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Adaptive Traction Control

Hyeongcheol Lee
Masayoshi Tomizuka

California Partners for Advanced Transit and Highways (PATH)
Department of Mechanical Engineering
University of California, Berkeley

September 1995

Abstract

This report presents two different control algorithms for adaptive vehicle
traction control, which includes (1) wheel slip control, (2) optimal time control,
(3) anti-spin acceleration and anti-skid control, and (4) longitudinal platoon
control. The two control algorithms are respectively based on adaptive fuzzy
logic control and sliding mode control with on-line road condition estimation.
The motivation for investigating adaptive techniques arises from the unknown
time-varying nature of the tire/road surface condition which governs vehicle
traction. Simulations of the two control methods are conducted using a complex
nonlinear vehicle model as well as a simple linear vehicle model. The controllers
both result in improved performance, regardless of vehicle operating conditions,
compared with standard fuzzy logic control and standard sliding mode control
which do not have adaptive algorithms.

Keywords: Traction Control, Anti-lock Braking System, Adaptive Fuzzy Control,
Sliding Mode Control.



Executive Summary

This report summarizes the final year research results of the PATH project
(MOU 35) : Passive and Active Traction Control. Previous research on this topic
has been performed by some conventional control approaches, such as nonlinear
control methods based on sliding mode control, or direct fuzzy/knowledge
based approaches. In most previous research, road condition change is not
considered; or, even if it is considered, the controller has high gain characteristics
for dealing with the unknown time-varying interaction between the tire and road
surface.

This report is concerned with the combined use of adaptive and robust control
techniques for achieving robust and smooth traction control. In particular,
vehicle traction control using adaptive fuzzy logic control and adaptive sliding
mode control is studied. These two control methods have adaptive algorithms to
deal with the unknown time-varying tire/road surface condition in different
ways. For the former, the fuzzy rule base (which includes information of
tire/road surface condition) will be adjusted; and for the latter, a parameter
(which represents tire/road surface condition in an assumed mathematical tire
model) will be estimated.

The standard fuzzy logic control method and sliding mode control method are
also described in order to compare their performance with that of the proposed
controllers. Simulations are conducted using a simple vehicle model to illustrate
the basic ideas lying behind these suggested adaptive control schemes.
Simulations are also conducted using a complex vehicle model which describes
the dynamic behavior of the vehicle as realistically as possible.

The simulation results show that the proposed controllers including adaptive
algorithms can be quickly adjusted when driving conditions (e.g. road condition)
are changed. By this property, the proposed controllers give more stable and
robust performance on vehicle traction control than conventional control
algorithms.
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1. Introduction

Vehicle traction control is control of tire traction forces both in the
longitudinal and lateral directions to obtain desired vehicle motion. The tire
traction forces come from the tire/road interaction and they are decomposed in
two components: one in the longitudinal direction and the other in the lateral
direction. The tire traction force in the lateral direction depends on the tire slip
angle and can be controlled by the steering angle (Peng and Tomizuka 1990). The
traction force in the longitudinal direction, which will be considered in this
report, depends on the adhesion coefficient between the tire and the road
surface, which in turn depends on the wheel slip as well as the tire/road surface
condition. The wheel slip is a nonlinear function of the wheel velocity and the
vehicle velocity. Due to the dependency of the longitudinal traction force on the
wheel slip, vehicle traction control can be achieved by wheel slip control.

Controlling the longitudinal traction can achieve various control objectives,
such as

(i) regulating the wheel slip at any desired value in order to produce a desired
amount of longitudinal traction force (slip control),

(ii) maintaining the fastest stable acceleration and deceleration (minimum time
control),

(iiijobtaining anti-spin acceleration and anti-skid deceleration, and

(ivrontrolling vehicles longitudinally in a platoon following the vehicles in front
(longitudinal platoon control).

In general there are two major difficulties involved in the design of a practical
traction control algorithm:
(i) the system dynamics is highly nonlinear with time-varying parameters and
uncertainties
(i) the tire/road surface condition, on which the performance strongly depends,
is time varying and not precisely known during driving.
Because of these adverse features of the system, even though several automobile
companies have developed and installed a version of traction control, i.e. Anti-
lock Braking Systems (ABS), their design is often experimental rather than
analytical, and the tuning and calibration of ABS's rely essentially on trial error
(Leiber and Czinczel 1983, Leiber et al. 1982, and Yoneda et al. 1983).

Recently, some analytical approaches to ABS controller design have been
achieved. Conventional control approaches using nonlinear control methods
based on sliding mode control (Tan 1988, Tan and Tomizuka 1989, Tan and
Tomizuka 1990, Fling and Fenton 1981) and direct fuzzy/knowledge based
approaches (Yoneda et al. 1983, Tabo et al. 1985, Gunter and Ouwerkerk 1972,
and Layne et al. 1992) have been successfully implemented. Analytical approach
to the all four traction control objectives has been studied by Kachroo and
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Tomizuka (Kachroo and Tomizuka 1994, Kachroo 1993) using sliding mode
control. In most previous research, road condition change is not considered; or,
even if it is considered (e.g. Kachroo's), the controller has high gain
characteristics for dealing with the unknown time-varying interaction between
the tire and road surface. The results look successful, but chattering due to high
gain control still remain as a problem.

This report is concerned with the combined use of adaptive and robust control
techniques for achieving robust and smooth traction control. In particular,
vehicle traction control for all control objectives using adaptive fuzzy logic
control and sliding mode control with on-line road condition estimation is
studied. These two control methods have adaptive algorithms to deal with the
unknown time-varying tire/road surface condition in different ways. For the
former, the fuzzy rule base (which includes information of tire/road surface
condition) will be adjusted; and for the latter, a parameter (which represents
tire/road surface condition in an assumed mathematical tire mode) will be
estimated.

The standard fuzzy logic control method and sliding mode control method are
also described in order to compare their performance with that of the proposed
controllers. Simulations are conducted using a simple vehicle model to illustrate
the basic ideas lying behind these suggested adaptive control schemes.
Simulations are also conducted using a complex vehicle model which describes
the dynamic behavior of the vehicle as realistically as possible.

2. Simple vehicle model

A simple vehicle model appropriate for both vehicle acceleration and deceleration is described in this
section (figure 2.1). This model will be used for analysis and controller design as well as simulation. The
simple vehicle model is obtained by assuming that

(i) the dynamics of the left and right side of the vehicle are identical (bicycle mode!),
(i) vehicle massis equally distributed among each wheel, and
(iii) the engine and suspension dynamics are ignored.

Therefore, this model contains front one-wheel rotational dynamics and linear vehicle dynamics, as well
as the interaction between them. Rotational dynamics of the rear wheel is not considered since it is trivial
during acceleration and identical to that of the front wheel during deceleration (for the front wheel driven
model). The model identifies wheel angular velocity and vehicle velocity as state variables and wheel
torque exerted from the engine and the brake as the input variable.
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M, : Vehicle mass M: Vehicle mass exerted at the front wheel

T« = T.— T,: Net torque T, : Shaft torque from the engine
T, : Brake torque F,: Normal force
F+ F,: Traction force of the front and rear wheel

F,: Aerodynamic frictionforce  F,;: Wheel viscose friction
Figure 2.1 Wheel model and car model

2.1 system dynamics

The dynamic eguations for the angular motion of the front wheel and the longitudina motion of the
vehicleare

1,0, =T, -R,(F., +F,) 21)
My, =2(F, +F. )-F=n,F,, ~F, 22)

w X f
where @, is the front wheel angular velocity, V, is the vehicle longitudinal velocity, J,,is the moment of
inertia of the front wheel, and N, is the number of driving wheels (=2) or braking wheels (=4).

When a net torque (7,,) is applied to a pneumatic tire, traction force will be developed at the tire-
ground contact patch. At the same time, the tire tread in front of and within the contact patch is subject to
compression or tension depending on whether the vehicle is in acceleration or deceleration. Consequently,
the distance the tire travels when it is subject to a driving torque (braking torque) will be less (greater) than
when it is free rolling. This phenomenon is usualy referred to as the deformation dlip or wheel slip ,A
(Wong 1978). The wheel dlip of adriving wheel during acceleration and deceleration is defined as

A= (Rwoow - vv)/ Rw, when R,®,, >V, (Acceleration)

A=(R,w, -v,)/v, when R @, <V, (Deceleration) (2.3)
The front tire traction force is given by

F., =pQ)F. (24)

where the adhesion coefficient, u()\) , depends on the road condition as well as the value of the wheel dlip.

For various road conditions, the L — A curves have different peak values and slopes, as shown in figure
2.2.
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1.0
Dry Asphalt

Wet Asphalt

Unpacked Snow

Adhpion Loefficient ey Road

1.0

Slip Ratio

Figure 2.2 L — A curvesfor different road conditions

The dynamic equations of the whole system can be written in state variable form by defining convenient
state variables. Defining the state variables as

VV
x, = R X, =W, (2.5
we can rewrite equations (2.1) and (2.2) as
X ==f(x)+bu@) (2.6)
X, ==f, ()= b,u(\) + b, T 2.7)

where

A= (x2 - xl)/ x, (for X, > X, acceleration),

A=(x, =x,)/x, (for X, <X, deceleration),

ﬂ(xl) = E/ / (Mva ' fZ (x2 ): FWRW / ']w’

b =n,F./(MR,). b,=FR,/J,, b,=1/J,.

The control input is the applied torque at the wheels, which is equal to the difference between the shaft
torgque from the engine and the braking torque.

2. 2 Whed dlip dynamic equation

Wheel dip is chosen as the controlled variable for the traction control algorithm because of its strong
influence on the traction force between the tire and the road. By controlling the wheel dlip, we can control
the traction force in order to obtain a desired output of the system. In order to control the wheel dlip, it is
convenient to have dynamic eguations in terms of the wheel dlip.

By differentiating the whee! dip (A = (x2 - xl)/ X, ) with respect to time, we obtain the wheel slip
dynamic equation during acceleration.



j=Ih0x  OA0X
ox, ot 0x, ot

:xi[f1 YRS ((EP SRR TR (EONR (28)

Equation (2.8) is highly nonlinear and involves uncertainties in its parameters. Using the same method as
that of the acceleration case, we obtain the wheel dip dynamic equation during deceleration

(A= (x2 —xl)/ X))

—_ 1 —_ -
_x_l[(1+)\)f] 1, {b2 +(1+)\)b]}p +b3T] (29)

3. Design and application of controllers
(for the ssmple vehicle model)

The system dynamics are highly nonlinear and time varying because of the dependency of the wheel slip
on the road conditions. This motivates the use of sliding mode control as well as fuzzy logic control. In this
section, we present the design of these controllers and comparison of the two controllers based on
simulations.

3.1 Problem formulation

System equation :
The equations derived in the previous chapter, equations (2.6), (2.7), (2.9), and (2.11) can be expressed
as
Xy :_fl(x1)+b1“(x3) (3.1)
X, ==f, (xz)_b2“(x3)+ b, T (3.2
Xy = (00 x )= £y Ge G ) + £ ()T (33)

where X, isthe wheel dlip.
Control objectives (Slip contral) :

Find a control law for the input torque, 7', such that the tracking error, x, (t)— X3, (t) goes to zero,
while all the state variables remain bounded.

I mportant physical properties:
We should note the following two points related to the system equation.

(i) The system eguations are nonlinear and involves uncertainties. Nonlinearities include the defining
equation of the wheel dlip, the L — A relationship, multiple terms of states and the whee! dlip, and the

functions fl(xl), 1 (x2 ) and f3(xl, xz).
(i) fl(xl) and |,l(x3 ) which express the wind drag and the friction coefficient between the tire and road

surface, respectively, are unknown and time varying functions during driving. Since fl(xl) does not



significantly affect system performance, we will focus on how to deal with the unknown function,
u(x3 ) inthis report.
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3.2 Controller description

Because of the unknown functions in the state equation, we will consider the following two control
methods which include adaptive algorithms.

(i) Sliding mode control with on-line road condition estimation
(it) Adaptive fuzzy logic control

3.2.1 Sliding mode contr ol with on-line road condition estimation
3.2.1.1 Sliding mode controller

Consider an Nth-order nonlinear system of the canonical form:

x™ = f(x)+bu, y=x (3.4)

T
wherethe scalar X isthe output of interest, x = [xxD]]Dx ("_”] isthe state vector, f(x) isanonlinear

function of the state which includes uncertainties, the control gain b is known and includes negligible
uncertainties, and U is the control input. This equation has a general form, but, in fact, it is the same as
equation (3.3) when N =1. The control objective is to make the output track a desired time-varying

trjectory X, = [xd X, ,D]]led(”_“]T Let

— — . (n-1) T
e=x—-x, =|e ek (3.5)

be the tracking error vector. Furthermore, let us define a time-varying surface S (t) in the state-space by

the scalar equation s(x; t) =0, where

n—1)
s(x;t)Z % +)\ﬁ e

= /\Te (3.6)

and AT = ()\(”_“, (n— DA D]]IP\) A is astrictly positive constant. Then, the problem of tracking

X = X, isequivalent to that of remaining on the surface S(t) forall > 0. Thus, the problem of tracking

the N-dimensional vector X ; can be reduced to that of keeping the scalar quantity S at zero. This means

that we have in effect replaced an Nth-order tracking problem by a first-order stabilization problem. This
simplified first-order problem of keeping the scalar S at zero can now be achieved by choosing the control

law U such that outside of .S (t)

or

§<n Dvgn(s) (3.7)

where N is a strictly positive constant. This equation states that the squared distance to the surface, as
measured by S?, decreases along al system state trgjectories. Thus, it constrains trajectories to point
towards the surface S (t) and, once the state is on the surface, it remains on the surface. Because of this,
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the inequality given by equation (3.7) is called the sliding condition. In fact, starting from any initial
condition, the state trajectory reaches the surface S (t) in a finite time smaller than |S(t = O] /r| , and

then slides along the surface towards X, exponentially, with atime-constant equal to 1/)\ . Furthermore, as

will be shown, (3.7) also implies that some disturbances or dynamic uncertainties can be tolerated while
keeping the surface on an invariant set.

To abtain the control law, let us differentiate the surface (3.6):
s(x;t)=N"e
=N,"e+ f+bu—x," (3.8)

where A" = (O,A("_l),[ﬂ][(n - 1))\) The dynamics f(x) (possibly nonlinear or time-varying) is not

exactly known, but estimated as a nominal function f (X) We assume that the estimation error on f (X)
is bounded by some known function F' = F’ (x):

|f—f|sF (3.9)

Thus, if we chooseinput U as
Ir -
u:E —f+xd(") —/\aTe—k B‘gn(s)] (3.10)

where k = k(x)=F + 1, then the liding condition (3.7) may be satisfied.

In order to reduce the chattering effect, which results from using the sgn @ function in the control law,
a saturation function will be used in this report (Slotine and Li 1990).

When the system equation is not in the canonical form (i.e., it does not satisfy the matching condition
defined as the nonlinearity and control input on same channel), a different approach is needed. In the case
of non canonical form, we propose a method using multiple sliding surfaces instead of a single surface.

3.2.1.2 On-line parameter estimation for detecting road condition

In the vehicle traction control problem, the estimation error on f° (x) mainly depends on road conditions
and can be very large when road conditions change widely (e.g. abrupt change from dry asphalt to icy
road). If the magnitude of the estimation error on f’ (x) is too large, even robust controllers such as the
sliding mode controller fail to show an acceptable level of performance. They may show instability or
results in too conservative control deteriorating performance. To deal with such a problem in vehicle
traction control, we need to estimate the road condition during driving. We will develop an on-line road

condition estimation scheme to improve the performance of the dsliding mode controller. This estimated
road condition will be used to adjust a parameter in the diding mode control.

Simulation and experiment results strongly depend on the tire model to be used. In this research, we use
the Bakker-Pacegjka curve fitting model obtained based on the test data of a YOKOHAMA P205/60R
1487H steel-belt radial tire (Appendix E, Peng 1992). The set of curvesin figure 3.1 represent fits based on
tests from this tire as function of the slip ratio and the normal force ( FZ = 2000N, 1500N, and 1000N).
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Figure 3.1 Longitudinal traction force as function
of the dlip ratio and the normal force
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This tire model can be expressed by the relationship between traction force, tire dip, vertical force
exerted at the tire, and the road condition: i.e.

F._=rclm ()\,FZ) (3.11)

where I'C denotes the road condition and takes valuesin the interval [0,1] depending on the road condition.
Smaller values of I'C correspond to more slippery road conditions. It should be noted that the peak slip
value of this tire model is assumed to be fixed for the different road conditions (at 0.054 for acceleration
and at -0.11 for deceleration). It is, however, an assumption not generally accepted as appropriate (Leiber
and Czinczel 1983, Leiber et al. 1982, Wong 1978). Therefore, it isimportant to keep this restriction of the
tire model in mind during designing the controller.

If we assume that the sum of the vertical loads exerted at each tire is equal to the static vehicle weight,

we can consider normal force to be constant. Noting equation (2.2), the equation that describes longitudinal
traction can be expressed as

u(x3)= a,lf, (x3) (312
_ Sl F)
)_T

z

where x; = A, a, =rc,and f, (x3 . The parameter @ is difficult to directly measure
and must be estimated.
Problem formulation

Substituting (3.12) into (3.2), we have
X, :_fZ(XZ)_atft(x3)+b3T (313

Defining y(t) as

W()=—% = fo(x,) + 6T (3.14)

and assuming that we can measure angular acceleration (X,) and torque exerted at the wheel shaft (T) and

that f, (x2 ) can be treated as constant (the variability of f, (x2 ) is very small), we can define y(t) to
be the "output" of the system. Then, (3.13) can be expressed in the form:

W(t)=a,f. () (3.15)

Note that both y(t) and ft(t) have been assumed to be known from the measurements of the system
signals. Thus, the only unknown quantity in (3.15) is g . Our objective is to determine an adaptation law
for estimating the parameter g , which depends on the road condition.

While the simplest approach for estimating 8 may appear to be dividing y(t) by ft(t) it is not the
best approach because y(t) defined by equation (3.14) and f,(t) can not be accurate. Therefore, we use

aleast squares method. In off-line estimation, one collects the data of y(t) and f, (t) for aperiod of time,
and compute the least square estimate. In on-line recursive estimation, one solves the equation recursively,
implying that the estimated value é\ is updated once a new set of data y(t) and f, (t) becomes available.
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Since the system has the following two properties,
(i) parameter g isatime-varying parameter during driving due to time-varying road conditions and

(i) measurements of y(t) and ﬁ(t) may be contaminated by noise,

we use a recursive least-squares scheme with a forgetting factor for estimation é{ .This method has the

capability of estimating time-varying parameter, and it is known to have good robustness with respect to
noise and disturbance.

Least-squares estimation with exponential bounded-gain forgetting factor

The parameter estimate is generated by minimizing the integral prediction error with the exponential
forgetting factor

J= [Lew[f o0y Jp@)-d. (). €Y (3.16)

with respect to d[ (t) where p(t) 20 is the time-varying forgetting factor. Note that the exponential

term in the integral represents the weighting for the data. It discounts the influence of the past data in the
estimation of the current parameter. This property is very useful in dealing with time-varying parameter.

The least squares estimate, 4, (¢), satisfies

H; exl’[f P ) ]/f () e, (1)= _[(: exp[f p(r)flr]f, @)y () (317)
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Let

P(t) = got exp[— f p(r)?ir]fr2 (T )dT 5—1 (3.18)

To achieve computational efficiency, it is desirable to compute P(t) recursively, instead of evaluating
theintegral at every timeinstant. This amounts to replacing the above equation by the differential equation

“OF-00r O+ 16 19

Differentiating (3.17) and using (3.18) and (3.19), we find that the parameter updating and gain updating
equations given by

a, ==P@)f,(t)e (3.20)
PE)=p@)PE)- £, () P) (3.21)

with P(t) being called the estimation gain. Since the magnitude of the gain P(t) is an indicator of the

excitation level of f, (t) , it isreasonable to correlate the forgetting factor variation with |P(t] . A specific
technique for achieving this purpose is to choose

0
p(t)= p |P| (3.22)

with P, and k0 being positive constants representing the maximum forgetting rate and pre-specified bound
for gain matrix magnitude, respectively. The forgetting factor variation is tuned so that data forgetting is
activated when f,(t) is persistently excited, and suspended when f,(t) is not. This means that the norm
of the gain matrix has an upper bound, specified by the constant ko, regardless of the persistence of
excitation.

The estimation scheme developed here will be later introduced in the sliding mode controller (section
3.2.1.1) developed for the vehicle slip control in Section 3.3.1.1.

It is aso noted that the least square scheme used in this work tends to introduce a bias error in the

presence of measurement noise. Because the sliding control law is robust over a certain parameter range,
such an error is assumed not to be critical.
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3.2.2 Stable direct adaptive fuzzy logic controller (SDAFLC)
3.2.2.1 Description of fuzzy logic systems

We see in the conventional fuzzy logic literature that there are many different interpretations for the
fuzzy IF-THEN rules which result in different mappings of the fuzzy inference engine (Lee 1990a , Lee
1990b, Pedrycz 1989). Also, we see that we have different types of fuzzifiers and defuzzifiers. Many
combinations of these fuzzy inference engines, fuzzifiers, and defuzzifiers may constitute useful fuzzy
logic systems. But we should consider computational efficiency and easiness for adaptation since we deal
with on-line adaptive control problem. So, we may have to select a simpler fuzzy logic system which is
linear in its adjustable parameters. As a result, we will consider a fuzzy logic system which is a
combination of the product-inference rule, singleton fuzzifier, center average defuzzifier, and Gaussian
membership function. The detailed functional forms of this fuzzy logic system is derived next.

Figure 3.2 shows the basic configuration of the standard fuzzy logic system considered in this report.
The fuzzy logic system performs amapping from X O R" to U L R.

Fuzzy Rule Base

Fuzzifier Defuzzifier
N u butR

xOXOR"

Fuzzy Inference Engine

Fuzzy sets in X Fuzzy setsin U

Figure 3.2 Basic configuration of fuzzy logic system
Fuzzy rule base

Fuzzy rule base consists of a collection of fuzzy IF-THEN rules:
RY:IF x, is F and (Mand x, is F,, Then u, is G' (3.23)
where x=(xl,D]]Dxn)T UX and u, UR are the input and output of the fuzzy logic system,

respectively, /' and G' are labds of fuzzy sets in X and U, respectively, and / =12 [II[IM . Each

fuzzy IF-THEN rule defines a fuzzy implication Fll x [x Fnl -~ G', whichis afuzzy set defined in

the product space X X R. Based on generalizations of implications in multivalue logic, many fuzzy
implication rules have been proposed in the fuzzy logic literature. Here we will use the Product-operation
rule of fuzzy implication:

M FxIE G (X’ug) =H Fil & F (X) m G (Llc) (3-24)

where [, (x) is defined by

uF]’xﬂ]EF,f (X) = “F]I (xl ):l:m]]:ll’ll,;l (xn) (325)
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Here the symbol "|_" denotes the t-norm (Lee 1990b), which corresponds to the conjunction "and" in
(3.23). Inthis research, the algebraic product is used as t-norm

ullv=uv (3.26)
Fuzzy inference engine

The fuzzy inference engine performs a mapping from fuzzy setsin X to fuzzy setsin R based upon the
fuzzy IF-THEN rules in the fuzzy rule base and the compositional rule of inference. Let 4 be an arbitrary

fuzzy set in X; then, each RO of the fuzzy rule base determines a fuzzy set, 4 o RO , in R based on
the following sup-star compositional rule of inference:

N0 (“ ) = SIDJ)I(D[H 4, (x)Ju ——— (X, u, )] (3.27)

where L_ isthe t-norm, and [ G (x,uc) is determined by the fuzzy implication rules. If we use

F [ Fy -
the product operation rule of fuzzy implication (3.24) and choose L to be an algebraic product (3.26), then
the inference is called product inference. Using product inference, (3.27) becomes

M, 0)= S‘;)I()[U 2 COR e )T (o, 1 o (e )] (3.28)

Fuzzfier

The fuzzifier maps acrisp point x = (xl,EI]IDx”)T UX intoafuzzy set 4, in E. Here we assume that
A_ isafuzzy singleton with support X; i.e, M, (x')ZI for X" =X and { , (X'): 0 for X' #X.
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Defuzzfier

The defuzzifier maps fuzzy sets in R to a crisp point in R. There are several possible choices of this
mapping, and the Center-average defuzzfier is used in this report. Namely,

u, = gnc’ @ 4 R0 (ﬂcl ))
ﬁ @AXoR(I) (u‘/))

where UC' isthe point in R at which M. (uc) achieves its maximum value, and R0 (uc) is given by

(3.28).

(3.29)

Lemma 1: The fuzzy logic system with center-average defuzzifier (3.29), product inference (3.28), and
singleton fuzzfier are of the following form:

> 17"’[ %juﬂ/ (xi)g
W)= B
Za_ll He (xf)g

where UE' isthe point at which U , (uL) achieves its maximum value, and we assume that | , (ﬂcl ): L.

(3.30)

Proof: If we use the singleton fuzzifier, we have [ , (x')= lforX'=Xand 4, (x'): 0 for al other

x' X (X istheinput crisp point to the fuzzy logic controller) ; therefore, the "sup” in (3.28) is achieved
at X' =x, and (3.28) can be simplified to

H o) (L_‘vl): |_| M, () (3.31)
i=1

Substituting (3.31) into (3.29), we obtain (3.30). Q.E.D.

If wefix the U o (xl. ) 'sand view the UE' 's as adjustable parameters, then (3.30) can be written as
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M
)
u, (X|@): Zuc &' (x)
=1
=0"=(x) (3.32)
where ©= (ﬁcl,Dﬂwa)T is a parameter vector which is the collection of the points at which

uG,(uC)'s achieves its maximum value, M is the number of rules in the rule base,

E(x) = (E ! (X)D]]IE M (x))T ,and &' (x) 's are the fuzzy basis functions (FBF's, Wang and Mendel 1992)
defined by

My, (x)
> 1 ()

Clearly, equation (3.32) is equivalent to equation (3.30) assuming that M (xi)'s are given,

(3.33)

§'(x)==3

i.e.,uF, (xi) will not change during the adaptation (training) procedure. Our first choice for the

membership function is the following Gaussian function:

uF, (x) a, expE M (3.34)

0 o,

where a', Xi', and 0,' are adjustable parameters.

Lemma 2: The fuzzy logic systems (3.30) with Gaussian membership function (3.34) are of the following
form:

v U U XIDZ
IZ a'la exp%—L%%

u, (x©)= (3.35)

w O, 0o, —='0
Za'la expéL Gll E%

—

~j

=1

Proof: Just substitute equation (3.34) into (3.30)

3.2.2.2 Basic ideas of constructing SDAFLC
When the fuzzy logic system described above is used as a controller, they are caled a fuzzy logic

controller. Fuzzy logic controllers are supposed to work in situations where there is a large uncertainty or
unknown variation in plant parameters and structures. Generally, the basic objective of adaptive control is
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to maintain consistent performance of a system in the presence of these uncertainties. Therefore, advanced
fuzzy control should be adaptive.

In the conventional adaptive control literature, adaptive controllers are classified into two categories
(Narendra and Parthasarathy 1990, Narendra and Annaswamy 1989): direct and indirect adaptive
controllers. Formally, we have the following definition for the adaptive fuzzy logic controllers:

(i) If an adaptive fuzzy controller uses adaptive fuzzy logic systems, which are equipped with a adaptation
algorithm, as controllers, it is called a direct adaptive fuzzy logic controller. A direct adaptive fuzzy
logic controller can incorporate fuzzy control rules directly into itself.

(i) If an adaptive fuzzy controller uses adaptive fuzzy logic systems as a model of the plant, it is called an
indirect adaptive fuzzy logic controller. An indirect adaptive fuzzy logic controller can incorporate
fuzzy descriptions of the plant (in terms of fuzzy IF-THEN rules) directly into itself.

In this report, we will consider a direct adaptive fuzzy logic controller which can be successfully derived
with proven stability (Wang 1993).

Consider an nth-order nonlinear system of the canonical form
x(n) :fé,,X_,D]]Dx(ﬂ—l))_'_ bl/l, y=x (336)

where f is an unknown continuous function, and # [JR and y [JR are the input and output of the system,
respectively.

Assumption : We can determine afunction /' (x) such that |f(x)|s £Y(x).

This assumption means the plant (3.36) can be viewed as "poorly-understood,” but not "totally
unknown." Note that in this assumption we need to know the state-dependent bounds of f, which is less

restrictive than requiring fixed bounds for all X [JX. This system formulation with the above assumptions
is appropriate to address the traction control problem where the road condition is unknown during driving.
In fact, equation (3.3) is the same as (3.36) when N =1.

Control objectives: Determine a feedback control u© = u(x| G)) and an adaptive law for adjusting the
parameter vector © such that the following conditions are met:

() The closed-loop system must be globally stable in the sense that all variables ( x(7),0(t ),u(x|©))
must be uniformly bounded; i.e, [x(7)|< M, <o, |O(1)| < My < o0, and |u(x| @1 SM, <o

foral 1=0.
(i) Thetracking error, ¢ = x, — x , should be as small as possible under the constraintsin (i).

We now show the basic ideas of how to construct a direct adaptive fuzzy controller to achieve these
control objectives.

T
Let e= (e,e‘,[l]][é("_l)) and k=(kn,E|]IDk1)T be such that al roots of the polynomial

h(s): s" +k, s"" + D¢ k, arein the open left-half plane. If the function f(x) is known, then the
control law

u' =%[—f(x)+xd(") +kTe] (3.37)
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applied to (3.36) resultsin
e+ ket + MR k,e =0 (3.38)

which implies that /im e(t)= 0 - the main objective of control. Since f (X) is unknown, the optimal

{—

control, % cannot be implemented. Our purpose is to design a fuzzy logic control to approximate this
optimal control.

The following theorem shows that the fuzzy logic systems in Lemma 2 are capable of uniformly
approximating any nonlinear function over X to any degree of accuracy if X is compact (Wang and
Mendel 1992). Let Y be the set of al the FBF expansions (3.35) with FBF's given by (3.33) and (3.34), and

d, (f1 A ): Suplf1 (x)— f, (x] be the sup-metric; then, (Y, dm) is ametric space (Rudin 1976).
x[X

Theorem 1. (Universal Approximation Theorem)
For any given real continuous function % on a compact set X [JR" and arbitrary € > 0, there exist a

fuzzy logic system u, [1Y" intheform of (3.35) suchthat d, (u,, uD): S”PIUC (Xl@D)— uD(X)I <Eg.
x[OX

Proof : A proof of thistheoremis given in appendix A.
We make a few remarks on this Universal Approximation Theorem.

(i) While many other types of functions are also universal approximators, including the simple
polynomials, neural networks with sigmoidal functions, etc., it is shown in (Poggio and Girosi 1990)
that Gaussian basis functions have the best approximation property. This is the main reason we choose
the Gaussian functions as the membership functions.

(i) In this theorem, ®" means the optimal parameter vector of ©. An adaptive law for the parameter
vector © to approximate © " will be developed next.
(i) When the initial value of © is not chosen adequately, or @" is changed due to changing system

properties, the difference between ©" and © becomes large. This large difference will cause system
instability or long transient time.

Suppose that the control # is the summation of a fuzzy control , (X| O) and a supervisory control
u, (x):
u=u, (x|©)+u,(x) (339)
where a supervisory control u, (X) is introduce from the consideration of remark (iii) in order to provide

stability and fast response. Our purpose isto construct a fuzzy control , (x| 6) by developing an adaptive

law for the parameter vector ©, and a supervisory control (x) which will guarantee stability of the
closed loop system.

3.2.2.3 Congtructing u, (x) (Wang 1993)

Substituting (3.39) into (3.36), we have

x® = fx)+ b[uc x|©)+u, (x)] (340)
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Now adding and subtracting bu" to (3.40), we obtain an error equation governing the closed-loop
system. i.e,

el =-k"e+ b[uD -u, (x|@)— us(x)] (3.41)
or, equivalently,
é:/\ce+bc[uD -u, (x| @)—us(x)] (3.42)

XXiv



where

00 1 0000 0[ o
Eo 0 1000 o% %%

/\C:SD 0O O0oOoOo D%bC:Eﬂ)D (3.43)
00 0 0000 1 00

E—kn -k, 0O 000 -k, E
. | : o - o .
Define V, = Ee Pe , where Pisasymmetric positive definite matrix satisfying the Lyapunov equation

N'P+PA, =-Q (3.44)
where Q >0.
Using (3.42) and (3.44), \/, can be differentiated with respect to time to obtain
7 1 T T O
== + — -
v, 2 e Qe +e Pbc[u u, (x| G)) u, (x)]

< —% e’Qe+ |eTPbC|{uE| + |u (5 e])— e’Pb u, (x) (3.45)

If u, (Xl @) approximates u,, (Xl@D} (i.e, uD), u, is not necessary to make Ve < 0. Our task now is

to design , suchthat ¥, <0 always.

We construct the supervisory control (x) asfollows:

u,(x)= 17 sgn (eTPbc)@uc + ZI Q R E |kTe|E (3.46)

where /7 =1if V, >V ,and I” =0 if V, <V (V isaconstant specified by the designer).
Substituting (3.46) to (3.45) and considering the case where [ ID =1, wehave

7=z Qe+ e b | 1+ [x )+ o} 2 (¢ + [+ e o )

1
<- Se TQe<0 (3.47)

X LS")

Therefore, using the supervisory control u , we always have V < V.

From (3.46) we see that the u, is nonzero only when V, > V . That is, if the pure fuzzy control
u, (X|G)) approximate very close to u, (Xl@D) (i.e. to W) and, so, the closed-loop system with

u, (x| O) iswell behaved in the sense that the error is not big (i.e., V, < 14 ), then the supervisory control
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u, is zero. On the other hand, if the system tends to be unstable (i.e., V, > 14 ), then the supervisory

control u, begins operating to force V, < 7 . Inthis way, the control u_ is like a supervisor; this is why
we call u, asupervisory control.

3.2.2.4 Developing an adaptive law for the parameter vector ©

We replace the u, (x| O) by the fuzzy logic control given by (3.32) and develop an adaptive law to
adjust the parameter vector ©. Define the optimal parameter vector:

U U

e"= a;:a(?sn/;:n B{slitﬁlu( (Xl G))— u DlH (3.48)
and the "minimum approximation error":
w=u, (xIG) D)— u" (3.49)

The error equation (3.42) can be rewritten as

e=Ae +bc[uc (x| G)D)— u((x| O)]—b(,us (x)-b,w

=A.e+b ®"=(x)-b_u ~b w (3.50)
where ®= 0" - O and E(X) isthe vector of FBF's. Define a Lyapunov function candidate
1 b
V=—ePet+ —d'0 (3.51)
2 2y
Using (3.50) and (3.44), we have
. 1 _ b
V= —EeTQe+eTPbC[<DT:(x)—uS —w]+_cqu> (352)
Y

Let p, bethelast column of P; then we have

e'Pb, =e'p b (3.53)
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Substituting (3.53) into (3.52), we have
7 1 T b T T = + T T
V=-2e'Qe+ VGJ [ye p,=(x)+ CD]— e’Pb u, —e"Pbw (3.54)

If we choose the adaptive law:

O=ye'p,=(x) if (O] < My)or (|©|= My and 'p,@7=(x)<0) (355)
0" =(x)
©f
where My is aconstant specified by the designer. Substituting (3.55) into (3.54), we have

O=ye'p,=(x)-ve'p, it |0]= M, and e'p,@'Z(x)>0 (356)

. 1
V< - > e'Qe-€'Pbw (357)

where we use the facts ¢’ Pb_u, 2 0 and ® =-0. This is the best we can achieve. From Universal
Approximation Theorem, we have Suplw(x)| <¢ for arbitrary € >0. If w=0, that is, the searching
x[X

space for u, (Xl@D) is so big that the U isincluded in them, then we have V<0. Even though it is not

equal to zero, we can expect that the W should be small enough to get V< 0, provided that we use
sufficiently complex u, (Xl@D) (in terms of number of adjustable parameters). In order to guarantee

|©] < M , we use aprojection algorithm as given (3.55) and (3.56) [19].
The following theorem shows the properties of this direct adaptive fuzzy logic controller.
Theorem 2 : Consider the nonlinear plant (3.36) with control (3.39), where u,, (Xl O) isgiven by (3.32), u,

is given by (3.46), and the parameter vector @ is adjusted by the adaptive law (3.55) or (3.56). Then, the
overall control scheme guarantees the following properties:

(i) o] < M, (3.58)

— 2
|x(z] <|x |+ 5%% (3.59)
min D

—_ 1/2|:|
= 027 [
u(tY<2Mm, +— U+x(")+k%D 0 (3.60)
| (1 o bgf | ¢ | | min I:l B
foral t=0,where A ;, isthe minimum eigenvalue of P, and

va

_ . (n-1)
Xg = ch X, e, )

t 2 t 2
i <
(ii) Lle(l’)' dt <a+ C_L |w(1’1 dt (3.61)
forall t =0, where @ and C are constants, and W isthe minimum  approximation error
defined by (3.49).

XXVii



(i)  If Wissquared integrable, i.e., J:olw(t)rdt < o0, then limle(t)| =0.

t— o
Proof : A proof of thistheorem is given in appendix B.

To summarize, the overall scheme of our direct adaptive fuzzy controller is shown in figure 3.3.

Plant

Xd e
$C Fuzzy Controller +>q u._ XM= () +bu X
N ~ —

JAdaptive Law

' §| 6 =h@,ex)
\J Supervisory Control| 1,=1
5 US (X) | = ON

1

Figure 3.3 The overall scheme of direct adaptive fuzzy control
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3.3 Applications and simulations

Vehicle velocity (v,) and wheel angular velocity (w,) are assumed to be
measured exactly. The wheel angular velocity is measured by a tachometer, and
the vehicle velocity is measured by measuring the number of magnetic markers
which are swept during a certain period of time or timing the travel time from
one marker to the next. Measurement noise is not considered in simulation.

The tire model obtained in (3.12) is assumed as the real tire model. Analytical
approximation of the real road conditions can be denoted as

Dry asphalt: rc =0.8
wet asphalt: rc =0.5
Icyroad : rc=0.3

The vehicle parameters for simulation are

M, =1000 kg
Ry=031 m
F, =2450 N

z

ny = 2 for acceleration, 4 for deceleration
Jyw=111 kgl

fl(xl) =c, (Rw)c1 + wind _ gusz‘)2 c, =045/ (MVRW)
f>(x,)=0.0

From the data, the following parameter values are calculated

by = 15.81 for acceleration, 31.62 for deceleration
b, = 684.24
b,=0.91

The system parameters, b, b,, b,, and f, are assumed to have a 25 %

uncertainty range around the nominal values. The sampling frequency in the
simulation is 1 kHz.

We define five fuzzy sets over interval [-2,2], with labels NB (negative big), NS
(negative small), ZO (zero), PS (positive small), PB (positive big) which are
shown in figure 3.4. Fuzzy membership functions for these labels are

1 (x4} (x+0) (1) _
H v :W Hys =€ 1) 4 () Hps =€ =) Hpp =
1+e

1

1+ e—S(x—l)
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Figure 3.4 Fuzzy membership functions defined over the state space

Since the state x, is required to be constrained within the stable region
(positive slope region at H—A curve), we choose M, =0.15. (Here, we do not
choose M, as the peak slip value since we do not want to use high gain control u,
frequently.) We also choose M, =1000 by considering possible engine torque.

Since we know f" =1 and |x,|=0.04 (This |x| value will be changed at each

control objective.), based on equations (3.59) and (3.60), we can specify the design
parameters as

0=2, P=1, k=1, V=002, M,= 1000, =450, y =100
3.3.1 Slip Control
One of the main objectives of the vehicle traction control is the slip control.
Slip control means regulating wheel slip at any desired value that is required for
the minimum time control, the longitudinal platoon control, and the maximum
steerability in lateral control.
3.3.1.1 Sliding mode controller
The wheel slip dynamic equation can be written as
A= £ ()= AOOREA)+ 70T (3.62)

where A = x;. The sliding surface is defined as

s(t)=A,()=0 (3.63)



where A, =A -\, and A, is the desired wheel slip. In order to derive the
control input, we differentiate this surface with respect to time:

SEN-A,, (3.64)

Substituting in the slip dynamic equation (3.3) and inserting sliding condition
(3.7) yields:

$=f 000 ) = LOMA)* LT -A, = ‘ﬂsaf%ﬁ (3.65)

Solving this equation for 7', we can obtain the control input.

_ 1 d C s
VRGBSRV nsat%% (3.66)

To avoid chattering, a continuous approximation using a saturation function
for the boundary layer has been used instead of the sign function in equations
(3.65) and (3.66). It is defined by

nsat%ﬁZ % for |s| <P

=sgn(s) for | > (3.67)

where ® is the fixed boundary layer width and is chosen after careful
consideration of the frequency range of the unmodelled dynamics.

To determine input torque, T, it is necessary to know p()). For the standard
sliding mode control (SSMC, without road condition estimation), the parameter
a, (t) in equation (3.12) is assumed to be 0.45 which is a mean value of two
extreme values (0.8 for dry asphalt and 0.3 for icy road) to obtain a nominal
H(A). For the adaptive sliding mode control (ASMC, with road condition
estimation),this (M) is replaced by {i(A)=4,(t)f(A) and 4, (¢) is estimated
utilizing the scheme developed in 3.2.1.2.

3.3.1.2 Fuzzy logic controller

Standard fuzzy logic controller (SFLC) :

A, and A, are chosen as the input fuzzy variables for the fuzzy logic wheel slip
control. Twenty five fuzzy control rules are derived by engineering judgment

(table 1). For example, if A, is positive ( PB or PS ) and keeps increasing ( A= PB



or PS ), then the input torque should be decreased ( 7= NB or NS ). Note that
increasing total input torque makes the slip increase.

Table 1 Fuzzy rule table for SFLC

)\e
NB| NS|ZO| PS| PB
NB]PB| PB| PS|NS| NS
NS|PB|PB|PS|NS|NS

A | ZO| PB | PS | ZO | NS| NB

PS|PS| PS| NS |NB| NB
PB| PS| PS| NS|NB| NB

Since we use symmetric Gaussian membership functions and the center-
average defuzzifier, each fuzzy variable of THEN part can be denoted by
singletons such as NB=-2, NS=-1, ZO=0, PS=1, PB=2.

Adaptive fuzzy logic controller (AFLC) :

Since the consequence of each fuzzy control rule, 8, = ,', may be adjusted by
the adaptation scheme, the fuzzy rule base is formulated as in table 2.

We will consider two cases:

i) Without initial fuzzy control rule (AFLCO): There are no fuzzy control rules.
Therefore, the initial T, 's are chosen randomly in the interval [-2,2], say zero.

ii) With initial fuzzy control rule (AFLC1): There are twenty five fuzzy control
rules which are the same as those of SFLC. Therefore, every initial T has the
same value as shown in table 1.

Table 2 fuzzy rule table For AFLC

}\ e
NB| NS| ZzO| PS | PB
NB Utl o, 2 o, 3 R 4 o 5
NS GC 6 UC 7 ﬁc 8 lTC 9 -q:lo
A, 70 q:ll Uclz Ucls U‘:14 UC15
PS Ucle U‘:17 Uclg UC19 UC2O
PB q:21 Uczz qczs Uc24 q:zs




3.3.1.3 Simulation results (figures 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11)

Figure 3.6 shows the results of SFLC (without adaptation algorithm) and
AFLC. The road condition is changed at t = 1sec from dry asphalt to icy road. As
shown in this figure, performance is obviously improved by using the adaptation
algorithm. SFLC exhibits a steady state error due to an inexact rule base, and is
not robust to changes in road conditions and vehicle parameters, or to different
driving conditions. The results also show that the presence of initial rules in
AFLC enhances system performance at the initial stages. As adaptation is
continued for a long time, however, we note that the results of the AFLCO case
converges to that of the AFLC1 case. For convenience in the graphical figures, the
controller parameter values (Y;) are defined to be equal to U’ scaled down by a
factor of 100. They are shown in figure 3.7 and figure 3.8 for each case to provide
some idea about the transient response. Actual numerical values and the
correspondence between parameters and plots are not important. As shown in
figure 3.8, the parameter values are initialized to zero in the AFLCO case. Figure
3.9 shows the results for each case when the desired slip is abruptly changed.

Figure 3.10 shows the comparison of the adaptive fuzzy control with initial
rules (AFLC1) and the sliding mode control with/without road condition
estimation (ASMC / SSMC). The performance of both the SMC and the FLC
heavily depend on the control gains. In this simulation, the control gains are set
so that the input torque of each controller has the same level. The SSMC shows
poor results. It shows steady state error, and is not robust to road condition
change, while the ASMC shows good performance compared with the AFLCI.
Figure 3.11 shows parameter convergence and robustness to noise of the least-
squares estimation with exponential bounded gain forgetting factor for road
condition estimation.

3.3.2 Minimum time control
(minimum time acceleration or deceleration)

The minimum time control means achieving the fastest acceleration and the
fastest deceleration, and this implies maximizing the magnitude of the traction
force. These maximum traction forces are achieved at the positive or negative
peak point of the p—A curve. Therefore, to produce the fastest acceleration, the
wheel slip should be regulated where the adhesion coefficient attains the peak
value. Since the peak value of A varies depending on the tire characteristics, the
road condition, and the normal force exerted at the tire, it is unknown during
driving in general case. Therefore, the minimum time control includes searching
for and maintaining the peak slip.



3.3.2.1 Sliding mode controller

The proposed method of the minimum time control contains the following
three basic steps.

(i) Estimate the local slope in the g — A curve

(i) Move the target slip in the estimated direction towards the peak slip

(iii) Steer the wheel slip toward the new target slip via the sliding mode slip
traction control and then return to (i).

Estimation of the local slope

In practice, the adhesion coefficient can be regarded as a function of time (since
road condition is changed) and of slip. Under the assumption that the road

condition changes, g—i can be approximated by

O, \_du, \_ Au()
ﬁ(fk)" d_)\(fk)~ ) (3.68)

where Au(r,) and AA(r,) are the differences between the adjacent sampling

instants. To obtain the value of Au (tk ), we differentiate (2.6) with respect to time
and rearrange terms.

o _ouor O of, . O1 Al
MM g+ =28 3.69
N oron O ox Oha o6

Since the second term inside the bracket is usually insignificant compared with
the first term (if there are not abrupt wind gusts), and since the first term can be
approximated by the difference of vehicle velocities at two consecutive sampling
time instants divided by the sample time interval, we can approximate A{l as

A :b_ll[xl(zk)—xl(tk_l)] (3.70)

We only require the sign of % instead of the exact value of % The sign of %

can be calculated as

sgn%\l@: 1 if DA =0
=-1

if DAAA <0 (3.71)



Target slip updating algorithm

The target slip is moved in the direction of the peak according to the sign of
the slope of the = A curve. The target is updated according to

A, (k + 1) =A; (k)i sgn%@tep (k) + for acceleration

- for deceleration  (3.72)
step(k +1) = 05 Btep (k) if sign is changed
step(k + 1) = step(k) if sign remains the same value
step(0) = initial value (3.73)

where A, (k) is the target slip at the time instant, k and a is an initial and a

convenient value. For adapting at the varying road conditions, either the step
size should have a lower bound or it should be re-initialized if the value of the
estimated slope varies substantially after a steady value has been reached.
Otherwise the speed of the estimation process would be substantially reduced
because of too small a step size.

3.3.2.2 Fuzzy logic controller

The first two steps for minimum time control are the same as the sliding mode
control case. The fuzzy logic slip control algorithm is used in step (3).

3.3.2.3 Simulation results (figure 3.12)

The controller must search for and maintain the peak slip value which gives
the maximum tire traction force for the fastest acceleration. The peak slip value is
0.054 for the acceleration case and -0.11 for the deceleration case. Simulations are
achieved for the ASMC, and the AFLCI. Each control method shows good
performance in searching for and maintaining the peak slip value

3.3.3 Longitudinal platoon control

Longitudinal control strategies are necessary in order to regulate the spacing
and velocity of vehicles in an automated highway system consisting of a platoon
of vehicles. The controller must also insure good performance over a variety of
operating points and external conditions without sacrificing safety or reliability.

Two-car and four-car computer simulations have demonstrated (Hedrick et al.
1990) the robustness of the developed longitudinal control algorithm. Two-car,
three-car, and four-car longitudinal experiments have been conducted as part of
the California PATH Program (Chang et al. 1992). These simulations and
experiments, however, are performed without considering road condition



changes. They do not show the stability and the robustness when the road
condition is widely varied. In fact, since the sliding mode controller is used in
these works, the system may be unstable for icy road if the control gain is tuned
for dry asphalt; and the control will be too conservative if the control gain is
tuned for icy road.

The objective of this research is to show the possibility of using adaptive
control algorithms to deal with the unknown time-varying road condition in the
longitudinal platoon control. We will consider the two-car platoon in what
follows.

3.3.3.1 Sliding mode controller

Figure 3.5 illustrates the spacing in a platoon with two vehicles.

following car leading car

U/ N U/ U/
z ) |

z

Figure 3.5 Platoon spacing

In the formulation of the longitudinal platoon control problem, we define a
spacing error between two successive vehicles as :

3(t)=z,(t)-z ()1, (3.74)

where Z indicates the position of the front of each vehicle and |; the length of the
leading vehicle. Next, we define the spacing error as:

e(t)=3,()-3(¢) (3.75)
where 9, is the desired spacing between two vehicles.

Since there is slip between the tire and the road surface, the states presented in
section 3.1 have the following relationship:

x, ()= x, () +r() (3.76)



where r(t) #0. Using this equation and equations (3.1) and (3.2), we can obtain
the following equation:

Xl(t):f+df +a1T+a21>(t) (3.77)
- +
where f+df:—M/ a, :&, and a, =— bl )
b, +b, b, +b, b, +b,

Since the control task of the platoon control is to track the velocity of the
leading vehicle while maintaining a constant separation, an obvious choice for a
sliding surface is one which incorporates the corresponding errors. Let the
sliding surface be defined as

S=€+2c€ +c12££dt =0 (3.78)

where € is defined at equation (3.75). The coefficient ¢ is chosen to place the
poles of the sliding surface. Differentiating the surface to obtain the input torque,
T, yields:

§=E+2cE +c’e (3.79)

Substituting (3.77) into (3.79), and considering the sliding condition yields:
§S=R, (f +df +a,T+ azr')— a,, +2c€&+c’e= —Ksat@:—;@ (3.80)

Because the value of r(t) is unknown, it is difficult to obtain the input torque,

T. To obtain some information about r(f), a differential equation for r(¢) can be
derived subtracting (3.1) from (3.2):

F=(f, = f2) = (b +b,)uA)+ b, T (3.81)

Considering this equation, we know that the maximum variation of 7(t) is
about 0.7T when road conditions are abruptly changed from dry asphalt to icy
road. Since & =@, in equation (3.80), this /() can not be ignored while the input
torque T is constructed. If we assume no slip condition, i.e., ()= ()= 0, then
the system may be unstable (when deciding control gains by ignoring #(f)) or
have too conservative control (when including ;‘f(t) in df). Therefore, it is

dangerous to ignore the slip when adverse road conditions are expected or hard
maneuvers (rapid change of the input torque ) are required.

Because of the difficulty caused by the unknown function r(f), we use an
alternate approach using two sliding surfaces proposed by Hedrick (Hedrick et



al. 1990). The first sliding surface is used to define a "synthetic (or fictitious)
control”". The synthetic control is then used to define the desired trajectories for
the second sliding surface which, upon differentiation, yields the control
variable. For our system, W, (A, ) will be the synthetic (or fictitious) control for

the first sliding surface, and it is further controlled by the second sliding surface
using the system control input T. If the desired trajectory of the second surface
can be tracked within an acceptable bound, then the original trajectory can also
be expected to track within an acceptable bound.

Utilizing this technique, a primary surface is defined the same as (3.67):
s, =& +2c€ +c12J’0’sdt =0 (3.82)

Substituting (3.1) instead of (3.77) into (3.79) and considering the sliding
condition yields:

$, ==f, +b U )= a,, +2¢€ +c’e =N lsat%g (3.83)
Then, the desired adhesive coefficient is

10 .
udes ()\ des) = b— gl + alead - 2C18 - cl28 - r] lsat %% (384)
1

The next step is calculating A, from p,. To accomplish this, equation (3.12)
can be used. If we do not estimate the road condition [14], we should assume
g = rc at some nominal value, such as a middle value between 0.8 (dry asphalt)
and 0.3 (icy road). However this will again result in system instability (when
nominal value is high) or in conservative control (when nominal value is small).

If road condition estimation, 4, (t), is available, equation (3.12) can be used to

calculate A, from p, by assuming that a, (t) approximates g, (t)

To achieve the desired slip, we control the wheel slip directly at the desired
value using the same algorithm for slip control. By defining the second sliding
surface as

s, =A.=0 (3.85)

we can obtain the desired torque T,. (see section 3.3.1.1)



3.3.3.2 Fuzzy logic controller

As with the sliding mode platoon controller, the fuzzy logic platoon controller
consists of two consecutive steps. Both use adaptive fuzzy logic control
algorithms which have different fuzzy variables and outputs. In the first step, €
and € are chosen as the fuzzy variables to infer a fictitious control input A . It
should be noticed that equation (3.12) is not necessary to calculate A, from P
since A4 can be directly achieved in the first step of fuzzy logic control. Twenty
five fuzzy control rules are chosen based on engineering judgment (table 3), and
they are used for the initial rules of the adaptive fuzzy control algorithm.

Table 3 Fuzzy rule tables for A

E
NB NS [ZO | PS | PB
NB |PB |PB |PB | NS | NS
NS |PB |PB | PS | NS | NB
¢ [ZO|PB [PS [ZO NS | NB
PS |PB |PS |NS |NB | NB
PB |PS |PS |NB | NB | NB

To achieve the desired slip, we use the adaptive fuzzy logic slip controller
which is already derived in section 3.3.1.2.

3.3.3.3 simulation results (figure 3.13)

The objective of the longitudinal platoon control is to regulate the spacing
error among the vehicles in a platoon. As mentioned before, simulations are
achieved for a two car platoon (lead car and one car following).

Figure 3.13 shows the results of the adaptive fuzzy control and the sliding
mode control with road condition estimation, respectively, with system
uncertainties. Because of the system uncertainties, each controller cannot track
the desired friction coefficient accurately and, thus, spacing errors occur. In this
case, the adaptive fuzzy control shows better performance (less spacing error)
than the sliding mode controller.
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4. Complex vehicle model

In this section, a complex vehicle model is described and a simplified vehicle
model is derived for analysis and controller design. The adaptive sliding mode
controller and adaptive fuzzy logic controller are designed based on the
simplified model and they are evaluated by simulations using the complex
model.

4.1 system description
4.1.1 Vehicle model

The complex vehicle model is utilized to simulation the dynamic behavior of
the vehicle as realistically as possible. It consists of

i) Ford engine model
ii) torque converter model (McMahon et al. 1991)
iii) the COMPLEX dynamic model (Peng 1992)

It includes six degree of freedom for the vehicle sprung mass, four wheel
states, two engine states, and a torque converter model. Additionally, the brakes,
throttle, and steering actuators are modeled as linear first order systems. The
inputs to the front-wheel driven and front-wheel steered model are the steering
angle, throttle angle, and brake pressure. So, the vehicle is described by the
following 18 states:

(X, VX :y; Vy :Z;VZ ye’e:(p’(p""" ’l'p ’mair’weng ’ww’ T;)mke ’a ’6)

The inputs are (Y;wkwm a, 0, ) and the outputs are (),,y,). The model does

com ? _/mm
not include any transmission dynamics or engine delays. The resulting equations
for the complex vehicle model are shown in appendix D.

Specifically, all engine and torque converter parameters are obtained from the
Ford Lincoln Towncar, while all chassis, suspension and tire characteristics are
obtained from the Toyota Celica. It implies that the simulation results may not be
very realistic quantitatively. However, it is expected that the qualitative
performance should still be similar to actual test vehicles.

It should be noted that, while every desired torque in the simple model is
assumed to be attainable, the complex model has a saturation for the total torque
because of the saturation of the engine throttle or braking torque. Therefore, it is
important to keep this restriction in mind during design of the controller or
tuning control gains. Unlike the simple vehicle model, the complex vehicle
model has two tires (front and rear) as the controlled outputs even after



assuming a bicycle model. In this report, it is assumed that only one control
input is available (total torque which is the difference between engine torque and
the brake torque). To deal with this constraint, we properly derived the
controller equations so that every control objective can be achieved by
controlling only the front wheel slip.

4.1.2 Simplified vehicle model

The complex vehicle model for the simulation, which fully describes the
dynamic behavior of the vehicle, is too complex for analysis and controller
design. Therefore, it is necessary to make assumptions which will reduce the
model to a simplified form, yet still capture the fundamental plant behavior. The
complex vehicle model is simplified by

(i) neglecting the roll, pitch, and vertical motion.

(ii) assuming bicycle model (i.e. the dynamics of the left and right side of the
vehicle are identical)

(iii)discounting the actuator and manifold dynamics

gear

. : . W, o
(ivlocking the torque converter (i.e. ®,,, = F—D‘, Toump = F Ty 7 = ViriveVecar)

Simulations have revealed that the first simplification (i) is valid without any
appreciable loss in accuracy under typical to slightly severe environmental
conditions. If there are no severe steering maneuvers, simplification (ii) is also
generally valid. The last simplification (iv) requires the vehicle to operate under
conditions of low torque transfer between the engine and the turbine
(w,,, /W, =1). This requirement is not uniformly met, especially during

turb eng
moderate to heavy braking or immediately after a gear shift. Unlike the general
no slip assumption, the tire slip is considered in this work (7w, #v) for

traction control and, unlike other simple vehicle model, the angular velocities of
the front and rear tire have different values (w,, #w,,,).

The resulting equations of the simplified vehicle model are

1
“)x :-ffl + _F‘Ctot (41)
m
1 .
ffl == vax2 + F;all _mvyl‘IJ] (42)
m
Fow = Z(Exf + Fxr) (4.3)
) 1
wwf = J [0'5 I;haﬁ - 03 7;zrake - rwf FA/‘] (44)

wf



If torque converter is locked,

1 cow 0
?hajt % Dj E (45)

Then, (4.4) can be written as

O

. _ T
@, === 7, -, F ] (4.6)
J=20 0+, (4.7)
];ot T:;et _O‘6VD7—1;rake (48)

4.1.3 Wheel slip dynamic equation
Acceleration case

During acceleration, front wheel slip can be written as

_ Ol TV %=X

A (4.9)
wwf er XZ
By differentiating this equation, we obtain
Y 0%, . O\ 0x,
T ox, ot ax ot
=L {i-x VD{ -, F, }- @/f (4.10)
wwf wa A JD tut 1 Xtot )
Deceleration case
Using the same method as the acceleration case, we obtain
WM —V -
A s B (4.11)

Vv X
Drwf JD{M ~rT F b= (42, )gﬁﬁ m,@g (4.12)

4.1.4 Tire equation and road condition estimation algorithm

We use the same tire model and the on-line road condition estimation scheme
as that for the simple vehicle model derived in section 3.2.1.2.



4.2 Controller design and application

Since every method for designing controllers in this section is the same as the
previous section (section 3). we will give just a short explanation.

4.2.1 Slip control
4.2.1.1 Sliding mode controller

The first switching surface is defined as
s, =A, +c1Jf)Aedz:0 (4.13)

where A, =\, _)\fdes’

obtain the vehicle controls, we differentiate this surface:

and A, = is the desired front wheel slip. In order to

$i=A, =N, +e (4.14)

S des e

Substituting in the slip dynamic equation (4.10, 4.12) and inserting sliding

condition yields the following control law for the desired total torque input to
the drive wheel.

Acceleration case

ww’rw D 1 1 ) D Dj
1ot des — o Twf 3 aa, _rD”'waxf + @.fﬁ +—F,,, Q+)\ f des -, —r]satE%% (415)
aa] g")wf ruf i (A)W/- rﬂ_’f m o 1
VD
wa =2} o (4.16)

Deceleration case

v bb 1+A, 1 : Os, [
S VLY P P RS ;. 1
bb, =1, — (4.18)

The desired engine or brake torque is found from T . A protocol is set up to
choose between either the brake or throttle input (Pham 1992). The logic flow is
illustrated in figure 4.1. The 60/40 division of T,,,. is applied to determine the

desired brake torque for the front wheel.



Figure 4.1 Brake/ Throttle decision flowchart

To track the input torque, T, ., we need to define separate surfaces for the
throttle and brake inputs. Recall that the input torque is equal to the sum of the
engine torque and brake torque. Thus, to track the desired brake torque, we
define:

8, =T, — 1,

brk des

=0 (4.19)

It is less straight-forward to track the desired engine torque because there is no
direct relation between the throttle and 7,,, . However, the torque quantity can

net des

be translated into an equivalent desired pressure, P, (or, assuming ideal gas

man des

behavior, m,, , ). Then, the desired throttle angle, a ,,, can be uniquely obtained

for a given engine speed. To track the desired manifold trajectory, we define:

Sy =m,, —m =0 (4.20)

air des

Differentiating the secondary surface yields:

S2 = j;rk - j-b'rkdgs
1 .
- T (];’"k com ];I‘k )_ Tbrk des (421)
brk

S3 = mair -m

air des

= MAX *PRI(P,, )*TC(@)-m,,,  ~m,, . (4.22)



By substituting sliding mode, the command inputs are found to be:

01 . Os, [
];;rkcom =T %; T, + ];Wkdes - nzsat%’_i% (4.23)
1 Il Os, O
7C(a) = o+ - = 4.24
( ) MAX * PRI(Rmm) %/lalrou[ mazrdgs r]3sa m3 DB ( )

where the control gains, n;'s, are selected so that the suitable conditions are
satisfied. Typically, the secondary surface gains are selected to be much larger
than the gains of the primary surface.

4.2.1.2 Fuzzy logic controller

To obtain T

totdes’

tuzzy variables are A, and A, and A, is defined as

the same method as section 3.3.1.2. is used. In this case, the

A=A, =N, (4.25)

4.2.1.3 Simulation results (figure 4.2)

Figure 4.2 shows the simulation results of slip control for the front wheel when
the desired front wheel slip is abruptly changed. Each controller shows good
performance for the different road conditions. The fluctuation, which is shown
near the start part of the adaptive fuzzy logic control case, may occur because of
the poor choice of the initial rules. The fluctuation is reduced as the controller
parameter values (T ) are adapted enough.

4.2.2 Minimum time control (minimum time acceleration or deceleration)

The control algorithm of sliding mode control with road condition estimation
and adaptive fuzzy logic control for minimum time control is the same as the
simple model case derived in section 3.3.2. The simulation results are shown in
figure 4.3.

4.2.3 Longitudinal platoon control

Because of the same reason described in section 3.3.3.1, we use two sliding
surfaces approach. Let the first sliding surface be defined as

s, =& +2c,€ +c12J‘0’sdz =0 (4.26)



where € =x —x,,, is the spacing error. For the first sliding surface, F,,, ()\ for des)

is the control input, which is further controlled by the second sliding surface
using the system control input torque T. In order to obtain the desired traction
force, we differentiate this surface:

§, =E+2¢E +c’e

1 )
= ffl + E Fxtot - alead + 2C18 + 0128 (427)

where £ =v_ - a,,, . If considering the sliding condition, the total desired traction
force is:

FX totdes = _M[fﬁ o + ché + Clze + r] 151 ] (428)

Then, by using the road condition estimation, the desired front wheel slip can
be determined from this total desired traction force. This desired slip can be
achieved by the slip control.

4.2.3.1 Simulation result (figures 4.4 and 4.5)

The simulations are performed to show the effect of traction control on the
longitudinal platoon control. These are compared with the non-traction control
case in which no slip is assumed. Sliding mode controller is used for each
control.

Figure 4.4 shows the results of platoon control for the dry asphalt road
condition and a mild accelerating maneuver. The spacing error can be reduce by
traction control as shown in these figures. The significant advantage of the
traction control occurs when driving condition is adverse. figure 4.5 shows the
results of platoon control for poor road conditions and severe acceleration
maneuvers. As shown in this figure, severe tire spinning occurs during
acceleration when the non-traction control is used. If wheel slip exceeds the peak
value (about 0.064), tire spinning occurs. In this case, the traction controller
prevents this tire spinning and, at the same time, reduces the spacing error.
Furthermore, it makes steering possible during this severe driving condition
because it maintains the wheel slip in the positive slope (stable) region.
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5. Conclusion and future study

1. This work has shown the importance of traction control for longitudinal
control of vehicles in automation systems. Two control strategies, fuzzy logic
control and sliding mode control, were studied for slip control, which in turn
controls the traction. These controllers were designed and applied for the simple
vehicle model and the complex vehicle model. It was shown how these traction
control algorithms can be used to satisfy different objectives of vehicle traction
control.

2. Adaptive algorithms were introduced to each of the sliding mode and fuzzy
logic control methods to deal with unknown interaction between the tires and
the road surface. The resulting control algorithms were sliding mode control
with on-line road condition estimation and stable adaptive fuzzy logic control.
These adaptive control algorithms give more stable and robust performance than
standard sliding mode and fuzzy logic control algorithms, which do not have
any adaptive algorithm.

3. Each of the adaptive traction controllers can be used to enhance the
performance of a single independent vehicle, or a platoon of vehicles. It can be
used to accelerate or decelerate a single vehicle in the minimum time, or it can be
used to prevent the wheel from spinning or skidding. On the other hand, traction
control improves the performance of two car platoon in terms of stability and
achieves a tighter control. Traction control makes the system robust to external
disturbances and parameter uncertainty.

4. The comparative study between adaptive sliding mode control and adaptive
fuzzy logic control shows that each control method has its own advantages and
disadvantages depending on the objectives considered. We have not yet reached
a definite conclusion on which controller is better even if the road condition
estimation scheme in adaptive sliding model control has some restriction. For
this conclusion, in particular, experimental work is required to support any
conclusion.



Appendix A. Proof of the Universal Approximation Theorem

We use the following Stone-Weierstrass Theorem to prove the Universal
Approximation Theorem.

Stone-Weierstrass Theorem : [Rudin 1976, 28]

Let Z be a set of real continuous functions on a compact set U . If:

(i) Z is an algebra, that is, the set Z is closed under addition, multiplication, and
scalar multiplication;

(ii) Z separates points on U, that is, for every x,y OU, x #y, there exists f Z such

that f(x) # f(y); and

(iii) Z vanishes at no point of U, that is, for each x OU there exists f 0Z such that
fx)20;

then the uniform closure of Z consists of all real continuous functions on U, that
is, (Z,d,) is dense in (([U].d.,).

Let Y be the set of all fuzzy logic systems in the form of (3.35). In order to use the
Stone-Weierstrass Theorem to prove the Universal Approximation Theorem, we
need to show that Y is an algebra, Y separates points on U, and Y vanishes at no
point of U . The following Lemmas A.1-A.3 prove that Y has these properties.

Lemma A.1: (Y , a’w) is an algebra.
Proof: Let f, f, Y, so that we can write them as

> & %_ll Hay (<)
fi(x)= /Ll (al)

ky

£(x) = Flkz (a2)

Hence,

ZZZ_ (Z_lfl +Z_212)%j uAl,fl (xi)l“lAsz (xl. )%
)+ A =F5]

Z kzz %j Hap (x" )p‘Az{2 (x,. )%

B Al

(a3)



Since g, and p_, are Gaussian in form, their product p is also Gaussian

i j2 i U j2
ALl A2} ALl o)
in form (this can be verified by straightforward algebraic operations). Hence, (a3)
is the same form as (3.35), so that f, + f, Y. Similarly,

k.

i zz (Zlflfzfz )%fll uAl,fl (xf)l“lAz,fl (xiE
L) (x) = - 12:1 - (ad)
Z Z %_I o ( )“Azf (x )%

hE L=

which is also in the same form of (3.35). Hence, ff, Y. Finally, for arbitrary
cUR,

o (x) = (a5)

%‘Iu/,y( x )8

which is again in the form of (3.35). Hence, cf LJY. Q.E.D.

Lemma A.2: (Y , dw) separates points on U .

Proof: We prove this by constructing a required f. That is, we specify the
number of fuzzy sets defined in U and R, the parameters of the Gaussian
membership functions, the number of fuzzy rules, and the statements of fuzzy
rules, such that the resulting f (in the form of (3.35)) has the property that

f (x°)¢ f (yo) for arbitrarily given x°,y° OU with x° #y°. Let x° = (x1 ,x, ", )
and y (V1 ,0,0 Y, ) If x°#y° we define two fuzzy sets, (4, M, } and

(Aiz, K. }, in the | th subspace of U, with

O (x, -y O

K, (x)—expEl——D (ab)
E 2 B
0 l

K, (x) expEl— AEEAr (a7)

H =



If x°=y° then A'=A’and p,, =,,. That is, only one fuzzy set is defined in the
I th subspace of U. We define two fuzzy sets, (Bl,uBl) and (Bz,u 32)’ in the

output universe of discourse R, with

OG-z gu
pB/(z) = exp[—l-—)D

> B

where j =1,2, and 2' will be specified later. We choose two fuzzy rules for the
fuzzy rule base (that is, M =2). Now we have specified all the design parameters

except 2/ (j = 1,2). That is, we have already obtained a function f which is in the
form of (3.35) with M =2. With this f, we have

(a8)

i+ Mex [ )/2 —az' + (1 -a)2 (a9)

f(yO): : i [ (XA A ' d=0z> +(1-a)z' (a10)

1+i:I'I1exp— O—yl°)2/2]

where
_ 1
1+ ;I'Ilexp[ (x /2]
(a11)

Since x°#Yy° there must be some | such that x°#y°% hence, we have
I'Iexp%—( .0)2/257“, or, a#1-a. If we choose z22=0 and 2?°=1, then
S )=1-aza=1(y"). Q.ED.

Lemma A.3: (Y , dm) vanishes at no point of U .

Proof: By observing (3.35), we simply choose all §' >0 (/ =12 IV ), that is, any
f OY with 9 > 0 serves as the required f. Q.E.D.

Proof of the Universal Approximation Theorem : From (3.35), it is obvious that Y
is a set of real continuous functions on U. The Universal Approximation
Theorem is therefore a direct consequence of the Stone-Weierstrass Theorem and
Lemmas A.1-A.3. Q.E.D.



Appendix B. Proof of Theorem 2

(i) a. Equation (3.58)

1
Let | =§@T®. If Equation (3.55) is true, we have either |©|<M, or

=ve'p,0'=(x) <0 when |©|=M,; i.e., we always have |©|<M,. If Equation
or @T:(X) _

El

(3.56) is true, we have |©|=M, and ¥, =ye'p,0"=(x)-vep, =0; ie.,

|©] < M. Therefore, we always have |9 < M;, for all t=0.

b. Equation (3.59)

In section I11.2.2.3 we proved that \, <V; therefore, %)\mm|e|2 S% Pe<V, ie,

7o M2y °
|e|<WD Since e=x,— X, we have |X(t]<|Xd|+|el<|Xd|+WD , which is

(3.59)

c. Equation (3.60)

Since u,(x|©) is a weighted average of the elements of ©, we have
u, (x| O)S ©< M, . Therefore, from (3.39) and (3.46) we have (3.60)

(ii) From (3.54), (3.55), and (3.56), we have

_ 1 P'EO'=
V= —EeTQe—eTPbCuS —e’Pb,w +IleTp”b%(x), (b1)

where |, = 0 if (3.55) is true, and |, =1 if (3.56) is true. Now we show that the last
term of (bl) is nonpositive. If |, =0, the conclusion is trivial. Let |, =1, which

means that |©] = M, and e’p,0'=(x)>0; we have
A — (A AV A 1 2 2 A Al . _
v’0=(0"-0) 0= 5|[GE| o -lo- o ]s 0, since [0]=M, 2|0, Therefore,

the last term of (b1) is nonpositive, and we have
1
5 e'Qe-e'Pbu, - e"Pbw. (b2)

From (3.46) we have € Pb_u, > 0; therefore, (b2) can be further simplified to

c”s —



. 1

Vs - 5 e'Qe-€e'Pbw
Aomin —1 1 1
_ ‘Qmin 2 - 2 T 2 - 2
< -~ | -2 | +2¢ Pow +[Pbowf’ |+ 5| Pb
Aomin —1 1
< — Z2Qmin 2+—PbW2, b3
where A, is the minimum eigenvalue of Q. Integrating both sides of (b3) and

assuming that Ay, >1 (since Q is determined by the designer, we can choose

such a Q), we have

2 2 1 2 2
J'Je(T] dt < Ty |[V(0] +|V(t)|]+ o |Pb| J’; [w(r)| dt (b4)
) 2 0 1 2 )
Define a= %V(OX +sup|V(r)5 and c=——|Pb|. Equation (b4)
)\Qmin _1 20 E )\Qmin _1

becomes (3.61) (note that sup|/(¢)| is finite because € and @ are all bounded).
20

(iii) If wOL,, then from (3.61) we have elJL,. Because we have proved that all
the variables on the right-hand side of (3.50) are bounded, we have e[]L,. Using

Barbalat's lemma (if e 0L, n L, and 0L, then lim|e(r)| =0. Q.E.D.



Appendix C. Vehicle model parameters

Csf
Cer
Froll

Tman
Vman

Cx

rgear(i)

lescriti

moment of inertia about x-axis
moment of inertia about y-axis
moment of inertia about z-axis
engine inertia

ith gear inertia (1)
(2)
3)
(4)

wheel inertia

vehicle mass

vertical distance to c.g

vertical distance from c.g. to roll center 0.30
vertical distance from c.g. to pitch center
long. distance from c.g. to pitch center
distance from c.g. to front axle

distance from c.g. to rear axle

track of vehicle

wheel radius

cornering stiffness of front tire
cornering stiffness of rear tire

total tire rolling resistance
maximum manifold intake airflow
manifold temperature

manifold volume

wind drag coefficient x-dir
wind drag coefficient y-dir

ith gear ratio 1)

3)
()

value

479.6

2549.3
2782.7
0.2630

0.07582
0.08202
0.11388
0.13150

1.2825
1573

0.487

0.25
0.10
1.034
1491
1.450
3044

66366
52812
274.7
684.109
310.93
0.00447

45
21

0.4167
0.6817
1.0000
1.4993

[kg-m?]
[kg-m?]
(kg-m?]
[kg-m?]
[kg-m?]

[kg-m?]
[kg]

[m]
[m]
[m]
[m]
[m]
[m]
[m]
[m]

[N]
[N]
[N]

[Ce]
(L]



Appendix D. Simplified Vehicle Model (SVM)

In this appendix, the simplified vehicle model used for control design is derived from the full
simulation model. All assumptions are stated. To reiterate, the vehicle model is expressed by
the following 12 state equations.

- .. - 4
m[V, - Vy‘j’ +h0+h, 0y +h,¢y] = ZFA‘ - vai =F oo (d1)
i=1
. .. 2. .. 4
m[V, +V,y-h,$+h8y+h0y] = Y F, -C,V} (d2)
i=1
- . e 4
m[V, +V,xB~h@] = > F, —mg (d3)
i=1
LI$ -0y -6y]-(I, -1)0y = M, —6M, (d4)
L[6+0V +o¥]-(I, -L)oy = M, +0M, (d5)
LIy +6¢-69]- (I, -1,)8¢ = M, +6M, —6M, (de)
. 1 3 .
Jui®ui = ETshaft _ETbrake —ryFy i=12
Jui®ui = — %Tbrake -rFy i=34 (d7)
. 1
a)eng = _[Tnet - Tpump] (d8)
]eng
mait = mair'm - mair out (d9)
. 1
o= [0ty — 0] (d10)
Td\rot
. 1
Tbrake - [Tbrk com Tbrake] (dll)
brake e
: 1
S = 8w — 9] (d12)




By neglecting actuator and manifold dynamics and the roll (8), pitch (¢), and vertical (z)

motions, the model can be reduced to:

. 4
m[V, -V y] = Y F, -C,Vi-F, (d13)
i=1
. 4
m[V, +V,§y] = Y F, -C,V} (d14)
i=1
Ly = M, (d15)
. 1 3 .
Jui®y = 7 Fehat T 7o brake —IiFy i=12
b = - %Tbm —r.F, i=34 (d16)
. 1
0)eng = ]—_[Tnet _Tpump] (d17)
eng
The x-moment about the unsprung mass, M,, can be expressed as:
s s
M, = l1(1:"11, +FB,)_12(FB, +FB.)_'§L(FA, _FA,) __;L(FA, _FA.) (d18)

Under the bicycle model assumption (i.e. the dynamics of the left and right side of the
vehicle are identical), the moment expression becomes:

M, = 21,(Fy)~2L,(Fy)
The external forces are:

2F, = 2P, -8F,)+2F,

4
Y Fy = 2(F, -8F,)+2F,

E, =F, =F, et

X2

(d19)

(6, =0) ’ (d20)

(d21)



Noting that the following is true:

Fy, _sfo, = Cs,(sf _Cf)—Sfo,
= 8f(Cs, - Fx,) —CB,Cf
= CSfaf - Cs,gf = Fy, (Cs, >> Fx,)

(I

the lateral forces can be rewritten as:

4
Y Fy = 2F, +2F, (d22)

i=1

Further, by assuming that @, = o, , The simplified state equations (d13-17) is reduced to:

1

v, = -;[c,vi +F —mV - 2(F, +F, )-23F, ] (d23)

, = —{C,V2-mV, ¥~ 2F,, +F,)] (d29)
V= -12:[1113' ~LF, ] (d25)
@, = Z—;;-[TM e ~ 264 (F,, +F,)] (d26)
Dy = ﬁ[Tm =T pummp (d27)

The engine and brake torques, Tpe: and Ty, can be related to the traction forces by
assuming that the torque converter is locked. In other words, we assume:
. 0
i) Deng = r_:
ll) Tpump =T * Tshaft

where 1* = Iyvel'gea 1S the effective gear ratio.



Under this assumption, the engine and wheel accelerations (d26-27) can be combined to
yield:

. 1
(a) (,’)eng = ]-_[Tnet -r * Tshaft]
eng
S .
= shaft — ;:[ net Iengmeng]
1 @,
= Tuhaft = r_,,[Tnec - Ieng ';;-]
. 1
(b) mw = Zj——[Tshaft - Tbrake - erxm]
. 1.1 o,
=4 w, = E—[F(Tmt —Iengr_,(.)_Tbrake _erxm]
= @y [Jeng + 4]t ] = [1* Toee = 1* Torae =Tt *’ F..l

Solving for F,  and substituting this into eq d23 yields:

1

qu = - »2 [I' * Tnet -r * Tbrake _d)w(leng + 4Iwr *2)]
r,r

- 1 . 1 .
Vx[1+ mr——-(leng + 4Iwr 2)] = - ;[vai + Froll - mVy\I’ -

2 %2
wX
1

rT(Tnet -r* Tbrake) + 8ny,]

w

Define:
J* = mrlr*? 4], + 4]0

Ttot = Tnet - r‘."I‘bmke
The final form of the state equations of the simplified vehicle model is now:

(r )’
]’*

. 1 .

v, = - ;[cyvi -mV,y - 2(F, +F, )] (d29)

L2

V= i—[lle, -LF, ] (d30)

z

Y (rwr*)2 2 H 1
Vx = — ?[vax + Fm" - mVy\v] + [;_?;th + S‘Fy'] (d28)



Appendix E. Tire model (Bakker-Pacjeka)

(Fitted on Yokohoma P205/60R1487H steel-belted radials)

X

y

ox

D, sin(C, tan”'(B,,)) +S.,
D, sin(C, tan™'(B,9,)) +S,,
(1-B)G, +8,)+ T2 tan” (B, i, +5,.)

x

E
¢, = (1-E)(v+S,,) +E’-tan“(By(v +S,,))
y

on (i >.0)
B, = g9 4 21940
F,-1940
G = 13—
D, = 1750+ £~ 1940
.956
E = -3.6
S = 0
Sx =0
B. = 022+M
y 40000
F, - 5200
C, = 1.26+ %+ ——
y 32750
D, = —0.00003F2 +10096F, —22.73
E, = -16
Shy =0
Sy =0

F, -1940
B, = 224+ 4%———
* 430
F, —-1940
= 135 - —&——n
. 16125
F, —1940
D, = 1750 + 2——
* .956
E, = 0.1
th =0
S =0

(e1)
(e2)

(e3)

(e4)
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