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RESEARCH Open Access

Ecological correlates of blue whale
movement behavior and its predictability
in the California Current Ecosystem during
the summer-fall feeding season
Daniel M. Palacios1* , Helen Bailey2 , Elizabeth A. Becker3 , Steven J. Bograd4 , Monica L. DeAngelis5,12,
Karin A. Forney6,7, Elliott L. Hazen8,9 , Ladd M. Irvine10 and Bruce R. Mate11

Abstract

Background: Species distribution models have shown that blue whales (Balaenoptera musculus) occur seasonally in
high densities in the most biologically productive regions of the California Current Ecosystem (CCE). Satellite
telemetry studies have additionally shown that blue whales in the CCE regularly switch between behavioral states
consistent with area-restricted searching (ARS) and transiting, indicative of foraging in and moving among prey
patches, respectively. However, the relationship between the environmental correlates that serve as a proxy of prey
relative to blue whale movement behavior has not been quantitatively assessed.

Methods: We investigated the association between blue whale behavioral state and environmental predictors in
the coastal environments of the CCE using a long-term satellite tracking data set (72 tagged whales; summer-fall
months 1998–2008), and predicted the likelihood of ARS behavior at tracked locations using nonparametric
multiplicative regression models. The models were built using data from years of cool, productive conditions and
validated against years of warm, low-productivity conditions.

Results: The best model contained four predictors: chlorophyll-a, sea surface temperature, and seafloor aspect and
depth. This model estimated highest ARS likelihood (> 0.8) in areas with high chlorophyll-a levels (> 0.65 mg/m3),
intermediate sea surface temperatures (11.6-17.5 °C), and shallow depths (< 850 m). Overall, the model correctly
predicted behavioral state throughout the coastal environments of the CCE, while the validation indicated an
ecosystem-wide reduction in ARS likelihood during warm years, especially in the southern portion. For comparison,
a spatial coordinates model (longitude × latitude) performed slightly better than the environmental model during
warm years, providing further evidence that blue whales exhibit strong foraging site fidelity, even when conditions
are not conducive to successful foraging.
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(Continued from previous page)

Conclusions: We showed that blue whale behavioral state in the CCE was predictable from environmental
correlates and that ARS behavior was most prevalent in regions of known high whale density, likely reflecting
where large prey aggregations consistently develop in summer-fall. Our models of whale movement behavior
enhanced our understanding of species distribution by further indicating where foraging was more likely,
which could be of value in the identification of key regions of importance for endangered species in management
considerations. The models also provided evidence that decadal-scale environmental fluctuations can drive shifts in the
distribution and foraging success of this blue whale population.

Keywords: Satellite telemetry, State-space models, Movement behavior, Foraging behavior, Nonparametric
multiplicative regression, Blue whale, Balaenoptera musculus, California Current Ecosystem, Decadal variability

Background
Located off the western coast of North America, the
California Current Ecosystem (CCE) boasts a rich bio-
logical productivity [1–3] and supports important popu-
lations of marine megafauna, including blue whales
(Balaenoptera musculus) [4–7]. The Eastern North Pa-
cific (ENP) blue whale population uses the CCE in late
summer and early fall months [8–10], tracking the sea-
sonal development of dense aggregations of euphausiid
crustaceans (“krill”), their primary prey [11–13]. Krill are
the key trophic link in this relatively simple food chain,
consisting of phytoplankton, krill, and their predators
[14, 15]. This trophic pathway was invoked by [13] to
describe the sequence of events leading to the arrival of
blue whales in Monterey Bay off central California in
late summer, starting with springtime wind-driven
coastal upwelling and followed by increased primary
productivity and krill populations in spring and summer,
which they termed “wind-to-whales”. This paradigm pre-
dicts that whale aggregations can be expected along this
coast in areas situated downstream from upwelling cen-
ters [13], where a steep sea-floor topography, submarine
canyons, and retentive circulation processes [15–19] act
in concert with enhanced primary productivity and krill
behavior to generate persistently high prey densities [11,
12, 20–23]. Indeed, satellite telemetry data have shown
that in the CCE, blue whales aggregate in large num-
bers at these coastal “hotspots” [24], while ecosystem-
wide studies describing blue whale distribution in rela-
tion to bathymetric and oceanographic variables have
shown a clear association with the most productive habi-
tats along the coast [9, 25–27].
Two of the most important blue whale aggregation

hotspots in the CCE are found in areas of intense
commercial ship traffic leading in and out of the
ports of Los Angeles and San Francisco [24]. Blue
whale mortality due to ship strikes has been a grow-
ing concern for the recovery of the ENP population
[28–31], which is currently estimated at 1647 animals
(CV = 0.07) [32], and is listed as Endangered under
both the USA’s Endangered Species Act and the

International Union for Conservation of Nature’s Red
List [33]. Recent studies have shown that while ac-
tively engaged in feeding, whales may be less respon-
sive to anthropogenic threats such as approaching
ships [34] and military sonar operation [35], while the
persistent proximity of vessels and shipping noise can
result in a reduction in feeding opportunities [36, 37].
Therefore, an ecosystem-wide understanding of whale
foraging behavior and its drivers would fill a critical
information gap toward mitigating ship strikes and
other impacts from interactions with human activities
[29, 31, 38, 39].
Through the use of state-space modeling techniques,

satellite telemetry data can be used to classify animal
movement into simple behavioral states along with the
estimation of regularly spaced locations in time along a
track [40, 41]. Rapid, directed movement between loca-
tions is typically classified as “transiting mode”, while
slower, localized movement is classified as “area-re-
stricted searching (ARS) mode”. Researchers generally
assume that, while in feeding areas, these ARS and tran-
siting modes are indicative of foraging in and moving
among prey patches, respectively, although these infer-
ences have only been validated with direct measurement
of behavior in a few species [42–46]. Nevertheless, be-
havioral state can be examined in relation to extrinsic
conditions to determine whether patterns or correlations
suggest an environmental basis [47–49]. Given the tight
trophic coupling between blue whales and their prey
during the summer-fall feeding season in the CCE, we
would expect that regions of high whale density are also
where ARS behavior is most prevalent.
Great strides have been made in recent years in the

development and validation of habitat models (or species
distribution models, SDMs) capable of predicting blue
whale population abundance and distribution in the
CCE from ship survey sighting data collected concur-
rently with bathymetric and oceanographic variables [25,
27, 50, 51]. Recently, we also applied SDMs to predict
blue whale density in the CCE from satellite tracking
data [26]. In this study we used this tracking data set to
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further investigate whether blue whale behavioral state
could be similarly predicted through relationships with
habitat variables as proxies for bottom-up ecological
processes that favor krill aggregation. Given the rele-
vance of behavioral context to anthropogenic threat re-
sponse, an ecosystem-wide capability to predict where
foraging is more likely would enhance the value of infor-
mation from density models toward a more comprehen-
sive characterization of key regions of importance for
this endangered species in management considerations.
Finally, an improved understanding of these species-
environment relationships would also aid in better
predicting the effects of climate change on the CCE
ecosystem and the animal populations it supports [52,
53].

Methods
Blue whale tagging
The tags and tagging methodology have been docu-
mented in detail in previous papers [24, 54–56]. Briefly,
ultra-high-frequency radio transmitters monitored by
the Argos satellite system were attached to blue whales
in three areas of the ENP (California, USA; Gulf of the
California, Mexico; and in international waters of the
eastern tropical Pacific) during the period 1993–2008.
Tagging was conducted every year except for 1996, 1997,
and 2003. Of the 182 tags deployed, 128 transmitted
successfully for at least a day (d), and 104 transmitted
for more than 7 d [56].

State-space modeling of satellite telemetry data
We fitted the Bayesian switching state-space model
(SSSM) developed by [40] to the unfiltered Argos loca-
tions for each whale track longer than 7 d (n = 104),
using the software packages WinBUGS v. 1.4.3 and R v.
2.12.1 [57], as detailed in [56]. Behavioral state was spe-
cified as one of two modes, transiting (mode 1) and ARS
(mode 2), based on mean turning angle and autocorrel-
ation in speed and direction. The SSSMs ran two
Markov chain Monte Carlo simulations, each for 20,000
iterations, with the first 15,000 iterations being discarded
as a burn-in, and the remaining iterations being thinned,
removing every fifth one to reduce autocorrelation. The
result was a regularized track with one estimated loca-
tion per day, along with a measure of uncertainty
expressed by the posterior 95% credible limits in longi-
tude and latitude, which accounted for the Argos loca-
tion error and the movement dynamics of the animals
[56]. Although only two behavioral modes were mod-
eled, the means of the Markov chain Monte Carlo sam-
ples provided a continuous value from 1 to 2 for each
location. We chose values greater than 1.75 to represent
ARS mode and values lower than 1.25 to represent
transiting mode, while values in between were

considered “uncertain,” as has been the practice in other
studies [24, 43, 56].
The tracking data set covered the entire migratory

range of the ENP blue whale population, from the east-
ern tropical Pacific in the south to the Gulf of Alaska in
the north [56]. However, since most of the tagging was
conducted off California, the majority of the tracks were
concentrated along the western coast of North America
[24, 56]. Therefore, for the purpose of this study we de-
lineated our study area using the Exclusive Economic
Zone (EEZ) jurisdictional boundary of the USA on the
Pacific Ocean, obtained as a polygon shapefile from the
Maritime Boundaries Geodatabase [58, 59] available at
the Marine Regions web site [60]. We extracted SSSM
tracking data within this EEZ region (longitudinal
extent: 129–117°W, latitudinal extent: 30–49°N; see
Fig. 1a), with the following constraints. First, we lim-
ited the tracking data to the period after 1998, when
a complete suite of environmental variables from re-
mote sensing was available, and we further restricted
the temporal scope of the study to the months from
July to November to focus on the summer and fall
seasons, when the whales are known to forage inten-
sively in the coastal environments of the CCE [8, 24,
56]. To avoid bias introduced by short-lived tags to-
ward the vicinity of the tagging locations, we only
used SSSM tracks with durations longer than 14 d or
a distance traveled of at least 888 km (i.e., the average
transit time and separation, respectively, between ARS
patches reported by [56]). We also excluded locations
with SSSM estimation uncertainty exceeding 100 km
in radius (based on the posterior 95% credible limits
generated by the SSSM), locations with uncertain be-
havioral mode classification, and the last location of
each track (which did not receive a behavioral classifi-
cation). Lastly, to focus our study on the coastal up-
welling environments where blue whales concentrate
their foraging activity, we excluded portions of tracks
occurring over seafloor depths greater than 2000 m
(although we note that some foraging also occurs in
offshore waters; see Fig. 1b). The final tracking data
set contained 1808 SSSM locations belonging to 72
tagged whales, with observations in all years except
2002 and 2003 (no tag deployments took place during
2003), all occurring within a distance of 113 km from
shore (Fig. 2).

Environmental predictor data
We obtained relevant environmental variables for each
SSSM location from digital elevation models and re-
motely sensed observations collected by oceanographic
satellites available from various sources (Table 1). Vari-
ables describing the seafloor relief were depth (DEPTH),
slope (SLOPE; expressed as a depth gradient), slope
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aspect (expressed as EASTNESS and NORTHNESS
components), and distance to the 200-m isobath (or dis-
tance to the shelf break, DISTSHELF; with positive
values indexing locations shoreward of the 200-m iso-
bath and negative values indexing offshore locations).
The oceanographic variables extracted included: vertical
upwelling velocity (or Ekman pumping, WEKM), sea
surface height (SSH), sea surface temperature (SST), and
phytoplankton chlorophyll-a concentration (CHL).
When available, these data were obtained through the
web service Environmental Research Division Data
Access Program (ERDDAP) [61], using the R package
xtractomatic v. 3.4.1 [62], a collection of functions that
permit client-side access to the data sets served by

ERDDAP, to automate the process. Otherwise the data
were obtained directly from the source indicated in
Table 1.
In order to account for the uncertainty in location es-

timation by the SSSM, for each environmental variable
we obtained the weighted average of the observations
around each location occurring within a box defined by
the SSSM posterior 95% credible limits. The observa-
tions inside this box were weighted based on distance to
the SSSM location using a Bézier spatial kernel [63]. The
number of observations used in this computation was
dependent not only on the extent of the SSSM credible
limits around each location, but also on the spatial reso-
lution of the environmental products used, which varied

Fig. 1 Maps of the western coast of the USA on the Pacific Ocean showing a the bathymetry of the study area and the names of geographic
places mentioned in the text (SCB = Southern California Bight) and b the final set of 1808 SSSM locations in the coastal upwelling environment of
the CCE (depth ≤ 2000 m) belonging to 72 Argos-monitored tags deployed over the period 1998 to 2008 (July to November months only)
colored by their behavioral mode classification (BMODE, the response variable used in all NPMR models). For completeness, locations from the
full tracking data set occurring within the domain of the study are shown as hollow circles. Polygon with thick black outline is the EEZ boundary
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from 1 km for DEPTH to 37 km for SSH (Table 2). In
addition to reflecting the uncertainty in location estima-
tion, this approach had the benefit of minimizing the num-
ber of locations with missing environmental values due to
cloud cover in some of the products, had we simply ob-
tained the single pixel value nearest to a location.

Given the large latitudinal extent of our study area
(~ 20 degrees), oceanographic variables susceptible to
the effect of the global north-south gradient in solar
heating [64] were spatially detrended by fitting a local
polynomial regression (loess) smoother on latitude
(degree = 1, span = 0.75) in R, such that the

Fig. 2 Maps of the western coast of the USA on the Pacific Ocean showing the SSSM locations used in NPMR models for each of the years of
the study (1998-2008; July to November months only; depth ≤ 2,000 m), colored by their behavioral mode classification (BMODE; blue circles =
transiting, red circles = ARS). For each year, the number of whale tracks and the number of locations (total, transiting, and ARS) is given in the
map key. Polygon with thick black outline is the EEZ boundary
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Table 1 Details of the environmental variables obtained from digital elevation models and from oceanographic remote sensing
satellites for this study, including measurement unit, abbreviation used in the text, range, spatial and temporal resolution, product
name, and source. A reference to the literature is provided for product documentation or variable derivation. The original sources of
the products are also given

Variable and
unit

Abbrev. Min. Max. Range Spatial
resolution

Temporal
resolution

Product/sensora Sourceb

Bottom depth
(m)

DEPTH 15.02 4669.20 4654.18 0.0083
deg

static SRTM30_PLUS v.6.0 digital
bathymetry.
Reference: [65].

UCSD/SIO [66]

Bottom slope
(m/km)

SLOPE 2.39 296.13 293.74 0.0083
deg

static Derived from bathymetry
using a two-dimensional
Sobel gradient operator.
Reference: [67].

UCSD/SIO [66]

Bottom aspect
(eastness; unitless)

EASTNESS −0.998 0.824 1.822 0.0083
deg

static Derived from bathymetry.
Reference: [68].

UCSD/SIO [66]

Bottom aspect
(northness; unitless)

NORTHNESS −0.988 0.980 1.968 0.0083
deg

static Derived from bathymetry.
Reference: [68].

UCSD/SIO [66]

Distance to shelf
break (200-m isobath)
(km)

DISTSHELF − 425.23 36.01 461.24 0.0333
deg

static ETOPO2 v.2 g 2-min Gridded
Global Relief Data
Reference: [69]

NOAA/NCEI [69]

Sea surface
height (cm)

SSH 39.30 79.77 40.47 0.3333
deg

irregular
(1–7 d)

Merged (Topex/Poseidon,
ERS-1/−2, Geosat, GFO,
Envisat, Jason-1/− 2).
Reference: [70].

CMEMS [71]

Ekman upwelling
(cm/s)

WEKM − 1076.7 1415.0 2491.7 0.2500
deg

8 d Seawinds/QuikSCAT, Global
Ekman Current Velocity and
Ekman Upwelling. Derived
from wind stress.
Reference: [72, 73].

ERDDAP [59], using
1-d wind-stress
measurements
from NASA/JPL
[74] and RSS [75]

Sea surface
temperature (°C)

SST 10.16 22.61 12.45 4.40 km 5 d AVHRR Pathfinder v. 5.2
(day and night)
Reference: [76].

NOAA/NCEI [77]

Chlorophyll-a concentration
(mg/m3)

CHL 0.05 7.60 7.55 4.63 km 8 d Merged (MERIS/MODIS/
SeaWiFS/Polder; GSM
product).
Reference: [78].

GlobColour Project
[79]

aProducts not available through ERDDAP [61] were obtained directly from the source
bAbbreviations are defined in the text (see Abbreviations section)

Table 2 Description of the NPMR models reported in this study for the building and validation sets, using locations with complete cases
(no missing observations in any of the predictors). For each model, SU is the number of sample units in populated neighborhoods,
Nave is the realized average neighborhood size, nmin is the realized minimum neighborhood size (0.25 × Nave), logB is the log
likelihood ratio, Bave is the average contribution of a sample unit to logB. Additional measures of fit reported by HyperNiche
include the cross-validated pseudo-R2 (xR2), the Pearson correlation (r) between presence/absence response data and continuous
estimate of probability, and the chi-square value (χ2) representing the deviance comparing the model to a naive model

NPMR model SU Nave nmin LogB Bave xR2 r χ2

Environmental

Building 1444 93.63 23.41 26.14 1.04 0.09 0.3 100.22

Validation 364 25.10 6.28 6.39 1.04 0.09 0.3 29.42

Spatial

Building 1444 175.80 43.95 52.20 1.03 0.06 0.3 75.14

Validation 364 46.29 11.57 10.75 1.08 0.15 0.4 49.53
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latitudinally detrended variables represented a “spatial
anomaly” above or below the mean at a given latitude
(i.e., the local deviations solely caused by dynamic
oceanographic processes). The detrended variables
were SSH (dtSSH) and SST (dtSST). The set of envir-
onmental variables that were initially considered as
candidate predictors in the models included the ori-
ginal nine variables as well as the detrended versions,
for a total of 11 predictors. Collinearity among the
predictors was assessed with the pairwise Pearson
correlation coefficient (r) and graphically with scatter-
plot matrices. Redundant predictor pairs (i.e., those
exceeding the threshold |r| ≥ 0.7; see [80]) were con-
sidered for exclusion from multiple-predictor models
based on an informal exploration of their perform-
ance in single-predictor models.

NPMR modeling
Formal assessment of the relationship between whale be-
havioral mode (BMODE) and environmental predictors
was conducted through nonparametric multiplicative re-
gression (NPMR) modeling in the HyperNiche software
v. 2.30 [81]. The HyperNiche implementation of NPMR
is specifically designed for habitat modeling and has
been shown to outperform other popular statistical tech-
niques used in species distribution modeling like gener-
alized additive models and random forests [82–84].
NPMR has been recently applied to animal movement
data [85]. HyperNiche uses established standard prac-
tices in species distribution modeling, including leave-
one-out cross-validation during fitting, overfitting con-
trols, metrics for model selection, generation of boot-
strap variability bands around fits, and randomization
(Monte Carlo) tests for comparing to a null model [86–
88]. A methodological overview of NPMR estimation as
it applies to the context of this study is provided in the
Appendix.
BMODE was encoded as a categorical binary variable

indicating the absence (i.e., transiting) or presence of
ARS, and the models estimated the likelihood of ARS at
each SSSM location (locations with uncertain behavioral
mode classification were not used in the analyses).
NPMR was formulated using local mean models with
Gaussian kernel weighting functions. With this configur-
ation, the Gaussian function (which serves as a smooth-
ing parameter) determines the weight at each location in
the predictor data, while its standard deviation deter-
mines the size of the “environmental neighborhood” (n*;
in units of number of locations around a target point).
Model estimates are then computed at each location as
the weighted average of the values of the response vari-
able for the observations in the environmental neighbor-
hood (with the univariate weights being combined
multiplicatively), while being penalized with leave-one-

out cross-validation to minimize overfitting. The corre-
sponding formulations for these steps are shown in Eqs.
1–4 in the Appendix.
The statistics “tolerance” (the standard deviation of

the Gaussian function) and “sensitivity” (the average
effect size measuring the change in the level of the
response for a given change in the predictors; Eq. 5
in the Appendix) indicate the relative scope and influ-
ence of the predictors, respectively. The primary
metric for model selection for presence/absence re-
sponse data in HyperNiche is logB, a log likelihood
ratio expressing the improvement over a naive model
(logB = 0). We also used Bave, the average contribu-
tion of a sample unit to logB, which is independent
of sample size (see the Appendix for details).
Models were fitted using the method of free search.

All models used the default overfitting controls (medium
automatic settings) available in HyperNiche, and an at-
tempt to improve the final model was made with the
tuning option (see the Appendix for details). The final
model was assessed with a randomization that tested the
null hypothesis that the observed fit (logB) was no better
than could be obtained by chance. Randomization was
carried out by shuffling the response variable and
attempting to fit the best model possible using a free
search. Confidence intervals for the logB statistic were
obtained through bootstrapping, carried out by resam-
pling the data and fitting the model to each sample. Both
the randomization and bootstrapping procedures were
repeated 100 times on the data set used for model
building.

Model validation: predicting under different climatic
conditions
Decadal-scale environmental variability has been hy-
pothesized to influence long-term distributional shifts
in ENP blue whales via changes in trophic linkages
[89]. Given the long-term nature of our data set, we
examined the possibility that blue whale movement
behavior in the CCE might be in part driven by envir-
onmental fluctuations persisting across multiple years.
For this purpose we used the North Pacific Gyre Os-
cillation (NPGO), a climate index that that closely
predicts ecosystem-level changes in the ENP, with al-
ternating phases of positive sign characterized by cool
and highly productive conditions, and of negative sign
characterized by warm conditions and reduced bio-
logical productivity, each lasting for several years [90].
Specifically, we built the final NPMR model on data
from years dominated by a positive NPGO phase
(1998–2004 and 2007–2008) and cross-validated it
with data from years dominated by negative NPGO
values (2005 and 2006; see Additional file 1: Figure
S1) set aside for this purpose and not used for model
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fitting. The building data set contained 1444 SSSM
locations belonging to 55 tagged whales for the posi-
tive phase of the NPGO, and the validation set con-
tained 364 SSSM locations belonging to 18 tagged
whales for the negative phase of the NPGO. This ap-
proach allowed us to test the model’s ability to pre-
dict blue whale behavioral state during different
climatic regimes.

Model assessment with binary classification
Further assessment of model performance included
metrics for the success of binary classification by con-
verting the estimated ARS likelihood into estimated
presence or absence of ARS behavior under different
cutoffs. To achieve the optimal binary classification,
we followed the approach described by [91]. For each
cutoff level of the estimates, we computed the true
positive rate (TPR; i.e., the proportion of correctly
identified presences, also known as sensitivity) and
the true negative rate (TNR; i.e., the proportion of
correctly identified absences, also known as specifi-
city) assisted by the R package ROCR v. 1.0-7 [92],
and calculated the true skill statistic (TSS) as TPR +
TNR - 1 [91]. We then used the cutoff level that
maximized TSS to implement the binary conversion
and to compute classification statistics [prevalence,
accuracy, and precision]. We also report the area
under the receiver operating characteristic curve
(AUC), the root-mean square error (RMSE), and the
Brier score [93] as metrics of model performance.

Accounting for spatial autocorrelation and other sources
of variability
Unaccounted for spatial autocorrelation in models
poses a problem for hypothesis testing because it vio-
lates the assumption of independence [94–97]. The
optimized weighted averaging approach implemented
by NPMR to derive model estimates (Eq. 4 in the
Appendix) automatically accounts for spatial autocor-
relation by estimating how much the response vari-
able at a target location reflects response values at
surrounding locations (i.e., within the environmental
neighborhood), rather than treating them independ-
ently. This procedure is equivalent to the formulation
implemented in generalized linear models with an
autocovariate term to address spatial correlation, as
reviewed by [94, 95].
Nevertheless, considering the strongly autocorrelated

nature of our tracking and environmental data sets, we
conducted a series of steps compatible with the NPMR
framework to investigate autocorrelation. First, we fitted
a purely spatial (longitude × latitude) NPMR model to
capture the spatial structure in the tracking data and

calculated the sample variogram [95, 98] on neighbor-
hood sizes and predictions from both spatial and envir-
onmental models using the R package gstat v. 1.1-6 [99]
to quantify the overall pattern of autocorrelation (a var-
iogram of the Pearson residuals was of limited use given
ours was a binary response). Further, we compared the
estimated neighborhood sizes from the spatial and the
environmental models to explore how NPMR accounted
for autocorrelation in the presence of environmental
predictors [94, 95].
Finally, even though NPMR modeling in HyperNiche

does not have a formal way to incorporate random ef-
fects, we included individual as a categorical covariate to
address potential differences in behavior driven by differ-
ent animals, and offered it to the models with the rest of
the environmental predictors.

Results
State-space modeled locations
Of the 1808 locations in the final tracking data set, 418
locations (23.1%) were classified as transiting and 1390
(76.9%) were classified as ARS mode (locations with un-
certain behavioral mode classification were not used in
the analyses). Blue whale locations occurred along the
entire western coast of the USA (Figs. 1b and 2). ARS lo-
cations tended to cluster around three areas: Point Con-
ception and the Santa Barbara Channel in southern
California, around the Gulf of the Farallones in central
California, and between Cape Mendocino and Cape
Blanco in northern California and southern Oregon. Lo-
cations classified as transiting occurred between the
clusters of ARS locations along the coast, as well as in
the southern offshore part of the Southern California
Bight (Fig. 1b).
The mean distance and speed between SSSM loca-

tions, providing an indication of the scales of blue whale
daily movement within the CCE during July–November,
were 39.9 km and 1.7 km/h (median = 25.7 km and 1.1
km/h, respectively). When computed by behavioral
mode, the mean distance and speed for transiting loca-
tions was 81.5 km and 3.4 km/h, respectively (median =
78.4 km and 3.3 km/h, respectively), while the mean dis-
tance and speed for ARS locations was 27.3 km and 1.1
km/h (median = 19.9 km and 0.8 km/h, respectively).

NPMR modeling results
Consideration of collinearity indicated that SSH and
dtSSH were highly correlated (r = 0.86), as were DEPTH
and DISTSHELF (r = − 0.78) (Additional file 2: Figure
S2). In exploratory single-predictor NPMR models, SSH
and DISTSHELF had inferior performance (in terms of
logB) than dtSSH and DEPTH, respectively, so we
retained dtSSH and DEPTH as a candidate predictors in
multiple-predictor models. NORTHNESS was also
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excluded from multiple-predictor models due to a lack
of predictive ability in the single-predictor models. Thus,
multiple-predictor models were based on an initial set of
eight predictors: DEPTH, SLOPE, EASTNESS, WEKM,
dtSSH, SST, dtSST, and CHL.
A free search among this set of predictors identified

the four-predictor model CHL × SST × EASTNESS ×
DEPTH as the best model, while meeting the parsimony
requirements. After tuning, this model maximized the
log likelihood ratio at logB = 26.14, with each location
contributing an average of Bave = 4% to the likelihood ra-
tio (Table 2). This model’s average neighborhood size
was Nave = 93.63 and the minimum neighborhood size
allowed for an estimate was nmin = 23.41 (Table 2). A
randomization test for logB based on 100 runs provided
evidence that this model performed significantly better
than a null model (p-value = 0.01, logBmean = 0.07,
logB variance = 0.40). Evaluation of fit for the logB statis-
tic through bootstrap resampling with 100 runs indi-
cated that it was quite stable, 90% of the time falling
within the range 16.32–28.48 (the 5th and 95th percen-
tiles, respectively). The median bootstrapped fit was
logB = 22.20.
The predictors in this model had tolerances ranging

from 0.30 mg/m3 for CHL to 571.97 m for DEPTH,
which when scaled by the range of the predictor and
expressed as a percentage, varied from 4 to 29% (Table 3).
The response variable was most sensitive to changes in
CHL (sensitivity = 0.71; i.e., a 20% change in CHL resulted
in a 14% change in the likelihood of ARS) and least sensi-
tive to changes in DEPTH (sensitivity = 0.07; Table 3).
The functional response of ARS likelihood with re-

spect to CHL was described by an optimum shape, with
increasing ARS likelihood at CHL levels from 0 to 1.1
mg/m3, followed by a broad peak from 1.1 to 2.5 mg/m3

and then by a slight decrease at higher CHL levels
(Fig. 3a). The response to SST was also described by an
optimum around 15.5 °C followed by a sharp decrease,
although there was an indication of a secondary increase
in ARS likelihood between 20 and 22.5 °C (Fig. 3b). The
response to EASTNESS was characterized by a simple
monotonic gradient, with a slight increase in ARS likeli-
hood in the more eastward-facing slopes (although with
a high variability; see Fig. 3c). Finally, the functional re-
sponse of ARS likelihood to DEPTH was similarly char-
acterized by a monotonic gradient, with highest ARS
values at shallow depths (< 850 m), and decreasing
values at greater depths (Fig. 3d).
The observed prevalence of ARS behavior in the build-

ing set (collected during the positive phase of the
NPGO; 1998–2004 and 2007–2008; n = 1444) was 0.83
(Table 4). Model estimates showed widespread high ARS
likelihood (above 0.8) from Point Conception in Califor-
nia to northern Washington (Fig. 4a). In southern

California, elevated ARS likelihood was restricted to a
narrow strip along the coastal margin, while the lowest
ARS likelihood consistently occurred in the offshore
parts of the Southern California Bight, except around
offshore islands and shallow banks, where ARS likeli-
hood was also high (Fig. 4a). In predictor space, this sec-
ondary ridge of elevated likelihood of ARS occurred in
warmer temperature and shallower water (SST = 20–
22.5 °C, DEPTH < 1000m) than elsewhere in the CCE
(Fig. 3b and Additional file 3: Figure S3e).

Model validation: predicting under different climatic
conditions
Validation of the environmental NPMR model using
data from years dominated by negative NPGO values
(2005 and 2006; n = 364; Fig. 4c and Additional file 1:
Figure S1) indicated a similar degree of fit to the build-
ing set (Bave = 4.5%; Table 2) despite the lower log likeli-
hood ratio (logB = 6.39), which reflected the smaller
sample size. This model’s average neighborhood size was
Nave = 25.10 and the minimum neighborhood size
estimate was nmin = 6.28 (Table 2), both also substan-
tially lower than for the building set. The validation set
had a lower observed prevalence than the building set
(0.66; Table 4).

Table 3 Characteristics of the predictors in the NPMR models
reported in this study for the building (n = 1444) and validation
(n = 364) sets. Note that the validation step used the tolerance
of the predictors from the building step, while the sensitivity
was computed for each model

Environmental Predictors Spatial Predictors

CHL SST DEPTH EAST. LONG. LATI.

Building

Minimum 0.05 10.56 18.57 −1.00 − 126.00 31.24

Maximum 7.60 22.61 1990.90 0.82 −117.41 48.17

Range 7.55 12.05 1972.30 1.82 8.60 16.93

Tolerancea 0.30 1.20 571.98 0.33 0.26 1.02

Tol. (%)b 4.0 10.0 29.0 18.0 3.0 6.0

Sensitivityc 0.71 0.24 0.07 0.12 1.21 0.32

Validation

Minimum 0.11 10.16 17.97 −0.98 −124.89 31.41

Maximum 5.54 21.54 1997.60 0.67 −117.60 45.72

Range 5.42 11.38 1979.60 1.65 7.29 14.31

Tolerancea 0.30 1.20 571.98 0.33 0.26 1.02

Tol. (%)b 5.6 10.6 28.9 19.8 3.5 7.1

Sensitivityc 0.78 0.58 0.07 0.14 2.02 0.74
aTolerance is the span covered by one standard deviation of the Gaussian
weighting function, reported in the original scale of the predictor
bFor comparison among predictors, tolerance is also divided by the range of
the predictor and expressed as a percentage
cSensitivity is the mean absolute difference resulting from nudging the
predictors, expressed as a proportion of the range of the response variable
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The response variable had a similar sensitivity to
changes in the predictors in the building model except
for SST, which more than doubled in the validation set
(sensitivity = 0.58; Table 3). An increased sensitivity to
SST suggests that while the animals generally occupied
the same habitat during both periods, ARS behavior was
influenced by the warmer conditions during the negative
phase of the NPGO. This was evident in the generalized
decrease in likelihood of ARS throughout the study area,
particularly in the southern half (between Point Concep-
tion and Cape Mendocino; Fig. 4c).

Performance of binary conversion of predictions
The decrease in estimated ARS likelihood estimates for
the validation set resulted in substantially different cut-
offs for the optimal binary conversion into estimated
presence or absence of ARS behavior between the build-
ing and validation sets (0.84 versus 0.61, respectively;
Table 4 and Additional file 4: Figure S4a,). The predicted
prevalence was lower than observed for the building set
and higher than observed for the validation set (0.57 and
0.85, respectively; Table 4). The errors in classifying true
presences and true absences were very similar (FNR =
0.38 and FPR = 0.34, respectively; Table 4) for the build-
ing set. In contrast, for the validation set the error in
classifying true absences was high, while the error in
classifying true presences was very low (FPR = 0.73 and

FNR = 0.09, respectively; Table 4). Consequently, accur-
acy was slightly higher for the validation set than for the
building set (0.69 and 0.63, respectively; Table 4), while
precision was substantially higher for the building set
than for the validation set (0.90 and 0.70, respectively;
Table 4). AUC was higher for the building set than for
the validation set (0.69 versus 0.57, respectively; Table 5
and Additional file 4: Figure S4b), while both RMSE and
the Brier score were lower for the building set than for
the validation set (RMSE 0.36 versus 0.47, respectively;
Brier score = 0.13 versus 0.22, respectively; Table 4), in
all cases indicating better classification performance for
the building set.
The pattern of false negatives (i.e., ARS activity not

captured by the model) in the building set was extensive
throughout the study area, while the pattern of false pos-
itives (i.e., observed transiting locations that were classi-
fied as ARS by the model) was much sparser (Fig. 4b). In
contrast, the proportion of false positives in the valid-
ation set was relatively high and widespread, while false
negatives were very few (Fig. 4b).

Spatial model for the autocorrelation in the tracking data
The log likelihood ratio of the tuned spatial coordinates
(longitude × latitude) NPMR model fitted to the building
set was twice that of the environmental model (logB =
52.20), while both the average neighborhood size and

Fig. 3 The functional responses of likelihood of ARS to a CHL, b SST, c EASTNESS, and d DEPTH in the environmental NPMR model (fitted blue
curves). Also shown are the model estimates at each location (red points), and the 5th and 95th percentile variability bands obtained through
100 bootstrap samples (gray points)
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minimum allowed neighborhood size were 88% larger
(Nave = 175.80 and nmin = 43.95, respectively; Table 2).
Each location in the spatial model contributed an aver-
age of Bave = 3% to the likelihood ratio (Table 2). A
randomization test for logB based on 100 runs provided
evidence that this model performed significantly better
than a null model (p-value = 0.01, logB mean = − 0.24,
variance = 0.19). Evaluation of fit for the logB statistic
through bootstrap resampling with 100 runs indicated
that it was quite stable, 90% of the time falling within
the range 35.32–56.19 (the 5th and 95th percentiles, re-
spectively). The median bootstrapped fit was logB =
44.09 (logB mean = 44.92, logB variance = 35.08; Nave

mean = 265.18, Nave variance = 197.17). Despite strong
differences between the results of the spatial and envir-
onmental models, the binary conversion returned similar
metrics of predictive performance for the two
models when fitted to the building set (Tables 4 and 5,
Additional file 5: Figure S5).

The tolerance value for longitude was about one
fourth that of latitude (0.26 and 1.02 degrees, respect-
ively), which when scaled by their respective ranges and
expressed as a percentage, tolerances were 3% for longi-
tude and 6% for latitude (Table 3), indicating a 1:2 scale
of spatial anisotropy in longitude:latitude for the likeli-
hood of ARS as a reflection of the more rapid decrease
in ARS activity in the cross-shore direction (i.e., longi-
tude) with increasing depth and distance from shore
than in the alongshore direction. The sensitivity of the
response variable to changes in latitude was correspond-
ingly lower than it was to changes in longitude (sensitiv-
ity = 0.32 and 1.21, respectively; Table 3).
The functional responses of ARS likelihood to longi-

tude and latitude were driven by the density of observa-
tions (Additional file 6: Figure S6), which were highly
concentrated in three regions of predictor space (longi-
tude = 125–124.5°W, 123.8–123°W, 121–119.5°W; lati-
tude = 33–35°N, 37.2–39.5°N, 41–44°N), corresponding

Table 4 Confusion matrix for the binary conversion of the likelihood of ARS estimated by the environmental NPMR model for the
building (n = 1444) and validation sets (n = 364), using the cutoff value that maximized the true skill statistic (TSSmax). FPR is the false
positive rate, FNR is the false negative rate, TPR is the true positive rate, and TNR is the true negative rate. The second part of the
table reports a set of performance metrics for this binary conversion, including prevalence, accuracy, precision, the area under the
receiver operating characteristic curve (AUC, range: 0 to 1 with larger numbers indicating a better fit), the root-mean square error
(RMSE, range: 0 to infinity with smaller numbers indicating a better fit), and the Brier score (range: 0 to 1 with lower scores
indicating a better calibration of the predictions)

Confusion matrix:

Predictions Classification error

Absence Presence

Observations in the
building set

Absence 149 77 0.34 (FPR)

Presence 401 665 0.38 (FNR)

Observations in the
validation set

Absence 17 47 0.73 (FPR)

Presence 12 112 0.09 (FNR)

Performance metrics:

Building set Validation set

TSSmax 0.28 0.18

Cutoff 0.84 0.61

Observed prevalencea 0.83 0.66

Predicted prevalencea 0.57 0.85

TNR (1-FPR) 0.66 0.27

TPR (1-FNR) 0.63 0.91

Accuracyb 0.63 0.69

Precisionc 0.90 0.70

AUC 0.69 0.57

RMSE 0.36 0.47

Brier scored 0.13 0.22
aPrevalence is estimated as: presences/total
bAccuracy is estimated as: (true positives + true negatives)/(obs. Presences + obs. absences)
cPrecision is estimated as: true positives/(true positives + false positives)
dThe Brier score is computed as the mean of the squared residuals
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to an estimated high ARS likelihood in the areas around
Point Conception and the Santa Barbara Channel in
southern California, the Gulf of the Farallones in central
California, and between Cape Mendocino and Cape
Blanco in northern California and southern Oregon
(Fig. 5a). The pattern of true positives and true negatives
in this model’s binary classification was similarly
clumped around areas of high and low likelihood of
ARS, respectively (Fig. 5b, Table 5).
Strong peaks in neighborhood size in these areas of

high ARS likelihood (Additional file 7: Figure S7, Add-
itional file 8: Figure S8a and S8d) further indicated that
these observations were very similar in geographic space
as a result of the clumped pattern of ARS behavior in
the tracking data (Fig. 1b). Therefore, the spatial

coordinates NPMR model captured the pattern and scale
of autocorrelation inherent in the response. In contrast,
the peaks in neighborhood size and the clumping in the
predictions of ARS likelihood were largely absent in the
environmental NPMR model (Additional file 7: Figure
S7, Additional file 8: Figure S8b and S8e), and the differ-
ences in these variables between the two models
highlighted the areas where the effects of autocorrelation
in the spatial model were stronger (Additional file 8:
Figure S8c and S8f).
The variogram of neighborhood size for the spatial co-

ordinates NPMR model showed a cyclical pattern
with strong autocorrelation at lags between 20 and 140
km, and secondary regions of autocorrelation between
230 and 330 km, and at 450 km, corresponding to the

Fig. 4 Maps of the western coast of the USA on the Pacific Ocean showing the spatial distribution of a 1444 SSSM locations used for model
building, corresponding to tracks collected during years of positive NPGO phase (1998-2004 and 2007-2008), colored by the likelihood (lkhd) of
ARS estimated by the environmental NPMR model, and b the corresponding classification error relative to the observations in (a). Panels (c) and
(d) show the same results for the 364 SSSM locations in the validation set, which was collected during years of negative NPGO phase (2005 and
2006). TP = true positives, TN = true negatives, FP = false positives, FN = false negatives. Polygon with thick black outline is the EEZ boundary
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distances separating the three main areas of high likeli-
hood of ARS (Fig. 6a and Additional file 8: Figure S8a
and S8d). In contrast, the variogram of neighborhood
size for the environmental NPMR model had much
lower levels of semivariance and showed no evidence of
autocorrelation at any scale (Fig. 6a). Not surprisingly,
the variogram of the predicted response (ARS likelihood)
for the spatial model contained the same scales of auto-
correlation as neighborhood size (Fig. 6c), while the var-
iogram of ARS likelihood for the environmental model
indicated some remaining autocorrelation at scales
below 100 km (attributable to measurement error or un-
explained latent processes) and above 350 km (attribut-
able to the distances separating predicted areas of high
ARS likelihood by the environmental model), although the
levels of semivariance were about half of those for the
spatial model) (Fig. 6c).
Finally, the spatial coordinates model had a slightly

better performance than the environmental model when
both were fitted to the validation set (logB = 10.75

versus 6.39, Bave = 8% versus 4%; Table 2). The perform-
ance metrics for the binary conversion were also slightly
better for the spatial coordinates model than for the en-
vironmental model when both were fitted to the valid-
ation set (Tables 4 and 5). The variogram of
neighborhood size for the spatial coordinates model
showed a shift toward large-scale autocorrelation (lag
distances of up to 300 km; Fig. 6b), while the levels of
semivariance for the environmental model remained flat
(Fig. 6b). The variograms of ARS likelihood showed that
the patterns of cyclical autocorrelation observed in the
building set were mostly absent from both the spatial co-
ordinates and the environmental models when fitted to
the validation set, with a slight indication of a shift to-
ward large-scale autocorrelation (Fig. 6d).

Discussion
Existing SDMs of blue whale population density in the
CCE have been built on a variety of environmental pre-
dictors. Survey-based SDMs have included various

Table 5 Confusion matrix for the binary conversion of the likelihood of ARS estimated by the spatial coordinates NPMR model for
the building (n = 1444) and validation sets (n = 364), using the cutoff value that maximized the true skill statistic (TSSmax). FPR is the
false positive rate, FNR is the false negative rate, TPR is the true positive rate, and TNR is the true negative rate. The second part of
the table reports a set of performance metrics for this binary conversion, including prevalence, accuracy, precision, the area under
the receiver operating characteristic curve (AUC, range: 0 to 1 with larger numbers indicating a better fit), the root-mean square
error (RMSE, range: 0 to infinity with smaller numbers indicating a better fit), and the Brier score (range: 0 to 1 with lower scores
indicating a better calibration of the predictions)

Confusion matrix:

Predictions Classification error

Absence Presence

Observations in the building set Absence 113 45 0.28 (FPR)

Presence 404 696 0.37 (FNR)

Observations in the validation set Absence 83 39 0.32 (FPR)

Presence 59 146 0.29 (FNR)

Performance metrics:

Building set Validation set

TSSmax 0.35 0.40

Cutoff 0.90 0.65

Observed prevalencea 0.87 0.63

Predicted prevalencea 0.59 0.57

TNR (1-FPR) 0.71 0.68

TPR (1-FNR) 0.63 0.71

Accuracyb 0.64 0.70

Precisionc 0.94 0.79

AUC 0.71 0.72

RMSE 0.32 0.45

Brier scored 0.10 0.20
aPrevalence is estimated as: presences/total
bAccuracy is estimated as: (true positives + true negatives)/(obs. Presences + obs. absences)
cPrecision is estimated as: true positives/(true positives + false positives)
dThe Brier score is computed as the mean of the squared residuals
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combinations of dynamic (mixed layer depth, wind
speed, sea surface salinity, SST, CHL, SSH, standard de-
viation of SSH) and static predictors (seafloor depth,
standard deviation of seafloor depth as a proxy for slope,
distance to the shelf edge) [25, 27, 50, 51]. A telemetry-
based SDM of blue whale density built on the same
tracking data used in this study similarly included SST,
CHL, SSH standard deviation, DEPTH, and DEPTH
standard deviation as predictors [26]. Although with dif-
ferences in product source, temporal coverage, or reso-
lution, all these variables variously capture aspects of
surface and subsurface dynamic processes relating to up-
welling and enhanced primary productivity leading to

krill, while the static variables describe geomorphic fea-
tures that further favor krill aggregation. Indeed, our en-
vironmental NPMR model of ARS likelihood contained
a similar (but smaller) set of predictors (CHL, SST,
EASTNESS, and DEPTH), perhaps because the previous
models have included offshore environments (where
some foraging behavior does occur; see Fig. 1b), while
our model focused on the coastal environment (where
blue whales forage most intensively; see Fig. 1b).
Nevertheless, it is thus clear that prediction of both
blue whale population density and behavioral state in
the CCE requires a combination of static and dy-
namic variables.

Fig. 5 Maps of the western coast of the USA on the Pacific Ocean showing the spatial distribution of a 1444 SSSM locations used for model
building, corresponding to tracks collected during years of positive NPGO phase (1998–2004 and 2007–2008), colored by their estimated
likelihood (lkhd) of ARS by the spatial coordinates (longitude × latitude) NPMR model, and b the corresponding classification error relative to the
observations in (a). Panels (c) and (d) show the same results for the 364 SSSM locations in the validation set, which was collected during years of
negative NPGO phase (2005 and 2006). TP = true positives, TN = true negatives, FP = false positives, FN = false negatives. Polygon with thick
black outline is the EEZ boundary
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The pattern of high ARS likelihood estimated by
our environmental model along the coast was consist-
ent with known regions of high whale density pre-
dicted by survey-based SDMs [25, 27, 51], as well as
with the recently designated Biologically Important
Areas for feeding blue whales in the CCE based on
independent observations, including those associated
with islands and shallow banks in offshore part of the
Southern California Bight [100]. A potential region of
discrepancy occurred in nearshore waters off Oregon
and Washington, where our model predicted high
ARS likelihood (and the telemetry-based SDM of [26]
predicted high density), while survey-based SDMs
predicted low whale density [25, 27, 51]. However,
there were relatively few SSSM locations in this re-
gion (partly because of tag attrition, as tags were de-
ployed in southern and central California), suggesting
that this northern sector of the CCE represents favor-
able foraging habitat, albeit for fewer whales than in
the southern sector. Recently, [19] reported important

submarine canyon habitat and krill aggregations north
of 45°N off the Washington coast, so additional sur-
vey and tagging efforts are needed in this region to
clarify blue whale habitat use in the northern CCE,
particularly given known population heterogeneity
[101] and foraging site fidelity [102] among ENP blue
whales.
These patterns can arise because krill distribution is

not uniform along the coast, as there are multiple fac-
tors that influence its abundance, including limited sup-
ply of macro- and micronutrients required to fuel the
food chain in certain areas [103–105]. In addition,
strong surface currents produce additional patchiness by
concentrating or dispersing zooplankton [106], while the
presence of submarine canyons further determines im-
portant krill hotspots in the CCE [19]. Additionally,
while in coastal waters blue whales show high prey se-
lectivity, favoring the larger species Thysanoessa spini-
fera even when other krill species are present or
dominant [12, 107].

Fig. 6 Sample variograms of neighborhood size and likelihood of ARS for NPMR models based on spatial coordinates (red line) and
environmental predictors (blue line) for the building set (a and c) and the validation set (b and d)
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The generalized decrease in likelihood of ARS dur-
ing the negative phase of the NPGO (2005–2006),
particularly south of Cape Mendocino, was the result
of a decrease in neighborhood size (Nave = 93.63 ver-
sus 25.10; see Table 2). This, in turn, was driven by a
shift toward large-scale autocorrelation in the tracking
data during this period (Fig. 6b and d), likely reflect-
ing increased transiting and reduced ARS behavior, as
evidenced by the contrast between the predictions of
the spatial model for the positive and negative phases
of the NPGO (see Fig. 5a and c). The slightly better
performance of the spatial coordinates model over the
environmental model during the negative phase of the
NPGO suggests that blue whales exhibit strong for-
aging site fidelity, even when conditions are not con-
ducive to successful foraging, as has been
demonstrated elsewhere [27, 102]. Given that decadal-
scale environmental fluctuations have been hypothe-
sized to drive observed large-scale distributional shifts
in ENP blue whales [89], our results beg the question:
how long does it take for blue whales to abandon
formerly reliable foraging hotspots under different cli-
matic regimes?
Although we found that the strong autocorrelation in-

herent in the tracking data was implicitly addressed by
the environmental NPMR model, the variograms indi-
cated that the predictions contained some level of auto-
correlation at scales below 100 km, attributable to
measurement error or unexplained latent processes [98].
The daily SSSM locations indicated that while in the
CCE, blue whales cover typical distances of 20 km while
engaged in ARS and 78 km while in transiting, so it is
possible that Argos telemetry data do not adequately re-
solve whale movements and behavioral states around
smaller-scale features. Therefore, future studies should
also conduct direct validation of blue whale behavioral
states and their ecological correlates through the use
of electronic tags with onboard sensors that detect in-
dividual feeding events and environmental conditions
[108–110].
Despite these advances, however, habitat models will

remain a valuable tool for testing and elucidating
species-environment relationships within and across
ecosystems [51, 111]. Given the basin-scale movements
of these animals and their changing behavioral context,
our models addressed an ambiguity that often arises in
density SDMs: if animals are sighted in an area, are they
functionally present or is the habitat irrelevant? How-
ever, since neither of these modeling approaches can
simultaneously estimate both density and foraging prob-
ability, further work is needed to develop modeling ap-
proaches that integrate distributional and behavioral
data, while also incorporating the various sources of un-
certainty [44, 111–115].

Conclusions
In this study, we have identified the most important
large-scale environmental correlates of blue whale be-
havioral state in the coastal environments of the CCE.
The predicted response indicated that ARS was generally
consistent with foraging activities in the most biologic-
ally productive conditions and where blue whales can be
expected to be most commonly found. We conclude that
the environment, specifically phytoplankton chlorophyll-
a levels, water temperature, and seafloor aspect and
depth, have quantifiable effects on the movement behavior
of blue whales, most likely through indirect effects on
their prey. Our ecosystem-wide characterization of blue
whale foraging and its drivers can be useful information in
management considerations seeking to mitigate ship
strikes and other anthropogenic interactions (such as en-
tanglement in fishing gear [33]), for example through the
identification of key regions of importance (and their vari-
ability in time) for this endangered species. An improved
understanding of these species-environment relationships
in the context of natural climatic oscillations and foraging
site fidelity will also aid in better predicting the effects of
climate change on the CCE ecosystem and the animal
populations it supports [52, 53]. Finally, further work to
integrate behavioral and distribution models for wide-
ranging ocean predators such as blue whales will lead to a
more complete quantification of their ecology and the risk
from anthropogenic activities.

Appendix
Nonparametric multiplicative habitat modeling (NPMR)
in HyperNiche: NPMR models estimate the probability
of occurrence – or in our case likelihood of ARS, at tar-
get point v as the weighted average of observations
nearby (here referred to as sample units) in the multi-
dimensional space defined by the quantitative values of
the predictors (i.e., the environmental neighborhood)
[82, 83]. The size of the environmental neighborhood
(n*) is determined by the standard deviation of the
Gaussian function, and sample units near the target
point (in environmental space) are weighted more
strongly than distant ones in the average. Following the
notation of [82, 83], the weight applied to a sample unit
within the environmental neighborhood, relative to the
target point v, is given by the Gaussian probability dens-
ity function:

w�
ij ¼ e−

1
2 xij−v jð Þ=s j½ �2 ð1Þ

where:
w*

ij = the univariate weight applied to sample unit i for
predictor j,
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W = n × n diagonal matrix with each diagonal element
being a product of weights from each predictor variable.
For sample unit i, the diagonal element is:

wii ¼
Ym

j¼1

w�
ij ð2Þ

X = the matrix of environmental predictors with i = 1
to n rows (sample units) and j = 1 to m columns
(predictors),
xij = the environmental predictor value at sample unit i

for predictor j,
v = a row vector specifying the position of the target

point v in the space defined by the environmental pre-
dictors, with j = 1 to m columns,
vj = the target point for predictor j, and.
sj = the standard deviation of the Gaussian weighting

function for predictor j, applied such that the full range
of observed values for that predictor falls over six stand-
ard deviations. (Essentially, sj functions as a smoothing
parameter, which in the context of NPMR is termed
“bandwidth” or “tolerance”).
The size of the neighborhood, n*i, from which each es-

timate of the response variable ŷv is calculated, is the
sum of weights for sample units:

n�i ¼
Xn

i¼1;

Ym

j¼1

w�
ij

 !
ð3Þ

where 0 < n*i ≤ n. If n*i = 0, then no estimate is possible
for that point.
The weights for individual environmental predictors

are then combined multiplicatively (rather than addi-
tively, as is done, for example, by generalized additive
models) into a single weight for a given sample unit.
This weighted average gives an estimate of the probabil-
ity of occurrence at target point v:

ŷv ¼

Xn

i¼1;i≠v

yi
Ym

j¼1

w�
ij

 !

Xn

i¼1;i≠v

Ym

j¼1

w�
ij

 ! ð4Þ

where:
ŷv = fitted value, i.e., the estimated probability of occur-

rence at target point v,
y = the response variable, a column vector of observed

presences and absences in BMODE, from i = 1 to n
rows, and.
yi = the value of the response variable at sample unit i.
The notation i ≠ v indicates the leave-one-out cross-

validation procedure implemented to help guard against
overfitting the model.

Based on this weighted estimation approach,
HyperNiche implements an iterative method of free
search to identify the best model for a given number
of predictors. Starting with the best model for a sin-
gle predictor and seeking improvement at each step,
the method allows both addition and deletion of pre-
dictors while simultaneously adjusting the tolerances
(sj) of the weighting function in ±5% increments of
the range of the predictors. An exhaustive search is
made through all combinations of tolerances of the
quantitative predictors to rank the models. In
addition to using leave-one-out cross-validation for
optimization, HyperNiche guards against overfitting
during the search by implementing a series of con-
trols, either with automatic settings (pre-specified
levels are: conservative, medium, or aggressive, with
medium being a reasonable default for most data
sets) or with user-supplied manual settings. These
controls include: requiring a model-wide minimum
average neighborhood size (N*) that imposes parsi-
mony on the width of the tolerances and in the
number of predictors (default is 5% of the sample
size), a minimum neighborhood size around a target
point that protects against estimating a response in
a region of the predictor space with insufficient data
(default is 0.25 × N*), a maximum allowable number
of sample units with missing estimates that controls
the completeness of the fitted surfaces (default is
10% of the sample size), and a minimum data:pre-
dictor ratio, which for binary responses is the num-
ber of sample units in the least represented category
(presences or absences) divided by the number of
predictors in the model (the default minimum data:
predictor ratio is 10). Lastly, HyperNiche enforces an
improvement criterion on all models, expressed as a
percentage improvement in model fit when a new
predictor is added (the default minimum improve-
ment criterion is a 5% increase in logB, the evalu-
ation statistic). The search for additional predictors
stops as soon as any one of these criteria is not met.
As a final step, selected models can be tuned by fur-
ther adjusting the tolerances to achieve minor im-
provements, using an increment of ±1% of the range
of the predictors while applying the overfitting con-
trols [82, 83].
For binary responses, overall model quality in

NPMR is evaluated with logB, a log likelihood ratio
expressing the improvement in predictive ability of a
fitted model over a standard naive model (logB = 0)
that estimates the probability of occurrence at a par-
ticular target point as the overall frequency of pres-
ences and absences in the data (in this sense, model
evaluation with logB is analogous to evaluation using
drop in deviance in logistic regression). The value of
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logB tends to increase with sample size, all else be-
ing equal, so in comparing models it is the relative
amount of improvement from model to model what
matters, not the absolute scale [82, 83]. Because logB
is dependent on sample size, HyperNiche also re-
ports Bave, the average contribution of a sample unit
to logB, which allows for straightforward interpret-
ation and comparison across data sets [82, 83].
For a given model, the sensitivity of the response vari-

able to changes in the level of the individual predictors
indicates their relative influence in driving the model (a
high sensitivity to small adjustments indicates a greater
importance). The most common formula used to esti-
mate sensitivity is provided by [82, 83] as:

Sensitivity ¼

Xn

i¼1

ŷiþ−ŷi
�� ��þ

Xn

i¼1

ŷi−−ŷij j
 !

2n ymax−ymin

�� �� Δ
ð5Þ

where:
ŷiþ = estimate of the response variable for case i, hav-

ing increased the predictor by an arbitrarily small value
Δ (say 0.1 of the range of the predictor),
ŷi− = estimate of the response variable for case i, hav-

ing decreased the predictor by an arbitrarily small value
Δ (say 0.1 of the range of the predictor), and.
Δ = a small difference applied to a predictor, expressed

as a constant proportion of the range of a predictor.
Finally, a predictor’s tolerance indicates the width of

the environmental window at which it operates (a pre-
dictor with a smaller tolerance has a narrower window
and is a stronger driver in the model) [82, 83].

Additional files

Additional file 1: Figure S1. Monthly values of the North Pacific Gyre
Oscillation (NPGO) index for the period 1997-2009. Positive NPGO values
(cool and highly productive conditions) were prevalent in most years of
the study period (1998-2004 and 2007-2008), while two years (2005 and
2006) were characterized by negative NPGO values (warm conditions
with reduced biological productivity). (PDF 117 kb)

Additional file 2: Figure S2. Pairwise scatterplot matrix of the 11
environmental variables used to build initial NPMR models. The data have
been binned in the scatterplots in the lower triangle to avoid
overplotting, with lighter color shading indicating higher density of
observations. Represented along the diagonal is the univariate probability
density for each variable. The upper triangle contains the Pearson
correlation coefficient (r) between variable pairs. See Table 1 for the units
of the variables. (PDF 1.91 mb)

Additional file 3: Figure S3. The estimated likelihood (lkhd) of ARS on
the bivariate response surfaces represented by combinations of the
predictors in the environmental NPMR model. Gray areas correspond to
regions of the predictor space with non-existent combinations or where
there was insufficient data for the model to produce an estimate based on
the required minimum neighborhood size (nmin < 23.41). (PDF 774 kb)

Additional file 4: Figure S4. (a) Probability density of estimated ARS
likelihood by the environmental NPMR model for the building
(purple polygon) and the validation (orange polygon) sets, with the

vertical lines indicating the cutoff value for binary conversion that
maximized the true skill statistic for the respective sets. (b) The receiver
operating characteristic curve for the binary classification of the predictions by
the environmental NPMR model on the building set (purple curve) and the
validation set (orange curve), compared to the 1:1 diagonal (black line)
corresponding to a model that did no better than random. The AUC value is
the area under the receiver operating characteristic curve for the respective
curve. (PDF 243 kb)

Additional file 5: Figure S5. (a) Probability density of estimated ARS
likelihood for NPMR models based on spatial coordinates (red polygon)
and environmental predictors (purple polygon) sets, with the vertical
lines indicating the cutoff value for binary conversion that maximized the
true skill statistic for the respective models. (b) The receiver operating
characteristic curve for the binary classification of the predictions by the
spatial model (red curve) and the environmental predictors model
(purple curve), compared to the 1:1 diagonal (black line) corresponding
to a model that did no better than random. The AUC value is the area
under the receiver operating characteristic curve for the respective curve.
(PDF 248 kb)

Additional file 6: Figure S6. The functional responses of likelihood of
ARS to (a) longitude and (b) latitude in the spatial NPMR model (fitted
purple curves). Also shown are the model estimates at each location (red
points), and the 5th and 95th percentile variability bands obtained
through 100 bootstrap samples (gray points). The green portion of the
fitted curve in (a) corresponds a region of the predictor where neighborhood
size was below the minimum allowed as part of the parsimony controls
(nmin< 43.95). (PDF 223 kb)

Additional file 7: Figure S7. Scatterplots of (a and b) neighborhood
size and (c and d) likelihood of ARS as a function of longitude and
latitude at each SSSM location for NPMR models based on spatial
coordinates (red circles) and environmental predictors (purple circles).
(PDF 668 kb)

Additional file 8: Figure S8. Maps of (a-c) neighborhood size and (d-f)
likelihood of ARS at each SSSM location for NPMR models based on
spatial coordinates (first column), environmental predictors (second
column), and the difference between the two (third column). Polygon
with thick black outline is the EEZ boundary. (PDF 524 kb)
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