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Abstract

Numerical Experiments in Galactic Disks:

Gravitational Instability, Stochastic Accretion, and Galactic Winds

by

John C. Forbes

Using 0D, 1D, and 3D models of galaxies, I explore different problems in galaxy

evolution most suited to each technique. In the simplest case, a galaxy is described by

a few numbers integrated via coupled ordinary differential equations. By allowing the

galaxies to respond to a stochastic accretion rate, I show a natural way of generating

the finite scatter observed in several galaxy scaling relations: the correlation between

a galaxy’s stellar mass and its star formation rate or metallicity. By comparing this

simple model to observations, we constrain the process by which gas accretes onto

galaxies, which must occur, but is essentially impossible to observe directly. Adding

an additional dimension to the models, we explore the structure of galactic disks as

a function of radius. We find that turbulence driven by gravitational instability in

the disks and the resulting migration of gas can explain a wide variety of phenomena,

including the age-velocity dispersion correlation of stars in the solar neighborhood,

the central quenching star formation in disk galaxies, rings of star formation, and the

observed radial profile of gas column densities. Finally, we run a set of fully three-

dimensional galaxy simulations to try to understand what physics is responsible for

basic properties of galaxies, including the rate at which they form stars, and the rate

ix



at which they eject mass in large-scale winds. We find that supernovae are capable

of driving moderate metal-enhanced winds, but surprisingly they have very little effect

on the star formation rates of dwarf galaxies. Instead, ordinary photoelectric heating

dominates the star formation law in low-mass galaxies.
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Chapter 1

Introduction

All models are wrong but some are useful. - George Box

Galaxies can be viewed from many angles by those with different inclinations.

To the cosmologist they are mere tracers of the underlying, dominant dark matter

structure of the universe. To those concerned with supernovae, stars, and black holes,

galaxies are just “the host” in which the interesting phenomena occur. However, the

dynamics, history, and governing physics of galaxies themselves plays a critical role

for both sets of people. Individual galaxies are stunning in their beauty, complexity,

and diversity. Each has a unique history extending through most of the age of the

universe, and each experiences a huge variety of physical processes at a variety of scales.

As in many areas of astrophysics, observers face a difficult challenge in understanding

individual galaxies because they can only be viewed at a single instant in their history.

To bring galaxies to life as dynamical objects requires modelling and simulation.

Models of galaxies can range from nearly trivially simple - a handful of coupled

1



differential equations - to hydrodynamic simulations run with codes developed over

decades. Each is extremely powerful. Simple models build intuition and cost relatively

little in terms of computation, both in terms of CPU and human time. Simulations

require much more of both, but have the power to predict unforeseen phenomena. This

thesis is an eclectic collection of work using models of both types, each developed to

answer a different question about the evolution of galaxies.

A common theme is the “equilibrium model,” which posits that the timescale

on which galaxies equilibrate between inflows, outlfows, and star formation, is short

enough that the gas mass and metal content of galaxies remain roughly constant in time.

These quantities evolve as a galaxy accretes new dark matter mass, or as the universe

expands thereby reducing the cosmological gas supply. However, the instantaneous gas

content, star formation rate, and metallicity of a galaxy are set only by its current mass

and accretion rate. In other words, the galaxy’s gas forgets its history. The projects

detailed in this thesis perturb the equilibrium model, test its assumptions, and try to

find where it breaks down.

1.1 A brief overview of galaxy evolution theory

Our modern theoretical understanding of the evolution of galaxies is built on

a skeleton of dark matter. It has been known observationally, though not without a

great deal of skepticism, that matter besides stars and stellar remnants is necessary

to explain the kinematics of galaxies, both in terms of their dynamics within clusters

(Zwicky, 1933), and in terms of their rotational velocities at large galactocentric radius
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(e.g. Rubin et al., 1980). With compelling observational evidence for the gravitational

dominance of dark matter, a theoretical picture emerged wherein dark matter structures

collapsed gravitationally into bound objects, while gas dissipated its energy via radiative

cooling and condensed in their centers (Binney, 1977; Rees & Ostriker, 1977; Silk, 1977;

White & Rees, 1978; Fall & Efstathiou, 1980; Blumenthal et al., 1984; White & Frenk,

1991).

Following the development of analytic models for the formation of galaxies,

ever-increasing computational power allowed the development of a wide array of numer-

ical methods. Semi-analytic models (White & Frenk, 1991; Somerville & Primack, 1999)

integrate the evolution equations for large collections of individual galaxies to attempt

to reproduce the statistical properties of observed galaxies. Dark matter-only cosmo-

logical N-body simulations (Bullock et al., 2001; Springel et al., 2005) allow the detailed

study of the underlying dark matter, and are generally used as inputs in semi-analytic

models. N-body plus hydrodynamic cosmological simulations (Katz, 1992; Davé et al.,

1997), and idealized hydrodynamic simulations of individual galaxies (Mac Low & Fer-

rara, 1999) attempt to capture consequences of baryonic physics, i.e. gas cooling, star

formation, and various forms of feedback.

An unavoidable conclusion in a universe where galaxies form in halos of cold

dark matter is that individual galaxies will merge not infrequently over the course of

their lifetimes. Much effort was devoted to understanding merger trees, how galaxies

behaved during mergers (Hopkins et al., 2008; Cox et al., 2006) and developing empirical

measures of the merger rate at a variety of redshifts (Lotz et al., 2008). Despite the
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interest in mergers, data from large surveys at a variety of redshifts showed that star-

forming galaxies lie on narrow scaling relations with only a small fraction of the cosmic

star formation rate occurring in starbursts (Rodighiero et al., 2011).

This fact likely contributes to the success of a variety of simple models wherein

the basic quantities of a galaxy are integrated forward in time using an average accretion

history of dark and baryonic matter (Bouché et al., 2010; Cacciato et al., 2012; Dekel

et al., 2013). Taking this simplicity one step further, Davé et al. (2012) proposed that the

properties of a galaxy can be understood without integrating equations over cosmological

times, but rather that they are set instantaneously by an equilibrium between inflows,

outflows, and star formation. In essence, the evolutionary equations describing a galaxy

may be replaced with algebraic equations by setting the time derivatives to zero. The

fact that such a model could have any success is initially surprising, but may be easily

understood.

1.2 The equilibrium model

The gas content of a galaxy is set by the continuity equation, which is a simple

accounting of the source and sinks of gas mass,

Ṁg = Ṁacc − fRṀSFR − Ṁout (1.1)

The rate of change in gas mass Ṁg is the combined effect of the gas accretion rate Ṁacc,

the outflow rate Ṁout, and gas which is locked in long-lived stellar remnants, fRṀSFR,

where ṀSFR is the star formation rate, and fR is the remnant fraction. This equation

4



may be cast in a different form by defining the mass loading factor η = Ṁout/ṀSFR,

and the gas depletion time tdep = Mg/ṀSFR,

Ṁg = Ṁacc − (fR + η)Mg/tdep (1.2)

Note that these two equations are identical, and no assumptions have been made yet.

If we now make the assumption that Ṁacc, fR, η, and tdep are all constant, or

at least varying more slowly than any other timescale in the system, then the equation

becomes conceptually simple, and in fact has a simple analytic solution, namely

Mg(t− t0) = Mg(t0)e−(t−t0)/tloss + Ṁacctloss

(
1− e−(t−t0)/tloss

)
(1.3)

where t0 is some arbitrary time at which Mg is known, and tloss = tdep/(η + fR). In

this equation Mg forgets its initial value and approaches its equilibrium value, namely

Ṁacctloss exponentially on a timescale tloss. This means that if tloss is short in comparison

to cosmological timescales, the galaxy’s internal state will rapidly reach an equilbrium

where Ṁg ≈ 0.

The fact that galaxies follow narrow scaling relations is quite congruous with

the equilbrium model. In the equilibrium model essentially all of a galaxy’s properties

are set only by its current dark matter mass, which in turn determines the galaxy’s mass

accretion rate and values of the parameters in the continuity equation, namely η and

tdep. If a galaxy’s properties are simply set by its mass, then narrow scaling relations are

a natural result. The accretion rate’s dependence on mass is quite well-understood as a
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generic consequence of structure formation in a universe dominated by cold dark matter

– the specific dark matter accretion rate is nearly independent of halo mass. The scaling

of the depletion time and mass loading factor with mass are much less well-understood,

but might well be expected to obey physics that in some way depends on a galaxy’s

mass.

The equilibrium model is a fascinating framework for understanding the fun-

damental nature of galaxies, and why they obey the scaling relations that they do.

The eclectic results included in this thesis may be viewed as addressing different open

questions about the equilibrium model and its implications.

• First, we note that although galaxies follow narrow scaling relations, these

scaling relations have a finite width. In the next chapter, we detail a version of the

equilibrium model that relaxes the assumption that Ṁacc is slowly changing with time,

and instead allow it to vary randomly with a lognormal distribution and some timescale

on which it remains coherent. In other words, we ‘kick’ the equilibrium model to see

how it responds. With this minimalistic model, we can produce the finite scatter ob-

served in several scaling relations followed by star-forming galaxies, and place surprising

constraints on several parameters of the model by comparing to observations.

• In the following two chapters, we construct a much more sophisticated model of star-

forming galaxies, essentially modelling them as accretion disks subject to large-scale

gravitational instability and hence torques which transfer mass and angular momentum.

We examine the resulting radial structure of star-forming disks (especially Chapter 4),

and its consequences for the stellar populations formed in them (Chapter 3). We find
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that just as global equilibrium is important in setting the global properties of a galaxy,

a local equilibrium among terms in the continuity equation for the gas column density

determines the structure of star-forming disks.

• Finally, in Part II we move from simple models to full-fledged hydrodynamical simu-

lations of dwarf galaxies. The equilibrium model applies when tloss is extremely short.

In dwarf galaxies where stars form extremely slowly, tdep often exceeds the age of the

universe, and it is not clear a priori whether the equilibrium model applies. In many

cosmological simulations that have had their feedback parameters adjusted to repro-

duce the galaxy scaling relations, the mass loading factors are set so large for dwarfs

that tloss = tdep/(fR + η) becomes short, i.e. the long depletion times are offset by the

extremely strong winds. We set out to measure η directly in high-resolution simulations

to see whether this scenario is borne out by the physics of supernova feedback (Chapter

6), and along the way we gain insight into the cause of the observed extreme depletion

times in dwarfs (Chapter 5).
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Part I

Simple Models
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Chapter 2

The Consequences of Stochastic

Accretion

2.1 Introduction

Large galaxy surveys in the past decade have taught us that star-forming

galaxies fall on a main sequence, a tight correlation between their stellar mass and star

formation rates. (Daddi et al., 2007; Noeske et al., 2007; Elbaz et al., 2007). This

correlation contains remarkably little scatter - the star formation rate varies by about

±0.34 dex at fixed stellar mass (Whitaker et al., 2012; Guo et al., 2013).

The existence of the star-forming main sequence (MS) and its small scatter

have substantially affected our understanding of galaxy evolution. The cosmological

paradigm of the past few decades, ΛCDM, predicts that dark matter halos, and hence

the galaxies occupying them, form hierarchically – large halos are built from mergers
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of smaller halos. The expectation was therefore that mergers between galaxies would

be a major driver of their evolution over cosmological times, frequently triggering star-

bursts. The small scatter in the main sequence at multiple redshifts has shown, however,

that most galaxies are not in fact experiencing any dramatic effects of major mergers

(Rodighiero et al., 2011), and most stars form in ‘normal’ galaxies lying along this

relation.

In addition to the main sequence, galaxies follow other scaling relations. Prac-

tically this means that at a given point in cosmic history many properties of galaxies are

set by a single parameter associated with the galaxy’s mass. This fact has led to the de-

velopment of a series of models dubbed “equilibrium”, “regulator”, or “bathtub” models

(Dekel et al., 2009a; Bouché et al., 2010; Davé et al., 2012; Cacciato et al., 2012; Genel

et al., 2012; Lilly et al., 2013; Feldmann, 2013), in which the properties of a galaxy are

self-regulated near a stable equilibrium between accretion of gas, star formation, and

outflows. The fundamental ingredients are a star formation rate that increases with

increasing gas mass in the galaxy, and a timescale on which the gas reservoir returns to

its equilibrium value much shorter than the timescale on which bulk properties of the

galaxy (mass, accretion rate, outflow efficiency, star formation timescale, etc.) vary.

Equilibrium models have enjoyed success in heuristically reproducing the aver-

age trends in galaxy evolution. However, such models are inherently incapable of quan-

tifying higher-order effects, including scatter in individual scaling relations and various

fundamental metallicity relations (FMRs), found by numerous groups (Mannucci et al.,

2010, 2011; Lara-López et al., 2013; Bothwell et al., 2013; Stott et al., 2013), typically

10



parameterized as a quadratic function Z(M∗,SFR).

Many theoretical studies are focussed on reproducing first-order relations,

which is sufficiently difficult in and of itself that second-order relations are often ne-

glected (however, for an exception see Dutton et al., 2010). In principle, however, to

fully understand galaxy evolution we should be able to understand not only average

or median galaxy properties, but their full distribution. A significant advantage of the

equilibrium models is that fitting them to any first order relation is trivial, so extending

them to understand the higher-order relations is easier than with any other method.

In this work we take one step beyond equilibrium models, allowing the mass

accretion rate to vary with a fixed log-normal scatter. Such a scatter is expected based

on N-body simulations (e.g. Neistein & Dekel, 2008) and hydrodynamic simulations

(e.g. Dekel et al., 2013). Depending on the timescale on which the accretion rate varies,

a population of these galaxies may never be in equilibrium. That is, their masses

and metallicities may change substantially. However they may still reach a statistical

equilibrium, in which the full joint distribution of all galaxy properties becomes time-

invariant.

In section 2.2 we introduce the basic formulation of this model and explore

the implications for the origin of the width of the star-forming main sequence. We add

metallicity to the model in section 2.3, allowing us to examine the FMR and the scatter

in the mass-metallicity relation. The model we construct in these sections is independent

of the first-order effects considered by most equilibrium models, which allows us to

avoid uncertainty in the numerical values of numerous important parameters in galaxy
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evolution (e.g. the mass loading factor). In section 2.4 we re-dimensionalize our model,

taking a guess at the correct scalings and normalizations to use, and demonstrate the

ability of this model to understand unknown physics based solely on the scatter in galaxy

scaling relations. We discuss the limitations of our model, quantitative constraints it

can place on the accretion process, and alternative explanations for the intrinsic width

of these relations in section 2.5, and conclude in section 2.6.

2.2 A very simple model

To examine the origin of and scatter within the MS and FMR, we have con-

structed a minimal model which contains enough physics to produce such features. We

do not aim to fully reproduce galaxy properties, tune parameters to match observations,

or build upon dark matter merger trees. Instead we aim for simplicity and intuition.

In our model we describe the state of a galaxy by two numbers, its cold gas mass Mg

and its metalicity Z = MZ/Mg, where MZ is the mass in metals. The gas mass evolves

according to

dMg

dt
= Ṁext(t)−

Mg

tloss
, (2.1)

where tloss is a the characteristic time over which gas is lost to the system (through the

formation of stars and the launching of galactic winds). Here we are implicitly assuming

that a given galaxy ejects gas in galactic winds at a rate directly proportional to the star

formation rate, the constant of proportionality being defined as the mass loading factor

η. We also assume that all stellar evolution happens instantaneously so that a fixed

proportion of all mass which forms stars is immediately returned to the gas reservoir
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of the galaxy, and a fixed fraction fR is permanently locked in stellar remnants. We

explicitly relate the loss rate with these quantities as follows

Mg

tloss
= (fR + η)ṀSF = (fR + η)

Mg

tdep
, (2.2)

where ṀSF is the star formation rate, and tdep is the depletion time of all gas in the

galaxy. This equation demonstrates that a great deal of (poorly-constrained) physics is

hidden in tloss. In this and the following section, however, we will simply scale the time

coordinate to tloss and consider ensembles of galaxies with fixed tloss. This is a powerful

technique, since our conclusions in these sections will be independent of the values and

scaling relations of η, tdep, and so forth.

The external accretion rate is Ṁext, which we parameterize as a lognormal

distribution with fixed median and scatter,

Ṁext(t) = exp(µ+ σx(t)), (2.3)

where x(t) is a random variable distributed as a standard normal (zero mean, unit

variance), with a new value drawn at a fixed time interval tcoherence. A more realistic

model might have a spectrum of timescales over which x would vary, but for simplicity,

clarity, and analytical tractability we will use a single “coherence time”.

Equation 2.1 is simple enough that it may be solved analytically given a se-

quence of random numbers, i.e. x(t). It is convenient to first non-dimensionalize by
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scaling the mass loss rate to the median accretion rate,

Ψ =
Mg

tloss
e−µ, (2.4)

and the time to tloss via t = τtloss. Thus τ represents time in units of mass loss

timescales, and one may think of Ψ loosely as the star formation rate or the gas mass,

though strictly speaking it is the mass loss rate per median accretion rate. The evolution

equation then becomes

dΨ

dτ
= −Ψ + eσx(t) (2.5)

The value of µ has entirely dropped out, so the full distribution of Ψ is determined solely

by the inherent scatter in the accretion rate, σ, and the number of mass loss times over

which the accretion rate remains constant, τc ≡ tcoherence/tloss.

This equation has exactly the same structure as the radiative transfer equation

where accretion acts as the source term, time in units of mass loss timescales is similar

to the optical depth, and the instantaneous value of Ψ is analogous to the intensity of

radiation.

The mass loss rate as a function of time can now be solved analytically if we

are given a sequence of standard normals, xk, k = 0, ..., where each k corresponds to

a new draw from the lognormal accretion rate distribution. In particular, suppose we

know Ψk, the value of Ψ at the time that a new accretion rate is drawn. The value of

Ψ from then up to the subsequent draw is given by

Ψ(∆) = Ψke
−∆ + eσxk(1− e−∆) for 0 ≤ ∆ ≤ τc (2.6)
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Figure 2.1: Ψ as a function of time. For each pair of σ (increasing top to bottom) and
τc (increasing left to right), we show the trajectories of five random galaxies over the
course of a randomly selected 10 star formation times and colored by the instantaneous
value of x(t) – bluer colors mean higher accretion rates. The galaxies exponentially
approach Ψ = eσxk . When τc is short, the many changes in the accretion rate never
allow the galaxies to reach the accretion rate – instead they remain near the average
value.
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Figure 2.2: The construction of Ψ. The red, blue, and green lines show the probability
density of a galaxy with a given combination of σ and τc having, at a randomly selected
time, a given value of Ψ. shows the full distribution, red shows the distribution of Ψk,
namely Ψ at a switch in the accretion rate, and blue shows the analytic approximation
to Ψk. These approximations are remarkably good, at least for this selection of σ
and τc. The dashed gray lines show the lognormal distributions from which numbers
are drawn and added together to compute Ψk. As τc increases, fewer draws from the
accretion distribution contribute to Ψ, until eventually only the last draw matters and
all the others are exponentially suppressed (rightmost panel). As the intrinsic width
of the accretion distribution increase (top to bottom), the accretion rate distributions
increasingly overlap, increasing the chances that the most recent accretion rate does not
dominate in determining the current value of Ψ.
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where we have defined ∆ ≡ τ−kτc, the time since the most recent switch in the accretion

rate. This is simply a relaxation equation. We can see this more explicitly by defining

rk = Ψk/e
σxk , the mass loss rate at the time of the switch in accretion rate relative

to the newly-chosen accretion rate – this is a measure of how far from equilibrium the

system is immediately after a switch. Large values mean that the galaxy is losing much

more mass than it is accreting, values less than unity mean gas is building up, and

rk = 1 means that the galaxy has equilibrated to its current accretion rate. Note that

rk > 0. Using rk, we see that

Ψ(∆)/eσxk = 1 + e−∆(rk − 1) for 0 ≤ ∆ ≤ τc (2.7)

In other words, the loss rate approaches the accretion rate exponentially on a mass loss

timescale, with the deviation determined by the deviation at the time the accretion rate

switched (∆ = 0).

Using equation 2.6, we can recursively compute Ψk+1 from the previous Ψk by

setting ∆ = τc,

Ψk+1 = Ψke
−τc + eσxk(1− e−τc) (2.8)

The sequence of xk’s thereby determine a sequence of Ψk’s, which are used as a scaffold-

ing to construct the full solution Ψ(τ) for a given realization of the random variables.

Examples of such realizations for various values of σ and τc are shown in figure 2.1.

We may also solve the recursion relation (equation 2.8) for Ψk explicitly, again
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given the sequence xk.

Ψk = (1− e−τc)
k−1∑
i=0

e−(k−i−1)τceσxi + Ψ0e
−kτc (2.9)

We see that the mass loss rate at a switch in the accretion rate is therefore simply a

sum of lognormally-distributed random variables. Each draw from the distribution loses

influence as it recedes into the past. In particular (k− i)τc is simply the number of loss

times since xi was drawn. The prefactor of 1 − e−τc accounts for the fact that each

individual draw of the accretion history matters less as the coherence time gets shorter.

For example, even if the accretion rate is very large, if the coherence time is very short,

the galaxy will only experience that accretion rate for a very short time.

In the limit that τc � 1, only the most recent draw from the distribution

matters and all previous draws are exponentially suppressed. In the opposite limit,

τc � 1, the leading factor 1 − e−τc → τc ≈ N−1
loss, where Nloss is the number of draws

from the accretion rate distribution in a given mass loss time. For very short coherence

times, Ψk becomes an average of the lognormal accretion rates over the most recent

mass loss timescale, with more recent accretion rates weighted somewhat more heavily.

The full probability distribution of Ψ and Ψk (which serves as an approximation to

Ψ) for various values of τc and σ are shown in figure 2.2, along with the probability

distributions of the 5 most recent draws from the appropriate lognormal distributions

which are added together to give Ψk. As the coherence times grow longer (panels

from left to right), fewer draws from the accretion rate contribute to the current mass

loss rate. As the intrinsic scatter in the accretion rate increases (top to bottom), the
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probability density of the draws from the accretion rate overlap more, meaning that it

is increasingly likely that the most recent accretion rate is not the largest contributor

to the current mass loss rate.

The distribution of a random variable, i.e. Ψk which is the sum of lognormally

distributed random variables, i.e. (1− e−τc)e−jτc+σxj , may itself be approximated as a

lognormal random variable (Fenton, 1960) with variance (in the log)

σ2
Ψk
≈ ln

[
1 +

(
eσ

2 − 1
) 1− e−τc

1 + e−τc

]
. (2.10)

and median

µΨk
≈ σ2/2− σ2

Ψk
/2. (2.11)

Equation 2.10 represents a good analytical guess for the width of the star-forming main

sequence. In the limit of large τc, σΦk
→ σ as expected – when the galaxies are able

to equilibrate to their accretion rates, the width of the main sequence is simply the

intrinsic width in the accretion rate, σ. In this limit µΦk
→ 0, i.e. the median mass loss

rate approaches the median accretion rate.

In the limit of short τc, the fraction (1 − e−τc)/(1 + e−τc) reduces to τc/2.

Thus when σ is also sufficiently small (namely σ2 � 1), the variance of Ψk reduces to

σ2τc/2. Physically, when the accretion rate varies rapidly compared to the mass loss

time, any individual draw from the accretion rate distribution becomes unimportant

and all that matters is the long-term average. The exception is when σ is large, in

which case extremely large accretion rates become common and σΨk
again approaches
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Figure 2.3: The width of the “main sequence”. Each pixel represents an ensemble
of galaxies with fixed τc and σ, wherein the mass loss rate Ψ was measured for each
galaxy at a random time. The standard deviation of log Ψ in each bin is plotted above.
Longer coherence times (upwards in the plot) allow the galaxies to equilibrate so that Ψ
approaches the accretion rate, so the scatter in Ψ approaches σ. Coherence times shorter
than the mass loss timescale, i.e. log10 τc

<∼ 1, lead to a reduction in the scatter roughly
in proportion to τc – individual draws from the accretion rate matter increasingly less,
and the galaxies do not have enough time for Ψ to approach the accretion rate before
it changes.

20



σ, though we caution that the distribution becomes less log-normal as σ increases with

small τc. Figure 2.3 shows σΨk
computed with a Monte Carlo simulation (for details

see appendix 2.7).

From this discussion, we see that τc and σ compete in setting the width of

the main sequence, even after σΨk
has been scaled by the intrinsic accretion rate. This

suggests that σ may be interpreted as a third timescale in the problem, namely the

number of star formation times necessary to forget a typical accretion event.

2.3 Including metallicity

The metal content of the galaxy is evolved according to the instantaneous

recycling approximation, in the spirit of Tinsley (1980) and Maeder (1992),

dMgZ

dt
= ZIGMṀext + ṀSF(fRy − fRMZ/Mg − ηZw) (2.12)

New metals are added along with accreting matter (the first term), and respectively

produced by, locked up in the products of, and ejected from the galaxy by, star forma-

tion.

The star formation rate, taking into account galactic winds and stellar evolu-

tion (see equation 2.2), is ṀSF = (fR + η)−1Mg/tloss. The yield y is defined as the mass

of metals produced during the course of stellar evolution per unit mass of gas locked

in stellar remnants – if 1000 M� of gas forms stars, a total of yfR1000M� of metals

will be produced by these stars and returned to the ISM. Following a procedure we will
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discuss further in Chapter 4, we parameterize the wind metallicity Zw as

Zw = Z + ξyfR/max(η, 1− fR). (2.13)

The usual assumption throughout the literature on chemical evolution is that Zw = Z,

i.e., before gas is ejected from a galaxy by stellar feedback, it is assumed to be perfectly

well-mixed with the ambient ISM (for recent exceptions see Peeples & Shankar, 2011;

Krumholz & Dekel, 2012; Vogelsberger et al., 2013). This is a strong assumption because

galactic winds are likely to be preferentially metal-enriched. Physically this is because

metals are produced in the same places, sometimes by the same events, which are likely

to cause galactic-scale outflows, namely sites of recent star formation, where massive

stars emit ionizing radiation and end their lives as supernovae. The assumption that

Zw = Z corresponds in our model to ξ = 0 – the other extreme value is ξ = 1,

corresponding to exactly no mixing between the metal-rich ejecta of stars and the ISM.

Non-dimensionalizing as in the previous section, we arrive at

dΨZ

dτ
= −ΨZ + ZIGMe

σx(t) + qΨ (2.14)

where all of the factors associated with star formation and feedback can be collected

into a single parameter

q ≡ yfR
fR + η

(
1− ηξ

max(1− fR, η)

)
. (2.15)

Much of the uncertainty in modeling the metallicity evolution of galaxies is encapsulated
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in q. We note that in the limit that η is large (probably the case for low-mass galaxies),

q → yfR(1− ξ)/η, while for small values of η, q → y. In this sense q may be considered

an effective yield, and the more important galactic winds are, the more uncertain this

parameter becomes.

Combining equations 2.14 and 2.1, we can obtain the evolution equation for

metallicity,

dZ

dτ
=
ZIGM − Z

Ψ/eσx
+ q (2.16)

This equation represents a competition between the effective yield of new metals formed

during the course of stellar evolution and dilution of metals by accretion. In equilibrium,

namely when the accretion rate is constant for many mass loss times, Ψ/eσx → 1, so

for dZ/dτ = 0, we find that the equilibrium metallicity is

Zeq = q + ZIGM . (2.17)

The corresponding quantity for the relative mass loss rate is Ψeq = eσx, where x is a

standard normal. In this sense, metallicity is very different from Ψ – regardless of the

accretion rate, the metallicity approaches a constant value, whereas the mass loss rate

approaches whatever random value of the accretion rate it is being fed.

The factor of q can be factored out of the metallicity evolution equation by

defining

Z† =
Z − ZIGM

q
, (2.18)

the metallicity scaled to its equilibrium value by the effective yield – Zeq corresponds

23



−0.4

−0.2

0.0

0.2

0.4

lo
g 1

0
Z

†

−0.4

−0.2

0.0

0.2

0.4

lo
g 1

0Z
†

0 2 4 6 8
τ

−0.4

−0.2

0.0

0.2

0.4

lo
g
10
Z

†

0 2 4 6 8
τ

0 2 4 6 8
τ

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

x
k

σ,τc=0.1, 0.3 σ,τc=0.1, 1 σ,τc=0.1, 4

σ,τc=0.5, 0.3 σ,τc=0.5, 1 σ,τc=0.5, 4

σ,τc=0.9, 0.3 σ,τc=0.9, 1 σ,τc=0.9, 4

Figure 2.4: Z† as a function of time. For each pair of σ (increasing top to bottom) and
τc (increasing left to right), we show the trajectories of five random galaxies over the
course of a randomly selected 10 star formation times and colored by the instantaneous
value of x(t) – bluer colors mean higher accretion rates. We can immediately see that
high accretion rates tend to lead to low metallicities. We also see that for large coherence
times (rightward) each galaxy reaches an extremum in metallicity before returning to
its equilibrium value (Z† = 1)
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to Z† = 1. The evolution equation for Z† then becomes independent of q, yielding

dZ†

dτ
=

−Z†

1 + e−τ (rk − 1)
+ 1 (2.19)

The denominator is recognizable as the mass loss rate normalized by the current accre-

tion rate, eσxk .

As with the star formation equation, we may solve equation 2.19 by elementary

methods for a given fixed value of rk, i.e. during the period when the accretion rate is

constant. The solution is

Z†(∆) =
Z†(0)rk + e∆ − 1 + (rk − 1)∆

e∆ − 1 + rk
for 0 ≤ ∆ ≤ τc (2.20)

In the limit of large ∆, we recover that Z† → 1, i.e. the metallicity returns to its equi-

librium value, though depending on how different the initial mass loss rate is from the

accretion rate, Ψk/e
σxk = rk, the value of Z† may change dramatically over the course

of a star formation time (∆ ∼ 1) before exponentially returning to unity. Examples

of such trajectories are shown in figure 2.4. Notice that in the right-most panels, de-

spite the somewhat large value of τc, there are significant deviations from equilibrium

immediately following a change in the accretion rate. For example, if the accretion rate

increases, the ISM begins getting diluted immediately by the large accretion rate. The

star formation rate, and hence the rate of metal production, takes some time to adjust

to the new accretion rate while gas builds up in the ISM. It therefore takes some time

before metal production can ‘pollute’ the large supply of low-metallicity infalling gas
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and return to the equilibrium Z† = 1, wherein for every unit of new clean gas added to

the galaxy, star formation provides enough mass in metals to bring it to Z = q+ZIGM .

Similarly, if the accretion rate decreases suddenly, the rate at which metals are pro-

duced exceeds the rate necessary to pollute the new, smaller, supply of accreting gas,

and the metallicity of the ISM increases until star formation and galactic winds can

burn through the gas reservoir, allowing the galaxy to adjust to a lower rate of star

formation (and hence metal production).

Immediately after a change in the accretion rate, i.e. in the limit that ∆� 1,

Z†(∆) ≈ Z†(0) + (1− Z†(0)eσxk/Ψk)∆ (2.21)

Thus we can see that immediately following a change in accretion rate, whether the

metallicity will increase or decrease depends only on the ratio Z†(0)eσxk/Ψk. When this

number is greater than unity, because the metallicity is high and/or the new accretion

rate is larger than the present mass-loss rate, the metals will be diluted, whereas if this

number is less than one, e.g. in a low-metallicity galaxy and/or one facing a sudden drop

in accretion rate, stars will be forming fast enough to pollute the gas reservoir. This

relation demonstrates the basic physical mechanism which gives rise to the the mass-

star formation-metallicity plane in our model, but also shows that this is a statistical

relation only. A higher accretion rate (and hence an increasing star formation rate) is

not guaranteed to produce a lower metallicity

We can solve for the maximum deviation from Z† = 1 if the galaxy begins in
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equilibrium, namely Z†(0) = 1. In this case,

Z†extreme =
(rk − 1)(1 +W0((rk − 1)/e)

rk − 1 + exp(1 +W0((rk − 1)/e))
(2.22)

where W0(x) is the Lambert W function, namely the real solutions to y = W0(y)eW0(y).

As in the previous section, we can construct a recursion relation by setting

∆ = τc in equation 2.20. As with the mass loss rate, we see that the metallicity at the

switches in accretion rate is given by a sum wherein the effects of long-past accretion

are exponentially suppressed,

Z†k = Z†0

k−1∏
i=0

ri
ri + eτc − 1

(2.23)

+
k−1∑
i=0

eτc − 1 + τc(ri − 1)

eτc − 1 + ri

k−1∏
j=i

rj
eτc − 1 + rj

Since rk > 0 and eτc > 1, each factor in both of the products is guaranteed to be between

0 and 1 – for a median value of rk = 1 each factor becomes e−τc . In that sense this

equation is very similar to equation 2.9 for Ψk. We show how Z† is constructed in figure

2.5 – in addition to the full distributions of Z† and Z†k, we show the distributions for

galaxies with Ψ in the top and bottom quartiles of galaxies with those values of σ and τc.

As in figure 2.2, previous terms in the sum recede into irrelevancy over the course of a few

star formation times. There are, however, crucial differences between the construction

of Z†k and Ψk. To construct Ψk, independent lognormal variables were added together

to get another quantity which was roughly lognormal. Here on the other hand, even

though an individual ri is indeed roughly lognormally distributed (since rk = Ψk/e
σxk
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Figure 2.5: The construction of Z†. For the same parameters shown in the previous
figures, we plot the PDF of Z† (solid line), the approximation to it using Z†k (equation
2.23), and we also split the probability distribution into galaxies with high (low) star
formation rates in blue (red). We can immediately see that high metallicity galaxies
tend to have low star formation rates, though the probabilities do overlap substantially.
Light blue and red lines show the PDF of the contributions to Z†k, split into the top and
bottom quartiles in star formation rate, from old terms in the summation of equation
2.23. As with Ψ, the probability distribution of Z† may be thought of as the sum of a
series of random draws wherein the influence of older draws is exponentially forgotten,
although galaxies which end up in the blue (red) bin at the present time are likely to
have had preferentially higher (lower) SFRs in the past, at least for τc

<∼ 1. Unlike with
Ψ, Z† becomes noticeably non-log-normal for larger values of τc, since galaxies sampled
at a random time are likely to be near the equilibrium value Z† = 1, regardless of the
accretion rate.
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Figure 2.6: The width of the mass-metallicity relation. Each pixel represents an ensem-
ble of galaxies with fixed τc and σ, wherein the metallicity Z was measured for each
galaxy at a random time. The standard deviation of logZ/Z� in each bin is plotted
above. Longer coherence times (upwards in the plot) allow the galaxies to equilibrate
so that Z approaches Zeq (a constant value regardless of the accretion rate). Coherence
times shorter than the mass loss timescale, i.e. log10 τc

<∼ 1, lead to a reduction in the
scatter roughly in proportion to τc – individual draws from the accretion rate matter
increasingly less. Larger intrinsic scatters (rightward in the plot) negate this effect by
making large accretion events typical.
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and Ψk is roughly lognormal), it is not the ri’s being summed, but rather a more

complicated function of ri and τc. Moreover, the ri are not independent of each other.

Perhaps worst of all, since Z† does not monotonically approach its equilibrium value

each time the accretion rate changes, but rather increases to Z†extreme before returning

to Z = Zeq, Z
†
k becomes a bad approximation of the full distribution of Z† when τc

>∼ 1

(though eventually, for τc � 1, the probability distributions of Z† and Z†k both approach

δ(Z† − 1)).

Despite these difficulties, we can see that p(Z†) ≈ p(Z†k) for shorter accretion

times, and we can also begin to see that Ψ and Z† are anti-correlated. Galaxies which

have Ψ in the top quartile of their ensemble tend to have lower metallicities. This is

a very simple physical effect, namely the competition between dilution of metals by

new infall and pollution of metals by stellar evolution. If the galaxy is burning through

excess gas from previous accretion events (rk > 1), the metallicity will increase as the

gas reservoir is polluted, whereas if the galaxy is accreting more gas than it is losing

(rk < 1), the star formation rate is slow enough that new gas is added faster than metals

can be produced to pollute it. Using the same Monte Carlo simulations used to produce

figure 2.3, we can explicitly show the correlation between log Ψ and logZ (figure 2.7),

defined in general according to

Corr(X,Y ) =

∑
i(Xi − X̄)(Yi − Ȳ )√(∑

i(Xi − X̄)2
) (∑

j(Yj − Ȳ )2
) , (2.24)

where each sum is over all galaxies in the ensemble and X̄ indicates an average over the
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Figure 2.7: The correlation between Ψ and Z/Z�. For small scatters and rapid vari-
ability in the accretion rate, the star formation rate and metallicity are substantially
anti-correlated. Increasing the coherence time allows galaxies to return to their equilib-
rium Z regardless of the accretion rate, wiping out the anti-correlation.
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ensemble. The correlation is strongest in the ‘linear regime’, namely small rapid pertur-

bations. When the coherence time exceeds a few star formation times, the correlation

disappears – Z† is always close to unity regardless of the accretion rate. The correlation

also weakens as the intrinsic scatter in the accretion rate increases.
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Figure 2.8: The “slope of the FMR”. For each τc and σ we fit a linear model to the
scatter plot of log10 Ψ vs log10(Z/Z�) of all galaxies drawn from the distribution, and
plot the resulting slope here. We find uniformly that the slope is negative, though for
the same reasons mentioned in the plot of the correlation between these two variables,
the slope flattens for large values of τc, and to a lesser degree, for large values of σ.
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2.4 Construction of Galaxy Scaling Relations – an initial

guess

The results we have derived thus far, namely the joint probability density of

Ψ and Z†, are applicable only at fixed values of µ, σ, tcoherence, tloss, ZIGM , and q. We

refer to an ensemble of galaxies with fixed values of these parameters as a simple (or

stationary) galactic population (SGP). As we saw in the previous sections, the only

variables which affect the joint distribution of Ψ and Z† are σ and τc = tcoherence/tloss.

However, to compute physical quantities, i.e. the star formation rate, the metallicity,

etc., one must specify the other variables.

The power of our approach using SGPs is that, to a reasonable approximation,

the properties of a star-forming galaxy are set by a single parameter having to do

with the size of the galaxy (e.g., stellar mass, halo mass, or K-band luminosity). One

could therefore hope that, at a fixed stellar mass, the population of galaxies may be well-

described by a single SGP. Essentially, all of the scalings of mass loading factor, accretion

rate, etc. which account for the slope and zero-points of galaxy scaling relations would

be taken out, leaving only the intrinsic scatter.

Here we make an educated guess as to how to map the dimensionless model

presented in the first few sections of this paper to observable galaxy scaling relations.

Although alternative assumptions may be preferred by other practitioners, we hope this

exercise will be at least illustrative. In section 2.4.1 we use results from N-body-only

dark matter simulations to make guesses for the parameters of the accretion process:

µ, σ, and tcoherence. Each of these parameters thereby has a predicted scaling with halo
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Table 2.1: Important parameters used in Chapter 2
Parameter Description

The accretion process
µ The log base e of the median baryonic accretion rate.
σ The log-normal scatter in the (DM and baryonic) and accretion rate

∆ω The scale-free time step taken to generate accretion histories
tcoherence The time over which the accretion rate is constant before a new random value is drawn.

ε The fraction of fbṀDM which reaches the gas reservoir
fε A fixed fraction by which the baryonic accretion rate may be reduced – fixed by 1st order scaling relations

ZIGM Metallicity of infalling baryons, fixed at 2× 10−4

Star Formation

ṀSF The star formation rate
Mg The gas mass available to form stars
η The ratio of mass lost in galactic winds to stars formed – fixed by 1st order scaling relations

tdep The depletion time, Mg/ṀSF – fixed by 1st order scaling relations
fR The remnant fraction - fraction of mass not returned to the ISM from a simple stellar population, fixed at 0.54
tloss The loss time, i.e. the timescale on which the reservoir is depleted, tdep/(η + fR)
y Mass of metals returned to the ISM per mass locked in stellar remnants, fixed at 0.054
ξ Metallicity enhancement of galactic winds, fixed at 0 (perfect mixing)
q A combination of y, fR, ξ, and η we call the effective yield

Stationary Galactic Population (SGP) Parameters
τc tcoherence/tloss – an input to the SGP
σ10 This is the same σ as above, but divided by ln 10 – an input to the SGP
Ψ The ratio of the mass loss rate (Mg/tloss) to the median accretion rate eµ – an output of the SGP
Z† The metallicity of the gas reservoir, subtracting out ZIGM and normalizing to q – an output of the SGP
xk For a given galaxy, the kth draw from a standard gaussian, which sets the accretion rate.

Other sources of scatter (see especially section 2.5.1)
σlog10M∗ Log-normal scatter added to M∗(Mh), assumed uncorrelated with anything else
σlog10 tdep Log-normal scatter added to the depletion time

σlog10 η Log-normal scatter added to the mass loading factor η
σµ Gaussian scatter in µ. This is like including a stochastic component whose coherence time � tloss.

35



mass and redshift. In this procedure we leave one free parameter fε, a constant less

than unity, to describe how much the accretion rate is reduced below this guess. We

then adopt the assumptions that y = 0.054, fR = 0.54 (appropriate for a Chabrier

(2005) IMF with yields from solar metallicity stars Maeder (1992) – see appendix A of

Krumholz & Dekel (2012)), ZIGM � 0.02, and ξ = 0. To fully specify the SGP model,

the only remaining parameters are η, tdep, and fε. In section 2.4.2, we adopt a value

of fε and powerlaw scalings of tdep and η with halo mass such that we fit three galaxy

scaling relations: M∗ vs. SFR, Z, and Mg/M∗. To do so we need to assign a value of M∗

to each halo mass, for which we take the Behroozi et al. (2013a,b) relations with a fixed

log-normal scatter of 0.19, consistent with various observational constraints (Behroozi

et al., 2013a; Reddick et al., 2013).

With all of these parameters specified as a function of halo mass and redshift,

we can construct synthetic versions of these galaxy scaling relations, including their

intrinsic scatter, and the higher-order fundamental metallicity relation, Z(M∗,SFR).

Section 2.4.3 describes how we take the synthetic relations and extract three higher-

order quantities which we will use to constrain our model: the scatter in the MS, the

scatter in the MZR, and the “slope” of the FMR, namely the logarithmic derivative of

the metallicity with respect to the star formation rate at fixed stellar mass. These three

quantities can then be compared directly to observations, which allows us to rule out

our initial guess, and non-trivially constrain σ, tcoherence, and other potential sources of

scatter (section 2.5.1). The parameters used throughout the paper are summarized in

table 4.1.

36



2.4.1 Baryonic Accretion

As is often the case for modellers of galaxies, we will begin with the dark

matter. For the purposes of this simple model, we will rely on the EPS-like (Press

& Schechter, 1974; Sheth & Tormen, 1999) formalism presented in Neistein & Dekel

(2008) and Neistein et al. (2010). From this we will derive approximations for µ, σ,

and tcoherence. For a WMAP5 cosmology, Neistein et al. (2010) can fit the cumulative

mass function of halos found in an N-body simulation if they construct halo accretion

histories according to

∆S = exp(µp + xσp) (2.25)

where x is a standard normal drawn at a fixed interval ∆ω, and

µp = (0.132 log10 S + 2.404) log10(∆ω) + 0.585 log10 S − 0.436 (2.26)

σp = (−0.333 log10 S − 0.321) log10(∆ω) + 0.0807 log10 S + 0.622 (2.27)

In these equations, S is a measure of the amplitude of the dark matter power spectrum,

and ω is a measure of time, similar to redshift.

Note that in general µp 6= µ and σp 6= σ because these refer to the mean and

scatter in S-ω, rather than M -t space. To compute an estimate of the accretion rate,

we take a grid of Mh and z – for each Mh we can compute S and draw a large number

of ∆S values, from which we can compute ∆Mh, the change in halo mass. For each z

we can compute ∆t, the time between the current redshift and a time ∆ω earlier. We
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then approximate each baryonic accretion rate as

Ṁext ≈ fbε
∆Mh

∆t
(2.28)

From our ensemble of ∆Mh, we can approximate µ and σ as the mean and standard

deviation of ln Ṁext. We note that the distribution of Ṁext is not guaranteed to be log-

normal, and this procedure produces distributions with non-zero skew and kurtosis in

ln Ṁext. We neglect this non-gaussian component and approximate Ṁext as lognormal,

keeping in mind that this is merely a guess at the true baryonic accretion rate. We take

the efficiency factor to be

ε = fε min(0.31(Mh/1012M�)−0.25(1 + z)0.38, 1.0), (2.29)

where we leave fε < 1 a free parameter to be fit in the next section. The remaining

factors come from the fitting formula of Faucher-Giguère et al. (2011), which accounts

for the suppression of accretion in high-mass halos presumably due to hot virialized gas.

We estimate tcoherence by the fact that in the dark matter simulations, the

merger trees become non-Markov for ∆ω <∼ 0.5, indicating that the accretion rates over

time intervals shorter than that are correlated (Neistein & Dekel, 2008). We therefore

use

tcoherence ∼

∣∣∣∣∣
(
dω

dz

)−1 dt

dz
∆ω

∣∣∣∣∣ , (2.30)

with ∆ω = 0.5. Obviously this is only a rough estimate, since a real accretion history

is likely to have more structure in Fourier space than the single period we assume here.
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We encourage those with cosmological simulations to measure this quantity, both in

dark-matter only and baryonic simulations. Another plausible value for tcoherence might

be the dynamical time of the halo, or some other timescale related to the baryon cycle.

This choice might be appropriate if the primary supply of gas is re-accreting winds.

2.4.2 Fitting the first-order relations

To compute τc and re-dimensionalize the SGP, we still need to know the mass-

loss timescale, i.e. the depletion time and η, as well as ξ. These values are sufficiently

uncertain that it is worth digressing to discuss how they may be chosen to fit the

first-order galaxy scaling relations, namely the star-forming main sequence, the mass-

metallicity relation, and the stellar mass-gas mass relation.

To compare our model with many galaxy scaling relations, computed as a

function of stellar mass M∗, we must pick an M∗. Since our model is purely equilibrium-

based, we have no way to compute integrated quantities like M∗ besides appealing to

other empirical relations. We employ the Behroozi et al. (2013a,b) model of the relation

between stellar mass and halo mass, including a scatter in stellar mass at fixed halo mass

of 0.19 dex (Reddick et al., 2013). Another common approach is to simply use M∗ rather

than Mh (Lilly et al., 2013) as the parameter by which to scale the SGP parameters (η,

ξ, etc.)

In a standard equilibrium model (Davé et al., 2012), the ‘center’ of a galaxy

scaling relation may be determined by setting time-derivatives to zero. For instance,
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setting dMg/dt = 0 yields an equilibrium star formation rate

ṀSF,eq = Ṁext/(η + fR). (2.31)

Immediately we can see the critical importance of two unknown pieces of physics –

anything which displaces the baryonic accretion rate Ṁext away from the naive estimate

fbṀDM (e.g. preheating, halo quenching, AGN heating), and anything which removes

gas from the star-forming gas reservoir of the galaxy (supernovae, radiation pressure,

cosmic rays, or direct AGN). Typically the former are invoked at high mass and the

latter at low mass.

Interestingly, the depletion timescale does not enter into ṀSF,eq. This is be-

cause the gas mass is free to adjust to whatever it needs to be so that inflowing gas is

balanced by sinks for the gas – old stellar remnants and galactic outflows. For instance,

a longer tdep would simply mean a larger gas mass would be required to reach the same

equilibrium between inflows and sinks.

Mg,eq = ṀSF,eqtdep = Ṁexttloss (2.32)

Thus we can see that star formation rates can only be affected by physics which alters

the star formation timescale (e.g. H2 regulation Krumholz & Dekel, 2012) to the degree

that the galaxies are out of equilibrium. These physical considerations do, however,

affect the equilibrium size of the gas reservoir.

If we make the additional restriction that dZ/dt = 0, we arrive at the equilib-
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rium metallicity

Zeq = ZIGM + q = ZIGM +
yfR
fR + η

(
1− ηξ

max(1− fR, η)

)
. (2.33)

The metallicity is a particularly powerful probe of feedback physics because Zeq is

independent of the accretion rate, meaning that “preventive feedback” or any other

considerations which affect Ṁext do not affect the first-order mass-metallicity relation

(MZR) – essentially all that matters are η, the mass loading factor, and ξ or some other

measure of the mixing between ejecta and the ISM. The drawback of using the MZR

is that it is bedeviled by large systematic uncertainties in converting characteristics of

metal emission lines into actual gas-phase metal abundances (Kewley & Ellison, 2008).

Given these equilibrium relations, we attempt to find powerlaw scalings of η

and tdep, and a constant value of fε, which will roughly fit the observed galaxy scal-

ing relations. This leads us to take fε = 0.5, η = (Mh/1012M�)−2/3, and tdep = 3

Gyr (Mh/1012M�)−1/2, as described below. These fits were done by hand, which is

reasonable given the uncertainties in the mean relations.

To approximately fit the centers of the observed z = 0 main sequence, we

had to use a steep scaling of the mass loading factor with halo mass, namely η =

(Mh/1012M�)−2/3. This is a result of the short cooling times and/or cold streams

in low-mass halos which efficiently supply cold gas at a rate proportional to the dark

matter accretion rate, which is much larger than the observed star formation rate in

these galaxies. That is, ε is large for low-mass galaxies in our initial guess. If low-mass

galaxies are in statistical equilibrium, these large values of η are necessary. It is possible
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that some other physical process is decreasing ε at these masses, or that the galaxies are

not in equilibrium (Krumholz & Dekel, 2012; Kuhlen et al., 2012, 2013). In the latter

scenario, η may vary quite weakly, leaving the mass loss timescales at low masses to be

comparable to the depletion times, themselves comparable to or much longer than the

age of the universe. We discuss this possibility further in section 2.5.2, but for now we

adopt η ∝M−2/3
h .

We do not fit the MZR particularly well in this simple model (see figure 2.9).

That is, most calibrations of the MZR are not well-described by the powerlaw in Mh

we assume here. This is not extremely concerning given the systematic uncertainties

in the observations. The scaling of η needed to fit the star-forming main sequence

does leave the MZR in the right neighborhood, without adjusting the fiducial values of

ZIGM = 2× 10−4 ≈ Z�/100, ξ = 0, or fε and η.

In contrast, the gas fraction data are fit remarkably well by our fiducial scalings.

Given the reasonable fit of the SFR-M∗ relation, we were left with one parameter to

vary to fit Mg/M∗ − M∗, namely tdep. Despite the (lack of) trends from the GASS

(Schiminovich et al., 2010) and COLD GASS (Saintonge et al., 2011) surveys in the total

gas depletion time with mass, we find that we need tdep =3 Gyr (Mh/1012M�)−1/2. Since

η scales even more steeply, the mass loss timescale actually shortens with decreasing

halo mass in this scenario, scaling as tloss ∝M
1/6
h .

The result of applying these scalings is shown in figure 2.9. For each Mh below

1012.3M� provided in the Behroozi et al. (2013a,b) M∗(Mh) relation, we apply the

scalings above to compute the necessary physical parameters to specify the SGP, draw
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Figure 2.9: Scaling relations. We compare observed galaxy scaling relations and their
scatters (colored lines) with scaling relations (black lines) calculated by drawing galaxies
(colored points) from a sequence of SGPs using reasonable guesses of how the SGP
parameters scale with halo mass. The left panel is our initial guess, while the right panel
shows an improved guess which better fits the observational constraints on the scatter
in these relations. In particular, the initial guess yields a model MS with intrinsic width
wider than the observed scatter, while the improved guess has a much small intrinsic
scatter. The colors indicate offset from the Main Sequence, namely the black dashed line
fit in the top panel. PS11 refers to Peeples & Shankar (2011), and T+04 and PP04 refer
to metallicity callibrations used by Tremonti et al. (2004) and Pettini & Pagel (2004).
The Mg/M∗ data come from McGaugh (2005); Leroy et al. (2008); Garcia-Appadoo
et al. (2009).
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Table 2.2: The two reference models we use to
generate synthetic galaxy scaling relations and
FMRs

Initial Guess Improved Guess

σ (dex) 0.45 0.225
∆ω 0.5 0.2

σlog10 M∗ (dex) 0.19 0.07
σlog10 tdep (dex) 0 0

σlog10 η (dex) 0 0
σµ (dex) 0 0.08

300 samples from the SGP, and assign each one a stellar mass according to M∗(Mh), plus

a fixed scatter, σlog10M∗ = 0.19 dex. The resultant population of galaxies, as designed,

fits various observational constraints at z = 0, represented in each figure by the various

colored lines (which include representative scatters) from Peeples & Shankar (2011).

The black lines show power law fits and the computed ±1σ scatter of the population.

The observational fits are not necessarily precise, and in particular the mass-metallicity

relation famously has many different fits depending on which calibration is used (Kewley

& Ellison, 2008). The two columns in figure 2.9 have the same scalings of tdep, η, and

q, but different values of σ, ∆ω, and σlog10M∗ . The left column shows the initial guess

discussed here and in the previous section, while the right column has values of the

accretion process parameters more in line with observations (the “Improved Guess”

model – see table 2.2 and sections 2.4.3 and 2.5.1).

It is worth emphasizing that fitting or not fitting the observed relations should

be construed neither as success nor failure for our model – the equilibrium relations

(equations 2.31, 2.32, 2.33) have enough free parameters that fitting the observations

is not challenging. However it is encouraging that relatively little tuning was required

for reasonable fits, and that we end up with models with a reasonable physical basis
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(energy-driven winds for η ∝ M
−2/3
h , long depletion times at low masses owing to low

H2 fractions, η of order unity and tdep of order 3 Gyr at high masses).

2.4.3 Information in the scatter

Now that we have a reasonable fit for the redshift zero median relations, we

can return to our main goal – understanding the higher-order relationships in the data.

In particular, we would like to understand the scatter in the MS and the MZR, and

the (negative) slope implied by the FMR of metallicity with respect to star formation

rate at fixed stellar mass. Now that we have synthetic data, we can follow a simple

procedure to fit a synthetic MS, MZR, and FMR. For the former two, we simply fit a

linear model with least-squares regression to (the log base 10) of SFR vs M∗ and Z vs

M∗. For each synthetic galaxy, we can then subtract off the linear fit for SFR or Z at

that galaxy’s M∗ to find its residual. Finally, the scatter is calculated as the sample

standard deviation of the residuals.

Meanwhile, we fit a synthetic FMR both with a linear model

log10 Z = b0 + b1 log10M∗ + b2 log10 ṀSF. (2.34)

and, as is common practice, a quadratic model1

log10 Z = a0 + a1m+ a2s+ a3m
2 + a4ms+ a5s

2 (2.35)

1Note that the quadratic fits reported in the literature are typically fits to 12 + log10(O/H), whereas
here we are fitting to the metallicity. This only makes a difference in the a0 term, and not to the slope
with respect to the star formation rate at fixed stellar mass, on which we will concentrate.
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Figure 2.10: Information in the scatter of the MS and MZR. Here we show contours
extracted from the SGP predictions, namely the values of τc and σ that we would have
predicted given the synthetic scatters and FMR slope. The input values are shown as
colored points near (.45,.8), where colors represent a wide range of halo mass. If we
artificially reduce the scatter in M∗ at fixed halo mass (right panel), the SGP predictions
recover the correct input values, but including the scatter (left panel) increases the
synthetic scatter and flattens the FMR slope.

Here m = log10M∗/M�−10 and s = log10 ṀSF/(M� yr−1). From the linear fit, we can

read off a value for ∂ log10 Z/∂ log10 ṀSF at fixed M∗, namely b2. For the quadratic fit,

the slope is a function of both mass and ṀSF.

For all three of these quantities – the two scatters and the (logarithmic) slope of

Z vs ṀSF at fixed stellar mass, we can compare both to observations and to predictions

from the full joint distribution of Ψ and Z† by a single SGP (figures 2.3, 2.6, and 2.8).

The scatters in the MS, MZR, and FMR are not identical to that in a SGP because the

relationship between stellar and halo mass also has some scatter. Thus a population of

galaxies at fixed M∗ represents a weighted sum of SGPs.

Thus there will be additional scatter in these synthetic observations, as com-
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pared to the SGP predictions. This is illustrated in figure 2.10 – we compare the input

values of τc and σ (the colored points, nearly on top of each other) to contours ex-

tracted from the heatmaps. In particular, given the synthetic scatters and FMR slope,

we can read off from the SGP figures values of τc and σ which are consistent with these

synthetically-observed values. When we artificially set σlog10 M∗ = 0, these contours con-

verge at the input values, but including the scatter in M∗ flattens the FMR slope and

increases the scatter in the MS and MZR, leaving a general region in τc - σ space where

the contours are close to each other, but no trivial way to recover the input values.

This at once shows both the promise and the difficulty of using observed second

order relations to predict these parameters. The constraints are largely independent of

each other, so one could hope to nontrivially constrain the acceptable values of σ and

τc. However, additional sources of scatter not included in the simple dimensionless SGP

predictions can make it difficult to recover the values of these parameters simply by

reading off where the contours intersect in this diagram.

Nonetheless, this diagram (figure 2.10) and the associated SGP predictions

(figures 2.3, 2.6, and 2.8 ) provide some heuristic guidance. We see that in this parameter

space, the input values of σ and τc are nearly independent of halo mass. This means

that the fiducial model would predict no change in the scatters of the MS or MZR, nor

any change in the slope of the FMR, which is roughly consistent with observations. We

also see that to reduce the synthetic scatter to below the observed scatter, <∼ ± 0.34

dex (Whitaker et al., 2012) for the MS and <∼ ±0.1 dex (Kewley & Ellison, 2008) (both

of which may be regarded as upper limits on the intrinsic scatters), we could reduce the
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input accretion scatter, σ, or dramatically reduce the coherence time (and therefore τc).

Our “Improved Guess” model adjusts the initial guess to reduce the two scatters and

steepen the FMR slope. In particular we reduce σ by a factor of two and ∆ω in our

estimate of tcoherence to 0.25 (see next section).

2.5 Discussion

In the previous section we set up a fiducial set of assumptions to map the

stationary galactic populations of sections 2.2 and 2.3 into observable parameters. We

were easily able to match the first-order relations, but our first guess produced scatters

in our synthetic MS and MZR that were too large. In this section we examine in

more detail the full range of SGP-based models that are consistent with the observed

constraints on the scatters in the MS and MZR and the slope of the FMR, and the

range of halo masses and redshifts over which SGP-based models are valid in principle.

2.5.1 A more general model – do all galaxies at a fixed Mh correspond

to one SGP?

The analysis of SGPs in sections 2.2 and 2.3 explicitly assumes that a given

galaxy has had the same values of µ, σ, tloss, tcoherence,ZIGM , and q for eternity. This is

clearly false – galaxies increase their mass over time, moving them along any presumed

scaling relations in e.g. tdep or η, while other quantities likely depend explicitly on time,

e.g. µ and tcoherence. The statistical equilibrium model we have proposed here, and other

simpler models, may still be successful in describing galaxies because these quantities
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plausibly vary slowly relative to the internal timescales of the galaxy, i.e. the loss time.

Whereas the typical equilibrium model assumes this of the accretion rate, our model

relaxes that particular assumption and allows the accretion rate to vary, possibly very

quickly, relative to other timescales.

Our model was constructed with the goal of understanding the scatter in galaxy

scaling relations by examining the role of a known (and significant) scatter in dark

matter accretion rates among galaxies at a given mass. However, it is also plausible that

the mass loading factor, the depletion time, or some other quantity may vary between

galaxies near a fixed mass, or within a given galaxy on relatively short timescales. The

former situation may be handled by our model by having multiple SGPs with different

values of e.g. η at the same mass. The latter situation cannot be handled by SGPs as

we have formulated them.

The scenario in which scatter in η, tdep, or µ is responsible for the scatter in

galaxy scaling relations has several distinct predictions compared to the stochastic ac-

cretion model we have presented. In particular, the scatter, rather than being stochastic,

would be constructed from several nearly parallel, slightly offset, equilibrium relations.

One could likely find acceptable values for the scatter in the SGP parameters which

reproduced the observed scatters, since each equilibrium relation depends on a different

combination of the SGP parameters. Thus one might expect to be able to have eµ vary

by ∼ 0.34 dex, and ZIGM to vary by ∼ 0.1 dex.

This model would indeed produce, more or less, the observed scatters in the

MS and MZR, but it would not account for the decreasing metallicity with increasing
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Figure 2.11: Displacements from first-order scaling relations. Here we show the offset
of galaxies, in both our initial guess and improved guess models, from fits to their Main
Sequences and Mass-Metallicity Relations. The black lines show a linear fit to these
data points, with a 1σ. The colored lines show predictions of these quantities from two
different fits to the z = 0 FMR using different metallicity calibrations, with thicker lines
corresponding to larger values of M∗. Here we can see the slight, but significant observed
and predicted anti-correlation between star formation rate and metallicity. Note that
to fill out this histogram we drew a sample of 100 times the number of galaxies shown
in figure 2.9
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star formation rate at fixed stellar mass (see figure 2.11), i.e. what we call the ‘slope’ of

the FMR. In particular, the equilibrium metallicity is independent of the accretion rate,

and the star formation rate is independent of ZIGM (at least in this simple model), so

there would be no slope in the FMR. The situation gets even worse with a scatter in η,

since both the equilibrium SFR and Z are inversely related to η, which would tend to

create a positive slope in the FMR. Similarly, a scatter in M∗ at fixed halo mass tends

to induce a positive slope – at a given M∗, galaxies from higher halo mass and lower

halo mass will be present, and because both the MS and MZR have positive slopes, the

higher (lower) halo mass galaxies will have higher (lower) SFRs and Zs, again leading

to a positive slope in the FMR.

Given the difficulty in obtaining a negative FMR by adding scatters in the

parameters which enter the equilibrium relations, compared with the natural way the

negative slope arises in our statistical equilibrium model, via a time-varying accretion

rate, it certainly seems that no alternative model is needed. In fact, by enforcing the

requirement that ∂ logZ/∂ log ṀSF < 0, we may be able to obtain limits on the scatter

in parameters (M∗, η) which tend to make the slope in the FMR positive.

To accomplish this, we set up a 6-dimensional grid of models. Each point in

the grid corresponds to a choice of σ, log10 ∆ω, scatter in M∗, scatter in tdep, scatter

in η, and scatter in eµ. For each point in the grid, we simulate a full set of galaxies –

200 per value of Mh < 1012.3M�, and compute the scatter in the MS and MZR and the

slope in Z vs SFR at fixed M∗. We then compare each of these pieces of information to

the observations in a maximally conservative way. We treat the observed scatters in the
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Figure 2.12: Slope in the FMR. For both our improved and initial guesses, as well as
the two fits to the z = 0 FMR using different metallicity calibrations, we show the slope
in the metallicity with respect to the star formation rate, as a function of stellar mass.
Since the FMR fits depend explicitly on Ṁ2

SF, we must also choose a star formation rate
at which to evaluate this quantity. We choose the main sequence value at that mass
(as determined by our fit to the main sequence of our initial guess model), which we
plot as the solid lines, and ±0.3 dex, the dashed lines. The two different calibrations
predict substantially different values, so to be maximally conservative we have chosen
to interpret the observational constraint as ∂ logZ/∂ log ṀSF < 0, a fact on which both
observed relations agree.
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MS and MZR as upper limits on the intrinsic scatters, and make no assumptions about

the purely observational scatter. Although there is an observationally known value of

the slope of Z vs SFR at fixed M∗, we make no strong assumptions about the probability

distribution function of that parameter – we merely require that it is negative (see figure

2.12). Thus for each point in the grid, we can say how many constraints that model

violates: 0, 1, 2, or 3.

In figure 2.13, we project these scores, again in a maximally conservative way.

For each point in the 2-d projection, we look up all models in the full 6-d space which

have the 2 values under consideration in our projection, and we find the model which vi-

olated the fewest constraints. Thus the figure shows the minimum number of constraints

violated by any model with that combination of values. If any model with those coor-

dinates is allowed by the constraints, the pixel is shown in blue. Each darker shade of

red means every model with those coordinates violated at least one more constraint, up

to all 3.

This exercise demonstrates that even this conservative interpretation of the

observed scatters as upper limits, combined with the weak requirement that Z decrease

with increasing SFR at fixed stellar mass, yields non-trivial constraints on the param-

eters. In particular, σ <∼ 0.35 dex, smaller than in our fiducial model. This may point

to a smoothing out of the baryonic accretion rate relative to the scatter in dark matter

accretion rates implied by the Neistein et al. (2010) formula. Perhaps even more inter-

esting is that there is a minimum σ implied by our observational restrictions, σ >∼ 0.1

dex, which comes from the requirement that the FMR have a negative slope. In par-
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Figure 2.13: The set of parameters conservatively allowed by the observations. In
addition to the parameters of the accretion process (σ10, and ∆ω) we include a variable
log-normal scatter in η, M∗, tdep, and the median accretion rate eµ. These log-normal
scatters have medians equal to the values used in section 2.4.2 to fit the first order
relations. Blue pixels indicate that at least one model with that pair of parameters is
consistent with the data. Each darker shade of red means the model which violates the
fewest constraints for that pair of parameters violates one more constraint, up to all
three. The white cross shows our initial guess, while the green ’+’ shows our “Improved
Guess”.
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ticular, if σ is too small, the subtle feature in the M∗(Mh) relation causes both the

star formation rate and metallicity of galaxies with M∗ ∼ 109M� to be higher than the

MS and MZR, and galaxies at other masses to be below those relations, generating a

positive correlation between SFR and Z.

The scatter in M∗ for a given SGP must be <∼ 0.15 dex. This is a bit at

odds with the observational constraints from (Reddick et al., 2013) (0.20± 0.03 dex at

fixed maximum circular velocity), although we note that our constraint is on scatter in

M∗ that is uncorrelated with everything else in the SGP, whereas in reality it is quite

plausible (and in fact predicted by the SGP – see appendix 2.7) that, at a fixed halo

mass, M∗ is correlated with both SFR and Z.

Another interesting constraint is that the scatter in η must be <∼ 0.1 dex.

This is surprisingly small, considering the great deal of theoretical uncertainty as to the

actual values and scalings of η in the first place. In our models, this comes from the

aforementioned effect that in the equilibrium relations, both Z and ṀSF are inversely

related to η, so scatter in η tends to reverse the negative slope in the FMR.

Unsurprisingly, there is virtually no constraint on the scatter in tdep. This

is simply because the equilibrium relations for ṀSF and Z are independent of tdep –

to constrain this scatter one would need constraints on the scatter in the M∗ - Mg/M∗

relation, although if such galaxies also had SFR measurements, they would have directly

measured depletion times anyway. There is also relatively little constraint on scatter in

the median accretion rate, eµ. Essentially this is because, in the equilibrium relations,

only the star formation rate is affected by this scatter, so as long as the scatter in eµ is
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smaller than the scatter in the main sequence, there is no problem.

With these constraints in mind, we have altered our initial guess, simply by

reducing σ, ∆ω, and σlog10 M∗ , and slightly increasing σµ (see table 2.2). We label

this model the “Improved Guess” model. Purely for demonstration, we have also com-

puted scores for the grid of models where we include not only an upper limit on the

scatters, but also a much narrower range of acceptable slopes of the FMR, namely

−2 < ∂ logZ/∂ log ṀSF < −1. With these stronger restrictions, we get the projections

shown in figure 2.14. Our “Improved Guess” model is engineered to adhere to this

much stronger constraint, though there are plenty of models which would be ruled out

by this strict scoring that are still consistent with the observations. Unsurprisingly the

stronger constraint dramatically narrows the range of acceptable models in most of the

projections. Particularly striking is that allowed range of ∆ω ∼ ∆z, the interval in

redshift over which galaxies have constant accretion rates in our model, is narrowed

substantially from ∆ω <∼ 3 to ∆ω <∼ 0.4

2.5.2 Domain of applicability

Under what circumstances might a real population of galaxies be in statistical

equilibrium? We know that for a constant accretion rate, the star formation rate and

the metallicity will equilibrate on the mass loss timescale. A standard equilibrium model

therefore requires that tloss be much less than the timescale on which any parameter

entering into the equilibrium relations, namely q (i.e., η, ξ, and fR), ZIGM , tdep and

Ṁext. The success of these models in understanding the first-order trends in galaxy

scaling relations suggests that these requirements, while seemingly numerous, are at
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Figure 2.14: A plausible set of constraints on model parameters. Here we make the
plausible but uncertain assumption that the FMR slope, ∂ logZ/∂ log ṀSF, is between
−2 and −1, in addition to the constraints on the widths of the MS and MZR. As one
might expect, narrowing the allowed range of FMR slopes dramatically reduces the
allowed regions of parameter space. One should not take these regions to be genuine
constraints, but rather to demonstrate the power of the slope of the FMR in constraining
these parameters.
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least marginally satisfied.

Our statistical equilibrium model relaxes one of these restrictions by splitting

Ṁext into a (hopefully) slowly-evolving median eµ and a (potentially) rapidly vary-

ing stochastic component eσx(t). Our formulation of this component introduces two

timescales, tcoherence – the time between new draws from the lognormal distribution,

and σtloss – the time for a 1-σ accretion event to be forgotten by the galaxy.

Figures 2.2 and 2.5 show graphically the exponential suppression of old draws

of the accretion distribution in their influence on the full distribution of Ψ and Z†. In

logarithmic space, the separation between the centers of the distribution of each draw

is just τc = tcoherence/tloss, while the width of each distribution is σ. When σ <∼ τc,

the distributions are well-separated, and we conclude that galaxies may be in statistical

equilibrium so long as tloss is appreciably less than the timescale on which any parameters

of the SGP change (explicitly µ, σ, tcoherence, tloss, ZIGM , and q). Note that tcoherence

itself may well be shorter than or comparable to tloss.

When σ >∼ τc, the contributions from previous draws begin to matter signifi-

cantly for the distribution of Ψ. In this case, the number of draws which are important

increase from ∼ 1 to ∼ σ/τc, so rather than tloss being short, we need σtloss to be short.

At least in our initial guess, shown in the previous section, this is a minor effect since

σ ∼ 1. Therefore the region of Mh-z space where the statistical equilibrium model is

valid should be comparable to the region where an ordinary equilibrium model is capa-

ble of reproducing the first-order galactic scaling relations, which in turn is set by the

scaling of tloss with halo mass and redshift.
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In our fiducial model presented in the previous section, star-forming galaxies at

every halo mass were in equilibrium at z = 0. As we mentioned, this is not necessarily

the case in the real universe - the mass loading factor may well scale weakly with

halo mass, in which case low-mass galaxies, with their long depletion times, would

be unable to equilibrate to their baryonic accretion rate even in a Hubble time. Either

scenario is currently perfectly consistent with observations, since the mass loss timescale

is unknown, owing to its dependence on η. In figure 2.15 we show regions of Mh-z space

where the equilibrium assumptions are valid – the bluer the color, the better-satisfied the

condition that the Hubble time be much longer than teq, the maximum of the mass-loss

time (tloss), the coherence time (tcoherence), and the burn-through time (σtloss).

To construct these diagrams, we also need to make an assumption regarding

how input parameters vary not only with halo mass, but with redshift. We assume that

the mass loading factor and the factor by which we reduce the efficiency, fε, are inde-

pendent of redshift, but that the depletion time scales as tdep ∝ (1 + z)−1, a somewhat

weaker scaling than if the depletion time scaled with the dynamical time (Davé et al.,

2012). This scaling is consistent with recent observational results from CO observations

at high redshift (Tacconi et al., 2010, 2013; Saintonge et al., 2013), though of course

there are large uncertainties. Moreover, these observations span a very limited range of

mass and redshift compared to that shown in these diagrams. We therefore emphasize

that these plots represent plausible assumptions, not predictions.
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Figure 2.15: The validity of the statistical equilibrium model. Here we show the ratio
of teq to the instantaneous Hubble time, as a function of halo mass and redshift. The
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equilibrium model to be valid. For reference, we overplot the trajectories of 20 haloes as
they grow stochastically, as calculated by equations 2.25, 2.26, and 2.27 with ∆ω = 0.5.
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2.5.3 Evolution with redshift

Since it is plausible that a statistical equilibrium model may be used success-

fully at higher redshift, one may consider extending our analysis beyond the z ≈ 0.1

data we have considered. There are however both theoretical and observational chal-

lenges. First, a great deal of poorly-justified assumptions are required to scale the

fiducial model to higher redshift. Observationally, while there are measurements of

the MS, MZR, and FMR at higher redshift, the metallicity measurements in particu-

lar are fraught with complications arising from the changing set of lines visible from

ground-based telescopes and the uncertainty of converting line characteristics to phys-

ical metallicities in the substantially different environments of high-redshift galaxies.

The high-order quantities we discuss in this paper are therefore both difficult to predict

and measure.

We can nonetheless make the basic point under the assumption that the star

formation rate and metallicity have reached their equilibrium values, the metallicity will

be Zeq = ZIGM +q, where q is a combination of fR, η, and ξ, none of which are expected

to change dramatically with redshift. Thus the MZR should not change with redshift if

galaxies are in equilibrium. Observational studies tend not to find this result. However

given the difficulty in calibrating the zero-point of the MZR even at low redshift, and the

possibility that samples of high-redshift galaxies are biased high in SFR and therefore

low in Z (Stott et al., 2013), we do not believe equilibrium models have been ruled out

at higher redshifts.

Similarly, the slope of the FMR, which one may read off from the quadratic fit
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to the FMR (equation 2.35),

∂ logZ/∂ log ṀSF = a2 + a4m+ 2a5s (2.36)

should be independent of the star formation rate. We therefore predict that in general

a5 ≈ 0, although since m and s are highly correlated, the fact that many best fit models

do not yield a5 = 0 is not necessarily an indication that this prediction is wrong.

We can also describe how the fiducial model, which does not quite fit the data

at z = 0, would scale to higher redshift. The predicted value of σ is not dependent

on redshift, at least for the dark matter. Given our results suggesting that baryonic

processes likely play an important role in smoothing the accretion, it is unclear how

this smoothing process would evolve, so this constant value of σ is highly uncertain.

Meanwhile tcoherence will evolve strongly with redshift, but the quantity which sets the

second-order scatter we consider is τc = tcoherence/tloss. If we assume η at fixed halo

mass does not change, then tloss simply scales as the depletion time, which likely does

decrease significantly towards higher redshift. If they decrease at a similar rate, near

1/(1 + z), then τc is unlikely to evolve very much. In this scenario, we would predict

that the scatter in the MS and MZR, and the slope in the FMR at fixed stellar mass

would be roughly independent of redshift (and as evidenced in figure 2.10, independent

of halo mass).
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2.5.4 Relationship to other work

Our model bears a resemblance to several recent papers on equilibrium models

(Davé et al., 2012; Lilly et al., 2013). Our model reduces to a slightly simpler version of

the Davé et al. (2012) model when τc →∞ and σ → 0, i.e. the upper left of the σ − τc

diagrams we showed in sections 2.2 and 2.3.

One of the criticisms of the Davé et al. (2012) model has been its explicit

assumption that dMg/dt = 0. Simple toy models of the growth of galaxies under

various star formation laws, (e.g. Feldmann, 2013) point out that for many galaxies at

redshift zero, dMg/dt < 0. Indeed in our recent work on the radially-resolved evolution

of disk galaxies since z = 2 (Chapter 4), we find that much of the galactic disk for many

galaxies tends to be moderately out of equilibrium between local sources and sinks, with

star formation being somewhat higher than the (local) accretion rate.

The equilibrium model of Lilly et al. (2013) attempts to address this issue by

allowing part of the incoming accretion to build up in the gas reservoir. The price they

pay is that the star formation rate becomes an input to their model rather than an

output. Perhaps even more worrying is that they assume dZ/dt = 0 always, even when

dMg/dt 6= 0. Note that Feldmann (2013) makes a similar argument. As shown by our

sample trajectories in section 2.3, it actually takes Z longer to equilibrate than the star

formation rate, since the metallicity can only equilibrate once the star formation rate

catches up (or falls off) to the accretion rate. It is therefore odd that they assume the

metallicity is in equilibrium while the star formation rate is not. It is only through this

oddity that they are able to fit a second order relation, i.e. the FMR, with their model.
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We consider our model to be both more self-consistent and more powerful, in that we

can generate a scatter in the star formation rate and metallicity, and about the FMR

itself.

Another important result, and to our knowledge the only previous theoretical

attempt to address the scatter in the main sequence, is Dutton et al. (2010). They use a

rather sophisticated semi-analytic model, including cooling from virial shock-heated gas

in a dark matter halo and star formation as a function of specific angular momentum

(i.e., radius) in the disk, although they do not include any way for the gas to change its

angular momentum (as we do in Forbes et al., 2012; Forbes et al., 2014a, i.e. Chapters

3 and 4). They find a significant but small scatter in their model star-forming main

sequence arising from variation in halo concentration, which in turn causes differences

in the mass accretion histories between different galaxies of the same halo mass. Their

model therefore resembles ours in the limit that τc →∞, but σ 6= 0. Our model’s more

flexible treatment of the accretion process and other model parameters (e.g. the mass

loading factor) gives us somewhat more insight on the problem of scatter not only in

the main sequence but also in the MZR and FMR, although of course our model is far

simpler in terms of its treatment of star formation, and we can make no predictions

regarding other important and interesting quantities (Dutton, 2012, i.e. galaxy sizes

and rotation curves).
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2.6 Conclusion

In the past few years, a new view has emerged as a useful way of understanding

galaxies. In this picture, galaxies are in a slowly evolving equilibrium between accretion,

star formation, and galactic winds regulated by the mass of cold gas in their interstel-

lar media. To the degree that the parameters controlling this balance are well-defined

functions of the mass of a galaxy and its redshift, this sort of model may be used to un-

derstand the connection between galaxy scaling relations and these physical parameters,

which are not known from first principles.

In the spirit of these equilibrium models, we have presented a simple model

which relaxes a key assumption in the equilibrium model, namely that the rate at which

baryons enter the gas reservoir varies slowly. A population of galaxies in our model has

been fed by the same stochastic accretion process for eternity, or at least long enough

that the full joint distribution of all galaxy properties has become time-invariant. We

therefore refer to our picture as a statistical equilibrium model, since the individual

galaxies are not in equilibrium, but the population is.

With this model, we study a number of second-order relationships about the

well-known galaxy scaling relations between the stellar mass and the star formation

rate (the star-forming main sequence), and the stellar mass and metallicity (the mass

metallicity relation). We look at the scatter at fixed stellar mass in both of these

quantities, as well as the (anti-) correlation between star formation and metallicity at

fixed stellar mass. Our main conclusions are as follows.

1. Including a stochastic scatter in the accretion rate at the level expected from

65



N-body cosmological simulations naturally produces a scatter in both the star

forming main sequence and mass-metallicity relation somewhat larger than the

observed scatters. The anti-correlation observed between star formation rates

and metallicities at fixed stellar mass is also naturally reproduced.

2. Neglecting the scatter in model parameters, (i.e., the mass loading factor, the

depletion time, the scatter in stellar mass at fixed halo mass, etc.) all second-order

quantities (the scatter in the main sequence, the scatter in the mass metallicity

relation, and the slope in metallicity with respect to the star formation rate at

fixed stellar mass) are determined by only two parameters: the scatter in the

accretion rate, and the ratio of the timescale on which the accretion varies to the

timescale on which the galaxy loses gas mass.

3. Using a maximally conservative interpretation of the available data, we are able

to constrain these two parameters as well as a number of “nuisance” parameters,

namely the scatter in the mass loading factor at fixed halo mass and the uncor-

related scatter in M∗ at fixed halo mass. We find that the log-normal scatter in

the baryonic accretion rate is between about 0.1 and 0.4 dex, moderately smaller

than what we would have predicted based on N-body simulations and assuming

the baryons follow the dark matter. This may point to some process in the halos of

galaxies which smooths out variations in the baryonic accretion rate, or a substan-

tial amount of baryon cycling, which has the effect of averaging out the accretion

rate over a longer time period. We find that the scatter in the mass loading factor

is less than 0.1 dex, remarkably small considering the theoretical uncertainty in
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the details of the physics of feedback. Our constraint on the timescale over which

the accretion rate varies is much weaker, but could be narrowed considerably by

stronger constraints on the Fundamental Metallicity Relation.

We hope that the framework we have presented here motivates new develop-

ment in both theory and observation. On the theory side, tcoherence (or a more so-

phisticated quantity describing the timescales on which accretion varies) and σ may

be measured with some confidence in both dark matter-only and baryonic cosmologi-

cal simulations. Semi-analytic models may be altered to include the appropriate level

of variability in baryonic accretion rates. Meanwhile, we have shown that observable

quantities, e.g., the scatter in the star-forming main sequence, can provide significant

constraints on properties of the baryonic accretion process and the galaxy-to-galaxy

variability of the mass loading factor. Our inferences are, however, limited by our lim-

ited certainty on the intrinsic scatter in the scaling relations we have considered and the

true parameters of the FMR. Pinning down these quantities observationally at a variety

of masses and redshifts may substantially improve our understanding of the details of

baryonic accretion and feedback.

2.7 Details of the Monte Carlo Simulations

Throughout this paper we have presented heatmaps of various quantities as a

function of τc = tcoherence/tloss, and σ10 = σ log10(e). Computing each of these quantities

for the model is typically a non-trivial task which requires a monte carlo simulation, in

which a large ensemble of galaxies is sampled at random times to sample the underlying
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true distribution of the quantity in question for galaxies in this model. Here we describe

the details of these simulations.

For each pixel in these grids of τc vs σ10, we sample an ensemble of 30,000

galaxies. Each galaxy is started at a time τ = 0 with initial values Ψ = Z† = 1,

the equilibrium values for those quantities in the limit σ → 0 and τc → ∞. The

galaxies are then evolved for long enough that, for all practical purposes they forget

their initial conditions (formally our model assumes that the galaxy population has

been undergoing the same stochastic accretion process for eternity, but this is obviously

impractical computationally). To determine ‘long enough’, we use the analytic results

derived in sections 2.2 and 2.3 which show that galaxies forget their initial conditions

with an e-folding time of tloss. We also note that for our distribution to represent

the true long-term steady-state distribution, as discussed in section 2.5.2, galaxies with

large scatters in their accretion rate need to experience enough draws from the accretion

rate distribution that even the tail of the probability distribution of past events has no

influence on the present distribution.

We therefore define a timescale τlong = 1 + τc + σ, i.e. a time guaranteed to

be of order the longest timescale in the problem for any choice of τc and σ. We then

calculate the number of draws from the accretion distribution necessary to simulate each

galaxy out to 15τlong, namely k = 15τlong/τc. We then draw a pseudo-random number

uniformly distributed between 0 and 1, and compute the galaxy’s properties (Ψ, Z†)

at the time τobs = (k + r)τc, where r is the random number. This samples the full

distribution of these quantities for the population of galaxies in steady state. In general
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the computational cost is just proportional to k, since to compute Ψ and Z†, we must

first draw k random numbers and compute the sequence Ψ1, ...,Ψk and Z†1, ..., Z
†
k before

we can calculate those quantities at τobs. Thus the models with short coherence times,

i.e. τc � 1, are the most expensive.

With the 30,000 samples for each of the 41 by 41 points in the grid of σ and

τc, we can then compute each of the quantities shown in this paper – the standard

deviation of Z† and Ψ (independently), the correlation between the two quantities, and

the linear slope. We also record a quantity which may be regarded as a proxy for stellar

mass, defined as

M∗ =

∫ τobs

0
Ψ(τ)dτ (2.37)

Naturally the magnitude of this quantity is, on average, proportional to the amount of

time we let the simulations run, which is chosen subjectively to be >∼ 15τlong. However,

one may expect that any statistical properties which remove the mean may be physically

relevant. In figures 2.16 and 2.17 we show the correlation between our analogs to star

formation and metallicity, and stellar mass. Clearly, over much of parameter space there

is a small but appreciable correlation between each quantity andM∗, meaning that the

tension between our result that σlogM∗
<∼ 0.15 dex and the observational constraint that

the scatter in stellar mass at fixed halo mass be 0.19 dex (Reddick et al., 2013), is not

a large concern. This is because our constraint is on scatter in M∗ that is uncorrelated

with any other quantity, whereas in reality, as in the SGP, the stellar mass may well

be positively correlated with the quantities in question, in which case at least some

of the scatter in M∗ will be along the first-order scaling relations, and therefore won’t

69



Figure 2.16: The correlation between SGP versions of the star formation rate and stellar
mass. The non-zero correlation shows that scatter in stellar mass at fixed halo mass
can drive galaxies along the MS, rather than being merely uncorrelated.

contribute to the scatter in the relation at fixed stellar mass.
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Figure 2.17: The correlation between SGP versions of the metallicity and the stellar
mass. Just as with the star formation rate, the correlation is positive everywhere,
meaning again that scatter in stellar mass at fixed halo mass scatters galaxies along the
MZR.
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Chapter 3

The Age Velocity Dispersion

Relation

3.1 Introduction

In the past decade, observations of galaxies near z ∼ 2 have revealed com-

pelling evidence for the importance of gravitational instability in their dynamics and

evolution. A whole class of galaxies has been observed whose images are dominated

by large luminous clumps of gas (Elmegreen et al., 2004, 2005; Förster Schreiber et al.,

2009), while measurements of the velocity dispersion of such massive star-forming galax-

ies have found values near 50 km/s spread across the entire disk (Cresci et al., 2009;

Genzel et al., 2011). This is difficult to reproduce with supernova feedback, which is

strongest near the centers of galaxies where the star formation rate peaks, and which

is only strong enough to drive velocity dispersions of ∼ 10 km/s (Joung et al., 2009).
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Other forms of stellar feedback may drive turbulence (Thompson et al., 2005; Elmegreen

& Burkert, 2010), but we will concentrate on the case where turbulence is driven by

gravitational instability in the disk.

To a first approximation, the gravitational stability of a thin disk to axisym-

metric perturbations is described by Toomre’s Q parameter Q = κσ/(πGΣ), where κ

is the epicyclic frequency, σ is the 1d velocity dispersion, and Σ is the gas surface den-

sity. The disk is unstable when Q <∼ 1. The importance of gravitational instability in

high redshift galaxies arises from the high cosmological accretion rates they experience,

which drive up the value of Σ (Dekel et al., 2009a). This instability gives rise to clumps

of the sort observed at high redshift. The inhomogenous and time-varying gravitational

field drives turbulence throughout the disk, regardless of the stellar density or supernova

rate. The energy source for these random motions must ultimately be the gravitational

potential of the galaxy, so gas is transported inwards.

Cosmological simulations with sufficiently high resolution (Bournaud & Elmegreen,

2009; Ceverino et al., 2010) successfully reproduce disks in which gravitational instabil-

ity forms clumps and causes the inward migration of material through galactic disks.

Simulations of isolated galaxies (Bournaud et al., 2011; Dobbs et al., 2011a,b) with ini-

tial conditions set such that Q < 1 provide a higher resolution view of such galaxies over

a few outer orbits of the disk. These studies, while illuminating, are expensive, since

they must solve the equations of hydrodynamics in three dimensions over cosmological

times. The model we present here solves the hydrodynamical equations in the limit of

a thin axisymmetric disk. Since quantities vary only in the radial direction, the prob-
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lem is computationally much cheaper to solve, allowing us to explore parameter space

efficiently, while still solving the full 1D equations of fluid dynamics instead of relying

entirely on semi-analytic models (Dekel et al., 2009a; Cacciato et al., 2012)

Past 1D models of gravitational instability in disks have a number of short-

comings. The rate at which mass and angular momentum are transported inwards is

often parameterized and fit to the results of hydrodynamical simulations, rather than

being derived from first principles. The rotation curves are only allowed to be either

Keplerian or flat. Energy is frequently assumed to be instantaneously equilibrated,

which neglects the possibility that it might be advected through the disk. The pressure

support of the disk is often treated as coming from thermal pressure rather than su-

personic turbulence. Few models take into account the stellar component of the disk,

which becomes increasingly important as the galaxy evolves towards the present day,

and can ultimately provide a variety of observable predictions.

In particular, the age-velocity dispersion-metallicity correlation of stars in the

solar neighborhood (Nordström et al., 2004), might well be explained by means of

gravitational instability in high redshift disks (Bournaud et al., 2009). The high velocity

dispersion in these disks means that the population of stars formed in that epoch will

start with a high velocity dispersion (Burkert et al., 1992). The gas disk cools as a

result of slowing cosmological accretion rates, so younger stars are formed in a thinner,

more metal-rich disk. This mechanism of thick and thin disk formation contrasts with

the more common story that various secular processes and minor mergers heat thin disk

stars into a thick disk (e.g. Binney & Tremaine, 1987).
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Krumholz & Burkert (2010) (hereafter KB10) found an analytic steady-state

solution to the full equations of fluid dynamics in the thin disk limit under the assump-

tion that the disk self-regulates to maintain Q = 1. To make the problem tractable

analytically, however, they required a handful of simplifying assumptions: they use an

analytic approximation to Q, which becomes progressively worse at lower redshift as the

ratio of gas to stellar velocity dispersion deviates from unity. They also assume that the

velocity dispersion of stars and gas are equal, and the gas fraction at all points in the

disk remains constant in radius and time. In this paper, we relax these assumptions and

include treatments of stellar migration, metallicity, the non-zero thermal temperature

of the gas, and evolution of individual stellar populations. These improvements along

with an efficient simulation code allow us to realistically evolve disks from high redshift

to the present day at minimal computational expense.

In section 2 we derive the equations governing the evolution of the gas over

time. Section 3 presents the derivation of the equations governing the stellar dynamics.

In section 4, we derive the evolution of metallicity in the gas and stars. In section

5 we discuss how these differential equations are solved numerically, and in section 6

we present the results for fiducial parameters chosen to be similar to the Milky Way.

We conclude in section 7. The code we describe, named GIDGET for Gravitational

Instability-Dominated Galaxy Evolution Tool, is available at http://www.ucolick.

org/~jforbes/gidget.html
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3.2 Gas Evolution Equations

3.2.1 Basic Equations

We first give a brief overview of the derivation of the evolution equations for

the gas column density Σ and velocity dispersion σ. For more details see KB10. The

equations of mass, momentum, and energy conservation for a viscous star-forming fluid

in a gravitational field are

∂ρ

∂t
= −∇ · (ρv)− (fR + µ)ρ̇∗, (3.1)

ρ
Dv

Dt
= −∇P − ρ∇ψ +∇ ·T, (3.2)

ρ
De

Dt
= −P∇ · v + Φ + Γ− Λ, (3.3)

where ρ, v, e, and P are the gas density, velocity, specific internal energy, and pressure

respectively. The star-formation rate per unit volume at an Eulerian point is ρ̇∗, with

a mass loading factor µ equal to the ratio of gas ejected in galactic-scale winds to the

star formation rate. We will be employing the instantaneous recycling approximation

(see section 4.2.4), which approximates all stellar evolution as occurring immediately.

Of the mass which forms stars, the gas will only lose the so-called remnant fraction, fR,

to stars, while the remaining (1 − fR) will be immediately recycled into the ISM. The

gravitational potential is ψ, T is the viscous stress tensor, Φ = T ik(∂vi/∂xk) is the rate

of viscous dissipation, and Γ and Λ are the rates of radiative energy gain and loss per

unit volume.

For a thin disk, we formally have ρ = Σδ(z) and vz = 0. By expanding the
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fluid equations in cylindrical coordinates, integrating over z, assuming axisymmetry and

vr � vφ, and dropping time derivatives of the potential and the circular velocity, we

can obtain evolution equations for the gas column density and gas velocity dispersion.

The evolution of column density is given by

∂Σ

∂t
=

1

2πr

∂

∂r
Ṁ − (fR + µ)Σ̇SF

∗

=
1

2π(β + 1)rvφ

[
β(β + 1) + r(∂β/∂r)

(β + 1)r

(
∂T
∂r

)
− ∂2T
∂r2

]
−(fR + µ)Σ̇SF

∗ (3.4)

where β = ∂ ln vφ/∂ ln r is the power law index of the rotation curve, T =
∫

2πr2Trφdz

is the viscous torque, Σ̇SF
∗ is the star formation rate per unit area, and

Ṁ = −2πrΣvr = − 1

vφ(1 + β)

∂T
∂r

(3.5)

is the mass flux. The second equality follows from the angular momentum equation,

which is in turn derived from the φ component of the Navier-Stokes equation (equation

3.2, see KB10).

The derivation of the velocity dispersion evolution equation requires an equa-

tion of state, which we take to be P = ρσ2. The velocity dispersion has a thermal and a

turbulent component. It is a reasonable approximation to treat both as contributing to

the pressure so long as we average over scales much larger than the characteristic size

of the turbulent eddies, which will be of order the disk scale height.

Taking the dot product of the velocity with the Navier-Stokes equation and
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adding it to the internal energy equation yields an equation for the total energy, i.e.

internal energy, kinetic energy, and gravitational potential energy. By decomposing the

velocity as v2 = v2
r + v2

φ + 3σ2
nt, the kinetic plus thermal energy may be rewritten

1

2
v2 + e =

1

2
(v2
r + v2

φ) +
3

2
σ2 (3.6)

where the velocity dispersion is taken to be the quadrature sum of a thermal and non-

thermal component, σ2 = σ2
t + σ2

nt. Neglecting the v2
r term as small compared to both

σ2 and v2
φ in a thin, rotation-dominated, Q ∼ 1 disk, employing radial force balance to

set ∂ψ/∂r = v2
φ/r, assuming a constant potential to set ∂vφ/∂t = 0, and integrating

over z yields the evolution equation

∂σ

∂t
=
G − L
3σΣ

+
1

6πrΣ

[
(β − 1)

vφ
r2σ
T

+
β2σ + σ(r dβdr + β)− 5(β + 1)r ∂σ∂r

(β + 1)2rvφ

(
∂T
∂r

)
− σ

(β + 1)vφ

(
∂2T
∂r2

)]
(3.7)

To fully specify the evolution of the gas, we need to set a rotation curve, a prescription

for radiative energy gain and loss per unit area, and a procedure for finding the viscous

torque. This will allow us to specify vφ, β, G =
∫

Γdz, L =
∫

Λdz, and T . The rotation

curve is specified at run-time, and T is set by our treatment of gravitational instability

(see section 3.2.2). We set G = 0, which is equivalent to requiring that the energy

balance in the gas is completely determined by the effects of the viscous torque and

radiative loss. We assume that the loss rate, meanwhile, is proportional to the kinetic
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energy density per disk scale height crossing time, in agreement with the decay rate of

turbulence observed in full 3D MHD simulations of supersonic turbulence (Mac Low

et al., 1998; Stone et al., 1998).

L ≡ d

dt

(
3

2
Σσ2

)rad
=

d

dt

(
3

2
Σσ2

nt

)rad
= η

Σσ2
nt

H/σnt
(3.8)

where η is a free parameter of order unity. If the decay time is exactly the crossing

time, η = 1.5, since the kinetic energy surface density is (3/2)Σσ2. In dropping the time

derivative of σt, we have assumed that the thermal velocity dispersion is unaffected by

radiative dissipation, i.e. that the gas is isothermal.

The scale height H is approximated by taking the solution to the equations

of vertical equilibrium for a single component disk, H1 = σ2/πGΣ, and adopting it to

multiple components:

H =
σ2

πG(Σ + fΣ∗)
, (3.9)

where f represents the relative importance of the stellar mass, or the stellar mass within

a gas scale height. Taking f = σ/σ∗ interpolates between two extreme cases: when

σ/σ∗ � 1, the scale height should approach the single-component value, i.e. f = 0.

When σ ∼ σ∗, the two-component disk behaves (at least in terms of vertical density)

like a single fluid with surface density Σ + Σ∗, i.e. f = 1. Note that the stellar scale

height, which does not directly affect the dynamics of the disk, is just taken to be the

single component solution,

H∗ =
σ2
∗

πG(Σ + Σ∗)
, (3.10)
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which is reasonable for the small values of fg found within the star-forming regions of

the disk. In reality the vertical structure of a self-gravitating disk in a dark matter halo

is not this simple. However, excluding the effects of dark matter introduces an error of

only 13%, even in the dark-matter dominated regions of the outer disk (Narayan & Jog,

2002). Given the uncertainty in η, this approximation is adequate.

Substituting for the scale height and σ2
nt = σ2 − σ2

t , we obtain a radiative loss

rate of

L = ηΣσ2κQ−1
g

(
1 +

Σ∗σ

Σσ∗

)(
1− σ2

t

σ2

)3/2

(3.11)

In this form, the radiative loss rate is the gas kinetic energy per dynamical time multi-

plied by a factor to account for the effect of stars on the disk’s thickness and a factor to

zero out the radiative losses when there is no turbulence. As the gas velocity dispersion

falls towards the constant thermal velocity dispersion, non-thermal motions die away,

the gas no longer dissipates its energy via shocks, and L → 0. The gas temperature used

to calculate σt is a free parameter of the model, but fiducially we assume Tg = 7000K,

appropriate for the warm neutral medium of the Milky Way. At high redshift when the

gas is virtually all molecular, T � 7000K, but in that regime σt/σ � 1 anyway, even

if we use the higher-than-appropriate gas temperature. The choice of σt therefore has

virtually no effect on the high-redshift evolution of the disk.

The governing equations for the gas (equations 4.2 and 4.3) are derived under

the assumption that vz = 0. We therefore implicitly neglect the gravitational potential

energy of the disk associated with its vertical extent, and the associated P dV work that

the gas performs when it changes its scale height. Qualitatively, the effect of including
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these terms would be to provide the gas with another place to store energy which it gains

when falling down the galaxy’s potential well, aside from turbulent motion. Thus with

these effects the gas velocity dispersion would be slightly lower, and hence so would the

dissipation rate, the gas column density, and the star formation rate. The dissipation

rate and star formation rate are each already controlled by a free parameter which

is uncertain at the factor of two level, so we are content to neglect these additional

repositories of energy.

3.2.2 Gravitational Instability

The stability against gravitational collapse of a self-gravitating disk is given

by a Toomre Q-like parameter. Several such fragmentation conditions exist in the

literature. We adopt a modified version of the condition determined by Rafikov (2001),

wherein the stability of a multi-component disk is considered with the stars treated

realistically as a collisionless fluid.

Q(q)−1 = Q−1
g

2q

1 + q2
+
∑
i

[
Q−1
∗,i

2

qφi

(
1− e−q2φ2

i I0(q2φ2
i

)]
(3.12)

where i indexes an arbitrary number of stellar populations, φi is the ratio of the ith

stellar population’s velocity dispersion to the gas velocity dispersion, I0(x) is a modified

Bessel function of the first kind, and the Q parameter for each component is defined by

Qj =
κσj
πGΣj

. (3.13)
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The epicyclic frequency is κ =
√

2(β + 1)Ω, and q = kσ/κ is the dimensionless wavenum-

ber, where k is the dimensional wavenumber of the perturbation. Values of q, or

equivalently k, for which Q(q) < 1 are unstable for an infinitely thin disk, and the

q which minimizes Q(q) corresponds to the least stable mode. It follows that if QRaf =

min(Q(q)) < 1, the disk is formally unstable, while if QRaf > 1, the disk is stable.

Computing the value of Q requires a minimization with respect to q. Since

Q and its partial derivatives must be calculated frequently (see equation 3.16 below),

it is computationally expedient to use an approximate formula which does not require

such a minimization. KB10 used Q−1 ≈ Q−1
WS ≡ Q−1

g + Q−1
∗ , as proposed by Wang &

Silk (1994), but this approximation becomes inaccurate when σg/σ∗
<∼ 0.5. Romeo &

Wiegert (2011) have proposed a more accurate approximation

Q−1
RW =


W
Q∗T∗

+ 1
QgTg

if Q∗T∗ ≥ QgTg ,

1
Q∗T∗

+ W
QgTg

if Q∗T∗ ≤ QgTg ;

(3.14)

W =
2σ∗σ

σ2
∗ + σ2

. (3.15)

This formula includes corrections for the fact that the disk is not razor-thin, T∗ and

Tg. A disk of finite thickness is more stable against gravitational collapse because its

mass is spread out vertically, so larger values of the Tj increase the value of Q for a

given set of column densities and velocity dispersions. Romeo & Wiegert (2011) give

approximations to these correction factors, Tj ≈ 0.8 + 0.7σz,j/σr,j . For simplicity we

have assumed an isotropic velocity dispersion, so T∗ = Tg = 1.5. QRW and its partial

derivatives are straightforward to compute and accurate over a wide range of σg/σ∗
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and Qg/Q∗. The stability parameter as determined by QRaf should also be modified to

include the effects of disk thickness, so our code can use either Q ≈ QRafT or Q ≈ QRW .

Disks where gravitational instability dominates the dynamics are expected

to be self-regulated near Q = 1 (Burkert et al., 2010). A disk with Q <∼ 1 develops

inhomogeneities in the gravitational field, which exert random forces on gas in the disk,

driving turbulence. The ultimate source of this energy is the gravitational potential of

the galaxy, so mass must move inwards. If the disk had Q <∼ 1, more mass would gather

into inhomogeneities, thereby increasing the driving of turbulence, which stabilizes the

disk, driving Q upwards. Meanwhile if Q >∼ 1, mass transport through the disk slows

even if the cosmological accretion rate does not, which tends to add mass and destabilize

the disk. We therefore take as a hypothesis that Q is a constant of order unity at all

points in the disk at all times. Thus we can set

dQ

dt
=

∂Q

∂Σ

∂Σ

∂t
+
∂Q

∂σ

∂σ

∂t

+
∑
i

(
∂Q

∂Σ∗,i

∂Σ∗,i
∂t

+
∂Q

∂σ∗,i

∂σ∗,i
∂t

)
= 0. (3.16)

The evolution of the gas state variables Σ and σ, derived in the previous section, depends

on the viscous torque and its radial derivatives, so we can recast equation (3.16) in the

form

dQ

dt
= f2

∂2T
∂r2

+ f1
∂T
∂r

+ f0T − F = 0, (3.17)

where the fi are coefficients which can be read off from the gas evolution equations, and

F encompasses all terms which do not depend on the viscous torque, including all stellar
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processes, discussed in the following section, and the rate of radiative dissipation. In

particular,

f2 = − σ

6πrΣvφ(β + 1)

∂Q

∂σ
− 1

2π(β + 1)rvφ

∂Q

∂Σ
, (3.18)

f1 =
β2σ + σ(r ∂β∂r + β)− 5(β + 1)r ∂σ∂r

6π(β + 1)2r2vφΣ

∂Q

∂σ

+
β(β + 1) + r(∂β/∂r)

2π(β + 1)2r2vφ

∂Q

∂Σ
, (3.19)

f0 =
1

6πrΣ
(β − 1)

vφ
r2σ

∂Q

∂σ
, (3.20)

F =
ηπ

3
GΣ

(
1 +

Σ∗σ

Σσ∗

)(
1− σ2

t

σ2

)3/2
∂Q

∂σ

+(fR + µ)Σ̇SF
∗
∂Q

∂Σ

−
∑
i

(
Σ̇∗,i

∂Q

∂Σ∗,i
+ σ̇∗,i

∂Q

∂σ∗,i

)
. (3.21)

Usually F will be dominated by the first term, the radiative dissipation of energy, which

tends to destabilize the disk by “cooling” the gas, making F > 0. In this case, one can

interpret equation (3.17) as requiring the torques to move gas such that it stabilizes the

disk to counter the effects of this cooling.

Equation (3.17) is a second order ODE requiring two boundary conditions.

At the outer edge of the disk, we specify the accretion rate of gas onto the disk, Ṁext

according to a pre-calculated accretion history, typically a fit to average accretion his-

tories from cosmological simulations (Bouché et al., 2010). The torque is related to Ṁ

through equation (3.5), so by rearranging that equation, evaluating quantities at the
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outer radius, and requiring a particular Ṁext, we obtain the outer boundary condition

(
∂T
∂r

)
r=R

= −Ṁextvφ(R)(1 + β(R)). (3.22)

Here R is a fixed outer radius of the disk. This condition implicitly assumes that all gas

is accreted at the outer edge of the disk, which is not an unreasonable approximation

as long as gas accretes mostly through cold streams

At the inner boundary, we require that the disk and bulge exert no torques on

each other,

(T )r=r0 = 0 (3.23)

The inner edge of the computational domain is r0, chosen for numerical reasons to be

non-zero. Note that this boundary condition is somewhat different than the one used in

KB10, namely (T )r=r0 = −Ṁextvφ(R)(1 + β(R))r0 for a flat rotation curve. This will

approach the physically motivated value of equation (3.23) in the limit that r0 → 0,

and was chosen to satisfy a regularity condition at the inner boundary. However, since

our goal here is not to obtain an analytic solution, there is no need to impose such

a condition. In practice we have experimented with both choices in our numerical

calculations, and we find that the choice of inner boundary condition has negligible

effects at radii r � r0, which is the great majority of the disk.

85



3.3 Stellar Evolution Equations

In addition to the gas, we would like to know how stellar populations in the

disk evolve with time. The stars will provide most of the observable consequences of the

model, in addition to determining, along with the gas, whether the disk is gravitationally

unstable. Among the questions we are interested in investigating is the cause of the age-

velocity dispersion correlation, namely that older stars have higher velocity dispersions.

Therefore it is useful to not only keep track of the stars as a single population with

a single column density Σ∗ and velocity dispersion σ∗ (each a function of radius and

time), but also to bin the stars by age, so that Σ∗,i and σ∗,i describe the ith age bin.

The overall stellar population, along with each sub-population, will be directly

affected by two processes - star formation and stellar migration. The two effects may

be added together, recalling that of the gas which forms stars, only a fraction fR will

remain in stars after stellar evolution has taken its course,

Σ̇∗,i = fRΣ̇SF
∗,i + Σ̇Mig

∗,i . (3.24)

Evolution equations for each process will be derived separately below.

3.3.1 Star Formation

The rate of star formation will depend on the properties of the gas from which

stars form. In particular, in a sufficiently large region of the disk, the star formation

rate will be proportional to the molecular gas mass divided by the free fall time, defined

to be
√

3π/(32Gρ). In deriving the gas evolution equations, we assumed that formally
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the density was given by Σδ(z), but this is of course an approximation. The disk will

have a finite thickness of order the scale height (defined by equation 3.9), so we take

the density to be ρ = Σ/H. Thus we can write the star formation rate density

Σ̇SF
∗ = εfffH2Σ

√
32Gρ/(3π) = εfffH2Σκ

√
32/3

(
1 +

Σ∗
Σ

σ

σ∗

)1/2

(3.25)

For molecular gas, the efficiency of star formation per free-fall time is εff∼0.01 (Krumholz

& McKee, 2005; Krumholz & Tan, 2007; Krumholz et al., 2012), though this may be

significantly higher or lower given observational uncertainties. Following progress made

by Krumholz et al. (2008); Krumholz et al. (2009), McKee & Krumholz (2010) have ana-

lytically approximated the molecular fraction of the gas, fH2 as a function of metallicity

and surface density. We adopt this prescription with a slight alteration:

fH2 =


1−

(
3
4

)
s

1+0.25s if s < 388/203

0.03 otherwise

(3.26)

s =
ln(1 + 0.6χ+ 0.01χ2)

0.6τc
(3.27)

χ = 3.1
1 + 3.1(Z/Z�)0.365

4.1
(3.28)

τc = 320 c (Z/Z�)(Σ/1 g cm−2), (3.29)

where Z is the gas metallicity. We take the solar metallicity to be Z� = 0.02, and

c encapsulates the effects of clumping in the gas when averaging over large regions.

Since the model presented in this paper takes averages over large areas of the disk, we

take c ∼ 5, as determined in Krumholz et al. (2009). The modification from McKee
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& Krumholz (2010) is that we impose a lower limit on fH2 of 3%, motivated by the

observation that even extremely low total gas surface density regions form stars at a

rate consistent with a constant H2 depletion time (Bigiel et al., 2011).

Equation (3.25) is used to update the stellar column density, and it also enters

into the gas column density equation (equation 4.2) through the conservation of mass.

At any particular time in a simulation, all but one of the Σ̇SF
∗,i = 0. Formally we can

write this as

Σ̇SF
∗,i = Σ̇SF

∗ Θ(A(t)−Ayoung,i) Θ(Aold,i −A(t)) (3.30)

where Θ(x) is a step function, one for x > 0 and zero for x < 0, A(t) is the age that a

star will be at redshift zero if it forms at time t after the beginning of the simulation,

and Ayoung,i and Aold,i are the boundaries of the ith age bin.

To update the stellar velocity dispersion of a stellar population, we require

that the new kinetic energy of the population be equal to the old kinetic energy plus

the energy of the newly formed stars,

(Σ∗,iσ
2
∗,i)new = (Σ∗,iσ

2
∗,i)old + fR(dΣSF

∗,i )σ2 (3.31)

where we have assumed that the newly formed stars have the same velocity dispersion

as the gas from which they form. Setting Σ∗,new = Σ∗,old+fR(dΣSF
∗ ), we can rearrange,
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solve for σ∗,new, and expand to first order in the small quantity dΣSF
∗ /Σ∗,old

σ∗,i,new =

√√√√(Σ∗,iσ2
∗,i)old + fR(dΣSF

∗,i )σ2

Σ∗,i,old + fR(dΣSF
∗,i )

≈ σ∗,i,old +
fR(dΣSF

∗,i )

2Σ∗,i,oldσ∗,i,old
(σ2 − σ2

∗,i,old) (3.32)

Thus in the limit that the time step and therefore the density of new stars produced is

small, we may use the definition of a derivative to write

(
∂σ∗,i
∂t

)SF
≈ fR

1

2Σ∗,iσ∗,i
(σ2 − σ2

∗,i)Σ̇
SF
∗,i for Σ∗,i > 0 (3.33)

We only need this derivative for its contribution to the torque equation (equation 3.16),

in which it will always be multiplied by the term ∂Q/∂σ∗,i. To actually update the

quantity σ∗,i, we use the exact relation of equation (3.31), which holds even if Σ∗,i = 0.

Note that when Σ∗,i = 0, this new population of stars will have no effect on the torque

equation, since ∂Q/∂σ∗,i = 0, i.e. non-existent stars do not affect the stability of the

disk. Thus equation (3.33) need only be employed when Σ∗,i > 0.

3.3.2 Radial Migration

In addition to star formation, stars are subject to radial migration. In par-

ticular, when Q∗
<∼ 2, transient spiral arms form which attempt to stabilize the disk

(Sellwood & Carlberg, 1984; Carlberg & Sellwood, 1985; Sellwood & Binney, 2002).
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N-body simulations (Sellwood & Carlberg, 1984) suggest that this heating is such that

∂Q∗
∂t

Mig

= max

(
Qlim −Q∗
Tmig(2πΩ−1)

, 0

)
(3.34)

where Tmig is the time scale in local orbital times over which this heating occurs, typi-

cally a few orbits, and Qlim is the value of Q∗ above which the stars are stable to spiral

perturbations. Equation (3.34) assumes that this mechanism acts independently of the

torques which act on the gas as a result of the axisymmetric instability described in sec-

tion 3.2.2. In z ∼ 2 galaxies with morphologies dominated by clumps containing both

gas and stars, one might expect the axisymmetric instability to affect both components

equally, as assumed in the models of Cacciato et al. (2012). However, it remains an open

question whether these clumps are disrupted on a dynamical timescale by a stellar feed-

back process, just like giant molecular clouds, their low-redshift analogues (Krumholz &

Dekel, 2010; Genel et al., 2012). Even if clumps are long-lived, they contain a relatively

small part of the total stellar population (Murray et al., 2010), and thus their impact on

stellar migration might be small. Moreover, in most realistic situations, the scale height

of stars will be significantly greater than that of the gas, so an instability dominated

by the gas will have little traction on the stars. As long as σ∗/σ is appreciably greater

than unity, which it is in our fiducial model (section 3.6), we expect this treatment to

be reasonable.

The time derivative of Q∗ may be re-expressed in terms of the time derivatives
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of Σ∗ and σ∗ using the definition of Q∗,

∂Q∗
∂t

Mig

=
κ

πG

(
1

Σ∗

∂σ∗
∂t

Mig

− σ∗
Σ2
∗

∂Σ∗
∂t

Mig)
= Q∗

(
1

σ∗

∂σ∗
∂t

Mig

− 1

Σ∗

∂Σ∗
∂t

Mig)
(3.35)

The partial time derivatives on the right hand side will depend on the mean velocity

of stars in the radial direction, v∗,r, and so the forcing imposed by equation (3.34) will

yield an ordinary differential equation for v∗,r. The value of v∗,r is then used to evolve

Σ∗ and σ∗.

This approach assumes a single bulk velocity of stars in the radial direction

at each radius, v∗,r(r). It has been well-demonstrated (e.g. Bird et al., 2012) that the

Sellwood & Binney (2002) mechanism scatters stars in both directions, i.e. a star born

at some galactocentric radius may end up with a guiding center radius multiple kpc

away. There are additional scattering mechanisms, such as two-body scattering and the

resonant overlap between spirals and the bar (Minchev & Famaey, 2010; Brunetti et al.,

2011), which will also redistribute stellar angular momenta. Modeling this redistribu-

tion is critical in explaining the detailed properties of Milky Way stellar populations.

However, there are no straightforward prescriptions to model all of these effects. We

therefore ignore for now the effects of radial mixing and merely require conservation of

mass and energy, and that the stars will stabilize themselves if they are subject to spiral

instabilities.

The evolution of Σ∗ and σ∗ as a function of v∗,r is determined by the continuity
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equations for mass and energy of the ith stellar population

∂Σ∗,i
∂t

Mig

+
1

r

∂

∂r
(rΣ∗,iv∗,r) = 0 (3.36)

∂

∂t

[
Σ∗,i

(
v2
φ + 3σ2

∗,i + 2ψ
)]Mig

+

1

r

∂

∂r

[
rΣ∗,iv∗,r

(
v2
φ + 3σ2

∗,i + 2ψ
)]

= 0 (3.37)

Expanding the energy equation using the product rule and employing the mass

equation to cancel terms leaves

Σ∗,i
∂

∂t

[(
v2
φ + 3σ2

∗,i + 2ψ
)]

+

Σ∗,iv∗,r
∂

∂r

[(
v2
φ + 3σ2

∗,i + 2ψ
)]

= 0 (3.38)

The time derivatives of vφ and ψ are zero by assumption, so expanding the surviving

derivatives, setting ∂ψ/∂r = v2
φ/r and ∂vφ/∂r = βvφ/r, and rearranging yields

∂σ∗,i
∂t

Mig

= −v∗,r

(
(1 + β)v2

φ

3rσ∗,i
+
∂σ∗,i
∂r

)
(3.39)

The corresponding equation for stellar column density follows immediately from the

continuity equation:

∂Σ∗,i
∂t

Mig

= −Σ∗,i
∂v∗,r
∂r
− v∗,r

∂Σ∗,i
∂r
− Σ∗,iv∗,r/r (3.40)
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Substituting the transport equations into equation (3.35) and imposing equation (3.34)

yields

2πr
v∗,r
vφ

(
−
v2
φ

σ2
∗

(1 + β)

3r
− 1

σ∗

∂σ∗
∂r

+
1

Σ∗

∂Σ∗
∂r

+ 1/r

)

+
2πr

vφ

∂v∗,r
∂r

=
max(Qlim −Q∗, 0)

TMigQ∗
(3.41)

This is a first order ordinary differential equation (since at any particular time we treat

all variables as functions of radius only), requiring a single boundary condition which we

take to be v∗,r(r = R) = 0, which means that no stars are allowed to migrate between

the outer edge of the disk and the IGM. This boundary condition guarantees that the

bulk velocity of stars in the radial direction will be inwards at all radii, which means

this method does not conserve angular momentum; to compensate for a large mass of

stars moving inwards, a small mass of stars would need to move outwards. The error

we make in conservation of total angular momentum is about 2% in the fiducial case.

3.4 Metallicity Evolution

3.4.1 Advection of Metals in Gas

To describe the evolution of the metal content, we begin by defining ΣZ , the

surface density of metals, so locally the metallicity of the gas is Z = ΣZ/Σ. The

continuity equation for ΣZ is

∂

∂t
ΣZ =

1

2πr

∂

∂r
ṀZ − Σ̇SF

Z + SZ (3.42)
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where Σ̇SF
Z = Σ̇SF

∗ Z is the rate at which metals are incorporated into newly formed

stars, and SZ is a source term for metals injected into the gas by supernovae and AGB

stars. Note that, in writing this equation, we neglect transport of metals through the

disk by either turbulent diffusion or galactic fountains. The inward flux of metallic mass

is

ṀZ = ṀZ = − Z

vφ(1 + β)

∂T
∂r

, (3.43)

which follows from equation 3.5. The left hand side of equation 3.42 can be reexpressed

in terms of Z by noting ∂ΣZ/∂t = Z∂Σ/∂t+ Σ∂Z/∂t. Equation 3.42 then becomes

Z
∂Σ

∂t
+ Σ

∂Z

∂t
=

Z

2πr(1 + β)2vφ

(
(1 + β)

∂T
∂r

β/r − (1 + β)
∂T
∂r

∂ lnZ

∂r

+
dβ

dr
∂T
∂r −(1 + β)

∂2T
∂r2

)
− Σ̇SF

Z + SZ (3.44)

Comparing this with the previously derived gas surface density evolution equation, we

can cancel most of the terms on the right hand side with Z∂Σ/∂t, leaving only

∂Z

∂t
= − 1

(β + 1)rΣvφ

∂ lnZ

∂r

∂T
∂r

+
SZ
Σ
. (3.45)

Inflowing gas has some metallicity ZIGM , which we fix at ZIGM = 0.1Z� for the entire

simulation. Simulations (Shen et al., 2012) and observations (Adelberger et al., 2005)

suggest that the circum-galactic medium is enriched to this degree as early as z = 3.
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3.4.2 Metal Production

For simplicity, we adopt the instantaneous recycling approximation, proposed

by Tinsley (1980), to specify SZ , the production rate of metals. First we recognize that

metals are produced in supernovae and AGB stars. To a first approximation, we can

assume that the lifetimes of stars that dominate metal production are much smaller

than the timescales with which we are concerned in this paper, so metals enter the

ISM at a rate proportional to the star formation rate. Not all gas which forms stars is

returned to the ISM, since low-mass stars do not leave the main sequence in a Hubble

time and even high-mass stars form remnants. Defining the remnant fraction fR as

the fraction of gas forming stars which will end up not being returned to the ISM, the

surface density of recycled gas appearing in the ISM is (1 − fR)Σ̇SF
∗ . Supernovae and

normal stellar evolution will enrich a small fraction of this gas, namely yM , the yield.

The surface density of metal production is therefore

SZ = yMζ(1− fR)Σ̇SF
∗ . (3.46)

Assuming a Chabrier (2005) initial mass function and a coarse approximation for the

ultimate fates of stars as a function of mass, Krumholz & Dekel (2012) compute fR =

0.46. Assuming in addition a production function, the fraction of a star’s initial mass

converted to a given element, from Maeder (1992), they compute a yield of yM = 0.054

for Solar metallicity stars. The effective yield may be somewhat smaller than this, since

galactic winds driven by supernovae tend to eject material which is richer than average

in metals. The factor of ζ <∼ 1 represents the ratio of metallicity in the ISM to metallicity

95



of ejected material. We adopt ζ = 1, corresponding to an assumption that the ejecta

are well-mixed with the ISM. This value will in principle depend on the mass of the

galaxy considered (Mac Low & Ferrara, 1999). However, owing to the high resolution

required, to date no simulation has reliably calculated the degree to which metal-rich

gas is preferentially ejected. Changes in the exact value of ζ roughly translate into the

normalization of the metallicity distribution in the gas, so our fiducial value of ζ was

chosen to give reasonable values for this normalization.

3.4.3 Diffusion of Metals

The metallicity gradients produced when accounting only for metal production

by stars and advection by inflowing gas are far steeper than the observed gradient in

the Milky Way. Metals are formed in proportion to the star formation rate, which tends

to be high towards the center of the simulated galaxies. Meanwhile the inflow of gas

throughout the disk concentrates the metals even further. To explain the relatively

small observed metallicity gradients, one must allow metals formed at small galactic

radii to reach large radii. This may occur either in the plane of the disk (diffusion) or

out of the plane (galactic fountains). By assuming a fixed value of ZIGM = 0.1Z�, we

have already implicitly assumed some sort of transport of metals from the galaxy into

its surrounding medium. However, rather than modeling this transport in any detail,

let us consider only the diffusion of metals through the disk.

In general, a diffusion equation will have the form

∂

∂t
MZ = D

∂2

∂r2
MZ (3.47)
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where D is the diffusion coefficient and MZ = 2πr∆rΣZ is the gas-phase metal mass

in a given cell. At an order of magnitude level D may be estimated by taking the

typical velocity of gas in the disk, σ, and multiplying by the typical length scale of

perturbations, namely the 2d Jeans scale, σ2/GΣ. For simplicity we simply adopt

D = kZvφ(R)R where kZ and D will be constant at every time and location in the

disk. Numerically we take kZ = 10−3 which is of the correct order of magnitude and

yields a metallicity gradient of order 0.1 dex/kpc (see figure 3.2)., which is comparable

to observed values in isolated spiral galaxies (e.g. Zaritsky et al., 1994)

3.4.4 Metals Locked in Stars

The metallicity of a given stellar population can be updated when new stars

are added to it by again assuming instantaneous missing.The new metallicity is just an

average of the old metallicity and the metallicity of the gas, weighted by the surface

density of the extant stellar population and the newly formed population respectively.

Z∗,i,new =
Z∗,i,oldΣ∗,i + fRZ(dΣSF

∗,i )

Σ∗,i + fR(dΣSF
∗,i )

(3.48)

Here, as in equation (3.31), dΣSF
∗,i = Σ̇SF

∗,i dt, is the surface density of stars formed in a

given time step in a given stellar age bin i.

Besides the formation of new stars, a given stellar population is subject to

migration through the disk, as discussed in section 3.3.2 Since the stars migrate through

the disk with a mean velocity set by equation (3.41), the metallicity profile of a given
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Figure 3.1: Time evolution from the beginning to the end of the fiducial simulation of the
radially-integrated gas fraction, 2D Jeans mass at r = 8 kpc, and the radially-integrated
star formation rate.
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Figure 3.2: A direct comparison of the gas and stellar components as a function of
radius at redshifts 2 (orange dotted), 1.5 (blue dot-dash), 1 (red dashed), and 0 (black
solid). The gas cools and depletes, while the stars accumulate and heat. The expanding
stabilized region of the disk is evident in the dramatic decrease in gas transport velocity,
large Qg, and σ → σt. The outward movement of the region where stars form and
migrate follows the peak in gas column density - Q∗ approaches Qlim = 2.5, the stellar
metallicity gradient steepens, and the stellar scale height flattens.
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population of stars evolves under a continuity equation for the metal mass,

∂

∂t
(Σ∗,iZ∗,i)

Mig +
1

r

∂

∂r
(rΣ∗,iZ∗,iv∗,r) = 0 (3.49)

Subtracting the continuity equation for total stellar mass (equation 3.36), we obtain

∂Z∗,i
∂t

Mig

= −v∗,r
∂Z∗,i
∂r

, (3.50)

for the evolution of stellar metallicity. Equations (3.48) and (3.50) fully describe the

evolution of the metallicity of the ith stellar population. Note that these equations

neglect radial diffusion of stars, only taking into account the mean velocity v∗,r. Radial

mixing (Sellwood & Binney, 2002; Roškar et al., 2012) is required to explain the spread

of metallicities in stars at a fixed age and radius, and undoubtedly leads to a shallower

stellar metallicity gradient than what we obtain.

3.5 Numerical Method

3.5.1 Computational Domain

In deriving the gas evolution equations, we assumed the disk to be thin and

axisymmetric. Thus the disk is described by variables which change only in radius and

time. We therefore define a mesh of radial positions ri with a fixed number of points,

nx, logarithmically spaced between the outer edge of the disk at a fixed radius R and a
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fixed inner cutoff rmin, usually chosen to be rmin = 0.01R. Explicitly,

ri = R
(rmin
R

)1−(i−1)/(nx−1)
(3.51)

The highest spatial resolution is therefore given to the region with the shortest dynamical

times.

Time, tracked in units of the orbital period at radius R, begins at zero when

the simulations are started, typically at z = 2, and reach a few tens of orbits at z = 0,

depending on the assumed radius and circular velocity. The size of the time steps are

calculated by first determining all timescales defined by dividing each state variable at

each position by its time derivative, picking out the minimum timescale, and multiplying

it by a small number TOL, usually taken to be 10−4. Larger values of TOL lead to

numerical instabilities near the inner boundary, which is especially susceptible to such

issues because the local dynamical timescale in the disk is Ω−1 ∝ r for a flat rotation

curve.

∆t = TOL×mini

[ Σ

∂Σ/∂t
(ri),

σ

∂σ/∂t
(ri),

Σ∗
∂Σ∗/∂t

(ri),
σ∗

∂σ∗/∂t
(ri),

0.01

TOL

]
(3.52)

A maximum time step of 0.01 outer orbits is imposed to prevent systems extremely

close to equilibrium from advancing too quickly.
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3.5.2 PDEs

At each time step, the code solves the equations in non-dimensionalized form

(see appendix) in the following order. First, we solve equation (3.41) to determine v∗,r

at all radii. The equation is of the form H = h0v∗,r + ∂v∗,r/∂r with

H =
max(Qlim −Q∗, 0)vφ

2πrTMigQ∗
(3.53)

h0 = −
v2
φ

σ2
∗

(1 + β)

3r
− 1

σ∗

∂σ∗
∂r

+
1

Σ∗

∂Σ∗
∂r

+
1

r
, (3.54)

The boundary condition specifies v∗,r at the outer edge of the disk. Thus rewriting the

radial derivative as a finite difference and employing a backwards Euler step, we can

write an explicit update equation,

v∗,r(ri−1) ≈ v∗,r(ri)− (ri − ri−1)H(ri−1)

1− (ri − ri−1)h0(ri−1)
, (3.55)

which we solve iteratively by starting with the specified value of v∗,r(rnx) = 0 and

moving inwards.

Using the value of v∗,r along with the current values of the state variables, we

calculate the coefficients of the torque equation (equation 3.17). To solve the resultant

linear PDE, we employ a similar finite difference method, which approximates

∂Ti
∂r

≈ Ti+1 − Ti−1

ri+1 − ri−1
(3.56)

∂2Ti
∂r2

≈ 1

ri+1/2 − ri−1/2

(
Ti+1 − Ti
ri+1 − ri

− Ti − Ti−1

ri − ri−1

)
(3.57)
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Since we are using a logarithmically spaced grid, ri+1/2 =
√
riri+1. By plugging these

approximations into the torque equation, the problem reduces to the inversion of a

tridiagonal matrix.

The forcing term in the torque equation, (3.21) generally acts to destabilize

the disk, since its largest term comes from radiative cooling of the gas and cooler gas is

more prone to gravitational collapse. The torque equation requires that the gravitational

torques exactly counteract this effect to maintain dQ/dt = 0. However, in the event

that the forcing term in the torque equation becomes negative as a result of stellar

migration and a reduced rate of cosmological infall leading to L → 0, we set it to zero

so that the gas is not forced to destabilize the disk. This in turn allows positive values

of dQ/dt. We do not allow the forcing term to return to the value given by (3.21) until

that value is again positive and Q has been allowed to rise and then fall back down to

Q = Qf . This allows the simulation to follow disks which stabilize at least temporarily,

for example because of a lull in the cosmological accretion rate, and then return to

a marginally unstable state. For the smoothed average cosmological accretion history

used in our fiducial run, parts of the disk which stabilize remain that way because the

accretion rate is monotonically decreasing.

With T , ∂T /∂r, ∂2T /∂r2, and v∗,r, we can now evaluate the derivatives of

the state variables. Where radial derivatives of the state variables or other quan-

tities appear in the evolution equations or the coefficients of the above differential

equations, a minmod slope limiter is used to evaluate them. In particular, if L =
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(A(ri)−A(ri−1))/(ri − ri−1) and R = (A(ri+1)−A(ri))/(ri+1 − ri)

∂A

∂r
(ri) =



L if |L| < |R| and LR > 0

R if |L| > |R| and LR > 0

0 otherwise

(3.58)

where A is a stand-in for any quantity. This strongly suppresses noise on the scale of

the mesh separation by zeroing out rapid variations in the derivatives.

With the time derivatives calculated at each point, we simply take a forward

Euler step to update the state variables, namely Σ, σ, Z, Σ∗, σ∗, and for each age-

binned stellar population, Σ∗,i, σ∗,i, and Z∗,i. Typical runs have time steps limited

by the rate of change of the gas state variables near the inner boundary of the disk

where the dynamical timescale is shortest. On a single processor, runs take about

one day to complete if we numerically evaluate Q(q) and its derivatives using the full

Rafikov (2001) formalism. We can shorten this by an order of magnitude by using

the approximation to Q suggested by Romeo & Wiegert (2011). This approximation

is much more efficient because QRW and its partial derivatives may be calculated as

functions of the state variables alone, without the need to minimize over a wavenumber

or compute the partial derivatives ∂Q/∂{Σ, σ,Σ∗,i, σ∗,i} numerically as required by the

full Rafikov Q.

3.5.3 Initial Conditions

By assuming a flat rotation curve, fixed gas fraction, equal stellar and gas

velocity dispersions, a simple analytic approximation to Q, and ignoring stellar processes
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(formation and migration), KB10 were able to compute an equilibrium solution to the

evolution equations. In particular,

σ =
1√
2

(
GṀext,0

ηfg

)1/3

(3.59)

Σ =
vφ
πGr

(
f2
gGṀext,0

η

)1/3

(3.60)

Here Ṁext,0 is the accretion rate of gas onto the outer edge of the disk at the start of the

simulation, and fg is the gas fraction, assumed to be constant in radius. By assumption,

σ∗ = σ and Σ∗ = Σ(1− fg)/fg.

If we relax the assumptions that the velocity dispersions of both components

are identical and Q = 1, add a factor to correct for finite disk thickness, but retain

the approximate form of Q for an infinitely thin disk, Q−1 ≈ Q−1
g + Q−1

∗ , we obtain a

modified version of the equilibrium column density,

Σ =
T

Qf

vφ
πGr

φ0fg
fg(φ0 − 1) + 1

(
GṀext,0

ηfg

)1/3

(3.61)

where φ0 = σ∗/σ is a free parameter , T ≈ 1.5 is the thickness correction, and Qf is the

fixed value to which Q will be set everywhere in the disk. To initialize the simulations,

we use equations (3.59) and (3.61). We then adjust σ∗ = φ0σ keeping φ0 fixed until

Q = Qf exactly at each cell of the grid. Finally, we run the simulation with stellar

processes turned off, i.e. εff = Qlim = 0, and with Ṁext fixed to its initial value, Ṁext,0,

to allow the gas to adjust to an equilibrium configuration. The greatest effect of this

adjustment occurs at the inner edge of the disk, since these relations were derived using a
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different inner boundary condition and under a more stringent set of assumptions. Once

the state variables are changing sufficiently slowly, we have found our initial conditions

and therefore return εff , Qlim, and Ṁext(t) to their user-specified values.

3.6 Fiducial Model

While our code is quite general, here we describe a simple model run using it

in order to demonstrate its capabilities. In future work we will explore a much wider

part of parameter space, using more realistic cosmological accretion histories.

3.6.1 Setup

The formalism presented here requires a rotation curve, accretion history, and

fixed inner and outer radii to be specified before the simulation is run. Since we employ

a logarithmic computational grid, there is little cost to extending the outer radius out to

20 (as opposed to 10) kpc. This allows us to follow the transition of the outer disk from

somewhat molecular at high redshift to atomic at low redshift. For the inner truncation

radius, we take r0 = 0.01R = 200pc. The exact value will affect the quantitative results

within a few kpc of the center of the disk, but the exact results of the simulation in

this region should be taken with a grain of salt anyway. Here σ∗ reaches a similar

order of magnitude as the circular velocity, which we take to be independent of radius,

vφ(r) = 220 km/s, so our treatment of this region as a thin disk is not valid. Moreover,

the inner boundary value for the torque equation, which we take to be zero - no torque

is exerted by the region within the truncation radius on the disk - could easily be some
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small but non-zero value.

The accretion history employs the fitting formula from Bouché et al. (2010),

namely

Ṁ(t) = 7 εin fb,0.18 M
1.1
h,12 (1 + z)2.2 M�/yr (3.62)

where Mh,12 is the halo mass in 1012M�, fb,0.18 is the baryon fraction of the accreting

matter normalized to 18%, and εin is zero for Mh,12 > 1.5 but varies linearly in time

from 0.7 down to 0.35 between redshift 2.2 and 1. Before redshift 2.2, εin = 0.7, and

after redshift 1, εin = 0.35. We choose fb,0.18 = 1, and an initial halo mass which will

grow to be about 1012M� at redshift zero. The formula governing the growth of the

halo mass is given in the same paper,

Ṁh = 34.0 M1.14
h,12 (1 + z)2.4 M�/yr, (3.63)

so an initial halo mass of Mh,12 = 0.27 at z = 2 produces a Milky Way-analogue galaxy

with Mh,12 ≈ 1 at z = 0. We note that some of the baryonic accretion may go into

expanding the outer radius of the disk, instead of being transported inward, which would

reduce the accretion rate below the estimate given in equation (3.62). However, since

the baryonic mass of galactic disks outside 20 kpc is generally a negligible fraction of

the total, this clearly cannot be a large effect, and the error we make by neglecting it is

small compared to the general uncertainty in the cosmological accretion rate.

In addition to these functions, there are several free parameters controlling

various physical processes in the disk. The star formation efficiency per freefall time is
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εff = 0.01. The mass loading factor of winds ejected from the galaxy in proportion to

the star formation rate is µ = 1, chosen to roughly correspond to observations (Erb,

2008). The fraction of turbulent energy in the gas which will decay in a scale height

crossing time is η/1.5 = 1. The time scale for a Q∗ = Qlim − 1 population to approach

Q∗ = Qlim is Tmig = 2 local orbital periods, and the value of Q∗ below which the stars

are subject to transient spiral instabilities is Qlim = 2.5. For computational convenience,

we use Q ≈ QRW to evaluate the disk’s stability. We will explore the sensitivity of the

results to these parameter choices in future work. Here our goal is merely to demonstrate

the method and its results.

The value of Q everywhere in the disk is fixed to Qf . Theoretically Q is

expected to be self-regulated to a value of order unity. Formal stability criteria derived

from the perturbed equations of motion for infinitely thin disks find the disks to be

unstable when Q < 1, so the marginal stability which we assume here would imply

Q = 1. However, recent work by Elmegreen (2011) has shown that for a realistically

thick disk where the gas cools on the order of a dynamical time, a marginally stable

value of Q is closer to 2 or 3. This is consistent with the observational evidence compiled

by Romeo & Wiegert (2011) for nearby spiral galaxies, namely that when QRW for these

disks is calculated, the values typically fall between 2 and 3 for most galaxies at most

radii. Thus we adopt Qf = 2 as a fiducial value.

Finally, to specify the initial conditions fully, one must choose an initial gas

fraction and a ratio of stellar to gas velocity dispersion. Since the only way the stellar

velocity dispersion can decrease is by mixing it with a lower-velocity dispersion pop-
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ulation, it is reasonable to expect this ratio to be greater than unity. The simplified

models of gravitationally unstable galaxies evolving from z � 1 discussed in Cacciato

et al. (2012) suggest that by z ∼ 2, this ratio φ0 is a few, so we adopt φ0 = 2.

3.6.2 Disk-Average Quantities

Before considering the radial structure of the disk, let us consider the evolution

of the galaxy as a whole between z = 2 and z = 0. Our model does not allow the rotation

curve or outer radius of the disk to evolve in time. However, over this redshift range, the

circular velocity (assuming a constant spin parameter) will evolve by less than about

10% (e.g. Cacciato et al., 2012). Meanwhile, the position of the outer edge of the disk

has a minimal effect on its evolution, so long as the outer edge of the star-forming disk

is resolved. At larger radii than this, there is so little star formation that the gas is

free to flow inwards at a constant rate and arrive at the edge of the star-forming disk

unaltered by its passage through the HI disk.

The primary changes in the disk are the steady decline in the accretion rate,

and the steady formation of stars. For the fiducial model, Ṁext(t) drops smoothly from

about 13 M�/yr at z = 2 to 2 M�/yr at z = 0. This falloff is mirrored in the drop in

total gas fraction, two-dimensional Jeans mass, and total star formation rate (figure 3.1).

The star formation rate in particular has almost the same numerical value as Ṁext(t),

starting off slightly higher and converging to the accretion rate. This is a reflection of

the fact that the formed stars can only come from gas that started in the simulation or

accreted at a later time, and the initial gas reservoir is depleted in about 1 Gyr.

Stars, once formed, remain in the disk, while the mass of gas in the disk falls
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with the cosmological accretion rate. This drives a steady decrease in the gas fraction

from its initial value, down to 20%. Referring to the equilibrium solution for constant

gas fraction (equations 3.59 and 3.60), and noting that fg has dropped by a factor of a

few, while the accretion rate has dropped by a factor of about 6, we might expect σ to

decrease by maybe a factor of 2, while Σ might decrease by more than a factor of 3.

The two-dimensional Jeans mass (Kim & Ostriker, 2002) is defined by

MJ =
σ4

G2Σ
(3.64)

Physically this represents the characteristic mass of a clump of gas which collapses under

gravitational instability to form a cluster of stars. Its steady decrease with time reflects

the cooling of the disk, which allows smaller regions to collapse. This is the phenomenon

that explains why z ∼ 2 galaxies contain giant clumps far larger than the biggest GMCs

in present-day Milky Way-like galaxies. As a practical matter, this means that the

typical size of star clusters steadily decreases, so, coupled with the fact that a clump of

gas can form stars with at most tens of percent effiency, clusters with M > 106M� are

unable to form in today’s quiescent spirals. In the fiducial model, MJ ∼ 2 · 107M� at

r = 8 kpc. The decrease in the upper envelope of cluster mass with time is consistent

with the arguments made by Escala & Larson (2008).

3.6.3 Radial Structure of the Disk

We show the radial structure of our fiducial disk in figures 3.2, 3.3 and 3.4.

We can understand the qualitative behavior shown in these plots by considering the
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Figure 3.3: Radial profiles of quantities at redshift 2 (dotted), 1.5 (dot-dashed), 1
(dashed), and 0 (solid). The peak of fH2 and hence the star formation rate move
outwards as the simulation evolves, as the gas further in has been depleted and cannot
be replenished.
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processes that drive the evolution. The two most important drivers are that Q = 1

almost everywhere at all times, and that stellar migration tends to self-regulate the

stars such that Q∗ = Qlim - recall that Qlim is a free parameter, below which stars are

subject to transient spiral instabilities. If Q∗ > Qlim, stars will form and drive up Σ∗,

decreasing Q∗, while if Q∗ < Qlim, the stars will migrate inwards increasing σ∗ and

hence Q∗. These two restrictions set Qg to a value somewhat less than Qlim, depending

on the local ratio σg/σ∗. These forces lead the simulations to form three qualitatively

distinct regions: a stabilized stellar-dominated region, a star-forming region, and an HI

disk.

The radial extent of the star-forming region is more or less set by where the

gas is molecular, i.e. fH2 ≈ 1. This in turn corresponds to where the gas column

density is larger than some metallicity-dependent critical value. For our fiducial initial

conditions, the disk is molecular out to r ≈ 15 kpc at z = 2. Within this radius, almost

the entire disk is vigorously star-forming. As time passes, a stellar-dominated central

region begins to appear. This occurs because, towards the center of the disk, the gas has

short local dynamical times and hence undergoes rapid star formation. In contrast, the

inward mass flux of gas required to maintain Q ≈ Qf is nearly independent of radius.

Star formation depletes this gas as it moves inwards, so by the time it reaches the inner

region of the disk, not only is there less gas than there would have been neglecting star

formation, but it is being consumed faster. In order to maintain a constant Q, given

that Q∗ ≈ Qlim, the gas must maintain Qg close to constant. Star formation decreases

the gas column density, so to keep Qg roughly unchanged, the gas velocity dispersion
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must fall proportionally. Thus the gas velocity dispersion drops fastest in the center of

the disk.

By assuming a fixed gas temperature, we essentially set a floor on the value of

σ. When σ hits this floor, which happens first at the inner edge of the computational

domain (see figure 3.2), the radiative loss rate L approaches zero. The gas no longer

loses energy through shocks, and therefore ceases to move inwards. In this situation

that region of the disk ceases to become gravitationally unstable, and Q is allowed to

rise. Without any means of mass transport, the gas simply depletes as it forms stars.

As the gas column density drops off, the stars dominate the local stability of the disk.

Since they are constrained to Q∗ ≈ Qlim by our assumptions about stellar migration,

the overall value of Q/T of the disk in this region approaches Qlim as well.

The third qualitatively distinct region of the disk may be thought of as the

HI disk wherein fH2 is low enough that stars form at a relatively slow rate, and gas

flows in adhering even more closely to the equilibrium conditions of equations (3.59)

and (3.60), which were derived by neglecting star formation in KB10, than in the star-

forming region. In essence, the gas is allowed to flow in with a constant mass flux at

each radius, since star formation is not depleting the gas significantly. Depending on

the initial conditions of the simulation, the column density of stars may be low enough

or the velocity dispersion of the stars high enough that Q∗ > Qlim for the duration of

the simulation. In this situation the overall stability of the disk is almost exclusively

determined by the stability of the gas, therefore the gas properties will correspond more

closely to the equilibrium values with the gas fraction set to unity.
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Looking at the values for Σ and σ near the solar circle (see figure 3.2), we

see that they are too high relative to their observed values of approximately 13M�/pc
2

and 8 km/s respectively, though not by more than a factor of two. Moreover, the

column density of gas near the center of the disk is lower than observed in the Milky

Way. Both of these problems stem from the fact that when L → 0, mass transport

due to gravitational instability shuts off, whereas the real Milky Way has a number

of mechanisms to transport gas into its central regions even when σ → σt. The gas

could be transported by a bar instability from larger radii, or the gas which we assume

accretes at the edge of the disk could be accreting directly into the central region of the

galaxy. Gas can also be recycled back to the ISM from stars. We assume this occurs

instantaneously, so we neglect gas from stars which form farther out in the disk and

migrate inwards. Nonetheless, our model qualitatively reproduces the structure of z = 0

disk galaxies: a central stellar-dominated bulge, an extended star-forming disk, and an

outer HI-dominated disk with very little star formation.

3.6.4 Stellar Populations

As the stars form in the fiducial simulation, one can treat them as adding to-

gether into a single population for the purposes of evaluating the torque equation, while

at the same time evolving a number of passive populations, binned by age, alongside

the single population. Only the active population affects the stability of the disk, while

the passive populations simply serve as tracers of the stars formed during a particular

epoch. This in turn is a reflection of the state of the gas at that time, with the added

effect of gradual stellar heating through radial migration.
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Stellar migration occurs locally as the result of star formation, since it is star

formation which drives Q∗ below Qlim. It is therefore unsurprising that the stellar

populations seem to have very similar column density profiles (see figure 3.6) to the star

formation rate profile shown in figure 3.3. The primary effect of migration is thus not

mass transport inwards, so much as an increase in the velocity dispersion. This can be

quite significant - the oldest stars near the center of the disk reach nearly σ∗,i = 100

km/s, which is significantly larger than the gas velocity dispersion at any time in the

simulation.

The state of these populations near the solar neighborhood at z = 0 is of

particular interest, since these populations are well-observed and display well-known

correlations. The velocity dispersions of stars in the solar neighborhood vary from

about 17 km/s for 1 Gyr-old stars to ∼ 10 Gyr-old stars with σ∗ ≈ 37 km/s (Nordström

et al., 2004; Holmberg et al., 2009). The theoretical explanations for this correlation go

back to Spitzer & Schwarzschild (1953) and generally center around the scattering of

stars by molecular clouds and spiral structure, which gradually heats the disk. Other

explanations have included minor or major mergers (e.g. Dierickx et al., 2010; Bekki &

Tsujimoto, 2011; Qu et al., 2011) and popping star clusters (Assmann et al., 2011). All of

these explanations are conceptually trying to do the same thing - form a thick disk from

a thin disk. However, a gravitationally unstable disk subject to star formation and a

decreasing accretion rate will start with a high gas velocity dispersion that will decrease

with time. This will also naturally generate an age-velocity dispersion correlation.

This is the scenario presented in the simulations of Bournaud et al. (2009), and in the
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chemodynamical models of Burkert et al. (1992).

The age-velocity dispersion produced in our fiducial model may be explained

as the combination of two physical effects. First, the gas velocity dispersion decreases

with time as the disk cools. This may be understood from the fact that if Q and Q∗

are self-regulated to constant values, then Qg must remain close to constant, and so if

Σ decreases, so must σ. As the gas cools, the stars it forms will be cooler than previous

generations of stars, leading to an age-velocity dispersion correlation. The second effect

is the heating of stars via transient spirals to maintain Q∗ = Qlim. Although this is a

scattering process which heats stars over time, there is never a thin disk which gradually

forms a thick disk.

To better discern the importance of each of these effects, we can compare the

stars produced by the fiducial model to runs with certain effects artificially turned off.

The high and low constant accretion rate models shown in figure 3.5 have Ṁext(t) =

12.3M�/yr and Ṁext(t) = 2.34M�/yr respectively, corresponding to the accretion rates

at the beginning and end of the fiducial simulation. For simulations where migration

is turned off, we plot the properties of the stars at their epoch of formation, rather

than their properties at z = 0. Thus the dynamical effects of migration as it affects the

stability of the disk remain unchanged as compared with the fiducial simulation. Figure

3.5 shows explicitly that the age-velocity dispersion correlation is strongly affected by

the accretion history and the presence of stellar heating. All of the scenarios are able to

generate some age-velocity dispersion correlation. Even the case with no stellar heating

and a constant accretion rate produces one as the result of a fall in Σ, and hence σ, as
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a result of star formation.
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Figure 3.4: Radial profiles of quantities at redshift 2 (dotted), 1.5 (dot-dashed), 1
(dashed), and 0 (solid). Within the star-forming region, the size of the Jeans mass
decreases steadily, but increases at the center of the disk owing to the extremely low
gas column densities. The two-component Q value transitions from unity in the gas
(both H2 and HI) dominated regions to Q = QlimT = 15/4 in the stellar-dominated
component.
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(black), stellar migration off (red), high constant accretion (orange), low constant accre-
tion (blue), stellar migration off and low constant accretion (purple). The models with
constant accretion history are dashed. Every simulation produces an age-velocity dis-
persion correlation via some combination of increasing σ∗,i of existing stars or decreasing
σ, which makes the younger stars dynamically cooler.
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Figure 3.6: All stellar populations produced in the fiducial model at redshift zero,
colored by their age with redder stars older. The ages are linearly spaced in time, so
each population is about 1 Gyr of star formation. The dotted lines represent the initial
population of stars, which has only evolved via stellar migration over the whole course
of the simulation. Each newer population is less massive, dynamically colder, and has
a steeper metallicity gradient than its older analogues.
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3.7 Discussion

Starting from conservation laws and simple assumptions about the gravita-

tional stability of the disk, we have derived evolution equations for the radial profile of

a two-component disk. Compared to semi-analytic models, this approach has the ad-

vantage that the vast variation in the state variables as a function of radius is resolved

rather than averaged over the whole disk. This improvement comes with additional

computational costs; however, these are not severe - even using the full Rafikov Q and

multiple stellar populations, the code can evolve a disk from z = 2 to z = 0 on a single

processor in a few days, and using the Romeo & Wiegert (2011) approximation to Q

reduces the computation time to under an hour.

This paper is primarily meant to introduce our methodology. However, the

fiducial model demonstrates a key point which is often overlooked in galaxy evolution

and studies of the thick disk, namely that thick disks need not be formed from thin disks.

An age-velocity dispersion correlation appears in our simulation, not because of external

perturbers, mergers, or gradual heating of a thin disk, but because σ decreases with time

and newly formed stars induce transient instabilities in the disk (see also Burkert et al.,

1992). Both of these processes are strongly dependent on the cosmological situation

in which the disk finds itself, that is, its accretion history. Simulations of isolated

thin disks which are gradually heated are therefore unrealistic, in the sense that they

are missing the most important drivers of thick disk formation. The smooth increase

in stellar velocity dispersion with age produced in our simulations agrees qualitatively

with recent observations which demonstrate the lack of a distinctive bimodality between
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thick and thin disk stars (Bovy et al., 2012a).

This approach has several further applications which we intend to explore in

future work. For Milky Way-like galaxies, even modern chemodynamical models with

sophisticated treatments of stellar migration and evolution rely on highly parameterized

treatments of gas inflow in the disk (Schönrich & Binney, 2009; Spitoni & Matteucci,

2011). If the gas evolves to keep the disk marginally gravitationally unstable, its move-

ment in the disk is not this simple - it depends on the evolution of the full non-linear

set of equations we have derived here. By accounting for the diffusion of stars in radius

as the result of scattering across corotation resonances (Sellwood & Binney, 2002), our

model could be extended to model the Milky Way in detail and compare directly with

observations of the metallicity gradient as a function of height above the disk (Cheng

et al., 2012), the age-velocity dispersion correlation (Holmberg et al., 2009), the age-

metallicity relation or lack thereof (Edvardsson et al., 1993),and the radial and vertical

stellar density distributions (Bovy et al., 2012b).

Galaxy bimodality - the separation of galaxies into a blue cloud of star-forming

galaxies and a red sequence of ellipticals - is often viewed as an evolutionary sequence.

Blue cloud galaxies gradually accrete gas and smaller galaxies, which fuel star formation.

Some of these galaxies will undergo major mergers, leaving red and dead elliptical

galaxies. These early-type galaxies can subsequently undergo dry mergers, which extend

the red sequence to include extremely massive galaxies. Beyond this canonical view,

Sánchez Almeida et al. (2011) have noted the existence of a significant population of

red spirals.
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By taking more realistic accretion histories from cosmological simulations, we

expect that a certain fraction of disks in the course of their lifetimes will experience

a period of low accretion during which they will exhaust their gas supply and become

redder, only to return to the blue cloud with the resumption of higher accretion rates.

Given a set of realistic non-smooth but quiescent accretion histories, appropriate for

a large fraction of sub-L∗ galaxies, we may therefore be able to reproduce aspects of

phenomenology from the local universe out to z = 2 as semi-analytic models do, but

with the added benefit of a physical treatment of the disk dynamics.

3.8 Non-dimensional Equations

For the purposes of implementing the governing equations in a numerical code,

it is useful to non-dimensionalize the equations. To do so is straightforward, and ba-

sically amounts to rescaling lengths to the radius of the disk, velocities to the circu-

lar velocity, and mass fluxes to the initial accretion rate of gas from the IGM. We

can make the following substitutions, following KB10: r = xR, t = T [2πR/vφ(R)],

T = τṀext,0vφ(R)R, σj = sjvφ(R), and Σj = SjṀext,0/(vφ(R)R). Here the subscript j

may refer to gas or one of possibly many stellar populations. With these substitutions,

the gas evolution equations (4.2) and (4.3) become

∂S

∂T
=

(β2 + β + xβ′)τ ′ − x(β + 1)τ ′′

(β + 1)2ux2
− (fR + µ)

∂S∗
∂T

SF

(3.65)

∂s

∂T
= − s

3(β + 1)Sux
τ ′′ +

(β + β2 + xβ′)s− 5s′x(β + 1)

3(β + 1)2Sux2
τ ′

+
u(β − 1)

3sSx3
τ − 2π2

3
ηSK0

(
1 +

S∗
S

s

s∗

)(
1− s2

t

s2

)3/2

(3.66)

123



Primes denote partial derivatives with respect to x, and as with dimensional quantities,

S and s with no subscript refer to properties of the gas. The dimensionless initial

accretion rate is

K0 =
GṀext,0

vφ(R)3
. (3.67)

The dimensionless thermal gas velocity dispersion is st.

Employing the same procedure for the evolution equations of each stellar pop-

ulation’s column density, we obtain

∂S∗,i
∂T

= fR

(
∂S∗,i
∂T

)SF
+
∂S∗,i
∂T

Mig

, (3.68)

∂S∗,i
∂T

SF

= 8π

√
2

3
fH2εffK0

S2

s

√
1 +

S∗
S

s

s∗
, (3.69)

∂S∗,i
∂T

Mig

= −2πy

(
S∗,i

y′

y
+ S′∗,i +

S∗,i
x

)
(3.70)

where we have explicitly separated the effects of stellar migration and star formation.

The dimensionless radial component of the bulk stellar velocity is y = vr∗/vφ(R).

Similarly, the velocity dispersion evolution equations are

∂s∗,i
∂T

=
∂s∗,i
∂T

SF

+
∂s∗,i
∂T

Mig

, (3.71)

∂s∗,i
∂T

SF

≈ fR
1

2S∗s∗
(s2 − s2

∗)
∂S∗
∂T

SF

, (3.72)

∂s∗,i
∂T

Mig

= −2πy

(
(1 + β)u2

3xs∗
+ s′∗

)
(3.73)

The change in velocity dispersion as a result of star formation is only an approximate

relation, since it relies on a first order Taylor series expansion of the exact change in s∗,i,
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which in turn requires that S∗,i � (∂S∗,i/∂T )MigdT . This condition cannot be satisfied

when a completely new population of stars is formed as the simulation crosses into a

new age bin, at which time S∗,i = 0. Therefore we use the exact relation,

s∗,i,new =

√√√√(S∗,is2
∗,i)old + fR(dSSF∗,i )s2

S∗,i,old + fR(dSSF∗,i )
(3.74)

where dSSF∗,i = dT (dS/dT )SF

Finally we have the equations describing the transport of metals in the gas,

∂Z

∂T
= − 2π

(β + 1)xSu

∂ lnZ

∂x
τ ′ +

yM (1− fR)

S

∂S∗
∂T

SF

(3.75)

and in a stellar population,

∂Z∗,i
∂T

Mig

= −2πyS′∗,i. (3.76)

The stellar metallicity change owing to the formation of new stars can be computed

exactly as

Z∗,i,new =
(S∗,iZ∗,i)old + fR(dSSF∗,i )Z

S∗,i,old + dSSF∗,i
(3.77)

These equations, given a torque τ and a radial stellar velocity y, fully describe

the evolution of the system. To obtain these two quantities, we imposed conditions

on the evolution of Q and Q∗ (equations 3.16 and 3.34). In dimensionless form these
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partial differential equations are

y′ + y

(
−u

2

s2
∗

(1 + β)

3x
− s′∗
s∗

+
S′∗
S∗

+
1

x

)
=

max(Qlim −Q∗, 0)u

2πxTmigQ∗
(3.78)

g2 τ
′′ + g1 τ

′ + g0 τ = gF (3.79)

where the coefficients of the dimensionless torque equation are

g2 = − s

3xSu(β + 1)

∂Q

∂s
− 1

(β + 1)xu

∂Q

∂S
(3.80)

g1 =
β2s+ s(xβ′ + β)− 5(β + 1)xs′

3(β + 1)2x2uS

∂Q

∂s
+
β(β + 1) + xβ′

(β + 1)2x2u

∂Q

∂S
(3.81)

g0 =
u(β − 1)

3x3sS

∂Q

∂s
(3.82)

gF =
2π2

3
ηSK0

(
1 +

S∗
S

s

s∗

)(
1− s2

t

s2

)3/2
∂Q

∂s
+ (fR + µ)

∂S

∂T

SF ∂Q

∂S
(3.83)

−
∑
i

(
∂S∗,i
∂T

∂Q

∂S∗,i
+
∂s∗,i
∂T

∂Q

∂s∗,i

)

Both partial differential equations require an outer boundary condition, which essen-

tially specifies the flux of each type of material at the edge of the disk. The mass flux

of the gas is specified by some accretion history Ṁext(t),

τ ′(x = 1) = −

(
Ṁext(t)

Ṁext,0

)
(1 + β(x = 1)), (3.84)

while the flux of stars is set to zero via y(x = 1) = 0. The torque equation also requires

an inner boundary condition, which we take to be τ(x = x0) = 0

126



Chapter 4

Radial Gas Structure and Central

Quenching

4.1 Introduction

Historically astronomers have studied the evolution of galaxies through changes

in their stellar populations. The real action, though, takes place in the gas phase.

However, it is only recently that observations in the radio have had sufficient sensitivity

to detect molecular gas in emission at high redshift, and sufficient resolution to map

both molecular and atomic gas in great detail for nearby galaxies. Integral field and

grism spectroscopy of Hα have also opened a new view on the spatial distribution of

star formation and gas kinematics at z ∼ 1− 2.

Numerous surveys have shown that the specific star formation rates (sSFR,

the star formation rate divided by the stellar mass) of Milky Way (MW) mass galaxies
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have decreased by roughly a factor of 20 since z = 2. With the wide acceptance of

ΛCDM cosmology, which entails the hierarchical growth of dark matter haloes, it became

common lore that mergers were a major driver of this dramatic change in the nature of

galaxies. More recently though, the small scatter in the correlation between the stellar

mass M∗ and the star formation rate (the star forming main sequence) for galaxies

out to z = 2 has suggested that most stellar mass growth occurs in galaxies that are

not undergoing dramatic merger events, but rather in typical-looking disks (e.g. Noeske

et al., 2007; Rodighiero et al., 2011; Kaviraj et al., 2013). Maps of Hα emission in main

sequence galaxies confirm that star formation occurs in radially extended disks at z ∼ 1

(Nelson et al., 2013).

Even though the higher star formation rates at z ∼ 2 are unlikely to be caused

by mergers, galaxies where the sSFR’s are so much higher than in local galaxies must

be dramatically different. This has been verified directly by gas-phase observations,

which show that these galaxies are gas-rich (Tacconi et al., 2010, 2013), highly turbulent

(Cresci et al., 2009; Förster Schreiber et al., 2009), and gravitationally unstable (Burkert

et al., 2010; Genzel et al., 2011). These differences are also reflected in the optical

morphologies, which are distinctly clumpy (Elmegreen et al., 2004, 2005).

High resolution hydrodynamical simulations (Bournaud & Elmegreen, 2009;

Ceverino et al., 2010) have strongly suggested that the reason these galaxies are so

different from low-redshift disks is rapid gas accretion from the cosmic web through

cold dense filaments (Dekel et al., 2009b), which in turn leads to galaxies with low
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values of the Toomre Q parameter (Toomre, 1964),

QToomre =
κσd
πGΣd

(4.1)

Here κ(r) =
√

2(β(r) + 1)Ω(r) is the epicyclic frequency, which is roughly comparable to

the angular frequency Ω, depending on the local powerlaw slope of the rotation curve,

β = d ln vφ/d ln r. The velocity dispersion and surface density of the disk material

are σd and Σd respectively. This instability has dramatic effects on the dynamics of

the disk (Dekel, Sari, & Ceverino, 2009a). In regions where QToomre
<∼ 1, the disk is

unstable to axisymmetric perturbations on a scale λ ∼ σ2
d/GΣd, leading to clumps of

this characteristic size. The clumpiness of the disk will in turn drive turbulence through

the random torques exerted by the inhomogeneous gravitational field on material in

the disk. The ultimate source of this kinetic energy is the gravitational potential of the

galaxy, so mass must flow inwards (e.g. Gammie, 2001; Dekel et al., 2009a) (though some

will flow outwards to conserve angular momentum). As a result of this the turbulent

velocity dispersion σd, and hence QToomre, is increased, so given a sufficient gas supply,

the value of QToomre will be self-regulated to a marginally stable value of order unity.

Alternative scenarios for driving the turbulence and producing clumps have

been explored by other authors. Genel et al. (2012) constructed a simple model for

the scenario in which the turbulence is driven by the kinetic energy of material as it

accretes onto the disk (see also Elmegreen & Burkert, 2010). The details of the origin

of the clumpy morphologies has also come under recent theoretical and observational

investigation, and the importance of ex-situ clumps from minor mergers is not neg-
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ligible (Mandelker et al., 2014). Supernovae (Joung et al., 2009), radiation pressure

(Krumholz & Thompson, 2012; Krumholz & Thompson, 2013), and the two working in

tandem (Agertz et al., 2013), being the primary sources of energy outside of gravitational

potential energy, have also been studied as drivers of turbulence and outflows.

Undoubtedly all of these processes occur. All of the sources of stellar feed-

back suffer from a great deal of uncertainty in the degree to which they couple with

the interstellar medium, and typically require extremely high resolution hydrodynami-

cal simulations to model properly. The highest resolution simulations to date, those of

Krumholz & Thompson (2012); Krumholz & Thompson (2013) for radiation pressure

and those of Joung et al. (2009) for SNe, suggest that these sources of turbulence are un-

able to produce the high velocity dispersions observed in z ∼ 2 disks. The gravitational

instability scenario has the advantage that it is difficult to avoid; if QToomre
<∼ 1, gas

will collapse and drive turbulence. In fact, high resolution hydrodynamic simulations

identify gravitational instability as the primary regulator of the disk and interstellar

medium (starting with Bournaud et al., 2010). Simple analytic arguments also suggest

that the GI scenario leads to the correct behavior of σ/vcirc over time, whereas the

direct kinetic energy injection scenario does not (Genel et al., 2012). Moreover, even

z = 0 disk galaxies have values of QToomre (when corrected for multiple components and

finite disk thickness) of order unity (Romeo & Wiegert, 2011).

In this work we build on the physical picture presented in simple toy models

(Dekel et al., 2009a; Cacciato et al., 2012) of the gravitational instability and how it

evolves over time. Krumholz & Burkert (2010) developed a formalism to show how
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gravitationally unstable disks behave as a function of radius in steady state and how

quickly the disks approach steady state. In the previous Chapter Forbes, Krumholz,

& Burkert (2012, hereafter F12), we extended the time-dependent numerical model of

Krumholz & Burkert (2010) to include star formation, stellar migration, and metallicity

evolution to give a realistic picture for how galaxies evolve over cosmological times with

all these processes. In this work, rather than focus on the stellar populations, we explore

what sets the gas distribution. Our model includes a number of improvements over the

models presented in F12 which we discuss in detail in appendix 4.6, and a new stellar

migration formalism (appendix 4.7).

One of our goals here is to understand the connection between the high redshift

star forming galaxies and their z = 0 descendants. The two galaxy populations are

vastly different in terms of their gas fractions and sSFR’s, yet remarkably similar in

morphology. Recent z = 0 measurements of the structure of gas in nearby spirals, The

HI Nearby Galaxy Survey (THINGS) (Walter et al., 2008) and the HERA CO-Line

Extragalactic Survey (HERACLES) (Leroy et al., 2009), have provided unprecedented

high spatial resolution data. These data have been fundamental in our understanding

of star formation, and Bigiel & Blitz (2012) recently showed that these galaxies exhibit

a universal gas surface density profile with remarkably small scatter.

The general problem of how to connect high-redshift galaxy populations to

their low-redshift counterparts has been approached for the past few decades with semi-

analytical models (SAMs). These models are generally built on top of dark matter

merger trees constructed from N-body cosmological simulations. Each galaxy is typi-
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cally treated as a simple system described by a few quantities, e.g. cold and hot gas

mass, stellar mass, black hole mass, and the entire population evolves according to pa-

rameterized recipes for gas cooling, star formation, stellar feedback, black hole growth,

mergers, etc. With a few exceptions (van den Bosch (2001) with subsequent work by

Dutton et al. (2007); Dutton & Bosch (2009) and the simpler Fu et al. (2010)), SAMs

have not tracked quantities as a function of radius (or more accurately specific angular

momentum). The only model where matter can change its specific angular momentum

(Fu et al., 2013) does so in an ad-hoc way with no physical justification. This work

attempts to fill this void without resorting to extremely expensive 3D hydrodynamical

simulations, which must necessarily be either very low-resolution to see a large number

of galaxies (e.g. Davé et al., 2011) or one galaxy at a time (e.g. Guedes et al., 2011).

In section 4.2 we review the equations solved by our 1D code. The results of a

wide range of simulations done with the code are presented in section 4.3. We discuss

the implications in section 4.4 and summarize in section 4.5.

4.2 The GIDGET code

Our one-dimensional disk galaxy evolution code, GIDGET1, is described in

more detail in F12. The code tracks the surface density, velocity dispersion, and metal-

licity of one gas component and one or more stellar components, as a function of radius

and time. The following subsections will describe the evolution equations for these

quantities in some detail; we include a comprehensive list of all parameters used in this

1The source code repository is freely available from http://www.ucolick.org/~jforbes/gidget.

html
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study, defined below, in table 4.1. The most important physical ingredients are star

formation, external accretion onto the disk, and radial transport of gas through the

disk.

4.2.1 Gas transport and cooling

GIDGET solves the full equations of hydrodynamics in the limit of a thin,

axisymmetric, rotationally-supported disk, supported vertically by supersonic turbulent

pressure. In this limit, the state of the gas at a particular time is described by a surface

density Σ(r) and a velocity dispersion σ(r) =
√
σ2
turb(r) + σ2

sf with a turbulent and a

component supported purely by stellar feedback.

The change in gas surface density at a given radius is described by a simple

continuity equation accounting for mass flow through the disk, with source terms for

star formation, recycling of gas by stellar mass loss, galactic winds, and cosmological

accretion.

∂Σ

∂t
=

1

2πr

∂

∂r
Ṁ − (fR + µ)Σ̇SF

∗ + Σ̇cos. (4.2)

The first term represents the flow of mass within the disk, where Ṁ is defined as the net

gas mass per unit time moving towards the center of the disk across cylindrical radius

r. Typically Ṁ > 0, representing inward mass flux, but negative values at large radii

in the disk are generally necessary to conserve angular momentum. The second term

of the continuity equation represents gas forming stars. Only a fraction fR of that gas

will remain in stellar remnants, while the remainder will be recycled to the ISM; we

approximate this process as instantaneous as suggested by Tinsley (1980). Mass is also
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Table 4.1: An exhaustive list of all parameters used in Chapter 4
Parameter Fiducial Value Plausible Range Description

Gas Migration (section 4.2.1)
η 1.5 0.5 – 4.5 (3/2) kinetic energy dissipation rate per scale-height crossing time
QGI 2 1–3 Marginally stable value of Q
Tgas 7000 K 3000–104 Gas temperature; sets the minimum gas velocity dispersion
αMRI 0.01 0–0.1 Value of Trφ/ρσ

2
sf without gravitational instability

Rotation Curve (section 4.2.2)
vcirc 220 km s−1 180–250 Circular velocity in flat part of rotation curve
rb 3 kpc 0–10 kpc Radius where rotation curve transitions from powerlaw to flat
β0 0.5 0–1 Powerlaw slope of vφ(r) at small radii
n 2 1–5 Sharpness of the transition in the rotation curve

Star Formation (section 4.2.3)
εff 0.01 .003–.03 Star formation efficiency per freefall time in the Toomre regime

fH2,min 0.03 .01–.1 Minimum fH2 .
tSC 2 Gyr 1–3 Gyr Depletion time of H2 in the single cloud regime
fR 0.54 .4+ Mass fraction of a zero-age stellar population not recycled to the ISM
µ 0.5 0–2 Galactic winds’ mass loading factor

Metallicity (section 4.2.4)
y .054 .05–.07 Mass of metals yielded per mass locked in stellar remnants
ξ 0 0–1 Metallicity enhancement of galactic winds

ZIGM 0.1Z� = 0.002 (.01–1)Z� Metallicity of initial and infalling baryons
kZ 1 .3–3 Amplitude of metallicity diffusion relative to (Yang et al., 2012)

Stellar Migration (appendix 4.7)
Qlim 2.5 2–3 Value of Q∗ below which spiral instabilities will heat the stars
Tmig 4 2–5 Number of local orbital times over which stars are heated by spiral instabilities

Accretion (section 4.2.5)
Mh,0 1012M� - Halo mass at z = 0
∆ω 0.5 0.1–1 Interval of ω ∼ z over which accretion rate is constant

racc(z = 0) 6.9 kpc 3–20 kpc Scale length of new infalling gas
βz 0.38 0–1 Scaling of efficiency with (1 + z)
βMh

-0.25 -1–0 Scaling of efficiency with halo mass
ε0 0.31 ∼ 0 - .5 Efficiency at Mh = 1012M�, z = 0
εmax 1 0.5–1 Maximum value of efficiency

Initial Conditions (section 4.2.6)
αr 1/3 0–1 Scaling of accretion scale length with halo mass
fg,0 0.5 0.2–0.7 Initial gas fraction
fcool 1 0.4–1 Fraction of fbMh(z = zrelax) contained in the initial disk
zrelax 2.5 2–3 z at which the simulation is initialized
φ0 1 1–5 Initial ratio of stellar to gaseous velocity dispersion

Computational Domain (see F12)
x0 .004 0 < x0 � 1 Inner edge of domain as a fraction of R
R 40 kpc 10–100 kpc Outer edge of domain
nx 200 >∼ 100 Number of radial cells
tol 10−4 10−5 −−x0 Fastest change allowed in state variables, per orbital time at r = R

Cosmology (section 4.2.5)
Ωm 0.258 - Average present-day matter energy density as a fraction of the critical density

1− Ωm − ΩΛ 0 - Deviation from a flat universe
fb 0.17 - Universal baryon fraction
H0 72 km s−1 Mpc−1 - Hubble’s constant
σ8 .796 - Normalization of the dark matter power spectrum
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ejected at each radius in galactic scale winds in proportion to the star formation rate,

with mass loading factor µ. Finally, Σ̇cos represents the rate of cosmological accretion

onto the disk. The winds are assumed to escape the galaxy, though in principle they

could be re-accreted later through this final term.

To evolve the velocity dispersion of the gas, we employ the energy equation

added to the dot product of v with the momentum equation, yielding a total (kinetic

+ internal) energy equation,

∂σ

∂t
=
G − L
3σΣ

+
σ

6πrΣ

∂

∂r
Ṁ +

5(∂σ/∂r)

6πrΣ
Ṁ +

(β − 1)vφ
6πr3Σσ

T . (4.3)

Radiative gains and losses per unit area, respectively G and L, are encompassed in the

first term. The second and third terms account for the advection of kinetic energy as the

gas moves through the disk. The torques which move gas radially in the disk, included in

the final term, transfer energy between the galactic potential and the turbulent velocity

dispersion. Here T =
∫

2πr2Trφdz is the vertically integrated effective viscous torque.

Note that physically Trφ ≤ 0, and for rotation curves flatter than solid-body β < 1, so

this final term adds kinetic energy to the gas. We also note that we do not explicitly

include any terms related to energy input by cosmological accretion, as this is expected

to be sub-dominant, certainly below z = 2 (Genel et al., 2012; Hopkins et al., 2013;

Gabor & Bournaud, 2013).

The viscous torque is related to the mass flux via the conservation of angular
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momentum, as derived from the φ−component of the Navier-Stokes equations:

Ṁ ≡ −2πrΣvr = − 1

vφ(1 + β)

∂T
∂r

. (4.4)

The mass flux, or equivalently the gas velocity in the radial direction, or equivalently

the torque, are not known ab initio. To calculate them modelers have historically, since

Shakura & Sunyaev (1973), appealed to an order-of-magnitude argument, namely that

Trφ = αρσ2, or equivalently ν = ασH where α is a parameter that might be measured

from hydrodynamical simulations, ν is the resultant effective turbulent viscosity and H

is the scale height. Physical causes for the turbulence include the magneto-rotational

instability (MRI), the gravitational instability (GI), and misalignment of the angular

momentum of accreting material. The value of α measured from simulations of the

MRI varies by orders of magnitude, but is generally less than 0.1, particularly if the

magnetic field is not forced to be vertical (Balbus & Hawley, 1998). To distinguish

between gravitational instability, which we model in a more consistent way, and the

MRI or any other source of turbulence, which we include for comparison, we split our

variables related to the torque into two components, T = TGI +TMRI , and similarly for

vr, Trφ, Ṁ , and α (the effects can just be added together since all of our equations are

linear in these quantities). We neglect any mismatch in angular momentum between

the disk and the infalling material, both for simplicity, and since for likely sources of

accretion (cold streams, cooling from the hot halo, and re-accreted galactic winds), the

mismatch is unlikely to be large.

Rather than pick a constant value of αGI , we calculate at every timestep the
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value of TGI(r) such that in regions where Q ≤ QGI , the torques will act to move

and heat the gas so that dQ/dt = 0. In regions of the disk where Q > QGI , TGI =

ṀGI = vr,GI = 0. This also serves as both the inner and outer boundary condition, i.e.

we assume the disk is gravitationally stable outside the computational domain, which

leaves gas free to flow off either boundary if the innermost or outermost cell has non-zero

torque.

To see how this works, consider the rate of change of Q with time,

dQ

dt
=

∂Σ

∂t

∂Q

∂Σ
+
∂σ

∂t

∂Q

∂σ
+

∂Σ∗
∂t

∂Q

∂Σ∗
+
∂σrr
∂t

∂Q

∂σrr
+
∂σzz
∂t

∂Q

∂σzz

= ftransport

(
Σ, σ,Σ∗, σrr, σzz, TGI ,

∂TGI
∂r

,
∂2TGI
∂r2

)
+fsource (Σ, σ,Σ∗, σrr, σzz, Z) . (4.5)

The first equation is simply an application of the chain rule, while the second is just a

definition, wherein we split all the terms into those which depend on TGI and those which

do not. Note that the source term includes the terms related to the αMRI -viscosity, star

formation, and radiative cooling. The function ftransport has the nice property that it is

linear in TGI and its spatial derivatives, so when TGI = 0, ftransport = 0 and we are left

with dQ/dt = fsource. Meanwhile in regions where Q < QGI (by some small amount),

we solve the equation ftransport = −fsource, i.e. we force dQ/dt = 0. Because ftransport is

linear, this equation may be solved efficiently for TGI by the inversion of a tridiagonal

matrix.
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This treatment raises a key question. If dQ/dt = 0, how can the disk ever

stabilize? In the course of solving ftransport = −fsource, sometimes a non-physical value

of T will be obtained. In particular, since viscous heating ∝ −T for reasonable rotation

curves β < 1, it must be the case that T ≤ 0 to satisfy the second law of thermodynamics

(turbulence should not decay into large-scale coherent motions). If this condition is not

satisfied by the solution of ftransport = −fsource, then we set T = 0 in that cell. Under

this circumstance the cell behaves exactly as if it has stabilized, and Q in that cell will

obey dQ/dt = fsource. Typically the reason that a cell falls into this situation is that

fsource > 0 and no physical value of ftransport can cancel this effect, so Q is allowed to

rise in that cell.

The gravitational stability of disks to linear axisymmetric perturbations is

roughly determined by the value of QToomre. Modern versions of this parameter take

into account both gas and stars (e.g. Rafikov, 2001; Romeo & Falstad, 2013), the finite

thickness of the disk (Shu, 1968; Romeo, 1992, 1994; Elmegreen, 2011), gas turbulence

(Hoffmann & Romeo, 2012) and the fact that gas which can cool to arbitrarily small

scales is never formally stable (Elmegreen, 2011). Romeo & Wiegert (2011) have devel-

oped an approximate, but analytic, formula for Q taking into account two components

of finite thickness, i.e. both gas and stars. In this way the gravitational effects of the

stars are included in the instability, subject to what we assume about how the stars self-

regulate Q∗ (see appendix 4.7). To account for the final complication, we demarcate

the stable from the unstable values of Q at QGI = 2, rather than the canonical value

of unity, as suggested by Elmegreen (2011). This approximation to Q and its partial
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derivatives with respect to Σ, σ, Σ∗, and σ∗ is extremely cheap to compute, which is

advantageous since all of these values must be computed at each (unstable) radius and

time to solve ftransport = −fsource.

Numerical experiments (Stone et al., 1998; Mac Low et al., 1998) of turbulent

gas in periodic boxes have shown that the turbulence decays in roughly a crossing time

of the turbulent driving scale. For the purposes of our simulations, we assume that the

driving scale is the scale height of the disk, in which case the kinetic energy surface

density (3/2)Σσ2
turb will decay at a rate,

L = ηΣσ2κQ−1
g

(
1 +

σΣ∗
σzzΣ

)(
1−

σ2
sf

σ2

)3/2

, (4.6)

where η is a free parameter which would be 3/2 if the decay time were exactly one scale

height crossing time. As a result of the final factor, L → 0 as σ → σsf , i.e. when the gas

reaches the velocity dispersion induced by various forms of star formation feedback, it

will no longer lose any net energy. The value of σsf is set to agree with the gas kinetic

temperature in the warm neutral medium of the Milky Way (7000 K), which is in the

same range as the maximum velocity dispersion achievable by supernova feedback in

simulations (Joung et al., 2009) and the velocity dispersion caused by FUV heating

in MW-like galaxies (Ostriker et al., 2010), and is consistent with both neutral and

molecular gas velocity dispersions in local disk galaxies (Caldu-Primo et al., 2013).
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4.2.2 Rotation curve

In order to derive the evolution equations shown in the previous section, we

assumed that the potential and rotation curve of the disk are constant in time. The

primary reason for this is that to self-consistently calculate vφ would require knowledge

of the dark matter. While N-body simulations assuming ΛCDM cosmology consistently

produce dark matter halos with well-characterized density profiles, the effects of baryons

are highly controversial. Moreover, if one were to calculate the rotation curve simply

from the dark matter, (e.g. Cacciato et al., 2012), the circular velocity would decrease

with time since z = 1 (at z = 2, vcirc ≈ 185 km s−1, increasing to ≈ 200 km s−1 at z = 1,

and falling back to ≈ 190 km s−1 at z = 0), whereas observations (Kassin et al., 2012)

show that (at fixed stellar mass) the circular velocity actually increases from z = 1 to

the present. Therefore rather than constructing a model for the rotation curve which

depends on the poorly constrained interactions between baryons and dark matter, we

adopt a simple functional form,

vφ(r) = vcirc

(
1 + (rb/r)

|β0n|
)−sign(β0)/n

. (4.7)

This is designed to represent a smooth transition from powerlaw to flat, where rb is the

characteristic radius where the rotation curve turns over. Within this radius, the velocity

approaches a powerlaw with index β0, and the sharpness of the transition between

powerlaw and flat increases with increasing n. The disadvantages of this approach are

that we are restricted to evolving our galaxies over periods during which the circular

velocity does not change very much (z ∼ 2 - 0), and changes to the potential owing to
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the movement of baryons are not reflected in the rotation curve.

4.2.3 Star formation

Stars form with a constant efficiency per freefall time εff from molecular gas,

so that Σ̇SF
∗ ∼ εfffH2Σ/tff , where tff is the freefall time and fH2 is the molecular

fraction (Krumholz & Tan, 2007; Krumholz et al., 2012). Following Krumholz et al.

(2012), we posit that there are two regimes: one in which the appropriate time-scale

is the freefall time of gas distributed over the full scale height H of the disk, namely

tff =
√

3π/32Gρ ≈
√

3πH/32GΣ, which we call the ‘Toomre regime’ and one in which

the time-scale is determined by the freefall time of individual molecular clouds, which

observations suggest is tff/εff = ΣH2/Σ̇
SF
∗ ≡ tSC ≈ 2 Gyr (Bigiel et al., 2011), the

‘single cloud regime’. Then the star formation rate is simply set by which of these two

time-scales is shorter 2,

Σ̇SF
∗ = max

(
εfffH2Σκ

√
32/3

Qgπ

(
1 +

σΣ∗
σzzΣ

)1/2

, fH2

Σ

tSC

)
(4.8)

Typically the first regime is relevant at small radii since κ ∝ 1/r, and the transition

tends to be fairly constant in time, since the rotation curve is fixed in our model,

and both terms are proportional to fH2 and Σ, though Qg can change by an order of

magnitude or more if the disk has stabilized.

The molecular fraction fH2 is calculated according to the analytic formula of

Krumholz et al. (2009). Their formula predicts fH2 as a function of Σ and Z. Roughly

2Note that F12 omitted the factor of 1/Qgπ, though the code and the appendix with the dimensionless
version were correct
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speaking, fH2 → 1 at high surface densities, and below some transition surface density,

there is a sharp cutoff where fH2 rapidly approaches zero. This transition is metallicity

dependent, roughly 5M� pc−2(Z/Z�)−1. We include the slight modifications to this

formula we used in F12, namely a floor of fH2 ≥ 0.03 to account for the fact that star

formation is observed even at very low surface densities, (Bigiel et al., 2010; Schruba

et al., 2011), likely as a result of the requirement that the FUV flux not fall below

a certain floor in order for two-phase equilibrium in the atomic ISM to be possible

(Ostriker et al., 2010).

At each time step, a new population of stars is formed with surface density

Σ̇SF
∗ dt, where dt is the duration of the time step. The velocity dispersion of this pop-

ulation is the maximum of σturb and σ∗,min. Physically this floor might correspond

to some combination of cloud-to-cloud velocity dispersion or the internal velocity dis-

persion of a cloud, roughly 2 km s−1. The newly formed stars are then merged with

the extant population while conserving mass and kinetic energy, meaning Σ̇SF
∗ dt is

added to Σ∗, and the velocity dispersion of the extant population is updated so that

(Σ∗σ
2
∗)

new = (Σ∗σ
2
∗)

old +
(

Σ̇SF
∗ dtmax

(
σ2
turb, σ

2
∗,min

))
.

Once stars form, they also migrate. In our model, this is treated quite similarly

to the gas migration discussed in section 4.2.1, namely the stars experience torques if

they are gravitationally unstable to spiral instabilities. Our prescription has improved

significantly since F12, so we discuss the new governing equations in appendix 4.7.

Overall this typically has a minor effect on the dynamics of the disk, although it can

strongly influence the stellar velocity dispersions particularly at small radii.
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4.2.4 Metallicity

In addition to its dynamical effects, star formation is responsible for the pro-

duction of metals. We approximate this process as instantaneous, in which case the

production of metals is proportional to the star formation rate. In each cell the mass

in metals is evolved according to

∂MZ

∂t
= ∆r

∂ṀZ

∂r
+ (yfR − fRZ − µZw)ṀSF

∗

+ṀaccZIGM +
∂

∂r
κZ

∂

∂r
MZ . (4.9)

The first term accounts for metals advected from other parts of the disk; ∆r is defined

as the width of the cell under consideration. The next term includes three effects which

occur in proportion to the star formation rate in that cell, ṀSF
∗ ≡ π(r2

i+1/2−r
2
i−1/2)Σ̇SF

∗

- here ri+1/2 ≡
√
riri+1, the location of the boundary between cells i and i + 1 on our

logarithmic grid. The first is the production of new metals through the course of stellar

evolution, which occurs in proportion to y, defined as the mass of metals produced

per unit mass (of all gas) locked in stars. Next is the mass of metals locked in stellar

remnants. The final term proportional to the star formation rate is the mass of metals

ejected in galactic winds with mass loading factor µ. Defining Ṁacc ≡ π(r2
i+1/2 −

r2
i−1/2)Σ̇cos, the next term is simply the mass of metals accreting from the IGM. The

final term, metal diffusion, will be discussed momentarily.

The metallicity of the wind is given by Zw. Many authors assume that Zw = Z,

the metallicity of the gas in the disk. It is worth pointing out that this is probably a
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lower bound, but there is also an upper bound. In the limit of small mass loading

factor µ, the maximum metallicity is the mass in metals expelled by stellar winds and

supernovae: (yfR + (1 − fR)Z)∆M∗ divided by the total mass ejected, (1 − fR)∆M∗.

When the mass loading factor is larger than 1−fR, some additional mass from the ISM

must also be swept up, thereby decreasing the maximum metallicity. The metallicity of

the wind must therefore be

Z < Zw <


Z + yfR/(1− fR) if µ ≤ 1− fR

Z + yfR/µ if µ > 1− fR
(4.10)

We therefore define a new parameter ξ, similar in spirit to e.g. the metal loss factor in

Krumholz & Dekel (2012), so that

Zw = Z + ξ
yfR

max(µ, 1− fR)
. (4.11)

Here ξ may vary between 0 and 1, with 0 representing the usual assumption of perfect

mixing of stellar ejecta and galactic outflows, and 1 representing the minimal possible

mixing.

The diffusion of metals has received relatively little attention until recently. In

F12, we included this diffusion term to prevent the metallicity gradient from steepening

excessively, tuning the value of κZ to yield a reasonable gradient. Since then, Yang

et al. (2012) have measured the value of κZ in a 2D shearing box simulation with

turbulence driven by thermal instability. They show that to a reasonable approximation

κZ ∝ r2
inj/torb, where rinj is the initial wavelength of the metallicity perturbation, and
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torb is the orbital time. Here we make the approximation that rinj ≈ λJ = σ2/GΣ,

the 2D Jeans length, since this should be similar to the spacing of the largest giant

molecular clouds. We can therefore scale κZ in our simulation to their measured value,

as

κZ(r, t) = kZ1.2
kpc2

Gyr

(
σ2/GΣ

3.1 kpc

)2
κ√

2 (26 km s−1kpc−1)
(4.12)

The numerical values are the measured κZ and the input parameters rinj and Ω quoted

for one of their simulations. We also include a free parameter kZ ≈ 1, recognizing that

there is some uncertainty in this result. The numerical implementation of the diffusion

term is operator-split from the rest of the terms, implicit, and computed in terms of

fluxes so that metal mass is explicitly conserved. We also enforce κZ < vcircR, the

largest velocity and radius in the problem, which is not guaranteed by equation 4.12

when Σ is very small. This essentially makes sure that the metal injection scale rinj
<∼ R,

the size of the system.

4.2.5 Accretion

In our model, gas accretes onto the disk at an externally-prescribed rate Ṁext

and a profile Σ̇cos such that

Ṁext(t) =

∫ ∞
0

Σ̇cos(r, t)2πrdr. (4.13)

In our fiducial model we take Σ̇cos ∝ exp(−r/racc(z)). The angular momentum of

accreting gas is thereby entirely set by racc(z), which is assumed to scale with halo mass
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so that

racc(z) = racc(z = 0)

(
Mh(z)

Mh(z = 0)

)αr

, (4.14)

with racc(z = 0) and αr left as free parameters. A reasonable guess for αr is 1/3, which

roughly corresponds to the assumption that racc ∝ Rvir (e.g. Mo et al., 1998), while

a reasonable guess for racc might be the size scale of local disk galaxies, which varies

significantly at fixed mass but is of order 10 kpc.

To determine Ṁext at each time step in our simulation, we calculate Mh(t), the

history of the dark matter halo mass, differentiate with respect to time, and multiply by

fbεin(Mh, z), where fb ≈ 0.17 is the universal baryon fraction, and εin is some efficiency.

We take two separate approaches to calculating Mh(t). The first is to use an average

dark-matter accretion history (Neistein & Dekel, 2008; Bouché et al., 2010), which

estimates the average growth rate to be

Ṁh = 39(Mh/1012M�)1.1(1 + z)2.2M�/yr, (4.15)

which agrees well with hydrodynamic simulations (Dekel et al., 2013). This approach

allows us to quickly and clearly see the effects of changes in the physical parameters of the

simulations without averaging over many galaxies with different accretion histories. The

disadvantage is that in reality galaxies are likely to have stochastic accretion histories,

and this will have a significant effect on the resultant galaxies. For instance, if a galaxy

is fed at a steady rate, if a given region of the disk becomes stable to gravitational

turbulence it is unlikely to ever destabilize again, but an accretion history with variation
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about the median could be unstable at low redshifts or stable at high redshifts.

To capture the effects of variable accretion histories, we also generate accretion

histories using the analytical EPS-like formalism developed by Neistein & Dekel (2008)

and Neistein et al. (2010). The procedure is as follows. The desired final halo mass

Mh,0 and redshift (z = 0) are converted into their corresponding dimensionless values

S and ω. We use the approximate relation from van den Bosch (2002)

S(Mh) = u2

(
c0Γ

Ω
1/3
m

(
Mh

1M�

)1/3
)

σ2
8

u2(32Γ)
. (4.16)

The parameters c0 and Γ are respectively 3.804× 10−4 and 0.169. The function u(x) is

given by

u(x) = 64.087
(
1 + 1.074 x0.3 − 1.581 x0.4

+0.954 x0.5 − 0.185 x0.6
)−10

. (4.17)

Meanwhile, ω(z) may be computed approximately (Neistein & Dekel, 2008) by

ω(z) = 1.260
(
1 + z + 0.09(1 + z)−1 + 0.24e−1.16z

)
. (4.18)

With these relations, we now have S(Mh(z = 0)), and ω(z = 0).

The independent variable ω is steadily incremented by a fixed value ∆ω until

the entire desired redshift range is encompassed. At each step in ω, a new value of S is
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computed by adding

∆S = exp (xσk + µk) (4.19)

where x is a value drawn from a normal distribution with zero mean and unity variance.

We use a fixed ∆ω = 0.1, since this is the timestep used in generating the fitting formulae

for σk and µk in Neistein & Dekel (2008). The fact that we use a fixed ∆ω rather than

a distribution leads to the distinct steps in Fig. 4.1, where all of the accretion histories

change at once.

The mean of the normal distribution to be exponentiated, µk, and its standard

deviation σk, depend on halo mass, and are fit to the results of the Millenium Run

(Springel et al., 2005).

σk = 1.367 + 0.012 log10 S + 0.234(log10 S)2 (4.20)

µk = −3.682 + 0.76 log10 S − 0.36(log10 S)2 (4.21)

Converting each value of S back to Mh one obtains a dark matter accretion history

Mh(ωj), where the ωj are the sequence of ω’s obtained by incrementing ω by the fixed

∆ω, namely ωj = ω0 + j∆ω for j = 0, 1, 2, ... and ω0 = ω(z = 0). We require that

the change in Mh over a single step, Mh(ωi) − Mh(ωi+1), not exceed Mh(ωi+1) to

avoid galaxies ‘accreting’ a larger mass than their own, i.e. becoming a satellite. Since

equations 4.20 and 4.21 were obtained by a fit to the Millenium Run using a cosmology

where (Ωm, σ8) = (0.25, 0.9), when converting between Mh and S with equation 4.16,

we use the parameters from the Millenium Run. Once we have obtained Mh(ωj) using
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this cosmology, we can transform it so that it agrees with the WMAP5 (Komatsu et al.,

2009) cosmology (Ωm, σ8) = (0.258, 0.796), which is much closer to the current best-

fitting values. We use the scaling obtained in Neistein et al. (2010) via a comparison of

merger trees from Millenium and an N-body simulation run with WMAP5 cosmology,

namely we replace the ωj with ω̃j = ω0 + 0.86j∆ω. The full dark matter mass history

of the halo Mh(t) is then obtained by converting the ω̃j to z (with equation 4.18) and

subsequently to t, and linearly interpolating the sequence of halo masses Mh(ω̃j) in

time. The dark matter accretion history is then just the instantaneous derivative of

Mh(t).

The input Ṁext(t) to our simulation is taken to be the average dark matter

accretion rate at time t, generated either from the smooth accretion formula 4.15 or

the lognormal one 4.19 times fbεin. For the efficiency, we use a reasonably general

parameterization,

εin(Mh, z) = min

(
ε0

(
Mh

1012

)βMh

(1 + z)βz , εmax

)
(4.22)

Faucher-Giguère et al. (2011) fit the results of a cosmological SPH simulation with no

feedback to find (ε0, βMh
, βz, εmax) = (0.31,−0.25, 0.38, 1), though they explicitly only

use this fit above z = 2.

Despite its success at high redshift, the paradigm of cold accretion is fairly

uncertain for galaxies which have some hot coronal gas, like the Milky Way, at low

redshift. Moreover, Diemer et al. (2013) have pointed out that below z ∼ 1, nearly all

the growth in Mh for haloes with Mh(z = 0) ∼ 1012M� corresponds to the fact that
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Figure 4.1: The growth of halos. The top panel shows the evolution of the halo mass for
the smooth accretion history (black) and the median, central 68 per cent (shaded), and
central 95 per cent of 400 stochastic accretion histories (red). The corresponding distri-
bution of the inferred baryon accretion rates, including the efficiency factor (equation
4.22), is shown in the bottom panel. The steps in Ṁ correspond to our fixed interval
∆ω = 0.086.

150



the background density of the universe is decreasing (roughly as ρm ∝ (1 + z)3) while

dark matter halos are changing very little. Because the halos are defined in simulations

as having a spherical overdensity relative to the background of ∼ 200, relatively static

halos increase their mass merely because of this drop in the background density. Dekel

et al. (2013) have verified that this is not a significant effect at z > 1.

A number of ideas have been proposed to explain how MW-like galaxies can

maintain star formation rates of order 2M� yr
−1 despite little evidence of cold accretion

at anything near these rates. The gas may be accreting in an ionized phase, slightly

hotter than the observed High Velocity Clouds in HI (Joung et al., 2012). The process

may be helped along by supernova-induced accretion, where hot halo gas is supposed to

condense in the wakes of cold clouds ejected by supernova feedback from the disk of the

galaxy (Marinacci et al., 2010). Alternatively galaxies can be powered by gas recycled

back to the ISM from stars (Leitner & Kravtsov, 2011); while much of this process can be

approximated as occurring instantaneously (the winds from and supernovae of massive

stars), a significant amount of mass is returned even from very old stellar populations

(see also Martig & Bournaud, 2010). Gas ejected by galactic winds often finds its way

back to the star forming disk (Oppenheimer et al., 2010), which may provide yet another

way to provide star-forming gas to galaxies even if dark matter is not accreting.

Given the uncertainties in how gas is accreted at low redshift, our naive ap-

proach of setting Ṁext = Ṁhfbεin is not unreasonable. In our fiducial model, a MW-mass

galaxy accretes roughly 2M� yr
−1 at redshift zero, and so yields a star formation rate

similar to observations, even if the physical mechanism for this accretion is unclear.
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We do retain, in varying the parameters of the accretion efficiency and the accretion

profile, a considerable amount of flexibility in the model, which is appropriate given the

uncertainties. In Fig. 4.1, we show Mh(t) and the resulting Ṁext for the fiducial smooth

model and the stochastic accretion model.

4.2.6 Initial conditions at z ∼ 2

Having constructed the accretion history, we can now generate an initial con-

dition. To do so, we first require that the total surface density in gas and stars equals

some fraction fcool of the total baryonic mass available, fbMh(z = zstart). For haloes

which will host a single galaxy at redshift zero, it is reasonable to assume that at high

redshift, Mh(z = zstart) will be small enough that the cooling time of halo gas is short,

and that even if a galaxy has a stable virial shock, it may still be fed by cold streams,

and so fcool should be of order unity (Birnboim & Dekel, 2003; Kereš et al., 2005; Dekel

& Birnboim, 2006; Ocvirk et al., 2008; Dekel et al., 2009b; Danovich et al., 2012; Dekel

et al., 2013).

We next make the fairly arbitrary decision to have a fixed initial gas fraction

fg,0, defined at each radius to be fg(r) = Σ/(Σ+Σ∗). Thus Σ and Σ∗ will have the same

shape. Observations of main sequence galaxies at high redshift show their stellar profiles

to be exponential (Wuyts et al., 2011; van Dokkum et al., 2013), so we choose an initial

exponential profile with scale length rIC = racc(z = zstart). With these requirements

we arrive at the initial profile,

Σ = fg,0fcoolfb
Mh(z = zstart)

2πr2
IC

exp (−r/rIC)
1

1− fout
(4.23)
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The final factor is a correction for the finite size of the computational domain. In

particular, we want the initial mass of the disk to be independent of R, so fout is the

fraction of the mass profile which lies beyond the computational domain,

fout =
1

2πr2
IC

∫ ∞
R

2πr e−r/rICdr (4.24)

Since the initial conditions are highly uncertain, it is more important to get the cor-

rect amount of mass in the computational domain than to make sure the profile has

a particular normalization. Still, we typically set R � rIC so that this is a minor

correction.

The other initial variables we need to specify are σ, σrr, σzz, Z, and Z∗. For

the metallicities, we simply set Z = Z∗ = ZIGM . For the velocity dispersions, we use

σ = σrrφ
−1
0 = σzzφ

−1
0 = σsf , i.e. the value of our minimum velocity dispersion. We allow

the velocity dispersion of the stars to be different (generally higher) than that of the gas,

with a free parameter φ0. The low constant values of the velocity dispersion will often

lead some parts of the disk to have Q < QGI , so in those regions we raise σ, σrrφ
−1
0 and

σzzφ
−1
0 simultaneously (keeping them equal) until Q = QGI . We emphasize, though,

that the gas velocity dispersion σ and the two stellar velocity dispersions σrr and σzz

evolve separately throughout the simulation - their ratio is fixed only initially. The idea

is that, since supersonic turbulence in the disk is generated exclusively by gravitational

instability in our model, any region not subject to this instability will have σ ≈ σsf .

Typically our initial conditions have Q = QGI in some annulus. At larger radii

Σ drops off quickly so Q ∝ Σ−1 increases, while Q also increases at smaller radii through
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the dependence κ ∝ vφ/r. We discuss the (lack of) sensitivity of our results to these

choices of initial conditions in appendix 4.8.

4.3 Simulation Results

In this section we discuss some generic features of the galaxies produced by our

model. We begin by exploring models with smooth accretion histories and a fiducial

choice of parameters, which we summarize in Table 4.1. These are compared with

artificial, illustrative models where one important physical ingredient is turned off by

hand. We then allow the accretion histories to vary stochastically in a cosmologically

realistic way, illustrating the differences between galaxies with identical physical laws but

different accretion histories, as one might expect for real galaxies. Finally we compare

our models with recent observational results.

4.3.1 Equilibria in smoothly accreting models

There are three terms in the continuity equation (equation 4.2). At a particular

radius, gas arrives via Σ̇cos, departs via (fR + µ)Σ̇SF , and moves to or from other radii

via Σ̇tr ≡ (2πr)−1(∂Ṁ/∂r). The generic behavior of this equation at a given radius in

our fiducial model is that gas will build up, either via direct accretion or as mass arrives

from somewhere else in the disk, until an equilibrium is reached such that Σ̇ ≈ 0. This

equilibrium will then slowly evolve with time as the global gas accretion rate Ṁext falls

off.

To aid in understanding how this equilibrium emerges, we have run three
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Figure 4.2: The three simplified models. For each of the these simplified models, we show
the evolution of the radial gas surface density distribution. We see that the evolution
of the fiducial model is a non-trivial combination of the effects of star formation and GI
transport.

simple models with identical smooth accretion histories - (i.) the fiducial model - our

best guess for physical parameters which will lead to something resembling the Milky

Way (see Table 4.1), (ii.) the same model with no star formation, and (iii.) the same

model with no gravitational instability, i.e., TGI = 0 everywhere. The features of models

i. and ii. are similar at large radii, while the features of i. and iii. bear some resemblance

at small radii. This immediately suggests that GI transport is important at large radii

and star formation is important at small radii. The gas surface density distributions

of each model are shown in Fig. 4.2 as a function of time. The gas is supplied via an

exponential distribution, Σ̇cos ∝ e−r/racc . Without gravitational instability (model iii),

star formation carves out the inner parts of the distribution, leaving a hole in the gas at

galactic centers, while without star formation (ii), gas is redistributed into a powerlaw

distribution, following roughly Σ ∝ 1/r.

A useful way to understand what sets the surface density is to examine the

relative effects of each term in the continuity equation. In particular, at each time and
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Figure 4.3: The balance of terms in the continuity equation. The terms contributing to
∂Σ/∂t are split into those which increase Σ at a particular radius and time and those
which decrease Σ. The former appear above zero and the latter below. Each term
is represented by a different color - orange for Σ̇cos (with the exponential scale length
marked as a vertical dashed line), red for (µ+fR)Σ̇SF

∗ , and blue for Σ̇trans. Light (dark)
blue indicates gas being transported outwards (inwards). At each radius the height
of the colored band is normalized to unity, and its position shows how close the disk
is to equilibrium (equal positive and negative contributions) at that radius – a radius
is in equilibrium if the colored band falls exactly between the dashed lines labelled
“Equilibrium band”. The columns show different redshifts (z = 2, 1, 0) and the rows
show different models: fiducial, no star formation, and no GI transport. The features
labelled “A” at e.g. r = 15 kpc and z = 2 come from gas from the unstable region
heating when it piles up in a single stable cell. Real galaxies will not have such a sharp
transition since there will be some breaking of axisymmetry and some overshoot from
the unstable region, neither of which we model here. The feature labelled “B” at z = 0
around 15-20 kpc in the fiducial model is caused by an enhancement in the surface
density distribution - this section of the galaxy has had the direction of GI transport
reverse from outward to inward. Features labelled by “C” show where gravitational
instability changes from removing gas from a given radius to adding it to that radius
(see text for more details), and “D” shows GI quenching, wherein star formation has
exhausted the supply of inflowing gas.

156



radius, we can divide each term by A ≡ |Σ̇tr| + Σ̇cos + (µ + fR)Σ̇SF . In Fig. 4.3 we

compute these contributions, including the sign of their effect on the overall value of

∂Σ/∂t, so at each radius the fraction of the colored region occupied by (red, orange, blue)

represents the fraction of A from (star formation, cosmological accretion, transport).

The different shades of blue show which way the mass is flowing in the disk, i.e. the

sign of Ṁ - dark blue indicates gas flowing towards the center of the disk, and light blue

outward motion.

When the colored band in Fig. 4.3 stretches from -0.5 to 0.5, that region

of the disk has reached an equilibrium configuration. In each case shown here, the

equilibration proceeds from inside outwards. This is a combination of two effects- the

especially efficient star formation in the center of the disk, and the fairly centrally-

concentrated distribution of accreting gas. The equilibrium does not last forever- at

z = 0, there can be significant deviations as the disk processes past accretion and the

instantaneous accretion rate falls owing to the expansion of the universe on time-scales

potentially shorter than the gas depletion time at these large radii.

Equilibrium between SF and accretion: the No GI Model

We first focus on the model with no GI. In this model, at a given radius, gas

builds up until the local star formation rate ∝ Σ can balance the incoming accretion.

This happens first in the center of the disk. Not only is the cosmological accretion rate

per unit area larger there, but the star formation time-scale is shortest (Fig. 4.4). In this

model there is in fact a huge range of depletion times, from roughly 100 Myr at z = 2 at

small radii to 60 Gyr in the outer disk. There are two effects driving this diversity. For
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depletion times between 100 Myr and 2 Gyr, the disk is in the Toomre regime of star

formation (see equation 4.8), for which the depletion time scales as κ−1. This region

is typically small, <∼ 3 kpc, outside of which the time-scale would become longer than

2 Gyr if it continued to follow the κ−1 scaling. At this point the disk transitions to

the single-cloud regime of star formation. At the transition, the disk still tends to be

dominated by molecular gas. In the mostly-molecular but still single-cloud regime, the

depletion time is roughly 2 Gyr, the single-cloud molecular depletion time - this can

be seen as a flattening in the tdep distribution with radius. There is then a transition

from molecular to atomic gas, which accounts for the difference between parts of the

disk with a 2 Gyr depletion time and a 60 Gyr depletion time - this maximum depletion

time is set by fH2,min, which is quite uncertain.

A generic feature of the No GI model is that at the edge of the star-forming

region, star formation occurs at a slightly faster rate than new gas is accreted at that

radius (Fig. 4.3, bottom right panel). All of the models, particularly at lower redshift

exhibit a slight tendency to fall just below the ‘equilibrium band’ after they have initially

equilibrated at a given radius, since the accretion rate is externally imposed and falling

monotonically. The feature at z = 0 in the No GI model goes beyond this, however,

and may be explained by a small feedback loop in the star formation law introduced by

the dependence on metallicity. The demarcation between the star-forming part of the

disk and the outskirts is set by the molecular to atomic transition. Typically the star

formation rate at a given radius is able to the incoming material only if the molecular

fraction there is above the minimum allowed value - otherwise star formation would be
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too slow. When enough gas has accumulated to satisfy fH2 > fH2,min = 0.03, the star

formation rate rises steeply with column density and new metals are produced, which

in turn catalyze star formation by reducing the amount of gas needed to maintain a

molecular, star-forming phase. Thus the extra gas, which is now no longer necessary

for the star formation rate to balance the accretion rate, can be consumed, though this

generally takes a significant amount of time, tdep
>∼ 2 Gyr.

Equilibrium between GI transport and accretion: the No SF Model

We now turn to the no SF model to help us understand the importance of

GI. In our model, when the disk has enough gas to be gravitationally unstable, it self-

regulates to a marginally stable level, namely Q = QGI = const., where QGI demarcates

gravitational stability from instability. The value of Q depends on the surface densities

and velocity dispersions of the gas and stars. In our numerical simulations we account

for these dependences using the formula from Romeo & Wiegert (2011), but this formula

reduces to something quite similar to the much simpler Wang & Silk (1994) approxima-

tion when σ ≈ σrr ≈ σzz, namely Q−1 ∼ (2/3)(Q−1
g +Q−1

∗ ). In our model the situation

can be simplified even further by the fact that Q∗ is separately self-regulated by stellar

migration via transient spiral heating, so that Q ∼ (3/2)Qg. In this case the Q = QGI

condition may be re-written

Σ ≈ ΣGI ≡
3

2

√
2(β + 1)vφσ

πGrQGI
(4.25)
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Figure 4.4: Star formation in the fiducial and No GI models. The star formation rate
(top) is proportional to the surface density of gas modulated by other factors reflected
in the depletion time, tdep = Σ/Σ̇SF

∗ (second row). The first is the molecular fraction
(third row), itself determined by Σ and Z, and the second is the regime of star formation
(bottom row), either single-cloud (tdep,H2 = 2 Gyr), or Toomre (tdep,H2 ∝ 1/

√
Gρ < 2

Gyr). For each quantity, the left panel shows the fiducial model, while the right shows
the model with GI transport turned off. Star formation in the fiducial model is much
more concentrated and reaches much higher surface densities Σ̇SF

∗ through the action
of GI transport. The absence of GI causes so much gas to build up at larger radii that
at high redshift the Toomre regime of star formation extends to nearly 10 kpc, instead
of just the inner few kpc.
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At a given radius, β, vφ, r, and QGI are all fixed, so equation 4.25 may be considered

a direct mapping between Σ and σ. If σ does not vary by much and the velocity

dispersions of the gas and stars are similar, then Σ will simply follow a 1/r powerlaw

over a wide range of radii.

The velocity dispersion and hence rΣGI is restricted to a relatively narrow

range because there is both a minimum and maximum velocity dispersion. The mini-

mum is set by the feedback velocity dispersion, σsf – the gas cannot get colder than when

its turbulent velocity dispersion is zero. We can therefore say that in a gravitationally

unstable region,

Σ >∼ Σcrit ≡
3

2

√
2(β + 1)vφσsf

πGrQGI
. (4.26)

The maximum is determined by the gas supply – for a given Ṁext to be transported to

the center of the disk in a quasi-steady state, it must dissipate the gravitational potential

energy between where it arrives and the center of the galaxy, and it must experience

enough torque to lose its angular momentum. In a steady state, local heating by torques

balances local cooling by turbulent dissipation (see section 4.3.1). Note that ‘heating’

and ‘cooling’ refer to changing the turbulent velocity dispersion of the gas, not its

kinetic temperature. The rate at which the gas cools (and hence experiences torques)

L, depends on the velocity dispersion. The maximum velocity dispersion is therefore set

by assuming that 100 per cent of the gas arriving from an external source flows towards

the center in steady state. Since some gas never reaches the center because of star

formation, and other gas moves outwards rather than inwards, this is an upper limit.

As shown in section 4.4.1, at z ∼ 2 for galaxies accreting at ∼ 10M� yr
−1 the velocity
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Figure 4.5: The ratio of Σ to the minimum surface density necessary for gravitational
instability, Σcrit. Gas spreads out to keep the surface density above this critical value
but below the maximum value, ΣGI evaluated at σmax. This ratio falls below ∼ 1 where
the disk has not yet destabilized (left two panels, large radii) or has stabilized due to GI
quenching (left panel, small radii, low redshift). Note however that in the fiducial model,
especially at low redshift, Σ can fall slightly below Σcrit even in gravitationally unstable
regions because in deriving ΣGI and Σcrit we assumed that σ ≈ σrr ≈ σzz, which is no
longer true at low redshift. This is a factor of two level effect – the gravitationally stable
regions always have Σ well below Σcrit. Interestingly, even the ‘No GI’ run does not
reach values far larger than Σ/Σcrit = 1 (although it reaches significantly higher values
than the other two models), since the star formation rate increases as Qg decreases –
essentially the gas is compressed under its own weight and forms stars faster.

dispersion is restricted to 8 km s−1 < σ <∼ 20 km s−1. This value is low compared to the

measured velocity dispersions in the SINS galaxies. As we will see in section 4.4.1, some

small fraction of MW-progenitors do have much higher accretion rates in our stochastic

accretion model. Moreover, the SINS galaxies are likely somewhat more massive than

the MW progenitors we consider here.

As more gas arrives at a region of the disk in a marginally unstable state, the

surface density is fixed in the profile given by ΣGI . Since there is a maximum velocity

dispersion for a fixed accretion rate, gas is not allowed to accumulate, lest σ ∝ ΣGI

exceed this maximum, so the only thing the gas can do is move elsewhere. The gas will

then be transported away from where it arrives until it reaches part of the disk which
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is stable, where it will pile up until that region too becomes unstable. This ‘wave’

of gravitational instability can be seen propagating outwards in Fig. 4.3 in both the

fiducial model and the model without star formation, until essentially the entire disk

is unstable. The equilibrium between GI transport and accretion appears originally at

r ≤ 7 kpc both with and without star formation. This location is picked out by the

maximum in Σ̇acc/ΣGI ∝ r exp(−r/racc), i.e. where gas piles up fastest relative to the

amount necessary to be gravitationally unstable, which occurs at racc for a flat rotation

curve.

The fiducial model

Having examined the simplified models where we disabled GI transport or

star formation, we now turn to our fiducial model which includes both. Recalling the

surface density distributions shown in Fig. 4.2, it seems that the fiducial model behaves

largely like a superposition of the model without star formation and the model without

gravitational instability.

In the previous section we point out that an equilibrium between GI transport

and infalling accretion arises when Σ ≈ ΣGI > Σcrit (see Fig. 4.5) and more gas is

added. The new gas will be whisked away until it piles up somewhere in the disk that is

not yet unstable. If we also include star formation, then rather than being pushed out

into a stable region, the gas can be consumed by star formation. Comparing the model

without star formation to the fiducial model at z = 2 and z = 1 in Fig. 4.3, we can

see this effect in action. Gas arrives around racc, and on its way inwards it is consumed

by star formation. The balance is then between cosmological accretion and both star
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Figure 4.6: The inward mass flux through a given radius. Negative values are outward
flux. We compare the fiducial model (left) to the same model with star formation turned
off (right). As usual, black, red, blue, orange and purple are z = 2.0, 1.5, 1.0, 0.5, 0.0.
The outward mass flow is modestly affected by star formation at late times, whereas the
inward flow is completely consumed by low redshift. The disk stabilizes in the center,
i.e. Ṁ ≈ 0, simply because all of the available mass has been consumed by stars.
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formation and GI transport, rather than just GI transport alone. In other words, if the

disk can get rid of some gas via star formation, it no longer has to transport it away as

fast to maintain Σ ≈ ΣGI . Eventually all of the infalling gas at a given radius can be

consumed by star formation, and GI transport briefly has no net effect. Just interior to

this point though, the cosmological accretion rate is low enough and the star formation

rate is fast enough that accretion alone can no longer supply the star formation at that

radius, and the stars start forming not from material falling directly onto that radius,

but from gas arriving from other parts of the disk via GI transport. These are the points

in Fig. 4.3 (labelled by “C”) where Σ̇trans goes from negative to positive. Visually it is

clear that the star formation (red) is being supplied by inflowing material (dark blue).

In this situation, where the star formation is depleting the inflowing gas, the

surface density is affected but not necessarily drastically. In steady state, the surface

density and velocity dispersion (related via Σ ≈ ΣGI) are primarily set by the amount

of energy that needs to be dissipated by turbulence, which is set by the amount of

torque which must be exerted on the gas to maintain the steady state of matter flowing

through the disk at rate Ṁ (see Fig. 4.6), which is set by the profile and rate of external

accretion. If star formation is removing some of this gas supply, less energy needs to

be dissipated and both Σ and σ will decrease. Eventually, if the star formation rate is

fast enough, the inflowing gas (plus the much smaller supply of directly accreting gas)

will be entirely depleted and GI will be shut down within that radius. The MRI or

some other torque may operate within that radius, and there is certainly still gas within

that radius. For αMRI
<∼ 0.1, the supply of gas from transport is essentially negligible
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compared to the supply from continued cosmological accretion. Once the gas supply is

shut off in this manner, the gas will burn through the previously ∼ 1/r surface density

until it reaches equilibrium with the infalling material. At this point newly accreted

material is immediately consumed by star formation, and it would take a large burst of

accretion to re-activate the GI. In the fiducial model, this shutoff occurs between z = 1

and z = 0. For quantitative estimates of when this is important, see section 4.4.2.

The fiducial model also shows a peculiar peak in the star formation rate around

r = 17 kpc at z = 0 (visible in Fig. 4.3 and 4.4). This corresponds to a peak in the

surface density where gas has built up in a ring, which in turn is caused by the fact that

the stagnation point in the GI transport flow (i.e. where Ṁ = 0) passes through this

region. At first gas arrives at this radius from a smaller radius, but at late times it arrives

from a larger radius. The location of this stagnation point is set by the boundaries of

the GI region, which move outward with time (as a result of GI quenching and the

steady viscous spread of the disk), and the particular choice of accretion profile. We

therefore expect this feature to exist in many galaxies, but its location and prominence

is quite parameter-dependent in our model.

Energy equilibrium

Thus far we have been concerned mostly with the surface density distribution.

It is clear that GI transport plays a significant role in setting this surface density. For

regions of the disk which are gravitationally unstable, we have asserted that Σ ≈ ΣGI ∝

σ/r. In section 4.4.1 we will show that there is a maximum velocity dispersion set by

the mass accretion rate; there is also a minimum velocity dispersion, σsf set by the
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Figure 4.7: The balance of terms in the energy equation for the fiducial model. For
each term in ∂σ/∂t (equation 4.3), the contribution it makes relative to all the other
terms is shown as a function of radius and time. The red region shows cooling ∝ L,
purple is heating ∝ T , orange and blue are terms associated with advection, ∝ ∂σ/∂r
and ∂Ṁ/∂r respectively. Within the regions which are gravitationally unstable, heating
and cooling balance almost perfectly. The advection terms are only relevant right where
the gravitationally unstable region borders a stable region, where the velocity dispersion
and especially the mass flux change dramatically, leading to the spikes at the locations
labelled “A” in the figure.

temperature of the gas. This is an adequate first-order understanding of what sets the

surface density in the gravitationally-unstable regions, but we have yet to explore what

sets σ and hence Σ between the minimum and maximum values.

Just as with the surface densities, we can show which terms dominate the

evolution of σ as a function of radius and time (Fig. 4.7) for the fiducial model. The

equilibrium here is even more striking than for the surface densities. Nearly everywhere

in the disk, the advection terms (blue and orange) are negligible, and the disk equi-

librates between local heating via GI and MRI torques, ∝ T and cooling ∝ L from

turbulent dissipation. The exception is at the wave of gas moving outwards to maintain

Σ ≈ ΣGI in the inner disk. Here advection becomes important because gas is being

transferred from an unstable cell to a stable one with much lower surface density. This
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stable cell does not pass any mass to the next cell since both have T ≈ 0, so ∂Ṁ/∂r

can be quite large. In reality, the radius separating the gravitationally unstable region

from a stable region would be much less well-defined, both because real galaxies are not

axisymmetric, and because there may be some ‘overshoot’. Our model overlooks these

effects, so our transition is quite sharp – a single cell in our simulation. This is the cause

of the spikiness, not only in Fig. 4.7, but also Fig. 4.3, 4.6, and 4.9.

Another exception to the otherwise-good approximation that local heating

balances local cooling is at z = 2 at large radii, where the disk is not gravitationally

unstable and the only torque comes from the MRI. This region takes a long time to

equilibrate because the dynamical time is quite long, and the MRI is weak, so building

up enough turbulent velocity dispersion to be countered by turbulent dissipation takes

a few Gyr. Note that this is not the case in the central region at z = 0 where the disk is

again gravitationally stable, but this time the dynamical time is short. Note also that

our model implicitly assumes that gas near σ ≈ σsf is in equilibrium between radiative

cooling and heating, so the terms we don’t show here, e.g. cooling due to metal lines or

heating due to the grain photoelectric effect, may dominate in the regions stable to GI.

Based on Fig. 4.7, it is safe to approximate the energy balance as entirely

local, i.e. to neglect the advection terms, in regions of the disk where GI transport is

important. Though our simulations keep all of the relevant terms, we will make this

approximation in section 4.4.1 to understand exactly what sets σ and Σ in gravitationally

unstable regions.

168



0 10 20 30

1

10

100

z=2.00

0 10 20 30

 

 

 

z=1.01

0 10 20 30

 

 

 

z=0.00

r (kpc)r (kpc)r (kpc)

Σ
(M

⊙
/
p
c2
)

Figure 4.8: The radial surface density profile of gas for different redshifts. The black
line shows the fiducial model, and the red lines show the median and central 68 per cent
(shaded) and 95 per cent of the models with stochastic accretion histories. The variation
between surface density profiles at a given radius and time depends mostly on whether
the galaxy is gravitationally unstable there. The variation in external accretion rate
is largely responsible for the differences between galaxies in regions of the disk which
are gravitationally unstable. Additional dependences on parameters of the model and
physical properties of the galaxy are shown in appendix 4.8.

4.3.2 Stochastic accretion

From the previous section, we have seen that a lot depends on the rate of

new material being added to the galaxy. This is the term in the continuity equation

which increases Σ, and the disk tends to adjust its available sinks – star formation

(plus galactic winds) and GI transport – to cancel this out. One may also be concerned

that if galaxies do not accrete smoothly at the average rate, the intuition we have built

up about a slowly-evolving equilibrium in the previous section may not be applicable

to real galaxies. In this section we explore the effect of varying the accretion history

stochastically.

Fig. 4.8 shows the distribution of surface densities for the same 400 galaxies

whose accretion histories were shown in Fig. 4.1, plus the fiducial smooth model for
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reference. These galaxies all have the same radial scale, namely racc = 6.9 kpc. At high

redshift the galaxies have similar profiles - 1/r profiles at small radii and exponential

profiles at large radii. The variation is mostly due to the different gas masses of each

galaxy, largely the result of the variation in initial halo mass. Regions of galaxies that

are gravitationally unstable have similar Σ ≈ ΣGI , since ΣGI varies only weakly with

accretion rate (see section 4.4.1). As a consequence, the radii over which the galaxy is

gravitationally unstable is just a matter of how far the gas needs to be pushed away

from where it arrives to maintain Σ ≈ ΣGI .

By low redshift, the galaxies have become remarkably similar at large radii

but with more than an order of magnitude variation near the center. At large radii, the

disk tends to be gravitationally unstable, but in contrast to the high redshift case, these

galaxies all have the same halo mass and so are quite similar in terms of the available

gas budget. Meanwhile at small radii, some galaxies, namely those with a recent burst

of accretion, are still gravitationally unstable and so exhibit the same 1/r profiles seen

at high redshift, while others have stabilized and are in an equilibrium between infalling

gas and star formation. Thus GI transport greatly magnifies the different accretion

rates, causing a wide range of column densities near the center of the galaxy, but at the

same time gravitational instability enforces remarkable similarity at large radii.

Whether the galaxies are in equilibrium is shown explicitly in Fig. 4.9. As

with the fiducial model, the ensemble of disks tends to equilibrate from the inside out.

The most remarkable difference is the significant fraction of galaxies which are out of

equilibrium, not because they are building up gas, but because they are burning through
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Figure 4.9: Inside-out equilibration. Here we show, for the smooth accretion model
(black) and the median, central 68 per cent (shaded) and central 95 per cent of the
stochastically accreting ensemble of galaxies (red), the radial distribution of Σ̇ divided
by A, where A is the sum of the absolute value of each term contributing to Σ̇. Values
of Σ̇/A near 1 or -1 indicate that the surface density is changing entirely due to a single
term in the equation, while values near zero mean terms of opposing sign are canceling
and the surface density is close to equilibrium. Equilibration occurs from inside out,
though significant deviations from equilibrium are possible - in fact the typical galaxy is
in a low-accretion-rate state and burning through the gas from a past accretion event.
Galaxies are also out of equilibrium at large radii where the gas is mostly atomic and
hence star formation is slow.
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excess gas. These are galaxies which had a burst of accretion followed by a lull. Most

galaxies in our stochastic sample are in this state because of the lognormal distribution

of accretion rates, which vary on time-scales that are typically short compared to the

depletion time. At any given time, a galaxy is therefore likely to be accreting gas slowly

but still working through gas that was accreted in a recent burst.

4.3.3 Comparison with observations

Using high resolution and high sensitivity data to infer the HI and H2 distri-

butions in nearby spiral galaxies, Bigiel & Blitz (2012) found that these galaxies have

neutral gas surface density profiles well-approximated by a simple exponential,

ΣUP = 2.1Σtre
−1.65r/r25 . (4.27)

Here Σtr and r25 are empirical quantities derived from the data, respectively the surface

density at which a particular galaxy has ΣHI = ΣH2 and the radius of the 25 magnitude

per square arcsecond B-band isophote. To compare to our simulations, we need to

determine these quantities in our own simulated data. We can find Σtr in our simulations

by searching for the location where fH2 = 0.5. In our model this is determined by the

Krumholz et al. (2009) formula, in which this transition surface density is set by the

metallicity. The value we should use for r25 is somewhat more ambiguous. B-band

luminosities are, roughly speaking, set by the star formation rate averaged over at least

gigayear time-scales, and the exact luminosity derived for a particular star formation

history is somewhat model-dependent. To avoid this issue, we note that if the universal
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profile is correct, it can be written just as well

ΣUP = 2.1Σtr exp (−0.74r/rtr) (4.28)

where rtr is the radius at which fH2 = 0.5. This is because ΣUP = Σtr at r = rtr =

0.45r25. In this way we avoid the modeling uncertainty in converting between a star

formation history and a B-band luminosity, and the uncertainty in our star formation

prescription at low surface densities, or equivalently the uncertainty in the value of fH2 .

For each of our galaxies, we can easily compute rtr and Σtr (Fig. 4.10), each

as a function of time, to construct the corresponding ΣUP (Fig. 4.11). The agreement

is reasonable, within a factor of two of the empirical relation at z = 0 for most of the

simulated galaxies. At large radii, the effects of photoionization may be important-

namely the observations are sensitive only to neutral gas, whereas for the low surface

densities ∼ 1M� pc
−2, UV radiation may ionize a significant portion of the gas. As in

the observed galaxies, the largest scatter occurs within the central region. We argue that

this is a consequence of variations in the accretion histories which allow some galaxies

to continue to transport gas to their centers via GI torques, while others have stabilized.

The agreement between Σ and ΣUP is not a trivial consequence of the expo-

nential cosmological accretion profile we use. In particular, the universal profile predicts

that the gas surface density profile should have a scale length equal to r25/1.65. Read-

ing off from figure 4.10, we see that r25/1.65 ∼ 12 − 18 kpc, whereas in our fiducial

model, the scale length of the exponential accretion only reaches 6.9 kpc at z = 0,

and is smaller at higher redshift. In other words, the scale length of the accretion is
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Figure 4.10: The parameters that define the universal profile. The median, central 68
per cent (shaded) and 95 per cent of the stochastic ensemble of galaxies are shown in
red, with the smooth accretion model (black) for comparison. As the metallicity of the
galaxies increases, the column density Σtr at which fH2 = 0.5 falls. As metals build
up in the outer disk from local star formation, and advection and diffusion from star
formation nearer to the center, the radius at which the molecular-atomic transition
occurs, rtr, and hence, r25 = rtr/0.45 steadily increase.
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bution for a sample of 400 stochastically accreting galaxies.

always substantially smaller than the universal profile scale length in our simulations.

Therefore star formation and gravitational instability must be responsible for altering

the profile such that we find a reasonable agreement with the observations.

4.4 Discussion

One of the striking results of our models is the equilibrium that develops

between different terms in the continuity equation. In retrospect this is not surprising,

especially near the center of the galaxy, where the star formation time is short and the

accretion rate is high. The former allows star formation to quickly adjust to whatever

supply of gas is available to it, while high accretion rates mean enough gas can build

up to make the disk gravitationally unstable which allows the disk to redistribute the

gas and prevent it from piling up wherever it happens to land.

We discuss, roughly in chronological order, or more to the point, in order of
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decreasing external accretion rate the implications of this slowly evolving equilibrium.

At high redshift, the galaxy experiences the maximum surface density it can obtain

via an equilibrium between cosmological accretion and GI transport. (section 4.4.1).

GI transport is eventually shut off via star formation (section 4.4.2), after which each

annulus near the center of the disk reaches an equilibrium between local gas supply and

local star formation (section 4.4.4)

4.4.1 Maximum velocity dispersion

Conservation of angular momentum requires that ∂T /∂r = −Ṁvφ(1 + β)

(equation (4.4)). At a particular time, we see that the torque at a given radius can be

calculated by integrating

T (r) = T (r = r0)−
∫ r

r0

Ṁ(r′)vφ(r′)(1 + β(r′))dr′. (4.29)

In our numerical model the rotation curve, and hence vφ and β are fixed in time, as is

the inner boundary condition, T (r = r0) = 0. Thus the torque as a function of radius

is exactly mapped to Ṁ(r). In a steady state, we also know that Ṁ < Ṁext, since

otherwise the surface density would be decreasing somewhere to increase it somewhere

else. For the moment, we can specialize to a flat rotation curve for which

|T | < Tmax ≡ Ṁextvcircr. (4.30)
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This relation will still hold approximately for somewhat flat rotation curves, since, given

the finite supply of new gas Ṁext, typically Ṁ will be significantly less than Ṁext owing

to the effects of star formation and outward mass flow, necessary to conserve angular

momentum.

We now employ the assumption of local energy balance, i.e. that the value of

σ is set by local heating and local cooling with negligible contribution from advection.

This assumption is well-satisfied in gravitationally unstable regions of our simulations.

Under this assumption,

1

3
ηΣσ2κ

(
1− σ2

sf/σ
2
)3/2

=
(β − 1)vφ

6πr3
T (4.31)

Rearranging and approximating Σ ≈ ΣGI ,

T = 6rη(β + 1)vφσ
3
sf(σ

2/σ2
sf − 1)3/2/((β − 1)GQGI) (4.32)

Again specializing to a flat rotation curve and defining the dimensionless number N ≡

QGIGṀext/6ησ
3
sf = 1.8Ṁext/(1M� yr

−1) and imposing the requirement that−T <∼ Tmax,

we arrive at the condition

σ <∼ σmax ≡ σsf(N 2/3 + 1)1/2 (4.33)

Thus we see that the velocity dispersions of galactic disks are a direct consequence of

cosmological accretion and energy equilibrium. We compare this prediction with the

maximum measured values of σ in our simulations in Fig. 4.12. From the decay of
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Figure 4.12: Simulated vs predicted velocity dispersion. Here we show the maximum
value of σ measured in our simulations (top), the value of σmax predicted by equation
4.33 (middle panel) and their ratio, max(σ)/σmax (bottom). At every change in the
accretion rates, the predicted σmax jumps and it takes some time for each galaxy to
adjust to its new accretion rate. As usual the black line shows the fiducial model and
the red lines show the median, central 68 per cent and 95 per cent of the distribution
for the stochastically accreting models.
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the spikes in the bottom panel, we see that the time-scale to reach the steady state

assumed in our derivation can be of order a Gyr. We also see that the central value of

max(σ)/σmax is remarkably close to unity, meaning that σmax is more of an estimate

of max(σ) than an upper limit. We note that the measured max(σ) can exceed the

predicted maximum slightly even for the smooth accretion model because the assump-

tions we made in deriving the limit are only approximately true - in particular Σ ≈ ΣGI

becomes a worse approximation as the stellar and gaseous velocity dispersions diverge

from each other. Meanwhile the stochastic histories are likely to have max(σ) > σmax.

This is because σmax depends on the instantaneous accretion rate only, but since the

accretion rate changes quickly, the galaxy is likely to still be adjusting to a past burst

of accretion.

Even the most extreme galaxies in our population only have Ṁext ∼ 100M� yr
−1,

implying σ/σsf
<∼ 5.7, while a more typical z = 2 galaxy might only have Ṁext ∼

10M� yr−1, implying σ/σsf
<∼ 2.4. Since of course σ/σsf ≥ 1, the surface density in

gravitationally unstable regions can typically only vary by a factor of a few at a fixed

radius and vcirc. We note that the velocity dispersions we show here are somewhat

smaller than those observed in the SINS galaxies; however, our MW-progenitor models

likely have lower masses than the observed galaxies, and we have included no drivers of

turbulence besides gravitational instability.

The exact way that σ varies between σsf and σmax (Fig. 4.13) depends on the

particular accretion profile feeding the galaxy (which roughly determines the shape of the

σ(r) profile), the total amount of gas accreted previously (which sets the outer boundary
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of the GI region), and star formation (which sets the inner boundary). Qualitatively,

the velocity dispersion is highest near the center of the galaxy, since most of the accreted

mass arrives near the center of the galaxy and flows inwards. At low redshift this is

no longer true because the center of the galaxy becomes gravitationally stable, so the

velocity dispersion is forced towards its value from star formation feedback σsf . The

outer edge of the unstable region moves outwards as well, since GI transport will always

move some gas outwards to conserve angular momentum. This gas is barely touched by

star formation given the low molecular fraction at large radii, so over cosmological time

that gas will continue to build up and the edge of the gravitationally unstable region

will march outwards. Stabilization at small radii and destabilization at large radii lead

the whole unstable region to move outwards in time. The lower velocity dispersions in

the unstable region, the result of the decreasing cosmological accretion rate, leads to

lower characteristic clump masses as estimated by the 2D Jeans mass, MJ = σ4/G2Σ,

shown in Fig. 4.14.

The maximum value of σ immediately implies a maximum surface density for

a flat rotation curve,

Σ <∼
(3/2)vcircσsf

πGrQGI
(N 2/3 + 1)1/2 = Σcrit

σmax
σsf

. (4.34)

Since Σcrit for a given model is a fixed function of radius, we immediately see that at

a given radius Σ in a gravitationally unstable region will also only vary by a factor of

a few. However Σ, unlike σ, may fall below the value corresponding to σ = σsf . This

typically happens because some process has shut off GI transport (section 4.4.2), at
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erence. The high velocity dispersions at high redshift characterize galaxies undergoing
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Figure 4.14: The characteristic size of clumps in the star-forming disk. Here we show
the distribution of the 2D Jeans mass in regions where the molecular fraction is larger
than fH2,min. The typical mass of gravitationally bound clumps decreases with time,
and the peak moves outward in radius. The median, central 68 per cent (shaded) and
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accreting galaxies is shown in red, along with the fiducial model in black.
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which point the disk will equilibrate to a new, lower value of Σ (section 4.4.4). We

also note that, at least for galactic disks, this maximum column density is likely to be

much more restrictive than the one proposed by Scannapieco (2013), which is based

upon the requirement that the rate of turbulent energy dissipation must be removable

by radiative cooling.

4.4.2 GI quenching

GI transport shuts off when star formation can consume all of the transported

gas. To get an idea of where this happens, we can compare the rate at which a region

of the disk, between inner radius rA and outer radius rB, is resupplied to the rate at

which stars are formed within this region.

Ṁsupply

ṀSF

≈ Ṁ(rB)∫ rB
rA

2πr(fR + µ)Σ̇SF
∗ dr

(4.35)

When this ratio is � 1, the region in question would easily deplete the gas supply and

shut down GI transport, while when it is � 1, star formation makes no difference and

gas flows through the region unharmed. To evaluate this ratio, we use the star formation

rate for the Toomre regime, on the grounds that once star formation is slow enough to

be in the single-cloud regime, it is unlikely to be hugely important anyway and this

ratio will just be � 1. On similar grounds, we can also assume fH2 ≈ 1, Σ ≈ ΣGI and

Qg ≈ (2/3)QGI . In that case, our ratio becomes

Ṁsupply

ṀSF

≈
Ṁ(rB)GQ2

GIπ (1 + 2QGI/3Qlim)−1/2∫ rB
rA

36
√

2/3(fR + µ)εff(β + 1)v2
φσr

−1dr
, (4.36)

182



and we have restricted ourselves to regions where star formation is efficient. In practice

this means that rB can be at most a few kpc. As usual, for simplicity’s sake we will

specialize to a flat rotation curve, for which we can easily evaluate the integral in the

denominator assuming σ ∼ σmax = const., leaving
∫ rB
rA

r−1dr = ln(rB/rA). Recall that

σmax depends on the external accretion to roughly the 1/3 power, so unsurprisingly our

ratio will decrease with decreasing Ṁext, meaning that all else equal, for a low enough

accretion rate the inner region of the disk will be quenched. The logarithmic dependence

on rB/rA means that in the Toomre regime of star formation, depletion of a fixed gas

supply Ṁ(rB) is self-similar.

More explicitly, the gas supply is exhausted when Ṁsupply/ṀSF = 1, which

occurs for

rA = rB exp

−0.24v−2
220ε

−1
0.01

1.54

fR + µ

Ṁ1(
1.5Ṁ

2/3
1 + 1

)1/2

 (4.37)

where we have neglected the additional scalings with
√

1 +Qg/Q∗ and we have in-

troduced a few scaled parameters, v220 = vcirc/(220 km s−1), ε0.01 = εff/0.01, and

Ṁ1 = Ṁ(rB)/(1M� yr−1). We caution that this formula is for illustrative purposes

only, since vφ and σ are unlikely to be constant. For these values, it turns out that the

exponent is fairly close to zero and so relatively insensitive to the exact values. The

exponential evaluates to 0.86, 0.64, and 0.43 for Ṁ1 = 1, 4, 10.

This is actually somewhat surprising, since in our fiducial model Fig. 4.6 shows

that the mass flux at a few kpc is near 3M� yr−1, yet the gas reaches the inner edge

of the computational domain at r = 80 pc easily and GI transport is not shut off until

much later. This illustrates the dramatic effect of the rotation curve. The essence of
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the effect is visible even in equation 4.37, namely by the time we reach radii well within

the turnover in the rotation curve at rb = 3 kpc, vφ is appreciably smaller than 220 km

s−1, meaning rA/rB should be much smaller. The two powers of vφ come from (i) the

dynamical time’s proportionality to the star formation time - stars form more slowly if

the freefall time ∝ r/vφ is longer, and (ii) the requirement that Q = QGI , which implies

Σ ≈ ΣGI ∝ vφ - lower velocities and hence smaller shear means less gas is required to

destabilize the disk. Thus lowering vφ decreases both the surface density and the star

formation rate for a fixed surface density.

Our simulations use a fixed rotation curve which increases as a powerlaw with

index β0 = 0.5 near the center, but galaxies with prominent bulges have what we would

term negative values of β0, i.e. their rotation curves fall with radius near their centers

(see e.g. Dutton & van den Bosch (2009)). As gas approaches the center, it would

see higher rotation velocities, which, just the opposite of above, would increase the

gas surface density required to maintain GI transport and speed up star formation for

fixed gas surface density, hence increasing the GI quenching radius rA. We suggest that

this may be a specific physical mechanism for morphological quenching (Martig et al.,

2009). In our estimation, the formation of a bulge acts to quench the innermost regions

of the galaxy by shutting off GI transport through the increase in vφ, but other factors

contribute, namely the available supply of gas Ṁ and the radius at which stars begin

to form efficiently in a galaxy, rB. We also note that in our model this quenching is not

caused by an increase in Q - the increase in Q and the decrease in SFR are both caused

by the shutdown of GI transport.
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Figure 4.15: Estimated bulge to total ratio of the stellar profile. Both the fiducial
model (black) and the stochastic ensemble (red) follow similar trends, growing their
bulges through GI transport at high redshift, then forming stars preferentially in the
disk since z = 1.

4.4.3 The growth of bulges

Disk instabilities have of late been invoked to explain the growth of spheroids

and AGN activity (Dekel et al., 2009a; Bournaud et al., 2011; Dekel et al., 2013). Our

fiducial choice of parameters certainly funnels gas to the very centers of our model

galaxies at a rate of order solar masses per year until z ∼ 0.5. We caution though that

these results depend on our choice of rotation curve, and in particular the rotation curve

at the very center of the galaxy. Nonetheless, we can measure the growth of bulges in

our simulations.
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There are a number of components which we include in the bulge mass,

MB(t) =

∫ t

0

(
Ṁ∗(r = r0) +

fR
µ+ fR

(
Ṁ(r = r0)

+

∫ r0

0
2πrΣ̇cosdr

))
dt

+

∫ rg

r0

2πr(Σ∗ − Σ∗,exp)dr. (4.38)

Starting from MB(z = zstart) = 0, mass enters the bulge a number of ways. First,

there is the mass of stars which migrate off the inner boundary of the computational

domain r0. Next, there is the gas which does the same, which we assume will quickly

form stars. Third, there is gas which, according to our cosmological accretion profile,

would accrete within the inner boundary. Lastly, there are stars that are still within

the computational domain, but which are in excess of an exponential stellar surface

density profile extrapolated inwards from larger radii. We sum all of these components,

reducing the gaseous terms by fR/(fR + µ) to account for the fact that for every unit

mass of stars formed, only fR will remain in remnants and fR + µ will be lost from the

gas supply. The exponential fit Σ∗,exp is found by

log Σ∗,exp = log Σ∗(rg) + r
m log(Σ∗(rg)/Σ∗(rg −∆r))

∆r
(4.39)

where rg = 1.5racc(z) is the location at which we will fit the local exponential slope, ∆r

is the width of one cell, and m is initially unity. The value of m is gradually reduced

until Σ∗,exp < Σ∗ at every radius interior to rg (typically m = 1 satisfies this condition

immediately). This method may overestimate the bulge to total ratio if the stellar profile
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increases slower than an exponential towards the center, while if the profile is rising faster

than an exponential near rg, the contribution to the bulge may be underestimated. The

stellar surface density profiles are, however, quite exponential within the star forming

region and far from the bulge, likely owing to the mechanism proposed by Lin & Pringle

(1987), so this is a reasonable if imperfect estimate. In practice, the flow of gas across

the inner boundary, Ṁ(r = r0) is the largest of the four terms by a factor of a few,

followed by the excess above the exponential.

The growth of bulges measured by the bulge to total (BT) ratio, with the

bulge mass estimated by equation 4.38, is shown in Fig. 4.15. Although gravitational

instability funnels gas to the centers of these galaxies, our simulations have star forma-

tion efficient enough and a mass loading factor large enough, that the BT ratios tend to

lie near 1/3, a fairly reasonable value for MW-mass galaxies. The trend with redshift

seems to be a steep rise between z = 2 and z = 1, followed by a very gradual decrease

from z = 1 to z = 0. This may be attributable to the efficient action of GI at high

redshift and its subsequent quenching at lower redshift. Moreover, it is clear that galax-

ies for which GI transport is important at z ∼ 2 need not end up as bulge-dominated

galaxies at z = 0. These specific numbers are sensitive to both the angular momentum

distribution of infalling gas, and to the parameters which influence star formation, and

hence GI quenching, near the center of the galaxy. The galaxies in our sample all have

the same accretion scale length at z = 0, but if we include a 0.4 dex scatter in this

parameter, comparable to the scatter in spin parameters observed for dark matter halos

in N-body simulations (Bullock et al., 2001), the central 95 per cent of z = 0 BT ratios
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for those galaxies stretches from 0.05 to 0.72.

4.4.4 Equilibrium between accretion and SF

The star formation law has two regimes, so naturally there are two profiles

where Σ̇cos = (fR + µ)Σ̇SF
∗ . The simplest case is the single-cloud regime, defined by a

constant molecular depletion time ∼ 2 Gyr. In this regime,

Σ = Σ̇cos(fR + µ)−1ε−1
ff f−1

H2
tSC (4.40)

This equation is typically not applicable, however, since the outer regions of the disk in

the single-cloud regime tend to still be gravitationally unstable even at z = 0.

Where star formation tends to make a large impact is in the center of the

galaxy. In particular, once star formation exhausts the mass flux from GI transport (see

the previous section), the supply of gas quickly forms stars until star formation equals

the local rate of accretion. This equilibrium is local, in that it occurs independently

at each radius, since gas is not being transported between radii. The equilibrium picks

out a specific value of Σ, such that Σ̇cos (imposed externally) is roughly equal to Σ̇SF

(largely determined by Σ). By the time the disk reaches low redshift, we can assume

Qg � 1 in this region, so if fH2 ∼ 1 we can calculate that in the central regions of these
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galaxies,

Σeq =

(
3πΣ̇2

cosQlimσsf

32ε2fff
2
H2
κG(fR + µ)2

)1/3

≈ 16
M�
pc2

Σ̇
2/3
cos,.01

(fR + µ)2/3f
2/3
H2

r
1/3
1 v

−1/3
220 σ

1/3
th,8ε

−2/3
.01 . (4.41)

We have used typical values of Σ̇cos,.01 = Σ̇cos/(0.01 M�kpc−2yr−1), r1 = r/(1 kpc), and

σth,8 = σsf/(8 km/s). Note that other sources of gas may be added to Σ̇cos, although

if they depend on the star formation rate (e.g., for a galactic fountain) the form of the

solution will be a bit different. The assumed accretion rate corresponds closely to the

redshift zero value for the smooth accretion history model, and the numerical value of

Σeq, despite the approximations made, agrees quite well with the simulation. We see

that as long as Σ̇cos is sufficiently flat, as is the case for an exponential on radial scales

much less than the scale length, the value of Σeq will have a moderate increase with

radius. This relation will break down if radial transport of gas is operating, and if fH2

is appreciably smaller than unity there will be an implicit dependence on Σeq on the

right hand side, since fH2 is a function of Σ (and Z).

We saw in section 4.3.1 that in our smooth accretion model, the inward mass

flux from GI transport is exhausted beginning around z = 0.5, after which the central

gas surface density is rapidly depleted by star formation. We refer to this process as ‘GI

quenching’. When GI transport is active, it essentially collects cosmological infall from

all radii and sends most of that gas inwards and some outwards. This can concentrate

most of the star formation in the center of the disk, i.e. gas does not form stars at the
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location it arrives, but in the center of the galaxy. When GI transport is shut off, the

center of the galaxy loses this vast supply of gas virtually instantaneously. The surface

density falls from Σ ≈ ΣGI ∝ 1/r to Σ ≈ Σeq ∝ r1/3Σ̇
2/3
cos in a few depletion times, which

may be significantly faster than 1 Gyr (Fig. 4.4).

We have found that even for large values of an α viscosity (see appendix

4.8), and even for a rotation curve quite favorable for transporting gas to the central

regions of galaxies, the supply of gas to the central regions of galaxies at z = 0 via

transport through the disk is negligible for a large fraction of the galaxy population.

Moreover, gas within this region is unable to move any significant distance radially via

these mechanisms. Therefore the equilibrium which develops there is a balance between

the local star formation in some annulus and the local gas supply. In our model this

comes from cosmological infall, but it could in principle also come from supernova-

induced accretion (Hobbs et al., 2012; Marinacci et al., 2010) or gas recycling from old

stellar populations (Leitner & Kravtsov, 2011). Therefore we suggest that measuring

the star formation rate and profile in the centers of local galaxies with low star formation

rates should directly determine the rate and profile with which those particular regions

(regardless of the rest of the galaxy) are being supplied with cold gas.

4.5 Summary

We have explored the evolution of an ensemble of typical disk galaxies with

MW-like masses over the past 10 Gyr of cosmic history, with the aim of understanding

what sets their surface density profiles.
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In our model, disks begin their life at high redshift as exponential and gravita-

tionally unstable in the vicinity of the initial exponential scale length. This is a some-

what artificial initial condition, but by z = 2 (the simulations are started at z = 2.5),

the gas has had sufficient time to migrate inwards and the disks become gravitationally

unstable interior to the accretion scale length. As more gas is added, the gravitationally

unstable region spreads outwards. In this gravitationally unstable state, accreted gas at

fairly large radii (of order the accretion scale length) is funneled towards the center of

the disk where the high surface densities and short dynamical times allow for efficient

star formation. Eventually the cosmological accretion rate falls off and the supply of

inflowing gas can be consumed by star formation before the gas reaches the center of the

galaxy. At this point the gas transport is shut off and the region of the galaxy interior

to this point is quenched, with star formation balancing only the local supply of gas.

The main lessons we can draw from these results are as follows:

1. The surface density at every radius is set by a slowly evolving equilibrium.

In general, this is a balance among the three terms in the continuity equation:

cosmological accretion, star formation, and GI transport. In this paper we have

described the properties of the disk when each pair of those terms is in balance.

2. At a given time, a galaxy will tend to have the following progression of re-

gions, from outside inwards. First there is an out-of-equilibrium, low column

density region, where gas is building up from cosmological accretion but is not yet

gravitationally unstable. Next, the galaxy is in equilibrium between infalling ma-

terial and GI transport. Further in, star formation takes up an increasing share of
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the responsibility for balancing incoming accretion - at this point all three terms

in the continuity equation are important. Eventually star formation is so efficient

that it outstrips the direct supply of gas and can only be balanced by GI trans-

port from larger radii. Finally, if star formation can use up the entire supply of

GI-transported gas, there is a quenched region at the center of the galaxy where

star formation balances only the direct accretion onto that radius.

3. If a region is gravitationally unstable, its gas kinetic energy will equilibrate on a

dynamical time-scale, with local heating by gravitational instability-driven torques

balancing cooling by turbulent dissipation. In a high surface density region where

star formation is efficient because of the high molecular fraction and short freefall

times, star formation can equilibrate with its gas supply within a few Gyr. The

centers of galaxies, where both GI transport operates (at least at high redshift)

and stars form efficiently, will therefore generically equilibrate first. Thus galaxies

equilibrate from the inside out.

4. In equilibrium, new accretion must be balanced by the available sinks: star for-

mation (plus galactic winds) and transport through the disk. Even at radii where

star formation is inefficient, GI transport alone is sufficient to balance accretion.

GI transport operates through torques which redistribute angular momentum, al-

lowing gas to be removed from where it accretes. To balance the accretion rate,

the gas must lose angular momentum in proportion to the accretion rate, so in

steady state the accretion rate specifies the torque. The heating caused by these

torques is balanced by turbulent dissipation. The turbulent dissipation rate is
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proportional to the kinetic energy in the gas, so this balance picks out a velocity

dispersion. In summary, the mass flux sets the torque and hence a dissipation

rate, which in turn sets the velocity dispersion, so the cosmological accretion

rate sets the velocity dispersion.

5. In general both the inner and outer boundary of the gravitationally unstable region

move outward in time. The inner edge moves outward through a process we call GI

quenching. As the cosmological infall rate drops, star formation near the center

of the galaxy becomes capable of consuming all of the mass moving inwards via

GI transport. If all of the gas is consumed on its way in towards the center of the

disk, any part of the disk at smaller radii will be deprived of this large supply of

gas. This picture is supported by a number of observational studies, including the

depletion of gas near the centers of green valley galaxies (Fang et al., 2012), the

link between quenching and a large inner surface density of stars (Cheung et al.,

2012; Fang et al., 2013), and the rings of star formation and centrally peaked Q

observed in gas-rich high redshift disks (Genzel et al., 2013). Star formation at a

particular radius in this quenched region can only be supplied by whatever cold

gas is arriving at that particular radius. In our model this is exclusively from

direct accretion from the IGM, but there are other plausible sources.

6. The process of GI quenching becomes more effective at higher rotational velocities,

which increase the star formation rate. Massive bulges increase the rotational ve-

locity near the center of a galaxy, so we propose that morphological quenching

may occur through the following physical channel: GI transport moves gas to the
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center of a galaxy forming a bulge, the central concentration of matter increases

the rotational velocity, GI transport is quenched by the increased star formation

rate (and the decreasing cosmological accretion rate), and so the star formation

in the central region drops dramatically as its gas supply is removed. The value

of Q and Qgas will rise as the gas surface density drops to its new, much lower,

equilibrium value. This is distinct from the mechanism proposed by Martig et al.

(2009), wherein they claim that the formation of a spheroid removes the stellar

disk and causes the gas disk to stabilize and hence star formation to cease. In

our model, the self-gravity of the stars has very little effect on the gas because

the stars are assumed to be separately self-regulated to a fixed Q∗. Both models

predict a rise in Q and a drop in star formation rate; in our model, both of these

are effects of the shutoff in GI transport (which may be hurried by an increased

circular velocity from the formation of a bulge), whereas in Martig et al. (2009),

Q increases through the removal of the stars’ contribution to the self-gravity to

the disk, which then causes the star formation rate to drop.

7. The growth of bulges in our simulations occurs primarily through GI transport

of gas from the scale on which it is accreted to the centers of galaxies where

it forms stars efficiently. Our galaxies all have the same z = 0 halo mass and

accretion scale length, and we recover a relatively narrow range of bulge to total

ratios around 0.3− 0.4. If we use a more realistic scatter in accretion scale length

of 0.4 dex, the variety of bulge to total ratios increases dramatically.

8. Our simulations show that at z = 0, some galaxies will be gravitationally unstable
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at radii <∼ 3 kpc, while others will have undergone GI quenching. The surface

density at small radii can therefore vary by an order of magnitude from galaxy

to galaxy. This variability at small radii is in fact observed in the neutral gas

profiles of nearby galaxies studied by Bigiel & Blitz (2012). Fundamentally, we

predict that this variability is the result of variance in the cosmological accretion

rate from galaxy to galaxy, which in turn determines whether the galaxy has

undergone GI quenching. Another consequence of this variability is that some

galaxies - those which have undergone GI quenching - will have a peak in their

star formation surface density in a ring. This may explain so-called ‘ring galaxies’

without invoking a recent merger or bar-induced transport.

9. The outer edge of the gravitationally unstable region expands as more

mass falls onto the galaxy. This is because some fraction of the accreted material

will move to larger radii until it runs into the edge of the gravitationally unstable

region, where it piles up until the disk at that radius also becomes gravitationally

unstable.

10. Although we have emphasized the equilibration of galaxies, we also observe sit-

uations where some region of the galaxy is out of equilibrium (meaning that

the surface density is changing at a rate >∼ 5% of the instantaneous accretion

rate), even in the gravitationally unstable region, and even if the accretion his-

tory is perfectly smooth. This occurs primarily in the outer regions of the galaxy

where the depletion time and even the dynamical time can be long enough for the

cosmological accretion rate to change significantly - in other words the sinks for
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gas are in equilibrium with a past accretion rate. Equilibrium also breaks down

near the moving boundaries between gravitationally stable and unstable regions -

for instance when a new region of the galaxy has just lost its gas supply via GI

quenching, it takes a depletion time to burn through the (now stationary) gas and

reach a new equilibrium with direct accretion. As the surface density of gas, and

hence the molecular fraction, decline with time, even the inner parts of the disk

may experience depletion times much longer than 2 Gyr, and they too may drop

out of equilibrium.

11. The turbulent velocity dispersion of gas in the galaxy falls over time, and the

region of the disk subject to GI-driven transport and turbulence moves outwards.

This may be interpreted as a smooth transition from violent to secular

instability. The high velocity dispersions and shorter dynamical times of gas at

small radii and high redshift leads to giant clumps (since the Jeans mass ∝ σ4/Σ)

evolving rapidly, while at low redshift the gravitationally unstable region has a

much longer dynamical time and is characterized by lower clump masses. As

predicted in the simpler models of Cacciato et al. (2012), the violent disk instability

which operates at z = 2 no longer operates today in most MW-mass galaxies, but

we show that the transition is gradual and the outskirts of the disk remain unstable

even at z = 0.

We conclude that GI transport is an important driver of disk galaxy evolution.

It provides a natural link between MW-like galaxies at the present day and their high-

redshift progenitors, and plays a crucial role in determining the structure of disk galaxies.
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4.6 Changes since F12

Here we explicitly list the changes made to our simulation code. In addition

to the items discussed below, our code here differs from that of F12 in our assumed

rotation curve, assumed accretion rate, the metallicity evolution equation we use, and

the star formation prescription we use. These changes are detailed in the main text.

4.6.1 Finite volume / explicit mass conservation

The evolution equations for Σ and σ are written here in terms of T , Ṁ , and

∂Ṁ/∂r, as opposed to T , ∂T /∂r, and ∂2T /∂r2. The terms involving these quantities

are mathematically identical, but this version is clearer physically. Moreover, when we

solve these equations, we explicitly calculate the flux Ṁ from cell i+ 1 to i, via

Ṁi+1/2 =
−1

vφ(ri+1/2)(1 + β(ri+1/2))

Ti+1 − Ti
ri+1 − ri

, (4.42)

where i’s indicate cell-centered quantities and i+ 1/2’s are edge-centered. Using these

fluxes, the change in surface density of cell i is then

(
∂Σ

∂t

)
transport

=
Ṁi+1/2 − Ṁi−1/2

2πri(ri+1/2 − ri−1/2)
(4.43)

so that if mass is transported out of cell i + 1, it must reappear in cell i (or i + 2).

Note that we are using a logarithmic grid, so ri+1/2 =
√
riri+1, and vφ and β may be

calculated at these values analytically because of our simple formula for the rotation

curve.
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The reason this is an improvement is that, written in terms of T and not Ṁ ,

∂Σ/∂ttransport ∝ ∂2T /∂r2. This derivative was computed using a minmod slope limiter,

so for example if material attempted to enter or exit a cell from both directions (i.e., the

value of Ṁi+1/2 and Ṁi−1/2 had opposite signs), ∂Σ/∂ttransport = 0, and so the entering

mass would be lost or the exiting mass would remain in the cell. For monotonic solutions

of T this is a small effect, and so only became apparent when mass was added inside

the computational domain instead of at its outer edge (see 4.6.3), which meant some

regions would have mass flowing outwards.

4.6.2 Treatment of stable regions where Q > QGI

In our previous work, when Q > QGI , we solved ftransport = 0. In contrast,

in this work we simply set TGI = 0 in those regions. The difference between the two is

somewhat subtle. The two treatments would be equivalent if the boundary conditions

around the stable region were TGI,boundary = 0, but this will generally not be the case

in our disks because the neighboring unstable regions will have nonzero torques. Thus

our previous approach would lead to small but non-zero mass fluxes in stable regions.

Our new approach is more consistent with the physical picture we’re presenting, namely

that radial motion is caused by gravitational instability-induced turbulence.

4.6.3 Accretion onto the disk instead of at the outer boundary

In our previous work, the accretion of gas onto the galaxy occurred only

at the outer boundary of the galaxy, and the accretion rate was enforced by setting

(∂TGI/∂r)r=R = Ṁext(t)vcirc. We have abandoned this approach because it is inflexible
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and likely to be physically wrong. In particular, if all the gas comes in at r = R, then the

value of R may strongly affect the results of the simulation, especially for disks where

the accretion rate is not large enough to maintain a gravitational instability, e.g. low

mass galaxies or galaxies experiencing a lull in their accretion rate. For these galaxies,

accretion at large radii leads to an unphysical pileup of gas in the outermost radial cell.

Moreover, the hole in the gas distribution which we saw forming at the center of our

simulated galaxy is not a ubiquitous feature in real galaxies, suggesting a more flexible

accretion model might be necessary.

In this work, we still need to specify the boundary conditions at inner and

outer edges of the computational domain. We opt for the simplest choice, TGI(r =

r0) = TGI(r = R) = 0, which should be reasonable so long as R is much larger than the

radial scale of the accretion.

4.7 New Stellar Migration Equations

To derive the evolution of stars as a result of their migration through the

disk, we will assume that stars obey dQ∗/dt = ∆Q∗/Tmig(2πΩ)−1, i.e. that stars will

exponentially ‘decay’ to a limiting value of Q∗ above which they will be stable to gravita-

tional instability, Qlim, on some multiple of the local orbital time (Sellwood & Carlberg,

1984; Carlberg & Sellwood, 1985). As with the gas, we take the stars to be subject to

gravitational torques which will lead to some velocity v∗r of stars inwards or outwards

at each radius such that Q∗ approaches Qlim. In analogy to the gas, we derive evolu-

tion equations for the stellar surface density and velocity dispersion which depend on
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this torque. To do so we begin with the continuity equation and the φ−component

of the Jeans equations, both derived from the collisionless Boltzmann equation. The

continuity equation is

∂ρ∗
∂t

+∇ · (ρ∗〈v∗〉) = 0. (4.44)

Brackets define an average over the distribution function, namely 〈v∗i 〉 ≡ ρ−1
∗
∫
v∗i fd

3v∗.

Note that for simplicity we have taken f to be the distribution function of mass

rather than number of stars, where all stars are assumed to have the same mass. The

φ−component of the Jeans equations is

∂ρ∗〈v∗φ〉
∂t

+
∂ρ∗〈v∗rv∗φ〉

∂r
+
∂ρ∗〈v∗φv∗z〉

∂z
+

2ρ∗〈v∗rv∗φ〉
r

= 0 (4.45)

As with the gas, we have assumed axisymmetry.

The evolution of the surface density follows almost immediately from integrat-

ing the continuity equation in z.

∂

∂t

∫ ∞
−∞

ρ∗dz = −1

r

∂

∂r

(
r

∫ ∞
−∞

ρ∗〈v∗r 〉dz
)
−
∫ ∞
−∞

∂

∂z
ρ∗〈v∗z〉dz (4.46)

We will assume that 〈v∗i 〉 does not vary much over the scale height of the disk, that the

disk does not change orientation (so 〈v∗z〉 = 0), and that ρ∗ → 0 for large and small

values of z, so integrals over z of the z-derivative of a quantity weighted by ρ∗ will

vanish. Defining Σ∗ ≡
∫∞
−∞ ρ∗dz, we have

∂Σ∗
∂t

= −1

r

∂

∂r
(rΣ∗〈v∗r 〉) =

1

2πr

∂

∂r
Ṁ∗ (4.47)
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where we have defined Ṁ∗ ≡ −2πrΣ∗〈v∗r 〉 to be the inward mass flux of stars through

the disk.

To relate this to the torque experienced by the stars, we integrate the φ−component

of the Jeans equations in z,

∂

∂t
Σ∗〈v∗φ〉+

1

r2

∂

∂r
r2

∫
ρ∗〈v∗rv∗φ〉dz = 0 (4.48)

We now define the quantity δvi ≡ v∗i − 〈v∗i 〉, the deviation of a particular velocity at a

given point from the mean velocity at that point. As usual, we define 〈δviδvj〉 ≡ σ2
ij ,

and so 〈v∗rv∗φ〉 = 〈v∗r 〉〈v∗φ〉+σ2
rφ (since by construction 〈δvi〉 = 0). Rearranging, we arrive

at

〈v∗φ〉
∂Σ∗
∂t

+ Σ∗
∂〈v∗φ〉
∂t

+
1

r2

∂

∂r
r2Σ∗〈v∗r 〉〈v∗φ〉 =

− 1

r2

∂

∂r
r2

∫
ρ∗σ

2
rφdz. (4.49)

Using the continuity equation and multiplying through by 2πr2 yields the evolution

equation for specific angular momentum j∗ ≡ r〈v∗φ〉,

2πrΣ∗
∂j∗
∂t

+ 2πrΣ∗〈v∗r 〉
∂j∗
∂r

=
∂

∂r
T∗, (4.50)

where T∗ ≡ −2πr2
∫
ρ∗σ

2
rφdz. As with the gas, we assume a slowly varying potential, in

which case we have

−Ṁ∗
∂j∗
∂r

= −Ṁ∗vφ(1 + β) =
∂

∂r
T∗, (4.51)
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so it is clear that the time derivative of Σ∗ is proportional to the second derivative of

the torque. At this point we have also assumed that 〈v∗φ〉 = vφ, the circular velocity of

the gas, so that here, as in e.g. equation (4.3), β = ∂ ln vφ/∂ ln r.

To find the evolution of the stellar velocity dispersion, we begin with the

collisionless Boltzmann equation,

∂f

∂t
+ v∗i

∂f

∂xi
− ∂ψ

∂xi

∂f

∂v∗i
= 0 (4.52)

Next, we multiply through by v∗j v
∗
j and as usual integrate over d3v∗. Since ψ, xi, and t

are independent of v∗, we have

∫
v∗j v
∗
j fd

3v∗ +
∂

∂xi

∫
v∗i v
∗
j v
∗
j fd

3v∗

− ∂ψ

∂xi

∫
v∗j v
∗
j

∂f

∂v∗i
d3v∗ = 0 (4.53)

The final term may be integrated by parts,

∂ψ

∂xi

∫
v∗j v
∗
j

∂f

∂v∗i
d3v∗ = − ∂ψ

∂xi

∫
∂v∗j v

∗
j

∂v∗i
fd3v∗

= −2
∂ψ

∂xi

∫
v∗i fd

3v∗, (4.54)

while the second term may be expanded by again splitting up v∗k = 〈v∗k〉+ δvk, so that

〈v∗i v∗j v∗j 〉 = 〈v∗i 〉〈v∗j 〉〈v∗j 〉+ 〈v∗i 〉
∑
j

σ2
jj

+2〈v∗j 〉σ2
ij + ρ−1

∗

∫
fδviδvjδvjd

3v∗ (4.55)
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For simplicity we drop the final term. This should be a reasonable approximation, since

even though the δvi are not necessarily small compared to 〈v∗i 〉, the integrand contains a

quantity which averages to zero, fδvi, multiplied by a positive definite quantity δvjδvj .

We are therefore reweighting an integral which would vanish for a constant weight and

approximating it as zero.

With these two substitutions, we arrive at an equation for the evolution of the

specific kinetic plus potential energy of the stars,

0 =
∂

∂t
ρ∗

(
〈v∗〉2 +

∑
i

σ2
ii

)
+∇ · ρ〈v∗〉

(
〈v∗〉2 +

∑
i

σ2
ii

)
+∇ ·

(
2ρ〈v∗〉 · σ2

)
+ 2ρ∗∇ψ · 〈v∗〉 (4.56)

Here σ2 is the tensor with components 〈δviδvj〉 = σ2
ij . The gravitational work term may

be replaced via the continuity equation, since

∇ · (ρ∗〈v∗〉ψ) = ψ∇ · (ρ∗〈v∗〉) + ρ∗〈v∗〉 · ∇ψ

= −∂(ρ∗ψ)

∂t
+ ρ∗

∂ψ

∂t
+ ρ∗〈v∗〉 · ∇ψ (4.57)

With this substitution, we can group the terms composing the specific energy together,

so that if we define A =
(
〈v∗〉2 +

∑
i σ

2
ii + 2ψ

)
, we arrive at

∂

∂t
ρ∗A+∇ · ρ〈v∗〉A+∇ ·

(
2ρ〈v∗〉 · σ2

)
− 2ρ∗

∂ψ

∂t
= 0 (4.58)

Before integrating over z, we can use the continuity equation to make one more simpli-
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fication,

ρ∗
∂

∂t
(A− 2ψ) + ρ∗〈v∗〉 · ∇A+∇ ·

(
2ρ∗〈v∗〉 · σ2

)
= 0 (4.59)

Next we approximate A ≈ v2
φ+
∑

i σ
2
ii+2ψ, since the other components of 〈v∗〉 are small,

〈v∗r 〉, or zero, 〈v∗z〉. We also approximate σ2
φφ ≈ σ2

zz, in accordance with observations in

the solar neighborhood (e.g. Holmberg et al., 2009). Finally, we will again assume that

the potential changes slowly, so that ∂vφ/∂t = 0. With these approximations, we have

0 = ρ∗
∂

∂t

(
σ2
rr + 2σ2

zz

)
+ ρ∗〈v∗r 〉

∂

∂r

(
v2
φ + σ2

rr + 2σ2
zz + 2ψ

)
+

2

r

∂

∂r
rρ∗

(
〈v∗r 〉σ2

rr + vφσ
2
rφ

)
(4.60)

Now we will integrate over z and assume, consistent with our approximation that∫
fδviδvjδvjd

3v ≈ 0, that σ2
ii, is roughly constant over a disk scale height. Employing

the angular momentum conservation equation and assuming ∂σrr/∂t ≈ 2∂σzz/∂t (J.

Sellwood, private communication), we arrive at

∂σrr
∂t

=
1

2πrΣ∗(σrr + σzz)

(
vφ(β − 1)

r2
T∗ + σ2

rr

∂Ṁ∗
∂r

+ Ṁ∗

(
3σrr

∂σrr
∂r

+ 2σzz
∂σzz
∂r

))
(4.61)

This is very similar to equation (4.3), since the procedures used to derive the two are

quite similar. The primary distinction is that here we have split the velocity dispersion

into a radial and non-radial component whereas for the gas they are assumed to be

identical (a reasonable approximation since the gas is collisional). Besides that the only
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difference is in the numerical values of the coefficients.

With equation 4.61, its counterpart for ∂σzz/∂t, and the continuity equation

(equation 4.47) we can follow a similar procedure as detailed in section 4.2.1 to solve

for T∗. In particular, we can again split the terms which appear in dQ∗/dt into those

which contain T∗ and its radial derivatives, and those which do not.

dQ∗
dt

=
∂Σ∗
∂t

∂Q∗
∂Σ∗

+
∂σrr
∂t

∂Q∗
∂σrr

+
∂σzz
∂t

∂Q∗
∂σzz

= f∗transport

(
Σ∗, σrr, σzz, T∗,

∂T∗
∂r

,
∂2T∗
∂r2

)
+f∗source(Σ, σ, Z,Σ∗, σrr, σzz) (4.62)

None of the equations used so far in this appendix contribute to f∗source - the only way

Q∗ can change without transport is via star formation, which increases Σ∗ and typically

reduces σrr and σzz, which in turn tends to lower Q∗. For the purposes of computing

T∗, we ignore f∗source and simply solve f∗transport = ∆Q∗/Tmig(2πΩ)−1 when Q∗ < Qlim

and set T∗ = 0 otherwise. This allows Q∗ to fall significantly below Qlim, though in

practice star formation is typically slow enough that Q∗ ≈ Qlim. As with the gas, if

this equation yields a solution where T∗ > 0, we set T∗ = 0 in the offending cell.

4.8 Sensitivity to parameters

Thus far we have used only the fiducial parameters, but each one is at least

somewhat uncertain (e.g. εff may vary by a factor of 3 in either direction), or may

change for physical reasons (e.g., lower-mass haloes will likely have smaller racc and

205



vcirc, and larger µ). To explore the effects of each parameter, we have varied them one

at a time from their fiducial values for the smooth accretion history. Fig. 4.16 shows

the z = 0 surface density distribution when each parameter is varied. Essentially, all

of the models are gravitationally unstable over a wide range of radii and parameter

choices. We also show the metallicity distribution for all of these models in Fig. 4.17.

The metallicities are in general hugely sensitive to the parameters, so much so that any

attempt to draw a physical conclusion by fitting a metallicity gradient should be treated

with extreme caution, since the same metallicity gradient can be produced by varying

any number of parameters. We discuss each of the parameters in more detail in the

following sections.

4.8.1 Initial conditions - αr, fg,0, fcool, φ0

These parameters, the scaling of the accretion scale length with halo mass, the

initial gas fraction, the fraction of baryons which have cooled into a disk at z = zstart,

and the initial ratio of stellar to gas velocity dispersion, are almost completely irrelevant

for the z = 0 surface density distribution. In our framework, the surface density at

each radius is set by an equilibrium relation, and so it is unsurprising that the initial

conditions are washed out. The exception is that strong evolution of racc with halo

mass, i.e. (probably unrealistically) high values of αr, lead to smaller gravitationally

unstable regions at z = 0, since so little mass was accreted directly at large radius.
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Figure 4.16: Surface density at z = 0. Each pane shows models where the given
parameter is varied within the quoted range - red models have lower values of the
parameter, blue higher. The models are arranged in 6 columns according to what the
parameters are controlling- from left to right: initial conditions, rotation curve, star
formation, metallicity, gas transport, and gas supply.
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Figure 4.17: Metallicity for the same models as in Fig. 4.16

4.8.2 Rotation curve - β0, n, rb, vcirc

The shape of the rotation curve is controlled by these four parameters - inner

powerlaw slope, the sharpness of, and location of the turnover from flat, and the overall

normalization. The most dramatic effect of changing these parameters is in the inner

region of the disk, where different values can change the surface density by an order of

magnitude. This is because the rotation curve influences both the surface density in

gravitationally unstable regions and the star formation rate in the central region, where

Σ̇SF
∗ ∝ κ ∝ vφ, and hence has a strong influence on where exactly the disk is able to

form stars fast enough to shut off GI transport to the innermost region. Negative values

of β0 have an effect at large radii too. In general, however, the qualitative behavior of

our models is largely insensitive to these parameters except near galactic centers.
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4.8.3 Star formation - εff , fH2,min, tSC, µ

Each of these parameters governs the rate at which gas is depleted from the

galaxy, either into stars or galactic winds. As we would expect, εff is important in

the inner region of the disk where the star formation rate is in the Toomre regime,

while fH2,min is important in the outer disk where the gas is mostly atomic and hence

SFR ∝ fH2 = fH2,min. Note however that the factor of three variation in εff has a

much larger effect than the order of magnitude variation in fH2,min. This is because

the surface density is set by different equilibria - in the outer disk the surface density is

mostly set by gravitational instability, whereas in the inner region the surface density

is determined by whether star formation has shut off GI transport to the central region

or not, which in turn depends strongly on the star formation law there. If GI transport

has been shut off, then the surface density is set by cosmological infall balancing star

formation, so a change in the star formation law given a fixed infall rate Σ̇cos can have

a large effect. The mass loading factor µ affects the rate of mass loss everywhere in the

disk, but again because of the different equilibria, it has a much stronger effect in the

inner region. Again, however, we note that the qualitative results, as opposed to the

precise numerical values of Σ(r), are insensitive to these parameters.

4.8.4 Metallicity - ZIGM , ξ, κZ, y

The metallicity of the infalling and initial gas in the disk, the metal enhance-

ment of galactic winds, the metal diffusion coefficient, and the yield. The first three

strongly influence the metallicity of the disk, as does the yield to a lesser extent. This
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in turn affects the H2 fraction when the gas is near its transition surface density (higher

(lower) surface densities will have fH2 ∼ 1 (fH2,min) regardless. The H2 fraction then

has an effect on the star formation rate. In general, changes in the parameters which

decrease the overall metallicity increase the surface density everywhere by decreasing

the rate at which star formation is depleting/ejecting the gas.

4.8.5 Transport - QGI, αMRI, η, Tgas

The parameters which control the radial transport of the gas have the potential

to strongly affect the surface density, since much of the disk is gravitationally unstable.

QGI and Tgas both directly affect Σcrit, namely the minimum surface density for the

gas to be gravitationally unstable. Meanwhile η only affects the energy balance in the

disk. For all the parameters, the primary difference is in where the GI transport is shut

off. Higher QGI and dissipation rate allow the gas to reach farther towards the center

before being consumed by star formation. Tgas turns out not to matter all that much,

primarily because in the limit of large accretion rates / low velocity dispersion floors,

the energy balance is independent of Tgas. Perhaps the most dramatic parameter here

is αMRI , which has even less effect on the surface density distribution than the initial

conditions.

4.8.6 Gas supply - εin, Mh,0, fR, racc

Here we come to the most important parameters in setting the surface density

- the quantity and distribution of the gas supply. These parameters respectively are the

efficiency at z = 0 (assuming a fixed efficiency at z = 2), the halo mass at redshift zero
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(where we change only Mh and hence the accretion history, but no other parameters),

the remnant fraction, and finally the accretion scale length. These models obey the

trends one might expect. Less gas means the region over which the gas is gravitationally

unstable is smaller. Parts of the disk beyond this radius retain the exponential character

of the accretion profile, and parts of the disk interior have their surface densities set by

the balance between local accretion and local star formation.
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Part II

Detailed Simulations

212



Chapter 5

Suppresion of Star Formation via

Photoelectric Heating

5.1 Main Text

Photoelectric heating has long been recognized as the primary source of heating

for the neutral interstellar medium(Draine, 1978). Simulations of spiral galaxies (Bekki,

2015a) found some indication that photoelectric heating could suppress star formation.

However, simulations that include photoelectric heating have typically found that it has

little effect on the rate of star formation in either spiral galaxies(Tasker, 2011; Tasker

et al., 2015) or dwarfs(Hu et al., 2015) suggesting that supernovae and not photoelectric

heating are responsible for setting the star formation law in galaxies(Hopkins et al., 2011,

2013; Hayward & Hopkins, 2015). This result is in tension with recent work(Krumholz

et al., 2009; Krumholz & Dekel, 2012; Christensen et al., 2012; Krumholz, 2013; Makiya
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et al., 2014) indicating that a star formation law that depends on galaxy metallicity, as

expected for photoelectric heating but not for supernovae, reproduces the present-day

galaxy population better than a metallicity-independent one. Here we report a series

of simulations of dwarf galaxies, where the effects of both photoelectric heating and

supernovae are expected to be strongest. We simultaneously include space- and time-

dependent photoelectric heating, and we resolve the Sedov phase of every supernova

blast wave, allowing us to make a direct measurement of the relative importance of mo-

mentum injection by supernovae and dust heating by FUV photons in suppressing star

formation. We find that supernovae are unable to account for the long observed(Hunter

et al., 2012) gas depletion times in dwarf galaxies. Instead, ordinary photoelectric heat-

ing is the dominant means by which dwarf galaxies regulate their star formation rate at

any given time, suppressing the star formation rate by more than an order of magnitude

relative to simulations with only supernovae.

To investigate whether the depletion times in dwarf galaxies, which are longer

than for Milky Way-like galaxies by more than an order of magnitude(Bigiel et al.,

2011; Hunter et al., 2012), are set by the momentum injection from supernovae or by

photoelectric heating, we perform a series of high-resolution hydrodynamic simulations

using the Enzo adaptive mesh refinement code(Bryan et al., 2014). We include a new

prescription for supernova and pre-supernova stellar feedback, and a new method for

self-consistent spatially-dependent photoelectric heating (see Methods). We use two

sets of initial conditions. Both correspond to isolated dwarf galaxies with an initially

laminar exponential disk, a stationary hot halo, and collisionless particles representing
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Figure 5.1: The morphology of the gas. For each of the 5 kpc scale length simulations
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sentially determined by the presence of supernovae, despite the fact that the PE Only
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stars and dark matter. The galaxies have a dark matter halo mass of 1010M�, a stellar

mass of 107M�, and a cold gas mass of 108M�. Galaxies in this mass range are com-

fortably above the limit where star formation can be quenched by the cosmological UV

background(Okamoto et al., 2008), but small enough that the effects of both heating by

FUV photons and supernova feedback(Dekel & Silk, 1986) are plausibly extreme. The

initial conditions differ in the exponential scale length chosen for the gas; one set uses

5 kpc, designed to mimic recently-discovered nearly-starless galaxies(Janowiecki et al.,

2015), and toward the high end of the range observed for field dwarf galaxies(Hunter

et al., 2012). The other set uses 1 kpc, toward the low end of the observed field dwarf

range. For a galaxy with an HI mass of 108M�, assuming an exponential HI profile, the

observed relation (Broeils & Rhee, 1997) between HI mass and HI size suggests an HI

scale length of about 1.9 kpc.

To understand how supernovae and photoelectric heating each contribute to

the evolution of these galaxies, we perform a straightforward numerical experiment.

We run a fiducial simulation of the 5 kpc scale length initial conditions including both

supernovae and photoelectric heating, and simulations where each of these effects is

turned off in turn. We refer to these as the “SN+PE”, “PE Only,” “SN only,” and the

“No feedback” simulations. We also run the “SN+PE”, “PE Only”, and “No feedback”

cases for the 1 kpc initial conditions. The simulations with supernovae also include pre-

supernova stellar feedback from winds and HII regions. For the 5 kpc case, we re-run

with the four different feedback models at three different maximum spatial resolutions

– 10 pc, 5 pc, and 2.5 pc. These resolutions are high enough, and the typical densities
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in which supernovae explode in these simulations are low enough, that our simulations

do not suffer from the overcooling problem(Katz, 1992), whereby poorly-resolved sim-

ulations overestimate the rate at which SN-heated gas cools (see Figure 5.5). We focus

first on the 10 pc resolution simulations for the 5 kpc scale length initial conditions,

since we have run these for the longest time. In the Methods section we compare to the

higher resolution runs to evaluate the level of convergence of our results. We compare

the 5 kpc and 1 kpc initial conditions below.

We find that all of the simulations follow a similar initial transient behavior.

The gas disk cools from its center outwards, causing the disk to collapse vertically. Stars

form first in the center, then further and further out. The central region of the galaxy

after 90 Myr is shown in Figure 5.1 for each of the four feedback models. In terms

of large-scale morphology, the supernovae have the most dramatic effect, driving large

outflows with mass loading factors of order 100. Photoelectric heating slightly alters

the global structure of the gas, but the two simulations without supernovae look quite

similar.

Figure 5.2 shows the star formation rates and depletion times as a function

of time for each of the four feedback models. After each simulated galaxy experiences

its initial transient as the gas collapses from its initial state, their instantaneous star

formation rates and depletion times are strikingly different depending on whether pho-

toelectric heating was included. However, if two simulations are different only in their

inclusion of supernova feedback, they end up with similar depletion times. This im-

mediately shows that photoelectric heating, not feedback from supernovae, is primarily
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responsible for the long depletion times observed in dwarf galaxies. Supernovae, or even

a lack of feedback, can result in low star formation rates in the long run by rapidly

ejecting gas or locking gas into stellar remnants. This can be seen in the central kpc

of the simulations without photoelectric heating – the star formation rate falls in this

region, but the depletion time is relatively unaffected. Only the simulations including

photoelectric heating produce depletion times in reasonable agreement with the large

values frequently observed in dwarfs, as illustrated in Figure 5.8.

Do these results depend on the gas scale length? In Figure 5.8, we show the re-

sults for our simulations with a 1 kpc gas scale length. We find that the more compact

galaxies have higher star formation rates and shorter depletion times, explaining the

wide range of depletion times visible in the observational data. However, even for the 1

kpc simulations we find that, when supernovae are disabled but photoelectric heating is

left active, the star formation rate is virtually unaffected. In contrast, disabling photo-

electric feedback again causes the depletion time to drop by an order of magnitude, to

values inconsistent with the observed sample. This indicates that photoelectric heating

and not supernovae regulate star formation over a wide range of gas surface density in

dwarf galaxies, and not just in the potentially-extreme(Janowiecki et al., 2015; Cannon

et al., 2015) nearly starless dwarfs.

The means by which photoelectric heating suppresses star formation in our

simulations is simple and intuitive. When a new star cluster is formed in the simulation,

its most massive stars will emit photons with energies between 8 and 13.6 eV. These

photons dominate the heating rate owing to the grain photoelectric effect, since they
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have energies high enough to liberate electrons from dust grains, but low enough not

to be absorbed by intervening neutral hydrogen (Figure 5.3). The heating rate in the

vicinity of a newly formed star increases the equilibrium temperature of the gas at fixed

pressure or density. This in turn increases the Jeans mass of the gas and makes star

formation more difficult (Figure 5.4).

We conclude that the physics responsible for setting the instantaneous star for-

mation law in dwarf galaxies, i.e. the depletion time, is nearly independent of the physics

determining the properties of the outflows. Ultimately young stars are responsible for

both photoelectric heating and supernovae, but it is the moderate, local, instantaneous,

volumetric heating of the former which controls the depletion time. Supernovae, de-

spite their ability to eject mass from the galaxy at a rate more than 100 times the star

formation rate, are unable to shut down star formation locally and instantaneously. In

the long run, even though dwarf galaxies have 10-100 Gyr depletion times, large mass

loading factors mean that the timescale on which gas is lost from the ISM is shorter –

between 1 Gyr and 10 Gyr, implying that these galaxies may be in equilibrium between

gas inflow and star formation plus outflows(Davé et al., 2012; Lilly et al., 2013; Forbes

et al., 2014b). In the long run, therefore, the star formation rate in these galaxies will

be set by the value of the mass loading factor, whereas the mass of gas in the ISM will

be set by the depletion time. The former, in turn, is set by supernovae, and the latter

by photoelectric heating.
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5.2 Methods

Our simulations follow the evolution of an isolated dwarf galaxy for ∼ 100

Myr using the AMR code Enzo(Bryan et al., 2014). We use a piecewise-parabolic

mesh hydrodynamics solver, with an HLLC Riemann solver to follow the motion of

the gas. The gravitational potential is computed on the same mesh used to solve the

hydrodynamics. Dark matter and stars are included as collisionless particles acting

independently of the hydrodynamics, except when new particles are formed or existing

particles inject mass, metals, and energy back into the gas according to our feedback

model.

We use the same sort of initialization as in previous work(Goldbaum et al.,

2015), though of course with parameters appropriate for a dwarf. In particular, we

create a set of stellar and dark matter particles with the MakeGalaxy code(Springel

& White, 1999). The density of a stellar disk and bulge are pre-specified, and their

velocities are set so that the galaxy begins in approximate Jeans equilibrium. The dark

matter has an initial Hernquist profile. We use a halo mass of 1010M�, a concentration

of 10, a spin parameter of 0.04 a stellar mass of 107M�, and a stellar scale length of

300 pc.

We initialize the gas disk according to

ρd(r, z) = ρ0 exp

(
− r

rd

)
exp

(
−|z|
H

)
(5.1)

This equation applies until the pressure ρdTd falls below the halo pressure ρhTh, at
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which point the density and temperature are set to ρh and Th. While ρd is spatially-

dependent, ρh, Td, and Th are all taken to be constant. In these simulations we set

Th = 106K, Td = 1000K, ρh = 2.34 × 10−30g/cm3, and ρ0 = 1.41 × 10−24g/cm3. The

scale length and scale height are rd = 5kpc and H = 30pc. These initial conditions are

chosen to minimize the time the disk spends in its initial collapse phase, and minimize

the influence of the galactic halo on the dynamics. In particular, at this temperature

the halo does not monolithically cool onto the galaxy over the timescale on which the

simulation is run.

These initial conditions are evolved under the influence of hydrodynamics,

gravity, and cooling, with additional subgrid prescriptions for the creation of new star

particles and feedback from young stars, specifically stellar winds, type II SNe, and a

rough treatment of heating from photoionization. We also include a new prescription

for self-consistently calculating the volumetric heating rate from the grain photoelectric

effect.

5.2.1 Feedback

Our feedback prescription is designed to avoid the ad-hoc modifications to the

physics that are typically necessary to produce feedback strong enough to affect the

galaxy’s properties. Our goal is to show that none of these modifications are necessary

to have effective feedback at sufficiently high resolution. The basic physical picture

is that once the adiabatic radius of the SNe can be resolved, they will expand in a

somewhat realistic way, rather than immediately losing all their energy to the cell, as

in the famous overcooling problem (Katz, 1992).
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When each star particle is formed in the simulation with initial mass Mp, we

draw a number from a Poisson distribution to determine how many type II SNe will be

produced by the particle. The rate parameter of this Poisson distribution is taken to

be λ = 1104Mp/(106M�), where the prefactor is the number of SNe produced over the

lifetime of a 106M� stellar population formed in a burst of star formation according to

Starburst99 (Leitherer et al., 1999) using a Chabrier IMF(Chabrier, 2003).

For each SN produced, we next draw a number from the delay time distribution

of type II SNe, again determined from the output of Starburst99. This is essentially just

the convolution of the lifetime of massive stars with the IMF. At the hydrodynamical

time step during which the SN explodes, we add 1051 ergs to the internal energy of the

cell where the SN resides. The mass of ejecta and its metallicity are also determined

from the SB99 output, and are fit to piecewise-polynomial functions for use in Enzo. To

ensure that the supernova goes off on the highest level of refinement in the simulation,

we make the star particles “must-refine” if the particle has any SNe remaining in its

future. This means that the cells containing such particles are marked for refinement

to the highest resolution level, guaranteeing that they and at least the surrounding two

cells in each direction will be on the highest resolution level.

In addition to the energy from the SNe added to the cell at the appropriate

time step, we also add energy to the cell prior to the supernova itself. From the delay

time for each SNe, we infer the mass of the star that will be exploding, from which we

can estimate the total ionizing luminosity for the particle by adding up the contribution

from every massive star that has yet to explode in that particle. Given an ambient
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density, i.e. the density in the surrounding gas cell, we may then estimate the volume

of gas which can be ionized by the calculated luminosity, as in the standard Strömgren

analysis. If this volume is larger than the cell, and the cell has a temperature below 104

K, internal energy is added to the cell to set the temperature to 104 K. The cell is not

modified by this photoionization prescription if its temperature is above 104 K.

For cells with Strömgren volumes smaller than the cell volume, we compute the

internal energy of the Strömgren sphere and compare it to the internal energy across the

entire volume of the cell. If the whole cell has less internal energy than the Strömgren

sphere alone, we add internal energy to the cell to make the two equal, and otherwise

we do nothing.

This treatment of photoionization feedback is extremely conservative. In the

limit of small cell sizes or low densities, we may vastly underestimate the size of the HII

region, since only one cell will be at 104 K. In high-density or large cells, the total energy

being injected into the gas is also conservative, in that the cell’s energy is only changed

if the entire internal energy of the cell is smaller than the internal energy associated

with the Strömgren sphere on its own.

In addition to photoionization, we include feedback from stellar winds. Once

again we rely on Starburst99 to compute the wind luminosity, with several small mod-

ifications. The specific energy of the wind is taken from Starburst99 only when the

particle will in the future experience a SN from the death of a star with a delay time

less than 10 Myr. If no such SNe will explode in the future, the cell still loses mass to

winds, but their specific energy is set to (10 km/s)2. This bifurcation in wind temper-
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atures takes place in the real universe as a result of a sharp change in opacity in the

atmospheres of stars as a function of mass.

One additional change we make to the specific energy of the wind occurs right

at the beginning of the star particle’s life. During this time the most massive stars in

the population drive extremely hot winds, exceeding 109 K. When the outflowing winds

dominate the material in a single cell as sometimes happens in our simulations, this

high temperature can slow down the simulation substantially and cause other numerical

problems associated with a high density contrast. To ameliorate this issue we cap the

wind specific energy at 108.5 K. We keep the total wind energy injected constant by

slightly increasing the mass lost during this time. This changes the total mass returned

by a tiny amount since this phase is so short.

Figure 5.5 shows that every supernova in the 10 pc resolution simulation with

the 5 kpc initial scale length explodes in a cell with a density below the critical density

at which a supernova remnant would cool before expanding to be the size of a single

cell in the simulation. We calculate this critical density by adopting the following value

for the radius at which a supernova remnant exits the Sedov phase and enters the

pressure-driven snowplow (PDS) phase(Thornton et al., 1998),

RPDS = 14
E

2/7
51

n
3/7
H (Z/Z�)1/7

pc (5.2)

We take the energy of the supernova in units of 1051ergs to be E51 = 1, and set the

mass fraction of elements heavier than helium to a value appropriate for the sun, Z =

Z� = 0.02. In our initial conditions, the disk component has Z/Z� = 0.1, and the halo
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has Z/Z� = 0.01, but for the purposes of calculating the critical density we use a higher

value because supernovae produce enough metals that locally Z may be substantially

higher than its initial value. By setting RPDS to the size of a single cell in the simulation,

we can solve for the value of nH , the number density of hydrogen atoms in units of cm−3,

at which the PDS phase would be marginally resolved.

By resolving this crucial piece of physics in these galaxies, we find that our

results are relatively insensitive to the resolution at which we run the simulations. We

compare the depletion time for each physical scenario, run at 10 pc, 5 pc, and 2.5 pc

resolution, in Figure 5.6, and we find that the results of the simulations tend to become

independent of resolution after roughly 100 Myr of evolution. This is less clear for the

runs which include SNe, for which the 2.5 pc simulations have not advanced as far as

their lower-resolution counterparts, but even here there is reasonable agreement between

the 10 pc and 5 pc runs.

5.2.2 Photoelectric Heating

FUV photons from young stars liberate electrons from dust grains in the in-

terstellar medium. This is the primary means by which the neutral atomic gas in the

interstellar medium is heated in the Milky Way. To include it in our simulation, we

assume the following proportionality.

G ∝ FFUV Z nH [erg/s/cm3] (5.3)
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The heating rate from FUV photons is proportional to their flux, and the density of

metals. At low densities and high temperatures, there is an additional dependence on

the electron density and gas temperature, but these effects are negligible in the cold,

dense gas where FUV heating is important for suppression of star formation, so we omit

that effect. We also do not include cosmic ray heating, since this is roughly an order of

magnitude less important than FUV heating under the optically thin conditions that

prevail in the low density, dust poor galaxies we are simulating.

We calculate the FUV flux in the simulation by taking the luminosity for each

star particle to be

log10 L(t7) = log10(Mp/106M�) +



∑2
j=0 pjt

j
7 if t7 ≤ 3

∑6
j=0 qjt

j
7 if 3 ≤ t7 ≤ 10

0 otherwise

(5.4)

where t7 is the age of the star particle in units of 10 million years, and Mp is the mass of

the star particle. L is in units of erg/s. The coefficients of this polynomial equation are

given in Extended Data Table 1. This is the result of integrating the output spectrum

of a Starburst99 single-burst model for a cluster mass of 106M� (hence the pre factor in

the previous equation) over the range 8 to 13.6 eV at finely spaced time intervals out to

100 Myr. Note that this function is somewhat sensitive to the IMF – recent indications

of a bottom-light IMF(Geha et al., 2013) in dwarfs would somewhat increase it by a

factor of ∼ 2.

The FUV flux is then simply FFUV = L(t)/4πr2, where r is the three-dimensional
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distance from the center of the gas cell in question to the star in question. Note that

this neglects any effects from self-shielding, which should be negligible in the galaxies

we have simulated, given their low column densities and low metallicities. The total

FUV flux at a given cell is the sum of this quantity over all stars in the simulation.

If a given star’s contribution to the FUV flux varies by less than 10% across a given

grid (the computational element one step above cells in Enzo), then we approximate

that star’s contribution as constant across the grid, to avoid doing the full order N by

M computation (where N is the number of cells and M is the number of particles) in

regions far from FUV-emitting particles. To compute G/nH , we scale G/nH , FFUV and

Z to the known values of these quantities in the solar neighborhood,

G
nH

= 8.5× 10−26 erg

s

FFUV
0.0015859021 erg/s/cm2

Z

Z�
(5.5)

The numerical constant in the denominator is simply the Habing(Habing, 1968) estimate

of the intensity of the interstellar radiation field in the solar neighborhood, multiplied

by c to convert to a flux. The pre factor of 8.5× 10−26 is the photoelectric heating rate

normalized to the Habing value for the solar neighborhood from a radially-dependent

model of the Milky Way’s ISM(Wolfire et al., 2003). This quantity is computed for

each cell in the simulation, and fed to the Grackle library1 , which computes the rate of

change of the internal energy density(Bryan et al., 2014; Kim et al., 2014).An example

of G/nH in the PE Only simulation is shown in Figure 5.7.

This method is a substantial improvement over many current implementations

1https://grackle.readthedocs.org/en/latest/
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of the interstellar radiation field (ISRF). Many simulations do not include this source

of diffuse heating at all. Some include it as constant throughout the simulation vol-

ume(Tasker, 2011; Tasker et al., 2015), sometimes with a correction for self-shielding(Hu

et al., 2015), but without regard to the individual sources or time-dependence of the

FUV photons. Other simulations explicitly approximate the radiative transfer of these

photons(Oñorbe et al., 2015), while others go even further and explicitly model the dust

particles via which this radiation interacts with the gas(Bekki, 2015a,c,b). Although

the latter two methods are better approximations to the ISRF than what we have im-

plemented here, our simulations have a higher resolution. As a result, we resolve the

Sedov-Taylor phase of the SNe (Figure 5.5), and hence can definitively show whether

supernova feedback or the ISRF is dominant in the regulation of star formation in dwarf

galaxies.

5.2.3 Star Formation

The star formation prescription we use is similar to many commonly-used

schemes. At each time step the probability of forming a star in each cell is taken to be

p∗ =


0 if excluded

min
(

1, εff
dt
tff
Mcell
Mp

)
otherwise

(5.6)

where the simulation time step (at the refinement level in question) is dt, εff is the

efficiency of star formation per free fall time, and the free fall time tff =
√

3π/32Gρ.

Cells are excluded if their mass is less than the Jeans mass in that cell or if the cell is not
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on the maximum refinement level. In other words, cells must have a density exceeding

ρ >
γπkBT

N2
JGµmH(∆x)2

(5.7)

in order to form stars. Here γ = 5/3 is the ratio of specific heats, µ is the mean molecular

weight in units of the Hydrogen mass, ∆x is the size of the cells on the maximum

refinement level, and NJ = 4 is the number of cells by which we require that the Jeans

length be resolved throughout the simulation to avoid artificial fragmentation.(Truelove

et al., 1998) This criterion corresponds to a diagonal line in the density-temperature

phase diagram above which stars are not allowed to form (Figure 5.7). The value of p∗ is

such that the average star formation rate in the non-excluded cells follows a volumetric

Schmidt Law ρ̇∗ = εffρ/tff . This model has a few parameters that we must set, although

we argue that we do not have a huge amount of freedom to change them.

The efficiency per free fall time is constrained by observations to be within a

factor of a few of 0.01 (Krumholz & Tan, 2007; Krumholz et al., 2012), so we simply

adopt this central value. The mass of individual star particles Mp should in principle

be low enough to be irrelevant – this would have the advantage of sampling the star

formation rate density very well and forming stars if and only if the cell were Jeans

unstable. This introduces two numerical difficulties. The first is that the Jeans mass

for the coldest gas in our simulations can be comparable to the mass of a single star. It

would be problematic for our feedback recipe to form such low-mass stars, in that a 120

solar mass star or a supernova which ejects 10 solar masses of material could never exist

within a 10 solar mass particle. Moreover the number of star particles we would have
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to follow increases as M−1
p . Each of these issues would be avoided by choosing a large

particle mass. However, using a large mass increases the chance that the cell in which

the star formed would have insufficient mass to supply all of the gas needed to form the

particle. When this happens, in order to maintain global mass conservation we gather

the mass from neighboring cells. Each cell supplying gas contributes the same fraction

of its mass to the new particle. We have found that a particle mass of Mp = 50M�

strikes a reasonable balance between keeping star formation local to 1 cell and keeping

the supernova ejecta mass less than a single star particle’s mass.

5.2.4 Comparison to observations

In Figure 5.8, we compare the star formation rate and depletion time of the

simulations to those of dwarf galaxies from three different samples (Hunter et al., 2012;

Cannon et al., 2015; Janowiecki et al., 2015). We exclude four blue compact dwarf

galaxies from this sample, since these are known to be undergoing starbursts. We do

not include estimates for the errors on each point. The statistical standard errors are

of order 10%, but this under-predicts the true error, which is dominated by systematic

uncertainty in distance (HI mass and star formation rate) and the assumptions made in

converting UV or Hα luminosities to star formation rates(Chomiuk & Povich, 2011). For

the two smaller galaxies in Janowiecki et al. (2015), no strict upper limits are given on

the star formation rate, but since they are not detected in the same Hα image in which

an SFR of 4× 10−3M�/yr was measured for the largest galaxy in the sample, we take

this as a very conservative upper limit on the SFR for these two galaxies (Janowiecki,

priv. comm.).
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j pj qj
0 41.5709926107 40.7875024388
1 2.40501751872 -0.227682606645
2 -9.19544984847 0.0078916423535
3 10.5203892767 0
4 -5.72637964222 0
5 1.50479521662 0
6 -0.153355377095 0

Table 5.1: Extended Data Table 1. Parameters for the piecewise polynomial fit to the
FUV luminosity of a simple stellar population as a function of its age (equation 5.4).

5.2.5 Data Availability

The numerical experiments presented in this work were run with a fork of the

enzo code available from https://bitbucket.org/jforbes/enzo-dev-jforbes, in particular

change set daed04d1e5e6. This altered version of enzo also requires an altered version

of the grackle cooling library, available from https://bitbucket.org/jforbes/grackle, par-

ticularly change set 12d3856. A subset of the raw data files are also available online

from www.johncforbes.com/dwarfs.html.

234



−6 −4 −2 0 2 4

log Density (cm−3 )

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

e
n
si

ty
 F

u
n
ct

io
n

Radiative length  
   < cell size 
Radiative length  
   < cell size 

Figure 5.5: Supernovae are well-resolved. The cumulative distribution of the density of
cells in which supernovae explode is shown in red, and in which stars form is shown in
blue, with the thin lines showing these distributions in different 10 Myr intervals. The
vertical dashed line indicates the density at which a supernova remnant would radiate
all of its energy before it expanded to the size of a single cell (10 pc) in the simulation,
assuming solar metallicity. Nearly every supernova in the simulation occurs to the left
of this line, indicating that the simulation does not suffer from the overcooling problem.
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Figure 5.6: A resolution study. The depletion time of all 12 simulations with 5 kpc gas
scale length is plotted over time. The panels show the four different feedback models,
while the lines of a given color in each plot show the result for different resolutions.
The orange lines show the depletion time when the measurement is carried out in a
cylinder with 1 kpc radius, whereas the other lines use a 9 kpc radius. Regardless of
the aperture, the simulations quickly converge; differences between simulations with
factor-of-two differences in resolution are small compared to the differences resulting
from changing the physics.
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Figure 5.7: Phase diagrams after 90 Myr of evolution. The panels show runs with
different feedback models and 5 kpc gas scale length, all at 10 pc resolution. The
light blue diagonal lines show the threshold for star formation, namely where the gas
becomes Jeans unstable on the highest refinement level. The black lines trace where
the net cooling rate is zero, assuming different values for the volumetric heating rate,
from 10−26 erg/s (highest line), to 10−29 erg/s. Photoelectric heating raises the typical
temperature of gas near the star formation threshold such that moderate star formation
can stabilize nearby gas against collapse.
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set (Hunter et al., 2012; Janowiecki et al., 2015; Cannon et al., 2015) of galaxies are
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times observed for bulk of galaxies in the mass range we simulated.
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Chapter 6

Galactic Winds

6.1 Introduction

Galactic winds are simultaneously among the most important and least-understood

ingredient in the evolution of galaxies. Not only are they ubiquitously observed (Erb

et al., 2006; Rubin et al., 2014), but they are likely responsible for setting the average

star formation rates (SFRs), metallicities, and gas fractions of star-forming galaxies

according to a simple but powerful class of models variously known as “bathtub,” or

“equilibrium” models (Davé et al., 2012; Lilly et al., 2013; Forbes et al., 2014b).

Although we can infer their importance observationally, we remain profoundly

ignorant when it comes to very basic properties of galactic winds. Estimates of the

mass loading factor (MLF), the rate at which mass is ejected in the wind to the SFR of

the galaxy, can vary by orders of magnitude at a given galaxy mass (Zahid et al., 2014;

Muratov et al., 2015). The degree to which winds are preferentially metal-enriched

compared to the bulk of the interstellar medium is completely unknown. Even the
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physical mechanism responsible for launching the winds is unclear, with supernovae

(e.g. Dekel & Silk, 1986), radiation pressure acting on dust grains (Murray et al., 2005),

and cosmic rays interacting with small-scale features in the magnetic field (Socrates

et al., 2008) each being proposed as the potentially dominant driver of winds.

Much of the uncertainty about the strength and driving mechanisms of galac-

tic winds stems from the difficulty of both simulating and observing them. Although

simulating the effects of supernova (SN) blast waves is straightforward in principle, i.e.

it does not require including physics much beyond ordinary hydrodynamics, their effects

have been impossible to model in hydrodynamic simulations. The Sedov-Taylor phase,

the most important phase of their evolution, occurs on very small scales relative to the

galaxy as a whole (Thornton et al., 1998). As a result, adding the energy of the SNe

to the gas without sufficiently high resolution spreads the energy over too large a mass

of gas, causing the simulated SN remnant to skip the Sedov-Taylor phase entirely. In

simulations subject to this “overcooling problem,” SNe have virtually no effect on the

galaxy (Katz, 1992; Tasker et al., 2015). Simulators have turned to ad-hoc solutions, for

example temporarily disabling the ability of the gas to radiate energy in the vicinity of

a SN (Stinson et al., 2006; Governato et al., 2010), or saving up energy from SNe that

should have exploded and then releasing it all at once (Dalla Vecchia & Schaye, 2012).

These methods have made simulated galaxies look more realistic by making the SNe

more effective at driving outflows. However, by using these unphysical workarounds the

predictive power of the simulations is compromised. It is therefore unclear to this day

whether SNe are truly responsible for driving galactic winds.
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Here we present high resolution simulations of a single isolated dwarf galaxy in

a non-cosmological context. First results from these simulations were presented in the

previous chapter. Our simulations simultaneously have a high enough resolution and

a low enough ambient gas volume density in the interstellar medium that individual

supernova explosions are well-resolved without any ad-hoc modification to the physics

of the simulation. Our simulations therefore represent a high-fidelity physical model of

a dwarf galaxy taking into account thermal feedback from supernovae, pre-supernova

mass loss from stellar winds, local photoionization heating, and as discussed at length

in the previous chapter, photoelectric heating of dust grains by FUV photons. Other

physical processes that may be responsible for launching winds, i.e. cosmic ray and

radiation pressure, are not included. The details of the physics governing these pro-

cesses is sufficiently uncertain that any treatment of these processes will necessarily be

prohibitively expensive or likely incorrect. We consider our simulations to be a useful

benchmark for what would happen assuming the most straightforward, least uncertain

scenario.

6.2 Simulations

Simulations are carried out with the Enzo adaptive mesh refinement code

(Bryan et al., 2014). A cartesian box with a side length of 1.3 Mpc is initialized with a

uniform density of ρh = 10−6g/cm3, a temperature of Th = 106 K and a root grid size

of 323. Near the center of the box, we initialize a dark matter halo and an ‘old’ stellar

population, each represented by collisionless particles which only interact gravitationally
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with the remainder of the simulation. The dark matter halo has a mass of 1010M�, while

the stars have a total mass of 107M�, in reasonable agreement with the inferred stellar

mass-halo mass relations derived by abundance matching (Moster et al., 2010; Behroozi

et al., 2013a). Finally, a gaseous disk with temperature Td = 100 K which falls off expo-

nentially in density both vertically and radially as ρd(r, z) ∝ exp (−|z|/H) exp (−r/rd)

is added. The disk extends until its pressure would fall below that of the hot halo, i.e.

until ρhTh = ρdTd, at which point the disk component is truncated and only the halo

is left. The total mass of this cold disk is taken to be Mg = 108M�, in agreement with

the observed relation between gas and stellar mass (Papastergis et al., 2012). The disk

begins the simulation with a metallicity of Zd = 0.1Z�, while the halo has Zh = 0.01Z�.

The initial coarse grid is refined when any of the following criteria are met for

each individual cell

1. The Jeans length is not resolved by 4 cells

2. The cell contains a star which will at a future point in the simulation experience

a supernova

3. The cell exceeds a particle mass of 3× 105 × 2−0.444916LM�, where L is the level

of refinement of the cell in question.

4. The cell is within 2 cells of a cell satisfying any of the above conditions.

We include 12 levels of refinement, so that the finest resolution available in the simulation

is 10 pc.

Stars are allowed to form only on this final level of refinement, and only if the
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Jeans length of the cell is not resolved by 4 cells. In other words, stars form in cells

that would have refined further but were unable to do so owing to already being at the

maximum refinement level. In cells that meet this condition, star particles are created

stochastically with a probability such that the average star formation rate is εffρ/tff ,

with the star formation efficiency per freefall time εff = 0.01 (Krumholz & Tan, 2007;

Krumholz et al., 2012).

Stars formed during the simulation time add energy to the cells in which they

are contained. The wind luminosity for a Starburst99 (Leitherer et al., 1999) is added

to the cell as thermal energy if the star particle will experience a supernova in the

future (indicating that the particle contains a massive star). Which particles contain

stars that will experience supernovae are chosen stochastically such that the supernova

rate is equal to 10616/106 supernovae per solar mass of stars formed, as expected for

a Kroupa IMF (Kroupa, 2001) and a low initial metallicity according to Starburst99.

For each supernova experienced by the particle, a delay time (between the particle’s

formation and the supernova) is drawn from the supernova delay time distribution.

Additionally, particles containing massive stars set the temperature of their cell to 104K

if their Stromgren volume exceeds the cell’s volume.

6.3 Results

Given the artificial initial conditions where no attempt was made to set up

hydrostatic balance, the gas disk quickly collapses in the center, and begins to form

stars. The star formation rate rises steadily until plateauing to about 10−3M�/yr after
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Figure 6.1: A shallow edge-on projection of the galaxy over time. Material outflowing
from the galaxy is clearly visible at all times. It begins as high-speed and low-density,
but as the simulation develops, the region above and below the disk increases in density
and decreases in typical velocity. The net effect is a moderate increase in the mass
outflow rate, but much of the mass is close to the threshold of being unbound.

around 100 Myr of evolution. During this time an outflow develops from the disk driven

by the thermal energy input of supernovae. The morphology of this outflow is shown in

Figure 6.1 as a temporal sequence of snapshots. The quantity displayed is the column

density of gas, with the galaxy viewed edge-on, and centered on the center of the galaxy.

The column density is the integral of the volume density extending ±500 pc along the

line of sight, i.e. the depth of the column is shallow so that the structure of the wind is

more clearly visible. Arrows in each panel show the mass-averaged velocity in the y-z

plane. The column density and velocity scales are the same in each panel.

To understand what portion of the outflowing gas has the potential to escape
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Figure 6.2: Turnaround radius. For a particle on a radial orbit starting at a radius of
2 kpc from the center of the dark matter halo, we integrate the particle’s trajectory
and find the radius where the particle’s velocity drops to zero. The final point at 100
km/s is above the escape velocity, so the particle never actually turns around. To even
temporarily escape the halo, assuming no further acceleration of the particle except via
gravity, the gas needs to be going around 80 km/s.

the galaxy, we examine the radius a collisionless particle can reach before turning around

and falling back to the galaxy in Figure 6.2. Particles are numerically integrated on

radial orbits using an interpolated version of GM(< r)/r2 measured from the simulation

(note that this profile is essentially constant over the course of the simulations, and

nearly identical among all simulations presented here). Assuming that no further forces

apply to the gas besides gravity, most (though not all) of the outflow in our simulations

is formally bound to the halo.
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The gas mass escaping from the galaxy may be measured by counting up

the flux of outflowing mass in cells that intersect some surface in the simulation. For

simplicity, we choose horizontal surfaces (parallel to the plane of the disk), above and

below the disk at various heights, with a radius encompassing the star-forming region

of the disk. The mass flux through these planes is summed up on a cell-by-cell basis,

Ṁout =
∑
i

ρivout,iAi (6.1)

where ρi is the gas density of the ith cell, vout,i is the z-component of the velocity with

a sign such that positive indicates gas moving away from the disk, and Ai is the cross-

sectional area of the cell in question. Cells are only included in this sum if their vout,i

exceeds some threshold.

The outgoing mass flux obtained in this manner is shown in Figure 6.3, nor-

malized to the star formation rate. This normalization can be done in several ways.

Naively, at a given time the mass loading factor is just the current outflow rate divided

by the current star formation rate. However, the star formation rate does change over

time, and there is a finite travel time between where the wind is launched and where

the outflow rate is measured, so we also include a mass loading factor where the star

formation rate in the denominator is not the current star formation rate, but rather the

star formation rate when the wind was launched. This time is estimated by dividing

the height at which the outgoing mass flux has been computed by the average velocity

of the outflowing gas which exceeds the velocity threshold.

The mass loading factors we compute here are intermediate between various
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Figure 6.3: The Mass Loading Factor. Shown are the ratio of the mass outflow rate to
the star formation rate. The black line uses a naive estimate, namely the instantaneous
outflow rate divided by the current star formation rate. The red line shows an estimate
based on the star formation rate at a previous time, namely the current time minus the
time it would take the outflowing gas to travel to the height where the outflow rate is
being measured.

extreme expectations (Schroetter et al., 2015; Muratov et al., 2015), and are much

smaller than the values necessary to explain galaxy scaling relations with the equilibrium

model discussed in Chapter 2.

In addition to the mass outflow rate, we would also like to know the metal

content of the wind. This is particularly important because when modellers attempt

to fit observed galaxy data, one of the main tools to discriminate between different

feedback scenarios is the mass metallicity relation. However, the strength of outflows
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is degenerate with whether or not the winds are preferentially metal-enriched, in which

case outflows do not need to be as strong to explain a given deficit in metallicity.

To quantify this, we use a variable defined in Chapter 2, and discussed in

somewhat more detail in Chapter 4.

ξ = (ṀZ,out − Z0Ṁout)/(yfRṀSFR) (6.2)

where Z0 is the metallicity of the gas in the disk, ṀZ,out is the flux of metal mass

through the same surface as the outflowing gas mass Ṁout is measured, y is the yield,

and fR is the remnant fraction. This parameter is equal to zero if the wind is the same

metallicity as the disk, and 1 if all of the metals produced in supernovae are ejected in

the wind. Figure 6.4 shows the evolution of this quantity over time in the simulation,

both with a naive estimate and using the star formation rate at a retarded time. The

time during which ξ > 1 is due either to a mismatch in the relevant star formation rate

(i.e. the fact that the SFR is not constant, but rather increasing), or due to an error

in the values used for y and fR. Despite this uncertainty, it seems probable that ξ is

of order unity, not zero. This suggests that imperfect metal mixing, i.e. preferential

ejection of metals, may play a major role in the evolution of low-mass galaxies.

In addition to the raw outflow rates and metal enhancement of the wind, we can

look at the wind’s detailed properties by examing the probability distribution function

of various wind properties. These PDFs are weighted by mass, metal mass, and ejecta

mass. Ejecta refers specifically to material which is added to a cell in which a supernova

explodes. This supernova ejecta is tagged with a passive scalar tracer field, which is
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Figure 6.4: The Metal Mixing Factor. The metal enhancement of the wind. The
dimensionless quantity ξ shows the metal content of outflowing material. When ξ = 0,
the wind metallicity is identical to the gas phase metallicity of the disk, whereas when
ξ = 1, 100% of the metals produced in supernovae leave the galaxy in the wind.
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advected along with the gas, just like metals and other chemical species. Although we

do not use any lagrangian tracer particles, this method allows us to track the ejecta as

it leaves the galaxy.

Figures 6.5, 6.6, 6.7, and 6.8 show PDFs for the outflowing velocity, transverse

velocity, density, and temperature of material in a volume 1 kpc above and below the

disk, each with a thickness of 0.25 kpc. I.e. these PDFs represent wind material, or at

least gas interacting with the wind, in bulk. These plots show that the wind is composed

of a diverse array of gas, with velocities largely near the rotational velocity of the galaxy,

but with a tail extending to much higher velocities. The density of the ejecta-rich gas

ranges from much lower to much higher than the bulk of the gas above and below the

disk, which agrees with the morphology shown in Figure 6.1 of structures resembling

bubbles, shells, and filaments.
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Figure 6.5: The PDF of Outflowing Velocities. In a volume of thickness 0.25 kpc, height
1 kpc above and below the disk, and radius 10 kpc, we show the probability distribution
function of the z velocity of the gas, weighted by mass, metal mass, and ejecta mass,
where a positive z velocity indicates material flowing away from the disk. This PDF is
computed at a single time, t = 150 Myr into the simulation. Material that is part of
the wind clearly shows an exponential tail to large velocities, with a peak around the
rotational velocity of the galaxy, 40 km/s.
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Figure 6.6: The PDF of Transverse Velocities. In the same volume used in Figure 6.5,
we show the PDF of the x-component of the velocity. For the bulk of the mass and
metals, the velocity shows a double-peaked distribution characteristic of a rotating disk.
Interestingly, the initial conditions contain no rotation for gas at this height. Rather, the
rotation of the cold disk has transferred angular momentum to the halo gas. However,
the ejecta material itself is more consistent with a spherical expansion, showing little
evidence of rotation.
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Figure 6.7: The PDF of Gas Density. In the same volume used in Figures 6.5 and 6.6,
we show the PDF of the gas density.
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Figure 6.8: The PDF of gas temperatures. In the same volume used in Figures 6.5 and
6.6, we show the PDF of the gas temperature.
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6.4 A comparison to other simulations

In addition to the fiducial simulation discussed above, we have examined the

winds produced in two alternative simulations. In the first, as described in the previous

chapter, we turn off photoelectric heating. The primary effect of disabling photoelectric

heating is that the bulk of the ISM becomes extremely cold, and the star formation

rate increases dramatically. In Figures 6.9, 6.10, and 6.11 we show the basic properties

of the wind in this artificial circumstance. We find that not only is the outflow rate

higher, but it is proportionally higher and proportionally more metal-enriched than in

the fiducial case. Even though the star formation rate is an order of magnitude higher,

the mass loading factor and the metal mixing factor are only moderately larger than in

the fiducial case, suggesting that the absolute magnitude of the star formation rate has

some influence on the properties of the wind, but the outflow rate is nearly linear with

the star formation rate if the galaxy is otherwise the same.

Another simulation we ran and discussed in the previous Chapter was identical

to the fiducial simulation, except that the scale length of the gas disk was much smaller, 1

kpc instead of 5 kpc. The star formation rate in this simulation is also much higher than

in the fiducial case because the gas surface density is 25 times larger. Figures 6.12 and

6.13 show the basic results for this simulation. With the caveat that this simulation

has not been run as long as the other two discussed here, the results are shockingly

different. There is some outflowing mass, roughly comparable in flux to the fiducial

simulation, but the higher star formation rate means that the mass loading factor is

much smaller, less than unity. This dramatically changes the nature of the galaxy’s
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Figure 6.9: The morphology of the wind in the simulation with photoelectric heating
disabled.

cosmological evolution, which may ultimately lead to a very high variance in e.g. the

stellar mass - halo mass relation (Garrison-Kimmel et al., 2016) or the mass-metallicity

relation (Guo et al., 2016) in the dwarf regime.

Finally, we use the 1D disk evolution code described in Chapters 2 and 3 to

explore the cosmological evolution of a set of galaxies chosen to represent three basic

scenarios that are all consistent with observed data. One simulation has a high mass

loading factor of 30, perfect metal mixing (ξ = 0), and efficient cooling of gas from

the cosmic web (i.e. the baryonic accretion rate follows the dark matter accretion rate,

reduced only by the cosmolgical baryon fraction). This is the most typical way simu-

lators create dwarf galaxies that obey observational constraints at redshift zero. The

next model uses parameters more closely aligned with the results of the hydrodynamic
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Figure 6.10: The Mass Loading Factor in the absence of photoelctric heating. The
increased star formation rate in this simulation where photoelectric heating is artificially
disabled results in a moderately higher mass loading factor than in the fiducial case.
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Figure 6.11: The Metal Mixing Factor in the absence of photoelectric heating. The
increased outflow rate in this simulation is accompanied by a wind which is, relatively
speaking, even more metal-enhanced than in the fiducial case. Essentially all metals
produced by supernovae are leaving the galaxy in the wind.
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Figure 6.12: The morphology of the wind in the simulation with a 1 kpc scale length. A
wind is clearly developing, but it is unclear whether it will end up carrying substantial
mass compared to the star formation rate.
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Figure 6.13: The Mass Loading Factor in the simulation with a 1 kpc scale length.
The increased star formation rate in this simulation results in a negligible mass loading
factor.
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simulation. In particular, we set η = 6 and ξ = .5. Finally, we use a model in line

with the preventative feedback picture proposed by Lu et al. (2015), in which low-mass

galaxies are preferentially unable to accrete material from the IGM because that gas

was heated at an earlier epoch. For this model, we use η = 1 and ξ = 0, and we only

allow 10% of the baryons expected to accrete onto a halo of this size to enter the galaxy.

Figure 6.14 shows the evolution of the gas mass of these three representative

models over cosmological time. Despite all ending up in the same area at z = 0, these

different sets of physical parameters imply vastly different evolutionary histories, with

high mass loading factors allowing the galaxy to be in equilibrium, including a burst of

rapid star formation at high redshift. For low mass loading factors, the star formation

history steadily rises with time as mass and metals build up in the galaxy. In this case

the current state of the galaxy strongly depends on the galaxy’s history.
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Figure 6.14: Cosmological evolution of the specific star formation rate of several repre-
sentative models, with varying mass loading factors.
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6.5 Conclusion

We have run a high resolution hydrodynamic simulation of a dwarf galaxy

with well-resolved supernova feedback. We find that a galactic wind develops in this

galaxy with a mass-loading factor of order 5 and a highly metal-enriched wind, in strong

contrast to the typical model of a dwarf galaxy employed to explain the mass-metallicity

relation, namely one in which winds are much stronger, and are perfectly mixed with

the ISM of the galaxy.

We find that these results are likely to depend strongly on the scale length of

the galaxy, with more compact galaxies having much weaker feedback given their star

formation rates. This implies that galaxies at the same halo mass may end up being

vastly different, leading to large scatter in relations that are tight for more massive

galaxies, signifying the selective breakdown of the equilibrium model of galaxy evolution.
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Chapter 7

Conclusions

7.1 The scatter in galaxy scaling relations

Star-forming galaxies have fundamental properties that lie along several well-

known powerlaw-like relations. In the present-day universe, knowing only a galaxy’s

stellar mass, one can predict with reasonable confidence the galaxy’s star formation

rate (e.g. Whitaker et al., 2012), metallicity (Kewley & Ellison, 2008, e.g.), and gas

fraction (Papastergis et al., 2012). To understand why galaxies follow this locus of

points, simulators have employed hydrodynamical simulations (e.g. Davé et al., 2011)

or semi-analytic models (e.g. Lu et al., 2014), wherein sub-grid parameters are tuned to

match these and other relations. These models can be quite computationally intensive

and non-intuitive. However, in the past 5 years it has been realized (e.g. Davé et al.,

2012; Lilly et al., 2013) that these relations can be understood as a consequence of rough

equilibrium in a galaxy’s mass budget between new accretion, and gas being locked in

long-lived stellar remnants or ejected from the galaxy. So long as the timescale to
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reach equilibrium is reasonably short compared to the age of the universe, galaxies will

have gas masses, star formation rates, and metallicities determined by simple algebraic

formulae.

Equilibrium models provide a powerful and simple way to understand the

origin of galaxy scaling relations. In Chapter 2, I set about trying to understand the

scatter in galaxy scaling relations in this context. To do so, I wrote down the mass

and metal continuity equations, which are in general differential equations that should

be integrated over the entire lifetime of a galaxy. I solved these differential equations

analytically for the case of accretion rates that remained constant for some timescale

tcoherence before switching to a new random value drawn from a log-normal distribution.

With this simple ansatz for the behavior of the external accretion rate, I mapped out

the scatter one would expect in the star formation rate and metallicity, and the anti-

correlation between star formation and metallicity, all at fixed stellar mass. Each of these

quantities is directly observable, so I was able to place surprisingly strong constraints

on the parameters of the accretion process and other possible sources of scatter.

With this procedure, I found that my initial guess for the intrinsic scatter in

the accretion rate (based on Neistein & Dekel, 2008), was too large to be accommodated

by the observations. This suggests that the gas accretion rate may be smoothed out by

some process in the halos of galaxies. I also found that the scatter in the mass loading

factor at fixed mass needs to be surprisingly small, less than about 0.1 dex. This is truly

remarkable, because independent theoretical and observational estimates for the mass

loading factor at any particular mass are hugely uncertain, sometimes by several orders
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of magnitude. We do not even know the physical mechanism responsible for launching

galactic winds, and yet in galaxies of a fixed mass, somehow the spread in mass loading

factors must be tiny.

7.2 The radial profiles of galaxies over cosmic time

The Hubble Space Telescope discovered that broadband images of high-redshift

galaxies are frequently dominated by a handful of large clumps (Elmegreen et al., 2007).

This discovery, unanticipated by theory, led to the development of a new paradigm in

the evolution of galaxies, in which massive gas-rich disks are fueled by cold cosmological

streams of accreting gas (Kereš et al., 2005; Dekel et al., 2009b), leading to gravita-

tionally unstable disks (Dekel et al., 2009a; Ceverino et al., 2010). In this picture, the

clumps are largely caused by the instability of the disk to the collapse of structures on

the Toomre scale.

I set out to understand the long-term consequences of this picture of galaxy

evolution by writing a fast code that could evolve the radial profiles of gas and stars in

galaxies subject to this instability. Based on the formalism presented in (Krumholz &

Burkert, 2010), I wrote a brand new code that solved their evolution equations orders of

magnitude more quickly, and I added new physics, transforming the calculations from

an idealized toy model to a realistic model of galaxy evolution.

Chapter 3 discusses the first set of results using this code. We found that the

correlation of stellar age and velocity dispersion in the solar neighborhood (Nordström

et al., 2004; Holmberg et al., 2007) could be understood as a natural consequence of the
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gravitational instability-regulated picture of galaxy evolution, since at high redshift the

gas has a high velocity dispersion, and hence so will the stars formed in that era. We also

found that our galaxies developed central depressions in their gas surface density at low

redshift, as a result of gas being consumed by star formation and outflows on its journey

to the center of the galaxy. We explored this result further in Chapter 4, showing under

what circumstances these central holes could be produced, and predicting their spatial

extent. We also showed that this model could easily recover the “universal profile” of

gas in local spiral galaxies discovered by Bigiel & Blitz (2012).

7.3 High-resolution simulations of dwarf galaxies with self-

consistent photoelectric heating

Dwarf galaxies can have incredibly long depletion times (Hunter et al., 2012),

sometimes exceeding the age of the universe by an order of magnitude. In some models,

supernovae are responsible for slowing down star formation in these galaxies, but super-

novae are notoriously difficult to model correctly in hydrodynamic simulations owing to

the very small scales on which they evolve initially. To definitively understand whether

supernovae are responsible for setting the long depletion times in galaxies, we have been

running high resolution 3D simulations of isolated dwarf galaxies which have a resolved

Sedov-Taylor phase. We have shown in Chapter 5 that supernovae have virtually no

effect on the depletion time in these galaxies. Instead, the long depletion times arise

from the spatially- and time-dependent interstellar radiation field acting to heat the gas

via the grain photoelectric effect (e.g. Bakes & Tielens, 1994).
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Gas which is locally Jeans unstable (red) eventually collapses and forms a new

star cluster. Immediately, stars begin to emit radiation in the FUV, between 8 and 13.6

eV. This radiation is non-ionizing, and so has a large mean free path, particularly in

a dwarf galaxy with low metallicity. Almost immediately, gas near the location of the

newly formed star is heated, and ceases to be Jeans unstable. Supernova remnants are

completely irrelevant for preventing the collapse of nearby gas – the star formation rates

between identical simulations with and without supernovae, but including photoelectric

heating, are nearly identical.

These simulations also launch strong winds, with mass loading factors exceed-

ing unity. Moreover the metal content of the winds substantially exceeds the metallicity

of the galactic disk, meaning that metals are being preferentially ejected in the winds.
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Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183

Kim, J.-h., Abel, T., Agertz, O., et al. 2014, ApJS, 210, 14

Kim, W.-T., & Ostriker, E. C. 2002, ApJ, 570, 132

Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJSupplement Series, 180, 330

Kroupa, P. 2001, MNRAS, 322, 231

Krumholz, M., & Burkert, A. 2010, ApJ, 724, 895

276



Krumholz, M. R. 2013, MNRAS, 436, 2747

Krumholz, M. R., & Dekel, A. 2010, MNRAS, 406, 112

Krumholz, M. R., & Dekel, A. 2012, ApJ, 753, 16

Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69

Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250

Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2008, ApJ, 689, 865

Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 693, 216

Krumholz, M. R., & Tan, J. C. 2007, ApJ, 654, 304

Krumholz, M. R., & Thompson, T. A. 2012, ApJ, 760, 155

Krumholz, M. R., & Thompson, T. A. 2013, MNRAS, 434, 2329

Kuhlen, M., Krumholz, M. R., Madau, P., Smith, B. D., & Wise, J. 2012, ApJ, 749, 36

Kuhlen, M., Madau, P., & Krumholz, M. R. 2013, ApJ, 776, 34
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