA,"™ %1 ", 1"\
"L,IFT>511,"™ %1 ', %1\ ",LDAE," *1 ", 1™\

[=s=5=-1 => YTYPE(*2] ",LDX" YMODECL*2]\ YARRAY[(*1,%2,%3] /

*2 ", TAX»" \ YARRAY[*1,%2,%3] 3

XREF[=] => *1;

XREGL=] => %] 3}

XAR[L] => EMPTY;

XBRL] => ", TBA, "\

XXRL] => "5 TXA»"\3 :

XSHIFTL=»-»-] => YLDAC*1] ', %2 %, *3 \;

XEXPL-] => YLDAC*1] 3

XLABELIDL=] => %] ", EQUs*"\ 3

XSTMNTL=»=-1 => %1 %2 3

XWHILEIXEXPLZRELL=»s=5=-1]s=5=] => #2 ", EQUs*"\
ZRELC*1ekleklso%3sk18%12%3] XIF[*x1l2x1:%2] #1\

¥2 "y JMP," #2\ #1 ", EQUs""\
[=s=s=] => #2 ", EQUs%"\ %1 ", JAZ,"#I\ %2
s JJMPs T#2N #1 "5 EQUs %\

XGOTOLXARRAY[=s=5=1] => YJMPL*13%1,%12%2] "5 JMP%,5 $T"e WC"+" s WA= WA\
[ZINDIRL=1] => ZJMPL*12%1] ", JMP%, $T"s WC"+" e WA= WA\
=1 => ", JMP," *1\;

XCALLLXARRAY[=5>=5=1s=] => YJMPL*k1sk1,%k1s%2] %2 ", IMPM*%,s $T"e WC"+ "« WA= WA\
[ZINDIRC=1s-] => ZJMPL*1e%1] *2 ", JMPM*, $T"e WC"+ ™. WA= WA\
[=5=] => %2 ", JMPM," *1\3

XRETL=>XMTCL 1) => %1 ", JVMPx*x, $P" . WC\

[-sXARRAY[=5=5=]] => YJMPL*2:%1,%2:%2] %1 ", JMP%, $T". WC"+". WA~ WA\
L-»ZINDIRL-1] => ZJYPL*2:%1] %1 ", JMP%ks $T"e WC'+ " WA= WA\
C=5=1 => %1 ", JIJMP%," *2\;

YIMPL=5=1 => YLDAL*2] ",ADDI," %I\ ", STAs $T"« WC"+"+ WA« WA\

ZJVMPL=1 => YLDAC*1] "5 STAs 3T"« WC"+"+ WA WA\

XSTOPL]Y => ",HLT,"\;

XIFCXEXPLZRELL=s=5=]15s=sXMTL15-] => ZRELC#*1sk1lsklokds%k12%12%3]
XIFL*12%x12%2] #1 \ %2 #1 ", EQUs %"\

L=s=sXMTL]s=1 => %1 ", JAZ,"#1I\ *2 #1", EQU, %"\
[XEXPLZRELL=s=s=]1)s=s=5=]1 => ZRELL[*18klskl,kdsk1s%12%3]
XIFC*13%12%2]1 #1I\ %2 ", JMPs "#2\ #1 ", EQUs%*"\ *3 #2 "5 EQU,*""\
C=s=5=5-1 => %1 ", JAZ,"#1I\ *2 ", JIMP,"#2\
F1", EQUs %"\ %3 #2", EQU»*""\

CXGTLI1 => "5DAR»"\ "> JAN.,"
[XGEL1]) => ",JAN,"

CXEQLI] => ", JAZ,*+4"\ ", JMP,"
CXNECL]1] => ", JAZ,"

CXLEC]] => ",DAR,"\ ">, JAP,"
CXLTC)) => ", JAP,";

XFOR[=,=-] => %] *2 :
C=sXMTCIsXUNTILL=s=5=15=] => %1 #1", EQUs*""\
ZRELL*18%12%1,%328%2,%32%1] "5 JAZ,"#2\
*4 XBUMPC*1gs%12%1]
", JdMP, ""#IN #2 ", EQUs %"\
[=sXMTL1s=5=] => %1 #1 ", EQUs*""\
YLDAC*31 ",JAZ," #2\
*4 XBUMPL*1:%1:%1]
"y JMP, " #IN #2 'y EQUs %"\

4

[=s=sXUNTILC=5=-5=)5=1 => %1 #1", EQU,*""\
(YSTEPL*22%1] ZRELC*13s%x12%1,%3:%2,%32%1] ", JAZ,"#2\/
ZSTEPL*2:% 1) ZRELC*13%k13%1,%3:%3,%3t%k1] ",JAZ," #2\/
ZOPRLC*13k13%1,%23%3,%x3:%1] ZAR-(VU-0C) A STEP B UNTIL CZ
"y STA ST"« WC"+ "+ WA. WA\
YLDAC*2:%1] ">,ASRA, 15"\ ",0RAI, 1"\ ZSIGN OF BZ%
", TABs "\ "5, TZAs"\ ">MUL,ST"e WC"+"e WA-WA\ Z(VU-C)%*SICGNC(B)Z
", JAZ s k+ 4"\ ", JAP," #2\) ZCONTINUE IF AR<=0 %

%4 ZOPRO*1:%1:%1,%2:%2,%23%1] *12%]

Yy JMPL,"#1IN\N #2 ", EQUs %"\

C=s=s=5-1 => %1 #1", EQUs»*"\

YLDAC*3]1 ",JAZ," #2\

*4 ZOPRL*1:*1:%1,%2:%2,%22% 1] *1s%]

", JMP,"#IN\N #2 Y, EQUs»*"\ ;

YSTEPL «NUM] => EMPTY

CXREFC=-1] => .EMPTY:

ZSTEPLXMINUSL=1] => «EMPTY:
XSTEP /=> .IMPTY;

XUNTIL /=> .EMPTY;
XBODL=s-] => %] %2

[-]1 => *1;

YMODEL e NUM] => "I," %1
CXMINUSC=13] => "I," %1

CXADDRL=1] => ', %1

[XREFCL=1] => "I," %]

[XALPHAC=1] => "I," x|

. [XALPHAC=5=1] => "I," %1

CXINDIRC=1] => "E," %13

YTYPEL .NUM] => EMPTY

[XMINUSC=1] => +EMPTY

[XADDRL=1] => «EMPTY

[XREFL-1] => EMPTY

[XALPHAL-]] => «EMPTY

[XALPHA[L=5=1] => «EMPTY

CXINDIRL-1] => «EMPTY

CXNUML-]] => «EMPTY

CXMTCI] => «EMPTY 3

YABELIANLCXSWM[11=> EMPTY
[XBANDL]1] => «EMPTY
CXBOR[L1] => «EMPTY
[XBXRCL1] => «EMPTY;

YLDAL Q"] => ", TZAs"\

£"1"] => ", INCR, 1"\

CXMINUSL'™1'"]] => ", DECR» 1"\

L=]) => YTYPEC*1] ",LDA"™ YMODEC*1I\ / *1 ;

XBANDL] => ", ANA"

XBORL] => ",0RA";

XBXR C] => ", ERA";

XsSMCcl) => ", ADD";

XSUBL) => ", S5UB";

XGTL] => "5 DARs»"\"» CPA,"\">,LSRA, 15"\3

XGEL] => ", CPA,"\",LSRA, 15"\;

XEQL] => "y JAZs*+3"\", DECRH» 1""\">I1AR»"'\;

XLEL] => ",DAR,"\",LSRA, 15"\;

XLTCL] => ",LSRA,15"\;

XNECL] => «EMPTY;

XMULCL] => «EMPTY;

XDIVL] => EMPTY;

XNOTCXNOTL=-1] => *1:2%1

[~) => YLDAC*1] XEQCL] 3

XO0FL]) => ", TZA,"\",A0FA,"\;
XSS1C] => " INCRs» 1"\"5, JSS1s%+3"\"s TZA5"\;3
XSS2C] => ",INCR, 1"™\"5JSS2, %+ 3"\"» TZ A ""\3
XSS3C]1 => ", INCRs» 1"\"5 JSS3s%+3"\">» TZAs"\3
XANDL~»=] => YLDAL*1] ", JAZ,™ #I1\ YLDAC*2] #1 ", EQU»*""\3
XXORL-5-1 => YLDAC*2] "5 STA» $T"e WC"+""+ WA. WA\ YLDAC*1]
"y JAZ s +8"N\",; LDBs $T"e WC™+ " WA\ "5 JBZ s %+ 5"\
My TZAS "™\, JMPs %+ 3"\""> ERA» 5T" e WC'"+ " e WA= WA\
XOR[=»=-] => YLDAL*1] "> JAZ»*x+4"\ ", JMP,"#I\ YLDAL*2] #1 "5 EQUs*"\j
ZRELL=-5-5"0"] => YLDAL*1] %2
[=5=5=-1 => (YTYPE[L*1JC(YTYPEL*3] ",LDA'" YMODECL*1JI\",SUB" YMODEL*31I\/
*¥3 "5 STAs $T"e WC"+"+ WA« WAN""> LDA™YMODEL %113\
Yy SUB» $T"e WC"+ "o WA~ WA\) /
YTYPEC*3] *]1 ", SUB'"™ YMODECL*31I\ /
*¥3 ", STAS ST"e UC"+ "+ VAe WANKk 1 ", SUBs $T"« WC"+" s WA= WA\) *2 3
ZOPRL=,XSUML15'"1"] => YLDACL*1] ", IAR,"\
[-»XSUBL1»"1'"] => YLDAC*11 ", DAR,"\
[=s=5=] => YTYPEC*11C(YTYPEL*3) YLDALC*1] %2 YMODEL*31I\/
YABELIANC*2] *3 %2 YMODEC*11 \/
*3 "5, STA» ST WC"+"+ WA« WA \ YLDAL*1]
*2 ", ST . WC"+" UA-VWAN\) /
YTYPEL %31 *1 %2 YMODEL*31 \ /
YABELIANL*2] *1 ", STA, $T". WC '+ +VWA. WA\
#¥3 %2 ", 3T . WC '+ «VA-WA\ / '
%3 "y STA> ST WC"+""+ WA WA\ k1 *2 ", $T"e WC*'+"e WA= WA\ 3
ZMULL=-,XMULLJ»"2%] => YLDA[L*1] "sASLAs 1"\
C=XMULC]1s"4"] => YLDALC*1] ",ASLA,2"\
[=>XMULLCI»"8"] => YLDAC*1] ', ASLA, 3"
[->XMULLC]>"16"1=> YLDAL*1] ", ASLA, 4"\
L-sXMULC]»"256"])=> YLDAL*1] ",ASLA,8"\
C->XMULL]s»=] => YLDAL*1] "»TABs"\"sTZA,"\
(YTYPEC*3] "'>MUL"™ YMODECL*31 \/
s STA> ST« WC"+"+ WA WA\ %3 ">, TAB»"\ "> TZA,"\ "MUL, $T". WC"+". WA= WA\)
",LASL, 15"\
[-»XDIVL1,"2"] => YLDAC*1]1 ", TAB,"\ ",LASR, 1"\ ", ASRB, 14"\
[-sXDIVL]s-1 => YTYPEL*3] (YLDAC*1]
",LASRs 15"\ ", DIV'" YMODEC*31\ YDV2L1) /
*3 "y STA $T"« UC"+"+ WA. WA\
YLDAC#*1] ",LASR, 15"\
"y DIV, ST" WC"+"s WA= WA\ YDVE2L] 3
YDV2L]l => Y, TAX,"\ ", TBA,'"\ ", TXB,"\ 3
« END

