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Abstract
Frictional properties affect the propagation of high‐amplitude seismic waves across rock 
fractures and faults. Laboratory evidence suggests that these properties can be measured in active
seismic surveys, potentially offering a route to characterizing friction in situ. We present 
experimental results from a subresonance torsional modulus and attenuation apparatus that 
utilizes micron‐scale sinusoidal oscillations to probe the nonlinear stress‐strain relation at a range
of strain amplitudes and rates. Nonlinear effects are further quantified using harmonic distortion; 
however, time series data best illuminate underlying physical processes. The low‐frequency 
stress‐strain hysteretic loops show stiffening at the sinusoid's static ends, but stiffening is reduced
above a threshold frequency. This shape is determined by harmonic generation in the strain; the 
stress signal has no harmonics, confirming that the fractured sample is the source of the 
nonlinearity. These qualitative observations suggest the presence of rate‐dependent friction and 
are consistent between fractures in three different rock types. We propose that static friction at 
the low strain rate part of the cycle, when given sufficient “healing” time at low oscillation 
frequencies, causes this stiffening cusp shape in the hysteresis loop. While rate‐and‐state friction 
is commonly used to represent dynamic friction, it cannot capture static friction or negative slip 
velocities. So we implement another dynamic friction model, based on the work of Dahl, which 
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describes this process and produces similar results. Since the two models have a similar form, 
parameterizations of field data could constraint fault model inputs, such as specific location 
velocity strengthening or weakening properties.

1 Introduction

Geophysical measurements of open fractures and faults in the subsurface can potentially provide 

constraints on the mechanical state of fractures [e.g., Pyrake‐Nolte, 1996] including parameters 

such as stress state, frictional properties, and fluid occupancy. Time‐lapse seismic measurements 

can be used to monitor these processes and their changes during reservoir manipulations, such as 

the direct effect of injectants (e.g., supercritical CO2) [e.g., Daley et al., 2007], or other natural 

stress changes [e.g., Niu et al., 2008]. For example, frictional properties and processes could be 

measured by inducing partial slip on fracture faces with repeatable high‐amplitude shear waves 

[Saltiel et al., 2017b]. The properties of transmitted waves, including their amplitude and 

frequency dependences, could constrain the frictional properties of the subsurface interface. In 

order to interpret field measurements, the sensitivity and parametric form of these frictional 

processes must be determined with laboratory‐scale experiments.

The frictional behavior of rocks is of fundamental relevance to a range of seismic processes, 

from the earthquake cycle to triggered and induced seismicity. Most earthquakes are shear 

displacements generated by unstable stick slip in which the fault's interface transitions from 

static to dynamic friction [Scholz, 2002]. Friction has been shown to increase with the logarithm 

of time spent under static conditions, a process referred to as healing [e.g., Li et al., 2011]. This 

effect is captured by slide‐hold‐slide lab experiments, while most other experiments focus on 

constant load point velocities or velocity steps [e.g., Marone, 1998]. Only limited laboratory 

work has explored periodic shear loading [Savage and Marone, 2007] or transient dynamic 

stresses [Savage and Marone, 2008; van der Elst and Savage, 2015; Johnson et al., 2016]. These 

experiments probe slide‐slip behavior, where the periodic loading is superimposed on top of a 

constant positive slip velocity, so static friction or reverse slip is never reached. These studies 

focused on understanding dynamically triggered earthquakes [e.g., Hill et al., 1991]. Earthquake 

triggering could provide a probe of the stress state and frictional properties of the fault 

[Voisin, 2001; Voisin, 2002]. By identifying the processes that govern dynamic triggering of 

frictional slip instabilities in laboratory experiments, field observations of triggered events can 

provide information on the in situ critical shear stress state proceeding earthquake failure 

[e.g., Brodsky and van der Elst, 2014; van der Elst et al., 2016; Delorey et al., 2016; Johnson et 

al., 2016]. In laboratory experiments, triggering was found to have a complicated dependence on 

the frequency of the perturbation; hence, fault friction itself has a complex frequency 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0024
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0011
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0066
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0005
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0068
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0067
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0075
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0024
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0065
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0055
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0054
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0029
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0027
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0056
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0052
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0078
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0074
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0041


dependence, exhibiting a range of regimes [e.g., Savage and Marone, 2007; Savage and 

Marone, 2008; van der Elst and Savage, 2015]. This study focuses on illuminating the frequency 

dependence of friction experimentally. In order to help interpret and motivate further field 

measurements, we measure and model the response of a mated rock fracture experiencing forced 

oscillations through static, zero strain rate, and friction conditions.

In contrast to interface friction, the frequency dependence of elastic moduli, or dispersion, has 

been extensively studied because of its direct connection to the attenuation of seismic waves in 

anelastic medium [e.g., Mavko et al., 2009]. The frequency dependence of parameters governing 

seismic wave propagation has been shown in the laboratory for a number of hypothesized 

attenuation processes (e.g., scattering, wave‐induced fluid flow, and friction). Most recent studies

focus on the dispersive behavior induced by fluid saturation [e.g., Tisato et 

al., 2014; Subramaniyan et al., 2014; Spencer and Shine, 2016] with the hope that attenuation 

measurements in the field could be used to locate, identify, and quantify fluids as well as matrix 

permeability in the subsurface [Pride et al., 2003]. The frequency dependence caused by fluids is

dependent on the mobility of fluid in the pore space, so measuring the attenuation and frequency 

dispersion should give information about the fluid viscosity and rock permeability 

[e.g., Spencer, 1981; Batzle et al., 2006; Spencer and Shine, 2016].

The Kramers‐Kronig relations insure that any energy dissipation, or hysteresis, causes frequency 

dependence in linear anelastic materials [e.g., O'Donnell et al., 1981]. Thus, attenuation and 

frequency dispersion are expected for cases of hysteretic cyclical loading and unloading on crack

interfaces [Walsh, 1966; David et al., 2012]. Frictional attenuation has been studied 

experimentally and theoretically for strains above about 10−6 [e.g., Gordon and 

Davis, 1968; McKavanagh and Stacey, 1974; Cooper, 1979; Mavko, 1979]. Crack friction was 

typically ignored as a dominant form of attenuation, because most seismic waves away from the 

source have strain below 10−6, which will induce smaller than interatomic spacing scale 

(~10−8 cm) displacement on cracks of length less than 10−2 cm, a rough upper bound for the 

majority of crack lengths in intact rock [Savage, 1969; Winkler et al., 1979]. The impact of 

frictional attenuation must be revisited when the size of fractures is larger or for higher‐

amplitude seismic waves. Under these conditions, friction on fracture faces may be detectable 

seismically, thus providing a way to infer important, interrelated fracture properties—such as 

displacement, fracture density, asperity contact area, aperture, stiffness, or friction coefficient—

in the field [Pyrake‐Nolte and Morris, 2000; Pyrake‐Nolte and Nolte, 2016]. In this case the 

frequency dispersion and attenuation could be tied to the rate‐dependent frictional properties of 

the interface.
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Strain‐dependent modulus changes have also been observed at strains greater than about 

10−6 [Guyer and Johnson, 2009]. These changes in modulus have been shown to recover with log 

time, referred to as slow dynamics [e.g., Smith and TenCate, 2000; Lebedev and 

Ostrovsky, 2014; Snieder et al., 2017]. Nonelliptical stress‐strain hysteresis loops, called “cusps”

because they sharpen to a point at each end, are another sign of this nonlinearity observed for 

rocks under higher strain levels [Gordon and Davis, 1968; McKavanagh and Stacey, 1974]. This 

nonlinear hysteresis, with end‐point memory, has been described using a Preisach‐Mayergoyz 

(PM) model space of hysteretic elements that open and close at different stresses [Guyer et 

al., 1995; Guyer et al., 1997]. Nonclassical nonlinearity, which cannot be described by 

traditional theories of nonlinear elasticity [e.g., Landau and Lifshitz, 1986; Pasqualini et 

al., 2007], has been observed in a range of microcracked, but intact, rock types [Rivière et 

al., 2015] and wave types [Remillieux et al., 2016]. The degree of nonlinearity reported in these 

studies is more modest than might be expected for a large fracture with no continuous material 

fully bridging the sample. Assuming that the physical mechanisms are similar, studying 

macroscopic fractures in the lab should allow evaluation of more subtle effects, such as 

frequency dependence, and characterize the interface geometry that determines the frictional 

behavior.

Few measurements have focused on the frequency (strain rate) dependence of nonclassical 

nonlinearity. Frequency dependency has been suggested in the difference between quasi‐static 

and three wave mixing dynamic measurements of nonlinear parameters on sandstones and a 

limestone [D'Angelo et al., 2008]. In the Dynamic Acousto‐Elastic Testing approach a lower 

frequency pump is used to induce nonlinearity, while a high‐frequency probe detects the change 

in elastic constants with strain amplitude, and thus, the nonlinear elastic constants can be 

determined [Rivière et al., 2013]. This method has been used on Berea sandstone to show that 

some constants are sensitive to the frequency of the pump signal between 0.2 and 250 Hz, while 

others are frequency independent, suggesting that at least two physical mechanisms are present 

in the nonlinearity [Rivière et al., 2016a]. Further experiments demonstrated that some rocks 

have a preferential relaxation around 0.1 s–1 s, or 10 Hz–1 Hz, which was insensitive to the 

amplitude of the pump or moisture in the sample [Rivière et al., 2016b]. A few models have been

proposed to explain, or predict, frequency or rate‐dependent nonlinearity [e.g., Vakhnenko et 

al., 2005; Gliozzi and Scalerandi, 2014; Pecorari, 2015; Favrie et al., 2015]. Gusev and 

Tournat [2005] added thermal induced transitions to a PM model space, referred to as Preisach‐

Arrhenius model, to explain a frequency as well as amplitude criterion for the onset of nonlinear 

elasticity. However, little research has focused on fully characterizing or understanding the rate 

dependence of potential physical mechanisms responsible for elastic nonlinearity in fractured 
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heterogeneous solids. This is necessary to fully understand the mechanisms responsible for the 

nonlinearity as well as the energy dissipation. Experiments are also needed to predict the 

sensitivity of various seismic methods to measure these processes in the field.

We have adapted a low‐frequency (0.1–100 Hz) shear modulus and attenuation apparatus to 

explore the seismic signature of fractures and understand the mechanics of asperity contacts 

under low normal stresses and a range of shear strains. Our instrument is unique in its capacity to

measure low‐frequency seismic properties at low normal stresses, simulating “open” fractures in 

shallow or high fluid pressure reservoirs, which often dominate the permeability and may be the 

most likely source of induced seismicity. These are also the conditions where fractures initiate 

partial slip, with displacements at the micron scale. We focus on time series measurements of 

nonlinear elasticity and study the frequency dependence in hope of being able to interpret this 

signal to obtain more information from fractures in the field. Eventually, observing changes in 

the nonlinear metrics with injection of different fluids during stimulation could be used to 

identify the migration and efficacy of these injectants. Fitting the measurements with dynamic 

friction constitutive relations will also help constrain the general frictional behavior of rock 

fractures and larger‐scale faults in the subsurface, providing valuable information about the 

potential for future seismicity.

2 Methods and Materials

2.1 Low‐Frequency Torsional Apparatus and Analysis 
Techniques

We utilize a forced torsional oscillator to directly measure the shear stress and strain of 

cylindrical rock samples (9 mm diameter with various lengths). The apparatus (Figure 1) is a 

segmented torsional spring. One end is rigidly coupled to a magnetic driver, which sinusoidally 

twists the entire bar of the apparatus in series from a fixed point at the other end. Since all the 

components of the apparatus are assumed elastic on the time scales of interest, the torque (and 

shear stress) is transmitted evenly throughout the entire bar length and by measuring the amount 

and timing of the twist at various locations along this bar we can calculate the shear stress and 

strain directly, giving the modulus and attenuation of the sample under the given conditions. All 

of our experiments include a “pretwist” static load applied to the sample, oscillating the torque 

around that point. This allows oscillation without added hysteresis from going through the 

neutral point, so strain is always positive but strain rate oscillates between positive and negative 

values. The DC offset in stress and strain is subtracted from the reported time series stress and 

strain values to isolate the amplitude of the stress and strain oscillation, which determines the 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-fig-0001


modulus of the sample. We report the shear strain, and displacement, at the outside radius of the 

sample, since this is the maximum and contributes the most area, but in reality there is a gradient 

in strain proportional to distance from the center of the sample. A detailed description of the 

apparatus and error analysis, including that due to long‐term drift (temperature, humidity, 

fatigue…), are given in Saltiel et al. [2017a].

Figure 1
Open in figure viewer  PowerPoint
Schematic diagram and photograph of instrument, with parts labeled as in text: (1) Magnetic 
driver, half of the black magnetic shielding is removed in photograph. (2) End of apparatus held 
fixed. (3) Aluminum bars that transmit stress; fixed end bar is hollow to amplify the torque 
signal. (4) Arm and targets for measuring twist on fixed side of sample, calibrated to an imposed 
static shear stress. (5) Arm and targets for measuring twist on driver side of sample, calibrated to 
shear strain. (6) Eddy current proximity detectors that measure displacement, and thus twist, of 
the two sets of arms and targets. (7) Aluminum collets that hold sample. (8) Fractured rock 
sample, aluminum in photograph. (9) Driver end that is free to twist. (10) Hardened ball bearings
that limit nontorsional motion in the driver and insure purely uniaxial force from loader. (11) 
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Uniaxial loader that applies normal stress to fractures. (12) Bellville washers supply compression
as the nut is tightened. (13) Load cell measures applied uniaxial stress with a calibrated strain 
gauge. Figure and description from Saltiel et al.[2017a].

We follow a specific protocol to measure each sample, before and after tensile fracturing, under a

range of strain amplitudes, frequencies, and normal stresses. First, the intact sample is measured 

without uniaxial stress at 1 Hz, gradually increasing strain amplitude from about 10−6 to 

5 × 10−5 over 1000 measurements. This is repeated for 2, 4, 8, 16, 32, and 64 Hz to explore the 

sample's frequency dispersion. The protocol is then repeated with increasing applied uniaxial 

stresses (up to about 15 MPa). The static load is changed directly to the next value, but the DC 

shear stress is removed while the new uniaxial load is set. The sample is then fractured using the 

method described below, and measured at the same uniaxial stress conditions, this time starting 

at the highest normal stresses and slowly decreasing normal stress until the fracture slips 

completely and it can no longer be measured with our method. Due to the large amount of data in

the time series of thousands of oscillations, these experiments are analyzed using a Fourier 

transform of the stress and strain signals, only retaining the response at the forcing frequency, the

fundamental mode. This assumes that the material is relatively linear (negligible harmonic 

generation). To study the nonlinear and dynamic response we record the entire low‐frequency 

time series oscillations for each sample only at their lowest measurable normal stresses and 

highest shear amplitudes, where slip and frictional effects are enhanced. Graphing the stress and 

strain oscillations against each other provides stress‐strain hysteresis loops. This time series 

approach provides more information about the strain rate dependence and allows detailed 

analysis of relevant frictional processes.

For perfectly linear anelastic materials, hysteresis is caused by a phase delay between the stress 

and the strain; the resulting hysteresis loop is an ellipse, the area of which is a measure of the 

energy dissipated, or the attenuation [Zener, 1948]. These materials would have stress and strain 

signals only at the driving frequency, or fundamental, since any harmonic generation of a 

nonlinear material will cause distortion in the shape of the hysteresis loop [Guyer and 

Johnson, 2009]. In this way, the harmonic distortion and hysteresis shape are directly related to 

each other and the nonlinearity of the material. Harmonic distortion in electronics, as well as 

acoustics, is commonly measured by the total harmonic distortion (THD %) [Ramirez, 1985]; we

calculate it from the square root of the power of the first four harmonics over the square root of 

the power in the fundamental.

Further features make our instrument particularly well suited to studying nonlinearity in 

fractured rocks. First, the uniaxial stress assembly (part (11) in Figure 1) provides normal stress 

to close‐up fractures and slowly open them with decreasing confinement. This can simulate 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-fig-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0044
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0019
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0072
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014219#jgrb52185-bib-0051


important processes in fractured reservoirs such as pore pressure (and thus effective stress) 

changes from injection or production. As mentioned previously, our system is capable of 

measurements at very low normal stress magnitudes, levels which are inherently difficult for 

other instruments that rely on pressure, often minimums of ~10 MPa, to make contact with the 

sample [e.g., Li et al., 2014]. The magnetic driver's range of shear stresses also allows 

measurement under higher strains where nonlinearity is more pronounced and frictional sliding 

initiates on fracture surfaces. The driver can also be controlled with high precision, allowing us 

to bring the surfaces just to the brink of fully slipping (e.g., partial slip), while maintaining 

relatively small displacements. In this way, we can use the driver to induce slip or even 

propagate new fractures, while probing the response throughout the process. The apparatus can 

also be used to explore fatigue damage, by measuring how the response changes over millions of

cycles.

2.2 Sample Description and Surface Characterization

We measured an artificially fractured dolomite core from the Duperow formation, a carbon 

sequestration target in north‐central Montana. A picture of the dolomite sample and surface 

characterization of its induced fracture face are shown in Figure 2. The sample was cored from a 

depth of 1017.3 m (3337.7 ft) in the Danielson well (API 811151). The sample was cored 

adjacent to plug 34B, which was measured to have a density of 2.716 g cm−3, a porosity of 

2.51%, and a permeability of 0.01 mD [Spangler, 2014]. The ultrasonic P and Swave velocities 

for the plug were measured at 5340 ± 160 m/s and 3300 ± 100 m/s, respectively [Saltiel et 

al., 2017a]. The cores, in addition to preliminary surface seismic and well log data, suggest that 

the reservoir has relatively low matrix permeability but many healed and partially healed natural 

fracture sets. Preliminary modeling [Zhou et al., 2013] indicates that the pressure change will be 

significant and likely generate the dominant alteration in seismic properties from the proposed 

large‐scale supercritical CO2 injection; existing open fractures should be most sensitive to these 

increases in pore pressure. By studying a tensile fractured reservoir core we estimate how 

seismic techniques can measure stress and frictional changes in similar field‐scale fractures.
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Figure 2
Open in figure viewer  PowerPoint
Photograph and characterization of Duperow dolomite fracture surfaces show tensile fracturing 
created a relatively flat surface across the cylinder diameter. (a) Optical profilometry of surface 
topography. Local normal stress distribution from the calibrated pressure‐sensitive film under 
normal stresses of (b) 18, (c) 15, (d) 0.5, (e) 3.75, and (f) 7.5 MPa. Figure modified from Saltiel 
et al. [2017a].

We also tested artificial tensile fractures in Montello granite and Blue Canyon Dome rhyolite 

samples to show that the general observed behavior is consistent with changes in rock type and 

surface geometry. The Montello is a competent, fine‐grained granite, from a quarry in Wisconsin.

It was selected because it has few microcracks and little stress dependence, so discriminating the 

effect of the throughgoing fracture from the rest of the intact rock is more straightforward. The 

Blue Canyon Dome rhyolite is a fine‐grained, competent igneous rock from central New Mexico.

Our sample was cored from an experimental field pilot site, utilized as a shallow analog for 

testing enhanced geothermal stimulation and relevant monitoring techniques [Knox et al., 2016].

We employed a same custom‐machined holder to generate a tensile fracture across the diameter 

of each sample. Twelve sharpened screws are positioned evenly around the holder and set into a 

groove carved around the circumference of the sample. As the screws are slowly tightened in a 

row around the diameter, they force open a tensile fracture that remains in the groove. This 

results in a well‐mated tensile fracture, perpendicular to the diameter of the cylindrical sample, 
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with relatively smooth and low topography (Figure 2). As discussed in Saltiel et al. [2017a], we 

expect minimal process zone‐related microfracturing. Optical profilometry and pressure sensitive

film [Selvadurai and Glaser, 2015] were used to characterize the fracture surfaces; these 

techniques and analysis are described in Saltiel et al. [2017a]. The imaged contacts transmit 

shear stress as well as the measured normal stress across the fracture.

3 Results

3.1 Normal Stress and Strain Dependency in Fundamental Data

In Saltiel et al. [2017a], we measured the modulus and attenuation before and after fracturing 

under a range of uniaxial loads using 1000 measurements at the driving, fundamental, frequency 

(8 Hz). The error bars for each modulus and attenuation measurement are estimated from the 

error in linear fit of all 1000 stress‐strain measurements and the standard deviation of all 1000 

phase measurements. As can be seen in Figure 3a, the error bars at lowest normal stress, 

0.375 MPa, are significantly larger than the other stress conditions, suggesting nonlinearity. In 

another publication [Saltiel et al., 2017b], we focus on this lowest normal stress to explore the 

behavior of an open fracture where partial slip occurs. The attenuation and stress at the 

fundamental were recorded with strains from 5 × 10−6 to 5 × 10−5, and the resulting stress‐strain 

curves, with error bars in this case estimated from propagating the systematic error, fit with a 

single asperity partial slip model (Figure 3c), based on Mindlin [1949]. The model fit shows that 

partial slip on the outside of asperities can explain the observed softening, giving an effective 

asperity radius and friction coefficient; the model can also be extrapolated to fully slipping 

conditions, providing an estimate for the critical slip distance [Saltiel et al., 2017b]. Figure 3b 

shows the average attenuation at each normal stress, where the error bars give the standard 

deviation of 1000 measurements; the intact dolomite sample is fairly attenuating, which masks 

the effect of the fracture. The lowest normal stress measurement has the highest attenuation, and 

it is strain‐dependent (Figure 3d), as expected for frictional attenuation.
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Figure 3
Open in figure viewer  PowerPoint
Fundamental frequency (8 Hz) (a) modulus and (b) attenuation measurements for fractured and 
intact Duperow dolomite sample under a range of normal stresses. The error bars are estimated 
by the deviation in 1000 measurements over a range of amplitudes. The large error bars suggest 
nonlinear behavior under lowest normal stress (0.375 MPa). Measurement and analysis details 
are described in Saltiel et al. [2017a]. Strain‐dependent (c) stress and (d) attenuation of lowest 
normal stress condition (0.375 MPa). Stress‐strain curves are nonlinear and can be fit with a 
simple single asperity partial slip model, with error bars in this case are given by the systematic 
error. Attenuation is also strain‐dependent, explained by frictional attenuation models. 
Measurement and analysis details are described in Saltiel et al. [2017b].

At the lowest normal stress (0.375 MPa), we also used a range of driving frequencies from 1 to 

64 Hz. The intact dolomite shows normal dispersion, i.e., increasing modulus with frequency 

(Figure 4a). The fractured sample showed modulus decreasing with increasing frequency in the 

low‐frequency range (1–4 Hz), and normal dispersion, as seen at higher normal stresses, resumes

at higher frequencies (8–64 Hz) (Figure 4b). This inverse dispersion behavior is not expected for 

linear anelastic materials, where dispersion is directly related to dissipation [Zener, 1948], 

suggesting that the fracture is exhibiting nonlinear hysteresis. It also suggests that there may be a

nonlinear process occurring at low frequencies (< ~8 Hz) in open fractures which is not present 

at higher frequencies (> ~8 Hz) or in closed fractures, or intact, microcracked rocks.
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Figure 4
Open in figure viewer  PowerPoint
Shear modulus dispersion results for dolomite both (a) intact under no uniaxial load and (b) 
fractured under 0.375 MPa normal stress with fundamental frequency data. Driving frequency 
varies from 1 to 64 Hz. The intact sample shows normal dispersion, increasing modulus (or 
velocity) with frequency (Figure 4a), while the fractured sample shows inverse dispersion at 
frequencies below about 8 Hz and normal dispersion above about 8 Hz (Figure 4b). This is 
similar to the frequency dependence of the hysteresis loops explained below, suggesting a low‐
frequency stiffening mechanism that seems to disappear above 8 Hz.
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3.2 Time Series Data: Nonlinear Hysteresis Loops

In addition to using the Fourier transform to isolate the response at the driving frequency, we 

analyze the time series data of the stress and strain oscillations (Figure 5). Graphing the stress 

and strain against each other over time provides the stress‐strain hysteresis loop, plotted in the 

inset of Figure 5. If the stress and strain were perfectly periodic, with the strain phase delayed by 

the attenuation as expected in linear anelasticity, then the hysteresis loop would be an ellipse 

(periodic fits shown with black lines in Figure 5). Without phase delay the stress‐strain curve 

would be a straight line with the slope given by the modulus, but because the strain follows the 

stress, the curve starts above this line and returns below the line, creating an ellipse. Throughout 

the oscillation, the strain rate is also oscillating, so changes in the response due to rate 

dependence would cause further structure, steepening, or becoming shallower (and their 

associated changes in modulus) with the changing strain rate.

Figure 5
Open in figure viewer  PowerPoint
Stress (green) and strain (blue) time series for the Duperow dolomite fracture under 0.375 MPa 
normal stress and forced with a 0.5 Hz driving frequency. The periodic fit, captured in the 
fundamental mode data, is plotted in black. The inset shows the stress‐strain hysteresis loop, 
when stress and strain are plotted against each other over time. The data are to first‐order 
periodic but shows further structure provided by the harmonics that are generated by 
nonlinearities and rate dependence. The high‐frequency fluctuations are mainly due to 60 Hz 
electronic noise.
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The stress‐strain curve for the intact dolomite without uniaxial load exhibits much less hysteresis

and appears linear at the scale of our measurements (Figure 6a), likewise the stress and strain 

spectra show no clear harmonic generation (Figure 6b). Although we do expect some strain‐

dependent softening and hysteresis due to attenuation for the microcracked rock, it is much 

smaller and not visible on the scale of these time series measurements. The intact rock also does 

not show any strain rate‐dependent effects, allowing us to assume that the observed behavior in 

the fractured rock is due primarily to the fracture and not the intact part of the sample.

Figure 6
Open in figure viewer  PowerPoint
(a) Measured stress‐strain loop, in blue, of intact dolomite sample under no uniaxial stress with 
1 Hz driving frequency shows no nonlinearity, cusp, or hysteresis. (b) The frequency spectrum 
also shows almost no harmonic generation; the smaller visible peaks are noise and do not 
coincide with harmonic frequencies. (c) While the stress‐strain loop, in blue, when the dolomite 
sample is fractured under 0.375 MPa normal stress shows nonlinear hysteresis. The fundamental 
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frequency data, only including the phase delay between stress and strain, would be the black 
ellipse, predicted by linear anelasticity. (d) The fractured dolomite's frequency spectrum shows 
large harmonic generation in the strain, while the stress stays linear. The odd harmonics are 
slightly enhanced relative to the expected power law decay. This harmonic generation is 
associated with the nonlinear hysteresis shape and sideband production.

To best visualize the nonlinear hysteresis shape, we low‐pass filter to remove high‐frequency 

noise, which is dominated by 60 Hz power noise. This filtered stress‐strain hysteresis loop for 

the fractured dolomite is graphed in blue in Figure 6c. We find that a nonlinear hysteresis shape 

in the stress‐strain loops is accompanied by large harmonic generation (Figure 6d). The added 

structure in the shape appears most clearly as curled up (stiffening) cusps at the ends of the loop, 

the stress, and strain sinusoid peaks. These cusps are different from those observed in intact, 

microcracked rocks at higher strain levels [Gordon and Davis, 1968; McKavanagh and 

Stacey, 1974] because they curl up as well as sharpen to a point at the end. For this reason we 

refer to them as “stiffening cusps.” Hysteresis loops with stiffening at the high strain end have 

been observed in intact, microcracked rocks under quasi‐static uniaxial compression 

[Holcomb, 1981], but the interpretation is different, stiffening is expected due to closure of 

progressively stiffer cracks with compression. Since our measurements are pure shear, we do not 

expect a direct strain dependence to cause the observed stiffening; in fact, the direct strain 

dependence was shown to cause softening (Figure 3c).

The hysteretic loop for linear elastic materials without harmonic generation caused purely by 

phase delay is an ellipse (graphed in black on Figure 6c), and the area inside the loop is a 

measure of the energy dissipation or attenuation. The cusped shape comes from harmonic 

generation in the strain measurement (Figure 6d) and modifies the classical attenuation caused 

purely by phase delay. The frequency domain stress signal, graphed in green in Figure 6d, does 

not have harmonics, demonstrating that the source of the nonlinearity is in the rock fracture and 

not the electronics or magnetic driver. The relative effect of the harmonics that cause the 

nonlinear part of the hysteresis is a few percent of the total strain amplitude, a second‐order 

effect to the anelastic behavior of the sample. This nonlinear hysteresis and harmonic generation 

are symptoms of the nonlinear behavior of the fracture, ways to quantify the nonlinearity; the 

cause will be discussed below.

3.3 Frequency Dependence and Harmonic Generation

Although the times series and hysteresis loops are the most illuminating of the physical processes

occurring at the rock interface, they are challenging to measure in a field setting. Harmonic 

generation and frequency‐dependent behavior are more accessible parameters for field‐scale 

measurement techniques. Another measurable effect of this nonlinearity is the production of 
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sidebands, using amplitude‐modulated driving waveforms. When two waves of different 

frequencies are summed they do not include the sum and difference of these frequencies, or 

sidebands. In other words, a frequency space representation of this signal will not have peaks at 

these sum and difference frequencies. However, if this signal is sent through a nonlinear 

function, the rock in this case, then the sidebands are produced. Thus, measuring sideband 

production is another metric for nonlinearity and is related to nonlinear wave mixing phenomena 

[e.g., Johnson and Shankland, 1989; Meegan et al., 1993; Lawrence et al., 2008; D'Angelo et 

al., 2008] and harmonic generation. We measure the harmonic generation with the total harmonic

distortion (THD %) [Ramirez, 1985], defined as the square root of the power of the first four 

harmonics over the square root of the power in the fundamental mode. By quantifying the 

harmonic generation that determines the stiffening cusp shape and the amount of wave mixing 

with this degree of nonlinearity, we can interpret nonlinear signals from the field for the physical 

processes and properties discovered in the more complete data available through lab 

measurements.

We found the stiffening at the static end of sinusoidal oscillations at all low measured 

frequencies (0.1–6 Hz) (Figure 7a). The cusping effect and harmonic generation diminish at 

frequencies greater than or equal to about 8 Hz, a threshold frequency (Figure 7b). The stiffening

at the cusp is quantified in blue crosses in Figure 7b as the percentage difference in the maximum

measured strain and the maximum strain of a periodic fit (at the fundamental frequency) to the 

data. Also graphed in Figure 7b, in green circles, is the total harmonic distortion (THD %) from 

the first four harmonics, which shows similar frequency dependence. The fact that the stiffening 

occurs below an equivalent frequency threshold to the change in dispersion described above 

(Figure 4b) suggests that they may be due to the same frequency‐dependent mechanism. 

Although the dispersion data in Figure 4b only includes the fundamental mode, it could be that 

the low‐frequency cusp behavior causes a higher measured modulus when present, and thus is 

responsible for the inverse dispersion below the threshold frequency. This is similar to findings 

of frictional strength decreasing with frequency below a critical frequency [Savage and 

Marone, 2007].
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Figure 7
Open in figure viewer  PowerPoint
(a) Stress‐strain hysteresis loops show stiffening cusps at low frequencies, into the page, but not 
at 10 Hz, in front. (b) The stiffening (% of periodic fit strain), in blue, and strain total harmonic 
distortion (THD %), in green, drop around the threshold frequency, ~8 Hz, close to the frequency
when dispersion switches in the fundamental data shown in Figure 4b.

As was shown in Figures 6 and 7 above, the harmonic generation occurs under the same 

conditions as the stiffening cusp shape in the stress‐strain hysteresis loop. In fact, the shape is 

caused by the relative power in these harmonics. They are the same observation; harmonic 

distortion shows in frequency space what the hysteresis shape shows in time space. Quantitative 

interpretation of the harmonic signature is outside of the scope of this study, but we note that 

Figure 6b shows enhanced odd harmonics relative to the expected even harmonics from power 

law decay. The odd harmonics have a symmetric effect on the hysteresis shape, while even 

harmonics are not symmetric, so the enhanced odd harmonics are consistent with the 

predominantly symmetric hysteresis shape. This has been observed in rock, indicating a 

hysteretic origin [e.g., Guyer et al., 1997].

3.4 Related Rock Fracture Results

Montello granite and Blue Canyon Dome rhyolite were also investigated to evaluate which parts 

of these behaviors are general and what varies with the rock type and fracture surface geometry. 

Each of these rocks represents a fractured reservoir or fault of interest, described in methods and 

materials sections above. The qualitative behaviors of the stress‐strain hysteresis shape and 

harmonic generation, the focus of this study, were observed in all the samples at their lowest 

measurable normal stresses (Figure 8), suggesting that these kinds of measurements could be 

used in a range of rock types. We did observe quantitative differences, for example, in the 

threshold frequency under which the behavior is observed. Past studies have shown qualitatively 

different frictional behavior for dolomite samples [Weeks and Tullis, 1985], which will impact 
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the parameterization of the data, but the general behavior is still observed in all of our measured 

samples under these conditions.

Figure 8
Open in figure viewer  PowerPoint
Stress‐strain hysteresis loops show similar stiffening cusp behavior for (a) Montello granite and 
(b) Blue Canyon Dome rhyolite. They both also show harmonic generation in the strain but not 
in the stress.

4 Discussion

4.1 Mechanism: Dynamic to Static Friction Transition

A past study [Saltiel et al., 2017b] used a simple partial slip friction model to fit our fundamental

frequency observations of strain‐dependent softening with nonlinear constitutive relations 
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(Figure 3c), but since this type of friction model has no time dependence it cannot explain the 

rate‐dependent observations of our time series and harmonic generation measurements.

Our hypothesized mechanism comes directly from the time series measurements of strain 

(Figure 9a). As the strain rate oscillates throughout the sinusoidal forcing, the slipping parts of 

the fracture surface are expected to transition in frictional value related to the rate‐dependent 

friction value of a dynamic friction model. This can be idealized as, and dominated by, 

transitioning from dynamic to static friction at the zero strain rate static ends of the sinusoid. The

transition to static friction would cause an increase in measured modulus, seen as the bent up 

cusp at the static end of the stress‐strain curve. As the strain rate increases, partial slip 

renucleates, and the frictional strength of the fracture drops due to the lower value of dynamic 

friction. This hypothesized mechanism also fits with the observed frequency threshold, where the

fracture surface needs to spend sufficient time at low strain rate for static friction to have an 

effect.

Figure 9
Open in figure viewer  PowerPoint
(a) Time series data show the oscillations in strain rate that cause transitions between static and 
dynamic friction. (b) The slider‐block model of the force balance. The periodic driving stress is 
mostly balanced by a spring representing the stuck centers of the asperities. The spring pulls 
back on the slider block, which parameterizes the frictionally sliding asperity exteriors. (c) Our 
model can also be conceptualized as two effective bristles, a commonly used analogy for the 
Dahl model we implement. The stuck regions are represented by bristles that stay elastic; while 
the slipping areas are represented by bristles that deform elastically at the static ends of the 
oscillation, and slide when the strain rate s are high enough.

These measurements take place under partial slip conditions, where regions of the surface 

asperities are stuck and behave like a linear anelastic material. As the time series data (Figure 9a)

show, the strain response is dominated by a phase‐delayed periodic signal, so the frictional 

effects on the measured strain are of second order. It is also clear that the loops are closed, 

returning to the same initial conditions and not drifting over time, even though the stress has an 

offset, always pushing in the same direction and oscillating the stress on top of this offset. This 
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means that the displacement is growing and shrinking but always positive, while the velocity is 

negative half of the time. For this reason, the stuck regions must be included in the force balance 

to provide the restoring force that pulls back the slipping regions.

A simple slider‐block model best illustrates the force balance, where each component of the 

system response is represented by an element that has its own parameterization in the equation. 

To accommodate the stuck asperities, we include a spring holding back the slider block and held 

fixed on the farside, as shown in Figure 9b. The spring supplies a restoring force in the form of 

Hooke's law. The slider block represents the frictional resistance on the slipping sections of 

interface asperities. A dynamic friction model parameterization, described below, is implemented

on the block to capture the changes in friction we observe. The slider block is forced with a 

periodic stressing, which is balanced, mostly, by the spring, representing the stuck asperities, and

to second order by friction on the slider block. We model the behavior using a single block and 

spring, but these elements each represent many locked and sliding regions. This force balance is 

expressed in the following equation:

(1)
where γ is a stress concentration factor that scales the bulk shear stress to the shear stress felt by 
the smaller area asperities; Fd is the periodic driving force, which is converted from our stress 
data; k is the spring constant that represents the stuck asperities; x is the displacement of the 
block, which we will be solving for; and Ff is the friction force on the block, a function of slip 
velocity, v, a state variable, θ, both of which evolve over time, and other model parameters. We 
use a modified Dahl friction formulation, described below, to solve for the friction force on the 
sliding block.

The model makes a few key assumptions and simplifications to distill the dynamic frictional 

behavior of interest. First, the inertial term is dropped, because acceleration is assumed small. 

This is a reasonable assumption since we are using subresonant frequencies. It is inertia that 

causes resonance; since we are driving the system at low frequencies, the acceleration of the 

block is negligible. This is the same assumption that is made for all subresonance measurements, 

equivalent to saying that the stress is transmitted evenly across the sample [Saltiel et al., 2017a]. 

Next, the model is designed for linear slip geometry, while we are slipping in torsion, but each of

the asperities individually are deforming linearly in the tangential direction, given our small 

angular displacements. Although each asperity is experiencing a different forcing depending on 

its placement on the fracture surface, as shear stress and strain scale with radius and interaction 

with neighboring asperities, these effects are not directly addressed, contributing to the effective 

nature of parameters in the model fit. The only place in the model that treats the size of asperities

is the stress concentration factor, γ, which should depend on the real contact area that stresses are

transferred through compared to the total cross‐sectional area over which we calculate the bulk 
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stress. The pressure‐sensitive film measurements give an estimate of the normal stress 

concentration factor of ~80, where we resolve ~40 MPa normal stresses on individual asperities 

when the entire fracture is under 0.5 MPa normal stress (Figure 2d). The model fit, described 

below, requires a stress concentration factor of ~72, consistent with the estimate provided by the 

pressure sensitive film.

4.2 Modified Dahl Model: Bristle Analogy

Rate‐dependent frictional behavior observed in fault friction community from velocity‐step 

experiments is commonly parameterized with the rate‐and‐state friction model 

[Dieterich, 1979; Ruina, 1983]. This model has also been analyzed using stability theory, 

predicting the boundary between steady sliding and unstable stick slip based on the rheological 

critical stiffness [Gu et al., 1984]. However, the rate‐and‐state formulation is unable to capture 

static friction or reverse slip because it is numerically unstable at zero or negative slip velocities 

[Dieterich, 1979; Ruina, 1983]. Rate and state uses a logarithm of velocity dependence 

(Ff ~ log(v/v0)), which means that solving for negative velocities is not possible. Other fault 

friction models, such as the Brittle‐Ductile friction model [Trugman et al., 2013], use a slightly 

different formulation (Ff ~ log(v − v0/v0)), but they still are not symmetric about zero velocity, 

even giving the frictional force in the wrong direction for reverse slip. Thus, a different velocity 

dependence formulation is necessary to model slip velocity reversals and the effect of static 

friction.

Other friction models, such as in Dahl [1976], have been formulated by the control and dynamics

engineering communities to capture reverse slip and zero velocity crossings [Pennestrì et 

al., 2016; Péter et al., 2014]. The observation of increased static friction at zero velocity is 

referred to as the Stribeck curve [Stribeck, 1902], and these models can be modified to capture 

this behavior [Canudas de Wit et al., 1993]. While it is not the only suitable formulation, the 

modified Dahl model captures the zero velocity crossing effects, while retaining a form similar to

rate‐and‐state friction. Although it has six free parameters, it still has fewer parameters than 

many other models in this class [Pennestrì et al., 2016]. From our literature search, we found the 

modified Dahl model to be the simplest model that retains the hypothesized physical processes 

and whose parameters have some physical interpretation [Péter et al., 2014]. For these reasons, 

we explore the Dahl friction parameters that would create our observed strain rate‐dependent 

hysteretic stress‐strain loops. The focus here is to test whether this model can match the 

observations, providing support for the hypothesized mechanism and a potential path forward for

analyzing the frictional signature in this type of data.
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As the Dahl friction formulation is not commonly utilized by the Earth science literature we 

describe a little of its physical basis. The Dahl model is in the class of “bristle” friction models. 

These models describe the onset of frictional sliding as the initial elastic deformation and 

subsequent permanent displacement of a bristle, such as on a brush. This analogy is also useful in

describing partial slip. A bristle that never reaches slipping conditions could describe the stuck 

regions of the asperities, in place of the spring. Our force balance, Figure 9b and equation 1, 

could be illustrated with two different bristles in series, one of which never slips, equivalent to 

the spring, while the other sticks at low velocities than slides frictionally above a characteristic 

velocity, vs, captured in the slider block's frictional parameterization (Figure 9c). This 

characteristic velocity defines the velocity range over which the higher static friction value is 

applied. The model includes these essential features—a continuous function around zero 

velocity, which is numerically stable, and velocity dependence that fits the Stribeck curve, which

shows higher friction values at low velocities representing the effect of static friction. The 

modified Dahl model [Canudas de Wit et al., 1993] is given in the following equations:

(2)
where a2 is the viscous friction parameter, because it gives the proportionality between the 
friction force and velocity. The state variable (θ), with units of force, evolves based on the 
following equation:

(3)
where L is a constant with dimensions of length related to the critical slip distance; vs is the 
characteristic (Stribeck) velocity, described above; a0 is the Coulomb friction parameter; and a1 is
the Stribeck friction parameter, defining the weight of the static friction effect.

4.3 Comparison of Model to Observations

We want to test if the modified Dahl model is able to capture the general nonlinear shape of our 

observed hysteresis loops at low frequency, with the right choice of parameters. To solve this set 

of ordinary differential equations 1–3, we use a real‐valued variable‐coefficient solver, with 

fixed‐leading‐coefficient implementation, VODE in the scipy package [Brown et al., 1989]. 

Since there is a large parameter space, we used the python package S‐timator [Ferrira, 2016], 

which implements a differential evolution genetic optimizer [Storn and Price, 1997]. To find 

parameters that match the observations, we allowed all the slider block model parameters, as 

well as the initial strain and strain rate, to vary. Only the length constant, L, was held fixed to 

3 × 10−6 m (similar to estimates of the critical slip distance from Saltiel et al.[2017b]). The model 

was driven with a linearized forcing from the measured stress data (Figure 6a). This was not a 
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thorough inversion; we focused on confirming the models ability to reproduce the observation 

using reasonable parameters.

The model results are shown in Figure 10, using the following best fit parameter 

values: a0 = 2.9 × 10−6 N, a1 = 16 N, a2 = 2 N, γ = 72, k = 4.5 × 106 N/m, vs = 7.3 × 10−8 m/s, 

and v0 = 1.3 × 10−5 m/s. Figure 10a shows the direct comparison between the modeled and 

observed stress‐strain hysteresis loops. The modeled stress and strain oscillations are shown in 

Figure 10c, and the frequency spectrum are shown in Figure 10d. The model is not able to fit 

both the middle of the oscillation and the cusped ends with the same set of parameters. The key 

to fitting the cusped part of the data was to fit the strain rate, not the strain, from the data, 

effectively weighting the ends over the other parts of the sinusoid. The model results mimic the 

symmetric part of the stiffening shape, resulting only from odd harmonic generation, but cannot 

generate even harmonics. This suggests that the even harmonics in the observations are due to 

higher‐order, nonsymmetric, physical mechanism, not captured by this model. A possible 

nonsymmetric mechanism, not included in the model, is the direct strain‐dependent softening 

(Figure 3c). This softening could cause the lower stress values in the center of the experimental 

hysteresis loop, compared to that from the model, fully symmetric, results (Figure 10a). The 

slightly less defined stiffening at the low strain static end compared to the high strain end 

(Figure 10a) could also be effect of direct strain‐dependent softening. A model that also captured 

this direct strain dependence should generate even harmonics and better fit the observations.
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Figure 10
Open in figure viewer  PowerPoint
The model results with the best fit parameters given in text. (a) Stress‐strain hysteresis loop from
model (red) compared to our data (blue). (b) Modeled hysteresis loop shapes show a continuous 
decrease of cusp shape and increase of phase delay with frequency. (c) The model predicted time 
series of strain (blue) given a periodic driving stress (green) and (d) the frequency space 
representations. The strain only exhibits odd harmonic generation, while the stress has no 
harmonics because a periodic forcing is used. The model generates smaller harmonics than the 
data and only odd harmonics, suggesting that the even harmonics are due to another, 
nonsymmetric, mechanism.

Both through the physical interpretation of the parameters and numerous forward model runs 

with varying parameters, we find that a1 and vs have the greatest effect on the hysteresis shape, 

while the balance of the other parameters mostly affects the amplitude, saturation, drift, and 

damping of the resulting strain. The low value of a0 suggests the minimal importance of 

Coulomb friction. The velocities between vs and v0 are where we expect to see the effect of static 

friction. Since the model has many parameters, there are many different regimes of parameter 

space that show varied behavior. The similarity of the results suggests that the model is able to 

capture the basic processes in our experiments at these conditions.
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To better understand the model behavior, we focus on this set of parameters that best fit our data 

but with different forcing frequencies. The modified Dahl model results also show frequency 

dependence (Figure 10b), but the high‐frequency behavior is different from our experimental 

results. Instead of exhibiting a threshold frequency, around 8 Hz for the dolomite fracture, the 

hysteresis loop undergoes a more gradual change in shape with frequency, and it begins at 

slightly lower frequencies, ~2 Hz, than the data. The stiffening cusp diminishes with frequency 

as the measurements show, but it is accompanied by a growing phase delay, which is not present 

in our experimental data. These effects are clear in the high‐frequency large ellipses 

(Figure 10b), which eventually grow to circles, phase delay of 45°, at even higher frequencies, 

not shown. Finding the fitting parameters for the data at each frequency independently could 

show the frequency dependence of each parameter. Another possibility is that a more 

complicated model could better capture our experimental high‐frequency behavior. Higher 

driving frequencies cause higher slip velocities, greater than v0, so a compound model with a 

rate‐and‐state friction formulation above v0 and the modified Dahl model for lower slip 

velocities, at the static friction condition, would change this high‐frequency behavior. Future 

work will explore model variations and their parameter regimes, employing stability theory to 

understand the transitions between regimes and their dependence on the balance of model 

parameters. Better understanding of the behavior of the many model parameters will allow 

consistent data parameterization, quantifying the dynamic friction signature of lab and, 

eventually, field data. To do this properly may also require accounting for the complex surface 

and asperity geometry.

5 Conclusions

We present seismic‐frequency torsional oscillation measurements of stress and strain on rock 

fractures under low normal stresses, conditions that have been shown to produce partial slip on 

the outside of asperities while the centers remain stuck and elastic. Our results suggest the 

signature of dynamic friction, variations in friction or stiffness as strain rate oscillates during the 

periodic driving stress. This process is most apparent in our measured strain time series 

compared to a periodic fit. The largest deviation from the fit is when the strain falls short of 

reaching the expected peak at the static end where strain rate goes through zero. The dominant 

frictional effect is due to static friction at this static end transitioning to and from dynamic 

friction in the higher strain rate parts of the cycle. The stress‐strain hysteretic loop shape 

expresses this effect with stiffening cusps at the static ends. This nonlinear hysteresis is 

accompanied by harmonic generation in the strain, while the stress remains linear, confirming 

that the driver and electronics are not the source of the nonlinearity. Lastly, the observed 
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frequency dependence also supports this mechanism. We see stiffening cusps, harmonic 

generation, and modulus decreases with frequency at low frequencies (< 8 Hz), while the higher 

frequencies retain more linear hysteresis shapes, lower harmonic generation, and normal 

dispersion. We interpret that this shows longer periods, lower frequencies, that are needed to 

spend sufficient healing time at low strain rates for the static friction to have an effect. 

Otherwise, at high frequency, the slipping parts of the fracture keep slipping and the fracture 

lacks the added nonlinear hysteresis and stiffening. Since low‐frequency apparatuses are rare, 

especially for measuring fractures under low normal stress, these results suggest that there may 

be physical processes that are being missed by higher‐frequency experiments.

Taking advantage of model development in the dynamics and control engineering communities, 

we adapt a modified Dahl model to capture the described mechanism and show the parameters 

necessary for the observed behavior. This “bristle” model, coupled to a spring describing the 

stuck parts of the asperities, is able to show the effect of higher static friction as strain rate is 

reversed through zero, known as the Stribeck effect. Although not unique given the large number

of parameters, the Dahl model produces qualitatively similar strain oscillations and hysteresis 

loops, given a periodic driving stress. The Dahl model is also attractive because it has a similar 

functional form to rate‐and‐state friction, allowing data parameterizations to be compared to 

rate‐and‐state friction parameters commonly used to describe fault and earthquake nucleation 

behavior. The rate‐and‐state friction model itself cannot be applied to these measurements 

because it is unable to model zero velocity or velocity reversals. More work on models that 

include both formulations and stability analysis is needed to parameterize data in a way that 

allows field measurement of dynamic friction properties.

These results provide a path for using high‐amplitude, active source seismic methods, such as 

provided by time reversal techniques, to probe frictional properties in reservoir fractures and 

faults in the field. There are also implications for the characterization and underlying physical 

processes of bulk nonlinear elasticity in Earth materials, suggesting that fast and slow dynamics 

are related to dynamic frictional effects such as aging and healing. Although it will be 

challenging to measure stress‐strain time series or hysteresis loops in the field, the accompanying

harmonic and sideband generation could be measurable with repeatable crosswell surveys where 

strains in the 10−5 range can be achieved with appropriate high energy sources. The fact that the 

frequency dependence occurs in the seismic frequency band suggests that these effects could be 

measured directly in the field. Such an approach could potentially provide spatially resolved 

constraints on the frictional behavior (such as velocity strengthening or weakening properties) of 

critically stressed faults in the absence of seismicity.
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