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Distentangling the systems contributing to changes in learning 
during adolescence 
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c Institute of Human Development and School of Public Health, University of California, Berkeley, United States   
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A B S T R A C T   

Multiple neurocognitive systems contribute simultaneously to learning. For example, dopamine and basal 
ganglia (BG) systems are thought to support reinforcement learning (RL) by incrementally updating the value of 
choices, while the prefrontal cortex (PFC) contributes different computations, such as actively maintaining 
precise information in working memory (WM). It is commonly thought that WM and PFC show more protracted 
development than RL and BG systems, yet their contributions are rarely assessed in tandem. Here, we used a 
simple learning task to test how RL and WM contribute to changes in learning across adolescence. We tested 187 
subjects ages 8 to 17 and 53 adults (25-30). Participants learned stimulus-action associations from feedback; the 
learning load was varied to be within or exceed WM capacity. Participants age 8-12 learned slower than par
ticipants age 13-17, and were more sensitive to load. We used computational modeling to estimate subjects’ use 
of WM and RL processes. Surprisingly, we found more protracted changes in RL than WM during development. 
RL learning rate increased with age until age 18 and WM parameters showed more subtle, gender- and puberty- 
dependent changes early in adolescence. These results can inform education and intervention strategies based on 
the developmental science of learning.   

1. Introduction 

There is increasing evidence that multiple neural systems contribute 
to human learning (Hazy et al., 2007; Myers et al., 2002), even in simple 
cognitive paradigms previously modeled with a single learning process 
(Bornstein & Daw, 2012; Bornstein & Norman, 2017; Collins & Frank, 
2012). Basal ganglia (BG) dependent reinforcement learning (RL) pro
cesses are thought to be supplemented by multiple other systems, 
including prefrontal executive functions (Badre et al., 2010) such as 
working memory (WM; (Collins & Frank, 2012)) and model-based 
planning (Daw et al., 2011), as well as hippocampus-based episodic 
memory (Bornstein & Daw, 2012; Bornstein & Norman, 2017; Davidow 
et al., 2016; Myers et al., 2002; Wimmer et al., 2014). To understand 
developmental changes in learning, it is important to carefully capture 
the contributions of these multiple systems to learning. Previous work 
has shown differential developmental trajectories for RL, episodic 
memory, and model-based planning (Crone et al., 2006; Decker et al., 
2016; Selmeczy et al., 2018; Somerville et al., 2010). Here, we investi
gate how the relative contributions of RL and WM change during 
development. 

RL is an incremental learning process which updates stored choice 

values from the discrepancy between obtained and expected reward (the 
reward prediction error; RPE) in proportion to a learning rate, in order 
to maximize future rewards (Sutton & Barto, 2017). This process is 
thought to be implemented via dopamine-dependent plasticity in 
cortico-striatal circuits. It has been proposed that the BG are ‘mature’ by 
mid adolescence, but it is also known that structures that provide inputs 
to the BG continue to show anatomical and functional change (Braams 
et al., 2015; Casey et al., 2008; Galvan et al., 2006a; Galvan et al., 2019; 
Van Den Bos et al., 2012). Sensitivity to rewarding outcomes in the 
ventral striatum has been shown to peak during mid-adolescence, rela
tive to children and adults (Braams et al., 2015; Galvan et al., 2006a; 
Gulley et al., 2018; Hauser et al., 2015; Somerville et al., 2010). Mid
teenage adolescents have also been shown to prioritize positive feedback 
and neglect negative feedback more than adults when learning from 
reinforcement (Cohen et al., 2010; Davidow et al., 2016; Jones et al., 
2014; Palminteri et al., 2016; van den Bos et al., 2012), and 13 to 
17-year-olds have been shown to use lower learning rates than adults 
(Davidow et al., 2016; Jones et al., 2014). However, work on the 
development of RL is heterogeneous and appears dependent on specific 
task characteristics (van den Bos et al., 2009). We explore if 
BG-dependent RL continues to develop throughout adolescence into 
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adulthood and examine the possibility that developmental changes in 
learning are driven by different systems at different times, such as 
development of WM, in the context of a simple conditional associative 
learning task. 

WM allows for the immediate and accurate storage of information, 
but representations in WM are thought to decay quickly with time and 
are subject to interference, as the information that can be held in WM is 
limited (D’Esposito & Postle, 2015; Oberauer et al., 2018). Therefore 
there may be tradeoffs to using fast capacity-limited WM, versus slower, 
capacity unlimited RL-based learning systems. The prefrontal cortex 
(PFC) is known to develop late into adolescence and the third decade of 
life (Casey et al., 2008; Giedd et al., 1999; Larsen & Luna, 2018) and is 
thought to be critical for WM performance (Curtis & D’Esposito, 2003; 
Miller & Cohen, 2001). The use of WM in complex tasks has been shown 
to improve during development into late adolescence (Geier et al., 2009; 
Huizinga et al., 2006; Luna, 2009; McAuley & White, 2011), though 
there is some evidence that the use of WM in simple tasks develops in 
early childhood (Crone et al., 2006; Potter et al., 2017). 

Behavioral testing and computational modeling can be used to 
disentangle the simultaneous contributions of RL and WM in human 
learning, and how their use differs between individuals. Behavior on 
classic one-step reward learning tasks is typically modeled with single- 
process RL models. However, the use of WM for short-term storage is 
an important component of human learning. Using a deterministic 
reward-learning task called “RLWM” that taxes WM by varying the 
amount of information to learn in each block, we have previously iso
lated contributions of WM and RL learning (Collins, 2018; Collins & 
Frank, 2012,2018). In multiple studies we found that participants 
mainly used WM for learning when the load was within their capacity, 
and otherwise compensated with RL. We also found that learning defi
cits in schizophrenia were a result of weakened WM contributions with 
intact RL (Collins & Frank, 2014; Collins et al., 2017). By accounting for 
WM in our task and model, we can extract the unconfounded separate 
contributions of both WM and RL. Here we used the same approach to 
investigate the maturation of WM and RL and their relative contribution 
to learning across adolescent development (sampling subjects 8-17 and 
25-30). 

Using behavioral testing and computational modeling, we examined 
three separate hypotheses of how RL- and WM-based learning develop 
relative to each other. Our first hypothesis was that both RL and WM 
systems’ contributions to learning would show protracted development 
into later adolescence (age 17) such that both systems are dynamic 
throughout the pre-teenage and teenage years (8-17). Developmental 
changes in WM are prominent in the literature on development of ex
ecutive function, including the maintenance (Geier et al., 2009; McAu
ley & White, 2011) and manipulation of information in WM (Crone 
et al., 2006; Huizinga et al., 2006), as well as the precision of the rep
resentations in WM (Luna, 2009). There is also a strong literature 
showing changes in RL learning systems from childhood to adulthood, 
such as dynamic changes in reward sensitivity in the striatum across 
adolescence (Braams et al., 2015; Cohen et al., 2010; Davidow et al., 
2016; Somerville et al., 2010) and changes in learning rate between 
adolescence and adulthood (Davidow et al., 2016). 

Our second hypothesis emphasized the relative importance of WM 
development over that of RL in accounting for changes in learning in 
adolescence. Dual systems models and other popular models of adoles
cent development place great weight on the late maturation of the PFC 
and PFC-dependent executive functions, such as WM or model-based 
learning (Casey et al., 2008; Decker et al., 2016; Huizinga et al., 2006; 
Steinberg, 2005). Functional activation of parietal cortex, also involved 
in WM and attention, has been shown to develop from ages 9 to 18 and 
to correlate with visuospatial WM performance (Klingberg et al., 2002). 
Additionally, the communication of PFC and parietal cortex through the 
fronto-parietal WM network is thought to increase from ages 8 to 18 
(Klingberg, 2006; Nagy et al., 2004). Our second hypothesis therefore 
predicts that even though RL may be developing, we should observe 

more protracted development of WM systems and/or stronger effects of 
age (in the range 8-17) on WM. If true then we might conclude that WM 
changes are the primary drivers of changes in learning through late 
adolescence. 

Finally, we hypothesized that pubertal onset may significantly 
impact WM processes. There is growing evidence that gonadal hormones 
affect inhibitory neurotransmission and other variables in the prefrontal 
cortex of rodents (Delevich et al., 2019a; 2019b; Juraska & Willing, 
2017; Piekarski et al., 2017a). We therefore predicted that WM pa
rameters would differ in children with different pubertal status or 
gonadal hormone concentration. 

To evaluate these hypotheses, we tested children and adolescents 
aged 8 to 17  years old and adults aged 25 to 30 years old on the RLWM 
task (Collins & Frank, 2012). We then fit computational models of 
behavior to subjects’ performance and assessed how these parameters 
changed with age, pubertal development and salivary testosterone 
levels. Using these established methods to disentangle the contributions 
of RL and WM, we found changes in RL contributions spanning 
adolescent development, but much weaker changes in WM contribu
tions. WM differences did show relationships with pubertal variables. 

Overall, these data support the somewhat surprising conclusion that 
changes in RL systems are important drivers of change in simple asso
ciative learning throughout adolescence. The results also support further 
inquiry into the role of pubertal processes in WM function in early 
adolescence. 

2. Methods 

2.1. Subject testing 

All procedures were approved by the Committee for the Protection of 
Human Subjects at the University of California, Berkeley. After entering 
the testing room, subjects under 18 years old and their guardians pro
vided their informed assent or permission. All guardians were asked to 
fill out a demographic form. Subjects were led into a quiet testing room 
in view of their guardians, where they used a video game controller to 
complete four computerized tasks. An hour after the start of the exper
imental session and in between tasks, subjects provided a 1.8 mL saliva 
sample. At the conclusion of the tasks, subjects were asked to complete a 
short questionnaire which assessed their pubertal development 
(Petersen & Crockett, 1988) and collected other basic information, like 
their height and weight. For subjects under 10 years old, guardians 
completed the pubertal development questionnaire on behalf of their 
children. Subjects were then compensated with one $25 Amazon gift 
card for their time. 

Participants over 18 provided informed consent and completed all 
forms themselves. They also answered retroactive questions about pu
berty, otherwise all testing procedures were identical. 

2.2. Exclusion criteria 

Potential subjects or their guardians were called prior to the exper
imental session to complete a verbal pre-screening questionnaire. Po
tential subjects were required to have normal or corrected-to-normal 
vision, and to be fluent in English. They could not have any previous or 
current neurological or psychological conditions, history of head injury 
or concussion, be on any prescription medications, or be colorblind. 

2.3. Demographics 

We recruited 191 children and 55 adults to participate in this study. 
Out of those who reported their race, 60 subjects identified as Asian, 10 
African-American, and 6 Native American or Pacific Islander. 28 were of 
mixed race. The remaining 127 subjects identified as Caucasian. 29 
subjects identified as Hispanic. 4 children and 1 adult failed to complete 
the task, either out of disinterest or because of controller malfunction. 
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All subjects who completed the task performed above chance (33% ac
curacy), so none were excluded for poor task performance. 187 children 
(89 female, mean (std) age 12.62 (2.76) years) and 54 adults (28 female, 
mean (std) age 26.77 (1.49) years) were included in analyses. 

2.4. Experimental paradigm 

The experiment described in this work was the second of four 
administered tasks. The preceding task was a 5 to 10 minute determin
istic learning task in which subjects learned to select one correct action 
out of four possible actions. Halfway through, the correct action 
switched. The results for this and the other tasks will be reported 
elsewhere. 

This experiment is based on the “RLWM” task described in (Collins 
et al., 2017; Collins & Frank, 2012, 2018), which was adapted for the 
developmental population. To make the task more engaging for chil
dren, all participants were told that aliens had landed on earth and 
wanted to teach us their alien language. In this alien language, each 
image on screen was matched with one button on the controller. Par
ticipants completed one block of training and then ten independent 
learning blocks, for a total duration of less than 25 minutes (mean 
duration 16.9 minutes, range 14 – 25 minutes). 

In each block, subjects were presented with a new set of visual 
stimuli of set size ns, with set sizes between ns ¼ 2 and ns ¼ 5. Each visual 
stimulus was presented 12-14 times in a pseudo-randomly interleaved 
manner (controlling for a uniform distribution of delay between two 
successive presentations of the same stimulus within [1:2*ns] trials, and 
the number of presentations of each stimulus), for a total of ns*13 trials. 
At each trial, a stimulus was presented centrally on a black background 
(Fig. 1). Subjects had up to 7 seconds to answer by pressing one of three 
buttons on the controller. Key press was followed by visual feedback 
presentation for 0.75 seconds, then a fixation period of 0.5 seconds 
before the onset of the next trial. For each image, the correct key press 
was the same for the entire block, and all feedback was truthful. Upon 
pressing the correct key subjects were shown “Correct” while pressing 
any other key led to “Try again!” Failure to answer within 7 seconds was 
indicated by a “No valid answer” message. Stimuli in a given block were 
all from a single category of familiar, easily identifiable images (e.g. 
colors, fruits, animals) and did not repeat across blocks. Participants 

were shown all stimuli at the beginning of each block, and encouraged to 
familiarize themselves with them prior to starting the learning block. 

This task engages reinforcement learning through the repetition of 
simple actions which lead to reward. Working memory is a capacity- 
limited resource which can be leveraged to quickly improve accuracy 
when small sets of stimulus-action pairings must be learned. To tax 
working memory more or less across the task and thus assess WM con
tributions to learning, we varied the set size across blocks: out of 10 
blocks, 3 had set size ns ¼ 2, 3 set size ns ¼ 3, 2 set size ns ¼ 4, and 2 set 
size ns¼5. We have shown in previous work that varying set size pro
vides a way to investigate the contributions of capacity- and resource- 
limited working memory to reinforcement learning. 

2.5. Saliva collection 

In addition to self-report measures of pubertal development, we also 
collected saliva from each of our subjects to quantify salivary testos
terone. Testosterone is a reliable measure of pubertal status in boys and 
girls and is associated with changes in brain and cognition in adoles
cence (Herting et al., 2014; Peper et al., 2011). 

Subjects refrained from eating, drinking, or chewing anything at 
least an hour before saliva collection. Subjects were asked to rinse their 
mouth out with water approximately 15 minutes into the session. At 
least one hour into the testing session, they were asked to provide 1.8 mL 
of saliva through a plastic straw into a 2 mL tube. Subjects were 
instructed to limit air bubbles in the sample by passively drooling into 
the tube, not spitting. Subjects were allotted 15 minutes to provide the 
sample. After the subjects provided 1.8 mL of saliva, or 15 minutes had 
passed, the sample was immediately stored in a � 20 �F freezer. The date 
and time were noted by the experimenter. The subjects then filled out a 
questionnaire of information which might affect the hormone concen
trations measured in the sample (i.e. whether the subjects had recently 
exercised). 

All subjects were asked whether they would like to complete two 
more saliva samples at home for additional compensation (another $25 
Amazon gift card). Subjects who agreed to do the optional saliva samples 
were sent home with two 2 mL tubes, straws, and questionnaires iden
tical to the one completed in lab. They were asked to complete each 
sample between 7:00 and 9:00 am on two different days following the 

Fig. 1. Experimental protocol. In each block, participants learned to select the correct action for each image for a new set of images. At the beginning of each block, 
the full set of images was presented for familiarization, then single trials began. On each trial of a block, participants responded to each stimulus by pressing one of 
three buttons on a hand-held controller. Immediately after responding they received deterministic truthful feedback (Correct/Try again!), before moving on to the 
next trial after a fixed interval. Crucially, participants needed to learn different numbers of stimuli (set size) in different blocks. Set size (ns) varied from 2 to 5. 
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testing session. Subjects were asked to refrain from eating, drinking, or 
brushing their teeth before doing the sample, and to fill out each ques
tionnaire as soon as they were finished collecting saliva, taking care to 
note the date and time of the sample. Subjects were also instructed to 
keep the samples in the freezer, then wrap them in a provided ice pack in 
order to deliver the samples to the lab. Once both samples were com
plete, subjects contacted an experimenter and scheduled a time to return 
the samples, who gave the subjects their additional compensation, took 
note of any abnormalities in the samples, and immediately stored them 
in a -20 degree freezer. Samples in the -20 degree freezer were trans
ferred weekly to a -80 degree freezer in an adjacent facility. 

2.6. Salivary Testosterone Testing 

Salivary testosterone was quantified using the Salimetrics Salivatory 
Testosterone ELISA (cat. no. 1-2402, Bethesda, MA). Intra- and inter- 
assay variability for testosterone were 3.9% and 3.4%, respectively. 
Samples below the detectable range of the assay were assigned a value of 
5 pg/mL, 1 pg below the lowest detectable value. Final testosterone 
sample concentration data were cleaned with a method developed by 
Shirtcliff and Byrne (in prep). Specifically, we produced a mean testos
terone concentration from every salivary sample obtained from each of 
our subjects (every subject provided 1 to 3 samples). Subjects who had 
multiple samples below the detectable range of the assay (6 pg/mL) had 
their mean testosterone concentration replaced with 1 pg below the 
lowest detectable value (5). There were no subjects with any samples 
above the detectable range. Within subjects aged 8 to 17 only, outliers 
greater than 3 standard deviations above the group mean were fixed to 
that value, then incremented in values of þ0.01 to retain the ordinality 
of the outliers. 

2.7. Model-independent analyses 

We now describe how we analyzed the data from the behavioral task. 
To describe our data at a high level and illustrate developmental trends 
in performance, we first analyzed overall accuracy as a function of 
precise subject age. To assess learning, we calculated the proportion of 
correct trials for each subject on each stimulus iteration. Each individual 
stimulus was repeated 12 to 14 times within a block. Within each set 
size, we calculated each subject’s average percentage of correct re
sponses at each stimulus iteration (Fig. 2a). 

We quantified the effect of set size on performance by calculating a 
set size slope (Fig. 2b). The set size slope was a linear contrast of the 
form: 

� 1:5 � perf ðns5Þ � 0:5 � perf ðns4Þ þ 0:5 � perf ðns3Þ þ 1:5 � perf ðns2Þ

where perf(ns) is the average overall performance of trials within a block 
of set size ns. We then analyzed set size slope as a function of age. 

In order to more precisely assess the effects of our set size manipu
lation on performance, we used a logistic regression to model trial-by- 
trial accuracy as a function of previous correct trials (pcor), previous 
incorrect trials (pinc), number of trials since the last presentation of the 
same stimulus (delay), and set size (ns) as predictors (Collins & Frank, 
2012). 

To understand the effects of development on behavior and on model 
parameters, we ran a series of analyses at group and individual levels. 
First, following the practice in the literature to separate “children” from 
“adolescents” and adults (Potter et al., 2017) we grouped 8 to 12, 13 to 
17, and 25 to 30 year-olds into separate groups and ran one-way 
ANOVAs on behavioral and modeling measures of interest, looking for 
broad group-based, age-related differences in cognition; ANOVAs were 
replaced by Kruskal-Wallis non-parametric tests for non-normal 

Fig. 2. Age effects on behavior. A. Learning 
curves indicate the proportion of correct trials 
as a function of the number of encounters with 
given stimuli by set size (ns) in subjects aged 8 
to 12, 13 to 17, and 25 to 30. All subjects 
quickly reached asymptotic accuracy in set sizes 
2 and 3. In set sizes 4 and 5, learning was more 
graded. 8-12-year-olds appeared to learn slower 
than both 13-17-year-olds and adults (25-30). 
13-17-year-olds and 25-30-year-olds exhibited 
similar learning. B. Overall accuracy and set 
size slope (linear effect of set size on perfor
mance; see methods) as a function of age. Each 
dot represents a single subject; lines indicate 
the best fit in a regression model. In subjects 
aged 8 to 17 overall accuracy significantly 
increased with age while set size effect signifi
cantly decreased, though it remained positive in 
all age groups.   
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measurements. Where group effects were present, we ran post-hoc tests 
to identify which group drove the effect. We used t-tests when the 
measure was normally distributed, rank tests otherwise. 

While helpful to visualize results, the binning into coarse 8 to 12 and 
13 to 17-year-old groups for non-adult participants was arbitrary. We 
also analyzed the data of this 8 to 17-year-old subsample as a function of 
age as a continuous measure. Specifically, we ran non-parametric 
(Spearman) correlation tests on behavioral measures with age as a 
continuous predictor within the non-adult group. 

Additionally, to further investigate the effects of age and pubertal 
development on our outcome measures, we examined relationships 
between behavior and model parameters as a function of pubertal 
development score (PDS) and salivary testosterone, either as continuous 
predictors, or defining binned groups (see supplementary material). 
Given that girls tend to begin puberty earlier than their male peers, and 
that the production of testosterone tracks the development of boys and 
girls differently, we also ran analyses of pubertal effects separating male 
and female subjects, and combining them. We also grouped participants 
aged 8 to 17 into narrower age bins based on quartiles. Further de
scriptions of how we grouped subjects into age, PDS, and testosterone 
bins, plus additional statistical test methods and results, are included in 
the supplemental material. 

3. Computational modeling 

We used computational modeling to fit subject behavior and better 
quantify the separate involvements of reinforcement learning and 
working memory in task execution. We have shown that our model is 
able to separate the contributions of these two learning systems in both 
general (Collins, 2018; Collins & Frank, 2012, 2018) and specific pop
ulations (Gold et al., 2017). We tested 6 candidate models all built upon 
a simple reinforcement learning (RL) algorithm. 

3.1. Classic RL 

The simplest model is a two parameter Q-learner (RL), which updates 
the learned value Q for the selected action a given the stimulus s upon 
observing each trial’s reward outcome rt (1 for correct, 0 for incorrect): 

Qtþ1ðs; aÞ ¼ Qtðs; aÞ þ αδt  

where δ t ¼ rt � Qtðs; aÞ is the prediction error, and α is the learning 
rate, which is a free parameter. This model is similar to standard RL 
models as described in Sutton and Barto’s Reinforcement Learning: An 
Introduction (2017). Choices are generated probabilistically with 
greater likelihood of selecting actions that have higher Q-values. This 
choice is driven by a softmax choice policy, which defines the rule for 
choosing actions in response to a stimulus: 

pðajsÞ ¼ expðβQðs; aÞÞ=ΣiðexpðβQðs; aÞÞÞ

Here, β is the inverse temperature parameter determining the degree to 
which differences in Q-values are translated into more deterministic 
choice, and the sum is over the three possible actions ai. In this model, 
and all further models, all Q-values were initialized to 1/nA. 

3.2. RL with undirected noise (RLe) 

While the softmax allows for some stochasticity in choice, we also 
tested a model which allowed for “slips” of action. This was captured in 
an undirected noise parameter, ε. Given a model’s policy π ¼ pðajsÞ, 
adding undirected noise consists in defining the new mixture choice 
policy: 

π’ ¼ ð1 � εÞπ þ εU  

where U is the uniform random policy (U(a) ¼ 1/nA, with number of 

actions nA ¼ 3). ε is a free parameter constrained to values between 
0 and 1. This undirected noise captures a choice policy where with 
probability 1 � ε the agent chooses an action based on the softmax 
probability, and with probability ε lapses and chooses randomly. Failing 
to account for this irreducible noise can allow model fits to be unduly 
influenced by rare odd data points, like those that may arise from 
attentional lapses (Nassar & Frank, 2016). 

3.3. RL with positive learning bias (RLb) 

To allow for potential neglect of negative feedback and bias towards 
positive feedback, we estimate a positive learning bias parameter bias 
such that for negative prediction errors (δ < 0), the learning rate α is 
reduced by α ¼ ð1 � biasÞα. Thus, values of bias near 1 indicate com
plete neglect of negative feedback, whereas values near 0 indicate equal 
learning from negative and positive feedback. We chose not to imple
ment a separate α for positive and negative feedback, as has been done in 
modeling similar RL tasks (Frank et al., 2007; Katahira, 2015; Lefebvre 
et al., 2017). In previous work with this model we included both a 
positive and negative α, but consistently found a bias towards learning 
from positive feedback; thus parameterizing it as a bias was more effi
cient. Furthermore, this parameterization allows the bias parameter to 
be shared between RL and WM modules in the RLWM model, which 
increases model identifiability. 

3.4. RL with forgetting (RLf) 

In this model we allow for potential forgetting of Q-values on each 
trial, implemented as a decay at each trial toward the initial, uninformed 
Q-value Q0: 

Qtþ1 ¼ Qt þ φðQ0 � QtÞ

where 0 < φ < 1 is the forgetting parameter and Q0  ¼ 1/nA. 

3.5. RL with 4 learning rates (RL4) 

To improve the fit within the “RL only” class of models, we tested a 
version of the Q-learner that included a different learning rate α for each 
set size. Theoretically, this model could capture set size effects if they 
were driven by slower learning in higher set sizes. 

3.6. RL and working memory (RLWM) 

This model incorporates two separate mechanisms by which learning 
can take place which interact at the level of choice. The first mechanism 
is a RL model as described above, with an inverse temperature param
eter β, learning rate α; positive learning bias parameter bias, and undi
rected noise ε. The second mechanism is a working memory module. 

The WM module stores weights between stimuli and actions, W(s,a), 
which are initialized similarly to RL Q-values. To model fast storage of 
information, we assume Wtþ1ðst ; atÞ ¼ Wtðst ; atÞ þ αWMðrt � Wtðst ; atÞÞ. 
With working-memory learning rate αWM ¼ 1, this formula captures 
perfect retention of the previous trial’s information, such that Wtþ1ðst ;

atÞ ¼ rt. The bias parameter is applied to the learning rate for both the 
RL and WM modules, and is thus a joint parameter, capturing failure to 
take into account negative feedback in both RL and WM systems. To 
model delay-sensitive aspects of working memory (where active main
tenance is increasingly likely to fail with intervening time and other 
stimuli), we assume that WM weights decay at each trial according to 
Wtþ1 ¼Wt þ φWMðW0 � WtÞ: The WM policy uses these weights in a 
softmax choice with added undirected noise, using the same noise pa
rameters as the RL module. 

RL and WM involvement in choice is modeled with a WM weight 
parameterized by the working memory capacity parameter K, and a WM 
confidence prior ρ. The overall choice policy is defined as a mixture 
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using WM weight WWM ¼ ρ(min(1,K/ns)): 

PðajsÞ ¼ WWMPWMðajsÞ þ ð1 � WWMÞPRLðajsÞ

ρ captures the subject’s overall propensity to use WM vs. RL when 
within WM’s capacity. The WM weight then considers the capacity limit 
of the WM module as indicated by the proportion of items that can be 

maintained in working memory (min(1,K/ns)), and thus can contribute 
to the policy, as well as the subjects’ prior for relying on WM. 

Note that our model assumes that information stored for each stim
ulus in working memory pertains to action-outcome associations. 
Furthermore, we approximate working memory by focusing on three 
key characteristics: 1) rapid and accurate encoding of information when 

Fig. 3. Model validation. A. Best fit model per 
subject. All subjects’ behavior was fit with 6 
candidate models: reinforcement learning (RL), 
RL with an epsilon noise parameter (RLe), RL 
with perseveration (RLp), RL with four learning 
rates (RL4), RL with forgetting (RLf), and RL 
with working memory (RLWM; see methods). 
Plotted here is the number of subjects best fit by 
each candidate model in each age group as 
measured with AIC score. RLWM was the best- 
fitting model for a majority of subjects within 
subjects aged 8-12, 13-17, and 25-30. B. Dif
ference in mean AIC score from the best fitting 
model (RLWM). Within subjects 8 to 12 years 
old (yo), 13 to 17 years old, and adults (25 to 30 
yo), we calculated the mean AIC score for each 
candidate model, then compared to the mean 
AIC for the winning model (RLWM). Lower 
numbers indicate better fits. Error bars made 
with standard error of the mean. C. Model 
validation. Learning curves for participants 
(left) and model simulations (right) for set sizes 
2 and 5 (see supplementary materials for all set 
sizes). RLWM model simulations with individ
ual fit parameters accounted for behavior.   
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low amounts of information are to be stored; 2) decrease in the likeli
hood of accessing items from working memory when more information 
is presented than can be stored in its limited capacity or resource; 3) 
decay due to forgetting. 

The strongest model in model comparison (by AIC score, Fig. 3b) was 
the RLWM model with six free parameters: the RL learning rate α, WM 
capacity K, WM decay φ; WM prior weight ρ, positive learning bias 
parameter bias, and undirected noise ε: The inverse temperature 
parameter β was fixed to 100, as fitting a model with a free β, α, and ε 
led to worse precision in identifying all three parameters, and once said 
model was fit, only 1 out of 100 children, 2 out of 89 teens, and 0 out of 
54 adults were best fit by that model in comparison to the other 
candidate models. Previous experience shows that fixing β in this model 
allows for best characterization of WM and RL parameters (Collins, 
2018). Additionally, after running the same analyses with the model 
including a free β, all effects of age on other parameters remained, and 
there was no effect of age on β (ρ ¼ 0.07, p ¼ 0.33). 

Instead, we chose to capture decision noise only with the ε undi
rected noise parameter. Because ε is a joint parameter applied to both 
the RL and WM processes, it is independent of learning and better 
recoverable. However, we do not claim that noise is of either form. 
Supplemental Figures 12 and 13 illustrate the final model recoverability 
and identifiability. 

3.7. Model fitting procedure 

We used the Matlab constrained optimization function fmincon to fit 
parameters (the Mathworks Inc., Natick, Massachusetts, USA). This was 
iterated with 20 randomly chosen starting points, to increase the like
lihood of finding a global rather than local optimum. All parameters 
were fit with constraints [0 1], except the capacity parameter K. Due to 
the non-continuous nature of K, each set of random starting points was 
paired with each of the possible fixed values [2 3 4 5] of K. The best fit 
within those possible values of K was selected as a proxy for optimizing 
K alongside the other parameters. 

3.8. Model comparison 

We used the Akaike Information Criterion (AIC; Burnham & Ander
son, 2002) to assess relative model fits and penalize model complexity. 
We previously showed that in the case of the RLWM model and its 
variants, AIC is a better approximation of model fit than Bayesian In
formation Criterion (BIC; Schwarz, 1978) at recovering the true model 
from generative simulations (Collins & Frank, 2012). Comparing RLWM 
and each of the variants of the simple RL model showed that RLWM 
provided a better fit to the data despite its additional complexity. 

3.9. Model simulation 

Model comparison alone is insufficient to assess whether the best 
fitting model sufficiently captures the data, as it provides only a relative 
measure of model fit (Nassar & Frank, 2016; Palminteri et al., 2017; 
Wilson and Collins, 2019, submitted). To test whether our models cap
ture the key aspects of the behavior (i.e. learning curves), we simulated 
each model with fit parameters from each subject, with 100 repetitions 
per subject averaged to represent each subject’s contribution to 
group-level behavioral effects (Fig. 3C, Supplemental Figure 11). 

4. Results 

4.1. Overall accuracy 

To analyze coarse age effects on behavioral and modeling measures, 
we first grouped participants into three groups by age (8 to 12-year-olds, 
13 to 17-year-olds, and 25 to 30-year-olds), and tested the continuous 
effect of age on performance for non-adult participants. 

All participants performed significantly better than chance (33%, 
Fig. 2b). The mean accuracy for all subjects was 77.91% (median 80%). 
An ANOVA by age group revealed a main effect of group (F 
(240) ¼ 20.29, p ¼ 9.10e-9). Post-hoc t-tests show that this main effect 
was driven by the differences in performance of the 8-12 year-old group 
from the 13-17 year-old group (t(187) ¼ 5.2, p < 10e-4) and the 25-30 
year-old group (t(152) ¼ 5.2, p < 10e-4). 8 to 12-year-olds’ perfor
mance was significantly worse overall (73% accuracy), while 13 to 17- 
year-olds and 25 to 30-year-olds performed similarly well (at 80.1% 
and 82.4% accuracy, respectively; t(141) ¼ 1, p ¼ 0.3). Within subjects 
aged 8 to 17, there was a positive correlation of age and overall accuracy 
(Fig. 2b; Spearman ρ ¼ 0.44, p ¼ 2.e-10), confirming an expected 
improvement in learning performance with age. 

4.2. Learning 

All age groups showed a similar qualitative pattern of learning 
whereby learning was faster in lower set sizes, a characteristic of com
bined working memory and reinforcement contributions to learning 
(Fig. 2a). Learning reached asymptote for set sizes 2 and 3 within the 
first three or four trials, and reached asymptote incrementally in set sizes 
4 and 5. There was a strong negative effect of set size on performance 
(set size slope; see methods; t(242) ¼ 14.7, p ¼ 2e-35 ;207 of 243 par
ticipants). An ANOVA on the effect of set size revealed a main effect of 
age group (F(240) ¼ 7.6, p ¼ 0.0006). Post-hoc t-tests confirmed that 
this was driven by a larger negative effect of set size in 8 to 12-year-olds’ 
performance than in 13 to 17-year-olds’ (t(187) ¼ 2.85, p ¼ 0.0049) and 
adults’ (t(152) ¼ 3.59, p ¼ 0.0004). 13 to 17-year-olds were not more or 
less affected by set size than 25 to 30-year-olds (t(141) ¼ 0.98, p ¼ 0.33). 
Within subjects aged 8 to 17, there was a negative correlation between 
age and set size slope (ρ ¼ -0.28, p ¼ 8e-5; Fig. 2b), supporting the 
previous analysis that participants’ learning became less sensitive to set 
size with increased age. 

4.3. Reaction time 

Overall, mean reaction time (RT) decreased as a function of age (ρ ¼
-0.34, p ¼ 2e-6). RT variance also decreased as a function of age (ρ ¼
-0.27, p ¼ 0.0002). Reaction times were slower on high set size trials (t 
(242) ¼ 33.1, p ¼ 0; 242 out of 243 participants). There was no main 
effect of age group on the set size RT effect (F(240) ¼ 1.24, p ¼ 0.29). 

All age groups and subjects appeared to be sensitive to the set size 
manipulation in both accuracy and reaction time, supporting the fact 
that all ages used both RL and WM to learn in this protocol. The 8- to 12- 
year-old group was slower, less accurate, and more sensitive to the set- 
size manipulation than participants in the group aged 13-17. Perfor
mance in the 13-17 year old group was comparable to adults. We next 
sought to use statistical and computational models to better characterize 
the underlying processes that drove the developmental changes in 
behavior. 

4.4. Logistic regression 

For each subject, we ran a trial-by-trial logistic regression predicting 
response accuracy with predictors set size, delay since the current 
stimulus was last presented (two potential markers of WM), previous 
correct trials for that stimulus, and previous incorrect trials (two po
tential markers of RL; see methods). Set size had a negative effect on 
performance in all age groups (8 to 12-year-olds t ¼ -6.96, p < 0.0003; 
13 to 17-year-olds t ¼ -4.39, p < 0.0003; 25 to 30-year-olds t ¼ -3.88, 
p < 0.0003). Delay also had a negative effect on performance in all 
groups (8 to 12-year-olds t ¼ -4.56, p < 0.0001; 13 to 17-year-olds t ¼
-4.39, p < 0.0001; 25 to 30-year-olds t ¼ -2.3, p ¼ 0.026). Number of 
previous correct trials had a positive effect on performance in all age 
groups (8 to 12-year-olds t ¼ 21.3, p < 0.0001; 13 to 17-year-olds 
t ¼ 8.5, p < 0.0001; 25 to 30-year-olds t ¼ 8.5, p < 0.0001). Number of 

S.L. Master et al.                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 41 (2020) 100732

8

previous incorrect trials had a negative effect in both 8-12 and 13- 
17 year olds but not in adults (8 to 12-year-olds t ¼ -11.1, p < 0.0001; 13 
to 17-year-olds t ¼ -4.93, p < 0.0001; 25 to 30-year-olds t ¼ -1.1, 
p ¼ 0.27). 

We tested the relationship between age and the individual logistic 
regression weights in a multiple regression predicting age from each 
individual’s five regression weights. After excluding subjects with 
weights 2 standard deviations above or below the mean (10 8 to 17-year- 
olds), we found that the weight of the fixed effect (t(173) ¼ 7.1, p < 10e- 
4), and the weight of previous correct trials (t(173) ¼ -2.9, p ¼ 0.004) 
predicted age. None of the other predictors (pinc, delay, ns) predicted 
age (p’s > 0.09). 

Results so far confirmed our prediction that younger participants 
would perform worse than older participants. There was evidence for 
successful RL recruitment in all subjects based on use of previous correct 
feedback, as well as evidence of WM recruitment based on set-size and 
delay effects. However, results so far were ambiguous as to whether 
WM, RL, or both drove learning improvement with age. While a decrease 
in set size effect could hint at a WM effect, it is equally possible that 
worse performance in high set sizes in younger children could be due to 
worse RL (as hinted by the logistic regression results), which can support 
learning when WM is unavailable (e.g. at high set sizes). To clarify these 
findings, we next sought to model individual participants’ behavior with 
a mixture model capturing both RL and WM contributions to learning 
(see Methods). 

4.5. Modeling 

We fit participant behavior with a two-module reinforcement 
learning and working memory model. Both modules update the value of 
stimulus-action pairings and contribute to choice. While RL is slow to 
learn, the WM module learns quickly and is also subject to forgetting or 
interference. Furthermore, our model assumes that the WM module’s 
contribution to choice diminishes with load, in accordance to its limited 
capacity. Thus, the WM module captures quick learning early on in a 
block, especially in low set sizes, while the RL module can account for 
slower learning leading to stable asymptotic performance, especially in 
high set size blocks. See Methods for model details. Model comparison 
favored the RLWM model over other candidate models in all age groups 

(Fig. 3ab; see methods). The exceedance probability in favor of the 
RLWM model was 1 in all groups (Rosa et al., 2010). RLWM was also the 
best model out of 6 candidate models for 83 out of 100 8 to 12-year-olds, 
58 out of 59 13 to 17-year-olds, and 25 out of 54 25 to 30-year-olds 
(Fig. 3a). Model simulations with fit parameters reproduced subject 
behavior, as well as differences between age groups (Fig. 3C, Supple
mental Fig. 1, Supplemental Fig. 11). 

We first investigated two noise parameters (Fig. 4: Joint, epsilon and 
bias) and as expected, there was an effect of age group on the decision 
noise parameter epsilon (Kruskall-Wallis p ¼ 0.025). Post-hoc compari
son revealed that this was driven by the separation in behavior between 
children 8-12 and the older age groups (Rank-sum test 8 to 12-year-olds 
vs. 13 to 17-year-olds: p ¼ 0.0003; 8 to 12-year-olds vs. 25 to 30-year- 
olds: p ¼ 0.002; 13 to 17-year-olds vs. 25 to 30-year-olds: p ¼ 0.94). 
There was a negative relationship between age and decision noise in the 
8 to 17-year-old sample (ρ ¼ -0.25, p ¼ 0.0005), in boys (ρ ¼ -0.22, 
p ¼ 0.024), and in girls (ρ ¼ -0.3, p ¼ 0.005), showing that decisions 
were less noisy in older participants. There was also an effect of age 
group on the bias parameter (Kruskal-Wallis p ¼ 0.0003). Post-hoc 
comparisons also revealed that the difference between 8 to 12-year- 
olds and the other age groups drove the main effect of group (Rank- 
sum test 8 to 12-year-olds vs. 13 to 17-year-olds: p < 10e-4; 8 to 12-year- 
olds vs. 25 to 30-year-olds: p ¼ 0.001; 13 to 17-year-olds vs. 25 to 30- 
year-olds: p ¼ 0.67). In the 8 to 17-year-old sample, there was also a 
negative relationship between age and bias (ρ ¼ -0.3, p ¼ 1.9e-07). This 
relationship was present separately in both boys (ρ ¼ -0.3, p ¼ 0.002) 
and girls (ρ ¼ -0.44, p ¼ 1.9e-05), 

We next investigated the relationship between age and RL learning 
rate α. There was a robust effect of age group on the RL learning rate 
parameter (Fig. 4: RL; Kruskal-Wallis p ¼ 0.0002). Additional compari
son between groups showed that 8 to 12-year-olds had a lower average 
learning rate than 13 to 17-year-olds (p < 10e-4) and 25 to 30-year-olds 
(p < 10e-4). 13 to 17-year-olds did not differ from 25 to 30-year-olds 
(p ¼ 0.3). Individual learning rates showed a significant upward trend 
with age 8-17 (ρ ¼ 0.31, p ¼ 2e-05), which was significant separately in 
both boys (ρ ¼ 0.32, p ¼ 0.001) and girls (ρ ¼ 0.29, p ¼ 0.007). 

Finally, we investigated WM parameters. Surprisingly, we found no 
significant differences across our coarse age groups in WM capacity 
(Kruskal-Wallis test, p ¼ 0.83), (Fig. 4: WM left) (although see PDS and 

Fig. 4. Effects of age on RLWM model parameters. There was an effect of both age group and age in years on the bias and ε decision noise parameters, whereby 8-12- 
year-olds had noisier behavior, and integrated negative feedback less than 13-17-year-olds and 25-30-year-olds. There were robust effects of age on the RL learning 
rate parameter α. There was no effect of coarse age groups or continuous effect of age within the 8-17 sample on the WM capacity parameter, and weak effects on WM 
weight ρ and decay φ. Error bars on bar graphs are standard error of the mean for each age group. eindicates marginal significance at the p < 0.1 level, * indicates 
p < 0.05, ** indicates p < 0.01, n.s. stands for not significant. 
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testosterone group results below). When we focused on individual sub
jects aged 8 to 17, we found no monotonic relationship between WM 
capacity and age (Fig. 4: WM; Spearman ρ ¼ 0.09, p ¼ 0.23). We found 
no differences across coarse age groups in WM weight (Fig. 4: WM; 
p ¼ 0.25), but a marginal effect on WM decay (Fig. 4; p ¼ 0.08). These 
effects were stronger when investigating the continuous effect of age 
within non-adults: There was a small positive relationship between age 
and WM weight (Spearman ρ ¼ 0.15, p ¼ 0.04; Boys: ρ(101) ¼ 0.06, 
p ¼ 0.58; Girls: ρ(86) ¼ 0.25, p ¼ 0.02). There was also a negative rela
tionship between age and WM decay (Spearman ρ ¼ -0.17, p ¼ 0.02) that 
was inconsistent across genders (Boys: ρ ¼ -0.08, p ¼ 0.42; Girls: ρ ¼
-0.28, p ¼ 0.01). This continuous effect was mostly driven by the 
youngest participants, with more WM decay and less WM weight. 

Children of the same age can differ in their stage of pubertal matu
ration with considerable individual variability. There are also notable 
sex differences in the timing of pubertal onset. Pubertal onset and later 
pubertal milestones may also produce non-monotonic changes over time 
such as a step or ‘inverted U’ shaped curve (Braams et al., 2015; Pie
karski, Boivin, et al., 2017; Piekarski et al., 2017b). Gonadal hormones, 
such as testosterone and its metabolites may also be playing an activa
tional role in cortical or basal ganglia function on the day of testing 
(Delevich, Piekarski, et al., 2019). Therefore, to explore developmental 

changes in learning with a finer resolution relevant to puberty we 
divided the 8-17 year old sample into 4 evenly divided bins first by age 
(<10.5, 10.6-12.8, 12.9-14.8, and >14.9 years old) then by pubertal 
development scale (PDS) (roughly pre-, early, mid-, and 
late/post-pubertal) and then by salivary testosterone (low, low-mid, 
mid-high, and high levels within gender) at time of test (T1) (see 
methods, Supplemental material). Cross-sectional data are quite limiting 
in differentiating age and pubertal effects, however we carefully 
explored the data and the effects of age, PDS, and testosterone 
concentration. 

Division by finely graded age bins showed that noise and bias 
decreased with age (Supplementary Figures S4, S5; Noise: chi- 
squared ¼ 15.69, p ¼ 0.0013; bias: chi-squared ¼ 24.1, p ¼ 2e-05) and 
RL learning rate increased significantly with age (Supplementary 
Figure S6; chi-squared ¼ 19.3, p ¼ 0.0002) with no inverted U patterns. 
This general pattern was present in both boys (Supplementary 
Figures S4, S5, and S6; RL learning rate: chi-squared ¼ 12.1, p ¼ 0.007; 
noise: chi-squared ¼ 6.7, p ¼ 0.08; bias: chi-squared ¼ 9.1, p ¼ 0.028) 
and girls (RL learning rate: chi-squared ¼ 8.1, p ¼ 0.044; noise: chi- 
squared ¼ 10.13, p ¼ 0.018; bias: chi-squared ¼ 26.2, p ¼ 0.001). We 
observed similar results when non-adult participants were divided into 
bins based on PDS or testosterone measures (see supplementary table 

Fig. 5. WM parameters by age, PDS, and sample 1 testosterone bins. All subjects aged 8 to 17 were binned according to age, pubertal development score (PDS), and 
salivary testosterone from the in-lab sample (T1). Girls and boys were binned separately according to gender-specific quartiles, then combined into equal-sized 
groups for each measure. Effects of group were assessed using the non-parametric Kruskal-Wallis test. Tests for which the group effect was significant at p < 0.05 
were further examined with post-hoc non-parametric t-tests. n.s. indicates not significant, eindicates marginal significance at p < 0.1 level, * p < 0.05, ** p < 0.01. Bin 
means are plotted; error bars show the standard error of the mean for each bin. 
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S2). Age, PDS and mean salivary testosterone were all also highly 
correlated (Supplementary Figure S2), therefore it was not clear if pu
berty onset played a significant role in RL-related changes or not. 

We next examined the relationship between finely graded groups 
based on age, PDS and salivary testosterone measures and WM param
eters. Here the greater number of groups enabled observation of ‘U’ or 
‘inverted U shapes.’ Patterns of this type were apparent when subjects 
were grouped by PDS or T1. We had predicted potential effects of pu
berty onset on WM due to our previous work on effects of gonadal 
hormones on inhibitory neurotransmission in the PFC of rodent models 
(Piekarski, Boivin, et al., 2017; Piekarski, et al., 2017b). 

Subjects that were grouped by PDS did show significant differences 
in WM decay that was stronger in boys than girls (see Fig. 5, Supple
mental Figure 8; all: chi-squared ¼ 10.02, p ¼ 0.018; boys: chi- 
squared ¼ 15.09, p ¼ 0.0017; girls: chi-squared ¼ 5.51, p ¼ 0.14). 
Changes were strongest at puberty onset. We also uncovered a signifi
cant effect of testosterone at time of test (T1) on WM capacity (see Fig. 5, 
Supplemental Figure 9; chi-squared ¼ 13.15, p ¼ 0.0043). This effect 
was marginal in boys alone (chi-squared ¼ 6.61, p ¼ 0.085) and signif
icant in girls alone (chi-squared ¼ 7.86, p ¼ 0.049). When subjects were 
grouped by age (in 4 bins age 8-17), without regard to PDS or T, no 
significant group differences in WM parameters were found (though 
there was a marginal inverse U-shaped effect on WM capacity, and 
decreasing effect on decay; Fig. 5, Supplemental Figures 8 and 9). 

These results support our first prediction that changes in both RL and 
WM processes separately drive learning changes in subjects aged 8 to 30. 
However, we were surprised to find that changes in RL drive changes in 
learning over a longer period of development than changes in WM, in 
opposition to our second prediction. Finally, we support our third pre
diction that WM processes would differ in groups separated by pubertal 
development and testosterone. 

5. Discussion 

In this study, we examined developmental changes in the working 
memory (WM) and reinforcement learning (RL) processes that 
contribute to simple stimulus-action association learning. While many 
developmental models emphasize late prefrontal and parietal cortex 
maturation and gains in WM in late adolescence (Huizinga et al., 2006; 
Larsen & Luna, 2018), previous studies have also shown developmental 
changes in reinforcement learning parameters between mid-adolescence 
and adulthood (Palminteri et al., 2016; Potter et al., 2017; Van Den Bos 
et al., 2012). However, these studies were not able to disentangle WM 
and RL contributions to learning. Our task and computational model 
were designed to address how WM and RL jointly contribute to learning 
in a simple task (Collins, 2018; Collins et al., 2017; Collins & Frank, 
2012; Collins et al., 2017). The task and model are also notable because 
they reveal that WM is recruited in even simple reward learning tasks 
that are often assumed to include only model-free RL processes. 

Here we used the RLWM task and computational methods to measure 
development of RL- and WM-based processes in youth aged 8 to 17 and 
adults aged 25 to 30. We found that when we grouped subjects into 8 to 
12-year-olds, 13 to 17-year-olds, and 25 to 30-year-olds all recruited 
both RL and WM in parallel for learning. 13 to 17-year-olds’ perfor
mance closely approximated 25 to 30-year-olds’, while participants 
aged 8 to 12 learned more slowly and reached a lower asymptotic ac
curacy. Using our standard analyses and computational models, we next 
sought to disentangle changes in RL and WM systems’ contributions to 
gains in learning and also isolate contributions of decision noise and 
learning biases. 

6. RL and WM development 

We found the RL learning rate steadily increased throughout 
adolescence (Fig. 4) enabling youth to reach adult-like levels of per
formance in the 13 to 17-year-old group. Given that all correct choices 

were rewarded 100% of the time and there was an unchanging reward 
structure, an optimal strategy would be to learn quickly from rewards (i. 
e. have a higher learning rate). This allows learners to reach asymptotic 
accuracy faster as long as the environment is stable. The developmental 
change in learning rate allowed the 13 to 17-year-old group and 25 to 
30-year-old group to learn stimulus-action associations faster than the 8 
to 12-year-old group, which benefitted their overall task performance. 

In our three WM parameters, changes were more modest. We did 
observe small effects of age on WM weight and WM decay in 8 to 17- 
year-olds (Fig. 4), reflecting increased use and stability of WM with 
increasing age. Changes in WM capacity were only observed at puberty 
onset in early adolescence (Fig. 5) when youth were grouped by PDS or 
testosterone concentration quartiles (Fig. 5). 

Indeed, our behavioral results and computational model did not 
support our hypotheses that WM would show protracted maturation and 
serve as the main driver of learning improvement from 8 to 17 years of 
age. Instead we found that RL-based learning showed protracted 
development until age 17. Unpacking what this means for performance, 
in the raw data we found that 8 to 12-year-olds’ behavior was more 
sensitive to the set size or learning load. We attribute this difference to a 
weaker RL system that was unable to make up for WM’s limitations in 
high set size conditions, more than a weaker capacity-limited WM. 

7. Noise and bias 

Our data also isolated noise and a positive learning bias as important 
variables in the development of simple associative learning ages 8 to 18. 
Across each of our analyses, decision noise consistently decreased with 
age. 8- to 12-year-olds’ behavior was noisier than older subjects’, as 
evidenced by their failure to reach the same asymptotic accuracy as 13- 
to 30-year-olds, the relatively small intercept term from the logistic 
regression on accuracy, and the decrease in the epsilon decision noise 
parameter with age in years. Each of these results emphasizes the 8- to 
12-year-olds’ tendency towards attentional lapse and higher probability 
of disregarding learned information to choose randomly. It may also be 
indicative of a higher propensity for exploration (Schulz et al., 2019, 
bioRxiv preprint.; Somerville et al., 2017). 13- to 17-year-olds and 25- to 
30-year-olds exhibited lesser amounts of decision noise and tended more 
towards making decisions based on learned value information. This 
finding is consistent with other work showing a decrease in both neural 
and behavioral noise in learning and memory processes in adolescence 
(Montez et al., 2017, 2019; Somerville et al., 2017). We also found that 
there was a negative relationship of age and a bias towards learning 
from positive feedback, which is consistent with other work on the 
development of reinforcement learning (Davidow et al., 2016; Hauser 
et al., 2015; Jones et al., 2014; Palminteri et al., 2016; Van Den Bos 
et al., 2012). Our task and model are not designed to disentangle more 
subtle aspects of noise and learning bias, but our data indicate that they 
too contribute to changes in learning and are therefore are important to 
consider in the developmental science of learning. 

8. Limitations of our data 

One limitation of our findings was a difference in socioeconomic 
status (SES) between our adult group ages 25 to 30 and our non-adult 
group ages 8 to 17. SES was measured by the proxy of self-reported 
household income. Excluding the subjects who didn’t disclose their so
cioeconomic status (n ¼ 88), a kruskal-wallis test revealed an effect of 
group (chi-squared ¼ 56.15, p ¼ 6.4e-13; Supplementary Figure 10). 
Post-hoc t-tests across groups revealed that adults were at a different 
income level than both 8 to 12-year-olds (p ¼ 1.5e-12) and 13 to 17- 
year-olds (p ¼ 6.0e-18). 8 to 12-year-olds and 13 to 17-year-olds were 
at the same income level (p ¼ 0.15). This could limit the interpretation 
of our results showing no difference between 13 to 17-year-olds and 
adults. Indeed, children of lower socioeconomic status have been shown 
to score lower on tests of executive function and working memory than 

S.L. Master et al.                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 41 (2020) 100732

11

their peers (Farah et al., 2006; Hackman & Farah, 2009; Noble et al., 
2007; Noble et al., 2005) and these effects can carry over into adulthood 
(Evans & Schamberg, 2009; Hackman, Farah, & Meaney, 2010; Oshri 
et al., 2019). However, this confound may be mitigated by the limita
tions of using household income as a proxy for socio-economic status. 
Although reporting low incomes, the young adult subjects also showed 
high levels of education – all adult subjects had completed high school 
and 50 out of 54 had some college or higher education. This might 
indicate that our adult participants might be in early career stages, and 
that their current income does not reflect the socio-economic status we 
might assign to their past or future household income. There were no 
household income differences between the 8 to 12-year-olds and 13 to 
17-year-olds, where we found most differences in task performance. 

Our study used a cross-sectional design and measures of puberty at 
only one timepoint in a complex multi-component process. Pubertal 
development was highly correlated with age in our sample, however 
there were late and early developing individuals within our sample. 
Pubertal tempo, the speed at which children complete stages of puberty, 
was not captured by our data. Thus, findings from our study, particularly 
those that implicate puberty onset and hormone levels as potential 
mechanisms should be followed up with longitudinal studies. 

9. Interpretation of our data 

Late adolescent maturation is widely associated with the develop
ment of higher cognitive resources, including adult-like working mem
ory (Crone et al., 2006; Geier et al., 2009; Huizinga et al., 2006; Luna, 
2009; McAuley & White, 2011) and the use of increasingly complex 
learning strategies (Crone et al., 2006; Decker et al., 2016; Potter et al., 
2017; Selmeczy et al., 2018). The development of these forms of higher 
cognition are most often attributed to the development of prefrontal 
cortex, which does not reach functional or structural maturation until 
late in the second decade or even middle of the third decade of life 
(Bunge et al., 2002; Casey et al., 2008). Therefore, it was somewhat 
surprising that we detected no age-related changes in WM capacity in 
subjects aged 8 to 17 despite our large sample. This is partially mitigated 
by PDS and testosterone-related findings that show changes in WM ca
pacity with the transition into puberty (Fig. 5) and the fact that other 
aspects of WM (decay and weight) did show significant if weak effects of 
age (Fig. 4 & 5). 

To better integrate this work into the established literature on the 
developmental science of learning, it may be helpful to separate these 
three different aspects of WM and to dissociate 1) the use of WM to 
maintain information from 2) the use of WM to manipulate information. 
It is possible the use of WM to manipulate information may develop in a 
more extended fashion over adolescence (Crone et al., 2006), while the 
use of WM to maintain information perhaps develops earlier. Recent 
results with a simple WM assay, a verbal span task, found age groups 
aged 9 to 25 performed equally well (Potter et al., 2017) and thus found 
no developmental effects on WM. In our RLWM task WM is used to 
maintain stimulus-action associations, however, it is debatable the 
extent to which the subjects need to simply maintain or manipulate 
information. In our task, information was not explicitly given to par
ticipants for them to hold, but they needed to integrate three temporally 
separate pieces of information (the stimulus observed, the choice made, 
and the feedback received) to determine the relevant information to 
maintain in WM. Thus, we would argue RLWM WM still constitutes a 
sophisticated use of WM. 

While dual systems models of development (Shulman et al., 2016) 
have often highlighted that subcortical areas mature before prefrontal 
cortex, there is also an important literature showing changes in striatal 
function through adolescence. Adolescents in the mid-teen years have 
been shown to be more sensitive to and motivated by rewards than 
pre-pubertal children and post-pubertal adults (Casey et al., 2008; 
Braams et al., 2015; Davidow et al., 2016; Gulley et al., 2018; Somerville 
et al., 2010). This increased motivation is reflected both in BOLD 

activation of the reward-responsive ventral striatum (Braams et al., 
2015; Galvan et al., 2006b) and in increased recruitment of areas of the 
frontoparietal cognitive control network, when necessary (Somerville & 
Casey, 2010). This could partially account for our results, explaining 
why 13 to 17-year-olds use RL more efficiently than 8 to 12-year-olds. 
However, such a relationship would predict differences between 13 to 
17-year-olds and 25 to 30-year-olds, as seen in learning tasks that 
manipulate reinforcement more directly (Palminteri et al., 2016). We 
did not observe any difference between subjects aged 13 to 17 and adults 
in both behavior and in modeling; this might be due to a comparatively 
weak reinforcement manipulation, though it was sufficient to reveal 
strong differences between 8 to 12-year-olds and 13 to 17-year-olds. 

The lack of a consistent relationship of age and WM capacity in this 
sample could also be interpreted as reflecting the intrinsic difficulty of 
perfectly disentangling the RL and WM systems. Indeed, treating the BG- 
dependent RL system and PFC-parietal dependent WM system as 
distinct, non-overlapping, independent systems is overly simplistic 
(Casey et al., 2016; Shulman et al., 2016). There is a large literature 
highlighting the role of striatal dopamine in working memory gating in 
PFC (Cools, 2011; Frank et al., 2001; O’Reilly & Frank, 2014; Gruber 
et al., 2006; Hazy et al., 2007). Furthermore, recent work from our and 
others’ labs shows potential interactions between these systems that go 
further than competition for choice (Collins, 2018; Collins et al., 2017; 
Daw et al., 2011; Gold et al., 2017; Sharpe et al., 2017). Nevertheless, 
there is also ample evidence that these systems are, on first order, 
separable with differing contributions to learning. Contrasting the 
strong statistical effects we observed for developmental trends in RL, 
bias and noise parameters, to the null or weak results obtained for WM 
parameters weakens other possible interpretations of our findings in 
terms of overlap: any shared subcortical effects driving RL changes 
should then also drive WM changes. Thus, we believe that the absence of 
strong effects of age on WM parameters as going against our original 
prediction, and showing that developmental changes in RL are more 
influential on changes in learning during adolescence. 

It is also important to consider the role episodic memory might be 
playing in our task. Recent research showed that a component of 
learning from reinforcement can be accounted for by episodic memory 
sampling (Bornstein & Daw, 2012; Bornstein & Norman, 2017; Myers 
et al., 2002). In fact, previous versions of this task found hippocampal 
contributions to learning (Collins et al., 2017). Thus, it is possible that 
some behavior captured by the RL component of the model actually 
included contributions of the episodic memory system, not just the 
reward learning systems. Some facets of episodic memory, like recog
nition memory, have been shown to develop by age 8, much earlier than 
prefrontal cortex-dependent executive function (Ghetti & Bunge, 2012). 
However, recent work shows that the interactions between hippocam
pus and prefrontal cortex – crucial for efficient memory search and 
retrieval – continue developing into adolescence (Murty et al., 2016; 
Selmeczy et al., 2018). Further, the development of both systems allows 
for the integration of relevant past experiences with goal-directed 
attention and can influence choice in the reward-driven BG (Murty 
et al., 2016). This developmental time course might account for some of 
the changes attributed to RL learning rate in our results. It will be an 
important topic for future research to better characterize episodic 
memory contributions to learning, in parallel to WM and RL 
contributions. 

10. Conclusions 

Using a sample of 241 participants 8-17 and 25-30 years old, we 
aimed to characterize the distinct developmental trajectories of two 
cognitive systems that contribute to learning in parallel, even in very 
simple situations: the RL system and WM system. Performance in a 
simple stimulus-action learning task which manipulated cognitive load 
revealed broad differences between subjects aged 8 to 12 and subjects 13 
to 17, whose raw performance was adult-like. While 8 to 12-year-olds 

S.L. Master et al.                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 41 (2020) 100732

12

were noisier in all conditions, their learning suffered more from a load 
increase than 13 to 17-year-olds’ and 25 to 30-year-olds’. In all partic
ipants, RL learning compensated for WM limitations under higher load. 
Computational modeling revealed that the stronger effect of load in 8 to 
12-year-olds was best explained by weaker RL compensation. There was 
evidence of subtle gains in WM development 8-17 in terms of WM use 
and decay, but the effect size was weak. Changes in WM capacity were 
only apparent at puberty onset when subjects were sorted by PDS or 
testosterone levels. These results were surprising based on the estab
lished literature on the late anatomical development of the prefrontal 
and parietal association cortices. This work highlights the importance of 
carefully accounting for multiple systems’ contributions to learning 
when assessing group and individual differences and suggests that the 
development of reinforcement learning processes plays a protracted role 
in changes in learning during adolescent development. We hope these 
findings can fruitfully inform educational methods and intervention 
work. Future research in the science of learning should aim to develop 
experimental paradigms and computational models that more precisely 
define and dissociate different sources of noise and the use of rein
forcement learning, working memory, and episodic memory throughout 
development. 
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