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Abstract 

This paper examines network design where OD demand is not known a priori, but is the subject 

of responses in household or user itinerary choices that depend on subject infrastructure improvements. 

Using simple examples, we show that falsely assuming that household itineraries are not elastic can result 

in a lack in understanding of certain phenomena; e.g., increasing traffic even without increasing economic 

activity due to relaxing of space-time prism constraints, or worsening of utility despite infrastructure 

investments in cases where household objectives may conflict. An activity-based network design problem 

is proposed using the location routing problem (LRP) as inspiration. The bilevel formulation includes an 

upper level network design and shortest path problem while the lower level includes a set of disaggregate 

household itinerary optimization problems, posed as household activity pattern problem (HAPP) (or in 

the case with location choice, as generalized HAPP) models. As a bilevel problem with an NP-hard lower 

level problem, there is no algorithm for solving the model exactly. Simple numerical examples show 

optimality gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. A large 

numerical case study based on Southern California data and setting suggest that even if infrastructure 

investments do not result in major changes in itineraries the results provide much higher resolution 

information to a decision-maker. Whereas a conventional model would output the best set of links to 

invest given an assumed OD matrix, the proposed model can output the same best set of links, the same 

OD matrix, and a detailed temporal distribution of activity participation and travel, given a set of desired 

destinations and schedules. 

 

Keywords: activity based model; network design; location routing problem; HAPP; pickup and delivery 

problem; bi-level problem 

 

1. Background 

Network design problems (NDPs) are a class of optimization models related to strategic or 

tactical planning of resources to manage a network (Magnanti and Wong, 1984). In general, NDPs 

assume static demand (elastic or not) at a node or trip-based origin-destination demand, even for purposes 

of improving road networks for commuters (Yang and Bell, 1998) despite the complexity of traveler 

choices (Recker, 2001). While this assumption is sufficient in many applications, there is increasing 

recognition that explicit consideration of travelers’ schedules, choices, and time dimension is needed. 

This need has grown in parallel to three related research trends in network design in the last few years: 

(operational) network design with dynamic assignment considerations when considering only peak period 

effects, (tactical) service network design with schedule-based demand under longer periods of activity, 

and (planning) facility location problems that explicitly consider the effects they have on routing and 

scheduling of vehicles for a decision-maker. At the planning level, these NDPs have often been based on 

private firm decisions, rather than on household-based urban transportation planning considerations. 

The rationale behind dynamic network design problems is rooted in bi-level NDPs that feature 

congestion effects. These NDPs operate primarily in civil infrastructure systems, as other types of 



networks do not generally share the same “selfish travelers” assumptions. In this paradigm, the 

performance of infrastructure improvements is assumed to depend primarily on the route choices of 

travelers (primarily the commuter) during peak periods of travel, which in turn depend on the choices of 

other travelers. The dynamic component further allows modelers to assess intelligent transportation 

systems (ITS) that require more realistic modeling of traffic propagation obeying physical queuing 

constraints and information flow. Some examples include the stochastic dynamic NDP from Waller and 

Ziliaskopoulos (2001), Heydecker’s (2002) NDP with dynamic user equilibrium (DUE), the linear DUE-

NDP from Ukkusuri and Waller (2008), dynamic toll pricing problem with route and departure time 

choice (Joksimovic et al., 2005), and the reliability maximizing toll pricing problem with dynamic route 

and departure time choice (Li et al., 2007). Although these NDPs are especially useful for ITS evaluation 

and operational strategies, they focus primarily on choices made over a single trip.   

Tactical level NDPs tend to place more emphasis on time use and scheduling over congestion 

effects. Tactical service NDPs (Crainic, 2000) are a specific class used to manage fleets of vehicles with 

such temporal decision variables as service frequency. However, most of these NDPs focus on the 

schedules of the service being provided, rather than on incorporating the demand-side schedules of the 

travelers/users as endogenous elements of the design. Despite the incorporation of temporal effects, most 

service NDPs assume trip-based demand. There has been a surge of research in schedule-based transit 

assignment (as opposed to NDP), where travelers’ departure time choices are handled explicitly. Tong 

and Wong (1998) formulated such a model with heterogeneous traveler values of time. Poon et al. (2004) 

presented a dynamic equilibrium model for schedule based transit assignment. Hamdouch and 

Lawphongpanich (2008) developed a schedule-based transit assignment model that accounts for 

individual vehicle capacities, and proposed one of the few schedule-based service network design 

problems, in the form of a transit congestion pricing problem that models passengers’ departure time 

choices (Hamdouch and Lawphongpanich, 2010). Their model uses a time-expanded network and 

considers fare pricing to optimize the distribution of travelers within specific capacitated transit vehicles. 

The origin-destination (OD) demand remains fixed, and not as a linked itinerary. 

Despite having the greatest need for such consideration, at the planning level there are no NDP 

models that consider routing and scheduling choices of travelers. . It has long been acknowledged that 

models of traveler activities and time use are much more accurate than statistical trip-based approaches 

(Recker, 2001; Pinjari and Bhat, 2011). Activity consideration can bring about a tighter integration of 

infrastructure investment with land use planning and demand management strategies. Activity-based 

models can capture realistic impacts on travelers that are not limited to single trips but rather to chains of 

trips and activities forming detailed daily itineraries. Historically, the bulk of activity-based models have 

been designed primarily as econometric models that do not account for network routing and scheduling 

mechanisms. The emerging trend in seeking to integrate network characteristics has been to force an 

interaction with a dynamic traffic assignment problem (e.g. Lin et al., 2008; Konduri, 2012), which 

extends the planning model toward operational applicability. However, this approach still ignores the 

network constraints present in scheduling and selection of activities for a household. There have been two 

primary exceptions to this approach. The first is the disaggregate activity route assignment model (HAPP) 

pioneered by Recker (1995), with subsequent studies on dynamic rescheduling/rerouting of those 

itineraries (Gan and Recker, 2008), and calibration of the activity route assignment models (Recker et al., 

2008; Chow and Recker, 2012). The second is the aggregate time-dependent activity-based traffic 

assignment model (Lam and Yin, 2001). Both modeling frameworks address the issue of activity 

scheduling, although Lam and Yin’s model gives up disaggregate itinerary route choices and trip chains 

in favor of capturing congestion effects. 

Although the transportation planning field has not seen any significant NDP research that models 

traveler routing and scheduling, the private logistics field has. One such model is the location routing 

problem (LRP), formulated and solved by Perl and Daskin (1985). The LRP is a set of inter-related 

problems that includes a facility location problem. What distinguishes LRPs from other NDPs is that it 

doesn’t assume that demand for the nodes is given in terms of round trips to demand nodes. Instead, a 

lower level vehicle routing problem is embedded in the model to satisfy demand nodes in the most 



efficient manner, subject to where the facilities are located. In essence, it is an integrated NDP that 

accounts for responsive routing and scheduling. Numerous studies have been conducted in variants of the 

problem or applications in industry. Several literature reviews have been published, including one from 

Min et al. (1998) and a more recent contribution by Nagy and Salhi (2007). Problem types developed 

over the years that may be applicable to activity-based network design in transportation planning include: 

stochastic LRP (Laporte and Dejax, 1989), where there is more than one planning horizon and customer 

locations and demands change over time; LRP with a mixed fleet (Wu et al., 2002) for multimodal 

network consideration; location-routing-inventory (Liu and Lee, 2003) for modeling activity types as 

inventory-based needs that are fulfilled periodically; and LRP with nonlinear costs (Melechovsky et al., 

2005) that may provide means to incorporate congestion effects at link or activity node level.  Readers are 

referred to Nagy and Salhi’s paper for further details. One direct application of LRP with truck fleet 

replaced by household travelers is shown in Kang and Recker (2012a). They use HAPP as a routing 

subproblem in a hydrogen fuel cell refueling station LRP that allows households to respond to located 

facilities to refuel, which can reflect the behavioral impacts of siting decisions. 

Given the increasing realization that transportation planning needs to reflect travelers’ 

preferences at the activity level, we make a parallel observation to Perl and Daskin—that in the 

transportation planning field there is also a need for integrated NDPs that feature explicit consideration of 

travelers’ tour patterns including trip chaining, scheduling, time windows and even destination choice. At 

the activity-based level, we are concerned more with tactical and planning level policies, and less so with 

such operational technologies as ITS and information flow (hence foregoing congestion effects for now). 

In essence, we propose to change the conventional NDP, with a given OD matrix, to a new class of 

activity-based NDPs. This new problem accounts for a population of travelers with demand for activities 

at particular locations and at particular times, which are fulfilled via calibrated activity routing models. 

Like the LRP, the activity-based NDP is a set of integrated models. Unlike the conventional NDP, the OD 

matrix is not given a priori, since it depends on the scheduling choices of households which in turn 

depend on travel impedances. The solution of this set of models is a set of infrastructure link investments 

as well as the resulting optimal itineraries decided by the households in response to the changes. The 

itineraries can then be aggregated to obtain the final OD matrix resulting from the NDP. 

 In Section 2, several examples and insightful paradoxes are used to illustrate why an activity-

based approach is necessary at the tactical and planning level NDP. Section 3 introduces the formulation 

as a bi-level structure with shortest path allocation and disaggregated subproblems per household. While 

the inspiration of the formulation is from Perl and Daskin’s LRP, key differences are also noted. An 

alternative model with activity/destination choice is also provided. Since the problem is nonconvex and 

NP-hard, Section 4 presents a heuristic solution method and suggestions for meta-heuristics, using a 

simple test network to demonstrate the method and the sensitivity of underlying assumptions. Section 5 

presents a larger-scale case study of the Orange County, California region as a test network to 

demonstrate the model’s practical application to systematic improvement. 

 

2. Motivating Examples 

The argument that we provide here, much like Perl and Daskin (1985) did for locating 

warehouses, is that the choice of which element of a network to improve can have a significant impact on 

how impacted households set their itineraries each day. Trip-based (even dynamic ones) or fixed 

schedules ignore changes that each driver/household makes according to the changes made in the network, 

such as departure time, sequence of activities, or routing. The following three cases demonstrate the 

influence that network designs can have on a household, which would be unaccountable under trip-based 

circumstances. For these examples, the utility maximization framework from Recker (1995) is assumed: 

households are multi-objective decision-makers with their own sets of objectives with respective weights 

that dictate how they choose to schedule and route their activities. This has been demonstrated empirically 

in Chow and Recker (2012) where a population of households were fitted with heterogeneous sets of 



objective weights and desired arrival times to activities such that each of their observed itineraries were 

considered optimal to them.  

 

2.1.   Departure Time Choice and Itinerary Re-Sequencing 

Assume a household has one household member and one vehicle, and two activities to perform 

for the day: a work activity and a grocery shopping activity. Specifications of start and completion time 

windows and activity duration are shown in Table 1, in units of hours
1
. Assume also that the household 

objective is solely to minimize the length of their itinerary, 2 1 0min ( )v v

n

v V

Z T T
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Table 1. Case 1 household characteristics  

Household Location 
 

,h h

u ua b     
,

h h

h h

n u n ua b 
 
   

h

us
 

Home
 

Node 0  0 0, 6,21h ha b     2 1 2 1, [10,22]
h h

h h

n na b 
     

NA 

work activity
 

Node 3  9,9
  10,22

 
8 

Grocery Shopping activity
 

Node 1  5,20
  6,22

 
1 

 

Assume a grid network with four nodes, and network connections as shown in Figure 1-(a).  

Travel time for each link is 0.5 hours. Figure 1-(b) shows the optimal pattern if no investment is made.  

 

                       
(a) Current Network     (b) Optimal Household Activity Pattern 

 

                                                      
1
 Here and throughout, the notation used in Recker (1995) is followed. 
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(c) 03 0.7t   → Time Adjustment  (d) 30 0.7t   → Activity Sequence and Time Adjustment 

Figure 1: The Optimal Household Activity Patterns for Case 1 

 

Even in this simplest case, two types of schedule responses can be observed for standard link 

investments which would be ignored in conventional NDPs. If link {0,3} is constructed with travel time 

of 0.7 hours as shown in Figure 1-(c), the household would now be able to delay its departure time from 

8AM to 8:18AM. Alternatively, if link {3,0} is instead constructed with travel time of 0.7 hours as shown 

in Figure 1-(d), the optimal itinerary results in a re-sequence of activities as well as an adjustment in 

departure times.  

 

2.2.  Trip Chaining Trade-Offs 

A paradoxical consequence of considering elastic itineraries in network design is that it is 

possible to evaluate a link investment that generates traffic without any increase in economic activity. 

Traditionally, the argument made with elastic demand considerations is that improving infrastructure may 

result in additional trips made to fulfill latent demand between an OD pair. However, exceptions can also 

exist if travel is viewed as a way of achieving objectives while constrained within a space-time prism. By 

relaxing some of those constraints through network improvements, we may observe only increased trips 

due to untangling of less desired travel patterns within the tighter constraints. This can result in more trips 

made if it improves the overall objective of the household but would not contribute in any way to 

economic demand because the household may be reconfiguring the same itinerary without adding new 

destinations to visit. This occurrence can be best illustrated with a household with activities that have very 

strict time windows. 

We consider the same activity agenda as in the previous section, but with both activities having 

strict constraining start time windows as in Table 2.  Both activities require the household member to be 

at the respective locations at a specific time, which is often quite a realistic assumption. Assume also that 

this particular household has two potentially conflicting objectives: to minimize the travel time with 

weight T , and to minimize delay from returning home after an activity, with weight   . The delay from 

returning home objective represents the desire of the household to minimize the duration of any particular 

activity period away from home, as discussed in Recker (1995) and calibrated empirically in Chow and 

Recker (2012). The higher the weight of this objective relative to travel time, the more likely it is that a 

household would not want to trip chain. Then the objective function becomes: 
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where the weights are assumed to be      and     . The optimal solution on the base network is 

shown in Figure 2-(a), with the objective function travel disutility of 14.25 and a total of three trips made.  

Due to the time windows, the household traveler is constrained to trip chain from the work activity to the 

social activity.  

 

Table 2. Case 2 household characteristics
 

Household Location 
 

,u ua b    
,n u n ua b 

    us
 

Home
 

Node 0  0 0, 6,21a b     2 2, [10,22]n u n ua b 
     

NA 

work activity
 

Node 3  9,9
  10,22

 
8 

social activity
 

Node 1  18.25,18.25
  18.5,22

 
1 

 

 

   

   

(a) Optimal Household Activity Pattern   (b)
 30 0.7t   → extra trip generation   

Figure 2: The Optimal Household Activity Patterns for Case 2 

 

Now consider a link addition {3,0} with travel time of 0.7 hours.  Because the household can now return 

home immediately after work and still make the social activity in time, they do so for an improved travel 

disutility of 12.9. The result is not only a change in trip ODs (due to re-sequence in a tour), but one extra 

trip is also created as shown in Figure 2-b (4 trips). Essentially a trip has been added without adding a 

new non-home destination to visit, but the household sees an improvement in travel disutility because of 

the relaxation of spatial-temporal constraints that were binding before the network improvement. A 

conventional trip-based approach, or even a fixed schedule approach, would miss such a response 

altogether.   

 

 

Work

Social

8:00

9:00

18:15

19:45

17:30

Waiting 
time

17:00 17:00

Work

Social

8:00

9:00

18:15

19:45

17:42

17:45



2.3. Increasing Travel Disutility 

If we consider a continuous link improvement (in which a route travel time is improved), then 

another counterintuitive situation can occur. Consider the household in Table 2 again, but in this case let’s 

assume that the household seeks to minimize idle time. Idle time is defined as the extent of the travel day 

that is not used in performing activities or traveling—such tradeoffs are similar to studies comparing 

values of in-vehicle travel time against out-of-vehicle access or idle/wait time. The potential for conflict 

between the two objectives is not immediately apparent; however, in the presence of strict time windows 

it is possible that improving travel times can result in increasing idle time.  

2 1 0min ( ) ( )v v v

T W uw uw W n

v V w u v V

Z t X T T   

   

       
N N

  

Where 1T   and 1.5W  . The durations of the activities    are not included because they are 

constant and drop out. In the base case shown in Figure 2-(a), the disutility under this new objective is 

16.625 instead of 14.25.  

If a continuous improvement is made to link {3,1} such that travel time improves from 0.5 hours 

to 0.25 hours (e.g. repaving, lane expansion), then due to time window constraints there are no other 

alternative routes and the household would still have to follow the same schedule. However, this results in 

a direct trade-off between travel time and idle time. If a household values idle time minimization more 

than travel time minimization, then such an improvement can result in a paradoxically higher disutility, 

even without considering congestion effects. The travel time improvement simply results in a decrease in 

travel time objective of 0.25 but a direct increase in idle time of 0.25. Since      , the disutility 

actually increases from 16.625 to 16.75. Effects such as this would be completely ignored if NDPs were 

applied without considering their effect on household scheduling. However, explicitly incorporating 

household scheduling mechanisms into the NDP allow paradoxes such as this to be avoided.  

We have presented three scenarios that can arise from network improvements when realistically 

considering the effects they have on household scheduling and planning. Network changes can cause 

significant reshaping of temporal /spatial constraints for households which result in changes in their trip 

patterns. We argue that these effects should not be ignored when considering NDPs at the tactical or 

planning level.  

 

3. Proposed NDP-HAPP Model 

3.1. Definitions 

As a kernel activity-based NDP, the NDP-HAPP is formulated using the simplest structure. 

Essentially, the activity-based NDP using HAPP subproblems to address household schedule response to 

network changes is here designated as NDP-HAPP. More complex formulations that explore link 

capacities, vehicle and household member interactions, multimodal networks, or congestion effects will 

be explored in future research. The kernel formulation is first presented as a set of multiple subproblems, 

and then further modified to consider activity choice in cases with non-compulsory activities. There are 

two distinct types of networks in this problem: an infrastructure network where changes can actively be 

made, and a responsive activity network that represents the routing and scheduling decisions made at the 

household level. Assume an infrastructure network layer IL , and the following parameters for the 

infrastructure network system: 

 

N  set of all nodes in the analysis 

E  set of all direct links in the analysis 

ijF  fixed arc design costs 



ijc  operational per unit link routing costs 

B  total budget for the network system  

ijt  travel time between the direct link from node i to node j 

,v h

ijc  personal travel cost for vehicle v of household h , between the direct link from node i to node j 

 

Variables concerning the infrastructure network system are:  

ijf  flow on direct link ( , )i j  

ijz  binary decision variable that indicates whether or not link ( , )i j  is chosen as part of the 

network’s design 

 

Assume also an activity layer AL , and the following parameters for the activity network system 

P  set of all activity nodes in the analysis.  It is a subset of the node set from the infrastructure 

network, N . 

( , ),      ,u w u wP  route from activity point u  to activity point w . Its connectivity is derived from 

IL .   

1 2{ , ,..., ,..., }h h hH H  set of households using on the activity nodes P  in the analysis. 

 

Although their physical locations are the same, the two sets of networks operate in a bi-level 

fashion. This bi-level property of NDP-HAPP, together with it unfolding in the time-space dimension, can 

be conceptually depicted in Figure 3. Such separation of networks, a supernetwork approach, has been 

used widely in activity-based transportation networks, mainly concerning various modal choices and their 

specific networks (e.g., TRANSIMS, 2012; Arentze and Timmermans, 2003). However, an optimization-

based routing and scheduling procedure has never been applied to the activity layer in response to 

infrastructure changes. 

 



 
Figure 3. Bi-level interactions between the infrastructure and activity networks 

 

 

Following the notation of Recker (1995), we define the following sets and parameters that are specific for 

each household, hH : 

 

{ , ,...}a b

h h h β   the set of relative weights for different travel disutility terms for household h   

hA  the set of out-of-home activities to be completed by travelers in household,  . 

hV : the set of vehicles used by travelers in household   to complete their scheduled activities. 

h hn A  the number of activities to be performed by household   

hP  P :  the set designating location at which each assigned activity is performed for household,  .  

Each activity and the physical location is different for each household. 

hP  P :  the set designating the ultimate destination of the “return to home” trip from out-of-home 

activities to be completed by travelers in household,  . (Note: the physical location of 

each element of 
A

hP 
 is “home”.) 

,h h

u ua b   :  the time window of available start times for activity I for household h .   

,
h h

h h

n u n ua b 
 
  :  the time windows for the “return home” arrival from activity  I of household h . (Note: 

h

ib  must precede 
h

h

n ub  by an amount equal to or greater than the duration of the activity) 

0 0,h ha b   :  the departure window for the beginning of the travel day for household h . 

2 1 2 1,
h h

h h

n na b 
 
  : the arrival window by which time all members of the household h  must complete their 

travel. 

H1
H2

H



h

us :  the duration of activity  u of household h . 

h

uwt :  the travel time from the location of activity  u  to the location of activity w. 

,h

uwc : travel cost for household h , from location of activity u to the location of activity w  by 

vehicle . 
h

CB :  the travel cost budget for household h . 

,h

TB
:  the travel time budget for the household h ’s member using vehicle . 

 =  h h h

 P P P : the set of nodes comprising completion of the activities of household h . 

 0, ,2 1h h hn Q P : the set of all nodes for household h , including those associated with the initial 

departure and final return to home.  This is a subset of P . 

 

Here ,i j are used to refer to nodes in the infrastructure layer, and link ( ,i j ) refers to the direct 

link connecting those two nodes. Notation ,u w  are used to refer to activity nodes in the activity layer, 

and it is not necessarily a direct infrastructure link but rather a path between ,u w . Path information such 

as travel time and travel cost are passed onto the activity layer from the infrastructure layer, but the 

connectivity data of the path needs to be drawn from the infrastructure layer.   

 

The household-specific decision variables are: 

 
, ,     , , ,v h

uv h hX u w v V h  Q H  binary decision variable equal to one if vehicle    travels from 

activity  u  to activity  w, and zero otherwise. 

,     ,h

u hT u P h H   time at which participation in activity u of household   begins. 

, ,

0 2 1, ,     ,
h

v h v h

n hT T u P h  H  times at which vehicle  from household   first departs from home and 

last returns to home, respectively  

,     ,h

u hY u P h H  total accumulation of either sojourns or time (depending on the selection 

of  D  and  ud )  of household   on a particular tour immediately 

following completion of activity u. 

 

Variables connecting the infrastructure network, IL , and the activity network system, AL , are: 

  

, , ( )uw ij uw ij  z  binary indicator variable whether route uw in the activity network uses link ij in 

IL . Assuming the shortest cost path is used between two activity nodes, the design 

variables determine the connectivity of nodes in IL . If link ij  
is not constructed, 0ijz  , 

,uw ij is automatically 0, and otherwise, it can be identified by solving a shortest path 

problem between the origin and the destination, uw . 

*, ,

,

0 0
( )

( ) 1

ij

uw ij uw ij

uw ij ij

z

z
 




  


z

 

where 
*

,( )uw ij  is the solution of a shortest path problem for each activity link ,u w , i.e. 



Shortest Path Allocation Problem 

,

( , )

min ij uw ij

i j

t 



E       

 (1)
 

Subject to 

, ,

1

0 ,

1

uw ji uw ij

j j

i u

i u w

i w

 
 




  
 

 
N N

    (2) 

, (0,1)uw ji 
       (3) 

 

The problem is defined for all households and their activity routes, , , ,h hu w v V h  Q H .  

 

( )uw uwt t z : travel time from the location of activity u to the location of activity w. It is a function of 

the decision variable vector z , and the given network ( , )N E
 
since the connectivity 

decision variables of ijz  determine the travel times. 

,( ) ( ),     , ,uw uw ij uw ij h

j i

t t z t u w h
 

    
E E

z Q H

   

(4) 

 
, , ( )v h v h

uw uwc c z  travel cost from the location of activity u to the location of activity w for vehicle   of 

household h . It is a function of the decision variable vector z , and the given network 

( , )N E
 
since the connectivity decision variables of ijz  determine the travel times. 

, , ,

,( ) ( ),     ,v h v h v h

uw uw ij uw ij h

j i

c c z c u w
 

   
E E

z Q

   

(5)

 
( )ij ijf f X   link flow on direct link ij. It is a function of the household activity decision variable 

vector, X , and connects the path flow on layer AL
 
to the link flow on layer IL . E given 

network ( , )N E
 
since the connectivity decision variables of ijz  determine the travel 

times. 
,

,( ) ( ) ,      ( , )
h

h h

v h

ij uw ij uw

h u w v V

f X X i j
   

    
H Q Q

z E

  

(6)

 
 

3.2. Decomposed Formulation of NDP-HAPP 

Typically, the LRP formulation includes three parts: location, routing, and allocation. This 

property applies to the NDP-HAPP as well, where the upper level “location” is the network design 

variables and the lower level routing part is the HAPP model. Allocation refers to assignment of the 

activity link impedance from the shortest path problem in the infrastructure network, already shown in 

Equation (1) – (3). The objective function of the upper problem in the LRP is to minimize the overall cost, 

which is comprised of depot cost and vehicle cost.  

Similarly, NDP-HAPP in the most basic form is decomposed into two models solved as a bi-level 

problem: NDP (upper) and HAPP (lower). There are two sets of decision makers, so the solution can be 

classified as a leader/follower Stackelberg equilibrium, as described in Yang and Bell (1998). Instead of a 

traffic equilibrium lower level problem, the NDP-HAPP has a set of household scheduling problems in 

the lower level, where each household decides on its activity pattern. Considering the network design 



problem as the upper level decision and the household activity/scheduling/routing decisions (HAPP) as 

reactions to the network design, we can express the problem most generally in Equations (7). 

 

,min ( , ( ( )), ( )) ( )

subject to 

( , ( ( )), ( )) 0

z f dNDPG z f X z T z z

H z f X z T z
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,min ( , ( ( ))) ( , ( ( )))

subject to 

( , , ( ( ))) 0

X T dHAPPg X T f X T f

h z X T f

  





     

(7b)

 

 

where G  is the objective function, z is the decision vector, and H  is the constraint set of the upper level 

problem.  In the lower level problem, g  is the objective function, ,X T  is the decision vector, and h  is 

the constraint set. 

The kernel network design problem we present is simply a modified version of the unconstrained 

multicommodity case of the formulation in Magnanti and Wong (1984). The formulation minimizes the 

design cost while satisfying the given flow demands at origin and destination nodes. The formulation is in 

terms of direct links and link flows only, whereas the integrated NDP-HAPP includes path flows which 

are connected to direct link flows, ijf , by ,uw ij . In order for the OD pairs to be assigned to sequences of 

direct links, we treat each OD pair as a commodity as in the case of multicommodity flow problems, i.e., 

we define a single commodity , ( , )uw

ijf u w K  where 
( , )

uw

ij ij

u w

f f


 
K

, where K is the set of all OD 

 ,u w  pairs.   

We formulate this decomposed NDP (dNDP) in terms of direct link flows only, and each OD pair 

is represented as a commodity. The demand values are calculated as shown in Equation (14).  They take 

household sequence decisions and aggregate them into origin-destination pairs.  

 

Upper Level NDP (dNDP) 
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where 
, ,      , ( , )

h

uw v h

uw

h v V

D X w i u w
 

    
H

N K        (14) 

 



Equations (9) – (10) require each path ( , )u w K  to satisfy the given OD demand.  Equations (11) 

simply show the conservation of flows for intermediate nodes. Equation (12) constrains flow variables to 

be on the links that are built in a manner that does not exceed the capacity.  Because we do not consider 

cases in which the capacity of links is exceeded in this paper, only the shortest path will be loaded with 

flows.  As such, the shortest path information is provided directly by the 
uw

ijf  variable. We can implicitly 

obtain the shortest path variables for each OD pair as shown in Equation (15) instead of having to solve 

Equations (1) – (3) separately.  

 

,

0 0
,        ( , ) , ( , ) , ,

1 otherwise

uw

ij

uw ij h

f
i j u w v V h

 
     


E K H
    

(15) 

 

 

The decomposed lower-level HAPP (dHAPP) problem is shown in Equations (16) – (19). It is 

composed of the set of constraints in the Appendix which would be equivalent to the original constraints 

from Case 1 in Recker (1995) if travel time/cost factors are not functions of the allocated shortest path. 

Also, each household can be treated separately since all constraints as well as the objective functions are 

separable by households. With constant travel times/costs, i.e., without congestion effects, each 

household’s dHAPP is solved separately.  

 

Lower Level HAPP (dHAPP) for Each Household 
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,
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(19) 

 

As discussed in other HAPP model studies, the objective shown in Equation (16) is just one 

example multiobjective problem. Others can be specified and estimated using the method from Chow and 

Recker (2012). The process of specifying the multiple objectives and calibrating their coefficients with 

desired arrival times can be thought of as a confirmatory, normative modeling process that seeks to fit a 

hypothesis of how household travelers behave onto a data set. Fitness of an objective is determined by the 

significance of its estimated coefficient relative to other objectives. For example, a data set might reveal 

that Equation (16) results in a length of day coefficient (first term) equal to 0.0001 relative to a weight of 

1 for the travel cost objective. In that case, it would suggest that the first objective is not very important in 

the travelers’ scheduling choices.  

 

NDP-HAPP as presented in Section 3.2 differs conceptually from the LRP in two primary ways. 

First, the LRP has a single decision-maker involved in both planning and tactical strategic design, 

whereas the NDP-HAPP has a single decision-maker involved in planning and multiple household 

decision-makers responding to the plan at a tactical level. Second, the node demand for the upper level 



problem in the LRP is known a priori, but the cost of delivering service to the demand node is not known. 

Instead, it is derived from the output of the VRP. Alternatively, the NDP-HAPP does not have OD 

demand known a priori, but costs between each node are given. The OD demand is derived from the 

output of the HAPP.  

 

3.3. Generalized NDP-HAPP (NDP-GHAPP) 

The NDP-HAPP model is extended to include the capability for households to choose locations 

for non-primary activities, such as grocery shopping and refueling. This is simply done by relaxing the 

condition in the HAPP that each household needs to visit each specifically designated location, but rather 

visits one candidate location from a cluster of such service types. This is similar to the generalized 

traveling salesman problem (e.g. the E-GTSP in Fischetti et al., 1997) and generalized vehicle routing 

problem (Ghiani and Improta, 2000) in the logistics literature, where visits to nodes are modified to visits 

to single nodes from each cluster. The generalized HAPP (GHAPP) has been formulated and applied 

(Kang and Recker, 2012a; Kang and Recker, 2012b), and a variation of this approach with exogenously 

defined activity utilities and time windows was developed for activity-based traveler information systems 

(Chow and Liu, 2012). 
 

In GHAPP, the constraints in Equation (A1) are modified to Equation (A1-1). Instead of requiring 

each node to have a flow, the generalized formulation instead requires one node from a cluster of nodes to 

be visited. Compulsory activity types would only have one node in the cluster, whereas non-primary 

activities such as grocery shopping or refueling could have multiple candidate nodes to choose from.  

 
, 1,     ,

h hAa

v h

uw a

v wu

X A h
  

    
V QP

A H

        

(A1-1) 

 

where  

1 2{ , ,..., ,..., }a mA A A AA
 

the set of   different activity types with unspecified locations  

aAP
  the set designating “potential” locations at which activity aA  may be performed 

 

Integrated with NDP, GHAPP becomes infeasible if one or more candidate nodes are not 

connected to the network; constraints in (A7), (A11) also need to be modified to be conditional such that 

the temporal constraints are imposed only when there is a visit to that candidate location.  This allows 

having one or more of unconnected candidate nodes, which have infinite travel times.  
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 Similarly, when the objective function involves time variables, the time variables for the 

unvisited activity nodes need to be constrained. For example: 
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3.4. Decomposition Solution Algorithm 

There are many different types of solution algorithms developed for LRPs (Nagy and Salhi, 2007), 

and they can potentially be adopted for NDP-HAPP. However, the iterative method proposed here 

decomposes the problem into several blocks that actually represent each decision maker’s rationale in this 

complex problem.  Additionally, this kind of decomposition does not necessarily require the problem to 

be formulated in the structure of mathematical optimization as long as the drivers’ response to the 

network design is captured and updated. This means different types of integrated activity-based 

approaches can be used to model individuals’ routing/scheduling behavior. Because the majority of these 

activity-based models are based on discrete-choice models or simulation-based (e.g., Bowman and Ben-

Akiva, 2000; Bhat et al., 2004; Balmer et al., 2006), the suggested decomposition method is highly 

adaptable to different types of activity-based models.  

The decomposed problems remain computationally challenging, particularly the NP-hard HAPP. 

Because these problems are widely studied, there are various methods available. Geoffrion and Graves 

(1974) are referred for network design problems, and Cordeau and Laporte (2003) are referred for a 

survey of algorithms for the Pickup and Delivery Problem with Time Windows (PDPTW), which the 

simplest HAPP is based on. The decomposition proposed here is comparable to Perl and Daskin (1985) in 

the context of Location Routing Problems, and the Iterative Optimization Assignment (IOA) algorithm in 

Yang and Bell (1998) in the context of bi-level Network Design Problems. Perl and Daskin (1985) used 

three decomposed models to tackle the warehouse location routing problem: the complete multi-depot 

vehicle-dispatch problem (MDVDP), the warehouse location-allocation problem (WLAP), and the multi-

depot routing-allocation problem (MDRAP).  The location-allocation and muti-depot routing allocation 

blocks are in parallel with dNDP and dHAPP.  For NDP, the iterative optimization-equilibrium in Friesz 

and Harker (1985) includes similar blocks of Equilibrium Assignment Program and Design Optimization, 

in line with dHAPP and dNDP. Since there is no congestion in the dHAPP model, the issue of having 

IOA converge to a Cournot-Nash equilibrium is not relevant here.
2
 

An iterative solution algorithm for the NDP-HAPP is depicted in Figure 4. First, the initial 

network decision solution is assumed to use all links, 
0 1, ( , )ijz i j E .  Then, 

0

,uw ij  can be derived from 

0

ijz  using the standard shortest path problem—for example, Floyd’s Algorithm can be used to efficiently 

update the travel time matrix.  Based on the updated travel times, dHAPP is solved independently for 

each household since no congestion effect is present. Hypothetically speaking, if congestion is 

incorporated in future research (perhaps through integration with Lam and Yin’s (2001) framework), this 

framework should still be feasible. After the travel decisions are made by each household, supply and 

demand are updated from Equations (15).  dNDP can then be solved as the conventional NDP.  The 

proposed iterative process continues until there is no improvement in the objective function. The implicit 

shortest path allocation from the upper level problem and the path-link conversion conditions in 

Equations (4) – (6) are maintained throughout this iterative process. The same algorithm can be applied to 

NDP-GHAPP.  

 

                                                      
2
 For the examples and case studies presented in this paper, the overall processes are coded in Java calling 

a CPLEX library for dHAPP and dNDP problems.  
 



 
  

 

Figure 4. A decomposition solution method for NDP-HAPP 

  

4. Numerical Examples 

4.1. Simple Example with Known Optimal Solution 

Assume a grid network with nine nodes, with possible link construction as Figure 5. When 

constructed, travel time for each link is 0.5.  Construction cost for each link is 3, and operating cost per 

link per flow is 0.5, i.e.
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Assume two households, 1 2{ , }h hH , with one vehicle each, 1 2{1},  {1},V V   and their 

activities 1 {work, grocery shopping}A  , 2 {work, general shopping}A  to perform. These 

activities’ locations in the infrastructure layer are shown in Figure 5, and their activity start/end time 

windows, activity durations are all shown in Table 3.  Except for the activity start time windows of work 

activities, time windows are not necessarily constraining, leaving some room to explore different path 

sequences.  Both households’ objective functions are assumed to be minimizing total travel cost only 

(households consider the travel costs 1 for all direct links), 
, ,min ( )

h
h h

h v h v h

dHAPP uw uw

u w v V

X c X
  

   
Q Q

.  

 

Table 3. Simple Example Household Characteristics 

 
Location 

on 
IL
 

,h h

u ua b    
,

h h

h h

n u n ua b 
 
   

h

us
 

1h  home
 

Node 0  0 0, 6,21h ha b     2 1 2 1, [10,24]
h h

h h

n na b 
     

NA 

1h  work activity
 

Node 2  9,9.5
  10,22

 
8 

1h  grocery shopping activity
 

Node 5  5,22
  10,22

 
1 

2h  home
 

Node 5  0 0, 6,21h ha b     2 1 2 1, [10,22]
h h

h h

n na b 
     

NA 

2h  work activity
 

Node 6  8.5,9
  10,22

 
8 

2h  general shopping activity
 

Node 8  5,21
  10,22

 
1 

 

 

 

 
Figure 5. Supernetwork depiction. 

 

Because the NDP-HAPP is not a simple problem to check for optimality, all possible 

combinations of household decisions are enumerated and given to dNDP, and its objective value 

combined with the objective value of corresponding household decision combination is used to derive the 

true optimal solution value. Figure 6 shows the solution from the proposed method (6-(a), 6-(b)) and the 

actual optimal solution (6-(c), 6-(d)).  The decomposition solution converged after one iteration and is 5% 

AL

IL



worse than the actual optimal solution, 40, for this simple example.  Detailed illustration of the 

computational process is available in Table 4.   

 

       
(a)  Decomposition dNDP Solution        (b) Decomposition dHAPP Solution 

 

        
 

(c)  Optimal dNDP Solution         (d) Optimal dHAPP Solution 

Figure 6. NDP-HAPP Decomposition Solution Comparison to Enumerated Exact Solution. 
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Table 4. Detailed Computational Illustration of the basic NDP-HAPP Example 

 Iteration 1 Iteration 2 

dHAPP1 

Path
3
: Home (0) → work (2) → grocery shopping 

(5) → home (0) 

Objective Value: 3 

Path: Home (0) → work (2) → grocery 

shopping (5) → home (0) 

Objective Value: 3 

dHAPP2 

Path
4
: Home (5) → work (6) → general shopping  

(8) → home (5) 

Objective Value: 3 

Path: Home (5) → work (6) → general 

shopping  (8) → home (5) 

Objective Value: 3 

dNDP 

Network Design Decisions: Z01, Z12, Z25, Z30, 

Z36, Z43, Z54, Z36, Z78, Z85 

dNDP objective value: 36 

 

HH1 Paths link Flows:  

 Home (0) → (1) → Work (2) 

 Work (2) → Grocery Shopping (5)  
 Grocery Shopping (5) → (4) → (3) → Home 

(0)  
 

HH2 Paths link Flows:  

 Home (5) → (4) → (3) → Work (6)  

 Work (6) → (7) → General Shopping (8)  
 General Shopping (8) → Home (5) 
 
 

Update each dHAPP objective values: 

HH1: 3 

HH2: 3 

NA
5
 

Final 

Objective 
42 42 

 

4.2. Simple Example: Generalized HAPP 

Using the generalized model allows us to include behavioral changes in destination choice as well 

as routing/scheduling of activities with respect to network design decisions. Following the example in 

Section 4.1, assume that there are two grocery shopping locations, node 1 and node 5, 

{1,5}
aA GroceryShoppingP

  , and two general shopping locations, node 3 and node 8, {3,8}
aA GeneralShoppingP

 

—each household is required to visit one, and only one, of the candidate locations to perform the shop 

activity.   

Here, NDP-GHAPP optimality is checked in the same way as the previous example, i.e., by 

comparing to the results of dNDP for all possible combinations of household decisions, including the 

destination choice as well as path sequence decisions and arrival time decisions to return.  The solution 

from the iterative method reached the true optimal value after three iterations, shown in Figure 7. The 

intuition is that the flexibility introduced by NDP-GHAPP allows the method to search for many different 

options. Detailed illustration of the computational process of the proposed algorithm is shown in Table 5.  

                                                      
3
 These paths are based on the assumption that all links are available.  

4
 These paths are based on the assumption that all links are available.  

5
 No changes in variables and objective function value. Therefore aborted after this iteration.  



In this simple example, changes in activity sequence, link level flow in dNDP, and dNDP network design 

decisions are shown.  

 

             
(a)  Optimal Solution         (b) Optimal Solution 

Figure 7. NDP-SHAPP Example Enumerated Optimal Solution 

 

Table 5. Detailed Computational Illustration of the NDP-SHAPP Example 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

dHAPP1 

Path
6
: Home (0) → 

grocery shopping (1) 

→ work (2) → home 

(0) 

Objective Value: 2 

Path: Home (0) → 
work (2) → grocery 

shopping (1) → home 

(0) 

Objective Value: 2 

Path: Home (0) → 
grocery shopping (5)  

→ work (2) → home 

(0) 

Objective Value: 4 

Path: Home (0) 

→ grocery 

shopping (5)  → 
work (2) → home 

(0) 

Objective Value: 

3 

dHAPP2 

Path
7
: Home (5) → 

work (6) → general 

shopping  (8) → home 

(5) 

Objective Value: 3 

Path: Home (5) → 
work (6) → general 

shopping  (8) → home 

(5) 

Objective Value: 3 

Path: Home (5) → 
work (6) → general 

shopping  (3) → home 

(5) 

Objective Value: 4 

Path: Home (5) 

→ work (6) → 
general shopping  

(3) → home (5) 

Objective Value: 

4 

dNDP 

Network Design 

Decisions: 

 Z01, Z10, Z12, 

Z21, Z58, Z67, Z76, 

Z78, Z85, Z87 

Network Design 

Decisions: 

Z03, Z10, Z21, Z36, 

Z52, Z67, Z78, Z85 

dNDP objective 

Network Design 

Decisions: 

Z03, Z10, Z21, Z34, 

Z36, Z45, Z52, Z63 

dNDP objective 

NA
8
 

                                                      
6
 These paths are based on the assumption that all links are available.  

7
 These paths are based on the assumption that all links are available.  

8
 No changes in variables and objective function value. Therefore aborted after this iteration.  
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dNDP objective value: 

35 

 

HH1 Paths link 

Flows:  

 Home (0) → Grocery 
Shopping  (1) 

 Grocery Shopping 
(1) → Work (2)  

 Work (2) → (1) → 
Home (0)  
 

HH2 Paths link 

Flows:  

 Home (5) → (8) → 
(7) → Work (6)  

 Work (6) → (7) → 
General Shopping 
(8)  

 General Shopping 
(8) → Home (5) 

 
 
 

Update each dHAPP 

objective values: 

HH1: 2 

HH2: 3 

value: 32 

 

 

HH1 Paths link 

Flows:  

 Home (0) → (3) → 
(6) → (7) → (8) → 
(5) →  Work (2) 

 Work (2) →Grocery 
Shopping (1)  

 Grocery Shopping 
(1) → Home (0)  
 

HH2 Paths link 

Flows:  

 Home (5) → (2) → 
(1) → (0) → (3) → 
Work (6)  

 Work (6) → (7) → 
General Shopping 
(8)  

 General Shopping 
(8) → Home (5) 

 

 

Update each dHAPP 

objective values: 

HH1: 4 

HH2: 4 

value: 31 

 

 

HH1 Paths link 

Flows:  

 Home (0) → (3) → 
(4) → Grocery 
Shopping (5)  

 Grocery Shopping 
(5) → Work (2)  

 Work (2) → (1) → 
Home (0)  
 

HH2 Paths link 

Flows:  

 Home (5) → (2) → 
(1) → (0) → (3) → 
Work (6)  

 Work (6) → General 
Shopping (3)  

 General Shopping 
(3) → (4) → Home 
(5) 

 

Update each dHAPP 

objective values: 

HH1: 3 

HH2: 4 

Final 

Objective 
40 40 38 38 

 

4.3. Large Network Example: NDP-HAPP 

This case study focuses on a major roadway system located in Orange County, a subsystem of the 

Los Angeles metropolitan roadway network, to compare the NDP-HAPP with the conventional NDP. The 

base network with household locations and their activities throughout the day are shown in Figure 8-(a). 

We assume that the network design decision maker is a public agency from Orange County, and its goal 

is to provide the best mobility for Orange County residents, where the mobility is expressed in terms of 

total travel times.  Hypothetically suggested candidate improvements on the network system are 

extensions of SR 39, SR 57, SR 55, SR 22, SR 261, and SR 241 as seen in dashed red lines in Figure 8-

(b).     

Specifications of each candidate link are in Appendix B. The speed is drawn from the average 

speed for all links on the same facility, and construction cost for each link is assumed to be proportional 

to both average speed and distance.   



    

(a) Sample households and their activity locations   (b)   Extracted network 

Figure 8. Large-Scale Case Study Area 

A sample of 60 single-member, single-vehicle households residing in Orange County drawn from 

the California Travel Survey (2001) is used to reflect fairly realistic trip patterns of this class of 

households. The objective function for dNDP is to minimize the total travel times for the system, 

( , )

min ( , )dNDP ij ji

i j

z f t f


 
E

, and the objective function for each dHAPP is to minimize its own travel 

disutility. For this example, individual household’s travel disutility is defined by the linear combination of 

the total extent of the day, the travel times, and the delay of return home caused by trip chaining for each 

of out-of-home activities by the individual weights of such measurements, , ,E T D

h h h   : 

 

The weights of these 60 households are individually estimated from the inverse optimization calibration 

process in Chow and Recker (2012).   For the households in the sample, the estimated results have the 

values of 0.84, 0.74, 3.45E D T

h h h     , which means that on average these household decision 

makers value a minute of travel time savings about 4 times more than a minute of  total extent of the day 

savings, and about 5 times more than a minute delay in returning home caused by trip chaining from out-

of-home activities. The values were based on having the same set of arrival time penalties for all activity 

types, with 0.613 early penalty and 2.396 late penalty, similar to Chow and Recker (2012). The 

correlations from the 60 samples were close to zero for ,E T  and ,D T , although the correlation between 

extent of day savings and return home delay was , 0.248E D  . Time windows of activities are 

separately estimated using the methodology from Kang and Recker (2012b), which adopted the method 

from Recker and Parimi (1999) with slight modifications. 

In Table 6, results of NDP-HAPP are compared to conventional NDP solutions that take the O/D 

matrix derived from the optimal HAPP results with current network as an input.   Six different budget 

limits are tested. The results indicate that both dNDP and dHAPP objective function values improved 
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with increasing budget limits, together with more households benefiting from the improvements.  These 

households experience shorter travel times, but given the coarse geographic network, these improvements 

are not sufficiently large for the sample households to change their activity sequences. The O/D table 

stays the same, and therefore the conventional NDP delivers what appears to be the same results as NDP-

HAPP. However, a view of the time of day distribution of all activity participation reveals changes that 

can be captured as a result of the NDP-HAPP, as shown in Figure 9.  

 

 

Figure 9: Comparison of Activity Arrival Time Histograms  

  

As shown in Figure 9, the schedules of most households did not change much towards the 

evening, but shifts in arrival times can be seen as a consequence of changes in the network. There is a 

noticeable shift, particularly in the morning periods, as a result of the network improvements and the 

structure of the time windows defined for the households’ activities. 
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Table 6. Large-Scale NDP-HAPP Results 

Budget 

NDP-HAPP Conventional NDP 

# 

iterations 

Link Construction 

Decision 

dNDP 

objective 

dHAPP 

objective 

# total trips 

(# intrazonal) 

# HHs 

affected 

Link Construction 

Decision 

NDP 

objective 

Before 

Improvement 
NA NA 27.02 616.49 

199 

(76) 
NA NA 27.02 

1000 2 8988, 7875, 7578 25.99 609.58 
199 

(76) 
5/60 8988, 7875, 7578 25.99 

2000 2 
8988, 7875, 7578, 7937, 

8660, 6786, 8887 
25.30 606.51 

199 

(76) 
13/60 

8988, 7875, 7578, 7937, 

8660, 6786, 8887 
25.30 

3000 2 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889 

24.88 604.49 
199 

(76) 
14/60 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889 

24.88 

4000 1 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889, 6162, 6589, 

8765, 8788 

24.79 604.12 
199 

(76) 
17/60 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889, 6162, 6589, 

8765, 8788 

24.79 

5000 1 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889, 6162, 6589, 

8765, 8788, 6261 

24.79 604.11 
199 

(76) 
17/60 

8988, 7875, 7578, 7937, 

8660, 6786, 8887, 6086, 

8667, 8889, 6162, 6589, 

8765, 8788, 6261 

24.79 

No Limit 1 All 24.79 604.11 
199 

(76) 
17/60 All 24.79 

 

 



5. Conclusion 

Given the arguments for considering activity behavior in transportation planning, it is logical to 

consider the applicability of activity scheduling in network design problems. Conventional NDPs studied 

previously focused on congestion issues, such as Braess’ Paradox. This research takes a step toward 

gaining a better insight to NDPs where OD demand is not known a priori, but rather is the subject of 

responses in household itinerary choices that depend on the infrastructure improvements. Using simple 

examples, we show that falsely assuming that household itineraries are not elastic can result in a lack of 

understanding in certain phenomena; e.g., increasing traffic even without increasing economic activity 

due to relaxing of space-time prism constraints, or worsening of utility despite infrastructure investments 

in cases where household objectives may conflict.  

 An activity-based network design problem is proposed using the location routing problem as 

inspiration. The kernel problem is a bilevel formulation that includes an upper level network design and 

shortest path problem while the lower level includes a set of disaggregate household itinerary 

optimization problems, posed as HAPP (or in the case with location choice, as generalized HAPP) models. 

As a bilevel problem with an NP-hard lower level problem, there is no algorithm for solving the NDP-

HAPP exactly. Nonetheless, the simple numerical examples demonstrate the sufficient accuracy of the 

decomposition heuristic algorithm derived from the LRP. The large numerical example based on Southern 

California data and setting suggest that even if infrastructure investments do not result in major changes 

in itineraries (or any, in this particular example), the results provide much higher resolution information 

to a decision-maker. Whereas a conventional NDP would output the best set of links to invest in given an 

assumed OD matrix, the NDP-HAPP can output the same best set of links, the same OD matrix, and a 

detailed temporal distribution of activity participation and travel. 

 Beyond the most obvious extensions and future research applicable to this work (improved 

heuristics, adding uncertainty, dynamic policies, etc.), there are a number of important issues that need 

further study. Congestion effects certainly fall among the top of that list. The kernel NDP-HAPP currently 

handles planning and tactical considerations, but expansions of the problem are needed include to 

operational design strategies such as optimal toll pricing, ramp metering, or signal timing. There are 

actually two levels of congestion for consideration. The first is the effect on the infrastructure layer, 

which is what Lam and Yin (2001) or a dynamic traffic assignment integration could achieve. Congested 

links in the upper level problem would result in multiple paths between each pair of nodes, which means 

some weighting of travel times is needed to translate over a single perceived travel time matrix for the 

lower level household scheduling problems. The other congestion effect is at the activity layer, and more 

generally speaking refers to both negative (congestion) and positive (bandwagon) effects. For example, 

the time-dependent utility of some activities may depend heavily on how popular they are with multiple 

individuals. Another effect that can be incorporated is the link capacity in the upper level problem. Since 

only the shortest path between all nodes is being allocated to the households, adding capacity would 

require some weighted average path travel times similar to the link congestion effect.  

 Another important consideration is the number of new types of NDPs that can benefit from 

having activity or itinerary response, not just from transportation planning perspective. In transportation 

planning there are many design problems where demand is not simply a single trip from origin to 

destination. One example is in public transit design, where station location and design is a significant 

determinant of fleet schedules and operations, which in turn have an effect on household travel itineraries.  
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Appendix A: dHAPP Constraints (same as original HAPP constraints in Recker, 1995) 
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Appendix B: Case Study Link Improvement  

ID A node B node Facility 
Distance 

(miles) 

Travel Time 

(minutes) 

Avg Speed 

(MPH) 
Cost 

3779 37 79 SR 39 6.03 13.13 27.56 166.19 

7937 79 37 SR 39 6.03 13.13 27.56 166.19 

7917 79 17 SR 39 5.5 11.98 27.56 151.58 

1779 17 79 SR 39 5.5 11.98 27.56 151.58 

6086 60 86 SR 57 6.36 6.50 58.75 373.65 

8660 86 60 SR 57 6.36 6.50 58.75 373.65 

8667 86 67 SR 57 4.77 4.87 58.75 280.24 

6786 67 86 SR 57 4.77 4.87 58.75 280.24 

4839 48 39 SR 55 12.27 15.68 46.96 576.20 

3948 39 48 SR 55 12.27 15.68 46.96 576.20 

6162 61 62 SR 22 5.29 6.71 47.28 250.11 

6261 62 61 SR 22 5.29 6.71 47.28 250.11 

6587 65 87 SR 261 4.6 4.30 64.20 295.32 

8765 87 65 SR 261 4.6 4.30 64.20 295.32 

8788 87 88 SR 261 2.53 2.36 64.20 162.43 

8887 88 87 SR 261 2.53 2.36 64.20 162.43 

8889 88 89 SR 261 4.07 3.80 64.20 261.29 

8988 89 88 SR 261 4.07 3.80 64.20 261.29 

7875 78 75 SR 241 5.65 5.21 65.09 367.76 

7578 75 78 SR 241 5.65 5.21 65.09 367.76 

 

 




