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Abstract

Accurate simulation of energy, water, and carbon fluxes exchanging between
the land surface and the atmosphere is beneficial for improving terrestrial 
ecohydrological and climate predictions. We systematically assessed the 
Noah land surface model (LSM) with mutiparameterization options (Noah‐MP)
in simulating these fluxes and associated variations in terrestrial water 
storage (TWS) and snow cover fraction (SCF) against various reference 
products over 18 United States Geological Survey two‐digital hydrological 
unit code regions of the continental United States (CONUS). In general, Noah‐
MP captures better the observed seasonal and interregional variability of net 
radiation, SCF, and runoff than other variables. With a dynamic vegetation 
model, it overestimates gross primary productivity by 40% and 
evapotranspiration (ET) by 22% over the whole CONUS domain; however, 
with a prescribed climatology of leaf area index, it greatly improves ET 
simulation with relative bias dropping to 4%. It accurately simulates regional 
TWS dynamics in most regions except those with large lakes or severely 
affected by irrigation and/or impoundments. Incorporating the lake water 
storage variations into the modeled TWS variations largely reduces the TWS 
simulation bias more obviously over the Great Lakes with model efficiency 
increasing from 0.18 to 0.76. Noah‐MP simulates runoff well in most regions 
except an obvious overestimation (underestimation) in the Rio Grande and 
Lower Colorado (New England). Compared with North American Land Data 
Assimilation System Phase 2 (NLDAS‐2) LSMs, Noah‐MP shows a better ability
to simulate runoff and a comparable skill in simulating Rn but a worse skill in 
simulating ET over most regions. This study suggests that future model 
developments should focus on improving the representations of vegetation 
dynamics, lake water storage dynamics, and human activities including 
irrigation and impoundments.



1 Introduction

Land surface models (LSMs) provide an interface between the atmosphere 
and the terrestrial ecosystems within the context of Earth system models 
(ESMs) as well as ecohydrological models by representing the biogeophysical
and biogeochemical processes from the top of plants to the bedrocks (Sellers
et al., 1997). On the one hand, LSMs feed the atmosphere of an ESM with 
energy, water, and carbon fluxes. On the other hand, LSMs have been widely
used to investigate the impacts of climate change and anthropogenic 
activities on terrestrial water and ecosystems at multiple spatial and 
temporal scales (Barlage et al., 2015; Piao et al., 2015; Yan & 
Dickinson, 2014; Zeng et al., 2016). In the past few decades, LSMs have 
evolved from simple “bucket” schemes (Manabe, 1969) to the third 
generation LSMs (Pitman, 2003; Sellers et al., 1997), which aim to 
incorporate more feedback mechanisms between climate, water, and 
terrestrial ecosystems with more detailed representations of water and 
ecosystem dynamics (Niu & Zeng, 2012). Nevertheless, with more complex 
interactions of processes and uncertain parameters, such third generation 
LSMs need to be tested against various available observation data products 
to identify their strengths as well as deficiencies for developing next 
generation models (Best et al., 2015; Clark et al., 2015; Luo et al., 2012).

LSM evaluations have been primarily made at local scales against in situ flux 
observations with a fetch of only hundreds of meters for the sake of more 
accurate measurements (Chen et al., 1996; Schaefer et al., 2012; Stöckli et 
al., 2008). However, for use in large‐scale water, weather, and climate 
models, it is necessary for a given LSM to be assessed off‐line at much larger
scales (e.g., basin, regional, continental, and global scales) (Pitman, 2003; 
Sellers et al., 1997). Across a wide range of climates and ecosystems, large‐
scale testing can help address models' weaknesses and strengths that a 
local‐scale testing cannot. Also, given some spatially constant model 
parameters (e.g., runoff parameters) across different river basins, the LSMs' 
performance becomes less dependent on the optimization of model 
parameters at large scales. The main challenge in evaluating LSMs at a large
scale has been primarily the deficiency of spatial representativeness of the 
local measurements for a relatively larger LSM grid (Niu & Zeng, 2012; Roads
et al., 2003). Fortunately, the fast‐developing satellite observations from 
space and the upscaled gridded data from ground‐based observational 
networks have greatly facilitated LSMs evaluations at the large scales (Anav 
et al., 2015; Bonan et al., 2011; Cai, Yang, David, et al., 2014; Cai, Yang, Xia,
et al., 2014; Demaria et al., 2016; Mao et al., 2012; Toure et al., 2016; Xia, 
Cosgrove, Mitchell, Peters‐Lidard, Ek, Brewer, et al., 2016; Xia, Cosgrove, 
Mitchell, Peters‐Lidard, Ek, Kumar, et al., 2016).

By improving the realism of Noah in a variety of representations of terrestrial
biophysical and hydrological processes, the Noah LSM with 
multiparameterization options (Noah‐MP) (Niu et al., 2011) was designed for 
a full spectrum of environmental conditions worldwide. Noah‐MP has been 



extensively tested at local scales, focusing on the effects of new 
representations of a specific physical process on the improvements of the 
model's performance (e.g., Gao et al., 2015; Gayler et al., 2014; Zhang et 
al., 2016; Zheng et al., 2015). Noah‐MP was also evaluated at a global scale 
focusing primarily on runoff, soil moisture, snow depth, and snow water 
equivalent (SWE) over 50 global river basins (Yang et al., 2011). Afterward, 
Cai, Yang, David, et al. (2014) assessed the Noah‐MP's performance in 
simulating some major hydrological variables including terrestrial water 
storage (TWS), evapotranspiration (ET), runoff, and soil moisture in the 
Mississippi River Basin. Further, Cai, Yang, Xia, et al. (2014) compared the 
skill of four LSMs including Noah‐MP, Noah, Community Land Model (CLM), 
and Variable Infiltration Capacity (VIC) model in simulating the water balance
over the continental United States (CONUS), demonstrating that Noah‐MP 
performs best in reproducing soil moisture and TWS. It should be noted that, 
however, the climates and ecosystems of the numerous river basins over the
CONUS are noticeably different (Guttman & Quayle, 1996). Rice et al. (2016) 
found that the watershed characteristics due to the differences between 
precipitation and evaporative demand have a strong influence on the long‐
term variability of streamflow across CONUS, thereby impacting the 
magnitude of changes in the hydrologic cycle. In the context of large‐sample 
hydrological studies, Gupta et al. (2014) argued that the flexibility and 
transferability of a model cannot be clarified without assessments over 
different basins encompassing a wide range of land surface and climatic 
conditions. This supports the need of actively evaluating a land surface 
model's performance over many regions with hydroclimatic regimes that 
vary considerably within the model domain. Recently, Xia, Cosgrove, 
Mitchell, Peters‐Lidard, Ek, Brewer, et al. (2016) evaluated Noah‐MP and 
Noah‐I (the research version of Noah in the North American Land Data 
Assimilation System Phase 2 (NLDAS‐2)) in runoff simulation over 12 National
Weather Service River Forecast Centers within CONUS. However, such an 
evaluation of Noah‐MP at a river basin scale with a wide range of climates is 
limited only for runoff. With regard to other variables (e.g., those associated 
with vegetation dynamics), it is not yet well investigated how Noah‐MP would
perform in different regions with different hydroclimatic conditions.

Noah‐MP has been widely used by the atmospheric and hydrological 
communities for weather forecast and short‐term climate predictions by 
coupling to the Weather Research and Forecast Model (Barlage et al., 2015) 
as well as hydrological predictions by coupling to the National Water Model 
(Cosgrove et al., 2017). As such, it is critically important to accurately 
document the model's performance not only in hydrological simulations 
(e.g., soil moisture, runoff, ET, and TWS) as done by previous studies but also
other closely related variables, for example, gross primary productivity 
(GPP), net radiation (Rn), sensible heat flux (H), and snow cover fraction 
(SCF). Most advanced third generation LSMs link transpiration to plant 
photosynthesis through the same stomatal control, and the allocation of GPP 



into leaf and root carbon storages may directly affect the simulated leaf area
that further feeds back to the simulation of GPP and transpiration. In this 
regard, errors in the GPP simulation could propagate to the estimation of 
transpiration and ET (Bonan et al., 2011; Schaefer et al., 2012). Therefore, 
identifying the source of ET modeling biases requires a simultaneous 
analysis of the simulated GPP. Additionally, LSMs need to conserve energy 
for the partitioning of Rn into turbulent sensible and latent heat fluxes (Best 
et al., 2015; Pitman, 2003), the simulated Rn may therefore impact the 
model's ability of predicting both sensible and latent heat fluxes. To our 
knowledge, it is not yet known the effectiveness in modeling Rn for Noah‐MP 
at the regional/continental scales. Furthermore, as a key component in both 
surface water and energy balances, snow cover is extremely critical for 
estimating surface Rnand snowmelt runoff (Chen et al., 2014). Snow cover 
fraction (SCF), that is, the fraction of a model grid cell covered by snow, is 
one of the most common representations of subgrid snow distributions in 
ESMs (Niu & Yang, 2007). Evaluation of SCF can be also regarded as an 
indirect assessment of snow mass and snow depth since they are highly 
correlated (Niu & Yang, 2007). As done for CLM (Toure et al., 2016) and VIC 
(Demaria et al., 2016), evaluating SCF would benefit a more comprehensive 
understanding of snow processes modeling for Noah‐MP.

In recognition of the above needs, the present study aims (1) to 
systematically assess the Noah‐MP's performances in simulating GPP, Rn, H, 
ET (in lieu of latent heat flux, LE), runoff, terrestrial water storage anomaly 
(TWSA), and SCF over 18 United States Geological Survey (USGS) two‐digital 
hydrological unit code (HUC2) regions of CONUS; (2) to identify possible 
causes to poor performances in modeling any key variables; and (3) to 
compare Noah‐MP's ability with the current NLDAS‐2 LSMs. This study differs 
with the above mentioned large‐scale evaluations of Noah‐MP in the 
following aspects: (i) evaluating additional variables including Rn and its four 
components, GPP, H, and SCF across diverse hydroclimatic regimes; (ii) 
additional bias source analyses of the simulated Rn, GPP, ET, and TWSA for 
future model improvements; and (iii) a comparison of Noah‐MP to the NLDAS‐
2 LSMs for potential uses in the next generation NLDAS system (e.g., NLDAS‐
3).

The paper is structured as follows: Section 2 provides a brief description of 
Noah‐MP and model configuration, reference data sets to validate the model 
outputs, and evaluation methods. Section 3 shows the spatial and temporal 
analyses of above mentioned variables in the 18 HUC2 regions. 
Section 4 presents the evaluation conclusions and suggestions for future 
model improvements.

2 Materials and Methods

2.1 A Brief Description of Noah‐MP

Noah‐MP numerically describes the states of terrestrial energy, water, 
carbon, and associated flux exchanges between the land surface and the 



atmosphere that are controlled by terrestrial hydrometeorological and 
ecohydrological processes (Niu et al., 2011). Based on Noah (Chen & 
Dudhia, 2001; Ek et al., 2003), Noah‐MP was first augmented with vegetation
and groundwater dynamics (Niu et al., 2007) and then equipped with 
multiple schemes for each of ecohydrological process. Noah‐MP has a 
structure of one canopy layer, three snow layers, and four soil layers. It 
computes surface temperature by iteratively solving the surface energy 
balance of solar radiation, longwave radiation, sensible heat, latent heat, and
ground heat fluxes. It employs a “semitile” method to deal with surface 
heterogeneity. The advantage of the semitile method over the traditional 
“tile” method is to avoid overlapping of shadows on the ground or snow 
surface. Noah‐MP explicitly represents evaporation from the soil surface, 
canopy interception loss, and transpiration through formulations in analogy 
to the Ohm's law considering aerodynamic and stomatal resistances to the 
water vapor and carbon fluxes within and over the plant canopies. Plant 
transpiration is limited by the stomatal resistance, which is linked to 
photosynthesis that is further controlled by the root zone soil moisture. 
Noah‐MP assumes uniformly distributed roots in the vertical direction and 
varying root depth depending on vegetation types.

Noah‐MP solves the one‐dimensional Richards' equation to compute vertical 
soil moisture distribution using the Clapp‐Hornberber water retention 
relationship (Clapp & Hornberger, 1978). The upper boundary condition for 
solving soil moisture is the infiltration rate that is computed as the residual 
of precipitation minus surface runoff, which is parameterized through a 
simple TOPMODEL‐based runoff scheme (Niu et al., 2005). Noah‐MP treats an
unconfined aquifer as a reservoir or bucket underlying the soil column to 
account for water exchanges between the soil and the bucket through 
gravity and capillary forces (Niu et al., 2007).

Noah‐MP represents photosynthesis of C3 plants following the model of 
Farquhar et al. (1980) modified by Collatz et al. (1991), whereas that of C4 
plants following Collatz et al. (1992). The rate of gross photosynthesis is 
computed as the minimum of three limiting factors: Rubisco limitation, light 
limitation, and that associated with transport of photosynthate for C3 plants 
and PEP‐carboxylase limitation for C4 plants. It also includes a short‐term 
vegetation phenology model that describes allocation of the assimilated 
carbon to carbon storages in various parts of the plant (e.g., leaf, stem, 
wood, and root), death due to cold and drought stresses, and turnover due to
senescence, herbivory, or mechanical loss (Dickinson et al., 1998). Leaf area 
index (LAI) is converted from the leaf carbon storage through specific leaf 
area, which is dependent on vegetation types.

2.2 Atmospheric Forcing, Vegetation and Soil Parameters, Model Initialization
and Simulation

We used the NLDAS‐2 hourly, 0.125° × 0.125° atmospheric forcing fields 
(Xia, Mitchell, Ek, Sheffield, et al., 2012) of air temperature, specific 



humidity, wind speed, surface pressure, downward shortwave radiation, 
downward longwave radiation, and precipitation (available 
online http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing_download.php) to drive 
Noah‐MP. We employed the global 1 km hybrid State Soil Geographic 
Database and the USGS 24‐category vegetation data (available online http://
www.ral.ucar.edu/research/land/technology/lsm.php) to determine the soil 
and vegetation parameters, respectively. Both 1 km data sets are first 
aggregated to 0.125° with the dominant soil and vegetation types to match 
the spatial resolution of the NLDAS‐2 atmospheric forcing. The soil and 
vegetation parameters are then determined for each soil and vegetation 
types through the look‐up tables in Noah‐MP, respectively. The soil column is
divided into four layers with thicknesses of 0.1 m, 0.3 m, 0.6 m, and 1 m 
from the surface to the bottom.

We chose the same model physical options as the EXP6 in Yang et al. (2011),
which includes all the augmentations in Niu et al. (2011) (Table 1). For 
simulations over a continental scale, calibration of model parameters may be
impracticable because of the huge computational demand (Clark et 
al., 2017) and the difficulties in the explicit representations of subgrid 
heterogeneity (Clark et al., 2015; Niu & Zeng, 2012), although limited 
calibration did improve the model performance for partial outputs over 
specific regions (Cai, Yang, David, et al., 2014; Cuntz et al., 2016). We used 
the default values for all the parameters, which were from the manually 
optimized parameters used in the EXP6 of Yang et al. (2011). Most key 
hydrological parameters are still spatially constant for all regions, for 
example, the maximum groundwater discharge rate, the saturated hydraulic 
conductivity decay factor, and the micropore fraction controlling upward 
capillary flow of groundwater (see more details in Niu et al., 2011).

The model is integrated for 36 years at a time step of 1 h from 1 January 
1980 to 31 December 2015. Starting from arbitrary, spatially homogeneous 
initial conditions, we ran Noah‐MP for a total of 216 years by repeating the 
run from 1980 to 2015 for six times and saved the model prognostic 



variables at the end of the last cycle. As demonstrated by Cai, Yang, David, 
et al. (2014), this long spin‐up run is undoubtedly enough for the soil water 
and groundwater to reach an equilibrium state. We then used these saved 
prognostic variables as initial conditions for another 36 year run from 1980 
to 2015. We aggregated the hourly outputs to monthly and yearly for further 
analyses.

2.3 USGS Two‐Digital Hydrological Unit Code Regions

To provide a uniform geographical framework for hydrological research and 
water resource management, USGS divides the United States into 
successively smaller hydrological units at four levels: regions, subregions, 
accounting units, and cataloging units (Seaber et al., 1987). Given a code 
and named as “hydrological unit code” (HUC), a hydrologic unit refers to the 
upstream area of a specific point on the stream that contributes surface 
water runoff directly to the outlet. The HUC system has been widely used by 
not only the scientific community but also federal government as the basis 
for hydrological monitoring and water resources management over the 
United States (Sabo et al., 2010; Smith et al., 2002). The first level of 
hydrological units, region, comprises either the drainage area of a major 
river (e.g., Missouri region) or the combined drainage areas of a series of 
rivers (e.g., Texas‐Gulf region) (Seaber et al., 1987). Every region is named 
by a unique two‐digital number by USGS, that is, HUC2 (Figure 1). 
Throughout the paper, we conducted our analyses over 18 USGS HUC2 
regions of CONUS. The mean area of a HUC2 region is approximately 
500,000 km2 (Velpuri et al., 2013).

Figure 1

The multiyear mean (1980–2015) annual aridity index (AI) over CONUS. The polygons with thicker 
black boundaries represent the USGS two‐digital hydrologic unit code (HUC2) regions with their 
corresponding two‐digit codes: 01: New England, 02: Mid‐Atlantic, 03: South Atlantic‐Gulf, 04: Great 
Lakes, 05: Ohio, 06: Tennessee, 07: Upper Mississippi, 08: Lower Mississippi, 09: Souris‐Red‐Rainy, 10: 



Missouri, 11: Arkansas‐White‐Red, 12: Texas‐Gulf, 13: Rio Grande, 14: Upper Colorado, 15: Lower 
Colorado, 16: Great Basin, 17: Pacific Northwest, and 18: California.

To characterize the climate background of each region, we calculated the 
aridity index (AI) (Fu & Feng, 2014), defined as the ratio of annual 
precipitation to annual potential evapotranspiration, which is calculated with 
the Penman approach (Penman, 1948), using the NLDAS‐2 forcing data and 
the Noah‐MP simulated Rn and ground heat flux. Figure 1illustrates the 1980–
2015 climatological mean AI over CONUS. The HUC2 regions in the eastern 
CONUS (e.g., the New England, Mid‐Atlantic, South Atlantic‐Gulf, Great Lakes,
Ohio, Tennessee, Upper Mississippi, and Lower Mississippi) with AI ranging 
from 1.2 to 2.0 are characterized as humid regions where precipitation are 
usually larger than the evaporative demand, while the regions in the western
CONUS (e.g., the Rio Grande, Great Basin, part of Pacific Northwest, 
California, Upper Colorado, and Lower Colorado) with AI lower than 0.6 are 
characterized as arid regions where precipitation are much lower than the 
evaporative demand. For the regions in the central CONUS (e.g., the Souris‐
Red‐Rainy, Missouri, Arkansas‐White‐Red, and Texas‐Gulf), AI ranges from 
1.2 to 0.6 because of the dramatic gradients in annual precipitation that 
decreases from the east to the west, indicating a transition regime from 
humid to arid.

2.4 Reference Data Products

2.4.1 NASA/GEWEX SRB Radiation

We used the global monthly radiation data product at 1° resolution from the 
National Aeronautics and Space Administration/Global Energy and Water 
cycle EXperiment (NASA/GEWEX) Surface Radiation Budget (SRB) project at 
Langley Research Center (Release 3.0 version, available 
online https://eosweb.larc.nasa.gov/project/srb/srb_table). The NASA/GEWEX 
SRB radiation products have been widely used for correcting the radiative 
components of reanalysis forcing (Mathis et al., 2015) and evaluating ESM 
simulations (Luo et al., 2016; Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, 
Kumar, et al., 2016). Compared to multiple ground stations of the Baseline 
Surface Radiation Network, the root‐mean‐square error are 23.3 and 
11.1 W m−2 for the monthly shortwave and longwave radiation fluxes, 
respectively (Zhang et al., 2015, 2013), suggesting an overall satisfactory 
accuracy of NASA/GEWEX SRB radiation products. We used its monthly 
downward and upward shortwave and longwave radiation data during 
January 1984 to December 2007. We resampled the NASA/GEWEX SRB 
products from 1° to 0.125° using a nearest‐neighbor interpolation method, to
match the model resolution and thus calculate the spatial pattern of the 
modeled Rn′s relative bias.

2.4.2 FLUXNET MTE GPP, H, and LE

We used the FLUXNET model tree ensembles (MTE) GPP, H, and LE data from
Max Planck Institute for Biogeochemistry (available online https://www.bgc‐
jena.mpg.de/geodb/projects/Home.php). The MTE was first trained with 



measured flux data of 198 FLUXNET towers across a wide range of biomes 
worldwide. With inputs of the fraction of absorbed photosynthetic active 
radiation derived from remote sensing, climate, and land cover data, this 
approach generates the monthly, 0.5° × 0.5° gridded GPP, H, and LE data 
sets during 1982–2008 over the global continents (Jung et al., 2010, 2011). 
These data sets have been widely employed to evaluate LSMs‐simulated 
(Anav et al., 2015; Bonan et al., 2011; Xia, Cosgrove, Mitchell, Peters‐Lidard, 
Ek, Brewer, et al., 2016; Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Kumar, et 
al., 2016) and satellite‐derived (Frankenberg et al., 2011) land‐atmosphere 
carbon, water, and energy exchanges. While the uncertainty in the FLUXNET 
MTE products is not negligible owning to the uneven spatial distribution of 
flux towers (e.g., few towers in Asia and Africa) selected for training the 
model tree, we have the greatest confidence in it over the “data‐rich” areas 
such as CONUS where most FLUXNET sites were incorporated (see 
the supporting information Figure S1 in Jung et al., 2010). In this study we 
used the monthly FLUXNET MTE GPP, H, and LE data during 1982–2008 to 
assess the corresponding Noah‐MP simulation outputs. To calculate the 
relative difference between model and products, we resampled the 0.5° 
FLUXNET MET products to 0.125° using a nearest‐neighbor interpolation 
method.

2.4.3 GRACE Terrestrial Water Storage Anomaly

We used the global 1°, monthly Gravity Recovery and Climate Experiment 
(GRACE)‐observed TWSA products (Release 5.0 version, available 
online http://grace.jpl.nasa.gov) released by three different processing 
centers: GeoforschungsZentrum Potsdam, Center for Space Research at 
University of Texas, Austin, and Jet Propulsion Laboratory based on the same
Earth's gravity field. While these products are slightly different, the noise of 
different solutions can be effectively reduced by arithmetic average of the 
three products (Sakumura et al., 2014). For this reason, we used the average
of all the three products during 2003–2015 in this study. Because of the 
postprocessing of original GRACE observation data, there tends to be signal 
loss of surface mass variations (Landerer & Swenson, 2012). Therefore, 
Landerer and Swenson (2012) developed a gain factor data set to reduce the
differences between the original and the reprocessed GRACE data. Thus, we 
multiplied the TWSA products this gain factor. According to Kumar et al. 
(2016), the total measurement error of the GRACE TWSA ranges from 0 to 
40 mm over most parts of CONUS, but higher errors may occur on the West 
Coast, the lower Mississippi River basin, and Florida due to the spatial 
leakage error from a limited range of spherical harmonic (Seo et al., 2006).

2.4.4 Water Level Data of the Great Salt Lake and Michigan Lake

To quantify the impacts of lakes on the modeled TWS, we selected two 
regions with large surface areas of water bodies: the Great Lakes (HUC2 
code: 04) and the Great Basin (HUC2 code: 16). In the Great Lakes, we used 
the monthly water level data of the Michigan Lake (available 



online https://tidesandcurrents.noaa.gov/) observed at five stations around 
the lake including Ludington, Holland, Calumet Harbor, Milwaukee, and 
Sturgeon Bay Canal during 2003–2015. All these data have been verified by 
NOAA Center for Operational Oceanographic Products and Services. Although
the water level data of the five stations are almost same, we used their 
arithmetic average values to reduce the uncertainties in the water level 
measurements for such a large lake. With regard to the Great Basin region, 
we used the monthly water level data of the Great Salt Lake (available 
online https://waterdata.usgs.gov/nwis/nwismap/?site_no=10010000) 
observed at the Saltair Boat Harbor by USGS during 2003–2015. Since the 
ratio of the lake area to the entire area of a region is essentially small, the 
changes in the lake area may have very little influence on the results. We 
therefore assumed that the lake area of the Michigan Lake (57,756 km2) and 
the Great Salt Lake (4,402 km2) hold static during this 13 year period.

2.4.5 MODIS Snow Cover Fraction

We used the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF 
product from the NASA Terra Satellite (Riggs et al., 2006). MODIS snow‐
covered area is determined by the normalized snow difference index and 
other threshold tests (Hall & Riggs, 2007). The MOD10CM version 5 of SCF 
data (available online https://nsidc.org/data/) is based on the 0.05° × 0.05° 
climate‐modeling grid (CMG) over a global view. With a temporal resolution 
of monthly, this product is generated by assembling only high‐quality CMG 
level‐3 daily snow cover product (MOD10C1) whose confidence index is 
higher than 70% during the month, thereby basically avoiding the 
contamination of cloud (Riggs et al., 2006). An evaluation by Hall and Riggs 
(2007) suggests that the accuracy of MODIS SCF product reaches 93% on 
average compared to in situ snow measurements. While the MOD10CM data 
extend from March 2000 to the present, we evaluated the simulated SCF 
based only on the period of January 2004 to December 2015 since there are 
some data gaps before 2004.

2.4.6 USGS Water Watch Hydrological Unit Runoff

We used the USGS Water Watch hydrological unit runoff data (available 
online https://waterwatch.usgs.gov/). The USGS runoff of each hydrological 
unit was generated by combining the historical flow data collected at stream 
gauges, the drainage basins of the stream gauging stations, and the 
boundaries of the hydrological units (Brakebill et al., 2011). This data set 
contains the monthly runoff from 1901 to 2016 at various hydrological unit 
scales (e.g., from HUC2 regional scale to HUC8 cataloging unit scale) and has
been regarded as a close surrogate of the natural runoff in hydroclimate 
studies (Ashfaq et al., 2013; Oubeidillah et al., 2014; Velpuri et al., 2013). In 
the present study, we used its monthly runoff data at a HUC2 regional scale 
for the period spanning January 1982 through December 2008.

2.5 NLDAS‐2 LSMs Simulated Outputs



The rapid advances of land surface modeling techniques enable the 
community to provide more accurate initial land surface states for climate 
modeling and weather forecasting. Under this circumstance, the NLDAS team
has developed a standard framework that consists of atmospheric forcing, 
soil/vegetation data sets, LSMs, and model validations to gain a reliable 
description of land surface processes over CONUS (Mitchell et al., 2004). The 
second phase of this project, NLDAS‐2 (Xia, Mitchell, Ek, Cosgrove, et 
al., 2012; Xia, Mitchell, Ek, Sheffield, et al., 2012), has produced country‐
wide water and energy cycle results. Since Noah‐MP is driven by same 
NLDAS‐2 atmospheric forcings as other NLDAS‐2 models, a direct comparison
between Noah‐MP and NLDAS‐2 LSMs may be allowed. To this end, we used 
the simulated Rn, ET, and runoff results of four operational NLDAS‐2 LSMs 
(available online http://www.emc.ncep.noaa.gov/mmb/nldas/) including 
Mosaic, Noah (version 2.8), Sacramento Soil Moisture Accounting (SAC) and 
VIC (version 4.0.3) (Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Brewer, et 
al., 2016; Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Kumar, et al., 2016). 
Note that since SAC is intended for lumped hydrological modeling without 
simulation of net radiation, the present comparison of Rn is only based on the
other three LSMs. In‐line with the length of the reference data products, we 
used the monthly outputs of ET and runoff during 1982–2008 as well as the 
monthly outputs of Rn during 1984–2007 from the NLDAS‐2 LSMs in the 
comparison. For a given variable, the multimodel ensembles mean (MME) is 
calculated as the arithmetic average of the NLDAS‐2 LSMs outputs.

2.6 Regional Upscaling and Evaluation Methods

There are considerable differences in the spatial resolution between the 
Noah‐MP simulated outputs (i.e., 0.125°) and the above reference data sets 
(e.g., 0.05° for MODIS SCF; 0.5° for FLUXNET MTE GPP, H, and LE; and 1° for 
NASA/GEWEX SRB radiation, and GRACE TWSA). While a great number of 
methods have been used in previous studies to either downscale or upscale 
the reference data to the same resolution as the model grids, Xia, Cosgrove, 
Mitchell, Peters‐Lidard, Ek, Brewer, et al. (2016) argued that evaluating LSMs
performances at a same larger spatial extent is more appropriate. 
Considering each of the HUC2 regions may be, to some extent, 
hydrologically self‐similar, upscaling both the reference data and the model 
outputs into a same HUC2 region would reduce the error induced by spatial 
interpolation of the reference data. Hence, we used regional masks at 
different spatial resolutions that match the grids of the various reference 
data, NLDAS‐2 LSMs and Noah‐MP model outputs to derive regional averages
of the monthly (or annual) results over all the HUC2 regions.

To quantify the performance of Noah‐MP, we calculated the Pearson 
correlation coefficient (R), root‐mean‐square error (RMSE), relative bias (RB), 
and Nash‐Sutcliffe efficiency (NSE) between the Noah‐MP outputs and the 
reference data at various time scales following Ma et al. (2015) and Cai, 
Yang, Xia, et al. (2014).



Note that most of the data products used in the present study for validation 
are based on either satellite retrievals or spatiotemporal upscaling of 
measurements at local sites, involving a variety of uncertainties that may 
lead to systematic errors. Taking the FLUXNET MTE products as an example, 
some explanatory variables that used to train the MTE were assumed static 
over years, thereby leading to an underestimated interannual variance in 
FLUXNET MTE GPP, ET, and H (Jung et al., 2011). Furthermore, the energy 
components are not always balanced for NASA/GEWEX Rn, FLUXNET MTE H, 
and LE (Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Kumar, et al., 2016). And 
this may be also true for water components including NLDAS‐2 precipitation, 
USGS HUC2 runoff, GRACE TWSA, and FLUXNET MET ET (Cai, Yang, Xia, et 
al., 2014). Although quantifying the uncertainties in the reference data 
products is well beyond the scope of the current study, the potential errors in
the “observations” cannot be completely ignored.

3 Results and Discussions

3.1 Net Radiation

Both NASA/GEWEX SRB‐derived and Noah‐MP‐modeled Rn are computed as 
the sum of four radiative components, that is, downward shortwave radiation
(DSR), downward longwave radiation (DLR), upward shortwave radiation 
(USR), and upward longwave radiation (ULR). On the whole, the spatial 
pattern of the multiyear (1984–2007) average of the modeled 
annual Rn follows that of the NASA/GEWEX SRB product (Figures 2a and 2b), 
both showing large values in the southeastern CONUS and the West Coast. 
The regional averages of annual Rn in Figure 2d suggest that Noah‐MP is able
to capture the interregional variability with R, NSE, RB, and RMSE being 
0.905, 0.59, −0.03, and 7.5 W m−2, respectively. In most parts of 
southeastern and western CONUS, the relative biases are within ±10% 
(Figure 2c). However, in the Rocky Mountains and northeastern CONUS, 
Noah‐MP produces much smaller Rn than does the NASA/GEWEX SRB with a 
relative bias of approximately −40% (Figure 2c).



Figure 2

Spatial pattern of the multiyear (1984–2007) mean net radiation (Rn) from (a) Noah‐MP, (b) 
NASA/GEWEX SRB, (c) the relative bias [=(Noah‐MP − NASA/GEWEX SRB)/NASA/GEWEX SRB × 100%] 
over CONUS, and (d) comparison of the regional averages over the 18 HUC2 regions shown as their 
corresponding HUC2 codes.

To explore the possible reasons for the significant discrepancy of Rn in the 
Rocky Mountains and northeastern CONUS, we further investigated the four 
components that used to derive Rn. DSR and DLR are actually the NLDAS‐2 
forcing to drive Noah‐MP, while USR and ULR are the modeling results from 
Noah‐MP. The NLDAS‐2 DSR and DLR agree very well with the NASA/GEWEX 
SRB product as witnessed from the spatial pattern of the relative biases 
(Figures S1c and S1g in the supporting information) with NSE values of 0.83 
and 0.92 for DSR and DLR, respectively, over the 18 HUC2 regions 
(Figures S1d and S1h). The relative biases of the simulated ULR are within 
±5% at nearly all grids, indicating a very accurate simulation of the land 
surface temperature (Figures S1m–S1p). However, Noah‐MP yields 
remarkably larger USR values (Figures S1i–S1l) caused by the higher 
modeled surface albedo over the western Rocky Mountains and the 
northeastern boreal areas, especially during winter season (December, 
January, and February) (Figure S2). Naturally, these areas are usually 
covered by snow in winter due to its high elevation and latitude (see 
section 3.6 for spatial pattern of SCF), the albedo is therefore expected to be
higher during this period. As seen from Figure S2, the modeled surface 
albedo reaches up to 0.6, about twice that of the NASA/GEWEX SRB product, 
suggesting that the modeled Rn tends to be more plausible because of the 



more reasonable modeled cold season albedo over such high‐elevation and 
high‐latitude regions. Further comparisons to MODIS albedo and LAI products
for different vegetation types over these snow‐covered regions would be 
helpful to more fully evaluating the two‐stream radiation scheme with 
consideration of within‐ and between‐canopy gap probabilities (Niu & 
Yang, 2004) in Noah‐MP, which already showed advantages over other 
schemes at local scales (Chen et al., 2014). Though not directly compared to 
the MODIS albedo products, the comparison of the modeled SCF to the 
MODIS SCF product (see section 3.6) implies a more accurate estimation of 
surface albedo than the NASA/GEWEX SRB data, because the MODIS SCF 
reflects not only the high reflectivity of the snow on the ground but also the 
shading effects of the overlying vegetation.

Noah‐MP is also capable of simulating Rn in terms of seasonal variability over 
all HUC2 regions with NSE ranging from 0.65 to 0.94 (Figure 3). The 
modeled Rn is generally comparable to the NASA/GEWEX SRB Rn (Zhang et 
al., 2015, 2013; see section 2.4.1) with RMSE values ranging from 
10.8 W m−2 to 28.0 W m−2 (Figure 3) over the 18 HUC2 regions. However, it 
appears that the interannual variability of the modeled monthly Rn is smaller 
than that of the NASA/GEWEX SRB data during 1984–2007 over the majority 
of the regions. Owning to the larger modeled albedo (Figure S2), Noah‐MP 
yields smaller Rn values during winter and early spring over the snow‐
covered northeastern boreal regions (e.g., the New England, Great Lakes, 
Souris‐Red‐Rainy, Upper Mississippi, and Missouri) and the western Rocky 
Mountains (e.g., the Upper Colorado) in cold seasons. In warm seasons, 
however, the modeled Rn generally agrees well with that of NASA/GEWEX 
SRB over all the regions (Figure 3).

Figure 3

The multiyear (1984–2007) mean annual cycle of net radiation (Rn) from Noah‐MP (blue line) and 
NASA/GEWEX SRB (black dot) over the 18 HUC2 regions. The light blue shaded area and the black 
error bar represent the standard derivation of the Noah‐MP and NASA/GEWEX SRB data, respectively, 



to indicate interannual variability for each month of a year. Also shown on the top of each panel are 
modeling metrics in the order of R, RMSE, and NSE.

3.2 Gross Primary Production

Noah‐MP produces a spatial pattern of annual GPP similar to that of the 
FLUXNET MTE product over CONUS (Figures 4a and 4b), both showing less 
carbon uptake over the arid regions in the western CONUS (except the 
coastal areas) and more carbon uptake in the humid regions of the eastern 
CONUS. However, the relative biases are roughly 50% in the highly 
vegetated area of the central and eastern CONUS (Figure 4c). In particular, 
the simulated GPP in the Ohio, Tennessee, Upper Mississippi, and Lower 
Mississippi (i.e., regions “05”, “06”, “07”, and “08” in Figure 4d) are higher 
than 2,400 g C m−2 yr−1, while the FLUXNET MTE product only has 
approximately 1,600 g C m−2 yr−1. Regarding the comparison of multiyear 
mean values over the 18 HUC2 regions, Noah‐MP overestimates GPP with 
RMSE and RB values of 542.5 g C yr−1 and 0.4, respectively (Figure 4d). The 
performance of Noah‐MP in modeling GPP is generally comparable to that of 
CLM, JULES (Joint UK Land Environment Simulator) and ORICHIDEE 
(ORganizing Carbon and Hydrology in Dynamic EcosystEms) (Anav et 
al., 2015), which also remarkably overestimates GPP in the eastern CONUS. 
Similarly, Mao et al. (2012) also documented that CLM produces much more 
GPP than does MODIS in the evergreen forest ecosystems over the world. In 
the arid regions of the western CONUS with most grasslands and shrublands,
the bias in the modeled annual GPP is much smaller.



Figure 4

Spatial pattern of the multiyear (1982–2008) mean gross primary production (GPP) from (a) Noah‐MP, 
(b) FLUXNET MTE, (c) the relative bias [=Noah‐MP − FLUXNET MET)/FLUXNET MET × 100%] over 
CONUS, and (d) comparison of the regional averages over the 18 HUC2 regions shown as their 
corresponding HUC2 codes.

Similar to the modeling results of CLM, JULES, and ORICHIDEE (Anav et 
al., 2015), Noah‐MP overestimates GPP in both magnitude and interannual 
variability compared to that of FLUXNET MTE mainly over the humid and the 
transitional regions. With regard to the annual cycle (Figure 5), the NSE 
values over the highly vegetated regions are primarily lower than 0.6 (e.g., 
“05”, “06”, “07”, “08”, and “09” in Figure 5). In particular, Noah‐MP 
simulates earlier leafing‐out in the spring and greater carbon uptake in the 
later spring over most central and eastern areas of CONUS, as reflected by 
the large positive bias during this period (Figure 5). For example, the 
simulated GPP is at least twice that of FLUXNET MTE over the Lower and 
Upper Mississippi regions in spring. This may be caused by the Noah‐MP's 
scheme of carbon allocation to shoot and root, which probably allocates too 
much assimilated carbon into shoots in spring, accelerating the plants' 
carbon uptake through photosynthesis (Niu et al., 2011). Such biases may be
alleviated by modifying the carbon allocation scheme (Gim et al., 2017), 
refining the temperature limitation (or heat stress) (Schaefer et al., 2012) as 
well as introduction of nitrogen limitation (Cai et al., 2016; Stöckli et 
al., 2008).

Figure 5

The multiyear (1982–2008) mean annual cycle of gross primary production (GPP) from Noah‐MP (blue 
line) and FLUXNET MTE (red line) over the 18 HUC2 regions. The light blue and red shaded areas 
represent the standard derivation of the Noah‐MP and FLUXNET MTE GPP data, respectively, to indicate
the interannual variability for each month of a year. Also shown on the top of each panel are modeling 
metrics in the order of R, RMSE, and NSE.

3.3 Evapotranspiration

In general, the spatial pattern of modeled ET resembles that of FLUXNET 
MTE, both declining from the southeastern to the northern and western 



CONUS (Figures 6a and 6b). Interestingly, the spatial pattern of the relative 
bias is very similar to that of GPP (comparing Figure 6c with Figure 4c). 
Noah‐MP underestimates ET over the Central Valley in California by 
approximately −50% but overestimates ET by 40%–50% in most areas of the
eastern and central CONUS except parts of South Atlantic‐Gulf and Texas‐
Gulf (Figure 6c). At a regional scale, the largest discrepancy appears in the 
Lower Mississippi (region “08” in Figure 6d), where Noah‐MP yields 
1047.8 mm yr−1, while FLUXNET MTE has only 792.2 mm yr−1. Over the whole
CONUS domain, the model overestimates ET by 22% relative to FLUXNET 
MTE (see the RB value in Figure 6d). In general, the simulated surface 
hydrological variables are often highly dependent on the quality of NLDAS‐2 
precipitation and other forcing variables (Xia, Mitchell, Ek, Sheffield, et 
al., 2012). For this reason, the modeled ET biases may be also partially 
attributed to the uncertainties in the forcings.

Figure 6

Spatial pattern of the multiyear (1982–2008) mean evapotranspiration (ET) from (a) Noah‐MP, (b) 
FLUXNET MET, (c) the relative bias [=(Noah‐MP − FLUXNET MET)/FLUXNET MTE × 100%] over CONUS, 
and (d) comparison of the regional averages over the 18 HUC2 regions shown as their corresponding 
HUC2 codes.

With regard to the seasonal variability, Noah‐MP basically captures the 
annual cycle of the FLUXNET MTE ET product with NSE values of 15 regions 
being larger than 0.8 (Figure 7). In the Lower Colorado and California (i.e., 
regions “15” and “18” in Figure 7), however, the simulated ET does not 
agree well with that of FLUXNET MTE, leading to much smaller NSE values. In
response to the earlier leaf emergence in spring and later greater carbon 



uptake (Figure 5), Noah‐MP produces higher ET in spring and early summer 
in Ohio, Tennessee, Upper Mississippi, and Lower Mississippi (regions “05”, 
“06”, “07”, and “08” in Figure 7) under the same stomata control on 
transpiration and photosynthesis. As ET is the sum of transpiration, canopy 
interception loss, and soil evaporation, the magnitude of the biases in ET is 
less notable than those in GPP (see Figures 4c and 6c). In the central and 
eastern regions with greater vegetation coverage, transpiration is dominant 
(Figure S3), and thus contributing the most to the biases in the total ET, 
while in the western arid regions where are less vegetated, the biases in 
modeled ET are relatively smaller (Figure 6d).

Figure 7

The multiyear (1982–2008) mean annual cycle of evapotranspiration (ET) from Noah‐MP (blue line) and
FLUXNET MTE (red line) over the 18 HUC2 regions. The light blue and red shaded areas represent the 
standard derivation of the Noah‐MP and FLUXNET MTE ET data, respectively, to indicate the 
interannual variability for each month of a year. Also shown on the top of each panel are modeling 
metrics in the order of R, RMSE, and NSE.

To confirm that the overestimated ET during spring is mainly caused by the 
overestimated GPP, we ran an additional experiment (denote as EXP_LAI) 
without the dynamic vegetation model but with an LAI climatology (with 
seasonal cycles) prescribed for each land use type. In EXP_LAI, the green 
vegetation fraction is calculated from the prescribed LAI using the method of 
Niu et al. (2011). As seen, the model biases are reduced to a large extent 
when the dynamic vegetation model is not used (Figure 8). In particular, the 
relative biases drop to <20% over most parts of the central and eastern 
CONUS (see Figures 6c and 8b). In terms of the comparison of 18 HUC2 
regions at a multiyear mean annual scale, the NSE increases from 0.33 to 
0.90, RMSE decreases from 141.2 mm yr−1 to 55.6 mm yr−1, and RB reduces 
from 0.22 to 0.04 (Figure 6d versus Figure 8c).



Figure 8

Spatial pattern of multiyear (1982–2008) mean annual evapotranspiration (ET) from (a) the EXP_LAI 
experiment of Noah‐MP simulation with prescribed LAI, (b) the relative bias [=(Noah‐MP − FLUXNET 
MTE)/FLUXNET MTE × 100%] over CONUS, and (c) comparison of regional averages over the 18 HUC2 
regions shown as their corresponding HUC2 codes.

3.4 Sensible Heat Flux

Noah‐MP produces a spatial pattern of H that is comparable with that of 
FLUXNET, both showing smaller values in the northeast and increasing 
gradually toward the southwest (Figures 9a and 9b). To balance the 
overestimated ET, the modeled H is underestimated over most area of 
CONUS except for the West Coast and parts of southeastern CONUS. With 
negative relative biases above −40%, the most obvious underestimation 
of H occurs in the same areas of the northeastern CONUS where LE is 
apparently overestimated (Figures 6c and 9c). In the western costal and part 
of the southeastern CONUS, however, Noah‐MP overestimates H by more 
than 50% (Figure 9c), as also reflected by the positive biases over the South 
Atlantic‐Gulf, California, and Northwest (i.e., regions “03”, “17”, and “18” in 
Figure 9d). Regarding the multiyear mean regional‐average values, Noah‐MP 
underestimates H by −16% with RMSE and NSE of 10.1 W m−2 and 0.5, 
respectively (Figure 9d).



Figure 9

Spatial pattern of the multiyear (1982–2008) mean sensible heat flux (H) from (a) Noah‐MP, (b) 
FLUXNET MET, (c) the relative bias [=Noah‐MP − FLUXNET MET)/FLUXNET MET × 100%] over CONUS, 
and (d) the comparison of regional averages over the 18 HUC2 regions shown as their corresponding 
HUC2 codes.

Similar to GPP and LE, the Noah‐MP simulated H also shows a larger 
interannual variability than that of FLUXNET MTE in all the CONUS regions, 
especially over the central transitional regions (Figure 10). We would, 
however, draw the attention again that the FLUXNET MTE products have a 
much lower interannual variability when compared to the FLUXNET tower 
observations (Jung et al., 2011; Koster et al., 2015). In view of the regional‐
averaged monthly variation, Noah‐MP underestimates H throughout the year 
over most arid regions (e.g., Great Basin, Rio Grande, Upper Colorado, and 
Lower Colorado) with the NSE values being lower than 0.6. In the majority of 
the eastern humid and central transitional regions, Noah‐MP significantly 
underestimates H in the early growing season to compensate for the 
overestimated LE (see Figure 7) but shows much less biases in the second 
half of the year (Figure 10). These model biases are alleviated in EXP_LAI 
(figures not shown) accordingly compared to the experiment with the 
dynamic vegetation module.



Figure 10

The multiyear (1982–2008) mean annual cycle of sensible heat flux (H) from the Noah‐MP (blue line) 
and FLUXNET MTE (red line) over the 18 HUC2 regions. The light blue and red shaded areas represent 
the standard derivation of the Noah‐MP and FLUXNET MTE H data, respectively, to indicate the 
interannual variability for each month of a year. Also shown on the top of each panel are modeling 
metrics in the order of R, RMSE, and NSE.

3.5 Terrestrial Water Storage

The Noah‐MP simulated terrestrial water storage is the sum of four model 
outputs including the groundwater storage, total soil water depth, snow 
water equivalent, and canopy‐intercepted water. In the present study, the 
modeled monthly TWS anomaly (TWSA) and its components from January 
2003 to December 2015 are computed as the deviation from the mean value
during the same period with that of GRACE (i.e., January 2004 to December 
2009). That is,

where ΔGW, ΔSW, ΔSWE, and ΔCW are monthly anomalies of ground water 
storage, total soil moisture, snow water equivalent, and canopy‐intercepted 
water, respectively. Note that similar to Xia, Cosgrove, Mitchell, Peters‐
Lidard, Ek, Brewer, et al. (2016) and Xia et al. (2017), the water storage in 
rivers, lakes, and reservoirs is not explicitly represented in Noah‐MP and thus
excluded in the present analysis. The modeled monthly TWSA agrees 
generally well with that of GRACE over all the HUC2 regions with R ranging 
from 0.659 to 0.934 (P < 0.001) (Figure 11). Of the total 18 HUC2 regions, 10
regions have NSE values >0.6 at a monthly scale. The simulated TWSA's 
amplitude is more comparable to that of GRACE in most regions than the 
multimodel ensembles mean of the four LSMs used in the NLDAS‐2 
framework (Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Brewer, et al., 2016) 
possibly because of the inclusion of a bucket groundwater (or an unconfined 
aquifer) below the soil column of a traditional LSM (Niu et al., 2007, 2011). 
The present result is also supported by Cai, Yang, Xia, et al. (2014), which 



shows that Noah‐MP performs best in simulating TWSA over CONUS 
compared to Noah, VIC, and CLM.

Figure 11

The Noah‐MP simulated (blue line) and GRACE‐observed (red circle) monthly terrestrial water storage 
anomaly (TWSA) from 2003 to 2015 over the 18 HUC2 regions. The gray shaded area is the standard 
deviation of the three GRACE products, representing the uncertainty of the GRACE TWSA values. Also 
shown on the top of each panel are modeling metrics in the order of R, RMSE, and NSE.

Consistent with previously reported droughts in recent years over the 
western United States (Griffin & Anchukaitis, 2014), Noah‐MP is able to 
reproduce the recent drying trend since 2011 over the Rio Grande, Lower 
Colorado, Upper Colorado, and California but to a lesser extent (regions “13”,
“14”, “15”, and “18” in Figure 11). In the Lower Mississippi, Arkansas‐White‐
Red and Texas‐Gulf (regions “08”, “11”, and “12” in Figure 11), Noah‐MP 
also shows shallower summer troughs than those of GRACE in recent years 
since 2011. Taking the Lower Mississippi region as an example, the mean 
amplitude of annual TWS variation over the whole 13 year period modeled 
by Noah‐MP (202.0 mm) is 33.9% less than that of GRACE (305.7 mm). 
Based on the MODIS‐derived United States irrigation map (Ozdogan & 
Gutman, 2008), all the above regions are intensively developed with a large 
body of groundwater‐pumping irrigated agriculture, for example, the Central 
Valley, High Plains, and Mississippi Embayment. Statistically, the total annual
virtual groundwater withdrawal from the aquifers in these three agricultural 
areas is even close to the capacity of Lake Mead, the largest reservoir of the 
United States (Marston et al., 2015). In this regard, a primary reason for such
discrepancies may be that Noah‐MP does not yet incorporate anthropogenic 
impacts such as agricultural irrigation and impoundments, but these effects 
have been detected by GRACE. Thus, it is not surprising to witness above 
remarkable discrepancy in the Lower Mississippi region since it boasts 
32,430 km2 of irrigated farms, accounting for 12% the total regional area, a 
much higher percentage than any other HUC2 regions (U.S. Department of 



Agriculture‐National Agricultural Statistics Service, 2013). In fact, recently 
intensified pumping of “fossil” water from the aquifers has caused 
abnormally low TWS because of the enhanced rate of water loss to the 
atmosphere through ET. For example, Castle et al. (2016) pointed out that 
the groundwater withdrawals have caused at least 
22 ± 5.5 km3 yr−1additional water loss via ET in the Colorado River Basin. 
Additionally, a water budget survey over the Central Valley of California, 
which is the most productive agricultural area in the United States, 
documents that annual ET exceeds annual precipitation by ~60% due to 
irrigation, which leads to an annual average groundwater depletion of 
1.85 × 109 m3 (Faunt, 2009). Though challenging, incorporating modules that
account for human‐induced water use, especially in basins with plenty of 
heavily managed lands (e.g., irrigation and impoundments), is crucial for 
more accurate modeling TWS variability across multiple spatial and temporal
scales.

Noah‐MP also shows a relatively lower ability in simulating TWS over the 
regions with high percentage of water bodies, for example, the Great Lakes 
with the lowest NSE of 0.18 (region “04” in Figure 11). The TWSA amplitude 
is largely impacted by changes in the water level of the water bodies such as
rivers, reservoirs and lakes (Cai, Yang, Xia, et al., 2014; Xia, Cosgrove, 
Mitchell, Peters‐Lidard, Ek, Brewer, et al., 2016; Xia et al., 2017). To interpret
the discrepancies of the modeled TWSA from the GRACE observed, we 
selected two regions with relatively larger water bodies, that is, the Great 
Lakes and the Great Basin. The Michigan Lake is located in the former, while 
the Great Salt Lake is situated in the latter. Starting from equation 1, we 
further incorporated the lake water storage variations into the modeled 
TWSA; that is,

where ΔLW is the anomaly (relative to the same time period of GRACE) of the
lake water storage. We calculated ΔLW using the measured water level and 
lake area data for the Michigan Lake and the Great Salt Lake, respectively. 
As seen in Figure 12, the biases of the modeled TWSA are largely reduced 
with consideration of the lake water storage changes over both regions. This 
is more apparent for the Great Lakes region, of which the NSE value 
increases from 0.18 to 0.76 after including the lake water storage of the 
Michigan Lake. Furthermore, the overall trend of TWSA from 2012 to 2015 is 
greatly improved in consistence with the observed rise of the water level of 
the Michigan Lake in recent years (data not shown). Though not as apparent 
as that in the Great Lakes, the simulated TWSA of the Great Basin also 
becomes slightly closer to the GRACE measured with a higher NSE value of 
0.88 (Figure 12). This suggests that future LSMs should explicitly represent 
lake, reservoir, and river water storage dynamics. Moreover, assimilating 
satellite altimetry data (e.g., ICESat and future ICESat‐2) of water level 



change will be of help for monitoring the changes in water storage of the 
terrestrial water bodies and total TWS at a regional scale.

Figure 12

Comparison of the Noah‐MP simulated (blue and green lines) and the GRACE‐observed (red circles) 
monthly terrestrial water storage anomaly (TWSA) in the Great Lakes and the Great Basin during 
2003–2015. Noah‐MP TWSA (1) (blue) are the results from Noah‐MP without consideration of lake water
storage, while Noah‐MP TWSA (2) (green) are the results from Noah‐MP with added lake water storage.
The numbers in the upper left corner of each panel are R, RMSE, and NSE, respectively.

3.6 Snow Cover Fraction

Noah‐MP separately simulates SCF on the ground (SCFg) following Niu and 
Yang (2007) and that on the vegetation canopy (SCFv) following Deardorff 
(1978). Considering the shading effects of the canopy, we calculated the grid
SCF as the average of SCFv and SCFg weighted by the green vegetation 
fraction (GVF) and the bare ground fraction (1–GVF), respectively: 
SCF = SCFv × GVF + SCFg × (1 − GVF), for comparing to the MODIS SCF 
product. Similar to Demaria et al. (2016), we specifically divided the snow 
season into three phases, that is, buildup (November to December), stable 
accumulation (January to February), and melting (March to April) phases. 
Noah‐MP yields a geographical distribution of snow cover in consistence with 
that of MODIS during each phase (Figure 13), particularly in the 
accumulation phase. The spatial pattern of both Noah‐MP‐simulated and 
MODIS‐derived SCF follows the latitudinal gradient in the eastern and central 
CONUS but becomes more dependent on altitudinal gradient over the Rocky 
Mountains in the west. Averaged over the 18 HUC2 regions, the RB is only 
0.04 in the stable accumulation phase but increases to 0.14 during the 
melting phase (Figures 13c, 13f, and 13i). NSE is as high as 0.97 in the stable
accumulation phase, while it slightly decreases in the other two phases 
mainly because of the degraded model performance over the New England 
region (“01” in Figure 13) where SCF is remarkably overestimated.



Figure 13

The spatial patterns of the Noah‐MP simulated and the MODIS‐derived multiyear mean (2004–2015) 
snow cover fraction (SCF) and the regional averages of the 18 HUC2 regions (shown as their 
corresponding HUC2 codes) over CONUS during the snow buildup ((a–c) November and December), 
stable accumulation ((d–f) January and February), and melting ((g–i) March and April) phases.

Regarding the 12 snow‐covered regions in the western and northern CONUS, 
11 of them (except the New England) have NSE values >0.8 and RMSE <6% 
with respect to the interannual variability of modeled SCF (Figure 14). The 
high efficiency in simulating SCF, in‐line with other studies of modeling SWE 
and snow depth using Noah‐MP at local (Chen et al., 2014; Niu et al., 2011; 
Wrzesien et al., 2015) and basin scales (Yang et al., 2011), demonstrates a 
good skill of Noah‐MP in snow process modeling. This may be attributed to 
the introduction of (i) a SCF scheme that considers the hysteresis of the SCF‐
snow depth relationship for accumulation and melting phases (Niu & 
Yang, 2007), (ii) a module of snow interception by the vegetation canopy 
(Niu & Yang, 2004), and (iii) a multilayer structure for the snowpack on the 
ground that facilitates an accurate prediction of snow skin temperature, 
liquid water retention and refreezing within the snowpack, and snow 
densification (Niu et al., 2011).



Figure 14

The Noah‐MP simulated (blue line) and the MODIS‐derived (red circles) monthly snow cover fraction 
(SCF) and their multiyear mean annual cycle during 2004–2015 over 12 selected HUC2 regions in the 
northern and western CONUS. Also shown on the top of each panel are modeling metrics in the order 
of R, RMSE, and NSE.

Noah‐MP's excessive SCF in the New England during all phases (region “01” 
in Figures 13 and 14) may be due partially to underestimating sublimation 
(i.e., lower modeled latent heat flux in cold season as seen in Figure 7). In 
addition, other causes to the significant SCF bias may be twofold. The first 
may stem from the possible NLDAS cold bias (Arsenault et al., 2014), leading
to excessive partitioning of precipitation into snowfall (controlled by the 
surface air temperature) and delayed snowmelt in the spring. The second is 
due likely to the spatial resolution of the present simulation (0.125°), which 
might be too coarse to resolve the subgrid heterogeneity of snow cover, as 
has been highlighted by Toure et al. (2016) in a recent evaluation of SCF 
simulated by CLM.

3.7 Runoff

While previous studies have used a simple river routing model to route the 
surface and subsurface flows (Cai, Yang, Xia, et al., 2014; Xia, Cosgrove, 
Mitchell, Peters‐Lidard, Ek, Brewer, et al., 2016), one cannot neglect the 
uncertainties in river routing models due to the model parameters and 
unrealistically low topographic relief derived from the course‐resolution DEM.
In fact, the present study is intended to make use of the USGS runoff data at 
a HUC2 regional scale by evaluating the simulated runoff on a monthly scale,
rather than daily or hourly scales for modeling flash floods. The residence 



time of water in the world's largest rivers (e.g., the Amazon River and the 
Mississippi River) is about 2 weeks, and the area of the HUC2 regions 
ensures the residence time to be much smaller than half a month. As such, 
we directly calculated the regional runoff by integrating the runoff outputs at
each grid over all grids in a region. There are 13 regions of which NSE values
are >0.6 at a monthly scale during 1982–2008 (Figure 14), suggesting that 
Noah‐MP is able to capture the seasonality and magnitude of runoff over 
most of the HUC2 regions. In general, both Noah‐MP and USGS show 
relatively larger (smaller) runoff over the humid (arid) regions. The model 
performs best in the South Atlantic‐Gulf with an NSE value of 0.91, followed 
by the Lower Mississippi, Great Basin, and Arkansas‐White‐Red, of which all 
the NSE values exceed 0.8 at a monthly scale.

However, the modeled runoff does not match well the USGS results over the 
New England, Rio Grande, and Lower Colorado with even negative NSE 
values (regions “01”, “13”, and “15” in Figure 14). In the New England, 
Noah‐MP underestimates runoff by roughly −40% with a delayed peak by 
1 month. Meanwhile, the modeled ET shows very little bias in this region (see
region “01” in Figure 7). Therefore, it appears that the precipitation forcing 
of the NDLAS‐2 is presumably underestimated over this region 
(climatologically, precipitation is roughly equal to the sum of runoff and ET). 
The delayed runoff peak is due mainly to the delayed snowmelt (Figure 15), 
which is likely caused by the potential cold bias in the temperature forcing of
NLDAS‐2 (Arsenault et al., 2014). In the Rio Grande and Lower Colorado, 
Noah‐MP overestimates runoff by roughly two times throughout the year. 
Because the modeled ET values are also higher than the observed values 
(see regions 13 and 15 in Figure 7), the precipitation forcing of NLDAS‐2 may
be overestimated in these two regions. In addition to the possible error of the
forcing, uncertainties in the model structure and parameters may be also 
responsible for low NSE values in these regions. As mentioned above, the 
two key runoff parameters in Noah‐MP, that is, the maximum groundwater 
discharge rate (~5 mm s−1) and the saturated hydraulic conductivity decay 
factor (=6.0), are spatially constant over the whole CONUS domain in this 
study. A thorough calibration of the model parameters including not only the 
runoff parameters but also snow, soil, and vegetation properties will certainly
improve the runoff simulations (cf. Cai, Yang, David, et al., 2014; Cuntz et 
al., 2016).



Figure 15

The Noah‐MP simulated (blue line) and the USGS measured (red circle) monthly runoff and their 
multiyear mean annual cycle during 1982–2008 over the 18 HUC2 regions. Also shown on the top of 
each panel are modeling metrics in the order of R, RMSE, and NSE.

3.8 Comparisons Between Noah‐MP and the NLDAS‐2 LSMs

We also compared Noah‐MP to the NLDAS‐2 LSMs, that is, Mosaic, VIC, SAC, 
and Noah and their MME (Xia, Mitchell, Ek, Sheffield, et al., 2012). Using the 
same reference data products, we computed the NSE values of the monthly 
outputs of Rn during 1984–2007, ET and runoff during 1982–2008 for four 
NLDAS‐2 LSMs, MME, and Noah‐MP over the 18 HUC2 regions (Figure 16). 
Note that the Noah‐MP simulation results of ET in the prescribed vegetation 
experiment (EXP_LAI) are also included.



Figure 16

The Nash‐Sutcliffe efficiency (NSE) of the simulated (a) Rn, (b) ET, and (c) runoff for the NLDAS‐2 LSMs 
(Mosaic, Noah, SAC, and VIC), their multimodel ensembles mean (MME) and Noah‐MP in the 18 HUC2 
regions. The NSE values for ET from the prescribed vegetation experiment (EXP_LAI) of Noah‐MP are 
also shown. Note that NSE values are calculated using the 288 (324) monthly model outputs and 
corresponding reference products during 1984–2007 (1982–2008) for Rn (ET and runoff).

The NSE values of the modeled Rn resulting from the various LSMs show a 
more considerable scatter over the western arid regions, suggesting a 
greater challenge for modeling surface albedo that is more affected by the 
coupled dynamics of vegetation, snow cover, and soil moisture over these 
regions. Noah‐MP performs worse than Noah and MME but better than VIC 
more obviously in the western arid regions (Figure 16a). However, it should 
be noted that the low‐resolution NASA/GEWEX SRB radiation product tends to
bear large uncertainties since the albedo values in the cold season are 
unreasonably low in the high‐elevation and high‐latitude regions (see 
Figure S2). Hence, we argue that further assessment of the models needs 
more reliable, high‐resolution reference data products before further 
developments of model representations of the coupled dynamics of 
vegetation and snow cover.

In terms of ET, Noah‐MP shows a relatively worse performance than Noah, 
VIC, SAC, and MME but better than Mosaic over the majority of the HUC2 
regions (Figure 16b). All the models fail to simulate ET over the Lower 
Colorado (region “15”). As mentioned previously, such an insufficient skill of 
Noah‐MP in modeling ET is likely attributed to the deficiency in its dynamic 
vegetation model. Compared to the experiment with dynamic vegetation 



model, EXP_LAI (with prescribed LAI) improved the simulation with higher 
NSE values over 14 HUC2 regions. However, it is uncertain how much the 
NSE values of these models would vary after taking into consideration of the 
unrealistically low interannual variability in the FLUXNET MTE products.

The NSE values of the modeled runoff by all the models show a much greater
scatter than Rnand ET, reflecting a greater uncertainty in representing runoff 
processes in LSMs. Noah‐MP performs better than the NLDAS‐2 LSMs in 
simulating runoff over the majority of the HUC2 regions except the New 
England, Mid‐Atlantic, Ohio, Tennessee, and Upper Mississippi regions. This is
consistent with Xia, Cosgrove, Mitchell, Peters‐Lidard, Ek, Brewer, et al. 
(2016), which demonstrates that Noah‐MP improved the runoff modeling in 
terms of timing and magnitude over the majority of area within CONUS due 
to the advanced schemes of snow, runoff, and surface energy exchange 
processes when compared to the research version of Noah, Noah‐I. Because 
the USGS runoff data, which are derived from the river discharge measured 
with streamflow gauges, may be the most reliable with the lowest 
uncertainty among all the reference data products, the evaluation of the 
modeled runoff is regarded as the most stringent in this study.

4 Conclusions

In this study, we evaluated the Noah‐MP's performance in simulating the 
major land‐atmosphere energy, water, and carbon exchanging fluxes and 
runoff, TWSA, and SCF against a wide variety of ground‐ and satellite‐based 
data sets over the 18 HUC2 regions of CONUS across multiple hydroclimatic 
regimes. The results are summarized as below:

1. Noah‐MP performs very well in simulating Rn over the southeastern 
CONUS with a smaller relative bias within ±10%, while it yields much 
smaller Rn than does the NASA/GEWEX SRB with a large relative bias of 
approximately −40% in the Rocky Mountains and northeastern CONUS 
with substantial snow cover in cold seasons. However, the comparison of 
cold season albedo between the model and GEWEX/NASA SRB indicates 
that Noah‐MP's Rn may be more plausible over such regions. Comparison 
of the modeled SCF to the MODIS SCF implies that the modeled surface 
albedo controlled by the coupled dynamics of vegetation and snow cover 
is favorable, although further elaborate assessments of Noah‐MP against 
more reliable, high‐resolution data, for example, MODIS surface albedo 
and LAI products are still needed.

2. Compared to the FLUXNET MTE GPP, ET, and H products, Noah‐MP 
simulates a much larger GPP over the central and eastern CONUS with a 
relative bias being about 50%, resulting in excessive ET and thus less H, 
especially in spring and early summer over the same regions. Without the
dynamic vegetation model, Noah‐MP yields more accurate ET with a 
relative bias dropping from 22% to 4% over the whole CONUS domain. 
This suggests that the dynamic vegetation model in Noah‐MP should be 
improved to rigorously represent the carbon partitioning into shoot and 



root, root dynamics, and the feedbacks to photosynthesis. Progresses in 
refining carbon allocation schemes (Gim et al., 2017), applying the 
temperature limitation on photosynthesis (Schaefer et al., 2012), and 
introducing the nitrogen limitation (Cai et al., 2016; Stöckli et al., 2008) 
will facilitate simulations of both carbon and water fluxes across multiple 
scales.

3. Noah‐MP is capable of reproducing the monthly TWSA over most of 18 
HUC2 regions (10 regions have NSE values >0.6 at a monthly scale) 
except those severely affected by either anthropogenic activities 
including irrigation and impoundments or significant water storage 
changes over water bodies. Adding the lake water storage changes of the 
Michigan Lake with an area of 57,756 km2 to the simulated TWSA reduces 
the modeling biases in the Great Lakes region to a large extent. Such an 
improvement is also true over the Great Basin region with consideration 
of the effect of the Great Salt Lake, though at a lesser extent because of 
its smaller water surface area. Therefore, incorporating modules 
describing human‐induced disturbances and lake/reservoir water 
dynamics into Noah‐MP would definitely improve its ability in hydrological 
applications over heavily managed river basins.

4. The modeled SCF agrees well with that of the MODIS derived with 
relative biases varying from 4% in the accumulation phase to 14% in the 
melting phase. The present study is consistent with previously reported 
good performances of Noah‐MP in snow depth and SWE evaluations (Chen
et al., 2014; Niu et al., 2011; Yang et al., 2011). This is likely attributed to 
the more sophisticated schemes of SCF (Niu & Yang, 2007), snow 
interception by the vegetation canopy (Niu & Yang, 2004), and the 
multilayer structure for the snowpack on the ground (Niu et al., 2011).

5. Despite the spatially constant runoff parameters, the Noah‐MP 
simulated runoff generally agrees with the USGS‐measured results in both
timing and magnitude with NSE values of 13 HUC2 regions being >0.6 
during 1982–2008 at a monthly scale. Though beyond the scope of this 
study, a thorough calibration of model parameters (distributed or lumped)
including not only the runoff parameters but also snow, soil, and 
vegetation properties for a specific river basin will further improve the 
runoff simulations.

6. Noah‐MP shows a better performance in runoff simulations when 
compared to the NLDAS‐2 LSMs over most of the HUC2 regions. 
Meanwhile, its ability to model Rn is comparable to the NLDAS‐2 LSMs 
regardless of the uncertainties in the referencing data. However, the NSE 
values of the modeled ET by Noah‐MP are relatively lower than most 
NLDAS‐2 LSMs. Such a deficiency highlights an urgent need of 
refinements of the dynamic vegetation model in Noah‐MP despite the 
large uncertainties in the FLUXNET MTE products with respect to its 
interannual variability. Because the USGS runoff data may be the most 



reliable with the lowest uncertainty among all the reference data 
products, the evaluation of the modeled runoff is regarded as the most 
stringent in this study.

One of the most prominent merits of Noah‐MP, compared to other NLDAS‐2 
LSMs, is that the former provides multiple options of parameterization 
schemes for key physical processes (Niu et al., 2011). However, the main 
purpose of this study is not to seek the best combinations of schemes or to 
improve the hydroclimatological applications over CONUS through physically 
based ensemble simulations; rather, we intended to investigate the model's 
strengths and weaknesses, thereby providing guidance for future model 
developments in representing key terrestrial ecohydrological processes that 
may be missing in the current LSMs. Though the combination of the schemes
used in this study may not be the best, for the aim of identifying the model 
weaknesses, we included the vegetation dynamic model, which is not well 
developed in not only Noah‐MP but also other LSMs. The present study 
suggests that future model developments should focus more on improving 
the representations of vegetation dynamics, lake water storage dynamics, 
and human activities including irrigation and impoundments.

Acknowledgments

This research was jointly funded by the National Key Research and 
Development Program of China (2017YFA0603101), China Postdoctoral 
Science Foundation (2017LH032 and 2017M620069), National Natural 
Science Foundation of China (41661144025 and 41430748), NASA MAP 
Program (80NSSC17K0352), and the University of Arizona Germinating 
Research Program Success: Faculty Seed Grants. We are grateful to the 
Editor and anonymous reviewers for their comments that greatly improved 
the earlier manuscript. All data used in this study can be freely accessed 
from the cited websites described in the text. We appreciate all organizations
and persons for making such data available to the public. Noah‐MP 
simulation outputs are available from the corresponding authors. 

References

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., … Papale, 
D. (2015). Spatiotemporal patterns of terrestrial gross primary production: A 
review. Reviews of 
Geophysics, 53, 785– 818. https://doi.org/10.1002/2015RG000483

Arsenault, K. R., Houser, P. R., & De Lannoy, G. J. M. (2014). Evaluation of the
MODIS snow cover fraction product. Hydrological 
Processes, 28( 3), 980– 998. https://doi.org/10.1002/hyp.9636

Ashfaq, M., Ghosh, S., Kao, S.‐C., Bowling, L. C., Mote, P., Touma, D., 
… Diffenbaugh, N. S. (2013). Near‐term acceleration of hydroclimatic change
in the western U.S. Journal of Geophysical Research: 
Atmospheres, 118, 10,676– 10,693. https://doi.org/10.1002/jgrd.50816



Barlage, M., Tewari, M., Chen, F., Miguez‐Macho, G., Yang, Z.‐L., & Niu, G.‐
Y. (2015). The effect of groundwater interaction in North American regional 
climate simulations with WRF/Noah‐MP. Climatic Change, 129( 3–
4), 485– 498. https://doi.org/10.1007/s10584-014-1308-8

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, 
A., … Decharme, B. (2015). The plumbing of land surface models: 
Benchmarking model performance. Journal of 
Hydrometeorology, 16( 3), 1425– 1442. https://doi.org/10.1175/JHM-D-14-
0158.1

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M.,
… Swenson, S. C. (2011). Improving canopy processes in the Community 
Land Model version 4 (CLM4) using global flux fields empirically inferred from
FLUXNET data. Journal of Geophysical Research, 116, 
G02014. https://doi.org/10.1029/2010JG001593

Brakebill, J., Wolock, D., & Terziotti, S. (2011). Digital hydrologic networks 
supporting applications related to spatially referenced regression 
modeling. Journal of the American Water Resources 
Association, 47( 5), 916– 932. https://doi.org/10.1111/j.1752-
1688.2011.00578.x

Cai, X., Yang, Z.‐L., David, C. H., Niu, G.‐Y., & Rodell, M. (2014). Hydrological 
evaluation of the Noah‐MP land surface model for the Mississippi River 
Basin. Journal of Geophysical Research: 
Atmospheres, 119, 23– 38. https://doi.org/10.1002/2013JD020792

Cai, X., Yang, Z. L., Fisher, J. B., Zhang, X., Barlage, M., & Chen, 
F. (2016). Integration of nitrogen dynamics into the Noah‐MP land surface 
model v1.1 for climate and environmental predictions. Geoscientific Model 
Development, 9( 1), 1– 15. https://doi.org/10.5194/gmd-9-1-2016

Cai, X., Yang, Z.‐L., Xia, Y., Huang, M., Wei, H., Leung, L. R., & Ek, M. 
B. (2014). Assessment of simulated water balance from Noah, Noah‐MP, CLM,
and VIC over CONUS using the NLDAS test bed. Journal of Geophysical 
Research: 
Atmospheres, 119, 13,751– 13,770. https://doi.org/10.1002/2014JD022113

Castle, S. L., Reager, J. T., Thomas, B. F., Purdy, A. J., Lo, M.‐H., Famiglietti, J. 
S., & Tang, Q. (2016). Remote detection of water management impacts on 
evapotranspiration in the Colorado River Basin. Geophysical Research 
Letters, 43, 5089– 5097. https://doi.org/10.1002/2016GL068675

Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., 
… Lin, C. (2014). Modeling seasonal snowpack evolution in the complex 
terrain and forested Colorado Headwaters region: A model intercomparison 
study. Journal of Geophysical Research: 
Atmospheres, 119, 13,795– 13,819. https://doi.org/10.1002/2014JD022167



Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface‐hydrology 
model with the Penn State‐NCAR MM5 modeling system. Part I: Model 
implementation and sensitivity. Monthly Weather 
Review, 129( 4), 569– 585. https://doi.org/10.1175/1520-
0493(2001)129%3C0569:CAALSH%3E2.0.CO;2

Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., … Betts, 
A. (1996). Modeling of land‐surface evaporation by four schemes and 
comparison with FIFE observations. Journal of Geophysical 
Research, 101( D3), 7251– 7268. https://doi.org/10.1029/95JD02165

Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil 
hydraulic properties. Water Resources 
Research, 14( 4), 601– 604. https://doi.org/10.1029/WR014i004p00601

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, 
R., Bennett, K. E., … Peters‐Lidard, C. D. (2017). The evolution of process‐
based hydrologic models: Historical challenges and the collective quest for 
physical realism. Hydrology and Earth System 
Sciences, 21( 7), 3427– 3440. https://doi.org/10.5194/hess-21-3427-2017

Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., 
… Kumar, M. (2015). Improving the representation of hydrologic processes in
Earth system models. Water Resources 
Research, 51, 5929– 5956. https://doi.org/10.1002/2015WR017096

Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and 
environmental regulation of stomatal conductance, photosynthesis and 
transpiration: A model that includes a laminar boundary layer. Agricultural 
and Forest Meteorology, 54( 2‐4), 107– 136. https://doi.org/10.1016/0168-
1923(91)90002-8

Collatz, G. J., Ribas‐Carbo, M., & Berry, J. A. (1992). Coupled photosynthesis‐
stomata1 conductance model for leaves of C4 plants. Australian Journal of 
Plant Physiology, 19( 5), 519– 538. https://doi.org/10.1071/PP9920519

Cosgrove, B., Gochis, D. J., Clark, E., Cui, Z., Dugger, A., Feng, X., … Khan, 
S. (2017). Continental‐scale operational hydrologic modeling: Version 1.0 of 
the National Water Model. Paper presented at 97th American Meteorological 
Society Annual Meeting, American Meteorological Society, Seattle, WA. 
Retrieved 
from https://ams.confex.com/ams/97Annual/webprogram/Paper314045.html

Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., 
… Thober, S. (2016). The impact of standard and hard‐coded parameters on 
the hydrologic fluxes in the Noah‐MP land surface model. Journal of 
Geophysical Research: 
Atmospheres, 121, 10,676– 10,700. https://doi.org/10.1002/2016JD025097



Deardorff, J. W. (1978). Efficient prediction of ground surface temperature 
and moisture, with inclusion of a layer of vegetation. Journal of Geophysical 
Research, 83( C4), 1889– 1903. https://doi.org/10.1029/JC083iC04p01889

Demaria, E. M. C., Roundy, J. K., Wi, S., & Palmer, R. N. (2016). The effects of 
climate change on seasonal snowpack and the hydrology of the northeastern
and upper Midwest United States. Journal of 
Climate, 29( 18), 6527– 6541. https://doi.org/10.1175/JCLI-D-15-0632.1

Dickinson, R. E., Shaikh, M., Bryant, R., & Graumlich, L. (1998). Interactive 
canopies for a climate model. Journal of 
Climate, 11( 11), 2823– 2836. https://doi.org/10.1175/1520-
0442(1998)011%3C2823:ICFACM%3E2.0.CO;2

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., 
… Tarpley, J. D. (2003). Implementation of Noah land surface model 
advances in the National Centers for Environmental Prediction operational 
mesoscale Eta model. Journal of Geophysical Research, 108( D22), 
8851. https://doi.org/10.1029/2002JD003296

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical 
model of photosynthetic CO2 assimilation in leaves of C3 
species. Planta, 149( 1), 78– 90. https://doi.org/10.1007/BF00386231

C. C. Faunt (Ed.) (2009). Groundwater availability of the Central Valley 
aquifer, California. US Geological Survey Professional Paper, 1766, 225.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.‐E.,
… But, A. (2011). New global observations of the terrestrial carbon cycle 
from GOSAT: Patterns of plant fluorescence with gross primary 
productivity. Geophysical Research Letters, 38, 
L17706. https://doi.org/10.1029/2011GL048738

Fu, Q., & Feng, S. (2014). Responses of terrestrial aridity to global 
warming. Journal of Geophysical Research: 
Atmospheres, 119, 7863– 7875. https://doi.org/10.1002/2014JD021608

Gao, Y., Li, K., Chen, F., Jiang, Y., & Lu, C. (2015). Assessing and improving 
Noah‐MP land model simulations for the central Tibetan Plateau. Journal of 
Geophysical Research: 
Atmospheres, 120, 9258– 9278. https://doi.org/10.1002/2015JD023404

Gayler, S., Wohling, T., Grzeschik, M., Ingwersen, J., Wizemann, H.‐
D., Warrach‐Sagi, K., … Wulfmeyer, V. (2014). Incorporating dynamic root 
growth enhances the performance of Noah‐MP at two contrasting winter 
wheat field sites. Water Resources Research, 50, 1337– 1356. https://doi.org/
10.1002/2013WR014634

Gim, H.‐J., Park, S. K., Kang, M., Thakuri, B. M., Kim, J., & Ho, C.‐H. (2017). An 
improved parameterization of the allocation of assimilated carbon to plant 
parts in vegetation dynamics for Noah‐MP. Journal of Advances in Modeling 
Earth Systems, 9( 4), 1776– 1794. https://doi.org/10.1002/2016MS000890



Griffin, D., & Anchukaitis, K. J. (2014). How unusual is the 2012‐2014 
California drought? Geophysical Research 
Letters, 41, 9017– 9023. https://doi.org/10.1002/2014GL062433

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., 
& Andréassian, V. (2014). Large‐sample hydrology: A need to balance depth 
with breadth. Hydrology and Earth System 
Sciences, 18( 2), 463– 477. https://doi.org/10.5194/hess-18-463-2014

Guttman, N. B., & Quayle, R. G. (1996). A historical perspective of U.S. 
climate divisions. Bulletin of the American Meteorological 
Society, 77( 2), 293– 303. https://doi.org/10.1175/1520-
0477(1996)077%3C0293:AHPOUC%3E2.0.CO;2

Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow 
products. Hydrological 
Processes, 21( 12), 1534– 1547. https://doi.org/10.1002/hyp.6715

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. 
L., … Cescatti, A. (2010). Recent decline in the global land 
evapotranspiration trend due to limited moisture 
supply. Nature, 467( 7318), 951– 954. https://doi.org/10.1038/nature09396

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Altaf 
Arain, M., … Bernhofer, C. (2011). Global patterns of land‐atmosphere fluxes 
of carbon dioxide, latent heat, and sensible heat derived from eddy 
covariance, satellite, and meteorological observations. Journal of 
Geophysical Research, 116, G00J07. https://doi.org/10.1029/2010JG001566

Koster, R. D., Salvucci, G. D., Rigden, A. J., Jung, M., Collatz, G. J., & Schubert,
S. D. (2015). The pattern across the continental United States of 
evapotranspiration variability associated with water availability. Frontiers in 
Earth Science, 3. https://doi.org/10.3389/feart.2015.00035

Kumar, S. V., Zaitchik, B. F., Peters‐Lidard, C. D., Rodell, M., Reichle, R., Li, B.,
… Mocko, D. (2016). Assimilation of gridded GRACE terrestrial water storage 
estimates in the North American Land Data Assimilation System. Journal of 
Hydrometeorology, 17( 7), 1951– 1972. https://doi.org/10.1175/JHM-D-15-
0157.1

Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE 
terrestrial water storage estimates. Water Resources Research, 48, 
W04531. https://doi.org/10.1029/2011WR011453

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, 
N., … Dalmonech, D. (2012). A framework for benchmarking land 
models. Biogeosciences, 9( 10), 3857– 3874. https://doi.org/10.5194/bg-9-
3857-2012

Luo, S., Sun, Z., Zheng, X., Rikus, L., & Franklin, C. (2016). Evaluation of 
ACCESS model cloud properties over the Southern Ocean area using 



multiple‐satellite products. Quarterly Journal of the Royal Meteorological 
Society, 142( 694), 160– 171. https://doi.org/10.1002/qj.2641

Ma, N., Zhang, Y., Xu, C.‐Y., & Szilagyi, J. (2015). Modeling actual 
evapotranspiration with routine meteorological variables in the data‐scarce 
region of the Tibetan Plateau: Comparisons and implications. Journal of 
Geophysical Research: 
Biogeosciences, 120, 1638– 1657. https://doi.org/10.1002/2015JG003006

Manabe, S. (1969). Climate and ocean circulation. Part I: The atmospheric 
circulation and the hydrology of the Earth's surface. Monthly Weather 
Review, 97( 11), 739– 774. https://doi.org/10.1175/1520-
0493(1969)097%3C0739:CATOC%3E2.3.CO;2

Mao, J., Thornton, P. E., Shi, X., Zhao, M., & Post, W. M. (2012). Remote 
sensing evaluation of CLM4 GPP for the period 2000 to 2009. Journal of 
Climate, 25( 15), 5327– 5342. https://doi.org/10.1175/JCLI-D-11-00401.1

Marston, L., Konar, M., Cai, X., & Troy, T. J. (2015). Virtual groundwater 
transfers from overexploited aquifers in the United States. Proceedings of 
the National Academy of Sciences of the United States of 
America, 112( 28), 8561– 8566. https://doi.org/10.1073/pnas.1500457112

Mathis, M., Elizalde, A., Mikolajewicz, U., & Pohlmann, T. (2015). Variability 
patterns of the general circulation and sea water temperature in the North 
Sea. Progress in 
Oceanography, 135, 91– 112. https://doi.org/10.1016/j.pocean.2015.04.009

Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. 
C., Robock, A., … Sheffield, J. (2004). The multi‐institution North American 
Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and
partners in a continental distributed hydrological modeling system. Journal of
Geophysical Research, 109, D07S90. https://doi.org/10.1029/2003JD003823

Niu, G.‐Y., & Yang, Z.‐L. (2004). Effects of vegetation canopy processes on 
snow surface energy and mass balances. Journal of Geophysical 
Research, 109( D23), D23111. https://doi.org/10.1029/2004JD004884

Niu, G.‐Y., & Yang, Z.‐L. (2007). An observation‐based formulation of snow 
cover fraction and its evaluation over large North American river 
basins. Journal of Geophysical Research, 112, 
D21101. https://doi.org/10.1029/2007JD008674

Niu, G.‐Y., Yang, Z.‐L., Dickinson, R. E., & Gulden, L. E. (2005). A simple 
TOPMODEL‐based runoff parameterization (SIMTOP) for use in global climate 
models. Journal of Geophysical Research, 110, 
D21106. https://doi.org/10.1029/2005JD006111

Niu, G.‐Y., Yang, Z.‐L., Dickinson, R. E., Gulden, L. E., & Su, 
H. (2007). Development of a simple groundwater model for use in climate 
models and evaluation with Gravity Recovery and Climate Experiment 



data. Journal of Geophysical Research, 112, 
D07103. https://doi.org/10.1029/2006JD007522

Niu, G.‐Y., Yang, Z.‐L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., 
… Manning, K. (2011). The community Noah land surface model with 
multiparameterization options (Noah‐MP): 1. Model description and 
evaluation with local‐scale measurements. Journal of Geophysical 
Research, 116, D12109. https://doi.org/10.1029/2010JD015139

Niu, G.‐Y., & Zeng, X. (2012). Earth system model, modeling the land 
component of. In P. J. Rasch (Ed.), Climate change modeling methodology: 
Selected entries from the encyclopedia of sustainability science and 
technology (pp. 139– 168). New York: Springer. https://doi.org/10.1007/978-
1-4614-5767-1_7

Oubeidillah, A. A., Kao, S. C., Ashfaq, M., Naz, B. S., & Tootle, G. (2014). A 
large‐scale, high‐resolution hydrological model parameter data set for 
climate change impact assessment for the conterminous US. Hydrology and 
Earth System Sciences, 18( 1), 67– 84. https://doi.org/10.5194/hess-18-67-
2014

Ozdogan, M., & Gutman, G. (2008). A new methodology to map irrigated 
areas using multi‐temporal MODIS and ancillary data: An application 
example in the continental U.S. Remote Sensing of 
Environment, 112( 9), 3520– 3537. https://doi.org/10.1016/j.rse.2008.04.010

Penman, H. L. (1948). Natural evaporation from open water, bare soil and 
grass. Proceedings of the Royal Society of London, Series 
A, 193( 1032), 120– 145. https://doi.org/10.1098/rspa.1948.0037

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., … Mao, 
J. (2015). Detection and attribution of vegetation greening trend in China 
over the last 30 years. Global Change 
Biology, 21( 4), 1601– 1609. https://doi.org/10.1111/gcb.12795

Pitman, A. J. (2003). The evolution of, and revolution in, land surface 
schemes designed for climate models. International Journal of 
Climatology, 23( 5), 479– 510. https://doi.org/10.1002/joc.893

Rice, J. S., Emanuel, R. E., & Vose, J. M. (2016). The influence of watershed 
characteristics on spatial patterns of trends in annual scale streamflow 
variability in the continental U.S. Journal of Hydrology, 540, 850– 860. https://
doi.org/10.1016/j.jhydrol.2016.07.006

Riggs, G. A., Hall, D. K., & Salomonson, V. V. (2006). MODIS snow products 
user guide for collection 5. Retrieved from http://modis-snow-
ice.gsfc.nasa.gov/uploads/sug_c5.pdf

Roads, J., Lawford, R., Bainto, E., Berbery, E., Chen, S., Fekete, B., 
… Grundstein, A. (2003). GCIP water and energy budget synthesis 
(WEBS). Journal of Geophysical Research, 108( D16), 
8609. https://doi.org/10.1029/2002JD002583



Sabo, J. L., Sinha, T., Bowling, L. C., Schoups, G. H. W., Wallender, W. 
W., Campana, M. E., … Fuller, P. L. (2010). Reclaiming freshwater 
sustainability in the Cadillac Desert. Proceedings of the National Academy of 
Sciences of the United States of 
America, 107( 50), 21,263– 21,269. https://doi.org/10.1073/pnas.100973410
8

Sakumura, C., Bettadpur, S., & Bruinsma, S. (2014). Ensemble prediction and
intercomparison analysis of GRACE time‐variable gravity field 
models. Geophysical Research 
Letters, 41, 1389– 1397. https://doi.org/10.1002/2013GL058632

Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A., Chen, J. M., 
… Dimitrov, D. (2012). A model‐data comparison of gross primary 
productivity: Results from the North American carbon program site 
synthesis. Journal of Geophysical Research, 117, 
G03010. https://doi.org/10.1029/2012JG001960

Seaber, P. R., Kapinos, F. P., & Knapp, G. L. (1987). Hydrologic unit 
maps. U.S. Geological Survey Water‐Supply Paper, 2294.

Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. 
A., … Denning, A. S. (1997). Modeling the exchanges of energy, water, and 
carbon between continents and the 
atmosphere. Science, 275( 5299), 502– 509. https://doi.org/10.1126/
science.275.5299.502

Seo, K.‐W., Wilson, C. R., Famiglietti, J. S., Chen, J. L., & Rodell, 
M. (2006). Terrestrial water mass load changes from Gravity Recovery and 
Climate Experiment (GRACE). Water Resources Research, 42, 
W05417. https://doi.org/10.1029/2005WR004255

Smith, S. V., Renwick, W. H., Bartley, J. D., & Buddemeier, R. 
W. (2002). Distribution and significance of small, artificial water bodies 
across the United States landscape. Science of the Total 
Environment, 299( 1‐3), 21– 36. https://doi.org/10.1016/S0048-
9697(02)00222-X

Stöckli, R., Lawrence, D. M., Niu, G. Y., Oleson, K. W., Thornton, P. E., Yang, Z.
L., … Running, S. W. (2008). Use of FLUXNET in the Community Land Model 
development. Journal of Geophysical Research, 113, G01025. https://doi.org/
10.1029/2007JG000562

Toure, A. M., Rodell, M., Yang, Z.‐L., Beaudoing, H., Kim, E., Zhang, Y., 
& Kwon, Y. (2016). Evaluation of the snow simulations from the Community 
Land Model, version 4 (CLM4). Journal of 
Hydrometeorology, 17( 1), 153– 170. https://doi.org/10.1175/JHM-D-14-
0165.1

U.S. Department of Agriculture‐National Agricultural Statistics 
Service (2013). Farm and ranch irrigation survey. 2012 Census of 



Agriculture. National Agricultural Statistics Service. U.S. Department of 
Agriculture.

Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., & Verdin, J. P. (2013). A 
comprehensive evaluation of two MODIS evapotranspiration products over 
the conterminous United States: Using point and gridded FLUXNET and water
balance ET. Remote Sensing of 
Environment, 139, 35– 49. https://doi.org/10.1016/j.rse.2013.07.013

Wrzesien, M. L., Pavelsky, T. M., Kapnick, S. B., Durand, M. T., & Painter, T. 
H. (2015). Evaluation of snow cover fraction for regional climate simulations 
in the Sierra Nevada. International Journal of 
Climatology, 35( 9), 2472– 2484. https://doi.org/10.1002/joc.4136

Xia, Y., Cosgrove, B. A., Mitchell, K. E., Peters‐Lidard, C. D., Ek, M. B., Brewer, 
M., … Kumar, S. V. (2016). Basin‐scale assessment of the land surface water 
budget in the National Centers for Environmental Prediction operational and 
research NLDAS‐2 systems. Journal of Geophysical Research: 
Atmospheres, 121, 2750– 2779. https://doi.org/10.1002/2015JD023733

Xia, Y., Cosgrove, B. A., Mitchell, K. E., Peters‐Lidard, C. D., Ek, M. B., Kumar, 
S., … Wei, H. (2016). Basin‐scale assessment of the land surface energy 
budget in the National Centers for Environmental Prediction operational and 
research NLDAS‐2 systems. Journal of Geophysical Research: 
Atmospheres, 121, 196– 220. https://doi.org/10.1002/2015JD023889

Xia, Y., Mitchell, K. E., Ek, M. B., Cosgrove, B. A., Sheffield, J., Luo, L., … Wei, 
H. (2012). Continental‐scale water and energy flux analysis and validation for
the North American Land Data Assimilation System project phase 2 (NLDAS‐
2): 2. Validation of model‐simulated streamflow. Journal of Geophysical 
Research, 117, D03110. https://doi.org/10.1029/2011JD016051

Xia, Y., Mitchell, K. E., Ek, M. B., Sheffield, J., Cosgrove, B. A., Wood, E., 
… Alonge, C. (2012). Continental‐scale water and energy flux analysis and 
validation for the North American Land Data Assimilation System project 
phase 2 (NLDAS‐2): 1. Intercomparison and application of model 
products. Journal of Geophysical Research, 117, 
D03109. https://doi.org/10.1029/2011JD016048

Xia, Y., Mocko, D., Huang, M., Li, B., Rodell, M., Mitchell, K. E., … Ek, M. 
B. (2017). Comparison and assessment of three advanced land surface 
models in simulating terrestrial water storage components over the United 
States. Journal of 
Hydrometeorology, 18( 3), 625– 649. https://doi.org/10.1175/JHM-D-16-
0112.1

Yan, B., & Dickinson, R. E. (2014). Modeling hydraulic redistribution and 
ecosystem response to droughts over the Amazon basin using Community 
Land Model 4.0 (CLM4). Journal of Geophysical Research: 
Biogeosciences, 119, 2130– 2143. https://doi.org/10.1002/2014JG002694



Yang, Z.‐L., Niu, G.‐Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., 
… Manning, K. (2011). The community Noah land surface model with 
multiparameterization options (Noah‐MP): 2. Evaluation over global river 
basins. Journal of Geophysical Research, 116, 
D12110. https://doi.org/10.1029/2010JD015140

Zeng, Y., Xie, Z., Yu, Y., Liu, S., Wang, L., Zou, J., … Jia, B. (2016). Effects of 
anthropogenic water regulation and groundwater lateral flow on land 
processes. Journal of Advances in Modeling Earth 
Systems, 8( 3), 1106– 1131. https://doi.org/10.1002/2016MS000646

Zhang, G., Chen, F., & Gan, Y. (2016). Assessing uncertainties in the Noah‐
MP ensemble simulations of a cropland site during the Tibet Joint 
International Cooperation program (JICA) field campaign. Journal of 
Geophysical Research: 
Atmospheres, 121, 9576– 9596. https://doi.org/10.1002/2016JD024928

Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., Colleen Mikovitz, J., 
& Hinkelman, L. M. (2013). The validation of the GEWEX SRB surface 
shortwave flux data products using BSRN measurements: A systematic 
quality control, production and application approach. Journal of Quantitative 
Spectroscopy & Radiative 
Transfer, 122, 127– 140. https://doi.org/10.1016/j.jqsrt.2012.10.004

Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., & Mikovitz, J. 
C. (2015). The validation of the GEWEX SRB surface longwave flux data 
products using BSRN measurements. Journal of Quantitative Spectroscopy & 
Radiative 
Transfer, 150, 134– 147. https://doi.org/10.1016/j.jqsrt.2014.07.013

Zheng, D., Van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A. Y., 
& Wang, X. (2015). Under‐canopy turbulence and root water uptake of a 
Tibetan meadow ecosystem modeled by Noah‐MP. Water Resources 
Research, 51, 5735– 5755. https://doi.org/10.1002/2015WR017115


	A Systematic Evaluation of Noah‐MP in Simulating Land‐Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States
	Ning Ma1,2,3, Guo-Yue Niu2,4, Youlong Xia5, Xitian Cai6, Yinsheng Zhang1, Yaoming Ma1,3, and Yuanhao Fang7
	1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, and Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China, 2 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA, 3 University of Chinese Academy of Sciences, Beijing, China, 4 Biosphere 2, University of Arizona, Tucson, AZ, USA, 5 Environmental Modeling Center, National Centers for Environmental Prediction, College Park, MD, USA, 6 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA, 7 Department of Hydrology and Water Resources, Hohai University, Nanjing, China
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 A Brief Description of Noah‐MP
	2.2 Atmospheric Forcing, Vegetation and Soil Parameters, Model Initialization and Simulation
	2.3 USGS Two‐Digital Hydrological Unit Code Regions
	2.4 Reference Data Products
	2.4.1 NASA/GEWEX SRB Radiation
	2.4.2 FLUXNET MTE GPP, H, and LE
	2.4.3 GRACE Terrestrial Water Storage Anomaly
	2.4.4 Water Level Data of the Great Salt Lake and Michigan Lake
	2.4.5 MODIS Snow Cover Fraction
	2.4.6 USGS Water Watch Hydrological Unit Runoff

	2.5 NLDAS‐2 LSMs Simulated Outputs
	2.6 Regional Upscaling and Evaluation Methods

	3 Results and Discussions
	3.1 Net Radiation
	3.2 Gross Primary Production
	3.3 Evapotranspiration
	3.4 Sensible Heat Flux
	3.5 Terrestrial Water Storage
	3.6 Snow Cover Fraction
	3.7 Runoff
	3.8 Comparisons Between Noah‐MP and the NLDAS‐2 LSMs

	4 Conclusions
	Acknowledgments



