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Shlomo Sela-Saldinger 1*

1 Department of Food Sciences, The Volcani Center, Institute for Postharvest and Food Sciences, Agriculture Research 
Organization, Rishon-LeZion, Israel, 2 Microscopy Unit, Plant Sciences, Ornamental Plants and Agricultural Biotechnology, 
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In a previous study, comparing the internalization of S. enterica serovar Typhimurium 
in various leaves by confocal microscopy, we have demonstrated that the pathogen 
failed to internalize tomato leaves. Numerous reasons may account for these findings, 
yet one such factor might be the methodology employed to quantify leaf internalization. 
To this end, we have systematically studied leaf localization of a Green-fluorescent 
protein-labeled Salmonella strain in tomato, lettuce, and Arabidopsis leaves by 
surface sterilization and enumeration of the surviving bacteria, side by side, with 
confocal microscopy observations. Leaf sterilization was performed using either 
sodium hypochlorite, silver nitrate, or ethanol for 1 to 7 min. The level of internalization 
varied according to the type of disinfectant used for surface sterilization and the 
treatment time. Treatment of tomato leaves with 70% ethanol for up to 7 min 
suggested possible internalization of Salmonella, while confocal microscopy showed 
no internalization. In the case of in lettuce and Arabidopsis leaves, both the plate-
count technique and confocal microscopy demonstrated considerable Salmonella 
internalization thought different sterilization conditions resulted in variations in the 
internalization levels. Our findings highlighted the dependency of the internalization 
results on the specific disinfection protocol used to determine bacterial localization. 
The results underscore the importance of confocal microscopy in validating a 
particular surface sterilization protocol whenever a new pair of bacterial strain and 
plant cultivar is studied.
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INTRODUCTION

Foodborne illness is one of the most serious health problems 
worldwide, affecting public health and development (Newman 
et  al., 2015). Salmonella spp. and pathogenic Escherichia coli 
strains are two of the main bacterial pathogens causing foodborne 
diseases (Takkinen et al., 2005; Friesema et al., 2008; Söderström 
et  al., 2008; Gajraj et  al., 2012). Worldwide, it is estimated 
that Salmonella is responsible for 80.3 million cases of foodborne 
illness (Majowicz et  al., 2010). Raw fruits and vegetables are 
increasingly recognized as an important source of foodborne 
disease outbreaks in many parts of the world (Hanning et  al., 
2009; Wendel et  al., 2009; Gajraj et  al., 2012; Mritunjay and 
Kumar, 2015). Leafy vegetables were identified as the fresh 
produce commodity group of most significant concern from 
a microbiological safety perspective (Callejón et  al., 2015; 
Mogren et  al., 2018; Carstens et  al., 2019; Kintz et  al., 2019). 

Consequently, recent studies have focused on understanding 
the interactions between human pathogens and plants (Gu 
et al., 2011, 2013b; Barak and Schroeder, 2012; Cevallos-Cevallos 
et  al., 2012; Schikora et  al., 2012; Brandl and Sundin, 2013; 
Fletcher et  al., 2013; Lim et  al., 2014; Pollard et  al., 2014; 
Holden et  al., 2015; Fornefeld et  al., 2017; Jacob and Melotto, 
2019). Leaf attachment and internalization enable bacteria to 
get a foothold on the leaf surface and potentially reach the 
leaf interior (Barak and Schroeder, 2012; Deering et  al., 2012; 
Erickson, 2012). The ability of both plant and human pathogens 
to reach the leaf interior is considered an important virulent 
trait, as internalized bacteria gain access to the nutrient-rich 
milieu within the leaf tissue and are protected against external 
environmental stresses, such as desiccation, irradiation, starvation, 
competition, and predation.

Salmonella enterica and E. coli can internalize the plants through 
natural openings, such as hydathodes, stomata, lenticels, lateral 

GRAPHICAL ABSTRACT  |  Outline of the methodologies used to assess leaf localization.
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root emergence sites, or sites of biological or physical injury 
(Seo and Frank, 1999; Takeuchi and Frank, 2001; Solomon et al., 
2002; Hora et  al., 2005; Bernstein et  al., 2007; Klerks et  al., 
2007; Underwood et  al., 2007; Gomes et  al., 2009; Kroupitski 
et  al., 2009; Sharma et  al., 2009; Barak and Schroeder, 2012; 
Deering et  al., 2012; Gorbatsevich et  al., 2013; Zheng et  al., 
2013; Gu et  al., 2013a; Erickson et  al., 2019; Riggio et  al., 2019). 
A common method to assess leaf internalization is by taking 
advantage of the resistance of the internalized bacteria to surface 
disinfection (Deering et  al., 2012; Erickson, 2012). Following 
inoculation of the pathogen of choice, surface-attached bacteria 
are killed by exposing the plants or plant’s organ to disinfecting 
agents. The plant tissue is then macerated to release the internalized 
bacteria and the disinfectant-protected bacteria are then enumerated 
by viable count, e.g., plating the homogenate on appropriate agar 
media. The viable count technique is straightforward and easy 
to perform and, consequently, it was widely adopted in studies 
assessing leaf internalization by enteric pathogens (For example, 
Duffy et  al., 2005, Franz et  al., 2007, Hadjok et  al., 2008, Zhang 
et  al., 2009, Erickson et  al., 2010a,b, Gu et  al., 2011, 2013a, Ge 
et  al., 2013, Fakruddin et  al., 2017). However, a major caveat 
of this method is that the results depend on the conditions used 
for surface sterilization, e.g., type of disinfectant(s) and treatment 
duration, which require validation for each specific combination 
of bacterial strain and plant cultivar. A literature review showed 
that only a few studies had validated the complete inactivation 
of surface-attached enteric bacteria, while in most cases, surface 
sterilization conditions were based on previously reported protocols, 
or the validation data were not presented (Table  1). Another 
approach to assess leaf internalization by foodborne pathogens 
is confocal microscopy. This method utilizes fluorescence-tagged 
bacteria and enables direct and precise localization of the bacteria 
within the leaf tissue. Nevertheless, it is time-consuming and 
requires expensive equipment (confocal microscope) and expertise. 
Commonly, confocal microscopy provides supportive data to 
confirm the internal localization of the tested bacteria and validate 
complete inactivation of surface-attached bacteria (Takeuchi and 
Frank, 2001; Duffy et  al., 2005; Gu et  al., 2011, 2013a; Erickson, 
2012). In some cases, confocal microscopy may also provide 
quantitative data regarding leaf internalization (Kroupitski et  al., 
2009; Golberg et  al., 2011).

In a previous study, employing confocal microscopy, 
we  compared the internalization of S. enterica serovar 
Typhimurium, through stomata, in various leaves and found 
that it efficiently internalizes lettuce leaves but virtually failed 
to internalize tomato leaves, based on visualization of at least 
360 microscopic leaf fields obtained from three plants (Golberg 
et  al., 2011). It should be  noted that numerous factors, such 
as bacterial strain, plant cultivar, growing conditions, age, epiphytic 
and endophytic flora, mode of inoculation, and other experimental 
factors, might affect the level and quantification of leaf 
internalization (Deering et  al., 2012; Erickson, 2012; Gu et  al., 
2013b); yet validated data regarding the efficacy of a given 
protocol to assess bacterial internalization in different plant 
models are scarce. In the present study, we  have employed an 
in vitro model system to systematically examine Salmonella 
stomatal internalization in tomato, lettuce, and Arabidopsis thaliana 

leaves using a specific Salmonella strain with three surface 
sterilization protocols, side by side with confocal microscopy 
validation. While all three plant species differ in their leaf 
structure and topography, the first two were shown to support 
significant levels of Salmonella internalization. In contrast, nearly 
no internalization was shown in tomato leaves by confocal laser 
microscopy (Golberg et  al., 2011), making these leaves an ideal 
control system for assessing potential misinterpretation when 
using surface sterilization and viable count.

MATERIALS AND METHODS

Bacterial Growth Conditions and Inoculum 
Preparation
Green-fluorescent protein (GFP)-labeled S. enterica serovar 
Typhimurium SL1334 strain (Kroupitski et  al., 2009; Gu et  al., 
2013a) was used throughout the study. Bacterial culture was 
prepared and stored in Lysogeny broth (LB; Becton Dickinson, 
United States) supplemented with glycerol at −70°C, as described 
(Kroupitski et  al., 2009). For each experiment, fresh culture 
was prepared by plating the bacteria on a new LB plate 
supplemented with 100 mg/ml streptomycin and 10 mg/ml 
gentamicin for 24 h at 37°C. Two to three single colonies were 
as inoculated into LB broth devoid of NaCl (LBNS) and grown 
at 37°C with shaking (150 rpm) for 18–20 h. Cultures were 
washed twice with sterile saline (0.85% NaCl) by centrifugation 
at 2,700 g for 10 min, and the final pellet was resuspended in 
sterile saline. Bacterial concentration was determined by plating 
× 10-fold serial dilutions on LB agar supplemented with the 
two antibiotics.

Preparation of Leaves
A. thaliana (Col-0) plants were grown in a potting mix containing 
(w/w) 70% peat, 30% perlite, supplemented with slow-release 
fertilizer (7,611, Even-Ari, Israel) under 10-h light / 14-h dark 
(short day) photoperiod, at 22°C with a relative humidity of 
55–60% and light intensity of 130 μmol m−2  S−1. Tomato plants 
(Solanum Lycopersicon), cultivar M82, were grown in Green 
quality soil mix, Tuff soil (Merom Golan, Israel) under 16-h 
light / 8-h dark, at 25°C. Arabidopsis and tomato leaves of 
4- and 6-weeks old plants, respectively, were aseptically cut 
from the plants, and whole leaves or leaflets were used for 
the experiments. Fresh iceberg lettuce (Lactuca sativa) was 
obtained from a local retail store and used on the day of 
purchase or stored in the refrigerator for up to 12 h before 
use. The outermost leaves of the lettuce head were aseptically 
removed, and two or three inner leaves were taken for the 
experiments. The lettuce leaves were cut into ca. 3- by 3-cm 
pieces using a sterile scalpel, as described before (Kroupitski 
et al., 2009), and individual pieces were used for the experiments.

Inoculation of Leaves
Inoculation of leaves was performed, essentially as described 
before (Kroupitski et  al., 2009, 2011, 2019; Golberg et  al., 
2011), except for the incubation temperature. Briefly, a single 
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tomato leaflet, Arabidopsis leaf, or lettuce piece were each 
submerged in a single 50-ml sterile polypropylene tube (Labcon, 
Petaluma, CA) containing 30-ml saline. The leaves were 

illuminated for 20 min under a light intensity of 150-μE m−2 s−1 
at room temperature, and then, the saline was removed and 
replaced with a bacterial suspension containing ca. 108 Salmonella 

TABLE 1  |  List of selected reports on leaf internalization of human enteric pathogens and the method used to study bacterial localization.

Plant Pathogen Disinfectant References Source of protocol Confocal microscopy

Parsley GFP-tagged Salmonella 
serovars Javiana, 
Rubislaw, and Anatum

2,000 mg/liter sodium 
hypochlorite solution at 
25°C for 3 min

Duffy et al., 2005 Buchanan et al., 1999; 
used for E. coli O157:H7 
internalization in apples

Yes

Lettuce Escherichia coli O157:H7, 
S. Typhimurium strain 
MAE 110

−1% AgNO3 for 10 s 
followed by two washing 
steps of 10 S in water, 
−1% sodium hypochlorite 
for 5 s followed by 5 s in 
70% EtOH and two 
washing steps

Franz et al., 2007 Franz et al., 2007 No

Lettuce Five strains mixture of E. 
coli O157:H7 and 5 
serovars of Salmonella

80% ethanol for 10 s 
followed by immersion in 
0.1% HgCl2 for 10 min 
followed by five washing 
steps with water

Zhang et al., 2009 Zhang et al., 2009; using 
leaf prints

No

Lettuce, Spinach, and 
Parsely

E. coli O157:H7 −80% ethanol for 10 s 
followed by immersion in 
0.1% HgCl2 for 10 min and 
washing with water, −1% 
AgNO3 for 10 s followed 
by washing steps

Erickson et al., 2010a Zhang et al., 2009; used 
for E. coli O157:H7 in 
lettuce (Franz et al., 2007); 
used for E. coli O157:H7 
and S. Typhimurium in 
lettuce

No

Lettuce and Spinach E. coli O157:H7 80% ethanol for 10 s 
followed by 0.1% HgCl2 
for 10 min and washing 
steps, 1% AgNO3 for 10 s 
followed by two washing 
steps

Erickson et al., 2010b Zhang et al., 2009; used 
for E. coli O157:H7 in 
lettuce (Franz et al., 2007); 
used for E. coli O157:H7 
and S. Typhimurium in 
lettuce

No

Lettuce Green onion GFP-labeled S. 
Typhimurium

80% ethanol for 10 s, 1% 
AgNO3 for 5 min, washing 
with water

Ge et al., 2013 Franz et al., 2007; used 
for E. coli O157:H7 and S. 
Typhimurium in lettuce. 
Confirmed (data not 
shown)

No

Lettuce S. Infantis 200 ppm NaClO solution 
for 1 min followed by 
washing steps

Zhang et al., 2016 FDA, 1998; Validated by 
comparing to the method 
of Zhang et al. (2009)

No

Tomato leaves S. Montevideo 70% EtOH spray and 
allowed to dry under a 
flow hood until no visible 
solution remained

Miles et al., 2009 Not mentioned no

Tomato plant S. Typhimurium 70% alcohol for 20 s and 
then 0.6% sodium 
hypochlorite for 10 s 
followed by washing

Gu et al., 2011 Gu et al., 2011 Yes

Tomato leaves S. Typhimurium SL1344 
GFP-tagged

None Golberg et al., 2011 Kroupitski et al., 2009 Yes

Tomato leaves S. Typhimurium strain 
MAE110

70% alcohol for 15 s 
following by water rinsing

Gu et al., 2013a Validated by the authors Yes

Tomato leaves S. Newport 70% ethanol until runoff Pollard et al., 2014 Not mentioned No

Tomato leaves S. Typhimurium strain 
MAE110

70% alcohol for 15 s 
following by water rinsing

Gu et al., 2018 Not mentioned Yes

Betel leaf S. Enteritidis S. 
Typhimurium

80% ethanol for 10 s, 1% 
AgNO3 for 5 min, rinsing 
with water

Fakruddin et al., 2017 Franz et al., 2007; used 
for E. coli O157:H7 and S. 
Typhimurium in lettuce

No

Cucumber Five Salmonella serovars 70% ethanol bath for 
20 min

Burris et al., 2020 Zheng et al., 2013; based 
on tomato leaf sterilization; 
validated in the lab; data 
not presented

No
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CFU/ml saline. While this high inoculum does not represent 
real-life conditions, such high inocula were previously used 
to study Salmonella internalization in vivo (Gu et  al., 2011, 
2013a) and in vitro (Kroupitski et al., 2009, 2011, 2019; Golberg 
et  al., 2011). The incubation proceeded for 2 h at 40°C, a 
temperature that increases stomatal openings in multiple species 
(Kostaki et  al., 2020) to facilitate Salmonella internalization. 
The leaf samples were washed twice by dipping in fresh sterile 
saline for 1 min each time to remove unattached bacteria. 
Salmonella attachment to the leaf surface and internalization 
was analyzed by confocal microscopy and viable count, as 
described below. Each experiment included three leaves (repeats) 
of the same plant, each in a single tube and the three plants 
species were processed on the same day. The experiments were 
repeated twice for all plants on different days.

Determination of Salmonella 
Internalization Using Surface Disinfection
Surface disinfection was performed using one of the three 
disinfectants, 1% sodium hypochlorite (Bio-Lab Ltd., Jerusalem, 
Israel), 1% silver nitrate (Bio Basic Ltd. Toronto, Canada), and 
70% ethanol (Gadot-Group, Netanya, Israel). Briefly, whole 
leaves of Arabidopsis and tomato or lettuce leaf samples were 
submerged in 20-ml disinfectant solution with gentle agitation 
for 7 min. Leaf samples were taken out after 1, 3, 5, and 7 min 
and washed extensively by dipping the leaves four times (1 min 
each) in 20-ml sterile double-distilled water (SDDW) to remove 
the residual disinfectant solution. In order to avoid interference 
by bacteria that may enter through the cut tissues, an internal 
leaf disks (2-cm2 area) were excised from the three leaves 
(Arabidopsis, tomato, and iceberg lettuce) using a sterile cork-
borer. The leaf disks were aseptically cut into two identical 
pieces with a sterile scalpel, one was taken for bacterial extraction 
and viable count, and the other was taken for confocal microscopy. 
A high-speed benchtop homogenizer Fast Prep®-24 
(MP-Biomedicals, Solon Ohio, United  States) was used for the 
homogenization of the leaf samples in 2-ml micro-tubes 
(MP-Biomedicals, Solon Ohio, United  States) containing glass 
beads and 500 μl of buffer peptone water (BPW; Becton Dickinson, 
France, United  States). Homogenization conditions were 
4,000 rpm for 40 s at room temperature. Homogenate samples 
(100 μl) and 10× serial dilutions were spread plated into Xylose-
Lysine-Desoxycolate (XLD; Becton Dickinson, France, 
United  States) agar supplemented with streptomycin and 
gentamicin in order to enumerate internalized Salmonella cells 
that presumably survived the disinfection treatment. Inoculated 
leaves suspended for up to 7 min in SDDW without disinfection 
and then washed in fresh SDDW served as non-treated control 
to determine the initial number of leaf-associated bacteria. 
Salmonella counts of control and treated samples were converted 
to log CFU/cm2.

Determination of Salmonella 
Internalization Using Confocal Microscopy
Fluorescently-labeled Salmonella cells were visualized using a 
confocal laser-scanning microscope (Olympus IX81; Olympus, 

Tokyo, Japan) with a 40X objective lens and a numerical 
aperture of 0.7. Salmonella localization of fluorescent bacteria 
on the leaf surface and in internal leaf tissues was determined 
in 30 randomly selected microscopic fields per leaf, as described 
before (Kroupitski et  al., 2009). Briefly, quantification of the 
surface-attached and internalized bacteria was done by calculating 
the percentage of microscopic fields that harbor ≥1 internal 
or surface-attached Salmonella cells in 30 fields and is presented 
as the incidence (%) of Salmonella on the surface and internal 
tissues, as described previously (Kroupitski et  al., 2009). The 
mean incidence of Salmonella was calculated based on two 
independent experiments, each containing three technical repeats.

Statistical Methods
All experiments were performed in triplicates (three different 
leaf samples) and repeated two times on different days. Statistical 
analysis was performed using the JMP software package version 
14 (SAS Institute Inc., Cary, NC, United  States). Incidence 
data were arcsine-transformed before analysis and residual data 
for logarithm of CFU/area after analysis were examined to 
determine normality and equality of variances. Two-way ANOVA 
was used to analyze the effect of disinfectant, time, and their 
interaction. After significant interaction was discovered, pairs 
of disinfectant-time means were compared by the Tukey-Kramer 
test (alpha = 0.05).

RESULTS

Determination of Leaf Internalization Using 
Surface Sterilization and Viable Count in 
Various Leaves
Leaf internalization was initially studied in lettuce and 
Arabidopsis, which were previously shown to support a high 
level of Salmonella internalization (Kroupitski et  al., 2009; 
Golberg et al., 2011). Incubation of lettuce leaves with S. enterica 
serovar Typhimurium for 2 h resulted in a surface colonization 
density of 5.92 ± 0.15 log CFU/cm2 (Figure  1A), representing 
both surface-attached and leaf-internalized bacteria. Treatment 
of the inoculated lettuce leaf with 1% NaHClO for 1, 3, 5, 
and 7 min reduced the number of viable Salmonella cells from 
5.92 ± 0.15 log CFU/cm2 to 5.11 ± 0.07, 3.92 ± 0.1, 3.11 ± 0.08, 
and 2.65 ± 0.11 log CFU/cm2, respectively (Figure  1A).

After 70% ethanol treatment for 1, 3, 5, and 7 min, surviving 
Salmonella counts were reduced from 5.92 ± 0.15 log CFU/cm2 
to 5.18 ± 0.06, 5.17 ± 0.01, 4.97 ± 0.07, and 4.05 ± 0.08 log CFU/
cm2, respectively (Figure 1B). Unlike ethanol, surface disinfection 
with 1% AgNO3 resulted in a higher killing rate. Treatment 
with 1% AgNO3 for 1, 3, 5, and 7 min reduced the number 
of viable Salmonella cells from 5.92 ± 0.15 log CFU/cm2 to 
3.00 ± 0.01, 2.80 ± 0.04, 2.50 ± 0.10, and 2.20 ± 0.11 log CFU/
cm2, respectively (Figure  1A).

Incubation of Arabidopsis leaves with Salmonella for 2 h 
resulted in a surface colonization density of 5.91 ± 0.09 log 
CFU/cm2 of leaf-associated bacteria (Figure  1B). Following 
surface disinfection with 1% NaHClO for 1, 3, 5, and 7 min, 
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the counts were reduced to 2.72 ± 0.14, 2.25 ± 0.13, 1.60 ± 0.32, 
and 1.34 ± 0.43 log CFU/cm2, respectively (Figure  1B). Surface 
disinfection with 70% ethanol for 1, 3, 5, and 7 min reduced 
the numbers of viable Salmonella cells to 4.09 ± 0.08, 3.88 ± 0.11, 
3.72 ± 0.06, and 2.98 ± 0.07 log CFU/cm2, respectively (Figure 1B). 
Disinfection with 1% AgNO3 resulted in a higher inactivation 
of leaf-associated Salmonella, and after treatment for 1 and 
3 min, the counts were reduced to 1.18 ± 0.60 and 0.43 ± 0.51 
log CFU/cm2, respectively. Longer incubation times resulted 
in the inactivation of all leaf-associated Salmonella cells 
(Figure  1B).

Incubation of tomato leaves with Salmonella suspension for 
2 h resulted in a surface colonization density of 6.06 ± 0.14 log 
CFU/cm2, representing the total number of leaf-associated 
Salmonella (Figure  1C). This value corresponds to the sum 
of surface-attached and internalized bacteria. The number of 
internalized Salmonella was assessed by the viable count technique 
following leaf disinfection. Treatment with 1% NaHClO for 1, 
3, and 5 min duration resulted in the survival of 4.10 ± 0.08, 
2.57 ± 0.06, and 1.56 ± 0.37 log CFU/cm2 leaf area, respectively 
(Figure 1C), which presumably represent internalized bacteria. 
Treatment duration of 7 min resulted in complete Salmonella 

A

B

C

FIGURE 1  |  Leaf internalization based on viable count following surface disinfection of (A) lettuce, (B) Arabidopsis, and (C) tomato. Mean and standard deviation 
values of two individual experiments each with three technical repeats are presented. Different letters indicate significant differences (p < 0.05) in control and treated 
leaf samples, for a given plant, according to the Tukey-Kramer multiple comparison test.
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eradication. Treatment with 70% ethanol for 1, 3, 5, and 7 min 
resulted in the survival of 5.15 ± 0.05, 4.17 ± 0.03, 4.01 ± 0.12, 
and 3.14 ± 0.04 log CFU/cm2, respectively (Figure  1C). Finally, 
the treatment of inoculated tomato leaves with 1% AgNO3 for 
1 and 3 min resulted in 1.48 ± 0.29 and 1.43 ± 0.19 log CFU/
cm2, respectively; while longer incubation times of 5 and 7 min 
resulted in complete Salmonella inactivation (Figure  1C).

Determination of Salmonella 
Internalization by Confocal Microscopy
In parallel to the bacteriological studies, Salmonella internalization 
was studied by confocal microscopy using the other part of 
the same leaf piece used for assessing internalization by the 
viable count technique. Both non-treated and surface-disinfected 
leaf samples were utilized in these studies.

Confocal microscopy studies were performed with lettuce, 
Arabidopsis, and tomato leaves (Figure  2 and Table  2). In 
lettuce leaves, Salmonella cells showed comparable distribution 
between the leaf surface and the leaf interior. The incidence 
of Salmonella cells on the leaf surface was 100%, while the 
incidence of Salmonella cells underneath the leaf surface was 
92 ± 1% (Table  2). Treatment of the leaves with each of the 
three disinfectants for 1 or 7 min resulted in most cases in a 
substantial reduction in the incidence of fluorescent cells, both 
on the leaf surface and within the leaf interior. Ethanol treatment 
for 1 min reduced the incidence of fluorescent cells on the 
leaf surface to 58 ± 3%, yet it did not affect the incidence of 
endophytic Salmonella. The two other disinfectants reduced 
the incidence of fluorescent Salmonella both on the leaf surface 
as well as in the leaf interior during longer exposure times.

In the case of Arabidopsis, confocal microscopy of leaves 
incubated with Salmonella showed an incidence of Salmonella 
of 100% on the leaf surface and 42 ± 6% underneath the surface 
(Figure 2 and Table 2). Surface disinfection with 1% NaHClO, 
70% ethanol, and 1% AgNO3 for 1 min resulted in a decrease 
in the incidence of surfaced-attached Salmonella from 100% 
to 41 ± 3.6, 55 ± 3.5 and 57 ± 7%, respectively, and a further 
reduction of surface-attached bacteria occurred after a longer 
exposure time (Table  2). However, fluorescent Salmonella cells 
were still observed on the leaf surface. Treatment of the leaves 
with 70% ethanol for 7 min reduced the incidence of endophytic 
Salmonella from 42 ± 6% to 31 ± 5.7%, while treatment with 
1% NaHClO for 7 min and 1% AgNO3 for 5 min resulted in 
complete loss of fluorescence, inferring Salmonella inactivation.

In contrast to the findings with lettuce and Arabidopsis 
leaves, imaging of tomato leaves following incubation with 
fluorescent Salmonella revealed no endophytic colonization. All 
leaf-associated Salmonella cells were confined to the leaf surface 
(Table  2 and Figure  2). Disinfection with 1% NaHClO for 
1 min resulted in reducing the incidence of surface-associated 
Salmonella from 100 to 35 ± 1.5%, while 7 min exposure resulted 
in the loss of fluorescence, inferring a complete inactivation 
of the pathogen (Table  2). Exposure of the leaf to 1% AgNO3 
for 1 and 5 min resulted in similar effects, while ethanol (70%) 
had a milder effect. It reduced the incidence of fluorescent 
Salmonella to 55 ± 1% after 1 min and to 11 ± 2% after 7 min.

DISCUSSION

Human pathogens can colonize plants and persist on and 
sometimes within various plant’s tissues, and upon consumption 
may cause foodborne diseases (Barak and Schroeder, 2012; 
Deering et  al., 2012; Erickson, 2012; Brandl and Sundin, 2013; 
Holden et  al., 2015; Fornefeld et  al., 2017; Jacob and Melotto, 
2019; Roy and Melotto, 2019; Schierstaedt et  al., 2019). 
Accordingly, accurate determination of the localization of human 
pathogen on or within leaves is vital for basic science as well 
as for developing new strategies for preventing and intervening 
to address the problem of fresh produce contamination.

The determination of bacterial internalization in a plant is 
a function of, among others, the method used to assess bacterial 
localization (Deering et  al., 2012; Erickson, 2012). Ultimately, 
surface sterilization should completely inactivate external bacteria 
while leaving internalized bacteria intact. Still, only a few studies 
have systematically validated the efficacy of surface sterilization 
to kill surface-attached bacteria. In one such study, 13 disinfection 
conditions/methods were compared for their effectiveness in 
killing GFP-tagged E. coli O157:H7 on lettuce leaf surfaces 
using leaf imprints on agar media. Dipping in 80% ethanol 
for 10 s followed by immersion in 0.1% HgCl2 for 10 min was 
reported to be  the most effective disinfection method for 
inactivating both E. coli and Salmonella strains (Zhang et  al., 
2009). However, no confocal microscopy study corroborated 
the results. Many studies have adopted previously reported 
protocols to inactivate surface-attached bacteria, even when 
utilizing different plants and/or bacterial strains (see Table  1). 
Bacteria may vary in their intrinsic tolerance to disinfectants 
(Morente et  al., 2013) and may preferentially reside at unique 
leaf-specific microsites (Beattie and Lindow, 1995; Erickson, 
2012), which may facilitate the protection of the colonized 
bacteria against disinfection (Andrews and Harris, 2000; Erickson 
et  al., 2010a; Erickson, 2012). Consequently, a disinfection 
protocol developed for inactivating a specific Salmonella strain 
on the leaves of a particular plant cultivar may not fit all. 
Evidently, when a partial inactivation is achieved, some surface-
residing bacteria may be misclassified as internal bacteria, while 
truly internalized bacteria killed due to permeation of the 
disinfectant into the intact leaf tissue may be mistakenly regarded 
as surface-attached bacteria.

The present study provides data from a systematic comparison 
of leaf internalization through stomata by a GFP-tagged 
Salmonella Typhimurium strain in the leaves of the three plant 
species using surface sterilization and plate-count technique. 
The study did not compare leaf internalization among plants 
but rather the effect of the various disinfection protocols on 
leaf internalization in each plant species. We  used three 
disinfectants (1% NaHClO, 1% AgNO3, and 70% ethanol), 
commonly applied, alone or in combination with others, for 
sterilizing plant surfaces (Franz et  al., 2007; Erickson et  al., 
2010b; Gu et  al., 2011, 2013a; Erickson, 2012; Ge et  al., 2013; 
Fakruddin et  al., 2017). To simplify the comparison between 
the protocols, we used a single concentration of the disinfectants, 
each time, and compared the effect of the sterilization time 
(1 to 7 min) on quantifying viable bacteria, apparently 
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representing internalized Salmonella cells. In parallel to the 
viable counts measurements, we  utilized confocal microscopy 
to accurately assess bacterial localization on or within the 
leaf tissue.

We initially examined leaf internalization in iceberg lettuce 
leaves previously shown by confocal microscopy to support 
Salmonella internalization (Kroupitski et  al., 2009; Golberg 

et  al., 2011). Indeed, confocal microscopy confirmed a high 
incidence of internalization (92%) in non-disinfected leaves; 
however, surface disinfection with all three agents resulted 
in reducing fluorescence, suggesting that the disinfectants 
seemingly penetrated the leaf tissues to some degree and 
injured the cells (Table  2). A substantial decrease in the 
number of apparent internalized bacteria was observed using 

A

B

FIGURE 2  |  Confocal microscopy visualization illustrating epiphytic and endophytic localization of GFP-labeled Salmonella cells in representative leaves of iceberg 
lettuce, Arabidopsis, and tomato. Panel A shows images taken from the surface of the leaves, and a stack of fluorescent images along a z-section taken every 
1.2 μm to a depth of 100 μm below the surface. All images were overlaid with differential interference contrast (DIC) images taken from the same location in each 
leaf. Bar denotes 50 μm. Panel B shows a z-section model of the same leaves, demonstrating the location of bacteria (green) on and within the leaf tissues. Red 
fluorescence indicated autofluorescence of the chloroplasts.
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the plate-count method following 1 to 7 min treatment 
(Figure 1). The determination of leaf internalization by surface 
disinfection and viable count showed wide variations in the 
number of apparently internalized bacteria in leaves of each 
plant species, depending upon the type of the disinfectant 
and the treatment duration. These differences are likely 
attributed to the increased killing of leaf-associated bacteria 
with time or to the transition of a portion of the Salmonella 
population to the viable but non-culturable (VBNC) state 
(Zhao et  al., 2017). The observation of fluorescent cells on 
the leaf surface does not provide a clear indication regarding 
the presence of disinfection-tolerant bacteria, since the 
Salmonella strain carried a stable GFP (Kroupitski et  al., 
2009), which may continue to emit fluorescence in VBNC 
bacteria, as well as in dead cells with intact GFP. Further 
studies using methods that can discriminate between live 
and dead bacteria are needed to determine the physiological 
status of the treated fluorescent bacteria on the leaves’ surface. 
Still, the possible entry of Salmonella into a VBNC state in 
the plant environment (Winfield and Groisman, 2003) may 
lead to underestimation of both attachment and internalization 
when using the viable count assay alone.

Based on the confocal microscopy studies, Salmonella displays 
a lower incidence of leaf internalization in Arabidopsis than 

in lettuce (Table  2). Likewise, the viable count method 
demonstrated lower numbers of viable bacteria during all 
treatment times (Figure  1B,C). All three agents displayed 
comparable surface disinfection effectiveness; however, they 
varied significantly in the apparent internalization (Table  2). 
A 7-min treatment with 1% NaHClO or 1% AgNO3 resulted 
in the complete loss of fluorescent cells inside the leaf, suggesting 
that they efficiently penetrated the leaves and injured the 
internalized bacteria.

In a previous report, we were not able to show internalization 
of the same Salmonella strain in tomato leaves (Golberg et  al., 
2011). Consequently, the assessment of tomato leaf internalization, 
side by side, by the two methodologies provided a unique 
opportunity to assess the suitability of the tested disinfection 
conditions inactivate bacteria in the leaf surface. Evaluation 
of Salmonella internalization by confocal microscopy, with no 
surface sterilization, confirmed our inability to demonstrate 
the internalization of Salmonella in these tomato leaves with 
the techniques used. Usage of 1% NaHClO for 1 to 7 min 
resulted in different numbers of apparent internalized bacteria, 
ranging from 4 logs CFU/cm2 to 0, respectively. Parallel confocal 
microscopy analysis of the treated leaf samples confirmed the 
lack of detection of leaf internalization, suggesting that only 
7-min treatment resulted in sufficient killing of external bacteria 
in this model system. The use of 70% ethanol as a sole 
disinfectant for up to 7 min failed to inactivate all external 
bacteria, as determined by viable counts, thus mistakenly 
suggesting the internalization of about 3 log CFU/cm2. Treatment 
with 1% AgNO3 resulted in substantial inactivation of surface-
attached bacteria in 1 and 3 min treatment, while treatment 
duration of 5 and 7 min was sufficient to kill all external 
bacteria, hence providing results comparable to those obtained 
by confocal microscopy. These findings indicate that non-validated 
surface sterilization conditions may lead to misinterpretation 
of the actual number of internalized bacterial cells. Notably, 
the apparent lack of leaf internalization of the tested S. 
typhimurium strain (SL 1344) in the tomato cultivar used in 
this study (Solanum lycopersicon cv. M82), as well as in S. 
lycopersicon cv. MP1, tested previously (Golberg et  al., 2011), 
calls for further research. It is particularly interesting to examine 
whether the two cultivars are naturally resistant to leaf 
internalization of other Salmonella serovars and strains under 
more natural tomato growing conditions. Elucidation of the 
mechanisms involved in the inhibition of leaf internalization 
might prove important for understanding human pathogen-
plant interactions and developing new mitigation strategies for 
Salmonella internalization.

Surface disinfection by treatment with 1% AgNO3 was less 
effective in lettuce compared to tomato leaves. These differences 
are likely correlate to specific leaf features, such as surface 
morphology and/or physico-chemical properties known to 
impact leaf colonization (Beattie and Lindow, 1995; Andrews 
and Harris, 2000; Beuchat, 2002; Yadav et  al., 2005; Heaton 
and Jones, 2008; Leveau, 2009; Cevallos-Cevallos et  al., 2012). 
Previous studies have already noted that the attachment of 
bacteria to specific microenvironments on the leaf, such as 
cavities and crevices on the leaf surface, may favor the persistence 

TABLE 2  |  Incidence of fluorescent Salmonella cells in various leaf localization 
using confocal microscopy.

Incidence of Salmonella in leaf localization (%)

Surface Internal

Treatment/
Time (min)

1 7 1 7

Iceberg 
lettuce

Control 
(water)

100A 100A 92 ± 1a 92 ± 1a

1% 
NaHClO

50 ± 1.5D 16 ± 2.5E 63 ± 5c 41 ± 2.5d

70% 
ethanol

58 ± 3B 16 ± 4E 91 ± 1.5a 77 ± 2.6b

1% AgNO3 59 ± 4B 54 ± 1C 67 ± 5bc 66 ± 5bc

Arabidopsis Control 
(water)

100A 100A 42 ± 6a 42 ± 6a

1% 
NaHClO

41 ± 3.6C 12 ± 3.2D 16 ± 3.5c 0d

70% 
ethanol

55 ± 3.5BC 14 ± 2.6D 42 ± 2.6a 31 ± 5.7b

1% AgNO3 57 ± 7B 15 ± 4.7D 32 ± 5b 0d

Tomato Control 
(water)

100A 100A 0a 0a

1% 
NaHClO

35 ± 1.5C 0E 0a 0a

70% 
ethanol

55 ± 1B 11 ± 2D 0a 0a

1% AgNO3 38 ± 7.6BC 0E 0a 0a

aFor each plant, means without a common uppercase letter or without a common 
lowercase letter differ significantly by the Tukey-Kramer multiple comparison test 
(p < 0.05) with regard to the incidence of Salmonella of surface-attached and internal 
Salmonella, respectively.
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of surface-attached bacteria following disinfection (Gomes et al., 
2009; Deering et  al., 2012; Erickson, 2012).

Altogether, this is the first time a systematic study reported 
a comparison of three surface sterilization protocols in leaves 
of three plants, side by side, with a confocal microscopy study. 
While the selection of an optimal disinfection protocol for 
each of the three plants was beyond the scope of this study, 
we have demonstrated the dependency of the apparent bacterial 
internalization on the disinfection conditions and shown the 
impact of the quantification method on the extent of 
leaf internalization.

It should be  noted that entry of bacterial pathogens into 
the leaf tissue might occur through stomata, hydathodes, and 
injured tissues or by transport through the roots and stem 
(Erickson, 2012; Gu et  al., 2013a; Melotto et  al., 2017). In the 
present study, we  utilized specific in vitro inoculation and 
experimental conditions to compare the effect of three surface 
disinfection protocols on Salmonella internalization through 
stomata. The study was not designed to investigate other factors 
that might affect bacterial internalization nor the different mode 
of leaf internalization. Therefore, we  suggest interpretation of 
our results with caution, especially when comparing to other 
studies that used different inoculation models and surface 
disinfection protocols.

Whole leaves or leaflets were used for inoculation in the 
case of Arabidopsis and tomato, respectively; however, in the 
case of lettuce, square leaf pieces were used, which potentially 
may enable direct access of bacteria into the apoplast through 
the injured tissue. However, previous confocal microscopy 
observations showed a limited penetration of Salmonella through 
the cut tissues (data not shown), which did not affect the 
internal leaf tissue used for bacterial enumeration.

While the use of confocal microscopy to determine bacterial 
localization is critical for confirming leaf internalization, this 
technique is limited to high concentrations of fluorescent cells, 
which may not represent natural contamination scenarios. 
Furthermore, unlike the bacteriological technique, quantification 
of internalization by confocal microscopy relies on a limited 
number of microscopic fields, which might bias the results. 
On the other hand, the viable count technique, but not confocal 
microscopy, may be prone to changes in the physiological status 
of the leaf-associated bacteria, such as transition into the 
VBNC state.

CONCLUSION

In conclusion, the data of the internalization model presented 
here emphasize the need for a careful examination and calibration 
of the surface sterilization protocol, including testing of different 

disinfectant’s concentrations as well as combinations of 
disinfectant, particularly when a new plant system and bacterial 
strain are studied, where the sterilization conditions may need 
to be  adjusted prior to further experimentation. Our findings 
may also be  relevant to studies aimed at the isolation and 
characterization of endophytic microorganisms, which utilize 
an initial surface sterilization step to inactivate external 
plant microorganisms.
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