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Abstract
Radiance matrix-based methods enable efficient 
parametric simulations, allowing users to vary sky 
conditions, fenestration systems, and other model 
parameters at a minimal cost to computation. However, 
the steep learning curve and complex workflow hinder 
the widespread adoption of matrix-based methods. The 
frads Python library with a series of command-line tools 
was developed to automate the entire matrix-based 
simulation process, lowering entry barriers and reducing 
human error. Co-simulation between EnergyPlus and 
Radiance was also enabled using the Python library from 
EnergyPlus.  
Key Innovations
● Command-line based automation of Radiance 

matrix-based simulation methods
● Python library facilitates broader adoption of 

Radiance matrix-based simulation methods
● Radiance EnergyPlus run-time integration enabling 

the modeling of advanced control systems
Practical Implications
The frads library, with associated command-line tools, 
provides practitioners with the capability to easily adopt 
and use Radiance matrix-based simulation methods for 
various daylighting, solar control, and energy-related 
evaluations. Frads’ current form is designed for 1) users 
familiar with a command-line interface and 2) software 
developers to integrate the matrix-based methods into 
existing software packages.  
Introduction
In the realm of building simulation, there are many 
reasons why accurate, efficient ray-tracing-based solar 
radiation and daylighting simulations are needed:
1) accurate thermal and visual comfort predictions rely 
on detailed maps of solar radiation and luminance on an 
occupant’s body or field of view (Figure 1);
2) broader adoption of energy efficiency, indoor 
environmental quality, and healthy building standards 
require accurate modeling of innovative fenestration 
solutions; and,
3) increased trends toward integrated, advanced building 
design and control solutions require efficient models to 
work seamlessly within co-simulation environments, 
such as Spawn-of-EnergyPlus (Wetter et al., 2015).  

Figure 1.  Above: Time-step calculations of solar loads 
on an underfloor air distribution system using Radiance-
EnergyPlus (Lee et al. 2013).  Below: LBNL FLEXLAB 

thermal image of phase-change and conventional 
flooring irradiated by sunlight; spatially-resolved 

Radiance data can be used to produce more accurate 
evaluations of thermal comfort. Source: LBNL.

Conducting gold standard, classic ray-tracing at each 
timestep, however, is computationally intensive and 
impractical for annual simulations. As a result, legacy 
daylight models, such as the split-flux and radiosity-
based methods, are still available to end-users of 
EnergyPlus, despite their inaccuracies. Recently, 
Radiance matrix-based simulation methods have been 
developed and validated, enabling efficient and accurate 
ways to simulate annual, dynamic, daylighting, and solar 
control performance. 
With matrix-based methods, the time needed to conduct 
annual simulations using ray-tracing tools has been 
reduced by several orders of magnitude (McNeil & Lee, 
2013). Flux transport from the sky to interior points of 
interests can be broken down into two or more “phases” 
and stored in a matrix format to enable a parametric 
analysis of different parts of the scene (Figure 2). A 
simple case is to store the entire light transport from the 
points of interest to the discretized sky in a single matrix, 
known as the Daylight Coefficient (DC) method 



(Tregenza and Waters, 1983; Littlefair, 1992). 
Multiplying such a matrix with a sky vector yields the 
irradiance of points under that specific sky condition. 
While generating the initial matrices is computationally 
intensive, matrix multiplication thereafter is almost 
instantaneous. Thus, simulating the annual performance 
for a specific location becomes trivial compared to 
conventional ray tracing once the matrices storing flux 
transport have been created. Software implementing the 
two-phase DC method (e.g., DAYSIM), however, cannot 
model optically-complex operable shades and dynamic 
glazing efficiently (Ward et al., 2011).
Three- and four-phase simulations enable a parametric 
analysis of planar and non-coplanar operable facade 
systems (McNeil & Lee, 2013; Wang et al., 2018). For 
tasks where specular transmission and solar peak 
preservation are critical such as for annual sunlight 
exposure (ASE) or visual comfort evaluations, five- and 
six-phase methods have been developed to increase 
accuracy; i.e., calculation of the direct sun component is 
separate from the diffuse sky component (Lee et al., 
2018, Geisler-Moroder et al. 2017). 

Figure 2. Flux transport can be broken down into four 
parts: daylight, facade, transmission, and view matrix. 

While matrix-based methods offer extensive 
computational efficiency benefits, they are challenging 
to understand and deploy even with advanced tutorials 
(Subramaniam, 2017). Deploying a matrix-based 
simulation requires that the user have a basic 
understanding of Radiance hemispherical sampling 
mechanisms, the way rays are spawned and binned 
directionally at surfaces, and basic linear algebra. There 
are also, for matrix-generation, hemispherical sampling 
bases to choose from, determining how the rays are 
binned at spawning and receiving in terms of resolution 
and spatial distribution (McNeil, 2011). With five matrix 
methods now available and various sampling bases to 
choose from, it is up to users to choose the appropriate 
method for their particular application. Different 
methods yield different results and accuracy levels for 
standard daylight metrics such as spatial daylight 
autonomy (sDA) and ASE (Brembilla et al., 2019). Also, 
performing a matrix-based simulation requires 
meticulous book-keeping as the number of matrix files 
multiplies when multiple window groups and 
fenestration systems are involved. If not using a graphic 
user interface, a user usually resorts to scripting 
language to establish the workflow. The Radiance 

rfluxmtx tool was introduced in 2014 to automate some 
of the workflows required in the lower-level rcontrib 
program. However, users still need to manually decorate 
the sender and receiver files, making sure the surface 
normals are facing the correct direction, then make 
multiple calls to rfluxmtx while keeping track of which 
matrix file is associated with which “phase.” During this 
process, user errors are difficult to avoid and diagnose.
Whole-building energy simulation practitioners, such as 
users of EnergyPlus, could leverage Radiance matrix-
based methods to perform more accurate solar 
irradiance, daylighting, and electric lighting energy 
calculations. However, the complex nature and 
inconvenience of learning two software packages and 
building two separate models hinder real-world 
adoption. Third-party software provides such integration, 
but there can be a lag between new developments in 
simulation techniques and adoption by the software 
developers. Furthermore, the evaluation of advanced 
control strategies, such as model predictive control, 
requires real-time co-simulation between the energy and 
daylighting simulation engines (Gehbauer et al., 2020). 
While EnergyPlus version 9.3 introduced such 
capabilities through its Python application programming 
interface (API), there still needs to be a counterpart on 
the Radiance side to enable run-time co-simulation with 
EnergyPlus.
This work aims to enable users and software developers 
to adopt advanced Radiance matrix-based simulation 
methods without extensive knowledge and experience. 
General modeling knowledge is still required. In this 
study, we describe and demonstrate the Python-based, 
open-source library frads and accompanying command-
line programs that automate and speed up the use of 
these advanced simulation methods. The methods utilize 
the tools developed under the U.S. Department of 
Energy building energy modeling program portfolio, 
enabling advanced co-simulation workflows (Wetter et 
al., 2015).  
Methods
Frads is designed to satisfy two high-level goals:
1) extend the current Radiance simulation workflow 
(Unix-toolbox model) and implement high-level 
abstractions of the Radiance matrix-based simulation 
methods, and
2) provide the necessary infrastructure for seamless 
integration of Radiance matrix-based methods with other 
Building Energy Modeling tools, such as EnergyPlus.
Frads consists of a Python library where the matrix-
based simulation workflow is implemented by individual 
modules, each handling parts of the workflow. Frads 
distribution also includes a toolbox that consists of 
several command-line programs, including two 
executive programs, mrad and eprad, developed using 
the Python library. Figure 3 shows frads’ structure where 
each command-line program in the toolbox calls the 
Python library behind the scene to complete the task.



Figure 3. Each command-line program in the frads 
toolbox directly uses frads python library modules to 

perform tasks. 
Frads toolbox
frads provide several high-level command-line tools for 
users who are familiar with the command-line interface 
to expedite standard workflow and minimize user error. 
The command-line tools also serve as examples of 
integrating the frads library with other software 
packages or graphic user interfaces.
The two main command-line tools are mrad and eprad. 
The former is an executive program that automates the 
Radiance matrix-based simulation methods for a given 
Radiance model. The latter is a tool that starts an 
EnergyPlus simulation using Radiance as the lighting, 
daylighting, solar radiation simulation engine with 
detailed shading operation modeling capability.
Mrad
Mrad is a program that controls rfluxmtx and rcontrib for 
managing different matrix-based methods. It eliminates 
most of the manual work of setting up the simulation 
workflow and keeping track of files. Mrad also has some 
built-in general knowledge that automatically determines 
which matrix-based method to apply then sets the 
associated simulation parameters, helping beginners 
learn the different matrix methods by observing mrad’s 
behavior. However, mrad still requires the user to 
understand basic concepts underlying matrix-based 
simulation methods. End users will need to decide on 
accuracy-speed tradeoffs, such as selecting the resolution 
of the sampling basis, then supplying the required 
fenestration bidirectional scattering distribution function 
(BSDF) data based on the desired performance metric 
(e.g., discomfort glare).  
The design of mrad follows the schematic of the 
Radiance rad program (Figure 4). It takes an input file of 
variables specifying Radiance scene files (i.e., zone 
geometry and materials), window (group) files, 
simulated points (e.g., grid of workplane illuminance 
sensors), and simulation control parameters. Based on 
the number of planar and non-coplanar shading systems 
specified in the configuration file and whether a separate 
direct solar calculation is needed, mrad then invokes the 
appropriate matrix phase method. Depending on the 
method used, it then generates the necessary “sender” 
and “receiver” objects for each subsequent rfluxmtx or 
rcontrib call with the appropriate variables, such as 
sampling basis (e.g., Klems, Tregenza). In the simplest 
case, the two-phase method is invoked for a point-in-
time or annual calculation of daylight workplane 
illuminance for each zone with windows. If a separate, 

more accurate, direct solar contribution is required, such 
as in the five- or six-phase method, mrad then alters the 
model and calls rcontrib to carry out the calculation. 
When computing separate solar matrices, mrad speeds 
up the calculation by eliminating the solar positions that 
are not relevant to the specific site and window 
orientation. Finally, mrad multiplies the matrices in the 
correct groups and order for the final timestep result. 

Figure 4. Mrad takes model files and model descriptions 
in the form of a configuration file and outputs the 

corresponding annual illuminance or luminance/image 
results.

Eprad
Eprad is a program that incorporates much of the 
functionality of mrad and leverages the EnergyPlus 
Python library to enable run-time data exchange. With 
the advent of version 9.3, EnergyPlus exposes its 
simulation engine through a Python library. EnergyPlus 
and the frads Python library enable integration between 
the two software packages at various levels, from simple 
annual schedule substitution, where data are pre-
computed in Radiance and used by EnergyPlus through 
its schedule component, to run-time data exchange. 
The input to eprad is a regular EnergyPlus model file in 
the epJSON format, which is then translated into 
Radiance format to prepare for the subsequent matrix 
generation procedure described above. Wall thickness is 
approximated in Radiance using the construction data 
from the EnergyPlus model. Surface optical properties 
need to be defined in the EnergyPlus model. Opaque 
surfaces are limited to Lambertian reflectance. 
Transparent surfaces can be defined as a simple glazing 
material represented as a single center-of-glass visible 
transmittance or imported from LBNL WINDOW 
software or Radiance genBSDF, including complex 
fenestration systems with associated BSDFs. Like mrad, 
the appropriate matrix-phase method is invoked 
automatically by eprad. For each zone, eprad generates 
a standard sensor grid from the zone geometry and 
computes the necessary matrices. Once all the necessary 
matrices are ready, eprad starts the EnergyPlus 
simulation using the EnergyPlus Python library.  
For applications requiring run-time data exchange, such 
as when the façade control status is unknown before the 
simulation starts, EnergyPlus internal variables are 



replaced with values from frads using the “actuator” 
mechanism in the EnergyPlus Energy Management 
System module. An “actuator” includes zone lighting 
level, interior surface incident solar radiation, and other 
parameters. Eprad reads and edits the input EnergyPlus 
model and exposes the necessary “actuators” to be 
replaced later during the calculation through one of the 
callback functions implemented in eprad. After starting 
the simulation, EnergyPlus stops at pre-defined points of 
the calculation, such as before or after the zone heat 
balance calculation, to initiate the procedure that has 
been defined in the callback function. The procedure 
multiplies the corresponding matrices then uses the 
result to set the “actuator” value. The simulation then 
continues back to EnergyPlus (Figure 5). 
One of the critical advantages of run-time data-exchange 
between Radiance and EnergyPlus is that it enables 
evaluations of advanced control of dynamic facades in a 
multizone building within the Spawn-of-EnergyPlus co-
simulation environment. During run-time, at each 
timestep, EnergyPlus simulation pauses, then when 
given a dynamic facade control signal (e.g., via Spawn/ 
Modelica or manufacturer component model), Radiance 
computes facade energy transfer data, which are sent to 
EnergyPlus to complete the appropriate heat balance and 
daylight/ lighting calculations.
 

Figure 5. Example run-time data exchange between 
EnergyPlus and Radiance that happens at each zone 

heat balance calculation.
Additional command-line tools are available in the frads 
toolbox. The genfmtx tool automates the matrix 
generation for operable and optically-complex, non-
coplanar facade systems, such as drop-arm fabric 
awnings or expanded metal mesh retractable overhangs. 
This tool is used in the latest LBNL WinCalc engine for 
the generation of awning BSDF (LBNL WINDOW). 
Ep2rad program offers simple geometric model 
translation from EnergyPlus to Radiance format. The 
genmtx program is a generic matrix generator for any 
form of ray sender and receiver. 

Frads library

The frads library exposes essential functions and classes 
for advanced users and third-party software developers 
to embed Radiance matrix-based simulation workflow 
into their existing software. The frads library consists of 
several modules situated at different abstraction levels 
(Figure 6). The mtxmethod module can be used to 
compute spatial daylight autonomy (sDA), ASE, and 
discomfort glare. More detailed workflow control is 
afforded using the radmtx, makesky, and mfacade 
modules. Also, the epjson2rad module implements the 
functionality of model translation from an EnergyPlus 
model to Radiance models representing each zone with 
exterior windows, and the mtxmethod module carries out 
the related Radiance simulations.  With the frads Python 
library, embedding the Radiance matrix-based 
simulation methods can as simple as the following 
Python code using the mtxmethod module:
from frads import mtxmethod
msetup = mtxmethod.MTXMethod(config)
sky_mtx = msetup.gen_smx(config.smx_basis)
mtxmethod.three_phase(msetup, smx)

Figure 6. The mtxmethod module is at the highest level, 
implementing the workflow of each matrix-based 

method. radmtx module implements the generic sender 
and receiver objects and the matrix generation workflow 
of these objects. radgeom and radutil module provide the 

infrastructure for geometry manipulation and utilities 
such as file parsing. 

Examples of use
Executive programs mrad and eprad are demonstrated in 
the following examples.  In general, these programs 
require geometry and material data, either in Radiance or 
EnergyPlus format. 
Example 1: Calculate workplane illuminance
The user wishes to compute a daylight-illuminance 
based metric (e.g., sDA) in a zone with upper clerestory 
and lower view windows.  The simple room model with 
two window zones is shown in Figure 7.  
The user can complete an entire matrix-based simulation 
using the mrad program, which takes a configuration file 
(i.e., room1.cfg) as input detailing the room model setup, 
including the material and geometry (i.e., “scene” 
variable) data as Radiance primitives. All surfaces in the 
model need to be in Radiance format, and each window 
zone in a separate file if the user wishes to treat them 
separately. The “grid_surface,” “spacing,” and “height” 
variables specify the location of the plane and grid 



spacing of sensor points. The basic input file looks like 
this (i.e., climate, run period details omitted):
#room1.cfg
material = material.mat
scene = walls.rad ceiling.rad floor.rad
window = UpperGlass.rad LowerGlass.rad
grid surface = floor.rad
spacing = 0.2
height = 0.3
Here, none of the zone descriptors are parameterized, so 
mrad automatically selects the two-phase method.  For 
example, there is no “bsdf” variable defining BSDF files 
for each window, nor is there a parameterized exterior 
shading system defined. In this simple case, the window 
files can be included as part of the “scene” variable, 
leaving an empty “window” variable. To run the 
simulation, the user runs the following command in the 
terminal:
mrad room1.cfg

Mrad only runs the illuminance calculation because the 
view variable is not defined in the configuration file. It 
also uses a set of default simulation parameters suited for 
a conventional room, which the user can override in the 
configuration file. Grid sensor points are generated 
automatically for the floor surface using the specified 
spacing and height. The final illuminance results are as 
follows, from which the user can perform the subsequent 
processing or plotting:  
datetime,pt1,pt2,pt3,...
2020-01-01 09:30,132.8,144.3,143.8,...
2020-01-01 10:30,149.9,144.1,152.9,...
2020-01-01 11:30,161.1,158.3,253.2,...
...
Example 2: Calculate discomfort glare
The user then wants to include an image-based glare 
analysis with a venetian blind and fabric roller shade on 
the windows. The configuration file can be adapted as:
#room2.cfg (option 1)
material = material.mat
scene = walls.rad ceiling.rad floor.rad
window = upperglass.rad lowerglass.rad
grid surface = floor.rad
spacing = 0.2
height = 0.3
bsdfs = blind.xml fabric.xml
separate_solar = True
view1 = -vf view.vf

#room2.cfg (option 2)
material = material.mat
...
bsdfs = blind.xml fabric.xml
dbsdfs = blindtt.xml fabrictt.xml
...

After running the same command as before, mrad 
invokes the five-phase method (5PM) because the user 
requests a separate solar calculation through the 
“separate_solar” variable. This method is then used for 
calculating both the workplane illuminance and 
rendering using the view location defined in the 
configuration file.

Figure 7. A simple room model with an upper and lower 
window zone.

With option 1, the BSDF files associated with each 
window group are described in the “bsdfs” variable, 
where the two entries, blind.xml and fabric.xml, 
correspond to the “upperglass.rad” and “lowerglass.rad” 
files defined in the “window” variable. Proxy geometry 
is modeled automatically if present in the blind.xml file, 
otherwise the peak extraction algorithm is used to model 
specular transmission in the direct solar calculation. The 
Klems basis is used for the entire calculation.  With 
option 2, an optional “dsbsdfs” variable is used to 
specify high resolution tensor tree BSDF with peak 
extraction (or proxy geometry in the case of the blind) 
for the direct solar part of the 5PM calculation. The 
workplane illuminance values generated by the previous 
simulation will not be recomputed unless the user 
specifies in the configuration file to overwrite the 
previous result.
Example 3: Calculate illuminance in EnergyPlus
To carry out the first example’s daylight illuminance 
calculation from EnergyPlus, the user runs the following 
command:
eprad -wp room.epJSON

where the -wp option invokes a workplane illuminance 
calculation. Radiance models are generated from the 
EnergyPlus epJSON zone model, and then matrices are 
generated following protocols similar to mrad’s. 
Workplane illuminance values are then computed and 
used to determine the electric lighting system’s dimming 
level if daylight controlled or output from EnergyPlus 
for user-defined analysis of daylight quality.  
Example 4: Calculate surface irradiance in 
EnergyPlus
Interior surface incident irradiance and workplane 
illuminance can be calculated by running the following 
command:
eprad -wp -si room.epJSON

For surface irradiance, eprad identifies each interior 
surface in each zone with a window(s), computes the 
corresponding matrices for each interior surface, then, 
for each time step, performs matrix multiplication for 
each surface. The result is an average irradiance over the 
whole surface (room surfaces can be subdivided in 
smaller areas as shown in Figure 1).  Incident irradiance 
values are then set in EnergyPlus prior to completion of 
the rest of the simulation. If the windows are modeled as 
complex fenestration systems in EnergyPlus, then they 
are modeled accordingly in Radiance. Control of the 



shade and Venetian blind would also be reflected if 
control logic was defined in the EnergyPlus model. 
Workplane illuminance results will not be recomputed if 
the results from example 3 still exist, but the user can 
force a re-run by using the -f option.
Discussion
The mrad program automates the simulation workflow 
and helps beginners learn Radiance matrix modeling 
processes. However, there are still a few challenges the 
user faces when using mrad. One challenge is deciding 
the appropriate sampling basis for each matrix 
generation process, especially when using the four-phase 
method for modeling non-coplanar shading systems, 
where selecting the appropriate sampling basis could 
affect the simulation’s overall accuracy (Wang et al., 
2018). The user also must decide how to group and 
divide windows. Sometimes it is evident to group 
windows by orientation, construction, or control system. 
In other situations, window division is not apparent with 
external obstructions such as overhangs and adjacent 
buildings. Dividing windows appropriately to account 
for external obstruction can significantly affect 
simulation results (Ward et al., 2011). Thus, creating a 
tool in the future to guide users towards the correct 
sampling basis and window division is paramount.
Another crucial challenge is modeling the window with 
a complex fenestration system (e.g., fabric shade, 
venetian blind, daylight-redirecting film) using BSDFs. 
There are two aspects to this challenge: data access and 
modeling. The data access challenge, not related to the 
current frads implementation, refers to the lack of high-
quality BSDF data suitable for a wide range of 
applications, from solar heat gain to visual comfort 
analysis. For each class of shading or daylighting 
products and each performance metric, measurement 
standards are needed to produce adequate tabular BSDF 
data. There are several ongoing international efforts to 
address this issue (Geisler-Moroder & Lee, 2020). The 
modeling challenge refers to the complicated nature of 
modeling an optically complex fenestration system. The 
user needs to assemble a multi-layer BSDF if the 
fenestration system consists of multiple layers (e.g., 
double-pane window with indoor fabric shade). The user 
also needs to place the BSDF in the correct orientation 
(facing indoor vs. outdoor) and planar rotation, 
depending on how the system is physically measured 
and how the BSDF is generated. The usual asymmetrical 
nature of the fenestration system makes the modeling 
process difficult and prone to user error. Additional 
toolchains need to be developed to assist users so as to 
ensure a successful endeavor.
Table 1 lists frads’ existing and planned features. 
EnergyPlus and Radiance integration through their 
respective Python API (frads and EnergyPlus Python 
API) enables long- and short-wave radiation simulation 
in complex spaces. Advanced thermal comfort models 
can now receive frad-generated solar irradiance data on 
each surface of a multi-node manikin, for example, at a 
fraction of the time needed by conventional ray-tracing 

or radiosity methods. Incident solar irradiance on 
exterior envelope surfaces (e.g., BIPV, phase change 
materials) with attached shading or in complex urban 
environments can be modeled more efficiently.  In the 
future, frads will include occupant health- and alertness-
related metric analysis enabled by spectrum or 
equivalent modeling capabilities. 

Table 1. frads’ existing and planned features for 
integrated EnergyPlus simulation

Implementation
Daylight illuminance Implemented

Solar irradiance on interior surfaces Implemented
Solar irradiance on window and 

shading layers
Implemented

Solar irradiance on outdoor surfaces Implemented
Detailed luminance map for visual 

comfort
Planned

Melanopic illuminance calculation Planned

For operable or automated shading and daylighting 
systems, Eprad can model energy performance when 
conventional rule-based supervisory control sequences 
are defined via the energy management system (EMS) 
feature in EnergyPlus or when more advanced controls 
are modeled using Spawn-of-EnergyPlus functional 
mockup units (FMU). When the control signal (i.e., 
position of the dynamic facade) is sent by other means to 
the EnergyPlus Python API or if the user wishes to send 
the control signal to frads directly (e.g., to compute 
impacts such as detailed visual or thermal comfort 
metrics that are then sent to the EnergyPlus Python API), 
then additional scripting is required by the end user.  In 
the case when Radiance models are used within the 
controller logic, eprad cannot be used: additional 
scripting is required to incorporate matrix models 
generated by frads into the controller.  Gehbauer et al., 
for example, used the frads Python library to model solar 
heat gains, daylight, and glare within a model predictive 
controller (Gehbauer et al., 2020).  Control designers can 
leverage frads to develop and fine-tune the various 
building components’ control strategies to ensure energy 
efficiency and occupant comfort. 
Using programs like mrad and eprad requires familiarity 
with the command-line interface. Existing Radiance 
users who are used to calling programs through the 
command-line interface will find adopting frads a 
relatively smooth process. However, achieving wide 
adoption of Radiance matrix-based simulation methods 
requires graphical interface developers to integrate frads 
through either the command-line interface or frads 
Python library. Some existing commercially available 
graphical programming interfaces such as Grasshopper 
have the capability to import external Python modules. 
Grasshopper users, thus, can directly import and 
incorporate frads into their workflows in Grasshopper.  
Individual users who are used to programming in Python 
can also develop customized workflow or specialized 
tools using the frads Python library.  



The frads library is open-source and actively maintained 
by developers of Radiance and EnergyPlus engines. The 
library will be routinely tested using a suite of test cases 
developed by the Illuminating Engineering (IESNA) 
Society of North America, Daylight Metrics Committee 
(DMC) (IESNA 2020).  The test cases consist of 
multiple common building types with different shading 
systems and the results are generated using classic 
backwards ray-tracing using Radiance.  Results 
generated from the frads Python library using different 
matrix-based methods will be compared to this dataset to 
validate the code.  Issue reports and feature suggestions 
are welcomed as the claimed functionalities certainly do 
not cover all Radiance and EnergyPlus use cases. See 
https://github.com/LBNL-ETA/frads.  
Conclusion
The frads Python-based toolbox and library facilitate the 
use of Radiance ray-tracing based, time-efficient, matrix 
algebraic calculation methods, improving the accuracy 
of illuminance, luminance, and irradiance-related 
performance measures. Critical Radiance workflows 
were automated to eliminate user error and integrated 
with EnergyPlus in a co-simulation environment. Some 
basic knowledge of matrix-based methods is needed to 
determine setup requirements for applications with 
attached exterior shading or complex urban 
environments. This integration of Radiance and 
EnergyPlus is expected to significantly improve building 
energy simulations’ speed and accuracy involving light-
scattering shading and daylighting systems and smart, 
operable fenestration.
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