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The past few years have seen an explosion in the
number of viral structures determined by icosahe-
dral reconstruction from cryoelectron micro-
graphs. The success of this work has depended upon
a combination of the high-fidelity but low-contrast
information contained in these images with effi-
cient algorithms for determining particle orienta-
tion and three-dimensional structure. This review
describes the principles behind the most commonly
used method of reconstruction of the icosahedral
particles and the method’s implementation in an
icosahedral reconstruction program suite. © 1996 Ac-

ademic Press, Inc.

ICOSAHEDRAL RECONSTRUCTION AND
CRYOELECTRON MICROSCOPY

The advent of cryoelectron microscopy has allowed
the imaging of isolated symmetric particles in the
absence of stain and under conditions which pre-
serve their symmetry. The image of a field of ran-
domly oriented, symmetric particles in the absence
of stain and under conditions which preserve their
symmetry can be processed to yield a three-dimen-
sional structure by determining the relative posi-
tions of the symmetry elements. This approach has
been most powerful when applied to icosahedral par-
ticles because of their very high symmetry (point
group 532—6 fivefold axes, 10 threefold axes, and 15
twofold axes for a total of 60 symmetry elements).
This high symmetry eases the determination of the
positions of the symmetry elements in individual im-
ages. It also decreases the number of images re-
quired to determine a three dimensional structure
completely to a given resolution.

Icosahedral reconstruction from cryoelectron mi-
crographs nicely complements X-ray crystallo-
graphic structure determinations. Orientation of the
high-resolution structure of the virus capsid or an
isolated protein within the reconstructed density
yields an atomic model (Cheng et al., 1995, 1994;
Grimes et al., 1995; Ilag et al., 1995; Olson et al.,
1993; Smith et al., 1993a,b; Stewart et al., 1993).
This approach provides a functional context for the
X-ray structures of isolated proteins and allows
more precise identification of molecular interac-
tions. Cryoelectron microscopy in combination with
image reconstruction also extends X-ray crystallo-
graphic studies because it can be applied to dynamic
processes (Fuller et al., 1995) and heteroge-
neous populations (Vénien-Bryan and Fuller, 1994)
which would otherwise be inaccessible to structural
study.
This discussion focuses on the modifications to the

icosahedral reconstruction programs made over the
past decade to allow their use for cryoelectron mi-
crographs. We will not repeat the original descrip-
tion of the algorithms (Crowther, 1971).
The central problem in performing an icosahedral

reconstruction is the reliable determination of the
orientation of the individual particles. A particle of
unknown structure is oriented on the basis of its
icosahedral symmetry (Fig. 1—steps 1,2). Once pu-
tative orientations are determined for several parti-
cles, their transforms can be compared (Fig. 1—step
3) and the correct relative hand determined.
These orientations are then used to combine the
particle transforms to generate a symmetric
three-dimensional transform and a symmetrized
density (Fig. 1—step 4). This density can then be
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used as a model to generate more reliable orienta-
tions for other particles in the input data (Fig.
1—step 5).

COMMON LINES

The determination of the orientation of a novel
icosahedral particle is based on the symmetry ele-
ments. We use a polar coordinate system to describe
the orientations (Fig. 1) in which a twofold axis lies
along z, the adjacent threefolds along the x axis, and
the adjacent fivefolds along y. One threefold view is
(U 5 69.09°, F 5 0°) in these coordinates. A third
angle, V, indicates the rotation of the view in the
plane of projection. Our standard icosahedral asym-
metric unit is the one-sixtieth of orientation space
shown in Fig. 1 which is bounded by two fivefolds
(for example 90°, 31.717° and 90°, 231.717°) and an
adjacent threefold (69.09°,0°). A particle viewed
down, for example, the threefold symmetry axis can
be readily identified by the threefold symmetry of
the projection. The same symmetry is seen in the
Fourier transform of the projection which is a cen-
tral section of the three-dimensional transform
(DeRosier and Klug, 1968) taken normal to the di-
rection of projection.
The common lines arise when the symmetry axis

is not along the direction of view. Applying a sym-
metry operation around this symmetry axis to the
Fourier transform of the projection (Fig. 2A) gives
rise to a second, identical plane which intersects the
original plane along a line (Fig. 2B). Application of
the inverse of this symmetry operation generates a
third identical plane which also intersects the orig-
inal and the second (Fig. 2C). These lines of inter-
section are common to the three symmetry-related
planes of the transform and so have identical values.
The construction in Fig. 2C shows the relative posi-
tions of the three planes in space for a threefold axis,
and the three common lines. Only two lines of inter-
section are visible in the transform of the original
plane of projection.
Each symmetry operation and its inverse about an

axis generates a pair of common lines which lie to
either side of the projection of the axis (Fig. 3). The
existence of a symmetry axis at a particular position
can be found by testing for equal values in the trans-
form along the lines which would be generated by
that axis. This would be a very weak test, easily
satisfied for a single symmetry axis. The power of
this approach for icosahedral objects comes from the
fact that the high symmetry of the icosahedron gives
rise to 37 pairs of common lines: each of the 6 five-
folds gives rise to two pairs (from 2p/5,22p/5 and
4p/5,24p/5), each of the 10 threefolds generates 1
pair (2p/3,22p/3) and each of the 15 twofolds a fur-
ther pair (p,2p) which lie along the projection of the
twofold symmetry axis. The ‘‘pair’’ of common lines

generated by a twofold axis are colinear and force
this line to be centrosymmetric (r (x, y) 5 r (2x, 2y))
or equivalently forces the phases along this line in
the transform to be 0 or p.
The existence of common lines is independent of

the details of the structure; however, their useful-
ness in orientation is dependent on the presence of
angular variation in the projection. The projections
of a smooth object will show little angular variation
and so the correct orientation will yield common
lines which agree only slightly better with the pro-
jection than incorrect orientations. Experience with
cryoelectron micrographs indicates that this angu-
lar variation can be maximized by selecting partic-
ular resolution ranges in the analysis.
The test for agreement between common lines is

the calculation of a phase residual between the
transform values which lie on the pairs of lines. The
simplest form of the orientation search is then the
calculation of the sum of the phase residuals be-
tween the 37 pairs of common lines in 1° steps for
each of the orientations in the asymmetric unit
(132480 distinct orientations corresponding to 736
values of U and F ((69.09°, 0°), (70°, 21°) , . . , (90°,
31), (90°, 31.717°)) times 180 values of V). The ori-
entation which generates common line positions
with the lowest sum of phase residuals is taken as
the correct one. This approach works most effec-
tively for comparison of putative orientations near
the center of the asymmetric unit (such as 80°, 11°)
which have well-spread common lines (Fig. 3). It
does not work equally well for other orientations.
When a view is along (69°, 0°) or near to a symmetry
axis (89°, 21°), the common lines are not well sepa-
rated and a low residual is less significant because it
results from fewer independent values of the trans-
form (Fig. 3). This degeneracy is particularly serious
for cryoimages which have a relatively low signal to
noise ratio. A weighting scheme is used to compen-
sate for this degeneracy. Orientations with the same
U and F but different values of V have the same
spread of common lines. A reduced xn

2 statistic in
which the number of degrees of freedom is the num-
ber of independent transform values used in the cal-
culation of the distribution of residuals for a given U
and F as a function of V is used to determine the
probability of the lowest residual for that U and F.
This probability is used to weight the residual for
comparison between different values of U and F
(Fuller, 1987). This xn

2 weighting scheme is far from
perfect but it has been sufficient to serve as the first
step in the reconstruction of several dozen virus
structures.
Common lines are used in two other places in the

reconstruction process. One is in the refinement of
the phase origin (x,y). The calculation of the phase
residual described above assumes that the center of
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the transform lies at the center of symmetry of the
particle. Initially this is taken as the center of mass
of the projection and determined by cross-correlation
with a circularly symmetrized average projection.
This origin is usually adequate for the first attempt
at an orientation search. Once this initial orienta-
tion search yields a putative orientation, a refined
phase origin can be determined by minimizing the
common lines residual for that orientation. This re-
fined orientation is used for further orientation
searches. The cycle of orientation search and origin
refinement is continued until consistent values of U,
F, V, x, and y have been determined for several par-
ticles.

ORIENTATION REFINEMENT

The third use of common lines in the reconstruc-
tion process comes in the comparison of transforms
of different particles. Once the orientations of the
projections of two particles have been determined,
the position of the common line between the two
projections can be calculated. Further, one can gen-
erate a set of 59 other intersections (1 for each sym-
metry element) between the symmetry-related
planes generated from these projections. This gives
rise to 60 pairs of lines, i.e., lines which should have
matching values in the two transforms. The sum of
the phase differences between these pairs of lines is
a measure of the degree to which the two transforms
represent projections of the same structure at the
given orientations. Calculation of the sum of the
cross-common lines residuals over the entire set of
particles identifies those particles which agree
poorly with the rest of the set. These particles may
truly differ or may simply have incorrectly deter-
mined orientations. Once these outliers have been
excluded, the orientations of the remaining particles
can be refined by altering the orientation and origin
parameters to minimize the cross-common lines
phase residual over the whole set of particles. Expe-

rience shows that this refinement is slow, extremely
sensitive to noise, and only successful if the particles
in the set have values close to the correct ones.
An important aspect of refinement is the determi-

nation of a consistent hand for the particles. The
projection of a particle will have an identical com-
mon lines residual for the orientation U, F, V and U,
F, V + p. These two orientations (unflipped and
flipped) correspond to viewing the same particle
from opposite directions or to the projections arising
from the particle and its enantiomorph. Although
the common lines residual for an individual particle
is the same for these two orientations, the cross-
common lines residual between the particle and an-
other of fixed orientation will be different. Particles
which exhibit strong enantiomorphic features at res-
olutions as low as 50 Å such as the papovaviruses
(which have a handed triangulation number, T 5 7d)
show dramatic differences and allow a consistent set
of orientations to be established quickly (Baker et
al., 1985, 1991). Particles such as herpes virus (T 5
16) (Baker et al., 1990; Booy et al., 1991), adenovirus
(T 5 25) (Stewart et al., 1991), or Semliki Forest
virus (T 5 4) (Vénien-Bryan and Fuller, 1994), for
which only the structural unit shows handedness,
show the difference only at higher resolutions (35 Å
or finer). The proper hand for such a structure must
be selected by trying all possible combinations of
flipped and unflipped particles for the set. Since cor-
rect refinement is dependent on the selection of the
proper hand for each particle, this hand selection
must be repeated at each step of the refinement of
the orientations. This is fairly compute intensive. A
dynamic algorithm is used to speed the search for
the best combination of orientations. The set of hand
choices for a subset of particles is extended by in-
cluding all possible orientations of an additional
particle in each round and retaining only those sets
which could generate a residual comparable to the
best observed in previous rounds (Stewart et al.,

FIG. 1. Overview of the reconstruction process. The steps in a typical icosahedral reconstruction are depicted using images of
SDS-treated bacteriophage PRD1. The processing of the images which precedes step 1 (boxing, ramping, masking, and centering) are
accomplished with SPIDER (see Frank et al., this issue). The icosahedral reconstruction program suite begins with 1—the common lines
based orientation search (using the programs FFTRANS and EMICOFV), 2—origin refinement (EMICOORG), 3—interparticle refine-
ment (SIMPLEX), 4—reconstruction (EMICOMAT, EMICOBG, EMICOLG, EMICOFB, SYMMETRIZE), and 5—model-based orientation
search (PACK MRC IMAGE, EMPFTREF1). The corresponding programs in the PURDUE version of the icosahedral reconstruction
program suite are: preprocessing—EMIMG; 1—EMFFT, EMICOFV; 2—EMICOORG2; 3—EMICOGRAD; 4—EMICOMAT, EMICOBG,
EMICOLG, EMICOFB, EMICOSYM; and 5—EMIMG, EMPFT. The coordinate system used for describing orientations is shown in the
second line of the figure. Capital letters are used to denote reciprocal space variables (U,F,V) and small letters (x,y) are used to denote
real space coordinates. The asymmetric unit triangle is bounded by two fivefold axes (90°, 631.717°) and a threefold axis (69.09°,0°) and
is shown in a planar representation with the symmetry axes marked by pentagons and a triangle and on the surface of an icosahedron
to show its relationship to the Cartesian axes. The twofold axis (90°,0°) between the fivefolds is shown with the standard crystallographic
symbol. Refinement of the phase origin corresponds to changing the center of the area used to calculate the transform and hence is
described in the real space coordinates (x,y). Orientation searches are done using the transform of the projection and hence the orientation
is described in terms of the reciprocal space angles (U,F,V) which are numerically identical to their real space counterparts. The Purdue
and EMBL versions of the icosahedral reconstruction program suite use different settings of the icosahedral axes. The EMBL setting is
described in the text. The Purdue setting generates an equivalent asymmetric unit which is bounded by two fivefolds U,F 5 (31.717°, 6
90°) and the threefold at (20.91°,0°) and the twofold at (0°,0°); however, this is transparent to the user of either program set.
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FIG. 2. Generation of common lines. The common lines are generated by the application of a symmetry axis which is not along the
direction of view. The generation of common lines by a threefold axis is depicted here using the transform of an image of the enveloped
bacteriophage PRD1. The direction of view (vertical white line) is near to the twofold axis (u 5 89°,f 5 21°). (A) The transform of the
resulting projection. Rotations in V correspond to the rotation of this plane (a central section of the three-dimensional transform) around
the view direction. (B) The symmetry-related plane generated by a 120° rotation around a threefold axis directed toward the reader.
Application of a 2120° rotation around the same axis yields a third plane. The stereo pair of C shows the positions of the three resulting
common lines at the intersections of these planes. All three have identical values but only two intersections with the original plane are
seen in the transform of the original projection. Note that the common lines are spaced evenly around the threefold axis which generated
them.
FIG. 4. The generation of the pft used in the model-based orientation search method. The polar Fourier transform is generated by

projection of the model (A), radial sampling of the projection (B) to produce r(r,g), and transformation of the radially sampled projection
along the angular direction (g) to produce a pft which is a function of r and G (C). Multiplication of pfts corresponding to the image and
evenly spaced model projections allow rapid identification of the most similar projection to the image and hence yield an orientation for
the image (see Cheng et al., this issue).
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1991). For larger sets of particles a simulated an-
nealing approach is used (Metropolis et al., 1953) in
which the probability of flipping a particle in a cycle
is an exponential function of the difference in resid-
ual between the flipped and unflipped orientation.
Annealing is continued until further cycles result in
no decrease in residual.

The refinement process is continued until a con-
sistent hand has been established for all particles
and the values of the common lines residual are ac-
ceptable for all the particles to the desired resolu-
tion. Sufficiently persistent refinement will result in
improved residuals even for poor data sets. One can
overcome this tendency to refine beyond the quality
of the data by monitoring the free residual (Fuller et
al., 1995). Refinement of the data set is performed
with a randomly selected subset of the cross-
common lines. Once the refinement is completed for
the subset, the values of the residuals are calculated
for all of the common lines and compared to the
those for the refined subset. If the refinement is pro-
ceeding properly, the orientations determined by re-
finement will also decrease the residual for the data
left free during the refinement.

CALCULATING THE RECONSTRUCTION

The calculation of the reconstruction itself is the
portion of the reconstruction process which has
changed least since its original description (Crow-
ther, 1971). The reconstruction is performed by de-
termining the coefficients of a Fourier–Bessel ex-
pansion of the transform over a series of functions
with 52 symmetry:

F(R, F, Z) 5 (nGn(R, Z) exp(in(F + p/2)),

where the Z axis now corresponds to the position of
the fivefold. This fivefold symmetry axis is imposed
by including only those Gn(R, Z) for which n is a
multiple of 5. This method of imposing 52 symmetry
is computationally efficient. The expansion coeffi-
cients Gn(R, Z) are determined separately for each
annulus of radius, R, and height, Z, in the trans-
form. The orientation of each particle is used to de-
termine the positions of the 59 planes equivalent to
the original 1. For all orientations but the fivefold,
each of these 60 planes will intersect an R, Z annu-
lus at two positions (F1, F2). Combining the data
from all 60 planes for all of the images gives a series
of unevenly spaced sample points along each annu-
lus. The coefficients of the expansion for each annu-
lus are determined from the sample points by solv-
ing the linear equations

Fj 5 F(R, Fj, Z) 5 (nBjnGn(R, Z),

where the Bjn express the azimuthal dependence

(Bjn 5 exp(in(Fj + p/2))

for Gn(R, Z). The number and spacing of the sample
points limit the quality of the solution. This can be
seen quantitatively in the eigenvalues of the least

FIG. 3. Distribution of the common lines for different orienta-
tions. The positions of the common lines are indicated for three
orientations of an icosahedral particle. The situation correspond-
ing to Fig. 2 is illustrated by the top panel (U 5 89°,F 5 21°). The
positions of the pair of common lines generated by the threefold
are marked with a large 3. The positions of the two pairs of com-
mon lines generated by a single fivefold axis are marked by a
large 5. In each case the symmetry axis lies between the pairs. All
37 pairs of common lines are indicated for the three orientations.
The common lines generated by the 15 twofold axes are shown as
dashed lines since the two lines of the ‘‘pair’’ are colinear but
oppositely directed. The Friedel symmetry of the transform forces
the values along such a line to have phases of 0 or p. The change
in the distribution and independence of the common lines for
different orientations can be seen easily by comparison of the
distribution near a twofold (U 5 89°,F 5 21°) or a threefold (u 5
69°,f 5 0°) to that near the center of the asymmetric unit (u 5
80°,f 5 11°). The positions of the common lines for different val-
ues of V are simply generated by rotating the positions for V 5 0
in the plane. Hence the distributions of lines for the same U and
F but different V are similar.
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squares solution. A low inverse eigenvalue indicates
that many, well-spaced samples have been averaged
to generate the coefficient, while a high one indi-
cates that only a few sample points were used so
that the coefficient is more susceptible to noise. The
eigenvalue spectrum provides an answer to the
question of how many images are necessary to de-
termine a reconstruction to a given resolution. Since
the eigenvalues are only determined by the spacing
and number of the sample points, the eigenvalue
spectrum is not affected by the signal to noise in the
data or the reliability of the orientations. This infor-
mation is seen from the resolution dependence of the
phase residual during refinement.
Once the coefficients of the expansion of the trans-

form are determined they are used to calculate the
corresponding coefficients of the expansion in real
space

gn(r, Z) 5 *
2`

`

Gn(R, Z) Jn(2pRr)2pR dR

and the density in polar coordinates

r(r, f, z) 5 (n *
2`

`

gn(r, Z) exp(inf) exp(2pizZ)dZ.

This polar expansion is then interpolated onto a
Cartesian system to complete the reconstruction
process.
The symmetry of the expansion functions is 52

and hence the threefold symmetry elements of icosa-
hedral (or 532) symmetry are not imposed on the
reconstruction. Sixty icosahedrally related planes of
data are extracted from each transform so that the
presence of the threefold symmetry in the recon-
struction signals agreement between the data from
different particles. Full icosahedral symmetry can
be imposed by real space averaging of the map. This
averaging increases the signal-to-noise within the
map.
In the early stages of a project, it is often useful to

calculate a low-resolution, three-dimensional recon-
struction from a single particle. The icosahedral
sampling of the data forces such a reconstruction to
be icosahedral but the eigenvalue spectrum will in-
dicate that it is poorly determined and artifact rich
as a result. Such a reconstruction can never serve as
evidence for the icosahedral nature of the particle,
but it can be useful in classifying particles or gener-
ating models for further orientation searches.

MODEL-BASED ORIENTATION SEARCHES

The reader who has never attempted to determine
orientations by the use of common lines will have no
appreciation of its difficulty or the lack of certainty
which plagues the early steps in the reconstruction

process. The development of a model-based orienta-
tion search method for icosahedral particles allows
one to use a first, possibly noisy, reconstruction to
check and refine orientations independently of the
common lines approach (Cheng et al., 1994). In the
early stages of the reconstruction, the comparison of
the two methods allows one to gain confidence in the
correct orientations and discard incorrect orienta-
tions quickly. Once a structure has been established
from a subset of data, the use of model-based refine-
ment allows rapid screening for other additional
particles and expansion of the data set.
The model-based refinement algorithm used in

the icosahedral programs is based on a polar Fourier
transform (pft) (Cheng et al., this issue). A three-di-
mensional structure which has usually been symme-
trized and radially cropped to increase its signal to
noise ratio is used to generate projections for each
value of u and f throughout the asymmetric unit
(Fig. 4A). Each model projection r(x,y) is then sam-
pled onto polar coordinates r(r,g) (Fig. 4B). The den-
sity for each r is then Fourier transormed to produce
the pft which is an array of one-dimensional Fourier
transforms along g (Fig. 4C). These pfts are used to
select the projection which most closely matches the
particle image. The conversion to pfts allows com-
parison which is independent of V. Each particle im-
age is first centered by cross-correlation with the
circularly averaged projection of the model and then
converted to a pft. The best match between the
model and the image is found by multiplication of
the pfts to calculate the one-dimensional cross-
correlation. The model orientation which gives the
highest cross-correlation is selected. Once the best
match of projection to image has been found, the
best value of V is determined by interpolation in the
polar cross-correlation function. The V is estimated
by a parabolic fit to the peak of the one-dimensional
cross-correlation function maps to a rotation since
this is a polar Fourier transform. The hand is se-
lected by cross-correlating the image with the un-
flipped and flipped model projections. The center of
the image is then refined by using this model pro-
jection. The values of the new orientation and origin
are then written out in a format which can be used
by cross-common lines refinement or by a further
round of model-based orientation search.

DATA FORMATS, OPERATING SYSTEMS, AND
PROGRAM NAMES

The icosahedral reconstruction programs de-
scribed above have their origin in a set of FORTRAN
routines written by R. A. Crowther at the MRC LMB
that have been modified and extended by a contin-
uous interchange between the groups of EMBL and
Purdue. The EMBL and Purdue versions are func-
tionally equivalent but utilize different data formats
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and program names. Both run under VMS on AXP
and VAX architectures. The EMBL version utilizes
the MRC image, map, and fft formats and has been
ported to IRIX and to OSF1. An architecture stamp
on the files allows their reading on either UNIX or
VMS machines in the same manner that CCP4 files
can be exchanged between architectures. The Pur-
due version utilizes a packed image format in which
many images are stored in a single file. This helps
minimize ‘‘bookkeeping’’ of files and reduces the
overhead of many file openings. Only image data is
stored. The fft is calculated within each program as
it is needed.

FUTURE PROSPECTS

The programs now available cover a comprehen-
sive set of manipulations for icosahedral reconstruc-
tions. The future holds the promise of increased res-
olution. Instrumental improvements such as the use
of higher voltage electron microscopes and field
emission guns are obviously one way to achieve this.
However, as the resolution is increased, the number
of particles used for averaging and the accuracy with
which the particles need to be aligned also need to
increase. These are computationally intensive tasks
and are candidates for parallel computing algo-
rithms. One recent important lesson is that im-
proved image quality and larger data sets do indeed
lead to higher-resolution structures. It is clear that
the limit has not been reached and that the intrinsic
order of the particles will support even higher reso-
lution.
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