
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Python library for Radiance matrix-based simulation control and EnergyPlus integration

Permalink
https://escholarship.org/uc/item/8g82x51z

ISBN
9781775052029

Authors
Wang, Taoning
Ward, Greg
S. Lee, Eleanor

Publication Date
2021-09-01

DOI
10.26868/25222708.2021.30438

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g82x51z
https://escholarship.org
http://www.cdlib.org/

Building Technology & Urban Systems Division

Energy Technologies Area

Lawrence Berkeley National Laboratory

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Building Technologies Office, of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231.

A Python Library for Radiance Matrix-based

Simulation Control and EnergyPlus Integration

Taoning Wang1, Greg Ward2, Eleanor S. Lee1

1Lawrence Berkeley National Lab, Berkeley, CA
2Anyhere Lab Berkeley, CA

Energy Technologies Area
September 2021

Disclaimer:

This document was prepared as an account of work sponsored by the United States Government.

While this document is believed to contain correct information, neither the United States

Government nor any agency thereof, nor the Regents of the University of California, nor any of their

employees, makes any warranty, express or implied, or assumes any legal responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

States Government or any agency thereof, or the Regents of the University of California. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof or the Regents of the University of California.

A Python Library for Radiance Matrix-based Simulation Control and EnergyPlus
Integration

Taoning Wang1, Greg Ward2, Eleanor S. Lee1

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2Anyhere Software, Berkeley, CA, USA

Abstract
Radiance matrix-based methods enable efficient
parametric simulations, allowing users to vary sky
conditions, fenestration systems, and other model
parameters at a minimal cost to computation. However,
the steep learning curve and complex workflow hinder
the widespread adoption of matrix-based methods. The
frads Python library with a series of command-line tools
was developed to automate the entire matrix-based
simulation process, lowering entry barriers and reducing
human error. Co-simulation between EnergyPlus and
Radiance was also enabled using the Python library from
EnergyPlus.
Key Innovations
● Command-line based automation of Radiance

matrix-based simulation methods
● Python library facilitates broader adoption of

Radiance matrix-based simulation methods
● Radiance EnergyPlus run-time integration enabling

the modeling of advanced control systems
Practical Implications
The frads library, with associated command-line tools,
provides practitioners with the capability to easily adopt
and use Radiance matrix-based simulation methods for
various daylighting, solar control, and energy-related
evaluations. Frads’ current form is designed for 1) users
familiar with a command-line interface and 2) software
developers to integrate the matrix-based methods into
existing software packages.
Introduction
In the realm of building simulation, there are many
reasons why accurate, efficient ray-tracing-based solar
radiation and daylighting simulations are needed:
1) accurate thermal and visual comfort predictions rely
on detailed maps of solar radiation and luminance on an
occupant’s body or field of view (Figure 1);
2) broader adoption of energy efficiency, indoor
environmental quality, and healthy building standards
require accurate modeling of innovative fenestration
solutions; and,
3) increased trends toward integrated, advanced building
design and control solutions require efficient models to
work seamlessly within co-simulation environments,
such as Spawn-of-EnergyPlus (Wetter et al., 2015).

Figure 1. Above: Time-step calculations of solar loads
on an underfloor air distribution system using Radiance-
EnergyPlus (Lee et al. 2013). Below: LBNL FLEXLAB

thermal image of phase-change and conventional
flooring irradiated by sunlight; spatially-resolved

Radiance data can be used to produce more accurate
evaluations of thermal comfort. Source: LBNL.

Conducting gold standard, classic ray-tracing at each
timestep, however, is computationally intensive and
impractical for annual simulations. As a result, legacy
daylight models, such as the split-flux and radiosity-
based methods, are still available to end-users of
EnergyPlus, despite their inaccuracies. Recently,
Radiance matrix-based simulation methods have been
developed and validated, enabling efficient and accurate
ways to simulate annual, dynamic, daylighting, and solar
control performance.
With matrix-based methods, the time needed to conduct
annual simulations using ray-tracing tools has been
reduced by several orders of magnitude (McNeil & Lee,
2013). Flux transport from the sky to interior points of
interests can be broken down into two or more “phases”
and stored in a matrix format to enable a parametric
analysis of different parts of the scene (Figure 2). A
simple case is to store the entire light transport from the
points of interest to the discretized sky in a single matrix,
known as the Daylight Coefficient (DC) method

(Tregenza and Waters, 1983; Littlefair, 1992).
Multiplying such a matrix with a sky vector yields the
irradiance of points under that specific sky condition.
While generating the initial matrices is computationally
intensive, matrix multiplication thereafter is almost
instantaneous. Thus, simulating the annual performance
for a specific location becomes trivial compared to
conventional ray tracing once the matrices storing flux
transport have been created. Software implementing the
two-phase DC method (e.g., DAYSIM), however, cannot
model optically-complex operable shades and dynamic
glazing efficiently (Ward et al., 2011).
Three- and four-phase simulations enable a parametric
analysis of planar and non-coplanar operable facade
systems (McNeil & Lee, 2013; Wang et al., 2018). For
tasks where specular transmission and solar peak
preservation are critical such as for annual sunlight
exposure (ASE) or visual comfort evaluations, five- and
six-phase methods have been developed to increase
accuracy; i.e., calculation of the direct sun component is
separate from the diffuse sky component (Lee et al.,
2018, Geisler-Moroder et al. 2017).

Figure 2. Flux transport can be broken down into four
parts: daylight, facade, transmission, and view matrix.

While matrix-based methods offer extensive
computational efficiency benefits, they are challenging
to understand and deploy even with advanced tutorials
(Subramaniam, 2017). Deploying a matrix-based
simulation requires that the user have a basic
understanding of Radiance hemispherical sampling
mechanisms, the way rays are spawned and binned
directionally at surfaces, and basic linear algebra. There
are also, for matrix-generation, hemispherical sampling
bases to choose from, determining how the rays are
binned at spawning and receiving in terms of resolution
and spatial distribution (McNeil, 2011). With five matrix
methods now available and various sampling bases to
choose from, it is up to users to choose the appropriate
method for their particular application. Different
methods yield different results and accuracy levels for
standard daylight metrics such as spatial daylight
autonomy (sDA) and ASE (Brembilla et al., 2019). Also,
performing a matrix-based simulation requires
meticulous book-keeping as the number of matrix files
multiplies when multiple window groups and
fenestration systems are involved. If not using a graphic
user interface, a user usually resorts to scripting
language to establish the workflow. The Radiance

rfluxmtx tool was introduced in 2014 to automate some
of the workflows required in the lower-level rcontrib
program. However, users still need to manually decorate
the sender and receiver files, making sure the surface
normals are facing the correct direction, then make
multiple calls to rfluxmtx while keeping track of which
matrix file is associated with which “phase.” During this
process, user errors are difficult to avoid and diagnose.
Whole-building energy simulation practitioners, such as
users of EnergyPlus, could leverage Radiance matrix-
based methods to perform more accurate solar
irradiance, daylighting, and electric lighting energy
calculations. However, the complex nature and
inconvenience of learning two software packages and
building two separate models hinder real-world
adoption. Third-party software provides such integration,
but there can be a lag between new developments in
simulation techniques and adoption by the software
developers. Furthermore, the evaluation of advanced
control strategies, such as model predictive control,
requires real-time co-simulation between the energy and
daylighting simulation engines (Gehbauer et al., 2020).
While EnergyPlus version 9.3 introduced such
capabilities through its Python application programming
interface (API), there still needs to be a counterpart on
the Radiance side to enable run-time co-simulation with
EnergyPlus.
This work aims to enable users and software developers
to adopt advanced Radiance matrix-based simulation
methods without extensive knowledge and experience.
General modeling knowledge is still required. In this
study, we describe and demonstrate the Python-based,
open-source library frads and accompanying command-
line programs that automate and speed up the use of
these advanced simulation methods. The methods utilize
the tools developed under the U.S. Department of
Energy building energy modeling program portfolio,
enabling advanced co-simulation workflows (Wetter et
al., 2015).
Methods
Frads is designed to satisfy two high-level goals:
1) extend the current Radiance simulation workflow
(Unix-toolbox model) and implement high-level
abstractions of the Radiance matrix-based simulation
methods, and
2) provide the necessary infrastructure for seamless
integration of Radiance matrix-based methods with other
Building Energy Modeling tools, such as EnergyPlus.
Frads consists of a Python library where the matrix-
based simulation workflow is implemented by individual
modules, each handling parts of the workflow. Frads
distribution also includes a toolbox that consists of
several command-line programs, including two
executive programs, mrad and eprad, developed using
the Python library. Figure 3 shows frads’ structure where
each command-line program in the toolbox calls the
Python library behind the scene to complete the task.

Figure 3. Each command-line program in the frads
toolbox directly uses frads python library modules to

perform tasks.
Frads toolbox
frads provide several high-level command-line tools for
users who are familiar with the command-line interface
to expedite standard workflow and minimize user error.
The command-line tools also serve as examples of
integrating the frads library with other software
packages or graphic user interfaces.
The two main command-line tools are mrad and eprad.
The former is an executive program that automates the
Radiance matrix-based simulation methods for a given
Radiance model. The latter is a tool that starts an
EnergyPlus simulation using Radiance as the lighting,
daylighting, solar radiation simulation engine with
detailed shading operation modeling capability.
Mrad
Mrad is a program that controls rfluxmtx and rcontrib for
managing different matrix-based methods. It eliminates
most of the manual work of setting up the simulation
workflow and keeping track of files. Mrad also has some
built-in general knowledge that automatically determines
which matrix-based method to apply then sets the
associated simulation parameters, helping beginners
learn the different matrix methods by observing mrad’s
behavior. However, mrad still requires the user to
understand basic concepts underlying matrix-based
simulation methods. End users will need to decide on
accuracy-speed tradeoffs, such as selecting the resolution
of the sampling basis, then supplying the required
fenestration bidirectional scattering distribution function
(BSDF) data based on the desired performance metric
(e.g., discomfort glare).
The design of mrad follows the schematic of the
Radiance rad program (Figure 4). It takes an input file of
variables specifying Radiance scene files (i.e., zone
geometry and materials), window (group) files,
simulated points (e.g., grid of workplane illuminance
sensors), and simulation control parameters. Based on
the number of planar and non-coplanar shading systems
specified in the configuration file and whether a separate
direct solar calculation is needed, mrad then invokes the
appropriate matrix phase method. Depending on the
method used, it then generates the necessary “sender”
and “receiver” objects for each subsequent rfluxmtx or
rcontrib call with the appropriate variables, such as
sampling basis (e.g., Klems, Tregenza). In the simplest
case, the two-phase method is invoked for a point-in-
time or annual calculation of daylight workplane
illuminance for each zone with windows. If a separate,

more accurate, direct solar contribution is required, such
as in the five- or six-phase method, mrad then alters the
model and calls rcontrib to carry out the calculation.
When computing separate solar matrices, mrad speeds
up the calculation by eliminating the solar positions that
are not relevant to the specific site and window
orientation. Finally, mrad multiplies the matrices in the
correct groups and order for the final timestep result.

Figure 4. Mrad takes model files and model descriptions
in the form of a configuration file and outputs the

corresponding annual illuminance or luminance/image
results.

Eprad
Eprad is a program that incorporates much of the
functionality of mrad and leverages the EnergyPlus
Python library to enable run-time data exchange. With
the advent of version 9.3, EnergyPlus exposes its
simulation engine through a Python library. EnergyPlus
and the frads Python library enable integration between
the two software packages at various levels, from simple
annual schedule substitution, where data are pre-
computed in Radiance and used by EnergyPlus through
its schedule component, to run-time data exchange.
The input to eprad is a regular EnergyPlus model file in
the epJSON format, which is then translated into
Radiance format to prepare for the subsequent matrix
generation procedure described above. Wall thickness is
approximated in Radiance using the construction data
from the EnergyPlus model. Surface optical properties
need to be defined in the EnergyPlus model. Opaque
surfaces are limited to Lambertian reflectance.
Transparent surfaces can be defined as a simple glazing
material represented as a single center-of-glass visible
transmittance or imported from LBNL WINDOW
software or Radiance genBSDF, including complex
fenestration systems with associated BSDFs. Like mrad,
the appropriate matrix-phase method is invoked
automatically by eprad. For each zone, eprad generates
a standard sensor grid from the zone geometry and
computes the necessary matrices. Once all the necessary
matrices are ready, eprad starts the EnergyPlus
simulation using the EnergyPlus Python library.
For applications requiring run-time data exchange, such
as when the façade control status is unknown before the
simulation starts, EnergyPlus internal variables are

replaced with values from frads using the “actuator”
mechanism in the EnergyPlus Energy Management
System module. An “actuator” includes zone lighting
level, interior surface incident solar radiation, and other
parameters. Eprad reads and edits the input EnergyPlus
model and exposes the necessary “actuators” to be
replaced later during the calculation through one of the
callback functions implemented in eprad. After starting
the simulation, EnergyPlus stops at pre-defined points of
the calculation, such as before or after the zone heat
balance calculation, to initiate the procedure that has
been defined in the callback function. The procedure
multiplies the corresponding matrices then uses the
result to set the “actuator” value. The simulation then
continues back to EnergyPlus (Figure 5).
One of the critical advantages of run-time data-exchange
between Radiance and EnergyPlus is that it enables
evaluations of advanced control of dynamic facades in a
multizone building within the Spawn-of-EnergyPlus co-
simulation environment. During run-time, at each
timestep, EnergyPlus simulation pauses, then when
given a dynamic facade control signal (e.g., via Spawn/
Modelica or manufacturer component model), Radiance
computes facade energy transfer data, which are sent to
EnergyPlus to complete the appropriate heat balance and
daylight/ lighting calculations.

Figure 5. Example run-time data exchange between
EnergyPlus and Radiance that happens at each zone

heat balance calculation.
Additional command-line tools are available in the frads
toolbox. The genfmtx tool automates the matrix
generation for operable and optically-complex, non-
coplanar facade systems, such as drop-arm fabric
awnings or expanded metal mesh retractable overhangs.
This tool is used in the latest LBNL WinCalc engine for
the generation of awning BSDF (LBNL WINDOW).
Ep2rad program offers simple geometric model
translation from EnergyPlus to Radiance format. The
genmtx program is a generic matrix generator for any
form of ray sender and receiver.

Frads library

The frads library exposes essential functions and classes
for advanced users and third-party software developers
to embed Radiance matrix-based simulation workflow
into their existing software. The frads library consists of
several modules situated at different abstraction levels
(Figure 6). The mtxmethod module can be used to
compute spatial daylight autonomy (sDA), ASE, and
discomfort glare. More detailed workflow control is
afforded using the radmtx, makesky, and mfacade
modules. Also, the epjson2rad module implements the
functionality of model translation from an EnergyPlus
model to Radiance models representing each zone with
exterior windows, and the mtxmethod module carries out
the related Radiance simulations. With the frads Python
library, embedding the Radiance matrix-based
simulation methods can as simple as the following
Python code using the mtxmethod module:
from frads import mtxmethod
msetup = mtxmethod.MTXMethod(config)
sky_mtx = msetup.gen_smx(config.smx_basis)
mtxmethod.three_phase(msetup, smx)

Figure 6. The mtxmethod module is at the highest level,
implementing the workflow of each matrix-based

method. radmtx module implements the generic sender
and receiver objects and the matrix generation workflow
of these objects. radgeom and radutil module provide the

infrastructure for geometry manipulation and utilities
such as file parsing.

Examples of use
Executive programs mrad and eprad are demonstrated in
the following examples. In general, these programs
require geometry and material data, either in Radiance or
EnergyPlus format.
Example 1: Calculate workplane illuminance
The user wishes to compute a daylight-illuminance
based metric (e.g., sDA) in a zone with upper clerestory
and lower view windows. The simple room model with
two window zones is shown in Figure 7.
The user can complete an entire matrix-based simulation
using the mrad program, which takes a configuration file
(i.e., room1.cfg) as input detailing the room model setup,
including the material and geometry (i.e., “scene”
variable) data as Radiance primitives. All surfaces in the
model need to be in Radiance format, and each window
zone in a separate file if the user wishes to treat them
separately. The “grid_surface,” “spacing,” and “height”
variables specify the location of the plane and grid

spacing of sensor points. The basic input file looks like
this (i.e., climate, run period details omitted):
#room1.cfg
material = material.mat
scene = walls.rad ceiling.rad floor.rad
window = UpperGlass.rad LowerGlass.rad
grid surface = floor.rad
spacing = 0.2
height = 0.3
Here, none of the zone descriptors are parameterized, so
mrad automatically selects the two-phase method. For
example, there is no “bsdf” variable defining BSDF files
for each window, nor is there a parameterized exterior
shading system defined. In this simple case, the window
files can be included as part of the “scene” variable,
leaving an empty “window” variable. To run the
simulation, the user runs the following command in the
terminal:
mrad room1.cfg

Mrad only runs the illuminance calculation because the
view variable is not defined in the configuration file. It
also uses a set of default simulation parameters suited for
a conventional room, which the user can override in the
configuration file. Grid sensor points are generated
automatically for the floor surface using the specified
spacing and height. The final illuminance results are as
follows, from which the user can perform the subsequent
processing or plotting:
datetime,pt1,pt2,pt3,...
2020-01-01 09:30,132.8,144.3,143.8,...
2020-01-01 10:30,149.9,144.1,152.9,...
2020-01-01 11:30,161.1,158.3,253.2,...
...
Example 2: Calculate discomfort glare
The user then wants to include an image-based glare
analysis with a venetian blind and fabric roller shade on
the windows. The configuration file can be adapted as:
#room2.cfg (option 1)
material = material.mat
scene = walls.rad ceiling.rad floor.rad
window = upperglass.rad lowerglass.rad
grid surface = floor.rad
spacing = 0.2
height = 0.3
bsdfs = blind.xml fabric.xml
separate_solar = True
view1 = -vf view.vf

#room2.cfg (option 2)
material = material.mat
...
bsdfs = blind.xml fabric.xml
dbsdfs = blindtt.xml fabrictt.xml
...

After running the same command as before, mrad
invokes the five-phase method (5PM) because the user
requests a separate solar calculation through the
“separate_solar” variable. This method is then used for
calculating both the workplane illuminance and
rendering using the view location defined in the
configuration file.

Figure 7. A simple room model with an upper and lower
window zone.

With option 1, the BSDF files associated with each
window group are described in the “bsdfs” variable,
where the two entries, blind.xml and fabric.xml,
correspond to the “upperglass.rad” and “lowerglass.rad”
files defined in the “window” variable. Proxy geometry
is modeled automatically if present in the blind.xml file,
otherwise the peak extraction algorithm is used to model
specular transmission in the direct solar calculation. The
Klems basis is used for the entire calculation. With
option 2, an optional “dsbsdfs” variable is used to
specify high resolution tensor tree BSDF with peak
extraction (or proxy geometry in the case of the blind)
for the direct solar part of the 5PM calculation. The
workplane illuminance values generated by the previous
simulation will not be recomputed unless the user
specifies in the configuration file to overwrite the
previous result.
Example 3: Calculate illuminance in EnergyPlus
To carry out the first example’s daylight illuminance
calculation from EnergyPlus, the user runs the following
command:
eprad -wp room.epJSON

where the -wp option invokes a workplane illuminance
calculation. Radiance models are generated from the
EnergyPlus epJSON zone model, and then matrices are
generated following protocols similar to mrad’s.
Workplane illuminance values are then computed and
used to determine the electric lighting system’s dimming
level if daylight controlled or output from EnergyPlus
for user-defined analysis of daylight quality.
Example 4: Calculate surface irradiance in
EnergyPlus
Interior surface incident irradiance and workplane
illuminance can be calculated by running the following
command:
eprad -wp -si room.epJSON

For surface irradiance, eprad identifies each interior
surface in each zone with a window(s), computes the
corresponding matrices for each interior surface, then,
for each time step, performs matrix multiplication for
each surface. The result is an average irradiance over the
whole surface (room surfaces can be subdivided in
smaller areas as shown in Figure 1). Incident irradiance
values are then set in EnergyPlus prior to completion of
the rest of the simulation. If the windows are modeled as
complex fenestration systems in EnergyPlus, then they
are modeled accordingly in Radiance. Control of the

shade and Venetian blind would also be reflected if
control logic was defined in the EnergyPlus model.
Workplane illuminance results will not be recomputed if
the results from example 3 still exist, but the user can
force a re-run by using the -f option.
Discussion
The mrad program automates the simulation workflow
and helps beginners learn Radiance matrix modeling
processes. However, there are still a few challenges the
user faces when using mrad. One challenge is deciding
the appropriate sampling basis for each matrix
generation process, especially when using the four-phase
method for modeling non-coplanar shading systems,
where selecting the appropriate sampling basis could
affect the simulation’s overall accuracy (Wang et al.,
2018). The user also must decide how to group and
divide windows. Sometimes it is evident to group
windows by orientation, construction, or control system.
In other situations, window division is not apparent with
external obstructions such as overhangs and adjacent
buildings. Dividing windows appropriately to account
for external obstruction can significantly affect
simulation results (Ward et al., 2011). Thus, creating a
tool in the future to guide users towards the correct
sampling basis and window division is paramount.
Another crucial challenge is modeling the window with
a complex fenestration system (e.g., fabric shade,
venetian blind, daylight-redirecting film) using BSDFs.
There are two aspects to this challenge: data access and
modeling. The data access challenge, not related to the
current frads implementation, refers to the lack of high-
quality BSDF data suitable for a wide range of
applications, from solar heat gain to visual comfort
analysis. For each class of shading or daylighting
products and each performance metric, measurement
standards are needed to produce adequate tabular BSDF
data. There are several ongoing international efforts to
address this issue (Geisler-Moroder & Lee, 2020). The
modeling challenge refers to the complicated nature of
modeling an optically complex fenestration system. The
user needs to assemble a multi-layer BSDF if the
fenestration system consists of multiple layers (e.g.,
double-pane window with indoor fabric shade). The user
also needs to place the BSDF in the correct orientation
(facing indoor vs. outdoor) and planar rotation,
depending on how the system is physically measured
and how the BSDF is generated. The usual asymmetrical
nature of the fenestration system makes the modeling
process difficult and prone to user error. Additional
toolchains need to be developed to assist users so as to
ensure a successful endeavor.
Table 1 lists frads’ existing and planned features.
EnergyPlus and Radiance integration through their
respective Python API (frads and EnergyPlus Python
API) enables long- and short-wave radiation simulation
in complex spaces. Advanced thermal comfort models
can now receive frad-generated solar irradiance data on
each surface of a multi-node manikin, for example, at a
fraction of the time needed by conventional ray-tracing

or radiosity methods. Incident solar irradiance on
exterior envelope surfaces (e.g., BIPV, phase change
materials) with attached shading or in complex urban
environments can be modeled more efficiently. In the
future, frads will include occupant health- and alertness-
related metric analysis enabled by spectrum or
equivalent modeling capabilities.

Table 1. frads’ existing and planned features for
integrated EnergyPlus simulation

Implementation
Daylight illuminance Implemented

Solar irradiance on interior surfaces Implemented
Solar irradiance on window and

shading layers
Implemented

Solar irradiance on outdoor surfaces Implemented
Detailed luminance map for visual

comfort
Planned

Melanopic illuminance calculation Planned

For operable or automated shading and daylighting
systems, Eprad can model energy performance when
conventional rule-based supervisory control sequences
are defined via the energy management system (EMS)
feature in EnergyPlus or when more advanced controls
are modeled using Spawn-of-EnergyPlus functional
mockup units (FMU). When the control signal (i.e.,
position of the dynamic facade) is sent by other means to
the EnergyPlus Python API or if the user wishes to send
the control signal to frads directly (e.g., to compute
impacts such as detailed visual or thermal comfort
metrics that are then sent to the EnergyPlus Python API),
then additional scripting is required by the end user. In
the case when Radiance models are used within the
controller logic, eprad cannot be used: additional
scripting is required to incorporate matrix models
generated by frads into the controller. Gehbauer et al.,
for example, used the frads Python library to model solar
heat gains, daylight, and glare within a model predictive
controller (Gehbauer et al., 2020). Control designers can
leverage frads to develop and fine-tune the various
building components’ control strategies to ensure energy
efficiency and occupant comfort.
Using programs like mrad and eprad requires familiarity
with the command-line interface. Existing Radiance
users who are used to calling programs through the
command-line interface will find adopting frads a
relatively smooth process. However, achieving wide
adoption of Radiance matrix-based simulation methods
requires graphical interface developers to integrate frads
through either the command-line interface or frads
Python library. Some existing commercially available
graphical programming interfaces such as Grasshopper
have the capability to import external Python modules.
Grasshopper users, thus, can directly import and
incorporate frads into their workflows in Grasshopper.
Individual users who are used to programming in Python
can also develop customized workflow or specialized
tools using the frads Python library.

The frads library is open-source and actively maintained
by developers of Radiance and EnergyPlus engines. The
library will be routinely tested using a suite of test cases
developed by the Illuminating Engineering (IESNA)
Society of North America, Daylight Metrics Committee
(DMC) (IESNA 2020). The test cases consist of
multiple common building types with different shading
systems and the results are generated using classic
backwards ray-tracing using Radiance. Results
generated from the frads Python library using different
matrix-based methods will be compared to this dataset to
validate the code. Issue reports and feature suggestions
are welcomed as the claimed functionalities certainly do
not cover all Radiance and EnergyPlus use cases. See
https://github.com/LBNL-ETA/frads.
Conclusion
The frads Python-based toolbox and library facilitate the
use of Radiance ray-tracing based, time-efficient, matrix
algebraic calculation methods, improving the accuracy
of illuminance, luminance, and irradiance-related
performance measures. Critical Radiance workflows
were automated to eliminate user error and integrated
with EnergyPlus in a co-simulation environment. Some
basic knowledge of matrix-based methods is needed to
determine setup requirements for applications with
attached exterior shading or complex urban
environments. This integration of Radiance and
EnergyPlus is expected to significantly improve building
energy simulations’ speed and accuracy involving light-
scattering shading and daylighting systems and smart,
operable fenestration.
Acknowledgment
This work was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Building
Technologies Office of the US Department of Energy,
under Contract No. DE-AC02-05CH11231, and by the
California Energy Commission under the Electric
Program Investment Charge (EPIC) Program,
Solicitation Number: PON-13-301, entitled “Developing
A Portfolio of Advanced Efficiency Solutions:
Technologies and Approaches for More Affordable and
Comfortable Buildings,” that was awarded to Lawrence
Berkeley National Lab for the work herein.
References
Brembilla, E. & Mardaljevic, J. (2019). Climate-Based

Daylight Modelling for compliance verification:
Benchmarking multiple state-of-the-art methods.
Building and Environment, 158, 151-164.

Gehbauer, C., Blum, D. H., Wang, T., & Lee, E. S.
(2020). An assessment of the load modifying
potential of model predictive controlled dynamic
facades within the California context. Energy and
Buildings, 210, 109762.

Geisler-Moroder, D., et al. (2020). White paper on
BSDF generation procedures for daylighting systems.
T61.C.2.1: A Technical Report of Subtask C. IEA
SHC Task 61 / EBC Annex 77. IEA SHC.

Geisler-Moroder, D., Lee, E.S., Ward, G. (2017).
Validation of the Five-Phase Method for Simulating
Complex Fenestration Systems with Radiance
against Field Measurements. Proceedings of Building
Simulation 2017, San Francisco, 7-9 August 2017.

IESNA 2020. IES Technical Memorandum: Daylight
Modeling and Simulation Methods and Standards
and Test Cases for the Evaluation of Daylighting
Analysis Software, draft under development.

Lee, E.S., Geisler-Moroder, D. and Ward, G., 2018.
Modeling the direct sun contribution in buildings
using matrix algebraic approaches: Methods and
validation. Solar Energy 160: 380-395.

Lee, E.S., Fernandes, L.L., Coffey, B., McNeil, A.,
Clear, R., Webster, T., Bauman, F., Dickeroff, D.,
Heinzerling, D. and Hoyt, T., 2013. A post-
occupancy monitored evaluation of the dimmable
lighting, automated shading, and underfloor air
distribution system in The New York Times
Building. LBNL-6023E.

Littlefair, P. J. (1992). Daylight coefficients for practical
computation of internal illuminances. Lighting
Research & Technology, 24(3), 127-135.

McNeil, A. & Lee, E. S. (2013). A validation of the
Radiance three-phase simulation method for
modeling annual daylight performance of optically
complex fenestration systems. Journal of Building
Performance Simulation, 6(1), 24-37.

McNeil, A. (2011). On the sensitivity of daylight
simulations to the resolution of the hemispherical
basis used to define bidirectional scattering
distribution functions. DOE/ LBNL FY11 Technical
Report.

Subramaniam, S. (2017). Daylighting Simulations with
Radiance using Matrix-based Methods. Lawrence
Berkeley National Laboratory.

Tregenza, P. R., & Waters, I. M. (1983). Daylight
coefficients. Lighting Research & Technology, 15(2),
65-71.

Wang, T., Ward, G., & Lee, E. S. (2018). Efficient
modeling of optically-complex, non-coplanar
exterior shading: Validation of matrix algebraic
methods. Energy and Buildings, 174, 464-483.

Ward, G., Mistrick, R., Lee, E. S., McNeil, A., &
Jonsson, J. (2011). Simulating the Daylight
Performance of Complex Fenestration Systems
Using Bidirectional Scattering Distribution Functions
within Radiance, LEUKOS, 7:4, 241-261, DOI:
10.1080/15502724.2011.10732150.

Wetter, M., Nouidui, T. S., Lorenzetti, D., Lee, E. A., &
Roth, A. (2015, December). Prototyping the next
generation energyplus simulation engine. 13th IBPSA
Conference. International Building Performance
Simulation Association.

	A Python Library Cover Page 2021.pdf
	Wang Taoning Pub - Python.pdf

