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ABSTRACT

Avsfudy is made of the kinematical properties in four—moménta 4
spacé of scattering amplitudes involving two incoming and two oqtgding ‘
massive'particles With arbitrary spihs. For reaéoné of simplicity in
cbhsiderihg analytic propérties, the M fﬁnctibn, Or‘Spinor Amplitude,
fOrmélism'isvemployed, a.choice that has no précticaL effect on the
results. Complex cOvériance at points_ﬁhere the scattering functions
are holomdrphic is employed to_find points wheré‘there are kinematical
restrictibns on them. Tﬁe‘effect Qf discrete symﬁetries is then
acc§untgd for. It is shown that a deéompoéition iﬁﬁo.sumé involving
invariant amplitudes free of any kinematical Singuiarities'or ZETOes

and kinematical factors, or "standard covariants,"

is possible, provided
the latﬁér have certaih precisely specified properties derived from the
kinemdticai,behavior of the Spinor Amplitudes. Our approach is coﬁtrasted
to that using”éenter-of-mass helicity ampliﬁudes. Actual discussion of

the methods by which standard covariants may be constructed is left

for a second paper.



)

-1- . " UCRL-19460

INTRODUCTION
Ih considering a scattering process involving any nuﬁber of
particles.with spin, one is faced with two main préblems. The first
involves the treatment of the dynamical properties of the system, which
arise from the interactions that the pérticlés undérgo, and the second
involves the.kinematical'properties, which are i@poéed by the require-

ment of Lorentz invariance. One would like to treat the two properties

" separately, decomposing scattering amplitudes into sums involving purely

kinematical faétors and functions of the indepeﬁdent invariants formed
from the four-momenta, such that the latter contain only dynamical
singuiarities and zeroes. Then one would bevable to”writé dispersion.
relations in terms of invariants,l’2 and make dynamical approximations
for the scétﬁering functions.

Initially, one must regard the scattering amplitudes as functions
of the four-momenta of the particles involved. Tﬁe'éhoice of.amplitudes
to be uséd is far from unigque, since, if one wishes fo regard the
individual particle states as unitary representations of the inhomogeneous

Lorentz group, one has the freedom, among other possible choices, of

using the so-called canonical ba.sis,3’l‘L the hellcity basis,) or the
spinor basis?’6 However, it is simplest to work with the spinor
3,6 7-10

amplitudes, also called M functions, since it isvonly these

which can be holomorphic except foridynamical singularities.(—lo

Even when there are no spins and, consequently, no kinematical
factors involved, it is not trivial to express the analytic properties

in terms of invariants formed from the four-momenta. _Heppll and
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Williams12 showed that a multisheeted invariant function of any
number of four-vectors isvexpreésible as a function of invariants formed
from the four-vectors on a dense subdomain that is "saturated” with
respect to the mapping betﬁeeﬁ vectors and invariants. The result of
Hepp and Williams is a generalizétion of a theorem of Hall and Wightmanl5
that is not applicable to scattering fuﬁctions on the mass shell.

Fof scattering amplitﬁdes with arbitrary spins, the separation
of the kinematical and dynamical properties on "saturated" domains was
carried ouf explicitly by William512 ~ for the éase of four massive
particles, while Heppll showed héw to treat the casevof'any number
of particles. Unfortunately, iﬁ order to simplify the problem as much
as possiblé, these authors coupled all spinor indices with the same
transformation properties, using Clebsch-Gordan coefficients. These
couplings are not invariant under discrete symmetry transformations,and
complicate any attempt fo make practical use of(the results. Hepp
did prove for four-particle amplitudes that it is, in princi@le;
possible to find combinations of the coupled-spinor amplitudes that
have definite signature under the various discrete symmetry operations
and that are freé of kinematical singularities. When only two of the
four pafticles have spins,"Foxlh was able to actually find such
combinations. |

Most othér treatments have relied'almost‘exclusively on
perturbatioﬁ thegry, the philosophy of which was summarized‘ﬁy Hearn,15

to justify their results. The best known example is the familiar A

and B amplitudes for pion-nucleon scattering.l6 Recently Scadron
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and Jones;7 have given some of the relations that are needed to
apply this philosophy to scattering amplitudes involving two incoming
and tWOvoutgoing particles with arbitrary spins. A few authors have
tried to‘juStify their results on the basis of the Hall-Wightman
Theorem, an example being the invariant amplitudes for nucleon-nucleon
scattering.l8

Because of the results of Hepp,ll one is justified in using

the criteria of perturbation theoryl5

to get invariant amplitudes
free of kinematical singularities, even when using theories that do
not acknowledge the validity of the perturbation expansion of the

19 '

scattering amplitude. However, as anyone who has tried will
readily acknéﬁledge,_in practice‘the approach involves tiresome and
seeningly endless algebfaic manipulations that 6ffer no‘physical insight.
The main purpose_of thié péper.is to present an alternative means of
obtainiﬁg kinematical'singularity;free invariant amplitudes for the case
of two incoming and two éutgoing particles, using some simple analytic
and Lorentz covariance pfoperties that scattering amplitudes are
believed to satisfy as functions of their four-momenta on the mass
she11, 710

| Thé criteria that we develop to Jjustify the absence of kine-
matical singularities iﬁ a particﬁlar expansion of the scattering
function for two incoming and two ogtgoing particles are actually a
generalization of those used by Williamslg in connection with his
invariant amplitudes. However, in contrast to Williams, we avoid
the coupling of spinor indices.of the M functions,and, consequently; we

find it possible to account for the restrictions that the discrete

symmetries impose on the invariant amplitudes.



-k~ ' ‘ UCRL-19460

Section 2 introduces the S-matrix elements in canonical form
and the motives for preferring the M.fUnétions, or spinor amplitudes.
~ Following this, we review the analytic propefties of the "connected
parts” of the M functions, referred to as M° functions.

In Sec. 3, after éonsidering some consequéﬂées of Hall and

13

Wightman's treatment of complex four-vectors, we explain their

8,20 which states, among other things,

relevance fO'Stapp'S theorem,
that the Mc functions are covariant under complek Lorentz transforma-
tions at all pbints where they are regular.' We'define.”safurated"
domains iﬁ the space of the complex four momenta and use Stapp’s

theorem to find those points on such domains where there are kinematical
restrictions on the Mc funcfion§--that is; points at which Lorentz
covariancé'imposes é linear relationship betWeen their values.

Section 4 is concerned with the effect thaf'the various discrete
symmetrieévcanvhave; One result is that, if we divide the MC functions
into parfs having positive ana negative signaturé‘under spatial invér-
sion, ﬁhether or not it is actually a symmetry, the number of independent
cohpoﬁénté with a given signature is the same at all points on a
”saturaﬁed" domain wheréfthere are three linearly independent four-
momenta. This is true even though, as found by ﬁall and Wightman,13
sbme of these points have the same invariants fofmed from the foﬁr—
momenta as other points where there are only two linearly independent
momenta. -

In Sec. 5 we discuss the theorem of Hepp and Williams mentioned

earlier. Following this we show, for those cases in which only four

w

Y
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particles are involved, how our earlier discussion of the kinematical

~ and discrete symmetry restrictions at various points is relevant to the

problem of decomposing the scattering functions on ﬁsaturated" domains
into sums of invariant amplitudes describing only the dynamics and of&
kinematical factors or "standard covariants." This approach is compared

to recent éttempts to desdribe the analytic properties in terms of

' center-of-mass (c.m.) helicity amplitudes.21 The methods and

préﬁtical problems involved in actually constructing the sfandard
covariants are left for the following paper.

In reading this paper, we urge the reader to give particular
attention tb the discussion in Secs. 3 and 4 of special points in the
space of complex four-vectors, since this discussion ?roves essential
in.défining the,propérties of the standardvcovariants in Sec. 5.  One
can,however;’omit Parf C of Sec. L4, where restrictién due to symmetries

other thah parity are considered, without interrupting the smooth flow

~of the paper, and it would probably be advisable to do so at the first

readiﬁg.. Of the four appendices, the first three are concerned with'.
the Lorentz.Grqup and Spinors and play an importaht part in.establishing
our hotatién. The final appendix gives the proof of a lemma in Sec. 5
concerning the étandard covariants. |
We afoid any discussion of massless particles because; when one
or two of'the particles in a process involving two incoming and two
outgoing‘particles are massless, thé problem of finding standard
covarianfs for cases in which discrete symmetry operations are relevant
has been explicitly soived by Zwanziger.25 Compared with the case in which

all‘foﬁr particles are massive, this is not difficult to do.
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2. BASIC PROPERTIES OF TWO PARTICLE SCATTERING AMPLITUDES
A. The §-Matrix

Let us consider a scattering experiment in which particles 1
and 2 are incoming and particles 3 and L are outgoing. We specify the
results by the following information:

B v 3 v o )

(a) t, = [tl,tg} and t_ = {tB’th}’ vhere t, Lmi,gi,qi}
specifies the "type" of the particle. Here m, is the mass of the
particle, ji is its spin, and qi stands for all édditive guantum
numbers independent of the Lorentz Gfoup, i.e., baryon number, electric
charge, andlstrangeness. 7We ignore the effects of isotopic spin.

(b)) % = (k,,k.} and k = (k,,k }, where K, - x.%,%.)

N 125 K, 30Ky ), vhere ky 3 04
specifies the (real) four-momentum of the particle. The energy is
N ERY- R . o
positive and the mass shell constraint ki -ki = (mi), is satisfied.
It will prove convenient to introduce the notation Ki = {ki,ti}‘ and
K; = {ki,ti}, with obvious meanings for K, and be

(c)» o = (al,ag} and o = (QB’ah}’ Wherev a; 1is the spin
quantum number of the ith particle. Its value is one of the numbers.

,+ l’...}j

'jiy =J.

n -1, SP

i
The spin measurements for a given particle refer to that

particle's rest system. 1In such a frame; one specifies a unit three-

vector along which the values, ai, of the spin quantum numbers are

3,k

measured. In the "canonical” convention, which we adopt here,
this rest-frame vector is chosen along the 3 axis. It is a simple

matter to relate this choice to others; for example, the helicity
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convention;b where the rest-frame vector with respect to which the

spin components are specified is along the direction of motion of the

25

particle.
The relationship between measurements on_the initial and final
particles is expressed by the S-matrix elements S(Kb; Ka), which |
‘ O3 %y
contain a four-momentum conservation delta function‘that expresses
' 26

invariance under space-time translations. To each of the incoming

and outgoing particles one may assign a momentum-space wavefunction

i L
Wai (ki) with the norm

;‘A ] dki i* V_ i(k . : 1,040 1

{ ——6WOC (ki> WOA. ii)zla 1=L, ) . ( )
k. i i

Oéi 1

Then, the probability that the dutgoing particles are in the state
specified by their assigned wavefunctions if the incoming particles

have the given wavefunctions is ls(wb,wa)fg, where

S(y v, ) = /. Vo o (s5) w% (k) 5(Ky5 K,)
i=1 i 7 oo oy

1 2 '

X Wal (kl) Wag (kz) : (2)

The invariance of probabilities under a simultaneous proper

orthochronous Lorentz transformation of both incoming and outgoing

states leads to the relation 5,0,9,27
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S(ags M) = % @(kb)) % 5 @*(k )) S(K—b5 K) . (3)
Wi Gy %Yy

a?

The notation is such that D Jb)(@(kbi>oﬁé5 - ! ! D(Jl)<;(kii)a 1 ana
| | . i

(J )Q\*(k )> TT <A*(k ))a .. According to the spinor
i=1

calculus cbnvention introduced in Appendix A, each of the raised

'indices on the transfbfmation matrices is summed with the corresponding

S-matrix indéx,and dots are introduced over incoming spin indices to

. indicate‘that they transform‘like the complex conjﬁgate of outgoing

ones. Here A :.A(A,A*), where, as explained in,thé Appendix, A ‘is

a matrix in vSL(2,C), and A(ki),\defined by (A.33), is the matrix in

su(2) corresponding‘tdvthe "Wigner rotation” in (A.32). We have

adopted the convention AKi'% {Aki,ti}.

B.. The M Functions

The fact thét the spin transformation matrices in (3) deéendion
the four-momenta of,tﬁé particles leads to "kinemati¢al" singularities
in the f@uf-momenta when one’analytically continues such an expression
out of the physical région of the original process.. This, in turn,
leads to somewhat complicated croséing relationé between the amplitudeé
that are most natﬁral for describingbcertain physical processes that
are all actually described by a single sét of functiqns of.the four—
moménta. To simplify the various prope}ties just.ﬁentioned, it is

5,6510

convenient to introduce spinor amplitudes, or M functions.

F 2
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We may define M functions with lower undotted spinor indices
assigned to outgoing particles and lower dotted indices to incoming

particles by the relation

(. ) ) 1 (J ) Of' )
M5 k) = D (é’(kb))%% DB,y sk K, (8)
%3 Gy T g

where 15?(ki), defined in (A.24), is the Hermitian matrix in SL(2,C)
corresponding to the Hermitian "boost" L(ki) in (A.21) that carries
§£= (m,, 0) into k.. Then, using A = A(A, A¥), the following simple
covariance property is ‘easily verified from (3), (&), and (A.33):.
(3p) - oy () & -
b . a a ‘ '
M(AK 5 2K ) = D (A)ab D (A*Jda (K5 K,) (5)
O3 Oy a5 9
Instead, we could have defined M functions with all lower
undotted indices. It may be verified from (5) and’
: B (ja) -1 dé ' | -
MEs K) = D7 (o k,C /ma)@a MK 5 K,) - (6)
O3 Oy U3 Oy

with the aid of (B.6), that
Gy e () e
M(AK5 AK,) = D (A)ab D (A)“a M(K 5 K ) - (7)
%3 % %3 o
As a matter of fact, one is free to choose individual spinor

indices to have any desired transformation properties, since the type
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of spinor index chosen has no effect on the physics or on the analytic
properties. The matrix that transforms a particular spinor index from
one type to another is a holomorphic function of that particle‘s
four-momentum.

In the usual Way, we may express the M functions for a given
process as a sum of a "no-scattering" part and a "connected part,"
MO, in which all the particles interact.28 It is only the latter
‘ part in which we are intereeted, and we write it so as to explicitly

show the four-moméntum conservation delté functionf
MO( ; K ) = i au(k +k, -k, - k) Mc(kv- K.) (8)
Kps Ky)o= 1 2 3 b Kps K)o

where the spinor indices have been.suppressed.
Equation (8).defines Mc‘functions.ﬁhat are free of delta
.functions'and it is these whichvare regarded as analytic functions in
complex four—mqmenta space.in S-matrix thenny.7-lo ~+ To discuss these
analytic properties, one has.to take into consideration the fact that,
of the 16 components of the four-momenta, the mass.shell constraints
and four-momentum conservation allow only eight to be functionally
independent. There does not exist any set of eight independent
parameters such that the 16 componenté of the <ki)v, afe globally
holomorphic functions of these coordinates. However, there always
exist sets of "local” eoordinates,and "analyticity on the mass shell”
may be well-defined in terms of these coor-dinates.8’29

As usual, we use the term holomorphic to designate the property

of being analytic and single-valued. A domain is a connected open set,
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and, for our purposes, it is.sufficient to regard the "domain of
holomorphy" of a function as a union of Sheets, a sheet being the
maximum domain on Which the mapping from the local coordinates to the
function'is_single—valued.Bo Note that the definition of the domain
of holomorphy implies that the sheets may overlap; in fact, the location
of shéeté is somewhat arbitrary, and any point onvthe domain of holo-
morphy lies.on the interior of some sheet. We dévﬂot include poles
and branch points on any sheet, even though it is éustomary in physiés
to speak of a pole as lying on a particular‘sheét when the point at
which if‘écéurs is the limit of points on that sheet and‘not of points
on some other'sheet.

(19

For physical reasons one defines a "physical shee whose

boundary inclﬁdes the physical regions of the various processes related

oy crossing.2’6’9’;o

Although the singularities of the M functions
.are believed to be determined by unitarity, their exact locations and

nature do not affect the discussion in this paper.

-
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‘.5. PROPERTIES IN COMPLEX FOUR-MOMENTA SPACE
| A, Stapp{s Theorem
There is no need in this section to distinguish between
incoming and'outgoing particles?u'We may also avoid-specifying'spinor

index types by writing the covariance relation, of which (%) and (7)

are particular examples, in the form

W (A(A,ANK) = a(aa0) (K)o (9)

Any fuﬁction satisfying this property in some region of four-momenta
' A

+-covariant in that region.

8,20

space is said to be L
Following Stapp, let us define the domain of regularity of

the set of M® functions with the same incoming and outgoing parficles

to be ‘the intersections of their domains of holomorphy. A theorem of

8,20 - N ' . e .

Stapp says that, because the M® functions satisfy (9) in some

physicai region, they'are Ezf+fcovariant everywhere on their domain of

regularity{ By .;(+fcovariance one means the generalization of (9) to

complex Lorentz transfofmations. A function that is ;Zp+—covariant

on a domain D satisfies
MC(AA,B)K) = Aa,B) MO(K) (10)

wheneverébdfh k and A(A,B) k € D. As explained -in Appendix C,

A and B ¢ SL(2,C) and A(A,B) e-Zii;. The notation on the right-hand
(3;)

side of (10) indicates that the matrix D ~ (A) acts from the left

on the spinor index belonging to the ith particle if it is ldwer undotted,
(3;) o

while the matrix D = (B) acts on it if it is lower dotted.
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The ;'(/4_ orbit, }f+k, of any point k :'.{ki,---,ku} in the
space of the complex four-momenta is_the set of all pointé '
Ak = [Akl’."’Akh} oEtained by letting A e ;€+ take on all possible
values. Stapp's Theorem for the Mc fuhctions under.consideration
‘then says’,:8’2O
vSl; ‘The domain of fegularity of the Mcvfunctions is a union
of sheets. (Récall that branch points and poles are not included on
the sheets, which may overlap.) If_a sheet contains a point k, it
contains every_boint on thé‘same_ ;f:_ orbit.
SQ; The M® functions are ]1f+-covariant on-each sheet; that
is, they satisfy (10) there. |
S3. The sheets may be chosen such that all ?oints in a real
domain corrésponding to physical pqints lie on a singlé.sheet.
The abo?e sﬁatemenfs are actﬁally'valid for delta function-

31

free Mc'fgnctions describing the interaction of any number of particles.

B. Properties of Zf;_ Orbits

At any point k = {kl"'.’kh} in the spacé of the complex
four—mohentd we may define the scalar invariants ki- kj‘ For the
case of an arbitrary ﬁumber:of particles, one should_aisojcdnsider ﬁhe
pseudoscalar invariants formed by contracting the completely antisymmétric
tensor euvxp with thevfoﬁr—moménta. The invariants taken together
are then.réferred to as 564 invariants, Since they are invariant
under any Aeéfi, while the scalars alone are referred to as EZf

invariants, since they are invariant under any Aeéf = 5i1&/;1z, where
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;Z?_ is the set of improper lLorentz transformations. In the case
under consideration the pseudoscalars vanish identicaily, because four-
momentum cénservatibn allows at most three of the momenta to be
linearly independent at any point. Consequently,‘if makés no difference
whether we refer to two distinct poinﬁs as havingbthe same éZf?
invariants or the same 6Zi invariants, and we wili use the former
terminology.

Even though all points on the same’:2i4 orbit have the same
af + invariants, one.cénnot always specify orbits by tﬁe values of their
invariants,.since two distinct poiﬁts with the same EZ?L invariants do
not nécessarily lie on the same ;Zg+ érbit, as will be seen below.

13

Following Hall and Wightman, let us consider any real or complex

point k = (k e,k kn+l,"',ku], where the vectors are ordered such

17 n’
that the first n(k) are linearly'indepeﬁdent at the point under

consideration. Because of four-momentum conservation, n(k) < 3, and;

because'the-mass shell condition prevents the four—mbmenta from

vanishing identically, n(k) > 1.

Let us define the Gram determinant

(11)

and let r(k) be the rank of this determinant at the point k. Hall

13

and Wightman gave the following relationship between the rank of the



&

-15- : UCRL-19460

Gram determinant at any point and the number of linearly independent

four-vectors at that point:

r(k) -} n(k)

B 3

2 2 or 3 . : (12)
1 lor 2

The poésibility_oflhaving n.> r for r <2 is, as will be
seen below, a consequence of the fact that oné canbhave complex light-
like vecfors.in the épace'orthégonal to the fifst r vectors when
r < 2. From the considerations Qf Hall and Wightman - - fégarding the”
propérties,bf complex four-vectors we can make the lelOWing remarks,
keeping (12) in mind:

Hl. (a) At any r =n = 3, 2, or 1 point, one éan write
. | . | v :
‘ ,ki = § Qijkj’ for i=r+l,---,5 , (13)
S J=1 L

where the vCZ_ij's are finite scalar cbefficientsf. (Recall that the
first r ﬁ_n .Vectorsvare linearly independent at fhe given point and
tﬁat kﬁ is globally determinéd by four -momentum consefvation.)
(p) If k and k' are any two T = n points with the
same‘lzzzv invariants, they lié on the sa@e ,Et; orbit. | |
H2. (a) There exist r =2, n = 3 points with the same EZ?
invafiantsbas any given r = n = 2 point. TFor ekample, consider the

point kK determined by (1%) with r = 2. In the spatial direction
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orthogonal to the two linearly independent vectors kl and k2 one

may define real unit space-like vectors @l and 62 such that

@l- @2 = 0. Then define

A2 ,
w, = €& +i&" . » | (1%)
It follows.ﬁhat w, -kl =W, e k2 =w, - wi = 0. Nowvconsider two points
- t ' + *
k( ) and k( ) such that k( ) = {kl’kE’kB( )’kh( )}, where -
k’(i) _vk"+ Cw = i a k. + Cw (15).
> T3 + ‘3 311 -
Here k., k,; and kf' are the same as for the r =n = 2 point in (13),

()

while C # 0 1is an arbitrary real or complex number. - The points
and k(_) ‘are two.diétinCt n =3 points with the same ;Zf+ invariants
as the r =n = 2 "point obtained by.puttiﬁg C'=0 in (15). They are
related-ﬁy aﬁ improper Lorentz transformation that changes W, into

w_, while lééving k the‘samé.

1 2.

~and k
(b) The points 'k(+> and k(-) determined vy (15)
and_tﬁé f - n=2 point obtéined by putting ‘C = O_Iin‘that_equation
| all lie on different ZZi+ orbits. Any'othér 'r';‘z, n =% point
withhthe'same ’223+ invariants lies‘Qn_eitheiuthe"5{?+v orbit of ‘k(+)
or the 5{?+ ,orbit‘of k(;). Any point on one of theée two ofbits is
rélated to any pbint on the other by means of aﬁ improper Lorentz
transformation. As é'consequence of Hl.(b), we may state that, for
any seﬁ-of values of the ;zi+ invariants for which the rank of the

Gram determinant is 2, there exist three different EXT+ orbits.55
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(¢) Consider the limit C —0 "in (15), which yields an
T =n =2 point with thesame 5(f+ invariants. This means that any
neighborhood of an r=n-=2 point contains points of every I = 2,
n = 5' orbit with the same ;Zi+ invariants.
H3. (a) Similér remarks enable one to construct an infinite
number of r = 1, n =2 orbits having the same invariants as any
r=n =1 orbit. In this case, however, any two r =1, n =2 ‘pqihts

related by an improper Lorentz transformation lie on the same ;gil

.orbit.'

(b) The occurrence of r =.1 points is possible only in

M® functions for which the sum of some of the masses equals the sum of

‘the others. This follows from the conservation of energy and the fact

that every r =n = i orbit contains a point of the.formv ki = (fmi, 0)
for all k, € k. | | |

Hi. Let us define the little group Q&7+(k). at a point k to
be the set'of.propef Lorentz transfofmations that leave k invariant;
fe., A §5L(k) ~det A =1 and Ak = k. At any point k with

n

]

%, the only matrix in ;g7+(k)ﬁ is the unit matrix. However, if

n

| A

2, . 587*(k) is an infinite set.

We now introduce some terminology first'adOPted by Hepp.ll,lE,Eo

(1,) . A

The I+-saturated kernel, ia{a , of any sheet CZ{a on the domain of
regularity of the M° functions for a given process is the'largest
subdomain of ﬁZ{; such that, if it contains a point, it contains all .
points with the same :Qi; invariants. The I+-saturated kernel of the

domain of regularity of the’ MC functions is.the union of the I+-

saturated kernels of all sheets.
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Every r =n point on the domain‘of regularity lies on the
I+-saturated kernel. This remark is a consequence, first of ail, of
Hl1.(b) and H2.(c), which show that if an r = n point k lies on a
giVen sheeﬁ ﬁZ{a, then every neighborhobd of k on the sheet contains
points of every Eii_ orbit with the same iﬁvariants, and then of 81,
which guarantees that every point with the same ;<f+ invariants lies
on ‘2/a' However, an r =2, n = 3 point bn the domain of regularity
does not hecessarily lie on the I -saturated kernel, since it is
possiblé to have a singularity at an r =n =2 point which is a limit
point of the r =2, n = 3 orbit. Physiéal points on the domain of
.regularity are always on the I+-saturated kernel, since such points
are real and the construction in (14) and (15) shows that r #n points

" are always complex.

C. Kinematical Restrictions .
 Fach of the M -function components is a different function,
and the number of SuCh'independént functions is the same as the number

of values that the spinor indices take on. This is given by

N = ! 1(2ji +1) . o (16)
i=1 '

The result in (16) isbjust the number of independent scattering
experiments at a fixed physical value of the four;momenta, at least
on a dense subset of the physical points. Of course, for the four
particle MC functioﬁs-under consideration, discrete symmetries can

lead to. a relation between the results of Various'experiments, so that
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the numbef that are actuallj independently determined is less than the
number in (16). éuch réstrictioné Will be completely. ignored in this
section and will be the concern of the next one,'

Itvmay be possible to find sets of measure ééro in the complex
four—momenta space on which one can determine, from physical considera-
tions and the analytic propertiés,.a linear relationship, with constant
coeffiéiénts, between ?he values of the Mq—function components af any
point on suéh a set.B.6 Such.a restriction can be of dynamical or
kinematical origin, but it is only the latter typexwhich ﬁill‘be of
cbncern to us. We will shéw that at any point on'the' I+<satﬁrated
kernel Whére the rank of the Gram determinant is less than 3, Lorentz
covariancégalone.requires the number of Mc~funéfibn'components whose
,vaiues'can_ge indépendently assigned to be less than the number in
(16); that is, there are kinematical restrictions at such points. For
a given.péint_.k with n <'Z on a given'sheet i&(a this statement
~ follows imﬁediately from remark H4 and the ‘Ezf+ govariaﬁce relation

(10), the latter of which becomes, when A(Ak,Bk) € Q&Q(k),

CMC(K) = A(A,,B,) MO(K) . o (17)
Equation (17) is a Ilinear relation amohg the values of the
various Mq—fUnction componehts at the pqint under qonsideration.
Althoughbthe little gfoup at any r =2, n =3 'point contains only
the unit matrix, according to remark H4, we will also find a restriction
at any such point lying on the I+—saturated kernel of some sheet, due

to the fact that the ;i+ orbit on which it lies contains r =n = 2
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limit points orn the same sheet. It is trivial to extend our considera-
tions to r =1 poiﬁts and they will be omitted from our discussion.
It is sufficient to restrict our considerations to a single
point of any given r =n = 2 orbit on a given sheet, since (10)
guaranteesvthat the number of kinematically independent Mc~function

57

components is the same at all points on the orbit. On any
r = n =2 orblt, there is a point 'k such that the spatial components
of the vectors ki € k are all parallel to the 3 axis. Then, from

(A.9),
(1) + (k) 0
1 0 (k)

(18)

Let us now make the following choice for the_métrices A and

‘B SL(2,C), where ) is any complex parameter:

expl~n 0 ' :
A = | o >/2) | , - (19)
' 0 exp{)/2) ‘
exp(1/2) 0 |
B = . (19v)

o exp(-r/2)

From (C.1) it follows that A(A,B) k, =k, forall i= 1,000k,
when A and B are given by (19) and k 1is a point of the form in

(18), so ‘A(A,B) Dbelongs to the little group ;2?+(k).
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Because of (A.27), we have, when A and B are given by (19),

(3;) (3;)
D~ (A) expl-n Iy 1, (20a)

It

(3;) (3,)
D (B) gxp[x J5 1. (20b)

I

Suppose that the partiéles are ordered such that the first [
have lower.undotted spinor indices and the remaining 4-% have lower’
dotted ones, the assignment of index types to individudl particles being
completely afbitrary. Then, because of (17) and (20), we have, at any

point k of the form in (18) on any sheet,

¥4 L

) < e ) a - ) e )| vw (21)
(@)(8) s=1 =441 (@) (B)
where (a) = al---ag and (é) = é£+l"'éh are not to be confused

with the outgoing and incoming spinor indices of the preceding section.

Equation (21) requires that

oK) = 0 if a - B, £0 . (22)
(@) (3) >s: g | | |

Thefefore, the M -function components haVel”kinématical zeroes"
at any point of the form in (18). At other r =n = 2 points, the
relationship among the values of thé given componénts, as.given by (17),
will be more complicated, but the number of such linear relationships
will be the same as the number of "zeroes" in (22). It is convenient to

continue to use the term "kinematical zeroes' to refer to the

restrictions at these latter points.
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Now consider any 'r = 2, n = 3 orbit on the same sheet having
~the same ‘Eiz. invariants as the point k in (18). Again, it is
sufficient to consider a single point on the orbit to determine thé

number of kinematically independent Mq~function components anywhere

on the orbit. Thére is a point kK+) or k(—) on the orbit such that

*

(£), (%) (+) _ _ .
k. € k ~ has the form ki = ki + Ciw+, where ki is given by

i
(18), Ci is a real or complex number, and w, :v@l £ 1 é? is a

complex light-like vector in the space orthogonal to the ki. Choosing
the real space-like vectors @l and @2 to be parallel to the 1 and
2 axes respectively, we have from (18) and (A.9),

oy % ) (111)c, |
g ki - = . (25)

am)e, (k)" - (k)

Using A(A,B) defined by (19) and (C.1), but restricting our-

selves to real valﬁes of A, we find that
. () . _ :
lim A(A,B)ki = k3 i=l, ",4 : (24)
A— doo ’ . :
) ’ X ' . c e/o(+) '

with k., given by (18). Since M (K) and M {K'"’} , where the
obvious notation Ki(i) = {ki(i),ti} is.introducéd, have both been
assumed to lie on the same shéet, and since the holomorphy of M(K)
~at the point k yields its continuity there, we have, using (10), (20),

and (24),
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1im M© X(A,B)K(£{> = M(K)
MR Q) (B) (@) (5)

= lim exp[-x Zozs .— Z Py } 'M.CQ{(i))
s ot ;

A— T :
” (@) ()
In particular, (25) implies that

M° (k(i)) = v(x)
(@) (@) (p)

UCRL-19460

PRGN
s _ t

(25)

(26)

and, in order that the limiting procedure in (25)'be consistent with

the results for the r =n = 2 point k in (18) and (22), we must

have

(: j> -~ 0 if ZE; o <;

Oé)(B) , s

£ GO

(o) (p)

11
O

-

Bt)

T

(272)

(27v)

. - o o . c
There is, however, no kinematical restriction on the values of the M -~

function components with z: o, > 2: Bt. at the point k(+)’ and no

S

such restriction on those with E:‘as < E: Bt at the point k(_).
. R

s

Either of Egs. (27) is therefore sufficient to determine the number of

kinematical zerces at an r =2, nh =3 point, this number being

exactly half the number given by (22) for an r =

n

=2 point.38
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By adding up the number of Mc—function components not
restricted by (22) or (27), we can get the number of M -function
components whose values aré independent at any r = 2 point on the
I+—saturated'kernel. The result is given in Table I, which is actually
valid for MC functions with any number of particles, but fqr which at
most four Have spin. The last remark is a consequence of the fact that
(22) and (27) are valid for any number of incoming and outgoing particles

with arbitrary spins?




'~ Table I. Number of independent M°-function components at an r = 2 point.
These results are valid for the case when at most four particles have spins, although the
total_numbér of particles can be arbitrary, and are valid on the I+—saturated kernel of the domain of
regularity. Herer = fank of Grém determinant; We take jl + 32 .and 33 + jh both to be intggers,

with J) + 3, >3, + ) and Jp > dp, 3 > 9y

Number of lineariy independent 4-vectors, n
n =2 : ' : ' . n=3
Case I | _ |
317 3p 2 dg 3y § (Papr 1)(dgr 1)(25+ 1) (3% D@3+ 1)(235+ 1)(24),+ 1)
| | _ . |
Case II _ | | ' . _ ' {ﬁ
3ot 3y 237 g | (RIpr 1)(23,+ V(g 1) (3 D23+ 1)(23,+ 1)(23,+ 1)
R T R Loo v os e V(s e 4wt
317 3p 2 357 3y § 500 dut 3y 390 W% 357 - 3 1) | z0g% 5t dym 30 (G S5t Gy m 3t 1)
* (3o 353, 3+ 2) - (3p* 35+ 8- 3y @)
Case 11T , :
357 0y 2 dpm 3y [Rgr D023 1)(2gr 1) (23, + 100+ 1)(23,+ 1)(25,+ 1) o
| | | 3
2, D) - (Upr 0y 3m 3y) DS,y 1) - 0 3ym 3 3y) Z
: =
AR R BRI AR AR RIS &
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4. DISCRETE SYMMETRIES
A. ‘Identicai Particles, PCT, P, T, and c

Our present purpose is to discuss the restrictions Qn;the number
of independent M?—function components at various péihts.on thé domain
of regularity, in addition to those mentioned in the lasf section, if.
the functions have definite signature under the varioué discréte symmetry
operations. Most of the results are well known, and our main goal is
to find the‘results at points where the number of‘iinearly independent
four vectors, n, 1s 3, but the rank.of the Gram determinant, %, is 2.2LL

Invarianéévunder PCT and the connection between spin éﬁd
statistics are both consequences of the basic principles of S%matrix
theorylo and of Field Théory.Bh’39 in terms of the connecféd parts of

the S matrix in canonical form, the PCT idéntity reads

o G 70 B
PCT : S (K3 K ) = nPCT/[ D~ (c)y 8K K)o, o (28)

where is a phase factor. The spin—statistics éonnection states

per
that exchanging the order of the momenturn variables énd spin ;omponents
of any two identical initial or any two idéntical final partiéles of
spin j changes the sign of the scattering function by (—l)?j.

The assumption that tranéition probabilities are invafiant

under a change of direction of all spatial components of the four-

momenta leads to the relationuo

P:s®(K; K) = 8 sc(ﬁb; Ea) . . (29)
%3 Gy %3 % |
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~ F,\, ‘. . oA O ) .
Here X, = (k ,ti}, with k, = (ki s -gi), and np = +1 is the

"ho,ﬁl Provided all processes allowed by

'"process intrinsic parit&.
additive conservation laws occur in natﬁre and are invariant under
spatial-inversion,‘the cluster decomposition la.wu2 enables. one to
assign a real "particle intrinsic parity"_to each particle.hov For a
given process, np is then Jjust the prodﬁét of thg ”@article ihtrinsic
parities™ of the particles occurring in that process.

it ié straightforward to show that if transition proﬁabilities
are invariant under time reversal, which involves exchanging initial

and final states and changing the sign of all threelvectors, one may

write

T : sC(Kb; K,) = 7D ~(c), "D (c)s S?(ﬁ ;ﬁb) , - (30)
CL

o5 4,

where nT is an arbitrary constant phase factor for ta # tb’ but

g = +1. is required for an elastic process, i.e., one in which. by o=

It may happen that PT is a symmetry of the scattering amplitude
even if P - and T are not. 1In this case, one has
(5,0 o (3y)

P : 8°(K 5 K, ) - Moy D T (), %D (c)dbab s°(k,5 k), (31)
o5 Gy . ' a5 G

nPT'z +1 when ta = tb.

where
When (31) is valid, the PCT identity (28) requires charge

conjugation invariance;
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c':.sC(Kb; K.) ﬁC SC(K5; k) - (32)
O3 &y a5 & '

where né is a constant phasq factgr.

The relevant éymmetry relations for Mc functions with spinor
indices of.the types introduced in (4) and (6) follow easily from (28)-
(32) . and are given in Table ii. Theée relations are valid over the
entire domain of regﬁlarity of the M* functions if they are valid in
any real ﬁeighborhood of some physical region. Thus, if a given
symmetry is valid fof a cértain physical process,‘it_is vaiidvfor the
processéé related by crossing. Let ushunderStané that by —Ki we

6,10

mean {—ki,ti}. Then the crossing relation ’ . says, for example,

that when all the ki’s take on real values with positive energies
and when the point under consideration is on the boundary of the

"physical" sheet,

M (K, K, 3 Kl,ié) =, Mc(-Kﬁ,Ku; K, k) - (33)
0,3 0 Oty . 00,3 0

describes a physical process in which t2 ‘represents an outgoing

antiparticie of the particle t Iand' t, an incoming antiparticle of

2 5
the particle t,. The constant phase factor Ny has been discussed

5

elsewhere.6’lo

i
i
i
i
[
]
i
;
H
|
i
i
!
i
i
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Table II. Effect of invariance under various discrete symmetry operztions on the M~ functions

Na = number of fermicns .in state a

Symmetry M (Kb K ) MC(Kb; }.(a)
C’-b: aa ab; a&
(107 Mpey M(Ky 1K) _
Na c,~ = C;‘a 'Q‘b : : .
PCT (1) 7 g MRy K , '
a5 %y () 5-ka\ “a (3,) (o K %
“per \& ¢ ME(R, 5 Kb)
\ a’'.la o oy d; &
Ofb’ @ N c Zb’(f ¥
np ME(K5 K,) (-1) % np MO(K5 K,) ) .
. (ab>/ KEA )< > . “%’ K) . (3,), cmbkb : (Ja)C’“ ) e (Kb X
e /%% s N o, 2 %% b
N da
(-1) ® ny MC(I?&, K,) (‘ja)( ) o (jb)( ) & 'c(~ )
T . R (¢ D (), "M R
N (3,) /o k (3,) 75 E % % Y
(1) * nTDJ (m *} o kb\; MK K) %’ %
NI NI S oy
Na c
(1) ® 1y (K5 K, )
N d ;
PT (-1) & nyp ME(K5 K) "
%3 % G % (J ) /g - %
Ty D C f—a\ v MK 5 K,)
s % o &,
c 1 MoKy K) 0, MR K)
O/’b; o!a - Ob’ a

_62..
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B. TFunctions With Definite Parity Signature
Even when spatial inversion is not a symmetry of the process
under consideration, it can be useful to decompese the M functions
for two incomingvand two outgoing particles into parts having positive
and negative parity signature. Let us recall-ffdm.the discussion.of
Sec. 3 that, if the I+—saturated kernel, i&(aKI+), of a sheet £2{£é

on the domain of regularity of such Mc functions contains a point

k = {kb; ka}, it also contains the spatially invefted'point‘
K = [Eb; Ea}.uj' Consequently, the functions

1, (K, 5 K,)
a5

* (3) (6 & (3,) /0 % |
- S Mk k) £D | j) D & ————EQB MO (K5 K)
) b ! A m T
| o o /%% Jes o

(I, )

2
are holomorphlc everywhere on L{
From (34), we may make the following’decomposition on the I.-

saturated kernel of the domain of regularity:
ME(K. K.) - (k3 k) +MS(K;K) . | (35)
Kb’ a’ T % Kb’ a K Ky : ,
% 9%, %3 % %3 © -
With the aid of (B. 8), we find from 3&) that, for e = #l,

. , (Jb G- ¥, J ) o n .
M_(K 5 K,) =€ Me-<Kb5 K.) »
ocb; oza aba'b a Q’t'); oz{;l

(36)
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which means that the functions defined by (3L4) have definite signature
under spatial inversion. By comparison of (35) and (36) with Table II,
we see that, if spatial inversion symmetry is valid with np = 41,
then M;(Kb; Ka) = O..

s Gy

The crossing property in (%3) yields, with the aid of (34) and
(3.) /-0 -k, 3. (3.) [fo-k, _
p il 4 . (-1) Ep i i )
m, m, f
i \. 1

C 4 -
. (-K,,K 5 Kob-Ky) (37)
(_1)236 32 2 T

QQ O%; Oll 063 065 Oé)_\L; _OllOf2

the fact that

the relation’

C,= . =
M (KQ,KM,_K ,KE) = N M

where J :'32 + 35. Thus, 1f absingle fermion is.crossed, the sign of
the signature under spatial inversion is changed. In particular, this -
means that,»when spatial inversion invariance holds,:the "process
intrinsic parities™ of two processes related by crﬁséing a single
‘fermion have opposite signs.

At any r =n = 3,2, or 1 points, {kb; ka} “and {Eb; Ea]
lie on the;same 322_ orbit, so (36) and the covariance properties
of the M;fvfunctions lead to a linear relation between the values
of the components at such a point. This fact is well known, but we
will re&iéw it, because our goal is to extend thé analysis to
r =2, n 5.3 points, in which'case two points related by spatial

(3;)

inversion lie on different . 5£?4_ orbits. Becausé of the D
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matrices that act on the Mec functioné under the périty operation
defined by (3%6), it is much simpler to ﬁse tﬁe connected parts of the
S-matrix elements to count independent components. The Sc functions
have kinematical singularities arising from the "boost" matrices that
relate them to the MC functions, as in (4). These singularities, unlike
those of the MC functions, are not Lorentz invafiant; so we can always
find points on any orbit at which the s® functions are analytic if the
MC functions>are holomorphic. |

By application of the proper boost matrices to (3L), we obtain

ot -

8, (K5 K,) [s°(k,5 K,) +8°(K; )1, (38)
O3 da Oy > da ﬂ QB; da |

where

s€°<xgs K,) . - (39)

%3 Gy

]

m

n
4 o
o ¥
m?ﬁ?

~

The last relation is equivalent to (29) when spétiai inversion
.invariance:holds.

To seé the restrictions at r =n = 3 or 2 points, it is best
to choose a point on a given orbit such that all ébatial cbmpoﬁents are

normal to the 2 axis; then a rotation of 5 about this axis carries

{kb; ka} into {kb; ka}. Since the matrix A(ki) in (A.33) corresponding

to the Wigner rotation is equal to A when A 1is.unitary, and since

the required rotation matrix for spin ji is now simply the matrix
(33)
D ' (c) in (A.29-A.3%0), (3) gives us, at the type of point indicated,
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Sy
| 2. (350)
5.5 (%5 X)) = (-1 555,35 K,) - (:0)
% % . s O | |

Equation (L4O) allows us to conclude that at any r = 3 point
on the domain of regularity of the M© functions, disregarding possible
restrictions due to.other symmetry operations, the number of Mec—

function components whose values are independent is

. | L
N, = % l (234 +1) , ' | (h1a)

i=1

if there are fermions involved in the process. On the other hand, the

number is ' . u.
| R PN ,
N, = % { (23; +1) + e(-l)lfl , (41b)

if all the particles are bosons.

In order to obtain the restrictions at r =n =2 polnts we

note that, in terms of the SCC functions, (22) becomes

SEC(Kb; K) = O if o +a, #»aB oy (k2)

P> %

‘Then (LO) restricts the number of MeC functions whose values are
- independent to exactly half the number allowed by (L42) alone, if some

of the particles are fermions, and to that number plus
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L
2

e(—l)l = , 1f all the particles are bosons. The number allowed

o

by (42) alone has already been given in Table I.
From remark H2{b) in Sec. 3, we know that an r=2, n=3
point 1s related to its spatial inverse only by an improper Lorentz

transformation. However, on the I+—saturated kernel of the domain of

regularity, the limiting procedure of (25) must bte valid for the MeC
functions, and we do get restrictions at r =2, n'=3% points. 1In
particular, in place of (26) we have |
4
M (K K,) = Mec(Kb(f);Ka(f)), for Z a =0, (L3)
Gpd Yy O3 Oy =1

if [kb; ka] represents an r =n = 2 point of the form in (18) and
{kb(t), ka(#)} an r =2, n =3 point on the same sheet having the
form in (23%).

_ Similarly, in place of (27) we get

u | |
e (Y Lo e o, <0, (bha)

ab’

1

O
He
H

| | 4 -
M€C<Kb(-); Ka(')> Zdi >0, - (Llb)
O%; aa i=1 .

but there are no restrictions on the components not accounted for by

(43) or (LL).
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By inspection of (43), we see that at the r =2, n = 3 point
under consideration, the values of the Mec—function components

satisfying z: ai =0 are subject to the same restrictions due to the
T )

parity operafion ‘as they are subject to at the r =n = 2 limit point
of the orbit; so'the number of these that are indepéndently determined
is the same as the number mentioned in the sentencé'followihg (42).
Adding to thié the number of cémponents not restricted by either (L3)

of (L4), we find that the number of Mec—function comﬁonents whose

7 values aré not subject to any linear restriction aﬁéhg themselves is‘
exactly the séme at any r =2, n =3 point on the I+¥saturatéd
kernel of the domain of regularity as tﬁe number at any r = 3 point,

given by either (L4la) or (L41b).

C. Restrictions in Special Cases

Invariance under any discrete symmetry otﬂefvthan spatial
inversion éan restrict the number of independent Mc-fﬁnction components
in the physical region of a process with two,incpming_and two outgoing.
particieé only in special cases where the point in momentum spacé
resulting from the symmetry operation lies on the same SZf% orbit as
the originaivpoint. ‘Wé will consider the restrictions for r = 3
points by working in the physical region of a particuiar center-of-mass
system wifh the 1 and 3 axes orientated as in Fig. 1 and with the 2 axis
pointing out of the paper. The restrictions thus obtained are easily
extended tovall r = 3 points and the extension of the results to

r = 2 points is straightforward.
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For example, for a scattering process of the form

byt by oty b

to a restriction, as may be seen by simultaneously exchanging the

the exchange symmetry for identical particles leads

orders of the initial particles among themselves and of the final
particles among themselves. Then, in the reference system of Fig. 1,
a rotation of x about the 2 axis carries the transformed momenta

back into the-origihél orientation and we have

E=:S (KB’KM’ Kl,Kg)
ocyoch; _ocl,d2
Lo
“*(Ji+qi) |
) 1=1 c v
= (-1) s°(K, K3 K sKy) 5 For by =t

;‘dg) _d

oy, T 1

5
By crossing, one finas that the functions for the process

tl + €31_9Ei + t5 have the same number of.indepéndent componenﬁs as
those allowed by (MS).. This restriction could also have been obtained
by applying the PCT relation (28) in the new channel. For a process

of the form t Ft b+t with t = %, the PCT relation and the |
symmetry undeér the exchange of identical particles simultaneously lead
to a restriction in the same channel. In the reference frame of.Fig. 1

a rotation of g about the 3 axis carries the point on the right-hand

side of (28) into that on the left and we obtain, in this frame,

R o (]
PCT : S (KB,Ku; Kl,Kg) = 8 (KB,KM; Kl,Kg),
aj,au; Oél,ag —Ocl,-OCE;-OCB, ‘ah
for %, =%, = t5 =t, =t=1t. (46)
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Time-reversal invariance restricts the number of independent
components only in an elastic two-particle process. In the reference
‘frame of Fig. 1, the required exchange of the four-momenta is brought

about by a rotation of 5 about the 1 axis and (30) becomes

. o .
T :S (KB’KA’ Kl,KE)

O =G0, &

= (-1) S S (KB,KA; Kl,Kg), for t, = t5 and t, = %),

O 50,5 O,
177er T (b7)
where we have put nT = +1, as required for an elastic process when time-
- reversal inVariance is valid. |

The relation corresponding to (45), (46), and (L7) for the
pari£y opefation has already been given in (LO). By combining (L0)
with (47) one can get the restriction due to PT symmetry, as it appears
‘in the frame of Fig. 1.

Equations (40) aﬁd (45)-(47) are sufficient to find all possible
restrictions for a two-particle scattering process at r = 3 points.
In Tables III, IV, and V, we have listed the number_of ihdependent
Mec—function components having definite signature under the relevant
symmetry operations, for those cases where spatial inversion is not .
the only possible symmetry that can give a restriction. In Tables IV
‘ ' | - . . 2(jl+j5
and V we have allowed only those terms satisfying (51) =1

when taking (45) into account. This is because the additive guantum

numbers independent of the Lorentz group must be the same for
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t and t3 in a process of the form t, + t ~9t2.+ t and in
: 2

1 1 1

37
nature all sﬁrongly interacting particles with half odd-integer spin
apparently have odd baryon number, while those with integer spin have
even baryon number. |

0f course, when spatial inversion is a symmetry, for all
processes in nature, only terms with € =P = %l .are nonvanishing in
any of the ﬁables,uo and when time reversal is a éymmetry for the
elasﬁic processes in Tables IIT and V only terms with T = +1 : are
nonvanishing. If neither P nor T is a symmetry, but PT is; then

only terms with PT = +1 are nonvanishing in Tables III and _V,le

Any process not accounted for in Tablés I1L, 1V, and V- for which -

a discrete symmetry other than spatial inversion can restrict the number
of independent M®-function components 1is related through crossing to

one in the table. TFor example, in the process tl + tl —>t2 +_t2
charge coﬁjugation invariance can yield a restriction, but this is
éxactly the same restriction given by ‘fT symmetry in the proéess
tl + t2 —atl + tg.

Although Tables III,.IV, and V were derived for r = 3 points,
they also tell us how many independeht Mec—function components having
a given symmetry there are at any r =2, n = 3 point on thev I+—
saturated kernel. This is because the réstrictionsdue to exchange
symmetry, PCT, T, and PT are all a result of‘the'symmetry of tﬁe
scattering functions under permutations of certain variables. If such

a restriction holds at r = 3 points, which form a dense subdomain of

the domain of regularity, it holds everywhere. Before the symmetry
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under these permutations is considered, the number of Mec—function
components whose values are ihdependent is the'same at all n =3
‘points and the number must continue to be the same When the permutations

are accounted for.
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Table III. Number of independent Mec—function components having
definite signature under T and PT for the process

tl+t2—etl+t

o
These results hold at any point on the .I+—§aturated kernel of

the domain of regularity where there are three linearly independent

four-momenta. . Exceptional cases where.exchange symmetry and/or PTC

must give a restriction are: (1) b=ty (2) tl:: 52; (3) both

tl = Ei and t2 = E;. These exceptions are either given directly by

the processes in Tables IV and V or related to them through crossing

(a) If at least one of the incoming particleé is a fermion:

€ =P '. T PT Number of terms
+ AR ,—1;(231“5 1)(23y+ 1) (B3 d* 231 % 2jy+ 3)
C - e Ry Dy Dk, 2 2, 1)
) I A G,
- I %(231 + 1)2(23‘2 +1)°

(b) If both particles are bosons:

€ =P T PT Number of terms
+ o + %{(2j1+ l)(2j2+ 1)(ujljg+ 23+ 23+ 3) + 1]
+ -: - %[(231+ 1)(é32+ 1)(43,3,+ 2j1+ 25, 1) + 1]
- - A%[(2j1+ll)2(2j2+ 1) - 1]

_ I Hl(23, + 1)%(23, + 1)° - 1]
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Table IV. Number of independent .Mec-function components for thg
proéess. by bty o, f b, with b £t
These results hold at any point on the I+—saturated kernel of
the domain of fegularity where there are three linearly independent
four-momenta .  Since,thé additive quantum numbers that are independent
of the Lqrentz group must be ﬁhe same for tl and tg’ such a process

apparently occurs in nature only when tl and té are both fermions

or both bOSéns. The table is valid even when tl = tl.

(a) When particles t, and t, are fermions:

1

€ =P ‘ o Number of terms

) v | l .'_ ~a l'. “ 0" e
L F(2dr DRI 133+ 23+ 235+ 3)

, 1. N-D 2 .
. o Resy 1P, + 1)

" (b) When t, and t, are bosons:

€ =P _ Number of terms

| s . 2
+ (2J1d, + 3y + 35 +1)°

(2303,% 33+ 3,023 35+ 31+ 3+ 1)
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Table V. Number of indepéndeht Mec—function'compbnents having
definite signature under T and PT for the ﬁrocess t+t -t +t,
These results hold at any ppint on the I+—saturated kernel of.
the domain of regularity where there are three linearly independent

four-momenta.

(a) When particle t is a fermion:

€ =P T PT | Number of terms
+ + * 5(23 + 1)(857 + 125° + 185 + 7)
+ - - | %(23 +1)(85° f'l2j2 L 25 - 1)
- + - L %(23 + l)br
- - + : %(EJ + l)u

(b) When particle t is a boson. If, in addition t = t,

then only terms with PT = + are allowed by the PCT theorem.

e =P T PT Number of terms
2 .
+ + + th + AJB + 63 +Lh4j +1
. - - 25°(3 + 1)°
| . 2 .
- + - jl3 + 1)(23” + 25 + 1)

' c /o "= .
- - + j(g + 123" + 23 + 1)
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5. INVARiANT‘AMPLITUDES
A. . The Theorem of_Hepp and Williams

In the preceding sections we have considered the MC functions
for two incoming and two outgoing particles as funétions,of the four-
momenta dn the mass shell. vFor manybpurposes one woﬁld like to be ablé
to describe the aﬁalytic properties in terms of the invariants formed
~from the four-momenta;and in this section we consider how this may be
., done. Bécause of the mass shell conditions and four-momenta conserva-
tion, one can.form>only two independent Eii; invariants, which can
be taken to be twovof the three Mandelstam invariants: .s = (kl + kg)g,
t = (kl - kB)E{ and u = (kl —vkh)g.

Leﬁ us first consider a process for which:all_four particles
are spinless; that is, one for which the M° functioﬁs are ;Zf;

invariapt:.'
Mo(k) = MC(AK) . | (482.)

1 :
Heppl -and Williamslg showed that such a function can be expressed
as a holomorphic function of the independént Zif+ invariants on the
I+—saturated kernel of its domain of regularity. On that subdomain one

may write .
c . - .
M (K) = A(s,t) . (48b)
The domain of reguiarity of the function of ?§i+ invariants on

the right-hand side of (L8b)is a union of sheets, each sheet being the

image of the‘_I+—saturated kernel of some sheet of the original function.
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Consequently, the relation (48b)is not valid at an r = 2, n - )

point k = {kb; ka] cn the domain of regularity‘if there is a singu-
larity at an r =n = 2 point that is a limit point of the_ r o= 2,
ns=3 orbitT Although this is a mathematically iﬁteresting complication,

it is of no significance as far as physical considerations are concerned,

-

gsince r =2, n =3 pointsvare not physical, as mentioned in Sec. 5.hb

B. Standard Covariants

Wevwould like to genefalize the pfeceeding_qonsiderations of
this.section fo the cases where one or more of thé"four barticles has
spin. That is, we would like to be able to expreés the M€C functions
for any proéess with two incoming énd two outgoing particles in terms
of invariant functions that are holomorphic in thé. Eii+ invariants,
s and t, evefywhere én the I+-saturated kefnei of the domain of
regularity. The spin dependence and, consequently, all the kinematical
proﬁerties of the MF:C functions will be accounted for by globally

holomorphic functions of the four-momenta referred to as "standard

A

covariants:" TFirst we will precisely define the latter.

Definition., Consider the Mc functions for a scattering process involving

two incoming particles of spins and 32. and two outgoing particles

]
of spins jj and J). A set of spinor functions Y+Jfg)(k), for

g = l;«--,N+, and Y_ Q;)(k), for g l,--»,N_, where

1

- L
N, +N_ = ‘l I(Eji.+ 1), is said to be a set of standard covariants

for this process (and the processes related by crossing) if they satisfy

the following five properties:
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SCl; They are globally holomorphic functioné of the four-
momenta for the’process, subject to the mass shell and four-momentum
conservation constraints.

SC2. They are ;zf+ covariant, i.e.,

0 t 3 va_'
(g) /. . (Jb) O’-b (Ja) a (g)
v ‘® () = o (B ° D (a), Y 8w
ooy %5 o
(49)
SCj.V They have definite signature under the spatial inversion

operation:

y ®a) - e (T 5 . D(ja)<2;é.%§>'. VAU
o0, _ mb /o Q) a At s o
| (50)

SCL. Those of the same signature ¢ under spatial inversion
are linearly independeht of each other in the space of the spinor
indices at all n = % ' points. In other. words, if we form the functions

N
re@) = ) By e o)

€

s o,  g=l | %, @,

where the Ye(g)'s are real or complex numbers,then at any n = % point

k = {kb; ka},'the only solution to the equations Pe(k) =0 for all
| 3%

(&) . 0, for all g = 1,---,N_.

values of ;[ab; aa} is 1 c

€

SC5. If the number of M®-function components whose values are

independent is restricted by any discrete symmetry other than parity,
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then each.of the spinor functions YGG;)(k) has definite signature,
+1 or =1, under this operation, where the form of the symmetry
operation is the same as that for the M° functions in Table IT.

The above properties of the standard covariants lead to the
following lemma, the proof of which i1s given in Appendix D.

Lemma. Consider a set of standard covariants for the Mc fﬁnctions
describing a given two particle scattering process; Then,

| Ll1. At any r = 3 point, the standard covariants of spatial
inversion signature +1 are linearly independent.of those of spatial
inversion'éignaturé -1,

12, For e = +1 or -1, N_ is given by‘(hla) if there are
some fermions involved in the process and by (41b) if all the particles
are bosons. | »

L}. In those .cases in which property SC5-hold$, the nuﬁber of
standard covariants having a given signature under'any of the'applicable
symmetry operations is in agreement with the number in Tables III, IV,
- and V.

The‘choice of a set.of standard covariants_fof'any process is
by nc means unique. If we have found a set Yé(g)(k); for‘ g = l,--~,N€,
satisfying the required properties, and if we can Qrite

| N ._ |

1B - ) o607, (52)

g'=1

such that the coefficients fegg'(s,t) are giobally holomorphic

functions of the Mandelstam invariants with det fégg'(s,t) nowhere
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zerd, then the ?E(g)(k)'s also form a set of standard covariants.
Obviously, there are an infinite nuﬁber of suitable‘choices for the
coefficients fegg!(s,t)—-in particular, when they are -simply consﬁants.
The same relations that change M-function spinor index types
are valid fér the standérd covariénts, as, for example, in (6). Thus,

the use of all lower undotted spinor indices in this section, rather

than some other choice, has no real significance.

C. Invariant Amplitudeé for Scattering Functions
With Spin

We are now réady to consider the possibility of expanding the
MeC functions for a given process in terms of standard covariants
having the‘same discrete symmetry signatures, using the properties of
the standard covariants iﬁ the definition and lemma of Part B of this
section. Thé problem of actually constructing such étandard covariants
will be ieft for the following paper and we assume here that we already
know a suitablé set. Our résults are expressed by fhe following
theorem:
Theorem. Consider the M° functions describing a process with two
incoming pafticles of sﬁins jl and 32 and two'oﬁtgoing particles

of spins . ‘and ju. Then, on the I+—saturated kernel of the domain

I3
of regularity of the M® functions one may write the following global
decomposition involving the standard covariants for the process:

Ne

M " (K) j{: A€<g)(s,t) Ye(g>(k) - (53)
s Q,  g= A
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The "invariant amplitudes™ Ae(g)(s,t), for g = 1;---,N€, are
hOlombrphié functions of the Mandelstam invarianté s and t everywhere
on this domain. Those invariant amplitudes whose corresponding standard
covariants in the sum (53) have the wrong signaturé'gnder whatever
discrete symmetry operations cause the number of independent Mgc-
function componénts to be less thanvthe:numbe?v Né' in (kla) or (k41b)
are identigaily zero, but there iS'ﬁo point at which some linear com-
bination'inVolving the remaining Qneé is requiréd to vanish in order to
assure that the Mec functions have the kinematical behavior requifed
by the cohsidefations of Secs. B-And L,

The above theorem says that, given a set of siandard covariants
for the process under cohsideration, the decompoSition (53) ‘is possible
such that the invariant amplitudes are free of kinematical singularities
and zeroes. The absence of kineﬁatical singularities is equivalent
to saying that, if any of the invériént amplitﬁdes has a singularity
at a point in the_sbace of the 5{;_ iﬁvariants; then. there is a point
k wifh the same values of the invqiiants at which_the> Me-c functions

are also singular. The absence of kinematical zeroes means that there

§

is no roint at which some linear combinafion of the values of the
invariant amplitudes or éf any of.their derivativeé is required to
vanish in order to assure the correct kinematical behavior of the

Mcc functions; kinematical zeroes are a complicating factor when one
works with c.m. helicity amplitudes.gl Thus, the.dnly singularities 

and zeroes that occur in our invariant amplitudes are the dynamical

ones that appear in the MFc functions themselves. We are free to make
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any reasonable-lookihg dynamical approximation for the invariant
amplitgdésxwithqut destroying the covariance proéerties of the ’MGC
functions.

If the Méc functions for a particular valué of‘ € are

(g).

identically zero; then (55)‘is trivial with vanishing A_ s. In
“our proof of the theorem for ndntrivial cases we wili,first completely
igﬂore those cases in which fhe number of independent Mec—function
Compoﬁents;is less than the number in (4la) or (41b) at n = 3 points.
The neéeSsary médifications for the exceptional ?ases will be easy to

make.

For our proof, -let us first try writing-

N .
0 = ) APw B (5)

ab. 5 aa g:'l . 3 aa

whiéh'coffesponds to (53), éxcepf that we regard:the invariant
amplitudes Cz;e(g)(k) as functions of the four-momenta for the present.
We will show that (54) is invértible; that is, we will solve for the
amplitudes C:Ze(g)(k) in terms of the MEc functions and show that

'this ddesvnot'infroduce any singularities not present in the MEC _
functions themselves. Finally, the theorem of Heppll and William312
allows one to re-express (54) in the form of (53). = Remember that;
according.tp the last'paragraph, we are ignoring.the exceptional cases

for the present.

First we consider the scalars
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&
A v : , , a
?ii’i)m v v Ol (ese)
7 % 3% | |

and

30,
m(g) () = %) ¥ Q%)(k) . | (55D)
3%,

Each .of the scalars defined by (55a) is holoﬁofphic eyerywhere,
and the determinant formed from them, det ﬁ%lég;ég), canpot vanish at
any r = 3% pbint. The'only way the determinant at such a point could
vanish would be for some of the standard covariants fo be linearly

dependent, contradicting statements SC4 and ILl. Since the standard

covariants are not-all linearly independent at an r = 2 point;

(g',8) , .

det i%%, c must vanish at such a point.
Bl .

The determinant just introduced consists of four blocks, the
upper left-hand one having components of the form % E% ii), the
lower right-hand one (& ,g)’ the upper rightéhand one “ & ,g),

: -1,-1 +1,-1
1 .
and the lower left-hand one ‘%/(% ii). However, it follows from
e ]

(50) that ﬁ%#(g ,8) = 0, since one has an invariant function of three
independent four-vectors that has negative signature under spatial
inversion, and such a function vanishes identically. Consequently,

the determinant is factorizable,
gy&',8) _ (g',8) (&',8) 56
det K/E.’e = [de,t ?ﬂ [det ?-1,-1 1, (56)

t
det (g',8) for € = +1, can

and neither of the determinants e e 5
2

vanish at any r = 3 point. Since (56) is known to vanish at
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ro=2 points; we must have det (e',8) @ GN(k ,k, ,k_ ), where
. €,€ 17273

k kg’ and k ~are any three of the momenta and N 1is some integer.

l)
In (55b) 6“7(g): vanishes identically for the same reason as

éfég_;g) does, and from (54) and (55) we obtain the set of equations

;de(g'%k)%?;g’ = ML) 67

f%)

where, because of (55b), each of the functions is holomorphic

in the four-momenta on the domain of regularity of the MC functions.

At least at r = 3 points, where det %?ége,g) cannot vanish, (57)
2 .
is soluble for the invariant functions vC:Z€<g)(k) in terms of the
[(g) k)' The solution of (57) has the form
(g), 7ﬁ?€(g)(k) '
A Ow - ——" (58)
G (kl,kg,kB)

where 7%? (g)(k) is some combination of the 4%% g’ g)(k) s and the
7 E s i (59).

The numefator ﬁé? (g)(k) on the rlght—hand side of (58) is a
holomorph;c_functlon of the four-momenta on the I+fsaturated kernel
. of the domain of regularity of the MC functions. -The only possible
kinematical singularities on.this domain in the invariant amplitudes
on the left-hand side of (58) are poles where the fank of the Gram
determinantxis less than three--it turns out, as we will see below,

that it isbsufficient to consider only r = 2 points.
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.Let ﬁs look ét (54) once more. We have alfeady seen that the
invariant amplitudes on the right-hand side of the.equation are holo-
morphic at all r = 3 points oﬁ the domain of reguiarity of the MC
functions. Sincevthese points form a dense subdoméin of the domain of
regularity, as we approach any r = 2 point on the’ I+-saturated
kernel the liﬁit of the right-hand side of (54) must'éxist and be
equal to the value of the left-hand side at the giyen r = _point.

If the 1limit point isan r =2, n =3 poinf, the standardbcovariants

are all linearly independent at the point and there can be nc cancelling

singularities'in the invariant amplitudes; i.e., the limit at such a

point must exist for each invariant amplitude in (58) separately and not .
just for the right-hand side of (54) as a whole.
The above considerations show that there exists some neighborhood

of any given r =2, n =3 point on the I+—saturated kernel such that

1§?€é;)(k)r in (58) has the form '#?e(g)(k) f:.;kie(g)(k) GN, where

;k:e(g>(k) is holomorphic in the given neighborhood. From (58),

C:Ze(g)(k) = :k%(g)(k) is holomorphic in that neighborhood.

Noﬁ let us consider the limit in (54) and (58) as we approach
any T =n =2 point on.the domain of regularity. If '7é2€(g)(k)
in (58)Weré to vanish more slowly than GN at this point, there would
be a'pole there. One would then have, in éome néighborhood of thié
point, 7§2€(g)(k) :=§Z§g)(k) M ang (Zl.e(g)(k)==§7§3)(k)/GN’M, where
M < N is some positive integer and.gl(g%k) is holomorphic and nonzero

in the given neighborhood. This means that GN-M(jze(g)(k) = ;76(5)(k) is
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holomorphic ard nonzero in that neighborhood, which,according tb
remark H2{c) in sec. 3, contains points of every r =2, n = 3 orbit

with the same f§f+ invariants as the r =n =2 orbit under considera-

tion. We have already seen that there cannot be a pole in any of the

invafiant amplitudes at any r =2, n =3 point on the I+—saturatéd

kgrhel, 50 GN-M25Z€(g)(k) must vanish at such a point, giving a

contradictioﬁ. Consequently, there is no pole at any r=n =2 point.
We may conclude that there are no kinematical singularities

in the invariant amplitudes at any r = 2 or % point on the I+-

saturated kernel and that, at such points, we can express them as

holomorphic functions of EZi invariants. Thus, there can remain only

r = 1 points with which to be concerned, but, asvwe point cut below,
they preéent no problem.

.The argﬁment jﬁst given is in many reépects similar.to that of
Williams,lgv' who found.a decomposition into invariant amplitudes for
functions obtained by summing over the spinor indices with Clebsch-

Gordan coefficients. We now point out, as Williams did, that it is

impossible for_ouf invariant amplitudes to have a singularity at any

r = 1 point, since such points, at which kiJ k., = fmimj’ are isolated

_ J
in the space of the invariants, and an analytic function of several

by

complex Variables cannot have isolated singularitieé. Thus, our
invariant amplitudes are holomorphic functions of 52?+ invariants
everywhere on the I+-saturated kernel of the domain of regﬁlarity of

the M° functions, and the decomposition (53%) is possible on that

domainj at least for those cases in which the number of independent MC-

function components is given by one of the Egs. (41).
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In the exceptional cases in which properties SC5 and L3 hold,
(g',2)

e e in (55a) formed from standard covariants that
2

tne scalars
have opposite signatures under any of the applicable discrete. symmetries
vanish identically. Then the determinant in (56) splits up further;
that is, det ??é?;,g) for either value | of €, can itself be written
as a product of smaller determinants. Furthermore, when the MeC
functions have definite signéture under the gymmetries in question,
the scalars in (55b) involving standard covariants with different
symmetry prdperties also vanish identically. The soiution_of‘(5h)
proceeds very nmuch as beforé; except that now only;the standard
covariants'having the correct symmetry pronerties need be used in the
expansion, and the set of equations to be solved ié of smaller order.
Since the standard covariants continue to be linearly independent at
r=2, n=23 points, which was the crucial factor:in our previous-
proof, we have no kinématical singularities at points where the Gram
determinant vanishes. |

The_noinf in the theorem regarding the absence ofrany_kinematical
zeroes in the invariant ampliﬁudes is trivial, since the properties
of the standérd covariants.guarantee that, on the I+-saturated kernel
nf the domain of regularity, the fight—hand side of (55) has the same
kinematical pfoperties as the left-hand side. It is alsoc clear why we
did not bother to analyze the restrictions that Lorentz covariance
places on the derivatives of the Mc function when we analyzed the
kinematical restrictions on their values at certain points in Secs. 3

and. 4. The properties of the standard covariants given in SC1-SC5
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automatically guarantee this behavior. One may therefore state that
all " the kinematical properties of the Mecvfunctions are in the
standard covariants and all the dynamical propérties in the invariant
amplitudes. -

By considering the crossing relation, as in (%7), one can see
thatvOur‘standard covéfiants will automatically have the correct
signaturelunder the_variouS’discrete symmetry operations in the crossed

channels. In particular, the spatial inversion signature will change

~ when an odd.number of fermions are crossed, for the same reason this

happens for the MeC functions, as discussed in connection with (37).
of coﬁrse,vthe standard covariants chosen with the original channel in
mind may not be the most natural ones for the crossed channels,
particularly with‘regard to. the calculation of poieAterms and the

angular momentum decomposition.

D. Comparison With c¢.m. Helicity Amplitudes
The several methods that have been employed to‘learn the

nature of the kinématical singularities and zeroes of c.m. helicity
amplitudes21 all reduce essentially to considerations similar to our
foregoing discussion. Iﬁ an arbitréry reference fréme one might
write the coﬁnected parts of the helicity amplitudes for two incoming
and two outgoing particles in the form

L, sz;Ba | L
/gfl (s,t) (k) , (59)
0By BpiBa ¥ O30, '

5 (K)

30,

1

24
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where £ indicates the channel whose c.m. energy-squared is the Mandelstam
invariant s,t, or u. Here o, and o, are the helicity indices,

which undergo a unitary transformation that depends on the four-momenta
when one goes from one Lorenté refgrence frame to apother. On the
.riéht;hand side of (59), the transformation matrices act on these

helicity subscripts, while Bb and 6% are labels distinguishing the
various "invarianf amplitudes?mjalz
o8, 38, PoPa

various "spin functions" 2; . The latter are chosen such that,

from one another‘and also the

as the fouf;momenta approach their values in thé_center—of-mass system
of the £ channel, one has
LS.

lim (k) = 5%% SGB .

ke KO T o 5a, a’a

The same boosts that relate the helicity amplitudes in an
arbitrary frame to the M® functions change the "spin functions” on

EBbgaa

the right-hand side of (59) into covariants Z (x) » s© that we

% 3%

obtain

| C/o | L sz;Ba o | o
M(K) = 1L (s5t) 2 (k) - (60)
: a

5 = B, 3B 5
ab a By 3B, b’"a Oy 300y,

Equation (60) resembles (53), but, in contrast to the properties
of the Sténdard covariants in the earlier equation;;thé covariants on thé
- right-hand side of (60) are not holomorphic functions everywhere and have
a different kinematical behavior than the MC functions. These

~ unnatural properties are reflected by the presence of "kinematical"
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£
. Sbga,
alias £ channel c.m. helicity amplitudes, a fact that becomes obvious

singularities and zeroes in the "invariant amplitudes”

when one.attempts to invert (60) as we did for the expansion in (53).
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¢. SUMMARY AND DISCUSSION

In this paper we have discussed those propefties of two-particle
scattering amplitudes with spin that are relevant in obtaining
invariant amplitudes free of kinematical singularities and zeros
everywhére on the I+—séturated kernel of the domain of regularity of the
corresponding MC functions. Even though we have used arguments based
on analytic S-matrix theory to introduce many basic properties, our
treatment bf the kinematical properties of scattering amplitudes and
the decomposition into invariant émplitudes is of general applicability.

" The main points that have been introduced or>reviewed.in this

paper are the following:

(a) There is a dense subset of the domain of regularity of
the M* functions for a given scattering process such that, if‘this
subset, reférred to as the I+—saturated kernel, contains a point in
complex four-momenta space, it contains all points with the same
invariaﬁts formed from the four-momenta.8’;l—l5’20

(b) At points on the I -saturated kernmel where the rank of
the Gram determinant, r, formed from the independent momenta in a
scattering-process is less than three, covarilance under proper complex
Lorentz tranéformations (:f;—covariance); which is.a consequence of
Stapp's Theorem,8’20 can restrict the number .of Mc-function components
whose values are independent to be less than the number at points where
the rank of the Gram determinant is three. |

(c) Invariance of a scattering process under spatial inversion

limits-the number of M°-function components whose values are independent
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at;points where the rank of the Gram determinant, r, is three or less.
However, the'nﬁmber of ‘independent components héving a definite signa—
ture, +1 or -1, under épatial'inversion is the same at all points in
complex four-momenta space where the number of linearly independeht
four-momenta,ln, is three, even thoughvsome of these points have the
same.invariants as other points where only two of the momenta afe
linearly indépendent.

(d) Invariance under any other_discrete symmefry restricts the
number of indepeﬁdent componénts ohly for artwo-particle scattering
prbceés wﬁere the process resulting from its appliéation is the same as -
the ofiginal'bne. The humber of independent components with a given
périty signaﬁurg is the same at all points where thére aré thrée linearly
in&ependenf momenta, including the exceptional points mentioned in (c).

(e) Given ~ "standard covariants” satisfying the properties
SCl1 through SC5 in Sec. 5, Part B, one may express MC functions. with
definite éignatpre undér spatial inversion as a sumlinvolving these
standard covariants and invariant amplitudes as in (53)--because of a
theorem of Heppll‘ and Williams,12 these invariant amplitudes are
holémorphic functions of the Mandelstam invariants on the I, -saturated
kernel of the domain of reguiarity of the Mc functions. The invariant
amplitudes are free of any kinematical zeroes.

(f) The difficulties arising from the use of c.m. heliciﬁy
amplitudes are a result of the féct that one is actually doing a

1A

decomposition of the form (60), where the "Z—covériants do not have

the natural properties of the standard covariants in Sec. 5, Part B.
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The considerations of (a) through (c) above are easily extended
to the case of an arbitrary number of.particles with spin, where the
restrictions in (d) do not apply.2

Having completely avoided‘any use of arguments based on pertur-
bation theory to obtain invariant amplitudes free‘of kinematical
singularities and zeroes for a two-particle scattering process, we hope
to have set forth a prescription in Sec. 5 that aécomplishes for more
general theories what Hearn15 did for perturbation theory. Although
Hepp's analysisll‘guarantees that thé results obtained by the two

19

prescriptions will agree, we believe that our approach, particularly
with regard to the specification of the proberties of the standard
covariants) is more relevént. The actual constfuction of the standard
covariants will be discuéséd in the following paper;

The fact that our discussion involved spinor amplitudes is of
no practical consequence, since anyone who prefers to use the.S—matrix
elements in the canonical or the helicity form has merely to apply the
appropriéte "boosts." These boosts affect only the standard covariants
and leave tﬁe invariant amplitudes, which contain all the dynamics,
unchanged. The use of spinor amplitudes serves to greatly simplify
the considerations required to find invariant amplitudes, since in
. other cases the properties labelléd SC in Sec. 5 would have to be
modified to incorporate the complicated kinematical behavior of the
S-matfix elements.

With regard to the .content of Part D of Sec. 5, we note that

the removal of kinematical singularities from and the classification of
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'the consfraints of.c.@.vheli¢ity amﬁlitudés‘has feceived considerable’
:xéttention,Zl. F_If one could succeed in finding combiﬁétibns of such
amplitudes from'whiéh-éll‘éonstraihtsfcan'be_removed, one would end up -
:_Ywith invariant amplitudes of tﬁeISame nature as tﬁbse ﬁe considered in
Parﬁ C 6f.Sec; 5;v”However, the various types df‘singularitigs and
éonstraints in the spacé»of the séalar‘inﬁariants with which one ié
involved in the hélicity amplitudé.approécb are nbt associafed with tﬁe
actual kinematical behavior of the scatfering fuﬁctiéhs invtﬂe s?ace

k9

of the féur-momenta. : Our.approach, on the other hand, is

 directly based on this béhaviér, which, as we saw in Secs. 3, 4, and 5,
_actually'causes éomplications only at.points whére the-rank ofbthe Gram
deteiminant is lessbfhéh threé.. For real values .of thé féﬁr—momenﬁa;
vsuCh'points lie onvthe boundéries of the various physical scatteriné
regions.® R

We conclude bjymeﬁtioning thét, although'fhé Mg fﬁnétions were
introdugéd in Sec. 2 for stable particles that aré Qbserved in initial‘
and final states in the iaboratory, oﬂe is justified in introducing

M functibns with complex-ﬁasses. The existencé of such'Mc functions -
_gppearé to bé essential in SFﬁatrix theory if one is to cofrectly treat
"the singularitiés of the/staﬁle particle Mc functions oh fheir unphysicai ‘
';sheets,‘particularly the:péies and- cuts lying clbse t§ the physical-

51

region and having experimentally observablé,effects. " Most functions

involving particles of higher .spin have complex masses associated with

those particles and the analysis of this paper is applicable to them.
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APPENDIX A: SPINOR CALCULUS AND REAL LORENTZ TRANSFORMATIONS
We'discuss here the group of two—dimensidnal unimodular matrices,

o2 In

SL(E,C), and its relation to the real proper Lorentz group.
addition, some of the notational conventions employed in the main pért
of th; paper are established5

It is easy to see that thé'replacément of every matrix

a1
A e sL(2,c) by A*, vy AT

: -1
, or by AT yields a representation of
the same group. Here we use the superscript T to indicate the

transpose of any matrix and { to indicate the Hermitian conjugate.

Introducing the matrix

0 - ' _ o
0= (;. (;> B (A.1)
it is easy to verify that '

cacTT = AT, S (A.2)

S0 that-fhere are actually only two inequivalent representatiéns of
SL(2,¢). In particular, there is only one irredﬁcible representation
of the unitary unimodular two-dimensional mafrices,'which form ﬁhe
subgroup SU(2) of SL(2,C).

Any A e SL(2,C) may be written
A = HV , - (A.3)

where . H is Hermitian and V ¢ SU(2).
A two-dimensional spinor transforming under the matrix

A ¢ SL(2,C) may be written as ga, with the transformation property
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.ga figa ~_v Aa gﬁ .'f. ;,;:v R (A,ha):

- _:-Wé will write a spino:"t:anéforming wnder’ A% as Mys with the

' property . - o
oo My sy = AT Ty e S (Ad)
‘f¥'Lé£ us ndw:intfodﬁCe:_:‘ ?

\ e ‘ ? ;f _:fi' _: f (A-5§) |
=Ty, (ase)

i_where;:because of (A.l),3"

) : (A'6a‘) :

Q
L}
Q
[}
=t
[
L~
. | .
‘o
Q
-
X 1
e

Qo
!

o G T, e

'are,‘réspéctively,'thé'raising and lowering operators for spinor -
indices. -
. - Then, from (A.2), (A.4), and (A.5),
B JE = A" - B £, : A - (A.72)
. U - (A.T0)

~ We now consider the Hermitian Pauli matrices
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o = '(ooQ-g) P A f o (A.8)

where

o7 o 1 ’ 1 - 1 0 ?

o
o : - (4.9)
7 h . :
0 - 1 0
b -C D o -GCDH .
In addition we introduce
~ T -1~
g . = Co™C A.10
L 5 4 - ( )
which yields
5 = o = (o.,-0) . : o (A.11)
i : 107 < . '

As is customary, tensor indices are raised and lowered by the
metric tensor componenté g“v = guv’ with gOO = +1 and grr = -1 for

r =1,2,%, and g“v = 0 otherwise. The convention for any four-vector

x 1is that
= (Ox) . (A.12)

For any real four-vector x, we may define the Hermitian matrix

g« X = xo+g-)Nc s (Alj)
with - fa,
det(o- x) = x™x = (x)° -x-x . (A.1h)
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If we ﬁow consider x'" = AHV(A,A*) x’, defined by

o-x' = Aoc-xAl = o A(A;A*) x , | o (A.15)
for any A € SL(2,C), then o.x' is also Hermitian, with

det(o-x') = x'Y XL = det(o. x) . - ‘(A.l6)

Consequently,  A(A,A*) defined by (A.15) is a real Lorentz
transformation. Since any A ¢ SL(2,C) is continuously connected to
the identity, A(A,A%)e ﬂz; that is,.it is a.proper Qrtﬁochronous Lorentz
transformation. o |

Equation (A.1%3) may be written as

X, (A°l7)

! * R . ' .
X = Ay A 5 Xy = " A(A,A®)x . | (A.18)

.Thﬁs, any four-vector is equivalent to a spinor transforming
like the direct product A A*.

Likewise, because of (A4.10) and (A.15),
Gex' = AT Tox ATt - § a(a,A¥)x , (A.19)

and also

OB - FBL ‘ | (A.20)
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vIt is clear that, fdr every A ¢ SL(E;C) there is a A< L?;
in fact, +A give the same A. One mayvalso show that for ény
A€ Lf' one can find +A ¢ SL(E,C) such that (A.1%) is satisfied.
Let_ k  Dbe anyvrealvfour-vector on the mass shell; that_is,
k7 = mg, where: m # O is the mass of the particle under consideration.
Tts rest-frame value is k = (m,0) and the "hoost! L(k) is the

Hermitian matrix in ‘Lf defined by
k = L(k) Xk . - (A.21)
We néw define the Hermitian matrix ﬁg (k) « $L(2,C) by
| k) o0 % g3T<k) . k = o-L(k) k . (A.22)
- Thus we:have :
1) - (B, Bw) o (.23)
with |

B () - (o xm? - [(2nln+10)] 2 « k0 + or k] . (A.2h)

It may be verified that there always exist real parameters

¢ and ) such that in (A.3) one may write

~

v

exp(-1 o-@/2) , - : (A.25a)

H

exp() - 0/2) . | (A.250)

Then, by the usual methods, we get representations of higher

order with properties corresponding to (A.3) and (A.25). For any
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integer or half odd integer j we have the 2j +1 by 2j + 1

matrices
oDy = @y oy | (4.26)
with _
D(‘D(V) = exp<—i fé‘{(j)> , ' | (a.278)
D(‘j)(H) = exp?\\" g(*j)D . , ' | (A.27b)

The matrices J(J) are the usual 2j +1 by 2j + 1 matrices

satisfying the commutation rules:

[Jr('j),J (3)y i.Z € ot Jt(‘j) ) ‘ (A.28) -

s

The matrix C in (A.1) and (A.6) can be written

C = exp(-ix 02/2), and the generalization is
pld(ey - e}@(—in J2(3)>', : (A.29)
or

D(j)(c‘l)aﬁ ~ D(j)(c-l)dé - (_1)j'a 60,‘8 , - (A.30a)

= (-3 p@) e (A.300)

(3)(n A3
D (V)péB = D w)o’cB

Corresponding to (A.2) and (A.10-11) we Have



-69- ' UCRL-19460

N . : . -1 ,
p{M(cy 0 ) ety - D(J)<A? ) (A.31a)

D(j)(C)_Q(j)* () ly 50 - | (A.31D)

The transformation matrices Just introduced act on higher-order
spinors, analogously to Egs. (A.4) and (A.7) for the two-dimensional
case. |

Corresponding to any A € Lf\ and any real four-momentum k

on the mass shell, one may define the "Wigner rotation™
i -1 . , ' .
R(,A) = 170m) AL(k) | (8.32)

which is well known to those familiar with the unitary representations of

‘the inhomogeneous Lorentz group. One may write R(k,A) = A(;(k),A*(ki),

where A(k) € 8U(2) is gi&en_by
ak) = R Hax) & Bx) . (8.33)

The generalization to the matrices D(J)(é(kz) is then obvious.
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APPENDIX B: CLEBSCH-GORDAN COEFFICIENTS IN SPINOR FORM
ri2
For many applications, it is convenient to follow Williams”~

by expressing the Clebsch-Gordan coefficients in spinor form.  One

writes ‘
, a,Q &
: : s et A T e
(B.1la)
AN L
= (35 3, 31, = (33 3, 3,17+ + »(B.1b)
1927 ona, ©7 L2 oot

where, on the left-hand side, we have employed the notation of Edmonds)Ll
for the Clebsch-Gordan coefficients. Because of the form of the raising
and lowering operators in (A.30), one easily verifies that

] aloz o

o (B.2)

.. N2 e o

(35 37 3,05 o = (177 135 37 4
12 o

To add n spin J indices to get total spin nj one defines

by repeated addition, the generalized Clebsch-Gordan coefficients

. al...an . ' Ban [0 MR EY0
(ngs g---3l, = [ngs (0 -1)3 31, © [o - 1)3;5 3---3),

(B.3)

which are completely symmetric in their upper spinor‘indices.

The matrices D(J)(A) in (A.26) can be expressed in the form

. [0 {0 5N ) ST
. 177 %y i 2
o) B o 155 304, Yos 3Py ey
177 Boy *1 23

(B.L)

1 n-1 -

S SV
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and the géneralization.of the matrix o+ k and (A.22)‘is
N 7
D(J) (6@;)} D(']) @(k))}ae (B.5a)

a

D(j)(c‘-'k/m)oé(3

N
. 1 23r .
- 035 Aeeed) 355 b

PO

ol

—
D

67

) (B.5Db)

with 19 (k) defined by (A.24).

The generalization of (A.15) is

D(j)<%' A(A,A*)k/m>aé = D(j)(A)agva(j)(A*)éél D(j)(c’ k/m)a’é’

(B.6)
Becagse_bf (A.il),
D(j)(g',k/m)ae - 2o k/m)os o | .'  | (B.7)
where we use K = (ko,-g). Furthermorg;
ﬁ(j)(o .k/m) D(j)(E- k/m) = I . , | (B.8)

The last relation is true because it is valid for the simplest case as

a consequence of the relation
¢ 0 +0 0 = 2g , _ (B.9)

and the generalization follows frbm the construction in (B.%), or from

the group properties.
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 APPENDIX C: COMPLEX LORENTZ TRANSFORMATIONS
In (A.13-14), let us replace the real four-vector x by a
complex four-vector z. For any matrices A snd B ¢ SL(2,c) we define

z' = A(A,B)z by

¢d+z' = o.A(A,B)z2 = A O- 2B s , (c.1)
and one has
det(o-2'") = det(o-z) = z'Vz' = z'z . (c.2)

v v
Thus A(A,B)eai;, the group of proper'complex Lorentz transforma-

tions with det A = 1, a group that is continuously connected to the

identity. The full complex Lorentz group is % = J\f _Fuzo_,

where'any' AI €';( _1is an improper Lorentz transformafion with

det AI = -1, 1In contrast toAfhe real Lorentz gfoup, which has four
4 and fﬁe simultaneous

components because the unit matrix, I € L.,
reflection of all four coordinate axes, -I ¢ Li? are not related by
any continuous transformation, the complex Lorentz group has only two

components, 5f7+ and :j?_, because I  and -I are connected by a

continuous path in’ 3(:;. For example, in (C.1l) put

A = T | | - (C.3a)

exp(iw/z)' 0 _
B = o (C.3Db)
0 exp(-iy/2)

Then, as V¥ varies continuously from O to 2x, "~ z' changes continuously

from z to -z.

L%
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Note that one can still define D(J)(O- k/m) for complex
four-vectors k on the mass shell by means of (B.5b) and that (B.6)

is replaced by
DG nmim), = oW 2w 2 kmy,,

(c.u)'
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APPENDIX D: PROOF OF THE LEMMA'IN SECTION 5
To prove statement L1 of the lemma, we will first assume that
at a given r = 3 point,»the standard covgriénts of signature +1 are
not linearly independent of those of signature -1,and we will then show
that this assumptibn is not consistent with property SC4 of the standard
covariants. In other words, we assume that, for some r = 3 point Kk,
there exists a set of nonzero Y;'s and 7v_'s such that; for the

functions defined by (51);

r(x) + r(x) = o0, - (D)

%% B
for all choices of {Q%; aa}.
But, since any r = 3 point k lies on the same £Zi+ orbit
as the point kK obtained by spatial invefsion, there exists some
A, e SL(2,C) such that (49) and (51) give

K
. (3,) o (3,) o , '
r (k) = D " (Ak)0%g5 D Ja <Ak)aa a r (k) . .(D.e)

5%, | o g3,

After substituting (D.2) into‘(D.l) and multiplying each spinor index

(3;)

. ), we get

in the result from the left by D (A

_r+(E) + r () = 0. - (p3)

ch;aa OLb;(xa.

Thus, if (D.1) is valid for all {Q%; o, ) atany r =3 point, (D.3)

is also true.
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| Becaﬁse of (50) and (51), | -
(3,0 /0 - (3.)/ x
r(x) = D b ’ ) D Y 2 r(x) . (D.}4)

o, 30, ™ Jog T Jos o

: ' - (5.) /o k,
If we multiply each spinor index in (D.%3) from the left by D * - =
i
and then make use of (D.4), we get-

r(x) - r.(x) = 0. (D.5)

%p 5% O 3%,
The consisténcy of (D.1) and (D.%) requires that

(D.6)

il
QO
-

r.(x)
% 3%
for both €=+ and €= -I, for all choices of _{o%; a,}. But, as
mentioned after (51) in property SCh, fhe linear independence of the
standard,covariants‘of the same parity signature at any n =3 'pbint
meané that (D.6) cannot be true there for nonzero Yé(g)'s. Consequently,
(D.l)_cannot be true and statement L1 of the lemma is valid,??
We now coﬁsider statement L2 of the lemma. First note that each
component Ye(g)(k) , for a fixed value of &, but different values of
%p 3% |
{ab; aa}, is actually a different function. However, as was the case
for tpe‘M€C functions in Sec. k4, (50) means that at most Ne of their
'vélues, where N_ is given by (hi.a).or (k1.v), whichever is éppropriate,
can actually be chosen independently at any r = 3 point. Thus, the

number of standard covariants Ye(g)(k) that are linearly independent
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for a given ¢ cannot be greater than N, Since N _ + N

and since, according to Ll, the covariants of signatufe +1 are linearly
indépendent of those of signatqre -1, the number must be N_-

It remains to prove statement L3 of the lemma,bwhich applies to
those speéial cases in which the number of'independent Mec—function
components aﬁ an f = 3 point can be less than the number in (Mla) or
(L1b). Property SC5 séys that the standard covariants are symmetric or
lantisymmetric under each of the applicablevsymmetfies,and we want to
show that the results agree wi;h Tables III, IV, and V_for the number
of independent Mec—function cbmponents having sﬁch‘symmefry properties.
1f, forvexample, m o= m5 and m, =m, Wg require that‘the
standard ¢ovariants have definite signature under the simultaneous
exchanges (kl,al) e—a(kB,GB) and (kg’ag) e—;(k#,d&), which is the same
as the PT ope}ation for the MC functions in Table II. Then the same
considéfations that led to Table III teli us how many standard covariants
at most éan have a particular signature under this operatioh,and their
linear independencé.att r = 3 points means that this equals the actual
number. Note that, by choosing our covariants to have definite PT
signature, we automatically aSsure that they have'definite signature
under T. The above considerations are easilj extended to the case that
my = M, and m5 = m, when the covariants are chosen_to.have definite
signature under the simultaneous exchanges (kl,al)_k—a(ké,ag) and
(ké,aﬁ) e—a(kh,ah), and to the case when all masses are equal, when

definite signature under both types of exchanges mentioned in this

paragraph is chosen.

4
:’[i}feji + 1),

e
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(University of Colorado Press, Bouldef, Colorado, 1965), vol. VII‘A,
p. 173-

There have been many papers on this subject.  For a list of
references, see, for example: J. E. Mandula, Phys. Rev. 17k, 1948
(1968); H. P. Stapp, Phys. Re&. 174, 2091 (1968).

Some of this author's results for the standard covariants have

‘been independently found by D. N. Williams (Department of Physics,

University of Michigan, Ann Arbor, Michigan), private communication.
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W. E. Brittin and A. O. Barut (University of Colorado Press,
Boulder, Colorado, 1965), vol. VII A, p. 190.

R. F; Guertin, dissertation, Yale University, 1969 (ﬁnpublished%v
discﬁsses the case of an arbitrary number of Particles rather than
Jjust four. |

For the relationship between the canohical_and heliciﬁy répresen—
tations see, for example, A. McKerreil, Nuovo Cimento é&, 1289
(1964),

D. N. Williams, J. Math. Phys. 8, 1807 (1967)..

The Hilbert Space approach is discussed in Refs. 3 and 6. A
comparison to the one used in Réf. 9 is given by.D. Tagnolitzer

in "Space Time Properties and Physical Region Analyticity in

vS—Métrix Theory," University of.California,'Berkéley, preprint

[To be published in Tectures in Theoretical Physics (Gordon and

Breach), vol. XI].

.This is a speciél case of the cluster decomposition law discussed

in Refs. 2, 6, 9, and 10. See also J. H. Chrichton and E. H.
Wichmann, Phys. Rev. 132, 2788 (1963); J. R. Taylor, Phys. Rev.
142, 1236 (1966). o |

H. P. Stapp, Lawrence Radiation Laboratory Report UCRL-18769,

Feb. 1969

More rigorous definitions are to be found in Refs. 12 and 20.

See alsc A. S. Wightﬁan,in Dispersion Relations and Elementary

Particles, edited by C. de Witt and R. Omnes (John Wiley and Sons,

Inc., New York, 1960), p. 227.
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In its most general form, Stapp's Theorem guarantees ;i’+

covariance on the entire multisheeted domain of regularity of a

set of tensor-valued functions originally'defined to be holomorphic
: 4 : Z . o .

and either L+—covar1ant or : +-covar1ant on some arbitrarily

small real or complex domain that does not have to be on the mass

shell. It is a generalization of earlier work by Hall and Wightman,

(Ref. 13), Jost, (Ref. 32), and Wightman (Refs. 3%3,3L) who showed that

-»

functions originally defined to be holomorphic and L'-covariant

..*

on the so-called "future tube," such as the Wightman Functions in

axlomatic field theory, have a single—sheeted -;Zf+—covariant

extension to the so-called "extended tube, " which is the union of

the 52f+ orbits of all points on the "future tube."

R. Jost,in Lectures onField Theory.and The Mannybdy Préblem,
edited by E. R. Caianiello (Academic Press,'New York, 19¢1), p.
127.

A. S. Wightman, J. Indian Math. Soc. 24, 625 (1960).

R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and

A1l That (W. A. Benjamin Inc., New York, 1964).

Thié statement is actually true only when the numbér of interacting
particies described by the MC functions is four. If the number

of pafticles is greater than four, there is an infinite number

of vr =2, n = 3 ‘orbits having the same ;i?+_inv§riants gs a

given r =n = 2 orbit. ' : P
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The vanishing of a linear combination, with constant coefficients,

of the components in some full neighborhood of the domain of

regularity would not be compatible with Lorentz covariance. A

 general discussion of linear relationships for physical values of

the four-momenta, in terms of helicity amplitudes, is given by

J. Daboul, Linear Symmetries of Scattering Amplitudes, Temple
University preﬁrint, November 1969.

We stress once more fhat we mean thé number of Mc—function components
whose values are not subject to any linear relation of kinematical
origin at the given point. The Mc functions themselves, as already
mentioned, are independent functions (i.e., their derivatives at
the given point cannot all satisfy the same liﬁear relationship
that their values do). |

Our discussion of the kinematical behavior is not really complete
because we haye not discussed the restrictions that Loreﬁtz
covariance places on the derivatives of ths M° funcsions at

f = é »points; However, the considerations here turn out to be
sufficient for specifying the properties of the "standard
covariants" introduced in Sec. 5 when the decomposition of the

M° funections into invariant amplitudes is considered.

R. Jost, The General Theory of Quantized Fields (American

Mathematical Society, Providence, Rhode Island, 1965).
H. P. Stapp, Phys. Rev. 128, 1963 (1962).
D. N. Williams, Existence of Parity Experiments in Multiparticle

Reactions, Princeton Institute for Advanced Study preprint,

December 1966 (unpublished).
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See the references mentioned in footnote 28.

This remark is not necessarily true for functions involving more
than four particles, in which case the rank of the Gram deter-
minant, r, f§rmed from the four-momenta is 4 on a dense subdomain
of the domain of regulafity. When r = L4,  k and k lie on
different ;ff orbits and have pseudoscalar invariants of
opposite sign, and Stapp s Theorem does not then guarantee that,
if a given 52{ - contains the point k, it also contains the
point k.

the that, because of the kinematical braﬁéh points in the "boost”
matrices, the:mapping'from the M® functioné to the SC functions

at aﬁy point on the domain of regularity of the former is not
single-valued. = This fact is not of any importance for the
appliéation we have in mind here.

We call attention to the fact that in Table IIi the total number
of terms is (le + 1)2(232 + 1)2, in agreement with (16), but the
total number is less in Tables IV and V, becausevthe basic
postulates of S-matrix theory, or of field theory, forbid the
occurrgnce.of terms with the wrong signature qnder exchange
symmetry and‘under PCT.

In its more general form, the theorem of.Hepp" and Williams
says that one can express any'multisheeted invariant function of
any number of four-vectors (regardless of whether or not mass-
shell constraints are present) as a function of the independent

Eff;_ invariants on the I+-saturated kernel of its domain of

Lo

&
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regﬁlafity.v However, with more than four functionally independeﬁt
vectors (e.g., a scattering amplitude with more than five
particles), it is not possible to use the same set of ;Z?+
invariants globally; in other words oné must'ﬁse "local” §Z?+—
invariant coordinates. The reéulﬁ ovaépp and Williams is a

generalization to arbitrary domains of a theorem of Hall and

‘Wightman (Ref. 13) that enables one to express an Szp—ihvariant single-~

sheeted function regular everywhere on the "extended tube' as a
function of "local” EiiFinvariant coordinates (see also note %1).

See any book on several complex variables, e.g., S. Bochner and

W.‘Tu Martin, Several Complex Variables (Princeton University

Préss, Princeton, 1948), p. 71.

A comparison of.the S-matrix and field-tpeoretical approaches is
given by R. Seiler in "On the Covariance and Analyticity of
Scattering Amplitudes,” University of Pittsburgh preprint No.

NYO-3829-26, [To be published in Lectures in Theoretical Physics

(Gordon and Breach), vol. XI.]
The actual.kinematical singularities of helicity amplitudes,

originating from the "boosts" that relate them to the M functions,

are not Lorentz-invariant and cannot be expressed in terms of

scalars.

T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).

Unstable particles in S-matrix thebry have been discussed by
D. Zwanziger, Phys. Rév. 131,-888 (1963); H. P. Stapp, Nuovo
Cimento 32, 103 (1964); I. T. Drummond, Phys. Rev. 140, BhB2

(1965).
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Further information on the matters discussed here can be obfained
from Refs. 3, 6, 9, 12, and 3L. See also A. S. Wightman in

Dispersion Relations and Elementary Particles, edited by C. de Witt

and R. Omnes (John Wiley and Sons, Inc., New York, 1960), p. 159.

D. N. Williams, in Lectures in Theoretical Physics, edited by

W. E. Brittin and A. 0. Barut (University of Colorado Press,

Boulder, Colorado, 1965), vol. VII A, p. 1%9.- Also see Ref. 12,

A, Edmonds, Angular Momentum in Quantum Mechanics (Princeton University

Press, Princeton, New Jersey, 1957).

It is worth noting that if k  is én r =2, n = % point, then ¥

lies on a .different EQ€+ orbit, according to H2,(b),and (D.2)

is not valid for any choice of A _ e sn(2,c). ‘In this case it is

k
possible to satisfy (D.1) with T (k) #0 and r_(k) £0,

% 3% % 3%

in contrast to the result (D.6) for an r = 3 point. The standard
covariants of signature +1 arevnqt linearly indepéndent of those of
signature -1 at any »r.= %, n =3 point; the total number of
staﬁdafd covariants in the two sets that are linearly independent

at such a point is the same as the number given in Table I.

&
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FIGURE CAPTIONS
ig. 1. Special reference frame used for obtaining discrete symmetry

restrictions. The 2 axis points out of the paper.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract

" with the Commission, or his employment with such contractor.
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