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Abstract

Background

COPD is a common HIV comorbidity, and HIV-infected individuals have a higher incidence

and earlier onset of COPD compared to HIV-uninfected individuals. While the pathogenesis

of HIV-associated COPD is largely unknown, chronic inflammation may contribute. Four

pneumoproteins known to be markers of lung injury and inflammation have been associated

with COPD in HIV-uninfected individuals: PARC/CCL-18, SP-D, CC-16, and sRAGE.

Objective

To determine whether these pneumoproteins are also associated with pulmonary function

and COPD Assessment Test (CAT) scores in HIV-infected individuals.

Methods

Associations between plasma pneumoprotein levels and pulmonary function were deter-

mined in a cross-sectional study of otherwise healthy HIV-infected individuals enrolled
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between September 2016 and June 2017. Covariates included HIV-associated (antiretroviral

therapy, CD4 count, and viral load) and COPD-associated (smoking and BMI) covariates.

Results

Among 65 participants, 78.5% were male, 50.8% had undetectable viral load, and 76.9%

were ever-smokers. Mean post-bronchodilator FEV1/FVC was 0.71, and mean DLco%pre-

dicted was 61%. Higher PARC/CCL-18 was associated with lower DLco%predicted and

higher CAT score. Higher CC-16 was associated with lower DLco%predicted and lower

FVC%predicted.

Conclusions

This exploratory analysis is the first to characterize associations between these four pneu-

moproteins and pulmonary function in an HIV-infected cohort. Our findings suggest the

pathogenesis of HIV-associated COPD may differ from that of non-HIV-associated COPD

due to HIV-specific inflammatory changes affecting DLco. PARC/CCL-18 is associated with

structural and functional pulmonary abnormalities and may be an important COPD bio-

marker candidate in HIV infection. Our study is a preliminary step toward finding clinically

relevant COPD biomarkers in high-risk populations.

Introduction

Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality

globally.[1–3] HIV infection may be an independent risk factor for COPD.[4–12] Studies of

HIV-infected persons in the U.S. have reported estimates for COPD prevalence ranging

between 7% and 21%[7,13,14] compared to between 4.2% and 6.4% in the general population.

[15,16] Even when controlling for major COPD risk factors such as smoking status, HIV-

infected individuals tend to develop COPD on average 10 years earlier than HIV-uninfected

individuals.[11,12] Thus, HIV-infected individuals are an important high-risk population in

which to study the pathogenesis of COPD.

Despite substantial epidemiological evidence linking HIV and COPD, the mechanisms

underlying HIV-associated COPD (HIV-COPD) and whether these mechanisms differ from

those in HIV-uninfected persons are not fully understood.[17,18] HIV is known to promote

systemic immune activation and inflammation leading to immunosenescence or immune dys-

regulation that increase the risk of end-organ diseases.[17–23] Proposed mechanisms specific

for HIV-associated COPD include endothelial dysfunction, monocyte activation,[24] and T-

cell activation.[10] Understanding the role of systemic inflammation in HIV-associated COPD

pathogenesis may yield insights about other HIV-associated pulmonary abnormalities includ-

ing reductions in the diffusing capacity for carbon monoxide, DLco, as an isolated decrease in

DLco is the most frequent pulmonary function abnormality observed in HIV-infected popula-

tions.[4,10,20,24]

Spirometry measurements, specifically the ratio of forced expiratory volume in 1 second to

forced vital capacity (FEV1/FVC) measured after bronchodilator administration and FEV1 as a

percentage of the predicted value (FEV1%predicted) are used to diagnose and stage the severity

of COPD, respectively.[25] However, due to the heterogeneity of COPD pathogenesis, the

FEV1/FVC is not always an accurate predictor of progression of COPD and other associated
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clinical outcomes such as symptoms, COPD exacerbations, or mortality.[26,27] Thus, recent

COPD studies have focused on identifying biomarkers that are associated with or predictive of

key clinical endpoints.[28–30]

The most promising COPD biomarker candidates include pneumoproteins associated with

systemic inflammation. Pneumoproteins are produced predominantly in the lung but are pres-

ent in the systemic circulation. Four pneumoproteins of interest for COPD are pulmonary and

activation-regulated chemokine (PARC/CCL-18), surfactant protein-D (SP-D), club cell secre-

tory protein-16 (CC-16), and soluble receptor for advanced glycation end-products (sRAGE).

PARC/CCL-18 and SP-D are pro-inflammatory proteins, and CC-16 and sRAGE are anti-

inflammatory proteins. All of these pneumoproteins are markers of lung injury and inflamma-

tion that have been independently associated with COPD-related outcomes in HIV-uninfected

populations including severity of emphysema (sRAGE),[31] accelerated rate of FEV1 decline

(CC-16),[32,33] increased risk of COPD exacerbations (SP-D),[34] and cardiovascular hospi-

talization and mortality (PARC/CCL-18).[35]

None of these pneumoproteins, however, has been studied for its association with COPD in

HIV-infected individuals. Thus, this cross-sectional analysis of an existing HIV-infected

COPD cohort investigated whether plasma levels of these four pneumoproteins are associated

with pulmonary function and respiratory symptoms. Since HIV is known to increase chronic

systemic inflammation, we hypothesized that HIV may affect the relationship between these

markers of lung inflammation and pulmonary function outcomes.

Methods

Study design, participants, and study protocol

This study is a cross-sectional analysis of the San Francisco arm of the Inflammation, Aging,

Microbes, and Obstructive Lung Diseases (I AM OLD) study, an ongoing study of COPD in

HIV-infected individuals. Participants gave written informed consent, and the study protocol

was approved by the University of California San Francisco Institutional Review Board and the

University of California Berkeley Institutional Review Board. I AM OLD participants are

recruited as inpatients when hospitalized for confirmed pneumonia or as outpatients in the

HIV/AIDS clinic at Zuckerberg San Francisco General Hospital (ZSFG) and followed longitudi-

nally as one of the study aims is examining whether pneumonia is a risk factor for COPD in

HIV. Study visits occurred at ZSFG between September 2016 and June 2017. Inclusion criteria

included HIV-infected status and 18 years of age or older. Exclusion criteria included the pres-

ence of any contra-indications for pulmonary function tests (PFTs), pregnancy, or breastfeeding.

For participants enrolled during a hospitalization for pneumonia, study visits for PFTs

occurred at least 3 months after the end of pneumonia treatment and when they were without

acute or worsening chronic respiratory symptoms. At each visit, participants underwent clini-

cal questionnaires, venous blood draws for pneumoprotein measurements, and PFTs.

Clinical questionnaires

Participants were interviewed by trained staff using a standardized questionnaire. Clinical data

included age, sex, race/ethnicity, history of ever cigarette smoking, cumulative pack-years of ciga-

rette smoking, history of injection drug use (IDU), history of bacterial pneumonia or Pneumocys-
tis jirovecii pneumonia (PCP), and self-reported ART adherence in the past week (yes/no

response to any antiretroviral medication use in the past week). The COPD Assessment Test

(CAT), a validated questionnaire that measures a patient’s self-assessment of the impact of COPD

on their quality of life, was also administered.[36] CD4 count and HIV viral load as well as body

mass index (BMI) were measured at the time of pulmonary function testing.

Pneumoproteins and pulmonary function in HIV
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Blood draws and ELISA assays

Blood was collected in an 8 mL EDTA tube. Specimens were placed on ice and centrifuged

within an hour after collection. Purified plasma aliquots were then stored at -80˚C, shipped to

Case Western Reserve University, and assayed after a single thaw. Levels of pneumoproteins

were measured in purified plasma using commercial ELISA kits (R&D, Minneapolis, Minne-

sota, USA). Replicates were performed in duplicate, and average values were used in analyses.

Pulmonary function tests

Participants were without acute or worsening chronic respiratory symptoms at the time of

PFTs. PFTs consisted of pre- and post-bronchodilator spirometry and measurement of diffus-

ing capacity for carbon monoxide (DLco). We did not measure total lung capacity or residual

volume. Spirometry was performed by trained respiratory technicians, before and after admin-

istering albuterol 360 μg by inhalation from metered dose inhaler. Spirometry and DLco mea-

surements were performed according to American Thoracic Society/European Respiratory

Society (ATS/ERS) guidelines.[37,38] Spirometry reference values were determined from the

third National Health and Nutrition Examination Survey equations and are based on age, sex,

height, and ethnic background.[39] DLco reference values were determined from Crapo et al.

1981 and based on age, sex, and height.[40] The DLco reference values were also adjusted for

hemoglobin and carboxyhemoglobin that were measured at the time of pulmonary function

testing. Spirometry results were overread by a trained respiratory therapist and included only

if they met ATS/ERS criteria for acceptability and reproducibility.

Statistical analysis

Analyses were conducted in Stata version 14.0 (StataCorp; College Station, Texas, USA). Pneu-

moprotein levels were log-transformed and divided by the interquartile range (IQR) to stan-

dardize the dynamic range of the four biomarkers. Using multiple linear regression, we

examined the associations between plasma levels of pneumoproteins and four pulmonary

function outcomes: post-bronchodilator FEV1 as a percentage of the predicted reference value

(FEV1%predicted); post-bronchodilator FVC as a percentage of the predicted reference value

(FVC%predicted); post-bronchodilator FEV1/FVC ratio; and DLco as a percentage of the pre-

dicted value (DLco%predicted) adjusted for hemoglobin and carboxyhemoglobin.

In addition to history of ever cigarette smoking (defined as having smoked at least 100 ciga-

rettes in a lifetime), covariates included age, pack-years of cigarette smoking, BMI, CD4 count,

suppressed or detectable HIV viral load, ART adherence in past week, and history of ever IDU,

bacterial pneumonia, or PCP. Suppressed viral load status was defined as undetectable viral

load<40 copies/mL (Abbott Molecular, Abbott Park, IL, USA). COPD was defined as a post-

bronchodilator FEV1/FVC <0.70,[25] and abnormal DLco%predicted was defined as<80%

and then divided into�60% but<80% (mild impairment) or <60% (moderate to severe

impairment).[41] Age, BMI, and CD4 count were analyzed as continuous variables; all other

predictor variables were dichotomized. Dichotomized independent variables included post-

bronchodilator FEV1/FVC ratio (<0.70 or�0.70) and DLco%predicted (<60% or�60%).

Continuous independent variables included FEV1%predicted, FVC%predicted, and CAT

score. Age and sex were not included as predictor variables in multivariate analyses for FEV1%

predicted, FVC%predicted, or DLco%predicted because the reference equations adjust for age

and sex.

Spearman rank-order correlation coefficient was used to test initial unadjusted associations

between plasma biomarkers and pulmonary function outcomes. Backward elimination was

performed to determine which covariates to include in multivariable analysis for each
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pulmonary function outcome with pneumoprotein measurements omitted. Covariates with a

significance of at least P = 0.05 were retained in multivariable models. Regardless of signifi-

cance, history of ever cigarette smoking was included in each multivariable model because cig-

arette smoking is strongly associated with obstructive lung disease.[42] Once covariates were

determined, separate multivariable models for each pneumoprotein were run for each pulmo-

nary function outcome.

The two-sample t-test was used to determine whether clinical, pneumoprotein, and pulmo-

nary function measurements differed by ART use (ART use in past week versus no ART use in

past week), CD4 count (<200 cells/μL versus CD4 count�200 cells/μL), or HIV viral load

(suppressed versus detectable) indicating extent of immune dysregulation. Pearson correlation

coefficients for pairs of the different biomarkers were also calculated.

Results

Baseline characteristics

Overall, 65 participants were enrolled; 78.5% were male, and the median age was 51 years

(Table 1). Of the participants, 76.9% were ever-smokers for whom the median pack-years of

smoking was 23 years and 39.7% reported ever IDU (n = 63). Over 92% reported adherence to

their ART regimen in the past week; 50.8% had an undetectable viral load, and another 29.2%

had a detectable HIV viral load that was <40 copies/mL. The median CD4 cell count was 455

cells/μL, and 26.2% had a CD4 cell count <200 cells/μL. The majority (75.4%) had a history of

bacterial pneumonia, and 38.5% had a history of PCP.

Associations between pneumoproteins and lung function or CAT score

Using Spearman correlations, significant associations were found between PARC/CCL-18 and

DLco%predicted (R = -0.33, P = 0.0072) or CAT (R = 0.56, P<0.0001) and between sRAGE

and DLco%predicted (R = -0.26, P = 0.037) (Table 2).

Spirometry. No statistically significant associations were found between any pneumopro-

tein and post-bronchodilator FEV1/FVC ratio in analyses adjusted for age, history of ever

smoking, and BMI (Table 3). However, higher levels of CC-16 were independently associated

with lower FVC%predicted (n = 60; β = -6.6, P = 0.012) adjusted for history of ever smoking

and BMI. There was also a trend toward statistical significance between higher PARC/CCL-18

levels and lower FVC%predicted (β = -4.4, P = 0.10). Similarly, after adjusting for history of

ever smoking, there were trends toward statistical significance between higher CC-16 levels

and lower FEV1%predicted (n = 60; β = -5.8, P = 0.07) and higher PARC/CCL-18 levels and

lower FEV1%predicted (β = -5.4, P = 0.10).

Diffusing capacity. Several pneumoproteins were independently associated with DLco%

predicted adjusted for a history of ever smoking and BMI (Table 3). Higher PARC/CCL-18 (β
= -8.3, P< 0.001), higher CC-16 (n = 60; β = -4.5, P = 0.044), and higher sRAGE (β = -4.2,

P = 0.038) levels were all independently associated with lower DLco%predicted, adjusted for

these covariates.

When a history of ever smoking was substituted with pack-years of smoking, the associa-

tions between PARC/CCL-18 and DLco%predicted (n = 64; β = -6.5, P = 0.004) and between

CC-16 and DLco%predicted (n = 59; β = -4.7, P = 0.029) adjusted also for ART adherence in

the past week remained statistically significant (Table 3). However, the adjusted association

between sRAGE and DLco%predicted was no longer significant (n = 64; β = -1.8, P = 0.39).

Since reductions in diffusing capacity are non-specific and may be related to conditions

including pulmonary vascular disease that develops as a result of injection drug use (39.7%

reported ever injection drug use, n = 63), we performed additional analyses adjusting for IDU.

Pneumoproteins and pulmonary function in HIV
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Table 1. Baseline clinical characteristics, pulmonary function tests, and pneumoprotein levels.

Baseline characteristics (n = 65 unless noted)

Characteristic Value

Male sex (assigned at birth) (%) 51 (78.5%)

Median age (years) (IQR) 51 years (45–59 years)

Race/ethnicity1

- White (%) 25 (38.5%)

- Black (%) 27 (41.5%)

- Hispanic (%) 10 (15.4%)

- Native Hawaiian or Other Pacific Islander (%) 6 (9.2%)

- American Indian/Alaska Native 7 (10.8%)

- Mixed (%) 5 (7.7%)

- Other (%) 6 (9.2%)

BMI, median (IQR) 26.5 (7.14)

Ever-cigarette smokers (%) 50 (76.9%)

- Median pack-years smoking, n = 46 (IQR) 23 years (10–44 years)

Ever injection drug use (%), n = 63 25 (39.7%)

Current ART use in the past week (%) 60 (92.3%)

Median CD4 count (cells/μL) (IQR) 455 cells/μL (189–651 cells/μL)

- Number of participants with CD4 count < 200 cells/μL 17 (26.2%)

Undetectable viral load (%) 33 (50.8%)

- Participants with detectable viral load < 40 copies/mL 19 (29.2%)

- Participants with detectable viral load� 40 copies/mL 13 (20%)

Past history of bacterial pneumonia ever (%) 49 (75.4%)

- Past history of bacterial pneumonia in last 6 months (% out of 49 participants with past history of bacterial pneumonia) 12 (24.5%)

Past history of Pneumocystis jirovecii pneumonia (%) 25 (38.5%)

Pulmonary function tests and CAT score Value

Mean post-BD FEV1%predicted (standard error) 83% (2.7%)

Mean post-BD FVC%predicted (standard error) 92% (2.2%)

Mean post-BD FEV1/FVC ratio (standard error) 0.71 (0.02)

- Number of participants with post-BD FEV1/FVC <0.70 23 (35.4%)

Mean DLco%predicted (standard error) 61% (1.8%)

- Number of participants with DLco%predicted <80% 59 (90.8%)

- Number of participants with DLco%predicted <60% 31 (47.7%)

Median CAT score, n = 60 (IQR) 13.5 (4.5–20.5)

Pneumoprotein level Value

Median CC-16 level (IQR) for n = 60 33.9 ng/mL (21.5–46.7 ng/mL)

Median PARC/CCL-18 level (IQR) 55.0 ng/mL (38.8–86.8 ng/mL)

Median sRAGE level (IQR) 0.033 ng/mL (0.017–0.049 ng/mL)

Median SP-D level (IQR) 33 ng/mL (17–49 ng/mL)

1Race/ethnicity percentages do not add up to 100 because multiple choices were possible.

Abbreviations: ART = antiretroviral therapy; post-BD = post-bronchodilator; BMI = body mass index; CAT = COPD Assessment Test; CC-16 = club cell secretory

protein-16; DLco%predicted = diffusing capacity for carbon monoxide corrected as percentage of predicted reference value; FEV1%predicted = forced expiratory

volume in 1 second as percentage of predicted reference value; FEV1/FVC ratio = ratio of forced expiratory volume in 1 second to forced vital capacity; FVC%

predicted = forced vital capacity as percentage of predicted reference value; IQR = interquartile range; PARC/CCL-18 = pulmonary and activation-regulated chemokine;

SP-D = surfactant protein-D; sRAGE = soluble receptor for advanced glycation end-products.

The mean post-bronchodilator FEV1/FVC ratio was within normal limits but was relatively low (0.71), and 35.4% of participants had COPD (FEV1/FVC <0.70). The

mean post-bronchodilator FEV1%predicted was 83%, and the mean post-bronchodilator FVC%predicted was 92%. In contrast, the mean percent-predicted DLco (DLco

%predicted) was abnormal (61%), and most participants had impaired diffusing capacity: 90.8% had mildly reduced DLco%predicted (<80%), and 47.7% had

moderately to severely reduced DLco%predicted (<60%). In addition, the median CAT score was 13.5 (n = 60), indicating a “medium” impact of COPD on a

participant’s life.

https://doi.org/10.1371/journal.pone.0223263.t001
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When past history of IDU was forced into the multivariable models, PARC/CCL-18 (n = 63; β
= -8.6, P< 0.001) and CC-16 (n = 59; β = -4.5, P = 0.045) were still significantly associated

with DLco%predicted, and the association between sRAGE and DLco%predicted approached

statistical significance (n = 63; β = -4.5, P = 0.053) adjusted also for history of ever smoking

and BMI (Table 3).

CAT score. Only higher PARC/CCL-18 was independently associated with higher total

CAT score (n = 60; β = 6.7, P< 0.001) adjusted for ever history of bacterial pneumonia

(Table 3).

Table 2. Unadjusted associations between plasma pneumoprotein levels and pulmonary function testing out-

comes using Spearman’s correlation (unless otherwise noted, n = 65).

Spearman’s ρ P value

Post-BD FEV1%predicted

CC-16 (n = 60) -0.16 0.22

PARC/CCL-18 -0.064 0.61

sRAGE -0.059 0.64

SP-D -0.061 0.63

Post-BD FVC%predicted

CC-16 (n = 60) -0.25 0.055§

PARC/CCL-18 -0.16 0.20

sRAGE -0.066 0.60

SP-D -0.10 0.41

Post-BD FEV1/FVC

CC-16 (n = 60) -0.030 0.82

PARC/CCL-18 -0.0012 0.99

sRAGE 0.047 0.71

SP-D -0.042 0.74

DLco%predicted

CC-16 (n = 60) -0.17 0.18

PARC/CCL-18 -0.33 0.0072�

sRAGE -0.26 0.037�

SP-D 0.018 0.89

CAT

CC-16 (n = 60) 0.099 0.45

PARC/CCL-18 (n = 60) 0.56 <0.0001�

sRAGE (n = 60) 0.045 0.73

SP-D (n = 60) -0.037 0.78

Note that all pneumoproteins measurements were log-transformed and divided by interquartile range. All

spirometry measurements are post-bronchodilator values.

� P < 0.05

§ P� 0.10

Abbreviations: post-BD = post-bronchodilator; BMI = body mass index; CAT = COPD Assessment Test; CC-

16 = club cell secretory protein-16; DLco%predicted = diffusing capacity for carbon monoxide corrected as

percentage of predicted reference value; FEV1%predicted = forced expiratory volume in 1 second as percentage of

predicted reference value; FEV1/FVC ratio = ratio of forced expiratory volume in 1 second to forced vital capacity;

FVC%predicted = forced vital capacity as percentage of predicted reference value; PARC/CCL-18 = pulmonary and

activation-regulated chemokine; SP-D = surfactant protein-D; sRAGE = soluble receptor for advanced glycation end-

products.

https://doi.org/10.1371/journal.pone.0223263.t002
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Table 3. Adjusted associations between plasma pneumoprotein levels and pulmonary function testing outcomes (unless otherwise noted, n = 65).

β❖ P value Lower 95% confidence interval Upper 95% confidence interval

Post-BD FEV1%predicteda

CC-16 (n = 60) -5.8 0.07§ -12 0.49

PARC/CCL-18 -5.4 0.10§ -12 1.1

sRAGE -2.2 0.46 -8.2 3.7

SP-D -1.3 0.67 -7.3 4.7

Post-BD FVC%predictedb

CC-16 (n = 60) -6.6 0.012� -12 -1.5

PARC/CCL-18 -4.4 0.10§ -9.8 0.91

sRAGE -1.3 0.58 -6.2 3.5

SP-D -1.2 0.63 -6.1 3.7

Post-BD FEV1/FVCc

CC-16

(n = 60)

-0.0016 0.94 -0.043 0.040

PARC/CCL-18 -0.0017 0.94 -0.047 0.043

sRAGE 0.011 0.63 -0.033 0.055

SP-D 0.0013 0.95 -0.038 0.041

DLco%predictedb

CC-16 (n = 60) -4.5 0.044� -8.8 -0.12

PARC/CCL-18 -8.3 <0.001� -12 -4.2

sRAGE -4.2 0.038� -8.2 -0.24

SP-D 0.25 0.91 -3.9 4.4

DLco%predictedd

CC-16 (n = 59) -4.7 0.029� -8.8 -0.49

PARC/CCL-18 (n = 64) -6.5 0.004� -11 -2.2

sRAGE (n = 64) -1.8 0.39 -6.0 2.4

SP-D (n = 64) 0.82 0.69 -3.2 4.8

DLco%predictede

CC-16 (n = 59) -4.5 0.045� -9.0 -0.11

PARC/CCL-18 (n = 63) -8.6 <0.001� -13 -4.3

sRAGE (n = 63) -4.5 0.053§ -9.1 0.053

SP-D (n = 63) 0.23 0.92 -4.1 4.5

CATf

CC-16 (n = 60) 1.6 0.27 -1.3 4.5

PARC/CCL-18 (n = 60) 6.7 <0.001� 3.9 9.5

sRAGE (n = 60) -0.22 0.88 -3.1 2.6

SP-D (n = 60) -1.4 0.32 -4.2 1.4

Note that all pneumoproteins measurements were log-transformed and divided by interquartile range. All spirometry measurements are post-bronchodilator values.

Variables with P < 0.20 in unadjusted analyses were included in multivariate analyses and retained to maximize adjusted R-squared. Regardless of significance of

association, ever smoker variable was included in each multivariate model.
a Adjusted for history of ever cigarette smoking
b Adjusted for history of ever cigarette smoking and BMI
c Adjusted for history of ever cigarette smoking, age, and BMI
d Adjusted for pack-years of cigarette smoking and ART adherence in past week
e Adjusted for history of ever cigarette smoking, BMI, and history of ever injection drug use
f Adjusted for history of ever bacterial pneumonia

� P < 0.05

§ P� 0.10
❖ Per IQR increase in log10 values

Abbreviations: post-BD = post-bronchodilator; BMI = body mass index; CAT = COPD Assessment Test; CC-16 = club cell secretory protein-16; DLco%

predicted = diffusing capacity for carbon monoxide corrected as percentage of predicted reference value; FEV1%predicted = forced expiratory volume in 1 second as

percentage of predicted reference value; FEV1/FVC ratio = ratio of forced expiratory volume in 1 second to forced vital capacity; FVC%predicted = forced vital capacity

as percentage of predicted reference value; PARC/CCL-18 = pulmonary and activation-regulated chemokine; SP-D = surfactant protein-D; sRAGE = soluble receptor

for advanced glycation end-products.

https://doi.org/10.1371/journal.pone.0223263.t003
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Pneumoprotein levels and pulmonary function stratified by HIV viral

suppression status, CD4 cell count, or ART use in last week

To assess whether severity of immune dysfunction in HIV infection affects pneumoprotein

levels or pulmonary function levels, the data were stratified by each HIV-associated covariate:

HIV viral load, CD4 cell count, or ART status. Clinical, pneumoprotein, and pulmonary func-

tion measurements did not differ significantly by these covariates except for expected associa-

tions—i.e., participants not on ART in the past week had higher viral loads (P = 0.0064) and a

trend toward lower CD4 cell counts (P = 0.09).

Correlations between biomarkers

As combinations of biomarkers have been found to be more highly correlated with inflamma-

tion or COPD clinical outcomes than single biomarkers,[43,44] correlations between biomark-

ers were analyzed. CC-16 was moderately correlated with PARC/CCL-18 (R = 0.32, P = 0.012),

and no other correlation between biomarkers was observed.

Discussion

In this cross-sectional exploratory analysis, we assessed the associations between plasma levels

of four pneumoproteins and pulmonary function outcomes or CAT score. To our knowledge,

this is the first study to characterize these associations specifically in an HIV-infected cohort.

We found that higher PARC/CCL-18 levels and higher CC-16 levels were significantly associ-

ated with lower DLco%predicted. In one analysis, higher sRAGE levels were significantly asso-

ciated with lower DLco%predicted. In addition, higher CC-16 levels were significantly

associated with lower FVC%predicted, and higher PARC/CCL-18 levels were significantly

associated with higher CAT score.

Our results support prior findings that an impaired diffusing capacity is one of the most

common HIV-associated pulmonary function abnormalities.[4,9,14,45] In these studies, a

moderately to severely reduced DLco was reported in 29% to 36.5% of HIV-infected partici-

pants. In our cohort, nearly 48% had a DLco%predicted <60%, a cut-off indicative of moder-

ate (or worse) impairment in diffusing capacity. This high proportion likely is due to our

recruitment strategy to enroll HIV-infected participants with acute pneumonia (but perform

PFTs only after recovery from pneumonia) as a past history of bacterial pneumonia or PCP

have both been associated with permanent reductions in DLco in a large multicenter study.44

Our results also underscore the need to understand mechanisms underlying reductions in dif-

fusing capacity as a DLco%predicted <60% has been associated with an increased mortality in

a recent multicenter study.[45]

We found that higher PARC/CCL-18 levels were significantly associated with lower DLco%

predicted. While the biological role of PARC/CCL-18 is not fully understood, it is secreted pri-

marily by innate immune cells like monocytes/macrophages and dendritic cells and is chemotac-

tic for T-cells.[46,47] PARC/CCL-18 increases fibrosis in vivo,[48] and serum levels are elevated

in idiopathic pulmonary fibrosis.[49] Higher serum PARC/CCL-18 levels have been associated

not only with COPD[35] but also with increased risk for hospitalized COPD exacerbations[50]

and lower DLco, higher COPD exacerbation rate, and higher BODE index (a clinical index incor-

porating BMI, level of airflow obstruction, dyspnea, and 6 minute walk distance)[51] in a panel

with other proteins in subjects with COPD versus subjects without COPD.[44] As HIV is known

to enter airway epithelial cells and increase release of inflammatory mediators,[52] our findings

suggest that increased PARC/CCL-18 levels could reflect local pulmonary inflammation leading

to destruction of alveolar walls and irreversible enlargement of airspaces in emphysema.
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While previous studies have shown that lower CC-16 levels are associated with COPD and

decreased lung function,[33,53,54] we found that higher CC-16 levels were significantly associated

with lower DLco%predicted. This may indicate that the pathogenesis of HIV-associated COPD

may differ from that of COPD in those without HIV due to HIV-specific inflammatory changes

that impair diffusing capacity. Similar to how HIV increases chronic systemic inflammation and

causes increased gut epithelial permeability and microbial translocation into the blood,[55,56]

HIV might also damage the alveolar-capillary barrier, allowing more CC-16 to move into the

peripheral blood. Another possible explanation is that the negative association between CC-16

and DLco may suggest the presence of interstitial lung disease as the etiology underlying the dif-

fusing capacity abnormality. While past studies have shown an association between lower CC-16

levels and COPD, other studies have shown an association between (transient) increases in CC-16

and acute lung injuries like fire or cigarette smoke,[53,57] ozone,[58] and even certain interstitial

lung diseases, idiopathic pulmonary fibrosis, and systemic sclerosis-associated interstitial lung dis-

ease.[54,59,60] CC-16 is thought to help reduce airway inflammation[61] and protect the respira-

tory tract from oxidative stress.[62] Larger longitudinal studies will be required to understand

how CC-16 may be associated with DLco%predicted and COPD in HIV-infected populations.

Previous studies have shown that lower sRAGE levels are associated with COPD.[31,63,64]

However, we found that higher sRAGE levels were associated with lower DLco%predicted in a

single analysis. sRAGE is a decoy receptor of RAGE that detects stresses like hypoxia and oxi-

dative stress and binds ligands associated with damage-associated molecular patterns to pro-

tect against inflammation.[31,63] Increasing evidence suggests that lower sRAGE levels may

play a mechanistic role in worse lung function outcomes including COPD status as well as

reduced DLco[31] and greater emphysema severity;[64] thus, lower sRAGE levels may reflect

damage to airways or lung parenchyma respectively. Our findings may be attributed to differ-

ent explanations similar to those for CC-16: HIV-specific inflammatory changes may impair

diffusing capacity but also damage the alveolar-capillary barrier and allow more sRAGE to

move into the peripheral blood.

Our finding that none of the pneumoproteins was significantly associated with post-bron-

chodilator FEV1/FVC as hypothesized may not be entirely surprising. COPD is a heteroge-

neous and complex disease with variable clinical presentations driven by different underlying

pathogenic mechanisms.[65,66]

While these pneumoproteins have been studied in HIV-uninfected individuals, they may

not reflect the specific inflammatory mediators that contribute to COPD in HIV-infected indi-

viduals. We found that DLco and spirometry measurements did not differ significantly by

viral load, CD4 cell count, or ART use. Pneumoproteins associated with changes in the lung

microbiome[67] or cellular senescence of T lymphocytes[9,68] could be further explored as

potential biomarkers for progression or development of HIV-associated COPD.

Besides structural abnormalities like impaired DLco or decreased FEV1/FVC, functional

abnormalities are common in HIV-infected individuals.[69] COPD may have highly variable

clinical manifestations among different patients;[70] thus, other measurements like self-assess-

ment of health status have become increasingly important. The CAT is a 40-point question-

naire that asks patients to self-report how COPD affects their health status.[36] While there is

no “target” total CAT score, a change in 2 or more points may represent a clinically significant

change in health status[71] and can help inform clinical management of COPD.[72] The asso-

ciation between higher PARC/CCL-18 levels and lower DLco%predicted or higher total CAT

score suggests that PARC/CCL-18 may be associated with not only structural but also func-

tional impairments in COPD, which may be an important consideration for a COPD bio-

marker candidate. Alternatively, HIV-infected individuals may be at higher risk for

emphysema compared to other COPD subtypes.
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Important limitations of our study include its cross-sectional design: without longitudinal

follow-up, we could not examine causality and related COPD outcomes such as rate of FEV1

decline, COPD exacerbations, hospitalizations and mortality. While previous cohort studies

did show that these pneumoproteins were associated with COPD or related outcomes during

follow-up, the changes in these pneumoproteins could be due to other mechanisms besides

HIV infection driving pulmonary function impairment. Also, with a relatively small sample

size, the study lacked power to detect effect sizes previously reported.[33–35] Furthermore, we

were unable to account for other diseases (i.e., inflammatory co-morbidities) or immunomod-

ulatory medications that may have affected plasma pneumoprotein levels and concurrent

restrictive lung disease that may have affected FVC%predicted. Future studies could examine

these factors and whether these pneumoproteins are not only associated with but also causally

linked with structural and functional pulmonary abnormalities in HIV-infected individuals;

this would help elucidate whether statistically significant differences in these pneumoproteins

lead to clinically meaningfully differences in COPD outcomes.

Our study also had several strengths. First, this is a well-characterized cohort with paired

blood-pulmonary function data. Although an exploratory analysis, our study includes the

major HIV-associated and COPD-associated clinical or demographic covariates identified as

important predictors. Second, this is also the first study to characterize associations between

pneumoproteins, specifically those that are markers for lung inflammation and injury associ-

ated with COPD, with pulmonary function measurements in an HIV-infected cohort. Our

study is a preliminary step toward finding early biomarkers of adverse respiratory outcomes

that could help prevent and manage COPD in high-risk populations. Finally, further insights

about HIV-associated COPD may help improve understanding of both COPD and other HIV-

associated comorbidities.

Supporting information

S1 File. Data including baseline clinical characteristics, pulmonary function data, and

pneumoprotein levels.
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