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ABSTRACT OF THE THESIS 

 

A Pan-Cancer Analysis of Immune-Associated Genes  

and Pathways Dysregulated by Tobacco Smoke 

 

by 

 

Jaideep Chakladar 

Master of Science in Biology 

University of California San Diego, 2022 

 

Professor Weg M. Ongkeko, Chair 
Professor Li-Fan Lu, Co-Chair 

 

Although many of the mechanisms induced by cigarette smoke are highly conserved in 

cancers in general, the use of new genomic and transcriptomic data analysis tools suggests that 

some mechanisms underlying smoking induced cancers may be unique. This project aims to 

elucidate connections between smoking-associated cancers and novel immune-associated (IA) 

mechanisms underlying smoking-induced carcinogenesis, with an emphasis on IA gene 
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expression and microRNA (miRNA) activity. We investigated a total of 5 cancers whose 

incidence is known to be well-correlated with smoking. Patient whole genome sequencing, 

miRNA sequencing, and clinical variable data was downloaded from The Cancer Genome Atlas 

(TCGA) and was analyzed computationally. We found little overlap between survival-corelated 

immune-associated genes dysregulated in each of the 5 cancers studied. However, further 

downstream analysis suggested the potential importance of a select few genes. One of these 

genes is osteopontin (OPN), which was upregulated in HNSCC and ESCA patients alongside key 

oncogene upregulation, tumor suppressor downregulation, and mutation presence. Dysregulation 

of TNF-related genes was unique between HNSCC and LUSC samples, suggesting that smoking 

causes different behavior of TNF depending on the cancer type or tumor site. Analysis of 

microRNA expression indicated that survival-correlated IA genes were likely unaffected by 

miRNA expression. These findings indicate the presence of common and unique patterns of IA 

gene dysregulation between smoking-mediated cancers that may be used for future therapeutic 

strategies.  
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CHAPTER 1: INTRODUCTION 

Smoking and cancer 

Currently, smoking is one of the most prominent risk factors for cancer, with tobacco 

smoking being a primary cause of 12 different cancers. Cigarette smoke contains thousands of 

components in its gaseous phase, of which numerous are direct and indirect carcinogens1. 

Carcinogens in cigarette smoke have been shown to initiate various oncogenic mechanisms that 

eventually result in advanced stage tumors2. One such mechanism is the action of nitrosamines 

that causes gene mutations and DNA and protein adducts that lead to dysfunction of pivotal cell 

cycle regulator mechanisms3. Nicotine has also been shown to promote carcinogenesis by 

activating cell growth and migration pathways, along with cancer-specific functions such as 

angiogenesis and tissue invasion4. Often, increased smoking duration and frequency correlates to 

increased risk of cancer because of the additive effects of cancer-promoting mechanisms. 

Formation of adducts by carcinogens may be normally repaired by an otherwise healthy cell. 

Cell intrinsic defense mechanisms also prevent adducts from taking effect by utilizing apoptosis 

as a last line of defense5. However, with greater exposure to cigarette smoke comes a greater 

likelihood of mutation of genes governing normal cell function, thereby rendering defenses 

against mutated proteins useless. 

Recent findings have implicated areas outside of simple genomics with smoking-induced 

carcinogenesis. For example, the ability of smoking carcinogens to alter the methylation state of 

DNA has been shown to contribute to promote carcinogenesis, via hypermethylation of 

promotors corresponding to tumor-suppressor genes6.  

 

 



2 
 

Smoking and the immune system 

The investigation of the relationship between smoking and cancer has indicated the 

importance of the immune system. Interestingly, the effects that smoking can have on the 

immune system can be contradictory, as smoking has been shown to cause both pro-

inflammatory and immunosuppressive outcomes7,8. However, studies into the main targets of 

cigarette smoke in the immune system are not all in agreement, likely due to the variance 

amongst patient populations in terms of smoking duration and volume, demographics, and other 

health conditions like nutrition and obesity9. One way in which cigarette smoke affects the 

immune system is through compromisation of the respiratory epithelium10-12. This 

compromisation leads to a host of downstream effects, including oxidative damage that leads to 

single-strand DNA breaks, somatic mutations in epithelial cells, and overall hyperinflammation 

at the epithelium13-15. Such an environment can lead to tumor formation at the respiratory 

epithelium. Indeed, it has been suggested that activating KRAS mutations are common in lung 

tumors and may be key contributors to a pro-inflammatory tumor microenvironment16.  

Smoking may also inhibit the ability of the immune system to recognize and kill tumor 

cells. In vivo studies suggest that mice exposed to cigarette smoke have an inhibited immune 

response to transplanted tumors, and such tumors frequently metastasize17,18. One explanation for 

these findings may be that cytotoxic T cell activity is decreased, as observed in a separate 

study19. 

Outside of lung cancers, the effects of an altered immune system caused by smoking have 

not yet been well established in smoking-mediated cancers. Head and neck squamous cell 

carcinoma (HNSCC) patients have been shown to have a worse survival if they have a history of 

smoking20,21. HNSCC-specific research seems to suggest that the effects of smoking on the 
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immune system are not conflicting as it may be in other cancers, as the HNSCC tumor 

microenvironment is immunosuppressive22-24. Therefore, it is likely that the contribution of 

smoking to HNSCC must also be immunosuppressive. Indeed, a recent study indicated that 

HNSCC smokers exhibit a decrease in cytotoxic T cell activity and a significant downregulation 

of interferon and chemokine-related genes25. However, mutation burden was not associated with 

smoking status25.  

The effects of a smoking-altered immune system in bladder urothelial (BLCA) and 

esophageal squamous cell cancer (ESCA) remain unclear. One study suggests that a sub-clinical 

immune suppression caused by cigarette smoke can lead to bladder cancer26. However, there are 

few studies that investigate the connection between the immune system and smoking in bladder 

cancer, despite the fact that over 50% of BLCA cases are caused by smoking27. A recent study of 

ESCA indicated a unique immune phenotype in ESCA smokers compared to ESCA 

nonsmokers28. However, the sample size of less than 100 ESCA smokers and the lack of 

validation of these findings leaves the connection between ESCA, the immune system, and 

smoking unclear. 

Applications of unique immune genotypes 

Although many of the mechanisms induced by cigarette smoke are highly conserved in 

cancers in general, the advent of new genomic, transcriptomic, and metabolomic data analysis 

tools suggest that some mechanisms underlying smoking induced cancers may be unique. 

However, there has been little progress made into identifying such unique mechanisms. With 

survival rates for some of these cancers stagnating over the past decade, the development of new 

treatment and diagnostic modalities has been a large focus of the oncology research community. 

Immune therapy is an alternative for patients who do not respond well to traditional 
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chemotherapies. However, few immune therapies have been brought to market, and many do not 

pass clinical trials. A problem with immune therapy development is a lack of known targets in 

the immune system that can be exploited to target tumors. It is therefore important for targets in 

the immune system to be identified, especially amongst patient populations that may harbor 

genotypic alterations that result in lower efficacy of traditional chemotherapy. 

This project aims to elucidate any possible connections between smoking-associated 

cancers and novel mechanisms underlying smoking-induced carcinogenesis. This is 

accomplished by analyzing patient sequencing data from The Cancer Genome Atlas (TCGA) and 

identifying genomic and transcriptomic characteristics that may underlie smoking-induced 

carcinogenesis.  

 

CHAPTER 2: MATERIALS AND METHODS 

TCGA and non-TCGA RNA-sequencing datasets and clinical data 

Level 3 normalized mRNA and miRNA expression read counts for tumor samples from 

501 LUSC patients, 514 LUAD patients, 500 HNSCC patients, 408 BLCA patients, and 158 

ESCA patients as well as the patients’ clinical data were downloaded from TCGA (https://tcga-

data.nci.nih.gov/tcga) (Figure 1). mRNA and miRNA read counts for adjacent solid normal 

tissue samples of 49 LUSC patients, 59 LUAD patients, 44 HNSCC patients, 19 BLCA patients, 

and 65 ESCA patients were also obtained. Additional validation datasets were obtained from the 

Sequencing Read Archive (SRA). Tumor samples from 167 OSCC, 17 oral dysplasia, and 45 

normal oral epithelial mouse models were downloaded from the SRA along with matching tumor 

stage data (GSE30784). 
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Clinical information for all patients were downloaded from the Broad GDAC Firehose 

(https://gdac.broadinstitute.org/). Genomic alteration information for each patient was obtained 

from the most up-to-date analysis report (2016) of the Broad Institute TCGA Genome Data 

Analysis Center (http://gdac.broadinstitute.org/runs/analyses__latest/reports/).  

Differential expression analysis for identification of dysregulated IA genes 

mRNA read count tables were imported into edgeR v3.5 

(http://www.bioconductor.org/packages/release/bioc/html/edgeR.html), and lowly expressed 

mRNAs (CPM < 1 in number of samples greater than the size of the smaller cohort of each 

analysis) were filtered from the analysis. Following trimmed mean of M-values (TMM) 

normalization, pairwise designs were applied to identify significantly differentially expressed 

mRNAs for each cancer. The initial comparisons are as follows: (1) cancer smoking vs. cancer 

nonsmoking, (2) cancer smoking vs. normal, and (3) cancer nonsmoking vs. normal.  

IA genes differentially expressed were identified as dysregulated and retained as 

candidates. A gene is determined to be immune associated if it is involved in adaptive or innate 

immunological pathways or constitute tumor antigens. We sourced our list of IA genes from 

ImmPort (http://www.immport.org/immport-open/public/reference/genelists), listing all adaptive 

and innate immunity associated genes; the InnateDB (http://www.innatedb.com/), listing innate 

immunity associated genes; and the TANTIGEN database (http://cvc.dfci.harvard.edu/tadb/), 

listing genes that can form tumor antigens. Differential expression is defined as p<0.05 and fold 

change < -2 or > 2 in edgeR analysis. The p-value was corrected by using the FDR provided by 

edgeR.  
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Figure 1: Overview of the proposed analysis pipeline and patient population. A. A flowchart of 
the general analyses and goals of the proposed project. B. Total number of smoking and 
nonsmoking cancer patients for each of the 5 TCGA cancers studied. 
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Association of gene expression with patient survival and clinical variables  

Survival analyses were performed using the Kaplan-Meier Model with gene expression 

designated as a binary variable based on expression above or below the median expression of all 

samples. Univariate Cox regression analysis was used to identify candidates significantly 

associated with patient survival (p < 0.05). Survival-correlated genes were evaluated for clinical 

significance. The Kruskal-Wallis test (p<0.05) was used to correlate gene expression to clinical 

variables, including pathologic stage, pathologic TNM stages, perineural invasion, and neoplasm 

status after treatment. In pathologic T stage analysis, patients with stages T1a and T1b were 

grouped into stage T1, and likewise for stages T2, T3, and T4.  

Functional pathway clustering of candidate IA genes and functional coexpression analysis 

A list of all significantly dysregulated IA genes was inputted into the ReactomeFIViz 

plugin of Cytoscape to cluster genes into functional pathways by cancer. For each cancer, a 

matrix listing each gene’s expression value for every patient was inputted for functional 

coexpression analysis. Only coexpression modules with 4 genes or more and FDR<0.05 were 

presented. Functional pathways available for analysis were sourced from Reactome, Kegg, 

BioCarta, Pathway Interactions Database, and PantherDB. The top pathways representing genes 

in each cluster were determined according to FDR, number of genes dysregulated, and relevance 

to the immune system.  

Association of candidate genes’ expressions with genomic alterations 

Mutation and CNV data for the TCGA tumor samples were obtained from mutation and 

CNV annotation files generated by the Broad Institute GDAC Firehose. All mutation and CNV 

annotations were compiled into a binary input file for the information coefficient-based 
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algorithm REVEALER. REVEALER is designed to computationally identify a set of specific 

CNVs and mutations most likely responsible for the change in activity of a target profile. The 

target profile was defined in our study to be individual IA gene expression. In order to identify a 

set of most relevant genomic alterations, REVEALER runs multiple iterations of the correlation 

algorithm, with the genomic feature exhibiting the strongest correlation in each run serving as a 

seed for the successive run. We set the maximum number of iterations to three. A seed is a 

particular mutation or copy number gain or loss event that most likely accounts for the target 

activity. When given a seed, REVEALER will focus correlation on only patients with altered 

target activity not accounted for by the seed. Since we do not know which genomic alteration is 

responsible for the dysregulation of each gene, we set the seed for the first iteration to null. We 

set the threshold of genomic features to input to features present in less than 75% of all samples. 

Significant association was defined by the conditional information coefficient (CIC > 0.25). 

GeneSet Enrichment Analysis (GSEA) 

GSEA was used to correlate IA gene expression to the dysregulation of highly conserved 

signatures and pathways. Genesets were chosen from the CP, C2, and C7 sets from the 

Molecular Signatures Database29. Significantly enriched signatures were identified by a nominal 

enrichment score > 1 and a nominal p-value < 0.05.  

Gene co-expression analysis 

 Spearman scatter plots were used to plot gene expression read count data of individual 

genes against each other. Significant gene co-expression was determined using the Spearman 

correlational coefficient (|p| > 0.3). Further analysis of genes that could be co-expressed with IA 

genes was determined by referring to the Pathway Commons30. Lists of genes that participate in 
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common cancer and immune pathways were obtained and were referenced for specific genes of 

interest. 

miRNA expression analysis 

 miRNAs of interest were first determined by inputting survival-correlated IA genes into 

the TargetScanHuman website (https://www.targetscan.org/vert_71/), which predicts highly and 

poorly conserved miRNAs that target genes. Highly conserved miRNAs for each gene were 

chosen, and differential expression analysis was used to determine whether or not these miRNAs 

were differentially expressed between smoking and nonsmoking cancer patients. Further study of 

miRNA expression patterns was achieved using Principal Component Analysis. This analysis 

was performed using the prcomp library in R, and the results of the analysis were visualized 

using the ggplot2 and ggfortify2 libraries.  

 

CHAPTER 3: IMMUNE-ASSOCIATED GENE EXPRESSION 

Dysregulated and survival correlated IA genes 

Patient gene expression data was downloaded from TCGA and computationally analyzed 

to determine differentially expressed genes between smokers and nonsmokers. A total of 5 

cancers were selected based on lowest survival rates and availability of patient data (>100 

patients) (Figure 1A-B). Differential expression was done on 3 different cohorts, comparing 

them in a pairwise manner. The comparisons were as follows: (1) cancer smoking vs. cancer 

nonsmoking, (2) cancer smoking vs. normal, and (3) cancer nonsmoking vs. normal. These 

specific comparisons were chosen to enable an analysis of how cancer patients that smoked 

differed from other cancer patients (comparison 1) as well as from normal samples (comparison 

2 and 3). It was proposed that the latter analysis would be accomplished by analyzing the 
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common and uniquely dysregulated genes between comparisons 2 and 3 in order to establish 

how the cancer smoking phenotype may cause differences from the normal phenotype that are 

not present in the cancer nonsmoking phenotype. However, upon analysis of the differential 

expression results of all sequenced genes, it was discovered that the landscapes of differentially 

expressed genes from comparisons 2 and 3 were largely similar (Figure 2A). In hindsight, this 

may have been expected, given that gene expression between cancer samples is much more 

similar than gene expression between cancer and normal samples. Additionally, comparisons 2 

and 3 did not indicate many novel dysregulations that were a significant departure from what is 

already known about how smoking causes cancer. Therefore, the results that differential 

expression analysis of comparison 1 yielded became the primary focus of this thesis.  

The results of the differential expression analysis revealed a finite number of genes that 

were dysregulated between smoking and nonsmoking cancer patients (Figure 2A-B). The 

majority of significantly dysregulated genes had an absolute fold change of less than 5. The 

significantly dysregulated genes were filtered to select for genes that are immune associated 

(Figure 2C). HNSCC, BLCA, and LUAD had the most dysregulated IA genes, with HNSCC 

having more than double the number of dysregulated IA genes than any other cancer. The 

cancers that had the most dysregulated IA genes in common were HNSCC, BLCA, and LUAD. 

However, the direction of dysregulation of these overlapping genes was not consistent across 

cancers, indicating that the immune system may have been impacted in contradicting ways 

between cancers (Table 1). 

Interestingly, the IA gene dysregulation profiles of LUAD and LUSC did not have many 

overlaps, and LUSC had much fewer dysregulated IA genes. Both of these findings were 

contrary to what was expected. It was hypothesized that LUSC would have a significant number  
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Figure 2: Differentially expressed IA genes in 5 smoking-mediated cancers. A. Representative 
volcano plots depicting the differential expression parameters for three comparisons in BLCA. 
Significance thresholds (|logFC|>1 and FDR<0.05) are indicated by dotted lines. Each point is 
one gene, and plots are representative of all genes, including IA genes. B. Volcano plots for 
differential expression comparison 1 in the remaining 4 cancers analyzed. C. Common and 
uniquely dysregulated IA genes between all 5 cancers analyzed. 
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of IA genes dysregulated by smoking due to the well-established connection between smoking 

and lung epithelial damage and hyperinflammation. Additionally, mechanisms inhibited by 

smoking such as immune cell activity would most likely affect the epithelial surface of the lungs 

rather than a deeper location. It is therefore interesting that LUSC did not have many 

significantly dysregulated IA genes. The differences in LUAD and LUSC were unexpected due 

to their shared location in the body. Though LUAD and LUSC are known to have significantly 

different clinical outcomes and molecular features, it was hypothesized that, because cigarette 

smoke exerts its effects primarily through lung epithelial barrier damage, there would be a 

significant amount of shared IA gene expression patterns between LUAD and LUSC. A possible 

explanation for the difference observed is that LUAD prognosis is heavily influenced by 

smoking. Specifically, even though LUAD is the most common lung cancer amongst 

nonsmokers, smoking greatly increases the risk of LUAD development and metastasis31,32. In 

contrast, LUSC most commonly manifests in smokers, as indicated by previous studies and by 

the fact that TCGA contains only 18 nonsmoking LUSC patients33. It is possible that, regardless 

of smoking status, the immune-associated genotype of LUSC cases is largely the same, while 

smoking greatly shifts the genotype in LUAD, which leads to the increased prevalence and 

metastasis. Additionally, the low number of LUSC nonsmoking samples could explain these 

findings.  

We next used the Kaplan-Meier test to determine which of the significantly dysregulated 

IA genes were correlated with patient survival. Only survival of patients that smoked was used in 

this analysis. HNSCC had the greatest number of survival-correlated genes, and the effects of 

these genes on patients survival were often conflicting (Figure 3A). However, there were few, if 

any, survival-correlated IA genes in the other 4 cancers. These findings may be due to the 
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Table 1: Dysregulated IA genes between smoking and nonsmoking cancer patients 

 

BLCA ESCA LUAD LUSC

AMH ACVR1C ACTR3 DICER1-AS1 LDLRAD3 RAG1 ART4 APOBEC3A
ANGPTL2 CFI ADAM17 DKK1 LRRC41 RASGEF1B C8B CA9
AVPR1A ESRRG ADAM33 DUSP3 LTBP2 RBP5 CD300LB CEACAM5

BTC MMP12 ADCY10P1 EFTUD2 LY96 RPS6KA5 CECR1 EPGN
CCL19 SEMA3B ADM EIF2AK2 MAP2K1 RSAD2 CTSG GNAI2
CCR4 OPN AIMP1 EPHA3 MAPK9 RUSC1-AS1 DEFB1 IL1RL2
CD19 WFDC2 ALKBH2 EPOP MAPKAPK2 S1PR2 EREG IL22RA1
CD200 ALKBH6 ESR1 MEF2D SCARB1 F11 IL23A
CD28 ANGPTL7 ETV6 MIF SELENBP1 F2RL1 PGLYRP3
CD48 AREG F2RL2 MUM1 SELENOT FABP6 PGLYRP4

CD79B ARF1 FABP4 NAMPT SEMA3G FCN3 PRKD1
CDK1 ARHGEF18 FASTKD2 NCKAP1 SEMA4C GDF10 RNASE7
CFP ARID3B FGF19 NDRG1 SEMA5A HNF4G SLAMF9

CLEC10A ARL14EP FLT4 NINJ2 SERPINE1 IGHV3-64 SLC40A1
CX3CR1 ARL2BP FYN NPPC SH3BP2 IGHV3-72 USP2
CXCR4 ARL4D GALNS NR2C2 SHC3 KLB XCL1
ESM1 ARL6IP4 GALNT3 NR2F1 SIGIRR LGR5
F2RL2 ARRDC2 GREM1 NR3C2 SIRT1 LY6K

FCGR3A ATG16L1 GREM2 OAS2 SLX4 MMP14
FCN1 AVPR2 GSTP1 OAS3 STC2 MSR1

GRAP2 BECN1 HBEGF OASL STRAP MYL9
GZMM BMP6 HFE2 OSGIN1 SYNM NR2F1

IL6R BST2 HIF1A OTUD5 SYNPO2 OAS3
LRRK2 C1QBP HLA-A PAEP SYT1 P2RX7

LTB C20orf96 HMGB1P5 PARP12 TGFB1 PDGFB
NCKAP1L C22orf46 HMGB1P6 PDF TMSB10 PPBP

NLRP3 C2CD5 HSPA1L PDGFA TNF PTGES
OXTR C3orf70 HSPA4 PGF TNFRSF4 PTHLH

PLA2G2A CACTIN IFI27 PIAS4 TNFRSF8 RARRES2
PRKCB CALM1 IFI6 PLAU TNFSF15 SCG2
RAC3 CAPZA2 IFIH1 PLXNB1 TNRC6A SCGB3A1

RAET1E CAV1 IFIT1 POLR1D TP53INP1 SIGLEC11
SCG2 CCR7 IFIT2 PPARGC1B TPT1 SIGLEC7

SEMA3E CDK17 IFIT3 PPP1CA TSC2 SIRPB1
SLAMF1 CELF2 IFNAR2 PRDX1 TUBB3 SLC11A1
SOCS3 CELSR3 IGHD PRSS36 TUFM SMAD7
TNFSF8 CFDP1 IGHV3-73 PSMD1 TXLNA TERT
TRAT1 CHPT1 IGKV2-24 PSMD11 TXN2 TNS3

TRBV28 CLTC IKBKB PSMD14 TXNDC12 TRIM15
TRIM36 CNOT8 IL11RA PSMD2 TYK2 TRPM8

TTK CSF2 IL17RB PSMD5 UBE2L6 TSLP
UBD CSRP1 IL32 PSMD7 UBXN11 TTK
VGF CTSG IL34 PSMD8 ULBP2 TUBB3

DCTD ILF3 PSME3 USB1 TYMS
DDX11 ISG15 PSPN USP49

DDX12P ITGA3 PSTPIP1 VEGFC
DDX19A ITGB3BP PTGS2 WNK2
DDX58 KITLG PTX3 XRCC6
DDX60 KLF2 RABEP2 ZBTB1
DESI1 KLF8 RAC2

HNSCC

Cancers 
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side-effects of cigarette smoking. Invariably, a patient’s life expectancy is significantly 

decreased when they smoke, and such a decrease is often proportional to the duration that a 

patient has been a smoker. Therefore, it is likely that the survival rates of cancer patients were 

more correlated with the comorbidities that present alongside smoking such as respiratory 

disorders. Additionally, it is possible that the effects of smoking on the tumor transcriptome were 

primarily on core tumor suppressors and oncogenes, and therefore enabled a faster progression to 

late-stage tumors and eventual morbidity. Our results may therefore suggest that, in cancers other 

than HNSCC, smoking-mediated immune dysregulations may play a smaller role in 

carcinogenesis than the other effects of smoking and would therefore not correlate well to 

survival rates.  

 The survival correlation results in HNSCC may be indicative of a unique smoking 

phenotype that we had hypothesized would present itself in all of the cancers studied. Previous 

studies have established HPV infection and smoking as two of the primary causes of HNSCC, 

with HPV being the most prevalent risk factor34-37. Cases of HNSCC that occur independently of 

HPV infection often occur later in life38. Together with the data from the survival analyses, these 

findings suggest that further investigation into HPV- smoking HNSCC patients may confirm the 

initial hypothesis of the presence of an immune genotype unique to smoking-mediated cancers.  

Contracting effects TNF-related gene expression in LUSC and HNSCC 

 Overall, the landscapes of survival-correlated IA genes were largely different across 

cancers. However, further analysis of select IA genes and their correlations to cancer and 

immune pathways revealed potential connections between cancers that warrant further 

investigation. 
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Figure 3: Survival correlations to IA gene expression. A. Total number of survival correlated 
genes per cancer. Tumor suppressive genes are those whose downregulation is correlated to 
poorer survival, while oncogenic genes are those whose upregulation is correlated to poorer 
survival. B. Representative Kaplan-Meier plots of oncogenic IA genes in HNSCC. 
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 One such connection is the expression if TNF-related genes in HNSCC and LUSC. TNF 

is a proinflammatory cytokine that directs a host of immune mechanisms. Its role in cancer is 

paradoxical. As a tumor suppressor, TNF expression has been shown to trigger apoptosis of 

endothelial cells that are cancerous or precancerous39,40. As an oncogene, TNF can lead to the 

development of a hyperinflammatory state via indirect promotion of EMT-like and immune 

checkpoint gene expression patterns that lead to carcinogenesis and immune evasion41-45. 

Additionally, overproduction of TNF can lead to the production of immunosuppressive T-regs 

via TNFR2, which aid tumors in escaping the immune system46. 

 In HNSCC smoking patients, TNF itself along with a host of related genes are 

significantly dysregulated in smoking versus nonsmoking patients (Table 1). A group of these 

TNF-related genes are also correlated to survival (Figure 4A). Interestingly, their effects on 

survival are not consistent. While TNF, TP53INP1, IKBKB, MAPKAPK2, TNFRSF4, 

TNFSF15, and TNFRSF8 upregulation was correlated to increased survival rates, MAPK9, 

MAP2K1, and PSMD2 upregulation was correlated to poorer survival. These patterns 

corroborate previous findings about the potential conflicting roles of TNF expression. Expression 

of genes related to the MAPK pathway should work synergistically with TNF-related pathways 

to cause cancer. However, TNF-related genes in this cohort of HNSCC smoking patients 

seemingly protect against cancer-related morbidity. 

 TNF-related gene expression patterns in LUSC revolve around the dysregulation of CA9. 

CA9 is a metalloenzyme that is part of the HIF-1 transcription factor network 

(https://pathcards.genecards.org/card/hif-1-alpha_transcription_factor_network). HIF-1 

expression has previously been identified as oncogenic, as HIF-1 is activated by the PI3K and 

MAPK pathways, which are hallmark cancer pathways47. Genes downstream of HIF-1 have been  
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Table 2: Survival correlated IA genes in smoking cancer patients  

 

 

 

BLCA ESCA LUAD LUSC

AVPR1A SEMA3B ACTR3 DDX11 LTBP2 RBP5 PTGES CA9
UBD ADAM17 DDX12P LY96 RPS6KA5 TRPM8

ADCY10P1 DDX19A MAP2K1 RUSC1-AS1
ADM DESI1 MAPK9 S1PR2

AIMP1 DICER1-AS1 MAPKAPK2 SCARB1
ALKBH2 DKK1 MEF2D SELENBP1
ALKBH6 DUSP3 MIF SELENOT

AREG EFTUD2 MUM1 SEMA4C
ARF1 EPHA3 NAMPT SEMA5A

ARHGEF18 EPOP NCKAP1 SH3BP2
ARID3B ESR1 NDRG1 SHC3

ARL14EP ETV6 NINJ2 SIGIRR
ARL2BP FASTKD2 NR2C2 SIRT1
ARL4D FLT4 NR2F1 SLX4

ARL6IP4 FYN OSGIN1 STC2
ARRDC2 GALNS OTUD5 STRAP
ATG16L1 GALNT3 PDF SYNPO2
BECN1 GSTP1 PIAS4 SYT1
BMP6 HBEGF PLXNB1 TNF
BST2 HIF1A POLR1D TNFRSF4

C1QBP HMGB1P5 PPARGC1B TNFRSF8
C20orf96 HMGB1P6 PPP1CA TNFSF15
C22orf46 HSPA1L PRDX1 TNRC6A

C2CD5 HSPA4 PRSS36 TP53INP1
C3orf70 IFNAR2 PSMD1 TPT1
CACTIN IGHV3-73 PSMD11 TSC2
CALM1 IGKV2-24 PSMD14 TUFM
CAPZA2 IKBKB PSMD2 TXLNA

CCR7 IL11RA PSMD5 TXN2
CDK17 IL17RB PSMD7 TXNDC12
CELF2 IL32 PSMD8 TYK2

CELSR3 ILF3 PSME3 UBXN11
CFDP1 ITGB3BP PSPN USB1
CHPT1 KITLG PSTPIP1 USP49
CLTC KLF2 PTGS2 WNK2

CNOT8 KLF8 PTX3 XRCC6
CSRP1 LDLRAD3 RABEP2 ZBTB1
DCTD LRRC41 RASGEF1B

HNSCC

Cancers
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Figure 4: Conflicting effects of TNF-related expression in HNSCC and LUSC smokers A. 
Survival plots of TNF and its related genes that are significantly dysregulated and correlated to 
survival in HNSCC smoking patients. B. CA9 correlations to survival and immunological 
signatures via GSEA in LUSC smoking patients. C. A schematic of the hypothesized 
relationship between CA9, TNF, and their synergistic promotion of LUSC in smokers 
specifically. 
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shown to promote glucose metabolism, cell proliferation, and survival via angiogenesis in 

tumors48-50. Analysis of smoking LUSC patients indicated that CA9 expression was significantly 

correlated to poorer patient survival (Figure 4B). Additionally, CA9 upregulation was correlated 

to the upregulation of immune signatures related to TNF-mediated activation of the immune 

system (Figure 4B). Together, these findings suggest a role of TNF and CA9 in LUSC smokers 

that is opposite that of HNSCC smokers. Namely, in LUSC smokers, TNF serves as an activator 

of HIF-1, which, through downstream genes like CA9, promotes tumorigenesis (Figure 4C). 

Therefore, TNF may act as an oncogene in LUSC smokers, but may act as a tumor suppressor in 

HNSCC smokers. 

 

CHAPTER 4: OSTEOPONTIN AND SMOKING 

Osteopontin expression in HNSCC smoking samples  

In a separate project conducted by the Ongkeko Lab, a panel of genes was found to be 

correlated to cancer development in a non-TCGA set of oral squamous cell carcinoma samples 

from mice (Figure 5A)51. One of these genes was Osteopontin (OPN, aka SPP1), a gene that was 

included in the list of IA genes used for this thesis. OPN is a glycoprotein that was first 

discovered in osteoblasts but is expressed by many cell types, including epithelial cells, 

endothelial cells, and immune cells52. It is a critical regulator of cellular pathways implicated in 

survival, proliferation, and cell-to-cell signaling, and its reported downstream targets include 

other master regulators of cellular functions. A major way through which OPN executes its 

functions is binding to integrin proteins, which transduce extracellular signals to activate a 

signaling cascade within the cell. The integrins α¬5β1, α¬5β3, α¬5β5, α¬4β1, α¬8β1, and α¬9β1 

are known targets of OPN, and binding to each of the above integrins would result in different 
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cellular responses53. Another significant function of OPN is the recruitment of immune cells and 

promotion of an inflammatory phenotype. It can also regulate specific cellular pathways inside 

macrophages, including downregulation of IL-10 and iNOS production54,55.  

Analyzing OPN expression in HNSCC smokers indicated that its upregulation was 

correlated to advanced clinical stage in TCGA samples (Figure 5B). In the initial analysis for this 

thesis, OPN was differentially expressed between smoking and nonsmoking HNSCC patients, 

but its expression was not correlated to survival (Table 2). As discussed previously, the survival 

and differential expression analyses indicated that an analysis of HPV- smoking HNSCC patients 

may suggest an immune genotype that is different from HPV+ patients. It was therefore planned 

that, to determine whether OPN may indeed play a role in the IA landscape of smoking-mediated 

HNSCC, HNSCC samples would be reanalyzed using differential expression to compare HPV- 

smokers to HPV- nonsmokers. However, there were fewer than 10 HNSCC samples from HPV- 

nonsmokers, which did not allow a statistically significant analysis. Therefore, HPV- smoking 

HNSCC patients were compared to solid tissue normal samples. Our results indicated that OPN 

was significantly upregulated in the HPV- smoking HNSCC samples (Figure 5C). To provide 

additional validation of OPN’s upregulation, HNSCC cell lines (UM-SCC-10b and UM-SCC-

22b) were exposed to cigarette smoke in vitro. PCR analysis of OPN expression confirmed its 

upregulation in smoking-exposed versus control HNSCC cell lines (Figure 5D). 

To expand on the effects of OPN upregulation, OPN expression was compared to the 

expression of other immune and cancer genes and pathways. Gene co-expression analyses using 

Spearman scatterplots indicated that OPN upregulation was correlated to the upregulation of 

ITGA5, ITGB3, PRKCA, and MMP9 and the downregulation of ESRRA (Figure 6A). GSEA 

using OPN expression and MSigDB C2 pathways indicated that OPN expression is significantly  
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Figure 5: Correlation of cancer and immune pathways to OPN expression in HNSCC. A. OPN 
expression versus tumor status in a non-TCGA validation cohort of OSCC samples. B. 
Correlation of OPN expression to Pathologic T and N stage in smoking HNSCC patients from 
TCGA. C. OPN dysregulation in TCGA HPV- smoking vs normal samples. D. In vitro 
validation of OPN upregulation caused by exposure to cigarette smoke. 
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correlated to the dysregulation of multiple tumor and immune pathways (Figure 6B). These 

results along with the interactome of OPN suggest that OPN may be a contributor to a unique, 

smoking-mediated phenotype of HNSCC (Figure 6C). 

Pan-cancer Osteopontin expression 

 Due to its potential importance in HNSCC smoking patients, OPN was further analyzed 

in the other smoking-mediated cancers in TCGA. The Kruskal Wallis box plots of OPN 

expression indicated some potential dysregulation patterns (Figure 7A). Further analysis of OPN 

expression in ESCA indicated that it is upregulated in all cancer samples versus normal samples 

(Figure 7B). Interestingly, OPN expression seems to be slightly higher in smoking ESCA cases 

than nonsmoking ESCA cases (Figure 7B). According to the original differential expression 

analysis, this OPN dysregulation pattern is statistically significant (Table 1). Unlike in HNSCC, 

however, in ESCA, OPN upregulation was significantly correlated to the presence of mutations, 

determined using the REVEALER algorithm. Specifically, OPN upregulation is correlated to the 

increased presence of IP6K2, GRID2, and C1orf125 mutations (Figure 7C). IP6K2 codes for an 

isoform of inositol hexakisphosphate kinase (IP6K). It generates IP7, a well-established cell 

growth and homeostasis regulator56,57. Loss of function of IP6K2 has been correlated to an 

increased incidence of aero-digestive tract cancer in mice58. Its expression induces apoptosis and 

can be turned off using cellular machinery shared by the heat shock protein 90 pathway59,60. 

GRID2 has been shown to be regulated by TNF, and its induction by TNF leads to apoptosis via 

caspase-3 activation61. C1orf125 (aka AXDND1) is not well-studied in the context of cancer, but 

has been linked to sperm motility62. The mutation of IP6K2 and GRID2, depending on whether 

mutations cause a loss or gain of function, may indicate a link between OPN expression and 
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Figure 6: Correlation of cancer and immune pathways to OPN expression in HNSCC. A. 
Spearman plots of gene co-expression analysis between OPN and other cancer and immune-
associated genes. B. Enrichment of C2 pathways correlated to OPN expression using GSEA. C. 
The OPN interactome. Red node labels indicate genes that are significantly dysregulated in 
HPV- smoking HNSCC samples. 
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Inhibition of apoptosis. The likelihood of this interaction occurring in situ is further justified by 

OPN’s direct and indirect interactions with key genes involved in apoptosis (Figure 6C). Further 

study is needed to clarify the connections to OPN. 

 

CHAPTER 5: PAN-CANCER miRNA EXPRESSION PATTERNS 

Overall, miRNA expression does not seem to be a significant contributor to the trends 

observed in IA gene expression. After discovering the most highly conserved miRNA targets for 

each of the survival correlated IA genes of interest, these miRNA were analyzed for their 

dysregulation between smoking and nonsmoking cancer samples. Surprisingly, there were no 

significantly dysregulated miRNAs. In previous projects, the Ongkeko Lab has identified 

miRNAs that are correlated to specific immune phenotypes in cancer63. However, these analyses 

were conducted by comparing miRNA expression in cancer versus normal samples primarily. It 

may therefore be the case that miRNA expression patterns are not uniquely dysregulated by 

smoking. Indeed, Principal Component Analysis of the landscape of miRNA expression per 

cancer indicated that miRNA expression alone cannot be used to reliably distinguish between 

smoking cancer and nonsmoking cancer samples (Figure 8). In fact, for some cancers like LUSC, 

BLCA, and LUSC, miRNA expression patterns seemingly caused smokers and nonsmokers to be 

more similar to each other (indicated by tighter clustering patterns). 

These results are in stark contrast to what was expected. Previous studies have strongly 

suggested that smoking is connected to miRNA expression. Willinger et al. discovered a 6-

miRNA panel that could be used as a signature for smoking and was correlated to inflammatory 

signals64. Schembri et al. were also able to identify a finite set of miRNAs at the lung epithelium 

that were induced by smoking65. Numerous other findings corroborate the fact that smoking does 

indeed affect miRNA expression, and that there may be alterations by smoking that cause  
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Figure 7: Pan-cancer OPN expression trends. A. A comparison of OPN expression between 
smoking and nonsmoking cancer patients on a pan-cancer scale. B. OPN expression in smoking 
ESCA, nonsmoking ESCA, and normal samples. C. REVEALER analysis correlating OPN 
expression to the frequency of mutations in smoking ESCA patients.  
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unique miRNA dysregulation65. However, from these studies, a common trend is the finite 

number of miRNAs identified as significant contributors to disease phenotypes. MiRNA  

expression is most commonly associated with fine-tuning of gene expression rather than with 

larger changes66,67. This is in stark contrast to other targets of smoking like DNA damage, which 

are known to cause significant changes to cell genotype and phenotype. Therefore, the 

observations in this thesis related to miRNA expression may be due to the much larger 

contributions of other machinery affected by smoking, which overshadow the more modest 

effects of miRNA-mediated silencing, especially when comparing between cancer samples. 

 

CHAPTER 6: DISCUSSION 

Interpretation of results 

 Though it was initially hypothesized that smoking would cause IA gene dysregulation 

patterns that would be shared amongst multiple smoking-mediated cancers, the findings of this 

thesis do not exactly corroborate that point. Firstly, IA genes that were uniquely dysregulated in 

smoking cancer patients and contributed significantly to survival did not overlap well between 

cancers. HNSCC may be the only cancer with a smoking-specific IA genotype. This may be due 

to the nature of HNSCC to occur most commonly due to HPV infection. This hypothesis was 

tested by analyzing HPV- HNSCC patients in particular, which indicated the potential role of 

OPN as a smoking-specific oncogene. OPN was shown to be correlated to a more advanced 

clinical stage and to the expression of several key cancer and immune signatures. Additionally, 

OPN was significantly dysregulated in ESCA samples, and was correlated to mutations of 

apoptosis inhibitor genes. These findings suggest an importance of OPN that should be studied 

further in other cancers. Though its expression was not significantly different between smoking  
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Figure 8: Pan-cancer miRNA expression patterns. PCA plots of aggregate miRNA expression 
read counts in smoking and nonsmoking cancer patients. The analysis determines how the 
variation in the data can be explained by miRNA read count patterns. Percentages on the axis 
labels correspond to the percentage of variation each principal component is able to account for.  
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and nonsmoking cancer patients for other cancers, conducting a similar re-analysis as was done 

for HNSCC when HPV+ patients were removed may indicate that OPN is indeed upregulated in 

smoking cancer patients.  

 Another novel relationship revealed by this thesis is the conflicting roles of TNF and its 

downstream genes in carcinogenesis. In HNSCC samples, TNF seems to abate cancer 

progression, acting as a tumor suppressor that is able to counteract aberrant MAPK pathway 

gene overexpression. In LUSC samples, TNF mechanisms related to immune evasion by tumors 

and the HIF-1 pathway are overexpressed, leading to poorer patient survival. These conflicting 

activities, if proven valid, may indicate that smoking can affect the same IA genes in different 

ways depending on the cancer type and location of a tumor. 

 It was originally hypothesized that miRNA expression would play a role in a smoking-

specific IA genotype. However, this was not the case, as miRNA expression was largely similar 

between smoking and nonsmoking cancer patients. This may be due to the fact that miRNAs 

exert more modest and targeted effects on the transcriptome than smoking does. Therefore, 

miRNA expression may be overshadowed by the large, systemic effects of smoking that have 

already significantly changed the genomic and transcriptomic landscape of a cell. If there were 

any significant contributions by miRNAs to the difference between smoking and nonsmoking 

cancers, we hypothesize that they would manifest in HNSCC or ESCA, due to the less-dense 

clustering of smokers and nonsmokers (Figure 8). 

Setbacks and potential solutions 

 The initial proposal for this thesis included significant in vitro work, including validation 

of the targets discovered through computational analysis. However, due to technical difficulties, 

this in vitro work was not accomplished. It was initially planned that genes of interest such as the 
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TNF-related genes would have their smoking-specific dysregulation patterns validated in vitro 

using PCR. Additionally, various functional assays were to be used to determine how 

knockdown or overexpression of these genes could contribute to carcinogenesis. Due to the 

COVID-19 pandemic, the Ongkeko Lab’s wet lab was completely closed for almost a full 

academic year, which coincided with half of the time taken to draft this thesis. In the second year 

of the master’s program, the in vitro experiments were set to take place. But, unfortunately, a 

freezer malfunction over the COVID-19-related shut down led to the loss of all of the Ongkeko 

Lab’s cell lines. It was therefore impossible for in vitro validation and functional assays to be 

completed. In the future, the lab hopes to rebuild its repertoire of cell lines in order to achieve the 

validation of the computational data in this thesis. Additionally, the effects of these genes on the 

immune system will be analyzed in vivo using mouse models that enable study of the immune 

system in a living model.  

Future Directions 

 Overall, the results of this thesis partially confirmed our hypothesis of the existence of a 

set of IA gene dysregulations that is uniquely caused by smoking in cancer patients. Aside from 

validating the computational findings, we hope to explore each individual relationship further. 

The conflicting patterns of TNF expression have not yet been fully understood, and elaborations 

on the findings of this paper may contribute to our understanding of TNF as both an oncogene 

and a tumor suppressor. This may be vital for future therapies that utilize TNF, as targeting it or 

its related genes may not have the same effect in patients depending on whether or not they 

smoke and on what type of cancer they have. OPN also may be an important target that may be 

used for future therapeutics. Since its expression patterns seem relatively similar across cancers, 

the study of OPN in different, larger datasets of smoking cancer patients may be useful in 
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validating the trends observed in this thesis. It may be important to account and correct for as 

many patient demographic factors and comorbidities as possible in order to study OPN, or any 

other gene form this thesis for that matter, in the future in smoking cancer patients. Future 

studies may identify the knockdown of OPN as a potential immune therapy that is specific to 

smokers.  

 Though the results of the miRNA analysis were not as expected, miRNAs may still be 

important in smoking-specific cancers, especially considering the heavy emphasis that previous 

findings have put on the smoking-miRNA axis in both inflammation and cancer. Some future 

directions may entail understanding how miRNA expression can be more optimally analyzed in 

order to clarify their role in smoking-mediated cancers. Even if said role is not as significant of a 

contributor to cancer progression as other genomic and transcriptomic changes, miRNAs may 

still be taken advantage of for emerging therapies.  

 The analysis detailed in this thesis is in no way exhaustive due to the nature of analyzing 

a dataset as large as TCGA. There may be many correlations that remain unexplored and many 

aspects of smoking-mediated cancer that can still be discovered. We hope to completely analyze 

the significantly dysregulated IA genes in all cancers in the near future. Though the survival 

correlations were important in helping us narrow our scope of study, it may have also prevented 

us from seeing important connections. Therefore, we hope to analyze all dysregulated IA genes 

individually, independent of survival correlations. We are also working on projects that correlate 

smoking to targets outside of the genome and transcriptome, such as CpG methylation and the 

intratumor microbiome. 

This thesis in full will be submitted for publication. The thesis author will be the primary 

investigator author of this paper, and Ongkeko, Weg M. will be the principal investigator. 
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