
UC Berkeley
UC Berkeley Previously Published Works

Title
A web app for population viability and harvesting analyses

Permalink
https://escholarship.org/uc/item/8g36781q

Journal
Natural Resource Modeling, 30(2)

ISSN
0890-8575

Authors
GETZ, WAYNE M
MUELLERKLEIN, OLIVER C
SALTER, RICHARD M
et al.

Publication Date
2017-05-01

DOI
10.1111/nrm.12120
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g36781q
https://escholarship.org/uc/item/8g36781q#author
https://escholarship.org
http://www.cdlib.org/


Received: 9 September 2016 Revised: 17 October 2016 Accepted: 28 October 2016

DOI: 10.1111/nrm.12120

A web app for population viability and harvesting
analyses

WAYNE M. GETZ1,2,3 OLIVER C. MUELLERKLEIN1

RICHARD M. SALTER3,4 COLIN J. CARLSON1

ANDREW J. LYONS1 DANA P. SEIDEL1

1Department of Environmental Science, Policy, and

Management, University of California, Berkeley, CA

94720 (Email: wgetz@berkeley.edu)

2School of Mathematical Sciences, University of

KwaZulu-Natal, South Africa

3Numerus, Inc, 850 Iron Point Road, Suite 280,

Folsom, CA 95630

4Computer Science Department, Oberlin College,

Oberlin, OH, 44074

Correspondence
Department of Environmental Science, Policy, and

Management, University of California, Berkeley, CA

94720

Email: wgetz@berkeley.edu

Wayne M. Getz and Oliver C. Muellerklein are co-first

authors.

Abstract
Population viability analysis (PVA) is used to assess the probability that a

biological population will persist for a specified period of time. Such mod-

els are typically cast as Markov processes that may include age, stage, sex

and metapopulation structures, density-dependence and ecological interac-

tion processes. They may also include harvesting, stocking, and thresholds

that trigger interventions. Here we present a PVA web app that includes

extensible user-selected options. Specifically, this PVA web app allows for

the specification of one to ten age classes, one or two sexes, single popula-

tion or metapopulation configurations with 2 or 3 subpopulations, as well

as density-dependent settings for inducing region-specific carrying capaci-

ties. Movement among subpopulations can be influenced by age, metapop-

ulation connectivity, and attractivity of regions based on the relative fit-

ness of the youngest age classes in each region. Simulations can be carried

out deterministically or stochastically, with a user-specified combination

of demographic and environmental processes. This PVA web app is freely

available at http://www.numerusinc.com/webapps/pva for running directly

on any browser and device. It is easily modified by users familiar with the

NovaModeler Software Platform.

K E Y W O R D S

PVA analysis, metapopulation movement, species conservation, rhino

demography, Leslie matrix model

1 INTRODUCTION

Highly valued animal and plant populations are declining at a dramatic rate worldwide (Barnosky et al.,

2011), either as a result of overexploitation (Mullon, Freon, & Cury (2005), Godfray et al. (2010),

Weinbaum, Brashares, Golden, & Getz (2013)), poaching (Chapron et al. 2008), Wittemyer 2011),

global climate change, or the conversion of human settlement and development of pristine habitat (Ellis,

2011, Foley et al., 2011, Urban, 2015). The value of individuals within these populations comes from

either ethical considerations (the conservation imperative: (Minteer & Collins, 2010) or resource utility

Natural Resource Modeling 2016; 00: 1–13 wileyonlinelibrary.com/journal/nrm Copyright © 2016 Wiley Periodicals, Inc. 1
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considerations (the management imperative: (Ostrom, Burger, Field, Norgaard, & Policansky, 1999)).

Since seminal work of Beverton and Holt six decades ago (Beverton & Holt, 1957), mathematical mod-

els have played a central role in both evaluating (Metzger et al., 2010) and devising population man-

agement programs (Weinbaum et al., 2013), initially for exploitation and, more recently, conservation.

The latter has been implemented through creating protected areas (Moffitt, White, & Botsford, 2011),

improving their security (Watson, Dudley, Segan, & Hockings, 2014), and stocking or translocating

individuals (Armstrong & Seddon, 2008, Seddon, Griffiths, Soorae, & Armstrong, 2014) to bolster or

reestablish populations in selected areas. At the core of the most comprehensive and successful of these

models is the Leslie matrix formulation (e.g., see Caswell, 2001), which provides a way of incorporat-

ing population vital rates (mortality and natality) into both harvesting (sustainable management) and

population viability analysis (conservation management) models.

Impelled by the work of Beverton and Holt (1957), fisheries science has had a cadre of quantita-

tively trained individuals able to formulate and code sophisticated models used to manage fisheries by

helping set quotas on harvesting effort and fish stock removals (Getz & Haight, 1989, Quinn & Deriso,

1999). From the 1980s onwards, quantitative population biologists have formulated Leslie matrix type

models to help set quotas for trophy hunting or other types of exploitation of vertebrate populations

(Getz & Haight, 1989), but it is only over the past 20 years that the application of Leslie matrix type

models has found wide application in conservation biology (Beverton & Holt, 1957, Heppell, 1998,

Menges, 2000, Wisdom, Mills, & Doak, 2000, Caswell, 2001, Fieberg & Ellner, 2001, Crone et al.,

2011, Merow et al., 2014b). In some cases, when traits, such as age or size are considered as continu-

ous rather than discrete variables, these models are more generally formulated as integral projections

(e.g., see Easterling, Ellner, & Dixon, 2000, Merow et al., 2014a); though they revert to matrix models

under numerical discretization schemes (Ellner & Rees, 2006, Rees, Childs, & Ellner, 2014). With a

rapidly growing need to conserve endangered species, scientists and policymarkers who have not been

trained to code their own population models for numerical simulation, face the challenge of building

best practice simulation models (Kettenring, Martinez, Starfield, & Getz, 2006) to aid them in their

species management or conservation biology work. To support these researchers and managers, soft-

ware applications platforms, such as RAMAS (e.g., see Crone et al., 2011) and VORTEX (Lacy, 1993,

2000, Brito & Da Fonseca, 2006, Lacy & Pollak, 2012), have been developed, particularly to aid pop-

ulation ecologists in using population viability analyses (PVA) (Beissinger & Westphal, 1998, Morris

& Doak, 2002). VORTEX (Lacy & Pollak, 2012) takes an agent-based approach to modeling individ-

uals and is able to include the type of information used to track lineages and pedigrees that are stored

in studbook files (cf. Marker & Fund, 2012). VORTEX is also able to track, under the assumption of

Mendelian inheritance, the fate of multiple genetic loci and assess levels of inbreeding. VORTEX runs

in a Windows operating systems environment, as does RAMAS. RAMAS, though, is a commercial

platform with multicomponent high-end products that can incorporate detailed landscape information

and geographical information systems approaches into its analyses.

Our NumerusOL app, which we refer to as Numerus PVA, provides a more gentle entry into PVA than

either VORTEX or RAMAS. Most importantly, Numerus PVA runs directly in a web-browser environ-

ment with access via the website Numerusinc.com. Further, it has sufficient flexibility to include two

sexes, a variable sex ratio, three types of density-dependent mechanisms, and runs as either a determin-

istic or stochastic simulation (demographic, environmental or both) with one to three subpopulations.

Migration of individuals among subpopulations incorporates propensity of individuals to move by age

and sex, connectivity of regions, and attractivity of regions based on some criterion such as the antic-

ipated fitness of individuals within those regions. Harvesting and stocking management options are

also included. All of these components are wrapped in an intuitive web-based Graphical User Interface

(GUI) that requires no computer programming and only an elementary understanding of discrete time

population models using life table data.
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F I G U R E 1 A flow diagram of a two-sex, age-structured, population model with density-dependent (DD) survival in the

youngest and oldest classes that depend on the population biomass B (Equation (3)) (left side), and schematic of the metapopu-

lation structure (right side) indicating regionally specific DD processes

Numerus PVA itself was constructed using the Numerus platform and the NumerusOL file conversion

technology, which is based on our earlier Nova Platform (Salter, 2013, Getz, Salter, & Sippl-Swezey,

2015). Use of Numerus PVA, however, requires no knowledge of coding nor of the Nova modeling

platform. The GUI provides data fields that can be entered online and key parameters manipulated

using sliders. The app can be run in either deterministic or stochastic modes. The deterministic mode is

most useful when evaluating various management strategies implemented in large population (generally

in the context of sustainable fisheries or forestry exploitation rates that are optimal in some sense—cf.

Getz & Haight, 1989). The stochastic mode includes demographic stochasticity (e.g., small population

size effects) and environmental stochasticity (e.g., driving variable fluctuations drawn from climatic

variable distributions). The former is critical to carrying out species extinction risk analyses, in other

words PVA (Fieberg & Ellner, 2001), while the latter permits possible climate trend information to be

accounted for in multidecadal simulations (cf. Wilmers & Getz, 2004a).

2 MODEL STRUCTURE AND SIMULATION MODES

2.1 Demography

The demographic model underlying our app has the flexibility to include one or two sexes, single or

metapopulation structure, and density-dependent (DD) effects (Figure 1). These DD effects can be

implemented separately in each metapopulation region and in the context of reducing survival rates in

the youngest male and female, oldest male and female, and maturing male age-classes. In all but the

latter, we assume that survival is affected by the aggregated biomass variable B (Figure 1) that weights

individuals by a user-specified age-sex relative value, rather than purely by the more usual population

size (i.e., numbers). This allows us to correct for the fact the when density dependence arises through

resource consumption then total biomass is more appropriate then population size for indexing the level

of competition (Getz, 2011). In contrast, maturing male DD effects depend on the total number of males

M that are ≥ age r (age at which males mature; see figure in Appendix 3, SI online) because we assume

these effects arise through contest competition or defense of territories. In essence, the model depicted

in Figure 1 is a nonlinear elaboration of a discrete-time Leslie matrix formulation (Caswell, 2001), with

details of the equations provided in Appendix 3 (SI).

The data needed to implement a Leslie matrix model of a homogeneous population are the age-

specific survival rates si (the proportion individuals that survive from age i to age i+1) and the age-

specific natality values bi (the average number of newborns per unit time produced by adults of age i;
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F I G U R E 2 Depiction of the stochastic movement (i.e., migration) and management processes used to compute exchanges

among and changes M ≤ 3 regional subpopulation levels, as generated by harvesting and stocking (which can also be interpreted

as translocations) and then migration (cf. Figure 3). The latter is computed in terms of (i) a propensity of individuals of different

age-sex classes to leave their current regional location, (ii) a matrix that represents the connectivity (ease of movement) among

regions; and (iii) an optional destination attractivity factor determined by the relative fitness of the youngest age class in region

(DD1 and DD2 in Figure 1, as influence by 𝜙 defined in Equation (3))

or young-per-female when two sexes are invoked, with the sex of each being probabilistically allocated

using the value of the sex ratio parameter—see Appendix 3 online for more details). If xi(t) is the number

of individuals at time t in a model that does not differentiate by sex, then the number of newborns at

time t+1 is (in Figure 1 we illustrate the more general sex differentiated model with variables xif and

xim, i = 0,…,n)

𝑥0(𝑡) =
𝑛∑

𝑖=1
𝑏𝑖𝑥𝑖 (𝑡) (1)

Aging is included in the model through the equations

𝑥𝑖+1(𝑡 + 1) = 𝑠𝑖𝑥𝑖(𝑡), 𝑖 = 0,… 𝑛 − 2
𝑥𝑛(𝑡 + 1) = 𝑠𝑛−1𝑥𝑛−1(𝑡) + 𝑠𝑛𝑥𝑛(𝑡)

(2)

Density dependence in the model is introduced by multiplying either or both of the density indepen-

dent survival rates s0 and sn by the factor

𝜙 = 𝑐2

𝑐2 + 𝐵2 , where𝐵 =
𝑛∑

𝑖=1
𝑤𝑖𝑥𝑖 and 𝑐> 0 is the competition constant (3)

This dependence is then generalized to be included in two sex models; and it can also be applied

to males that may be motivated to engage in male–male competition on reaching sexual maturity, as

illustrated in the figure in Appendix 3. In this case the density dependent factor is

�̂� = 𝑐2

𝑐2 +𝑀2 , where𝑀 =
𝑛∑

𝑖=𝑟
𝑥𝑖, 𝑟 is themalematurity age and 𝑐> 0 (4)

In addition, in a two-sex model, if there are no mature males during an iteration period, then births

are set to zero for that period.

2.2 Migration

To specify how individuals move among meta-population regions, a region-specific propensity-to-move

vector qi of elements qij is entered (Figure 2): in particular, the value of qij represents the proportion of

individuals of age-sex class i in region j that will move, taking into account that some may end up not
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moving after considering the relative desirability of other regions compared to their home region. In

addition a connectivity matrix P with elements prs (Figure 2) specifies the relative ease that individuals

in region r are able to move to region s, should they have the propensity to do so. Thus the movement

of individuals is determined both by this connectivity matrix and by a propensity for individuals of

different ages to move at different rates (e.g., only maturing males in search of territory may move, and

so on).

The movement (migration) module of Numerus PVA has one additional feature referred to as the

engage-relative-fitness switch, which can be turned ON or OFF. If it is OFF, the probability of individ-

uals moving from one region to another is determined solely by the vectors qi and matrix P (Figure 2).

If this switch is on then an additional relative attractiveness factor is applied for each region. These are

the region-specific values of the factors 𝜙, calculated in Equation (3) using region-specific parameters

for reducing the survival of the youngest age classes in each region (see Appendix 3, SI, for details).

2.3 Stochasticity

The model can run either deterministically or stochastically, where the latter may include either

demographic or environmental sources (Engen, Lande, Sæther, & Weimerskirch, 2005). Demographic

stochasticity arises from sampling theory (underlying vital parameters are treated probabilistically)

and hence should be included when populations are small, because its effects are proportional to the

inverse of the square root of population size (Desharnais et al., 2006). Environmental stochasticity

is likely to affect various age classes differently, depending on the source of the stochasticity (e.g.,

climatic drivers versus disease). Here we make provision for environmental stochasticity to impact

only the youngest age class, which is often the most vulnerable age class, as has been documented for

large mammalian herbivores (Gaillard, Festa-Bianchet, & Yoccoz, 1998). Environmental stochasticity

may also be important in senescing age classes (Wilmers & Getz, 2004b). Such considerations can be

included in customized versions of the model, as discussed in the Conclusion section. A deterministic

simulation requires the demographic stochasticity switch to be OFF, and the environmental stochas-

ticity slider to be set to 0. If demographic stochasticity is ON, then all survival computations of the

form sixi are replaced with BINOMIAL(xi,si) computations and birth number computations bixi are

replaced with BINOMIAL(bmax xi, bi/bmax) computations, where bi (birth rate) has the interpretation

of expected litter size and bmax (birth max) is the maximum litter size. If the environmental stochasticity

slider is > 0 then environmental stochasticity in the survival s0 of the youngest age class is included up

to a maximum level that is implement when the slider is set to 1 (see Appendix 1, SI, for more details).

The slider value can be tuned over multiple simulations with different slider values until the simulated

variance matches the desired or observed variance.

2.4 Constraints

The current version of the software is limited to 1–10 age-classes for each of 1–2 sexes in each of 1–3

metapopulation regions and running the model for a maximum of 1000 steps. Future versions of the

software will relax these constraints. The NovaScript file, underlying this NumerusOL implementation,

was constructed using the Nova modeling platform (Salter, 2013, Getz et al., 2015) and it (see SI) can

always be rapidly modified to supply the user with a version of the model that meets the user’s needs.

2.5 Event sequence

Since the order of events matters in a discrete time simulation—e.g., an individual that dies first can-

not then be harvested, and vice versa—it is necessary to pay attention to this order when formulating
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F I G U R E 3 Sequence of events used to compute the transition of the age class vector x from times t to t+1. From this we see

that density-dependent (DD#, cf. Figure 1) survivorship, when applied, takes effect prior to harvesting, stocking and migration

transition equations from one time step to the next. The order that we use to calculate the number of

individuals in age class i at time t, i.e., xi(t), that make it into age class i+1 at time t+1, depends first

on the number that die from natural causes (as determined by the survival parameter si), then on those

removed by harvesting, then on those added by stocking, and finally the numbers lost and gained through

migration (Figure 3). The implication of this is that individuals that move do not include those that are

harvested, but may include those that are stocked. Also, the density-dependent mortality depends on

the population state at the beginning of the discrete interval of time and hence does not account for

population changes from harvesting, stocking, or movement.

3 SETTING UP A MODEL RUN

At the simplest level, one can choose to run the model in deterministic mode for a single-sex homoge-

neous population with no density dependence. At its most complex, the Numerus PVA can be run in

two-sex, density-dependent, metapopulation mode, with both demographic and environmental stochas-

ticity switched on, where all parameters are metapopulation region specific. The values of parameters

can either be entered manually or by importing an appropriately configured csv file (Figure S1, SI

online). Using the manual entry approach (with or without the self-guided tutorial) the data that are

entered on the following pages, which appear sequentially:

i. Population data: number of regions; number of age classes, one or two sex, and male-maturity-age

by region in the two-sex case, density dependence options by region (young, old, or mature males

in the case of two-sex case) (Figure S2, SI online). These data are used to set up the forms for the

pages that follow, since the much of the remaining data is age-class and region specific.

ii. Core population parameters: initial numbers by age for each region, survival and birth rates by age

for each region, “birth max” by age (will only be used for models with demographic stochasticity)

for each region, and finally both female sex ratio and male maturity age by region. These data

pertain to the entries needed to implement a Leslie Matrix population projection model.

iii. Biomass and movement parameters: relative biomass of each of the age/sex classes in each region;

density-dependence parameters (youngest age class, oldest age class, males transitioning to sexual

maturity) in each region; propensity to move by age/sex class for each region; region connectivity

matrix. These data are used to implement the density dependent functions that modify survival

rates of the youngest, oldest, and maturing male age classes in each region, as well as determine

stochastic movement rates among regions.

iv. Stocking and harvesting values: age-class specific stocking and harvesting rates (numbers to be

added or removed) each time interval or on a regular schedule with adjustable frequencies; and

additional harvesting pressure that removes specified numbers of individuals, but randomly from

cohort ranges set by sliders.

v. Interactive model implementation: a page from which runs are executed once with the option to

control the following settings or switches (Figure S3, SI online): simulation length setting, save
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F I G U R E 4 Simulations of model using parameters in Table 1, female sex-ratio = 0.6 and male maturity age is 3 in all three

regions, and density-dependent survival is only in the youngest group (parameter c100), with no (blue), half (red), and maximum

(purple) levels of environmental stochasticity with demographic stochasticity OFF (A.) and ON (B.). The size of the population

is read out t = 200 (A.) and t = 100 (B.) where we note that when demographic stochasticity is OFF (A.), the model predicts

fractional numbers, while when demographic stochasiticity is ON, the model predicts whole numbers. Initial values for male and

female cohorts in all cases were: male = (10,9,8,7,6,5,4,3,4)´ (´ denotes the vector is transposed from a column to a row) and

female = (10,9,8,7,6,5,4,3,4)´)

model output switch; pseudoextinction threshold setting, density dependent engagement switches;

demographic stochasticity switch, environmental stochastic switches and levels by region, as well

as random harvesting values (number specified, by individuals chosen from random classes within

specified cohort ranges). On running the model visual output will be generated (Figure S4, SI

online) and an optional csv file generated.

4 ILLUSTRATIVE EXAMPLE

We illustrate implementation of our PVA web app, using an exemplar data set that is inspired by the

life-history and conservation predicament of the black rhino, Diceros bicornis, in southern Africa; but

has not been fitted to any particular population because parameters vary quite considerable among

populations. This species, like other rhino species, is close to extinction (it is on the IUCN’s critically

endangered list—next step, extinct in the wild), with fewer than a few thousand individuals alive at

this time. Because this species is subject to the devastating effects of intense poaching for rhino horn,

locations and numbers are kept confidential by managers of national parks and conservation areas.

Further, while some life history data on birth and survival rates are available, these rates vary from

one area to another, and often life table construction (natality and mortality rates at each age) relies

on misleading values obtained from individuals kept in zoos (e.g., longevity in zoos can be greatly

different from longevity in the wild; while calf survival depends on predation pressure). Thus we stress

that our dataset exemplar should not be regarded as applicable to any specific rhino population and

the model itself is essentially generic. The analysis that follows here is not meant to apply to any real

population, but is provided for the purpose of illustrating how conservation decisions for the species

can be evaluated using our Numerus PVA app.

4.1 Basic population parameters

The intercalf interval of mature female rhinos is approximately 3+ years (includes 1.3 years for gesta-

tion). For this reason, it is convenient to organize the population into age classes that each span three

years: i.e., the basic iteration units for t in the model will be 3-year intervals. Hence if the model is

used to project population change over T units of time, the corresponding number of years for the pro-

jection is 3T (Note: in Figures 4 and 5 the x-axis denotes units of t, while in the Figure 6 the units are
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F I G U R E 5 Screen captured simulation output from Numerus PVA using parameters in Table 1, sex ratio = 0.6, and density-

dependent survival in the youngest age group in each of three regions, where the parameter c has values c = 5 (blue), c = 10

(red) and c = 15 (purple), respectively. The cases of no migration among regions (A.) and movement of males and females in age

class 3 (i.e., 7–9 year olds) only among regions (B.) are illustrated. Initial values for male and female cohorts in all cases were:

male = (3,3,3,3,2,2,1,1,1)´ and female = (3,3,3,3,2,2,1,1,1)´

F I G U R E 6 Extinction curves obtained for data generated by Numerus PVA for no harvesting (blue) and random harvesting

(red; see text for details) of 1 male and 1 female in each time period. Data obtained from 36 simulations (i.e., 12 repeated

simulations in 3-region mode with no migration) in each case

T A B L E 1 Life table of a large mammalian herbivore

Age (class; i) Male survival Female survival Young / female Female weights* Male weights*

0–3 (calf: 1) 0.80 0.80 0 0.5 0.5

3+–6 (subadult: 2) 0.90 0.95 0.3 0.75 1

6+–9 (young adult: 3) 0.90 0.95 0.95 0.75 1

9+–12 (mature adult: 4) 0.90 0.95 0.95 0.75 1

12+–15 (mature adult: 5) 0.90 0.95 0.95 0.75 1

15+–18 (mature adult: 6) 0.90 0.95 0.95 0.75 1

18+–21 (mature adult: 7) 0.90 0.95 0.95 0.75 1

21+–24 (mature adult: 8) 0.90 0.95 0.95 0.75 1

>24 (aging adult: 9) 0.60 0.60 0.5 0.75 1

*Relative units in terms of resource consumption.

years rather then t). Recent estimates of calf, adult female, and adult male survival of rhino in an area

of Namibia regarded as relatively unproductive for rhino growth was respectively 0.793, 0.944, and

0.910 (Brodie et al., 2011). These data, rounded to the nearest 0.05, are listed in Table 1, along with

the estimate that females in this region produce 0.315 calves per female per year. The female sex ratio

used is 0.6, based on estimates reported in Law, Fike, & Lent, 2014, and the male maturity age is taken

to be 2 (age 6+–9). These data, when used in a 9-age class, female only Leslie matrix model yield a

density-independent growth rate of 6.4% per annum (see SI Appendix 2).
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4.2 Density dependence

The carrying capacity for rhino in two Zululand parks in South Africa, has been estimated at 0.4 and

1.6 rhino km−2 (Conway & Goodman, 1989), while values for this species in drier regions of southern

Africa have been estimated to be as low as < 0.1 rhino km−2 (Linklater et al., 2011). In this illustrative

example, we include the effects of density-dependence only on the survival of the young: that is DD1

and DD2 in Figure 1, which is tantamount to multiplying the density independent survival constants for

males and females in Table 1 by the function given in Equation (1). We note that setting c = 50, 100,

and 150 producing carrying capacities (i.e., equilibrium values) of around 69, 138 and 208 individuals

(Figure S6; implying reserves of corresponding sizes in square kilometers).

4.3 Stochasticity

For purposes of comparison, we run the model with the parameter values specified in Table 1, the sex

ratio at 0.6 (female biased), and c = 100 in deterministic, and environmental stochasticitiy at half max

and at full max settings (the environmental stochasticity sliders are set at 0, 0.5, and 1, respectively)

(Figure 4A). We repeated this simulation with demographic stochasticity switched ON (Figure 4B).

First we note from visual inspection of Figure 4 that variance increases with increasing levels of envi-

ronmental stochasticity and that the model predicts whole numbers when demographic stochasticity is

ON, but fractional numbers when demographic stochasticity is OFF. This is consistent with the require-

ment that demographic stochasticity be ON when population size is relatively small (tens or hundreds)

and can only be safely ignored when population sizes are close to a thousand or more, in which case

the interpretation of the state variables is density (i.e., fractional numbers are meanful) rather than size

(fractional numbers are nonsensical).

4.4 Movement

For the three components of migration—propensity to move, connectivity, and region attractivity

(Figure 2)—we allowed individuals only in the third age class to move (i.e., those aged 7–9 years,

through the propensity to move vectors: male = (0,0,1,0,0,0,0,0,0)´; female = (0,0,1,0,0,0,0,0,0)´), we

assumed all regions were equally accessible for another (i.e., the connectivity matrix was filled with 1s);

and we assumed all regions were equally attractive (i.e., the “Migration with Relative Fitness” switch

was OFF). Notice that extinction occurs in region 3 without migration (Figure 5A.), but the populations

in the three regions are somewhat equalized when migration occurs (Figure 5B.).

4.5 Poaching

We carried out an assessment of the effects of poaching by running the model with parameters used to

generate Figure 4, but with youngest age group density-dependent survival parameter set at c = 10 (i.e.,

the red trajectory in Figure 5A applies) under both no poaching (harvesting) and poaching scenarios.

We obtained 36 replicate runs for the no poaching scenario by running the model in 3-region mode 12

times under the assumption of no migration, where the red trajectory in Figure 5A is but one example.

We then reran with harvesting set to removing 1 male and 1 female in each time period drawing the

individual at random from cohorts 4 to 9 for the males and 5–9 for the females. This level of poaching

considerably increases the population’s risk of extinction from comfortably less than 10% over a 99-

year interval (simulation interval is 33 time units) (blue curve, Figure 6) to almost 90% (red curve,

Figure 6)
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5 CONCLUSION

The Numerus PVA app presented here when in its one region, one sex, no density dependence, deter-

ministic mode can be used as a class room tool to introduce students to the behavior of Leslie matrix

(discrete time, linear, age-structured) models. The app can also be used to introduce students to discrete

stochastic process models and their application to PVA risk analysis by enabling demographic stochas-

ticity (i.e., flipping its switch on the app) and incorporating density-dependence into the youngest or

oldest age class. Additionally, the app can also be used in the classroom to introduce notions of popula-

tion management through both harvesting and stocking actions, as well as for exploring migration pro-

cesses in metapopulation settings. Beyond this the Numerus PVA app can be used in research, though

the current constraints limit its application to 20 age-sex classes and 3 regions. These constraints are

easily relaxed and users can contact Numerus (at Numerusinc.com) to obtain more powerful versions

and make extensive runs on high performance computing clusters.

6 GLOSSARY

Biomass: The total mass of a population is commonly used in ecology and resource management in

lieu of population size as an alternative to the number of individuals. In Numerus PVA, biomass is

used to implement density-dependence (DD) effects.

DD effects: Demographic or environmental limits that reduce population growth as populations get

larger. Numerus PVA provides density-dependence options that affect survivorship of the youngest

age classes youngest female (DD1) and male (DD2), oldest female (DD3) and male (DD4), and mature

male (DD5) age-classes, as illustrated in the figure in Appendix 3.

Demographic stochasticity: Random fluctuations arising from the probabilistic nature of applying vital

rates to individuals at every life stage in both sexes.

Environmental stochasticity: Random, environmentally induced fluctuations in survivorship. In

Numerus PVA, environmental stochasticity is an option for survivorship of the first life stage only

(i.e., environmentally induced juvenile mortality).

Leslie matrix: A transition matrix underlying a discrete-time, linear, age-structured population dynamic

model.

Metapopulation: A set of connected subpopulations. In Numerus PVA, metapopulations are modeled

as a weighted node network with implicit movement of individuals along vertices.

Metapopulation connectivity: An underlying matrix with entries, scaled to take values on the interval

[0,1], that represent the relative ease-of-transition among different nodes in the metapopulation.

Perron root: The dominant eigenvalue of a square nonnegative matrix; the Perron root of a Leslie matrix

is the rate of population growth.

Propensity to move: In Numerus PVA, movement propensity is an age- and sex-based demographic

state specifying the likelihood of emigration to another area (independent of destination).

Pseudoextinction: The event horizon of population size, below which extinction is certain. In Numerus

PVA, pseudoextinction levels can also be treated as thresholds for interventions such as ex situ captive

breeding programs.

Regional attractivity: In Numerus PVA, once the decision to move has been made, and the connectivity

of nodes accounted for, an intrinsic variability in quality of possible destination regions remains. We

use the comparative intensity of density-dependent (DD) effects on survivorship of the youngest age

class (quantity 𝜙 in Equation (3), with c pertaining the youngest female age class) to scale this quality

so that individuals are more likely to go to regions with smaller rather than bigger DD1 effects.
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Appendix 3: Model Formulation and Equations

Two-sex deterministic age-structured framework

The following is a two-sex Leslie Matrix model expressed in terms of age-sex variables (age i,
except n is age n and older; and f and m denote female and male respectively) xif (t) and xim(t),
i = 1, . . . , n, time t, and life history survival (sif , sim) and natality (bif , bI′m) parameters, where
the female component of the model can be expressed as a matrix equation

x1f (t+ 1)
x2f (t+ 1)

...
xn−2 f (t+ 1)
xn−1 f (t+ 1)
xnf (t+ 1)


=



s0fb1f s0fb2f · · · s0fbn−2 f s0fbn−1 f s0fbnf
s1f 0 · · · 0 0 0
...

. . .
...

...
...

0 0
. . . 0 0 0

0 0 · · · sn−2 f 0 0
0 0 · · · 0 sn−1 f snf





x1f (t)
x2f (t)

...
xn−2 f (t)
xn−1 f (t)
xnf (t)


(1)

and the male component either requires doubling the dimension of the above matrix equation or
augmenting the above equations with equations

x1m(t+ 1) = s0m

n∑
i=1

bimxif (t)

xi+1m(t+ 1) = simxim(t) i = 1, . . . , n− 2 (2)

xnm(t+ 1) = sn−1mxn−1m(t) + snmxnm(t)

Under the assumption that males have no effect on the female component of the model, as long
as there are sufficient males to fertilize sexually mature females, the growth or decline rate of the
female component is determined by the eigenvalues of the matrix depicted in Equation 1. If this
matrix is primitive (nonnegative and irreducible with at least one positive element) then it is known
from the Perron-Frobenius Theorem that this matrix has a positive dominant eigenvalue, say λ1,
and corresponding eigenvector, say x1, such the population ultimately grows (λ1 > 1) or declines
(λ1 < 1) at rate λ1 and the solution vector xf (t)′ = (x1f (t), . . . , xnf (t)) (′ denotes vector transpose)
directionally aligns with x1 as t→∞.

Growing populations will ultimately be regulated through density-dependent mechanisms linked
to resources available to each individual over each period of time. Typically, age classes likely to be
most vulnerable to the effects of competition for resources are the youngest and oldest age classes,
although the effects of competition on all age classes ca can be considered. A simple approach is to
express the effects of density on age class i in terms of the ratio of an aggregated population index
Bi`(t) and age-sex-specific available resources Ri`(t). Specifically, for a set of weights wij` ≥ 0, we
define

Bi`(t) =

n∑
j=1

∑
`=f,m

wij`xj`(t), (3)

If the weights wijf and wijm are the actual or relative weights of individuals aged j then Bi(t) is a
population biomass index. The resources Ri(t) can either be external inputs or systems variables
that depend on the population via consumer-interaction processes. The density-dependent effects
on age class i can be included using functions Fi` to multiplicatively modify the values of si`; where,
for scaling constants ci` > 0,

Fi`

(
Bil
Ri`

)
=

1

1 +
(
ci`Bil
Ri`

)gi` ` = f, m, i = 0, 1, . . . , n. (4)



Getz et al. Numerus PVA, Supplementary Information, November 16, 2016 6

We note that Fi`

(
Bil
Ri`

)
∈ (0, 1] with Fi`(0) = 0 and Fi`

(
Bil
Ri`

)
→∞ as Bil

Ri`
→∞.

In the simplest two-sex, density-dependent case, we assume that an age-independent birth sex-
ratio variable ρ ∈ (0, 1] (right-hand of the interval is closed since female only populations—i.e.clonal
populations—are possible) applies to total birth parameters bi, i = 1, . . . , n, in which case we have

bif = ρbi and bim = (1− ρ)bi i = 1, . . . , n (5)

Further, if density-dependence applies only to the survival of newborns to age 1, then we have
Fi` = 0, for all ` = f, m and i = 1, . . . , n. In this case, we have one density-dependent function,,
which we denote by

F (B/K(t)) =
1

1 +
(

B
K(t)

)g where B(t) =

n∑
j=1

wjfxjf (t) + wjmxjm(t) and K = R(t)/c (6)

This function premultiplies only the parameters s0f in Equation 1 and s0m in Equation 2. (Note,
in our main text, we refer to K as the “carrying capacity” and select the units of c so that the
carrying capacity is scaled to adult male biomass equivalents per unit area).

Figure. A flow diagram of a two-sex, age-structured, population model with 5 sources of density-dependent

survival in the youngest (DD1, DD2) and oldest (DD3, DD4) classes that depend on the population biomass

B (Eq. 3), as well as in the maturing males that depending on the number of mature males M (DD5; Eq.

4). The latter DD-survival rate depends on the number of mature males in the population, while the other

DD-survival rates depend on the total biomass of the population.

Demographic stochasticity

Demographic stochasticity arises in the context of survival of individuals when we regard survival
parameters sif and sim as denoting probabilities that each individual survives rather than the
proportion of individuals in the ith age class that survive. In this case, the variables xif and xim
are regarded as random variables Xif and Xim that are determined from binomial distributions
arising from repeated Bernoulli trials of whether or not each individual survives or does not survive
with probabilities sif and sim, etc. For example, if x(t) individuals each survives the interval
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[t, t+ 1) with probability s, then the computation of the value x(t+ 1) arises from a drawing of a
variable X(t) ∼ BINOMIAL[x(t), s]. Notationally, we use the equation

x(t+ 1) = BINOMIAL[x(t), s]

to mean that we have drawn a value from the distribution BINOMIAL[x(t), s] and called this
value x(t+ 1). Using this convention, our survival equations, incorporating the density-dependent
functions given in Eqns 4, but omitting the arguments of this functions for clarity: take the form

xi+1 `(t+ 1) = BINOMIAL[xi`(t), si`Fi`] i = 1, . . . , n− 2, ` = f, m

xn `(t+ 1) = BINOMIAL[xn−1 `(t), sn−1 `Fn−1 `] + BINOMIAL[xn `(t), sn `Fn`]

(7)

It only remains now to generate equations for x1`(t + 1), ` = f, m. This requires that we first
generate the number of newborn individuals x0,i(t) to females of age i, calculate the proportion of
these that are female and male, using a sex-ratio probability-of-being-female parameter ρi ∈ (0, 1),
and then the probability that these young survive the year, where this survival may also depend on
the age i of the mothers. To allow for this level of generality, we first calculate x0,i(t), as described
below. We then calculate the total of these that may be female x0,if (t) = BINOMIAL[x0,i(t), ρi],
with the remaining x0,im(t) = x0,i(t)− x0,if (t) being males. Then, if s0,i` and F0,i` are the density
independent and dependent components respectively of the survival rates of female (` = f) and
male (` = m) young in their first year to mothers of age i, we finally obtain the equations:

x0,if (t) = BINOMIAL[x0,i(t), ρi]

x0,im(t) = x0,i(t)− x0,if (t) (8)

x1,i`(t+ 1) =
n∑
i=1

F0,i`s0,i`x0,i`(t) ` = f,m

So it remains now to discuss how to generate the equation for x0(t). We consider the simple
case where each female can have at most on young: this is the case for many large mammals,
particularly herbivores (e.g. elephants, rhino, hippo, large antelope).

Case 1: single births. Each individual female in age class i will give birth to 1 or 0 individuals with
probabilities bi ∈ (0, 1) and (1− bi). In this case, if there are xi,f (t) females at time t then

x0,i(t) = BINOMIAL[xi,f (t), bi]

Case 2: binomial with maximum number of multiple births. Each individual can have at most
bmax
i (which must be an integer), with the expected number of young being bi/b

max
i , with the

actual litter size being binomial. In this case we have xi,f (t) drawings from the distribution
BINOMIAL[bmax

i , bi/b
max
i ] to obtain

x0,i(t) = BINOMIAL[xi,f (t)bmax
i , bi/b

max
i ]

which generalizes the case above where we have bmax
i = 1.
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Environmental stochasticity

Environmental stochasticity is easy to incorporate into the model in two different ways. First, in
the functions in Eqns. 4, the resources Ri`(t) available to individuals in demographic class i` can
vary stochastically from one time period to the next. This is particularly easy to characterize if
Ri`(t) is treated purely as an input rather than a systems variable interacting with its consumers.
Second, survival probabilities themselves can be treated as stochastic variables rather than con-
stants. This can be done both in terms of large infrequent perturbations due to epidemics or other
types of environmental catastrophes. Extractions due to predation or human activities, however,
are considered elsewhere.

A particularly simple environmental variable approach to including stochasticity, which is the
one we took in developing our Nova web app, is to select a parameter γ ∈ [0, 1] such that γ =
0 corresponds to the absence of environmental stochasticity and γ = 1 maximum stochasticity.
We then flip a coin and decide if it is heads we select a female survival value at random on

[s0f , s0f +γ(1− s0f )] to obtain ŝ0f . We now compute δ =
ŝ0f−s0f
1−s0f and apply the same proportional

increase to male survival value to obtain ŝ0m = s0m+δ(1−s0m). On the other hand, if the coin is tails

we then select a female survival value at random on [s0f − γs0f , s0f ]. We now compute δ =
s0f−ŝ0f
s0f

and apply the same proportional decrease to male survival value to obtain ŝ0m = s0m− δs0m. Note
that this approach implies that expected survival is not equal to the nominal survival s0 as the
stochasticity increases, unless s0 = 0.5: if s0 > 0.5 then the expected survival will be less than the
nominal survival (since s0 < 1− s0) and vice versa if s0 < 0.5.

Environmental variation through dependency of resources Ri`(t) can be incorporated using a
time-series model. In particular, a relatively simple model that applies to a collection of age-sex-
classes denote by I (e.g. all adults), with BI(t) defined in terms of a weighted sum of individuals
over the index set I, FI (BI`, RI`) a function of the form defined in Eqn 4, and parameters cI > 0,
0 < dI < 1 and λI :

RI(t+ 1) =
λIRI(t)e

−dIBIFI(BI`(t),RI`(t))

1 + cIRI(t)
(9)

where the parameter cI can be treated as a random variable (i.e. this essentially treats the carrying
capacity of RI as a random variable) belonging to an appropriate distribution defined on (0,∞);
for example, a lognormal distribution:

cI ∼ LOGNORMAL[µI , σI ]

Whatever distribution is used, if cI and BI are small then the resource grows at a per capita rate
λI , while large cI or intermediate BI reduce this growth rate (note: if gI > 1, which it invariably
is as discussed in Getz 1996, then very large BI leads to very low survival and a collapse in the
population, which to some extent mitigates against resource devastation).

In the case of simply treating the parameter KI in Equation 6 as a random variable

KI ∼ LOGNORMAL[µI , σI ]

if the mean and standard deviation of the carry-capacity of input values K̄I and SI respectively,
then it is known that the values of µI and σI in the LOGNORMAL distribution used to generate
values KI(t) for each interval t are

µI = 2 ln K̄I −
1

2
ln
(
K̄2
I + S2

I

)
σ2I = −2 ln K̄I + ln

(
K̄2
I + S2

I

)
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Metapopulations and migration

If the population has a metapopulation structure, then the simplest approach to capturing this
structure is to treat the subpopulations in each of h areas as homogeneous entities linked by
movements of individuals among subpopulations. Let the jth of these subpopulations be represented
by a vector (note we are using ′ to denote transpose that allows as to list vectors in row form rather
then column form)(

xf,j
′,x′m,j

)
= (x1f,j , . . . , xnf,j , x1m,j , . . . , xnm,j)

′, j = 1, . . . , h (10)

Movement of individuals among areas can then be scheduled after demographic (births, survival
and aging), harvesting and stocking rates have been accounted for in each subpopulation. This will
be handled using a Markov transition matrix approach in which each individual of age-sex class (i`)
has a current integer state value η and a next integer state value ζ, where η, ζ = 1, . . . , h designate
the subpopulations of origination (η) and destination (ζ).

For each age-sex class (i`), we create a stochastic movement transition matrix M (i`) with el-

ements m
(i`)
ηζ by definition satisfying

∑h
ζ=1m

(i`)
ηζ = 1. Thus, if there are xi`,η(t) = X individuals

of age-sex class (i`) in subpopulation η then the distribution of these individuals in the different

subpopulations at time t+ 1 is given by MULTINOMIAL[X;m
(i`)
η1 , . . . ,m

(i`)
ηh ]. All the remains now

is to compute the values in the matrix M (i`) over the range i = 1, ..., n and ` = m, f. In many
case the matrices may not vary across various subranges, such as all adult females, and so on.
Additionally, in many case, only certain age-sex classes may move, such as males at first age for
maturity; in which case all the elements of the remaining matrices are 0.

Consider an overall movement processes that is a concatenation of the following three compo-
nents:

1. an age-sex class movement propensity qi` that is independent of location state η

2. a connectivity matrix C of elements 0 ≤ cηζ ≤ 1 that determines how relatively easy it is
for individuals to move between any two locations η and ζ. Thus for example, if c32 = 0
then individuals cannot move between locations 3 and 2, though c23 > 0 would imply that
they can still move between locations 2 and 3. In the most general case, C could depend on
age-sex class, since individuals in different classes may have different movement capabilities.
But we will not consider this level of generality here.

3. a subpopulation attractivity vector α, with elements αζ , that is dependent only on the relative
attractivity of the different subpopulations (such as the values of the youngest age-class
density-dependent factors F0,ζ(t) for the subpopulations, should they exist).

Once all these values have been entered or determined for each class (i`) of individuals that will
move, then we can calculate the movement matrix entries as

m
(i`)
ηζ =

qi`
n−1cηζαζ

(1− qi`)cηηαη + qi`
n−1

∑h
ζ=1, ζ 6=η cηζαζ

ζ = 1, . . . , h, ζ 6= η

m(i`)
ηη =

(1− qi`)cηηαη
(1− qi`)cηηαη + qi`

n−1
∑h

ζ=1, ζ 6=η cηζαζ
(11)

noting that, in effect, the ηth entry of the computation MULTINOMIAL[X;m
(i`)
η1 , . . . ,m

(i`)
ηh ] rep-

resents those individuals who either did not leave subpopulation η in the first place, or went on a
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walk-about and then returned back to their originating population after sampling the attractivity
of the other populations: either interpretation holds.

Notes on Code Implementation. The vectors
(
xf,j

′,x′m,j

)
, j = 1, . . . , h, (each of dimension 2n that

are used in the movement algorithm (cf. Equation 10 above) represent the numbers in each of the
2n (i`)-age-sex classes for each of the j = 1, ..., h subpopulations after computations at the lower
level have been carried out with respect to survival, extraction (harvesting), and stocking. Before
these vectors are then passed back for demographic updating (calculation of the age transitions

xi+1 `(t+1) in each of the h subpopulations), we calculate movement using the valuesm
(i`)
ηζ computed

in equations above in the 2n× h computations

MULTINOMIAL[xi `,j(t);m
(i`)
η1 , . . . ,m

(i`)
ηh ] i = 1, ..., n, ` = m, f, j = 1, ..., h

Extraction and exploitation

Unless predators are explicitly identified, survival estimates from life tables usually implicitly in-
clude losses to predation at static background rates. If predators need to be explicitly included
as interacting dynamical with the population of interest, which will be the case if the population
is the primary food source for a population of predators, then such descriptions can be included.
The details, however, will differ depending on the type of prey-predator interaction considered. In
a number of conservation biology problems, interest exists in the fate of populations subject to ex-
traction by humans, either because of legal harvesting or because of illegal pouching (e.g. rhinos).
In each case, the state of the population after demography has been accounted for over each time
interval, additional individuals can be removed using appropriate deterministic or stochastic rules
to simulated the effects of exploitation by humans (as discussed in the main text).

Pseudo-extinction statistics

Populations are typically considered to be extinct in the wild, once the last remaining individuals
in a natural area have been removed to sanctuaries for protection and breeding programs, where
the latter may later be used to restock natural areas under so-called ‘reintroduction programs’.
Population levels at which such interventions occur are called pseudo-extinction levels. A pseudo
extinction criterion is thus a combination of adult female and male levels (treated separately or
combined) at which the breeding population drops below a critical level (for combined: < Xcc) or
the number of mature females or males drops below critical levels on a specified interval of time,
say [0, T ].




