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Using in vivo intact structure for system-wide
quantitative analysis of changes in proteins

Ahrum Son1, Hyunsoo Kim1,2, Jolene K. Diedrich1, Casimir Bamberger 1,
Daniel B. McClatchy 1, Stuart A. Lipton 1,3,4 & John R. Yates III 1

Mass spectrometry-basedmethods canprovide a global expressionprofile and
structural readout of proteins in complex systems. Preserving the in vivo
conformation of proteins in their innate state is challenging during proteomic
experiments. Here, we introduce a whole animal in vivo protein footprinting
method using perfusion of reagents to add dimethyl labels to exposed lysine
residues on intact proteins which provides information about protein con-
formation.When this approach is used tomeasure dynamic structural changes
during Alzheimer’s disease (AD) progression in a mouse model, we detect 433
proteins that undergo structural changes attributed to AD, independent of
aging, across 7 tissues.We identify structural changesof co-expressedproteins
and link the communities of these proteins to their biological functions. Our
findings show that structural alterations of proteins precede changes in
expression, thereby demonstrating the value of in vivo protein conformation
measurement. Our method represents a strategy for untangling mechanisms
of proteostasis dysfunction causedbyproteinmisfolding. In vivowhole-animal
footprinting should have broad applicability for discovering conformational
changes in systemic diseases and for the design of therapeutic interventions.

The proper functioning of cellularmachinery depends on the ability to
maintain the functional structures of proteins. Proper folding of pro-
teins is necessary to engagewithpartners in complexes and toperform
catalytic activities. Protein folds or shapes can be measured by pow-
erful, high-resolution ex vivo techniques such asX-ray crystallography,
NMR, and Cyro-electron microscopy (Cyro-EM)1–5. Cyro-EM can be
used to analyze large protein complexes if they are extracted from
cells or are produced recombinantly prior to deposition on the grid
and frozen6–8. Multiplexed Ion Beam imaging (MIBI) and ion beam
tomography are capable of imaging cells and tissues, but they are not
explicitly used to study the structure of proteins and protein com-
plexes. Modeling algorithms can generate protein structures from ex-
vivo protein cross-linking data, while in vivo cross-linking analyses
generate protein-protein interaction data. Thus, because no methods
are available to determine the high-resolution structures of multiple

proteins in vivo, we are still limited in our ability to elucidate the
structures of proteins at a proteome-wide scale in the cellular milieu.

Protein “footprinting” methods were developed to probe the
folding and interactions of proteins (such as epitope sites in antigens)
using protease restriction or covalent labeling to identify exposed
regions of proteins9,10. The data generated in protein footprinting
experiments is often low resolution, but the potential scale of experi-
ments has made it an attractive method. In 2010 West et al. used
proteome-scale footprinting in S. cerevisiae to determine off target
binding of cyclosporin11. A variety of protein labeling methods have
been developed that provide low resolution ex vivo structural infor-
mation about proteins6,12–15. Picotti and colleagues developed a limited
proteolysis method to map ligand binding and protein folding in cell
lysates and biofluids6,16–18. In 2015 Espino et al. used lasers to activate
hydroxy radicals in vivo to label proteins, providing thefirst attempt to
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footprint an intact cell19. Their approach has nowbeen extended to the
transparent worm C. elegans, which was chosen so the laser beam
could penetrate the worm20. Additionally, there are various amino acid
labeling methods available for measuring protein structural
changes21–23.

Bamberger et al. developed Covalent Protein Painting (CPP), a
chemical approach for quantitative protein footprinting to measure
in vivo changes to protein conformations on a proteome scale24. In
CPP, formaldehyde, a chemical that rapidly permeates cells and tis-
sues, is used to label proteins by forming a Schiff’s base at solvent
exposed lysine residues. These unstable intermediates are converted
to dimethyl labels by reduction with cyanoborohydride. After lysis of
cells or tissue, denaturation and digestion of proteins, a second
labeling with a different “weight” reagent is performed to label inac-
cessible amino acid residues. By using heavy and light isotope versions
of the reagents, a quantitative measure of lysine accessibility can be
obtained. Using this method, Bamberger et al. probed the conforma-
tional changes of a proteome from postmortem brain tissue to reveal
structural changes and alteredprotein-protein interactions in thebrain
tissue of AD patients24. In another study, Bamberger et al. measured
the altered conformations of proteins in 60 cancer cell lines (NCI60)25.
Because the CPP protein labeling method begins with the widely used
formaldehyde fixation step for in vivo dimethyl labeling, it should be
extensible to whole animal labeling to study models of disease.

Methods to measure alterations of protein conformations in vivo
are needed to study diseases caused by protein misfoldings, which
create loss or gain of function disruptions to biological processes,
including Alzheimer’s disease, a common misfolding disease that is
characterized by plaques of amyloid-beta and tangles of tau proteins.
As observed by Bamberger et al., late-stage neurodegenerative dis-
eases in humans are characterized by the misfolding of many addi-
tional proteins, suggesting that there is a generalized failing of
proteostasis24. Techniques that allow in vivo measurement of protein
folding would be a powerful tool for the study of these misfolding
diseases.

Here, we use AD as a model to test our hypothesis that the global
measurement of structural changes of proteins in tissues can be used
to understand changes in their biological functionality during pro-
gression of protein misfolding diseases. We reason that it is important
to capture proteins in their innate states to preserve the complex
cellular milieu without the protein degradation that might occur dur-
ing extraction and homogenization of organs. In this study, we intro-
duce the use of CPP in an animal model to probe dynamic changes in
protein structures in vivo. This technique is applied in mouse tissue to
study proteome-wide structural changes of proteins in progressing
AD. We identified proteins whose structures were altered in co-
expressed protein communities across 7 types of mouse tissue, which
helps us understand the role of spatially altered proteins in various
biological processes.

Results
A comprehensive structural information readout platform for
proteome across mouse organs
Our primary goal was to reveal how in vivo alterations of protein
conformations across tissues were associated with physiological dis-
turbances that characterize Alzheimer’s disease (AD). To prevent
protein degradation in response to external stimuli, it was necessary to
capture the innate folding state in vivo. Thus, we expanded and
applied the CPP method previously used for living cells24 to in vivo
dimethyl label proteins in a mouse model by incorporating the strat-
egy of perfusion. We validated the methodology’s capacity to discern
structural changes in proteins by evaluating the presence of potential
confounding factors that might influence the interpretation of the
results. These factors include the impact of age-related changes in
vascular structure on the permeability of reagents, the potential

influence of protein abundance on labeling efficiency, and the corre-
lation between accessibility obtained from tissue blocks and tissue
lysates post-organ extraction and accessibility obtained from labeling
via perfusion. Additionally, the agreement between the protein struc-
tures measured by our method and the crystal structures was deter-
mined. [See Supplementary Notes under subheading ‘Validation for
the utility of CPP via perfusion’ and Supplementary Figs. 1–5] Here, we
presented amethod to in vivo dimethyl label the body-wide proteome
of an intact mouse prior to organ harvest. Our method involved
sequentially diffusing labeling reagents through blood vessels
throughout whole body so that proteins surfaces were light-
dimethylated [(CHD2)2] in vivo. After harvest and homogenization of
each tissue and lysis of the cells, proteins were denatured and pro-
teolyzedwith chymotrypsin followed by labeling of the newly exposed
lysine sites with heavy-dimethyl [(13CD3)2] tags (Fig. 1).

The accessibility of each lysine site was determined from the ratio
of the intensity of light-labeled peptide vs. the sumof intensities of the
light- and heavy-labeled peptides. Prior to presenting the results, it is
important to outline the scope and objectives of the CPP method to
prevent potentialmisinterpretation. Dimethylation by theCPPmethod
does not occur on lysines that are already modified (i.g. acetylation or
ubiquitination). Even for lysines at the same position, the accessibility
can vary depending on whether they have undergone prior modifica-
tions. However, it is not possible to determine which specific mod-
ification hinders the dimethyl labeling. The goal of this method is
simply to measure surface accessibility of lysine residues and the
labeling process can be effected by PTMs, mutations, or protein-
protein interactions that block a site of labeling. It is important to note
that while this may influence accessibility results, the overall purpose
of the method remains to detect structural changes in proteins, rather
than pinpointing the specific causes of these structural changes. Fur-
thermore, since non-natural isotopic dimethylation was used in both
initial and secondary dimethylation, naturally occurring dimethylation
can be distinguished from dimethylation that occurred during the
experiment. This approach aims to provide a quantification of protein
structural alterations, regardless of the specific type of PTM or mod-
ification involved.

We systematically investigated the structural changes in the pro-
teomes of 7 tissues in an AD mouse model ranging in age from 6 to 15
months, aswell as in normal control (NC)mice to exclude the effects of
aging. A total of 43,014 dimethyl-labeled peptides that mapped to
5,217 proteins across all tissues were identified at a peptide false dis-
covery rate (FDR) of <1%. Among the labeled peptides, 1219 labeled
peptides that mapped to 498 proteins were identified in all 7 tissues,
whereas 24,026 labeled peptides that mapped to 4,952 proteins were
tissue-specific (Fig. 2A). Likewise, the highest proportion of labeled
proteins were tissue-specific (37.3% (n = 1,947)), whereas labeled pro-
teins that were identified in all 7 tissues comprised 11.1% (n = 578) of all
labeled proteins (Fig. 2B).

We next sought to examine the reproducibility of the in vivo CPP
method for each mouse tissue. We evaluated the correlations of the
accessibility between biological replicates for each age, then averaged
these correlations. We found the highest R values for NC (0.842) and
AD (0.782) in brain, whereas thymus showed the lowest correlation,
0.549 for NC and 0.505 for AD (Fig. 2C–F, Supplementary Table 1).
Correlations averaged across all ages in all 7 tissues showedR values of
0.668 and 0.649 for NC and AD, respectively. Because we observed
strong correlations of the biological replicates regardless of anatomi-
cal source or pathological conditions of the tissue, we concluded that
perfusion-based dimethyl-labeling was reliable. Also, we noticed that
even in the presence of different pathological conditions, correlations
of accessibility were higher within the same tissues compared to those
observed between different tissues at the same age. The labeling effi-
ciencyafter perfusion labeling ranged from91.5 to97.5%depending on
the tissue labeled. We conducted an empirical comparison of
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dimethylation patterns across tissues and determined that the dime-
thyl labeling method yielded tissue-specific information, revealing
distinct patterns unique to each tissue type examined. [See Supple-
mentary Notes under subheading ‘Dimethylation pattern encoding
tissue-specific protein conformation’ and Supplementary Figs. 6–7].

Variability of the conformational changes among 7 tissues
We used labeled peptides that were detected in all seven of the tissues
we analyzed to quantitatively measure the structural differences in
proteins. To minimize the effect of tissue-biased accessibility, we used
quantile-normalized values for comparison across tissues (Supple-
mentary Fig. 8). Each tissue was analyzed separately by mass spec-
trometry, but since these samples were extracted from the same
mouse, quantile normalizationwas conducted to facilitate comparison
between the tissues. The normalized values are used exclusively for
tissue comparative analysis. The accessibility value can only be used to
compare accessibility under different conditions. Therefore, normal-
ized valueswereused to analyze long-termchanges in accessibility.We
sought to identify patterns of changes in accessibility that occur spe-
cifically for AD in proteins from 6mo to 15mo. To achieve this, we
tested for differences between NC and AD over time using a spline
model from 6 to 15 months for each labeled peptide (Fig. 3A). Brain
tissue was the most structurally affected by AD, with 686 peptides in
AD brain showing significantly different patterns of accessibility
compared to NC from 6 to 15 months (Fig. 3B). In heart, kidney, and
thymus, fewer than 25 peptides showed significantly different patterns
of change in AD relative to NC. There were no labeled peptides that
exhibited significant different patterns in accessibility across all tissues
from 6 months to 15 months. However, a total of 10 labeled peptides
consistently showed significantly different patterns in accessibility
across up to four different organs each in the AD model, and there
were no peptides showing a common significant change in accessi-
bility in more than five tissues. To examine the conformational

changes of proteins specifically impacted by AD, we corrected for the
confounding effect of age by dividing the individual accessibility of AD
by the accessibility of its corresponding sequence of NC, resulting in a
metric we refer to as “fold-change”. We evaluated the variability in
structural changes depending on tissues relative to the brain using 10
peptides that showed distinct patterns of change in accessibility in AD
from those in NC in four tissues (Fig. 3C–F, Supplementary Table 2). At
the early stage of AD (6 months), the biggest conformational dis-
crepancy due to AD was observed between the liver and brain. The
lysine site of TAKGLF (Eno1) was not only more accessible in AD liver
than in AD brain, but also more accessible in AD liver than in NC liver.
As ADprogressed, AD-specific structural changes inmuscle and spleen
were greater than those in liver when the fold-change between each
tissue and the brain was compared. (Fig. 3G–H). A functional enrich-
ment analysis of the 10 proteins retrieved KEGG pathways associated
with metabolism, glycolysis, and the TCA cycle (Fig. 3I). For only 5
(51–67 amino acid (AA) of Atp5f1d, 469–479 AA of Dpysl2, 48–57 AA of
Eno1, 1472–1483 AA of Flna, and 277–284 AA of Ppp2cb) out of 1219
peptides commonly detected in the 7 tissues, the accessibility patterns
in all 7 tissues during AD progression were not significantly different
from those during normal aging, and no significant difference in
accessibilitywas observed across the 7 tissues under each condition (4-
ages, disease). This indicates that the regions corresponding to these 5
peptides were not affected by AD in any of the 7 tissues. As expected,
this investigation confirms that the effects of AD aremost significantly
observed inbrain tissue, but by quantifying conformational changes of
proteins across all tissues, we found tissue-specific variations asso-
ciated with AD.

Conformations of proteins in the brain are changing as AD
progresses
Proteomic investigations into AD pathology have primarily relied on
the analysis of differential protein expression. Bai et al. profiled the

Fig. 1 | Strategy for identifying dimethyl-labeled peptides. Three mice per each
age group (ranging 6 months to 15 months) were used for AD (APPNL-F) and NC
(C57BL6/J). The first step of the CPP workflow consists of three sub-steps that were
conducted via perfusion: (i) blood was washed by PBS, (ii) tissue was fixed by
formaldehyde, and (iii) exposed lysine sites of the native proteins were labeledwith

light-dimethylation ([CD2H]2). Proteins from each of the seven organs were
extracted and digested separately with chymotrypsin, after which the newly
exposed lysine sites were labeled with heavy dimethylation ([C13D3]2). Created in
BioRender. Kim, H. (2022) BioRender.com/d78w669.
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differentially expressed proteins and identified the protein networks
that are affected during AD progression26. Co-expressed proteins and
altered protein expression in human brain tissue of asymptomatic and

symptomatic AD patients were reported by Seyfried et al.27. Savas et al.
measured protein expression in several mouse models of AD using
quantitativemass spectrometry28. Despite extensiveproteomic studies
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Fig. 2 | Pattern of labeling across tissues. A More than half of the total labeled
peptides were tissue-specific. Less than 3% of a total of labeled peptides were
peptides common to all seven tissues. B The proportions of labeled proteins were
determined by assigning proteins to the labeled peptides. Unlabeled proteins were

not counted. The largest portion of labeled proteins was tissue-specific proteins,
and the portion of proteins common to all 7 tissues was the third largest portion.
C–FBiological triplicateswere correlated across 7 tissues at 6months (C), 9months
(D), 12 months (E) and 15 months (F).
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on AD and some footprinting studies on AD related proteins, there
have been no comprehensive in vivo studies of protein structures as
AD progresses24,29–31. To uncover the changes in the 3D structure of
brain proteins corresponding human homologs, we focused on 780
proteins known to be expressed in the brain based on the Human
Protein Atlas database (https://www.proteinatlas.org) and also found
to be dimethyl-labeled in our brain dataset. To identify lysine sites that
change significantly in accessibility during the progression of AD and

which also differ from NC, we used statistical methods to test the
accessibility of 3,456 peptides corresponding to 780 proteins. Given
the limited sample size (3) in our study, it is challenging to assume or
test “normality”32. As a result, we chose to employ a non-parametric
test to minimize the likelihood of Type I errors, or false positive
results33. Non-parametric tests apply relatively flexible assumptions to
small sample sizes, potentially yielding more reliable results34. We first
used a Kruskal-Wallis test to compare lysine site accessibility among
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the four age groups (6, 9, 12, and 15months) of AD (P-value ≤0.05), and
then we used a Mann-Whitney test to compare lysine site accessibility
between AD andNCper age (P-value ≤0.05). This approach allowed us
to select labeled peptides that showed significant changes in the
accessibility throughout disease progression (6–15months), while also
exhibiting significant differences from NC at each age point. Of the
3,456 peptides that were tested, 83 peptides corresponding to 62
proteins showed a significant difference in accessibility in all tests.
Among 83 peptides, the lysine position in four pairs of peptides was
the same: APVISAEKAY and APVISAEKAYHEQL for Tuba1, HPEQLITG-
KEDAANNY and ITGKEDAANNY for Tuba1, QVVLVEPKTAW and
QYQVVLVEPKTAW for Cnp, and RYLSEVASGENKQTTVSNSQQAY and
SEVASGENKQTTVSNSQQAY for Ywhab. Most peptides exhibited a
tendency for decreased accessibility with aging. Accessibility in the
peptides from the AD group demonstrated a distinctive pattern char-
acterized by a precipitous decline at the 9-month time point (Fig. 4A,
B). These results suggest that the structural changes in these proteins
are more influenced by AD pathology than by the normal aging pro-
cess. Furthermore, it suggests thatADmaynot only alter the structures
of individual proteins, it may also produce disease-related physiolo-
gical changes that modify communities of multiple proteins acting as
networks.

We examined 62 mouse proteins that have human homologs
known to be highly enriched in the human brain to confirm that they
aremore abundant in themouse brain than in the other six organs. The
relative abundance of protein in the brain was determined by dividing
the protein abundance in brain tissue by the average protein abun-
dance of six other tissues for each age group. Of the 62 proteins, 60
(excluding two brain-specific proteins) exhibited a range of enrich-
ment factor from 0.13-fold (Eef2) to 1,232-fold (Tuba1b) when com-
pared to their expression in other tissues (Fig. 4C). On average, 51 of
these proteins were expressed at higher levels in the brain than in
other tissues, while 9 proteins were expressed at lower levels in the
brain than in other tissues. Expression of a total 60 proteins was also
enriched 21.7-fold in NC and 20-fold in AD on average. No tendency in
expression was observed in either aging or AD status (Supplementary
Fig. 9A). The abundances of most of the 62 proteins in brain was not
significantly different between NC and AD nor did they show a con-
sistent pattern that correlated with AD. For example, 2′,3′-cyclic-
nucleotide 3′-phosphodiesterase (Cnp), which is associated with neu-
ronal cells andglial cells35, was found tobe enriched in thebrain. Cnp in
the brain was relatively highly, with levels ranging from 13.4- to 23.9-
fold in the NC and from 17.0- to 27.7-fold in the AD across four ages
(Supplementary Fig. 9B). The accessibility of 2 peptides of Cnp
decreased in progressing AD but remained unchanged in the aging NC
(Fig. 4D, E). Additionally, differences in expression levels of Cnp in
brain were not statistically significant between NC and AD, and they
did not change significantly with AD progression (Supplemen-
tary Fig. 9C).

These results suggest that the structural information obtained
through the accessibility of lysine sites can complement protein
expression data by revealing changes that are not fully characterized
by protein expression levels alone. This method provides an approach

to collect both protein expression and structural information to gain a
more comprehensive understanding of the changes that occur in a
proteome during the progression of a disease.

Differential structural changes of tightly regulated proteins
We hypothesized that the changes in protein expression could accom-
pany structural changes to proteins, which may suggest alterations to
their physiological function. To evaluate our hypothesis, we initially
analyzed the abundance of proteins in tightly co-regulated protein net-
works by modularizing them into protein communities using a WGCNA
algorithm36. WGCNA was applied to the dataset of each tissue; 4,295
proteins in brain, 3,074 proteins in heart, 4,186 proteins in kidney, 4,298
proteins in liver, 1,721 proteins inmuscle, 4,800 proteins in spleen, 4,159
proteins in thymus were used to build protein co-expression networks.
No outliers were detected after all samples were hierarchically clustered
using average distance and Pearson’s method. For brain, the lowest soft
threshold power was 22, with an R2 of more than 0.75. This network
consistedof 17modulesofproteins relatedby their co-expression across
control and disease tissues based on the TOM-based dissimilarity, after
merging themoduleswith dissimilarity (Supplementary Fig. 10A, B). The
WGCNA analysis also divided the protein data sets into 14, 17, 13, 10, 12
and 10 modules for heart, kidney, liver, muscle, spleen and thymus,
respectively (Supplementary Fig. 11A–G).

We evaluated the correlation of the co-expressed proteins with
AD by comparing the co-expression of proteins in AD and NC within
eachmodule, irrespective of age. Correlation of coefficient R >0.4 and
P-value < 0.05 were set as the criteria for significant correlation for the
AD-related expression.We found that only a limited number of protein
communities were significantly correlated with AD-related character-
istics, with onemodule (M3) in the brain showing a correlation of 0.41,
twomodules (M11 andM14) in the kidney showing correlations of 0.43
and 0.44, two modules (M2 and M5) in the muscle showing correla-
tions of 0.44 and 0.46, and one module (M4) in the spleen showing a
correlation of 0.44. No modules in other tissues showed a significant
related with AD (Fig. 5A). We also assessed whether the direction
(positive or negative) and strength of the association between the
protein community expression in each module and AD remained
consistent following the subdivision of the samples into four age
groups (Supplementary Fig. 11A–G). Strong correlations were
observed at a certain age in a fewmodules, while inmost modules, the
direction of correlation was inconsistent across the four age groups.
For example, when samples from all age groups were included, a high
correlation was observed formodule 3 (M3) of brain (R =0.41) (Fig. 5A,
B). When the samples were divided by age, M3 proteins from the
9-month samples were found to be highly negatively correlated with a
value of R =0.82. At 12 and 15 months, samples were also negatively
correlated, with R values of 0.42 and 0.72, respectively. In contrast, M3
proteins from the 6-month samples showed a positive correlation with
a value of R = 0.4 (Supplementary Fig. 11). The direction of AD-related
association for the protein abundance-based was found to fluctuate
during the progression of AD. Therefore, we focused on the proteins in
modules displaying significant related with AD across all samples to
investigate the conformational changes of the co-regulated proteins.

Fig. 3 | Variability of the conformational changes depending on the tissues.
A Two representative peptides (ILETQKQF and GIQKELQF) were shown repre-
sentatively. Thenormalizedvalueswereutilized tofit splinemodels. The accessibility
of each peptide for both NC (blue) and AD (red) exhibited significantly distinct
patterns from 6 to 15 months (Benjamin Hochberg, adjusted P-values =0.0036
(brain), 0.0282 (muscle) for ILETQKQF, adjusted P-values =0.0029 (brain), 0.0028
(muscle) for GIQKELQF). B Venn diagram shows the number of peptides exhibiting
significant differences in the trend of accessibility changes between NC and AD.
There were no peptides fromAD that showed a significant difference in accessibility
changes compared to NC in all 7 tissues during the period from 6 to 15 months. The
value of zero was not indicated. C–H During AD progression, 10 common peptides

exhibited distinct patterns in accessibility between NC and AD in different four
tissues. The variabilities for the structural changes in each tissue were calculated
based on the value of brain using the formula: (fold-change of other tissue - fold-
changeofbrain) / fold-changeof brain at 6mo (C), 9mo (D), 12mo (E), and 15mo (F).
Only the first three amino acids were shown. AGTAEAIKAL of Gatd3 (G) and GIQ-
KELQF of Ldha (H) showed a difference in the magnitude of accessibility change in
muscle and spleen compared to that in the brain as AD progressed. The number
indicates theposition of the labeled lysine sitewithin the sequence. I. EnrichedKEGG
pathways with 10 proteins. P-value were corrected with Bonferroni. Source data are
provided as a Source Data file.
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We investigated the conformational changes of the co-regulated
proteins from the 4 types of tissues (brain, kidney,muscle, and spleen)
that showed significant correlation based on WGCNA. To examine

whether the conformational changes of proteins were specifically
impacted by AD, the labeled peptides were clustered based on the
fold-change of the accessibility during the progression of AD using the

Fig. 4 | Changes in the structures of proteins that are known to be associated
with brain. A, B Accessibility of 83 labeled peptides that mapped to 62 proteins
were significantly changed. The accessibility values in AD groups decreased more
steeply than those in NC groups (A). The proteins and peptides corresponding to
each change in the accessibility are indicated B. C Expression of 60 brain proteins
were compared to averaged expression in six other tissues, as enrichment factor
(C). The minimum enrichment factor was 0.13 for Eef2 in NC at 15 months and the
maximumenrichment factorwas 1232 for Tuba1b in NC at 12months. Expression of
6 proteins (Eef2, Gucy1b1, NARS1, Slc25a12, Wdr37, Ywhag) was lower in brain than
the expression of the corresponding proteins in other tissues at all ages in NC and
AD. The bar indicates the enrichment factor, with red indicating an enrichment
factor more than 1, and blue indicating an enrichment factor less than 1. Proteins
enriched more than 70-fold are marked in red. D, E Two of the three peptides of

Cnp share one lysine site, and variations in accessibility for these two peptides are
represented. KIIPGSRADF (D) is located at 87-96 amino acid of Cnp and QYQVVL-
VEPKTAW (E) is located at 141–153 amino acid of Cnp. While they exhibited a
decreasing trend in AD, the accessibility values were lower in AD compared to NC,
and the trend in ADwas steeper than in NC. In the ADgroup, both peptides showed
P-values below0.05 (Kruskal-Wallis test, p = 0.0084 (D), p = 0.0008 (E)), indicating
statistically significant changes in peptide accessibility during AD progression.
Experiments were performed in biological triplicates per group, with each dot
representing an individual mouse. The significance levels shown in the graph
represent P-value from post-hoc analysis (Dunn’s test, adjusted p =0.0327 for AD
6mo vs. AD 15mo). Blue indicates NC groups, pink indicates AD groups. Asterisk (*)
denotes P-value < 0.05 from Dunn’s test. Error bars indicate the mean ± standard
deviation. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-53582-x

Nature Communications |         (2024) 15:9310 7

www.nature.com/naturecommunications


Fig. 5 | The structural changes of the co-expressed proteins byWGCNA. A Four
of the seven tissues (brain, kidney, muscle and spleen) showed significant corre-
lated modules (R2 > 0.4, Two-sided Student’s t-test, P-value <0.05). B In module 3
(M3) of brain, the eigenprotein level between AD and NC was assessed, with dot
colors indicating the ageof themice. Threemiceper agewereused forbothNCand
AD. The minima/maxima are the lowest/highest data point. Center line denotes
median, box edges indicate the 25th and 75th percentiles, and whiskers extend to
±1.5 interquartile range (IQR). C–E The labeled peptides of M3 proteins were
clustered based on the fold-change of the accessibility (C). Distribution of the fold-

change of the accessibility of cluster 1 (D) and cluster 2 (E). Of 481 labeled peptides
that mapped onto 174 proteins in M3, fold-change of accessibility of 268 peptides
showed a consistent decrease in progressing AD in cluster 1 and fold-change of
accessibility of 213 peptides in cluster 2 did not significantly change in progressing
AD. P-values from two-sided Student’s t-test are shown between the indicated
groups. F–I The fold changes of the accessibility for Map1a (F), Psat (G), Mag (H),
and Plp1 (I) are presented. The peptides in the bold box were included in cluster 1.
Peptides in the bold box clearly decreased. Source data are provided as a Source
Data file.
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K-means clustering algorithm. The number of clusters was determined
via an optimization algorithm (Supplementary Fig. 12). For the brain,
the 469 labeled peptides that were mapped onto 174 proteins con-
stituting M3 were clustered into two clusters (Fig. 5C). Accessibility of
the lysine sites of 265 peptides (123 proteins) in cluster 1 showed a
steadily decreasing pattern, with a slight decrease during early AD
development (6-9 months), a dramatic decrease from 9 to 12 months,
and a slight decrease again during the late stage of AD development
from 12 to 15 months (Fig. 5D). This suggests that beginning at
9 months, the lysine sites included in cluster 1 became significantly
sterically inaccessible due to AD. On the other hand, lysine sites of 204
peptides (113 proteins) in cluster 2 showed relatively stable accessi-
bility during AD development (Fig. 5E). Of the 174 proteins in M3, 62
are also present in both cluster 1 and cluster 2 (represented by 2 or
more peptides), and the labeled peptides of 61 and 51 proteins were
exclusively included in cluster 1 and cluster 2, respectively (Supple-
mentary Fig. 13). Twenty peptides that mapped to Map1a (primarily a
neuronal protein) were most frequently identified in M3 proteins
(Supplementary Fig. 14), and 5 of 20 peptides were hidden as AD
progressed, but 15 lysine sites were spatially stable (Fig. 5F). Subse-
quently, 19- and 14-labeled peptides were mapped to Pkg1 and Mdh1,
respectively, and the peptides included in cluster 1 exhibited a con-
sistently decreasing pattern of accessibility. The lysine sites of the
peptides of Psat1, Mag, and Plp1, which are highly expressed in oligo-
dendrocytes and were included in the 62 brain proteins that con-
stitutedM3, became inaccessible during progression of AD (Fig. 5G–I).
The datasets from kidney, muscle, and spleen were processed sepa-
rately to reveal the AD-induced spatial changes of proteins (Supple-
mentary Fig. 15). Collectively, our findings suggest that the steric
changes of proteins occur concurrently with changes in co-expression
of proteins as AD progresses.

Biological functions of protein communities whose conforma-
tional changes precede expression changes
We sought to uncover how the network undergoing conformational
changeswas related tobiological functions, particularly those involved
in neurodegenerative diseases. To achieve this, we examined the
interactions of proteins, which had shown altered patterns of acces-
sibility fold-change via K-means clustering, as well as their functional
implications. For instance, the proteins that were included in cluster 1
were used for the brain dataset.

We investigated how changes in the structure and expression of
proteins could affect theprogressionofADby examining thepathways
and biological functions they are involved in. We performed the ana-
lysis for the enrichment network on Metascape (metascape.org),
considering the inter-term similarity and intra-term redundancy in the
enriched terms37. A total of 113 significantly enriched terms were
grouped into 20 clusters based on their similarities and redundancies
in the brain dataset (Supplementary Fig. 16 and Supplementary
Table 3). Fifteen proteins (Gnas, Mdh1, Ogdh, Pgk1, Ppp1cb, Slc1a3,
Sod2, Taldo1, Sdha, Oxct1, Ndufa8, Epm2aip1, Aldh1l1, Etfa, and Ugp2)
were enriched in “generation of precursor metabolites and energy”
(node-107) with the most significantly enriched having a P-value of
1.78 × 10−9. “Energy derivation by oxidation of organic compounds”
(node-1) was also enriched significantly, but was similar to node 107
with kappa score of more than 0.3. It has been demonstrated that an
abnormality of carbon and energy metabolism occurs in neurode-
generative disease since neurons require large amounts of energy to
maintain their normal activity, and metabolic decline of the brain
contributes to cognitive impairment38,39. Interestingly, we discovered
that structural changes preceded the expression changes in the pro-
tein communities “generation of precursor metabolites and energy”
and “carbon metabolism” (node-96) (Fig. 6A, B, D, E and Supplemen-
tary Fig. 17). To isolate protein expression changes specifically attrib-
uted to AD progression while excluding effects of normal aging, we

calculated the fold-change of abundance by dividing the protein
abundance in the AD group by that in the NC group. This approach
allowed us to analyze changes in protein expression levels as time
progressed from 6 to 15 months. Protein expressions in node-107 and
node-96 increased in AD but remained stable in NC during aging.
Expression fold-change increased significantly at 15 months, whereas
accessibility fold-change decreased significantly after 9months. These
findings further support the arguments in an earlier study that repor-
ted that in the mouse model of APP(NL-F), synaptic loss become
noticeable at 9–12months40. The breakdownof the blood-brainbarrier
(BBB) is subsequently accompanied by a decline in synaptic integrity41.
This disruption induces alterations in blood flow, decreased expres-
sion of glucose transporter proteins42, and modifications in signaling
pathways that regulate the use of neuronal glucose43. The decreased
energy levels ultimately trigger a cascade effect, culminating in the
downstream failure of energy-dependent processes and resulting in
synaptic loss44. We also noted that “metal ion homeostasis” (node-108)
was significantly enriched with 12 proteins (Ank1, Calb1, Calb2, Gnas,
Itpr1, Prkcb, Slc12a4, Slc1a3, Sod2, Vapb, Fis1, Immt). The homeostasis
of metal ions is also known to be essential to maintain the normal
function of brain, and abnormally elevated iron in brain is recognized
to induce cell death and to be a cause of several neurodegenerative
diseases including AD45,46. Zinc also has an essential role in protein
binding for enzymatic activity or to modulate synaptic transmission,
and abnormal levels of zinc have been reported to be implicated in
AD47,48. The enriched proteins in metal ion homeostasis showed no
significant change in expression but a significant decrease in accessi-
bility from 9 months (Fig. 6C, F and Supplementary Fig. 16).

Next, we used the STRING database to identify 45 out of 123
proteins included in cluster 1 that interacted directly with each other
through 30 edges. Of these, 39 proteins were associated with either
brain-related terms or the enriched terms in which proteins showed
conformational changes preceding the expression change (node-97,
node-107, and node-108) (Fig. 7A, Supplementary Table 4). We noted
that Plp1 andMag, which were associated with central nervous system
and abnormal nervous system and were also known to be located in
extracellular space, directly interacting with each other. Alphafold2-
Multimer49–51 was utilized to predict the complex structure of Mag and
Plp1. It showed that the two alpha carbons of the lysine residues
FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF of Mag were located
within 13.9 Å (Fig. 7B) of each other, thus allowing them to interact52

and making it possible that these adjacent peptides bind with each
other. FSKNYQDYshowedagreater decrease in accessibility inAD than
in NC (Fig. 7C), and YFNSPYPKNYPPVVF exhibited a similar accessi-
bility in AD and NC at 6 months, but the lysine sites became inacces-
sible during AD progression, whereas no difference was observed in
NC (Fig. 7D).

In addition to the brain, it has been reported that the peripheral
system plays a role in amyloid-β clearance. Approximately 40–60% of
brain-derived amyloid-β is transported across the blood-brain-barrier
into the peripheral system for clearance, although the themechanisms
of this process remain unclear53. Spleen is composed of a variety of
immune cells (with 7–8% of all cells beingmonocyte/macrophage) and
has a role in blood filtering and immunological functions. In addition,
the spleen monocytes/macrophages are reported to be involved in
clearing amyloid beta54. Still, the physiologicalmechanismsunderlying
the association between the peripheral organs and AD remain
unknown. In the ontology network of the spleen dataset, we noted
“carbon metabolism” (node-147) and “neutrophil degranulation”
(node-151). In these communities of proteins, the lysine sites in AD
became exposed during progressing AD, while the accessibility in NC
remained stable from 6 months to 15 months (Supplementary
Fig. 18A, B). No significant change in the expression of proteins was
observed for proteins of carbonmetabolism (Supplementary Fig. 18D),
but by 15 months the expression of proteins in neutrophil
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Fig. 6 | The biological functions affected by structural changes of composed
proteins. A–C Structural changes of proteins enriched in generation of precursor
metabolite and energy (A), carbon metabolism (B), and metal ion homeostasis (C)
are shown. The heatmap (top) showed variations in the fold-change of the acces-
sibility based on peptide sequence. The scatter plots (bottom) were plotted irre-
spective of peptide sequences. The p-value was calculated using Student’s t-test.

D–F Expression change of proteins enriched in generation of precursor metabolite
and energy (D), carbon metabolism (E), and metal ion homeostasis (F). The fold-
changes of the expression level are presented. Three mice per age were used for
both NC and AD. Error bars indicate the mean± standard deviation. P-values from
two-sidedMann-Whitney test are shownbetween the indicatedgroups. Sourcedata
are provided as a Source Data file.
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Fig. 7 | The physical interactions of the proteins in M3 of brain. A Forty-five
proteins in the brain dataset were physically interacted. Each node indicates a
protein. The ring color of the node indicates the terms that theprotein is associated
with. The size of node represents the number of significantly changed lysine sites,
with very small nodes indicating no significantly changed peptides, small nodes
indicating one significantly changed peptide, medium nodes indicating
2–4 significantly changed peptides, and large nodes indicating more than 4 sig-
nificantly changed peptides. B The structure of the Plp1-Mag complex was pre-
dicted using AlphaFold-Multimer. The structure in dark pink is Plp1 and the

structure in light purple isMag. FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF ofMag
werepresented ingreenand red, respectively. The right panel is anenlarged viewof
the complex on the left. The distancebetween alpha-carbons of two lysine sites was
13.9 Å. C, D Structural changes in adjacent peptide regions with potential binding,
with variation of the accessibility of site in AD (pink) andNC (green) for FSKNYQDY
(C) and YFNSPYPKNYPPVVF (D). Threemice per agewere used for bothNC and AD.
Error bars indicate the mean ± standard deviation. Source data are provided as a
Source Data file.
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degranulation differed significantly from the expression at 12 months
(Supplementary Fig. 18C). The results from the other tissues are shown
in the supplementary data (Supplementary Figs. 19–20 and Supple-
mentary Tables 5-8). Collectively, the results presented here provide
compelling evidence of a relationship between conformational chan-
ges and protein expression, thereby highlighting the significant impact
of organ-specific alterations of biological function during the
progression of AD.

Discussion
This study elucidated AD-associated conformational changes in the
proteomes of seven tissues in mice. We used an AD mouse model
(APPNL-F), which expresses APP at wild-type levels while producing
elevated pathogenic amyloid-β through an APP knock-in approach.
This model reduces the risk of artificial phenomena that might be
observed with an APP overexpressed mouse model and enhances the
interpretability of the results40. We found co-regulated proteins whose
accessibility changed in 4 of 7 tissues, andwe connected the structural
differences of proteins between progressing AD and normal aging of
unaffected mice to possible alterations in their biological functions.
Whole animal perfusion was used to deliver reagents to comprehen-
sively dimethyl-label mouse organs with minimal intervention (i.e.,
organ excision, tissue homogenization, or protein extraction) that
could denature or alter proteins. Our method for quantitatively mea-
suring accessibility determines the relative fraction of inaccessible
over accessible for each lysine site. Changes in accessibility can be
interpreted as a change in protein folding or a change in interaction
with another molecule and thus can be a surrogate for protein con-
formation changes between different conditions.

The methodology used in this study is referred to as “in vivo
labeling,” as we argue that during the postmortem interval immedi-
ately after the cessation of mouse heartbeats, the properties of the
“living system”of cells donot immediately change, and, at themoment
proteins are labeled, the living system maintains consistency, even if
themouse is in the process of ‘dying’ at that time. This is somewhat of a
philosophical question—is organismal death the same as cellular
death? Organs are removed from brain dead patients and used in
transplants. For example, hearts and lungsmust be transplantedwithin
approximately four hours after being removed from the donor. Livers
can be preserved between 12 and 18 h; a pancreas can be preserved
8−12 h; intestines canbepreserved approximately 8 hours; kidneys can
be preserved 24−48 h55.

In this study, we focused on changes in proteins of the brain. The
amyloid-β protein serves as a marker of AD and is known to accumulate
as plaques in the brain, butwewere not able to detect structural changes
of amyloid-β. Wewere able to quantify the accessibility of three peptides
from APP in only one 15-monthmouse. Although it has been known that
the amyloid beta plaque accumulates primarily in the cortex, hippo-
campus, basal ganglia, thalamus, and basal forebrain56, we used whole
brain tissue sample in this study because the purpose of this studywas to
globally investigate the change of the proteome. The structural changes
we encountered in Psat1 (phosphoserine aminotransferase 1), Mag
(myelin-associated glycoprotein), and Plp1 (proteolipid protein 1) are
particularly intriguingbecause they are associatedwitholigodendrocytes
in the brain, which have recently been found to produce amyloid-β in
addition to neurons and thus contribute to amyloid-β plaque burden57.
The normal structure and function of Plp1 is also indispensable to the
function of myelin in supporting neuronal axon activity and thus the
conduction of normal brain electrical impulses.

It has been suggested that kidney function is linked to brain
activity58, and changes in kidney function may play a role in the
development and progression of AD. Studies have shown that the MRI
images of the brains of ADpatients were similar to that of patients with
kidney diesease59 and a systematic meta-analysis demonstrated that
cognitive impairment is significantly related to malfunction of

kidney60. Despite persuasive evidence of the link between the kidney
and AD, the exact physiological mechanisms underlying this relation-
ship are not fully understood. From our WGCNA analysis, we found
two modules (M11 and M14) to be significantly co-expressed in kidney
and we investigated the enriched functions of the structurally altered
proteins using GO enrichment analysis. In both modules, purine-
related functions were most significantly enriched. Our findings from
the kidney are supported by the results of metabolomic studies
showing that guanosine monophosphate (which is derived from pur-
ine guanine and associated with purine metabolism) was dysregulated
in the brain of an AD mouse model based on APOE4 allele mutant
mice55. Therefore, it can be inferred that purinemetabolismmay play a
role in the link between kidney function and AD.

In our previous study, we observed structural changes in mito-
chondrial succinate dehydrogenase B in brain lysates of AD patients61.
We highlighted that lysine #137 of succinate dehydrogenase B was less
accessible in AD patients than in control subjects. Interestingly, in this
study we have found thatmitochondrial succinate dehydrogenase B in
mice is also affected by AD (Supplementary Fig. 21). In AD mouse
samples, the accessibility of lysine #139 in succinate dehydrogenase B
changed significantly from 6 to 15 months of age, with a decrease in
exposure beginning at 9 months. In contrast, the accessibility of this
residue remained consistent across all four time points in the NC
group. The high sequence homology of these proteins (92%) between
mouse and human species, coupled with the observed decrease in
accessibility of lysine residues at positions 139 and 137, respectively, as
AD progresses, suggests that this protein is structurally and func-
tionally conserved across species. Furthermore, this result demon-
strates that the dimethyl labeling approach combined with perfusion
can be used as a viable alternative to tissue lysate-labeling. Interest-
ingly, changes in the activity of tricarboxylic acid (TCA) cycle enzymes
and the electron transport chain (ETC), have recently been reported to
affect energy production and thus synapse loss in AD models62. Given
that succinate dehydrogenase represents both a critical enzyme in the
TCA cycle and complex II of the ETC, our findings further support the
presence of structural changes in the proteins underlying mitochon-
drial energy metabolism in AD. Furthermore, we observed that our
findings from the APPNL-Fmodel were reproducible using 5XFADmodel
(See SupplementaryNotes under subheading ‘Validationwith different
AD mouse model’ and Supplementary Fig. 22).

Limitations of this study include the lack of a standard tomonitor
the distribution of reagent solution to organs in the body during the
first labeling step. Although some signs such as body twitching, tail
flicking, and headmoving in the anesthetized animals was observed, a
reliable quantitative standard to assess the extent of labeling in each
organ would be useful. We defined labeling efficiency as the ratio of
initially labeled peptides over identified lysine-containing peptides per
tissue. An additional limitation of this method is its reliance on lysine
residues as conformational reporters. Lysines typically comprise only
5–7% of amino acids in proteins, which constrains the amount of
structural information that can be obtained. The quality and compre-
hensiveness of the analysis therefore scales with the sequence cover-
age of individual proteins. Higher sequence coverage generates more
MS/MS data from lysine-containing peptides, thereby increasing the
completeness of the structural analysis. However, this selective focus
on lysine residues means that significant portions of the protein
structure remain unexamined, potentially limiting the overall struc-
tural insights.

It is likely that changes in protein structure are a result of failing
proteostasis and that expression changes are a function of alterations
in protein synthesis and/or degradation. Mutations of DNA in somatic
cells accumulate as we age63–66 and can result in changes to protein
sequences, necessitatingmore effort to keep proteins properly folded.
Ourmethod provides ameans tomeasure protein surface accessibility
as a surrogate for protein conformation in vivo and inanimalmodels to
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study of the role of protein folding in aging and AD. Our proteomic
analysis showed changes in protein structures in multiple tissues
during the progression of AD. Even though the patterns of change in
non-brain tissue did not correspond exactly with those in the brain
tissue (and it is not clear they should), our analysis showed changes in
protein structure and expression in other tissues in the AD mouse
model. In conclusion, this method to measure in vivo alterations to
protein surface accessibility in animal models of disease provides a
means to measure a previously unexplored characteristic of proteins
to provide insights into how physiological systems are perturbed.

Methods
Ethical Statement
Our research complies with all relevant ethical regulations. Animal
facilities were AAALAC (Association for Assessment and Accreditation
of LaboratoryAnimalCare) approved, andprotocols (07-0083)were in
accordance with the IACUC (Institutional Animal Care and Use
Committee).

Animals/Tissue collection
Female mice (APP(NL-F))40 were purchased from RIKEN Brain Science
Institute and female C57BL/6 were obtained from The Scripps
Research Institute breeding colony. Mice were housed in plastic cages
located inside a temperature- and humidity-controlled animal colony
and weremaintained on a standard cycle (a 12 h day/night cycle). Mice
were sacrificed at 6, 9, 12, and 15 months of age.

First dimethyl-labeling and tissue collections
Mice were anesthetized by inhalation of 1% isoflurane. Chests of the
anesthetized mice were opened by cutting the ribcage. The left heart
ventricle was punctured with a perfusion needle and a small cut was
made in the right atrium to allow outflow of the perfusion solutions.
Blood components were washed away with prewarmed pH 7.4
phosphate-buffered saline (PBS) for 10min. The mice were perfused
with 20mL of fixation solution (1% CD2O) at a flow rate of 2.0mL/min.
Immediately afterward, 40mL of the solution for the first light-
dimethylation reaction (0.3mMNaBH3CN, 1% CD2O in pH 7.4 PBS) was
added at a flow rate of 2.0mL/min. Organs were quickly excised and
cut into 50mgof tissue blocks. The tissue blockswere incubated in the
same labeling solution (0.3mM NaBH3CN, 1% CD2O in pH 7.4 PBS) for
10min, and then the reaction was quenched by immersing the tissue
blocks in 50mM ammonium bicarbonate (ABC) solution for 5min.

Tissue homogenization and protein extraction
Tissue blocks were placed in 100 μL of 20mM 2-[4-(2-hydroxyethyl)
piperazin-1-yl] ethanesulfonic acid (HEPES) pH 7.4 and were homo-
genized with a pestle until no chunks were visible. The tissue samples
were sonicated for 10 cycles (pulse-on 5 sec, pulse-off 3 s, amplify 30%)
and then homogenates were clarified by centrifugation at 8,000g at
4 °C for 30min. Protein precipitationwasperformedby adding 400μL
of 100%methanol, 100 μL of 100% chloroform and 300μL of water to
the sample. After vortexing vigorously, the samples were centrifuged
at 8,000 g at 4 °C for 30min. The large aqueous layer was discarded.
The samples were washed by adding 800μL of 100% methanol and
vortexing vigorously. After centrifugation at 8,000g at 4 °C for
30min, the supernatant was removed. Themethanol washing stepwas
repeated 3 times. Methanol was removed and the pellet was air-dried.
The pellet was dissolved in 100μL of 1% sodiumdeoxycholate (SDC) in
20mMHEPES pH 7.4. The protein concentration was determined with
a BCA protein Assay kit following the instructions from the vendor
(23225, Thermo Scientific).

Proteolysis of labeled proteins with chymotrypsin
Aliquots of tissue samples that contained 200 ug of proteins were
adjusted to 80μL with 1% SDC in 20mM HEPES pH 7.4. The proteins

were reduced with 10mM TCEP (Tris(2-carboxyethyl)phosphine
hydrochloride) and 1% SDC in 20mMHEPES pH 7.4 at 60 °C for 60min
on a shaker. Reduced proteins were alkylated with 20mM IAA
(iodoacetamide) for 30min at 25 °C in the dark. Denatured proteins
were digested with chymotrypsin (Promega) at 1:100 (enzyme:sub-
strate(w:w)) at 37 °C for 16 h. Samples were acidified with formic acid
to afinal concentrationof 1%. The samplewas centrifuged at 8,000g at
4 °C for 30min and the supernatant was transferred to a new tube. The
sample was centrifuged again at 8,000 g at 4 °C for 30min to collect
the clean sample and the supernatant was transferred to a new tube.

Second dimethyl-labeling and desalting
Pierce C18 spin tips (87784, ThermoFisher) were used for the second
dimethyl-labeling step and desalting. A multipipette and a 96-well
plate were used to preparemultiple samples in one batch. The C18 tips
were activated by aspirating and dispensing 100μL each of 100%
methanol and 100% acetonitrile (ACN). After the C18 tips were washed
with 100μL of 0.1% formic acid, the samples were loaded onto the C18
tips by aspiration. To clean the samples bound to C18 tips, 100μL of
0.1% formic acidwas aspirated anddispensed, and the pHwas adjusted
by aspirating 20mM HEPES pH 7.4. Peptides bound to the C18 tips
were dimethyl-labeled by aspirating 1% formaldehyde (13CD3O),
0.3mM Sodium cyanoborodeuteride (NaBD3CN) and the saturated
tips were incubated for 15min at 25 °C. The reaction was quenched by
aspirating 50mM ABC and incubating for 10min at 25 °C. After
washing C18 tips with 0.1% formic acid, the labeled peptides were
eluted with 100μL of 40% ACN in 0.1% formic acid followed by 100μL
of 60% ACN in 0.1% formic acid. The eluted peptides were lyophilized.

Strong cation exchange (SCX) fractionation of peptides
SCX fractionation was conducted with commercial spin columns
(90008, ThermoFisher Scientific). The pH of the sample was reduced
by adding 800μL of 30%ACN in0.1% formic acid. The spin columnwas
equilibrated by adding 400μL of 30% ACN in 0.1% formic acid. It was
then centrifuged at 1,000 g for 5min, and the flow-through solution
was discarded. The sample was loaded on the spin column and was
centrifuged at 1,000 g for 3min. Flow-through was stored for LC-MS/
MS analysis. The peptides were eluted with consecutive 200μL ali-
quots of elution buffer containing 10mM, 30mM, 50mM, 70mM
100mM, 150mMand300mMof ammoniumacetate. All elutionbuffer
aliquots contained 0.1% formic acid and 30% ACN.

LC-MS/MS analysis
Samples were loaded onto EvoTips in accordance with the manu-
facturer’s protocol. Liquid chromatography-mass spectrometry (LC-
MS) analysis was performed using an Evosep One system (Evosep)
coupled to a timsTOF Pro mass spectrometer (Bruker Daltonics).
Chromatographic separation was achieved using a 15 cm× 150μm
inner diameter column packed with BEH C18 1.7 μm particles (Waters)
and featuring an integrated, in-house pulled tip. The 30 samples
per day (SPD) method was employed for sample separation. Mobile
phase A consisted of 0.1% formic acid in water, and mobile phase B
comprised 0.1% formic acid in acetonitrile. Mass spectrometric data
acquisition was conducted in parallel accumulation serial fragmenta-
tion (PASEF) mode. Each 1.1-second acquisition cycle included one
MS1 survey trapped ion mobility spectrometry (TIMS)-MS scan fol-
lowed by PASEF MS/MS scans. The dual TIMS analyzer was configured
with an ion accumulation and ramp time of 100ms each, covering an
ion mobility range of 1/K0 =0.6–1.6 Vs/cm2. Precursor ions for MS/MS
analysis were isolated using a 2 Th window for m/z < 700 and a 3 Th
window for m/z > 700, spanning a total m/z range of 100–1700. Col-
lision energy was applied as a linear function of increasing mobility,
ranging from 59eV at 1/K0 = 1.6 VS/cm2 to 20 eV at 1/K0 = 0.6 Vs/cm2.
Singly charged precursor ions were excluded using a polygon filter.
Precursor selection for tandem mass spectrometry was based on an
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intensity threshold of 2,500 and a target value of 20,000, with an
active exclusion period of 24 s.

Peptide identification and quantification
Raw files were searched against mouse proteins from Swiss-Prot-
Uniprot database (retrieved 03/13/2022, 51,076 entries) containing
canonical and isoformsequences, usingMSFragger (version 17.1) in the
FragPipe pipeline with mass calibration and parameter optimization
enabled67. Philosopher was used to filter all peptide-spectrum mat-
ches. Quantification analysis was performed with IonQuant. The
parameter setting of chymotrypsin allowed for two missed cleavage
sites and the minimal required peptide length was set to six amino
acids. Dimethyl peptide pairs were identified using variable modifica-
tions of light (Δmass: 32.0564) and heavy labeling (Δmass: 36.0757) of
lysine, oxidation of methionine (Δ mass: 15.9949), fixed modification
of heavy dimethylation (Δ mass: 36.0757) on N-terminus and the car-
bamidomethylation of cysteine (Δ mass 57.0214). Precursor tolerance
was set to 50 ppm and fragment tolerance was set to 50 ppm. Isotope
error was set to 0/1/2. The minimum number of fragment peaks
required to include a PSM (peptide-spectrummatch) in modeling was
set to two, and theminimumnumber required to report thematchwas
four. The top 150most intensepeaks were considered, and aminimum
of 15 fragment peaks were required to search a spectrum. The data
were also searched against a decoy database and protein identifica-
tions were accepted at 1% peptide false discovery rate (FDR). All
identified peptides were heavy-dimethylated on N-terminus.

Determination of accessibility of lysine sites and protein
expression
Each peptide with a lysine site should be either light- or heavy-dime-
thylated, depending on the accessibility of lysine site. The difference in
intensity of the peptides labeled in the first isobaric labeling step
versus the second yields a relative abundance ratio R68. The R value
represents the proportion of the peptide in which a specific lysine site
was accessible for dimethylation and is independent of the overall
protein amount in the sample24. The relative accessibility of a lysine
residue for dimethylatizon is assessed by the value of accessibility;
Accessibility (%) = R/(1 + R) × 100. Accessibilitywas used as an indicator
of structural changes and is based on the extent of dimethylation
induced by exposure to formaldehyde and cyanoborohydride.
Therefore, peptides thatwere unlabeled in both heavy and light forms,
as well as those naturally modified by dimethylation, were excluded
from the accessibility calculations. The level of protein abundance was
determined by summing the intensities of the top 3 unique peptides.
Peptide abundances were summed together regardless of their label-
ing status.

k-Nearest Neighbor (kNN) Imputation
Missing values were imputed by kNN method, a machine learning
method through the VIM package in R69,70. The kNN approach is based
on the assumption that there are correlations between spot volume
patterns across different variables. This method addresses missing
data by identifying spots that exhibit volume patterns similar to the
spot under investigation71. To estimate themissing value, it calculates a
weighted average using data from the k spots determined to be most
similar. The similarity is quantified using Euclidean distance, which is
then used to weight each spot’s contribution to the final estimate. The
optimal number of k-neighborsmust be determined through empirical
testing for each specific dataset.

Weighted correlation network analysis (WGCNA)
Aweighted protein co-expression network was built using the value of
protein abundance from blockwiseModules WGCNA function72. Con-
struction of weighted gene co-expression networks was conducted
independently for each of 7 tissue datasets. The soft thresholding

powers were determined with the R function pickSoftThreshold36. To
pick an appropriate soft-thresholding power for network construc-
tion, the value of power was raised to 50. The chosen values were the
smallest threshold that resulted in a scale-free R2

fit of 0.75 and the
networks were created by calculating the component-wise minimum
values for topologic overlap. Soft threshold powers varied across
seven tissues as follows: 22 for brain, 16 for heart, kidney, 12 for liver,
muscle and spleen, and 26 for thymus. BlockwiseModule function
was run with the following parameters: TOMType = “signed”, max-
BlockSize = 5000, mergeCutHeight = 0.1, verbose = 3. Module
eigenprotiens (MEs) were calculated the correlation between the
traits of AD (AD vs. NC). Multiple comparisons were accounted for by
FDR correction across modules, and the P-values for the modules
were reported.

Statistical analysis
Differentially expressed proteins and altered accessibilities (%)
between pairs of different age groups (6, 9, 12, and 15months) in AD or
between different pathological conditions (AD and NC) per age were
found using Mann-Whitney tests independently. Kruskal-Wallis was
used to simultaneously compare the accessibilities among four age
groups (6, 9, 12, and 15 months) or among three age groups (6, 9, and
12 months or 9, 12, and 15 months) in AD. These comparisons were
tested with Kruskal-Wallis followed by Bonferroni’s comparison post
hoc test independently. The criterion for significancewas a P-value less
than 0.05.

Enrichment of Gene ontology (GO) and protein-protein inter-
action analysis
GO analysis was performed with ClueGO (a plug-in in Cytoscape) to
identify the significant biological functions of the proteins in the
WGCNA module73. Protein-protein networks were detected using
Metascape and the following databases: STRING, BioGrid, InWeb_IM,
OmniPath37,74,75. The resultant network contained the subset of pro-
teins that form physical interactions with at least one other list mem-
ber, the confidence cutoff of physical interaction was set to medium
(0.5) or strong (0.7). Visualization of the protein-protein interaction
network was performed on the Cytoscape combining STRING.

Complex modeling with AlphaFold2-multimer
We used AlphaFold2-multimer to predict the protein-protein interac-
tion motif of each complex. AlphaFold2-multimer modeling was per-
formed with ColabFold76. Input multiple sequence alignment (MSA)
features were generated by local ColabFold using the “MMseqs2
(Uniref + Environmental)” MSA mode. By default, the constructed
MSAs contain both unpaired (per-chain) and paired sequences.
AlphaFold2-multimer was run with one or several options from the
following list: model type = alphafold2_multimer v3, num recycles = 3,
recycle early stop tolerance = 0.5, max msa = auto, num seeds = 1. The
modelswere ranked by confidence score and rank 1was selected as the
most accurate model. The distance between two lysine residues was
calculated using PyMOL2 version 2.5 (Schrödinger, LLC).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All mass spectrometry raw data in this study have been deposited to
MassIVE repository with identifierMSV000091970 [https://doi.org/10.
25345/C5VT1H07H]. Source data are provided with this paper.
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