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Optimization method to obtain appropriate spacing parameters for  

crop cultivation 
 

Weilong Ding1, Chengcheng Fan1, Lifeng Xu1*, Tao Xie1, Yang Liu1, Zangxin Wan1, Nelson Max2 

(1. College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310026, China; 
2. Department of Computer Science, University of California, Davis, CA 95616, USA) 

 
Abstract: Considering the time-consuming and tedious work of the current methods to control plant layout, which is mostly 
based on expert experience or field trials, we propose an algorithm to optimize and simulate a planting layout based on a virtual 
plant model and an optimization algorithm.  A functional-structural plant model, which combines the structure and 
physiological function of plants, is used to construct a planting scene.  The planting and row spacing are set as the genetic 
factors and the chromosomes of the genetic algorithm are encoded with a binary method.  The photosynthetic yield of the unit 
planting area is denoted as the fitness value.  By using this method, the intercropping of maize and soybean plants and the sole 
cropping of rice plants are studied.  Experimental results show that the proposed method can obtain a high yield planting plan. 
Keywords: functional-structural plant models, genetic algorithm, spacing optimization, plant spatial distribution 
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1  Introduction  

In China, many kinds of crops are grown.  Different types of 
crops need different environments to grow well.  For example, the 
distribution and layout of plants in a field affect the light utilization 
of the crop canopy, the transport of materials, the resilience, and 
the competition for soil nutrients among the plants.  A reasonable 
arrangement of row spacing and field planting modes can take full 
advantage of the physiological characteristics of crops and their 
regulation ability and reduce competition among plants, thereby 
avoiding overgrowth in early stages, ensuring the full utilization of 
light, heat, and other resources, and improving field microcirculation 
to accumulate additional organic matter.  Therefore, the scientific 
and effective control of plant layout is necessary to regulate the 
growth of crops and improve their yield and quality[1]. 

The optimal allocation of plant layout has been valued by 
agricultural producers and researchers[2].  The determination of 
the layout of traditional agricultural crops is mostly based on expert 
experience[3,4] or field trials[2-11].  Although the empirical model of 
experts is simple and practical, it tends to target certain 
characteristics of an area such as climate, geography, soil type, and 
crop planted, and therefore has less general applicability.  
Traditional field trials also target a limited number of varieties.  
Testing should be repeated after plants are changed, thereby 
resulting in time-consuming and tedious work.  With the 
popularization of mechanical sowing and planting, the spacing of 
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sowing is often uniformly determined for the same crop, and 
cannot reflect the characteristics of different plant types.  This 
traditional approach has failed to meet the requirements of modern 
precision agriculture for the precise positioning, quantification, and 
timing of agronomic measures and the modern agriculture 
requirements for smart farming technology[12] and production 
processes. 

Plant spacing, row spacing, and field planting patterns are key 
factors affecting the regulation of crop spatial layout and 
population structure.  Different combinations of those factors will 
produce different yields.  Therefore, problems related to spatial 
layout optimization in plants are complex.  Many solutions are 
available for this kind of optimization problem in practical 
agricultural production, which has a large solution space and 
involves spatial information.  In recent years, there are researchers 
who utilized functional-structural plant models (FSPMs) and 
optimization algorithms for this kind of problem and good results 
have been obtained.  For example, Qi et al.[13] used particle swarm 
optimization (PSO) to automatically optimize the sink strength 
parameters in a virtual corn model and obtained the ideal plant type 
of corn to increase the weight of corn, leaves, and stalks.  
Quilot-Turiona et al.[14] used genetic algorithms to automatically 
optimize the six most influential parameters in a virtual peach tree 
model and obtained the ideal peach plant type with improved fruit 
quality.  However, their optimization factors are abstract and 
focused on describing the physiological processes in crops.  
Providing intuitive reference information to quantify the plant type 
design is difficult.  Drewry et al.[15] used the multi-objective 
optimization algorithm to change the five characteristic parameters 
in the canopy to find the optimal combination of canopy structural 
parameters, and simultaneously improve plant yield, water use 
efficiency, and photosynthesis.  However, the parameter to be 
optimized is a macroscopic description of the canopy structure, 
which cannot describe the geometric morphological characteristics 
of individual plants. 

In this article, we propose an optimization strategy for plant 
spatial distribution based on a virtual plant model and a genetic 
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algorithm.  By using this method, we will study the optimization 
of plant layouts of two kinds: 1) intercropping of maize and 
soybean plants; 2) sole cropping of rice plants.  To achieve this 
goal, starting with the solution based on intelligent computing, we 
combine the geometrical characteristics of the virtual plant models 
with the spatial structure and physiological characteristics of the 
plant population, and also the physical and geometric 
characteristics of the leaves.  Our study will provide a technical 
reference to determine the appropriate spacing parameters for crop 
cultivation. 

2  Abstraction of the problem 

In agricultural practice, two methods have been developed to 
grow crops in the same area simultaneously: 1) planting one type of 
plant, or sole cropping and 2) planting different crops at intervals of 
a certain number of rows, such as 1:2 or 2:3, called intercropping.  
Intercropping is frequently used between high and short crop plants, 
such as maize and soy. 

Here we consider crop varieties, field configuration, plant type, 
geographical latitude, planting season, and many other factors and 
to obtain the optimum morphological traits of crop plants, the 
optimum plant spacing, and the optimum row spacing parameter 
characteristics to obtain the maximum photosynthetic yield based 
on the functional structure model of plants under the specific light 
conditions.  Before designing the algorithm, we should analyze 
the evolution of plant morphological characteristics of different 
plant species in different growth stages with different row spacing 
and planting patterns and the spatial and temporal variations of 
light distribution.  In a monoculture or intercropping mode and 
different planting modes, such as equal row spacing, wide–narrow 
row spacing, and staggered row, the range of row and plant spacing 
should be explicit.  The characteristics of monoculture and 
intercropping methods should be compared through studies of plant 
spatial layout, and the types of parameters that must be optimized 
should be determined.  For a monoculture, the parameters to be 
optimized are plant spacing, row spacing, and their relative 
positions in the field. 

For two different plants, namely, A and B, individual plant 
spacing and row spacing, the allocation of plant and row spacings 
between the two crops, and the ratio between the number of the 
rows of two crops should also be optimized.  Assuming that f(x) 
represents the mapping from the combination x of different layout 
factors in the photosynthetic carbon assimilation of a plant; we may 
initially derive an optimization model describing the planting 
layout of a plant as follows: 

max M(xi)∈S, i∈{1,2} 
where, xi refers to a vector composed of layout factors, x1 

represents plants planted as a monoculture; x2 indicates two kinds 
of plants planted in an intercropping manner.  We want to 
maximize M(x) by using the functional-structural plant models and 
an optimization algorithm. 

3  Establishment of functional-structural plant 
models (FSPMs) 

A functional-structural plant model is a model that accurately 
reflects the interaction between the three-dimensional 
morphological structure and physiological functions of a plant 
based on its specific morphology.  It provides a new way to study 
the operation of the plant system under different environmental or 
internal factors.  To establish an FSPM model, one needs to 
establish the plant structure in terms of basic units, the rules of 

morphological development and the models of the metabolic 
processes that drive plant growth[16].  We utilize a software called 
GroIMP[17] (Grammar-related Interactive Modeling Platform 
Growth) to build the FSPMs we need.  It is a modeling platform, 
based on Java and the tailored modeling language XL (eXtended 
L-systems), and includes model construction, visualization, 
interactive modules, etc.  XL is developed based on the Java 
programming language, and further integrated with the parallel 
rewriting rules of the L-system[18]. 
3.1  Modeling of Plant Structures  

To simulate the topological structures of the plants and their 
growth process, the spatial characteristic of maize, soybean and 
rice plants at each growth stage, which include the topology and the 
sequence of activities of various plant modules, are analyzed to 
deduce the parameters of an eXtended L-system, such as axiom and 
productions.  We divide the architecture of those three plants into 
base, growth unit, fruit, leaf, etc., and suppose that the growth unit 
is made of an internode, an axillary meristem, and a leaf.  On this 
basis, we can deduce the axiom and productions to describe the 
spatial structure.  For example, through analyzing of the 
topological structure of soybean, the initial graphics structure 
axiom ω of the soybean generating structure and production rule 
set {R1, R2, R3, R4} of an eXtended L-system are as follows: 

ω: B(1) 
R1: B(i) (i<=maxRank) → B(i+1) M(i, 1) 
R2: M(i, j) (i<=maxRank, j<=maxOrder) → P(i, j) M(i, j+1) 
R3: P(i, j) (i<=maxRank, j<maxOrder) → I(i, j) & (180) G(i, j) 
R4: P(i, j) (i<=maxRank, j<maxOrder) → RL(α)I(i, j) φ(60) 

Lk1(i, j) φ(180) Lk2(i, j)  φ(-60)Lk3 (i, j) 
where, B is the base, m is the meristem; P is the growth unit; I is 
the internode; Lk1 is the leaf; G is the pod; & (180) is used to 
control the angle between soybean pod and stem; RL(α) is used to 
control the angle of stem and branches; φ(60) controls the 
trifoliolate leaves; parameters i and j presents the tiller number and 
internode number; maxRank is the maximum number of single 
stems, and maxOrder is the maximum number of internodes. 

We adopt a method of polyhedral joints to simulate the stems 
and develop a function with four parameters (the spatial position, the 
direction, the radius, and the length of cylinder) to conveniently 
draw a cylinder.  Since the stem is cylindrical, an internode was 
used as a unit in the model, and the stem consists of multiple 
connective internodes.  The cylinder function provided by GroIMP 
was used to simulate the internodes.  Simulation of the leaves in 
this paper was achieved by controlling of feature points and forming 
triangle meshes using GroIMP polygon Mesh functions.  The male 
and the female tassels of a maize plant, and the pods of a soybean 
plant, are simulated based on the analysis of their shape and 
characteristic by using the suitable functions provided by GroIMP.  
The parameters of different organs at different growth times are 
saved into a database, and then the morphological models of those 
three plants are established, as shown in Figure 1. 
 

a. Maize plant b. Soybean plant c. Rice plant 
 

Figure 1  Simulated shapes of different crops 
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3.2  The models of the metabolic processes 
The light environment, the radiation model, the photosynthesis 

model, the carbon partitioning model, and the growth functions for 
organs, are considered to build the plants’ functional models while 
neglecting the effects of water and mineral uptake on plants.  

We establish a virtual light environment[19,20], which has two 
kinds of radiations: 1) the solar radiation directly reaching the 
Earth’s surface, which named the direct radiation; and 2) the solar 
radiation being scattered after passing through the atmosphere, 
which called the diffuse radiation.  According to the solar constant, 
the time-varying Earth-Sun distance, the real Earth-Sun distance 
and the elevation angle of the sun, the direct radiation (W/m2) and 
the diffuse radiation (W/m2) can be calculated.  

The amount of Photosynthetic Active Radiation (PAR), 
intercepted by the canopy of plants is calculated using a radiation 
model in the platform of GroIMP[21].  For example, we divide the 
maize canopy into two parts: 1) the upper part, which is above the 
top of the soybean plant; and 2) the lower part, which is the rest.  
With the leaf area index of the upper and lower parts of the maize 
canopy, together with the unit area of the soybean calculated, 
radiation intensity of the upper and lower parts of the maize and the 
soybean canopies is calculated using the radiation.  We calculate 
the crops’ extinction coefficients[22] respectively.  Then the light 
interception amount of the intercropping soybean and maize can 
also be calculated[23]. 

A photosynthesis model which changed the species-specific 
parameters and the environmental parameters accordingly[24] was 
established to estimate the current average leaf photosynthetic rate 
(mol/m2s).  Through the calculation of light distribution in the 
canopy and single leaf photosynthesis efficiency, the available 
photosynthetic products from all leaves are collected to a Common 
Assimilate Pool (CAP)[25].  The accumulation of photosynthetic 
production PR(T) (unit: g), which is produced in each growth day 
of soybeans or maize’s leaves with the area of x (unit: m2), is 
dynamically added to CAP, and the assimilation substance YCAP(T) 
in day T is[28]: 

YCAP(T) = YCAP (T–1) + PR(T)             (1) 
Growth is based on the source-sink hypothesis with organ sink 

forcing the current assimilates to be distributed to various organs 
for growth and development.  During the growing process, the 
sink strengths of all organs are added up.  In the case of no 
material transport resistance, each growing organ O obtains the 
assimilation production Ko(T) (unit: g) from the pool through 
competition, according to their percentage of its own sink strength 
to the total sink strength[26].  Thus, the biomass amount BO(T) of 
organ O in growth day T is: 

BO(T) = BO(T–1) + KO(T)              (2) 
According to allometric relationships between the biomass 

increment of organ O in growth cycle T and plant’s 3D geometrical 
sizes, the diameter variation DO(T) of organ O is:  

DO(T) = KO(T)×φO                (3) 
where, φO is the conversion factor between biomass and organ 
size[26].  To different kinds of plants or different kinds of organs in 
a plant, the values of φO are different.  However, in order to 
reduce the complexity of the model, we suppose that the values of 
φO are the same for one type of organ in a plant.  

In this paper, a day was considered as the basic time unit for 
the growth cycle.  Plants grow once in each simulation step, and 
their intrinsic function and three-dimensional structure change once.  
Therefore, the growth dynamics of the maize/soybean plant before 
the termination of the plant growth are simulated.  The 

functional–structural model of rice used in this study is based on 
our previously published paper[28]. 

4  Plant spacing optimization based on the 
optimization algorithm 

With the preceding analysis, an optimization algorithm of a 
planting layout based on an evolutionary algorithm is proposed.  
The optimum design of plant layout factors is achieved by 
optimizing the growth conditions.  Several problems should be 
considered during the algorithm design: the coding strategy and 
initial population design of individual chromosomes, the design 
strategies of genetic operators, and the evaluation of individual 
fitness.  The coding format of an individual chromosome is    
{c0, c1,…, cnc-1}, where ci denotes one chromosome, and nc 
represents the number of chromosomes contained in the genome.  
The plant spacing, the row spacing, the relative position, the 
planting method (monoculture or intercropping), and the ratio 
between the number of rows are considered as chromosomes.  
Furthermore, chromosomes comprise multiple genes, and ng refers 
to the total number of genes in a single chromosome.  The genetic 
code string length, population size, termination algebra 
optimization, and other parameters strongly influence algorithm 
efficiency and optimization results, so the optimization objective, 
algorithm efficiency, and computer performance are combined to 
set the parameters of the optimization algorithm.  Figure 2 shows 
the flowchart of the plant spacing optimization algorithm.  

 
Figure 2  Flowchart of the optimization algorithm 

 

In the algorithm, parents continuously generate individual 
offspring through selection, crossover, and mutation operations, 
and the resulting individual offspring compete with their parents to 
join the updated population.  The process continuously cycles 
until it meets the programmed termination condition.  After 
several generations of optimization occur, the elite individuals are 
obtained and the appropriate spacing parameters for crop 
cultivation are also determined. 
4.1  Coding scheme 

In the plant spacing optimization algorithm, the genetic factors 
are a combination of plant and row spacings.  In this study, 
individuals are coded in terms of their plant and row spacing, and 
each information bit of the genetic factor is 0 or 1.  The range of a 
parameter is [Umin, Umax], and the genetic code length of the 
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parameter is l.  The smallest parameter code 0 corresponds to the 
parameter Umin, the largest parameter code 2l–1 corresponds to the 
parameter Umax, and the difference between two consecutive 
parameters is the numerical accuracy.  As the parameters are 
evenly distributed, it is easy to calculate the numerical accuracy: 

max min

2 1l

U Uδ −
=

−
                   (4) 

Binary genetic factors can be converted into real numbers 
through the binary code decoding function to obtain the real values 
of the plant spacing factor GDspacing and the row spacing factor 
GHspacing.  If a binary genetic code string is X:alal-1…a2a1, then the 
numerical value x is expressed as follows: 

1 max min
min 1

( 2 )
2 1

l i
i li

U Ux U a −
=

−
= + × ×

−∑          (5) 

4.2  Initialization of the population and genetic manipulations 
Determining the number of optimal solutions is often difficult 

when the range of feasible solutions is large.  Therefore, we need 
to conduct random sampling uniformly in the solution space of a 
problem to obtain individuals[29].  An individual with a length of 
LR is binary coded, and each bit of information on the binary code 
is randomly selected from {0, 1}.  For population initialization 
with nc individuals, at least LR×nc random decisions are required. 

Genetic manipulation includes crossing, mutation, and 
selection, which can simulate the natural selection of species in 
nature.  We use the roulette algorithm[30] to implement a selection 
operation based on the fitness of an individual.  The mutation 
strategy and the cross-operation proposed by Li et al.[29] are used to 
generate new individuals.  
4.3  Design of fitness function 

The establishment of a comprehensive evaluation model of 
individual fitness with reasonably high efficiency and low cost is a 
key step to design an optimization algorithm.  The yield usually 
reveals whether an agronomic measure is appropriate or optimal in 
agricultural production.  In this study, the yield per unit field 
planting area of the plant population is considered during the 
design of the fitness evaluation function.  The individual fitness 
evaluation model for high-yielding crops is designed through the 
observation and analysis of the configuration of different row 
spacings of high-yielding plant groups and their morphological 
changes in different growth stages.  In addition, the model must 
be combined with the plant growth cycle so that the optimized 
parameters can withstand continuous adaptation tests throughout 
the growing season.  

The correlation between crop yield and photosynthetic carbon 
assimilation is significant, that is, the more the carbon assimilation 
per unit area of land is, the higher the plant yield will be.  As such, 
the fitness function of the optimization algorithm should be 
designed on the basis of the amount of assimilated photosynthetic 
carbon.  To accelerate the algorithm’s search for the optimal 
solution, we propose the addition of a dynamically changing 
penalty function to the fitness function.  An appropriate initial 
value of the penalty factor is set so that the search process can be 
simplified in the early evolution and that the algorithm can 
effectively search the solution space.  During the algorithm 
process, the penalty factor constantly changes as the evolution 
algebra increases to separate the feasible and infeasible solutions 
effectively. 

Yield is one of the most important criteria for measuring the 
suitability of plant spacing and row spacing in agriculture.  Fitness 
is calculated on the basis of the functional-structural model of the 
plants[31].  The fitness M of an individual is the total 

photosynthesis field per unit planting area, and is calculated as: 

1
( )

N

i
Y i

M
s

==
∑

                   (6) 

where, N is the number of plants; Y (i) is the yield of the i-th plant, 
and s is the planting area. 

Assuming that the plant and row spacing are inherited factors, 
we determine the plant and row spacing in terms of the yield per 
unit area.  Before using genetic algorithms for optimization, we 
should set relevant parameters, including crossover probability pc, 
mutation probability pm, initial population size nc, and maximum 
evolutionary generation tmax.  We also determine the range of 
plant and row spacing and generate P0. 
4.5  Genetic algorithm parameters 

In the genetic algorithm, LR, nc, pm, pc, and tmax of the genetic 
code string strongly influence computational efficiency and 
optimization results.  According to the range of parameters 
proposed by [32], the parameters of the genetic algorithm are set on 
the basis of the optimized object, the efficiency of the algorithm, 
and the performance of the computer used in the experiment. 

(1) LR.  In this study, the plant and row spacing of rice were 
used as genetic factors.  The length of the coding string is related 
to the range of values and optimization precision.  Therefore, the 
coding length of the genetic factors is set on the basis of the 
experience and plant type of traditional agriculture. 

(2) nc.  A large population often contains extra genotypes and 
can simultaneously deal with different individuals; therefore, 
obtaining the global optimal solution is easy.  However, the 
computation time of each generation is extended as the population 
size increases.  Considering the range of optimization objects and 
the optimization accuracy, we set the population size to 20. 

(3) pc.  The convergence rate initially improves as pc is 
increased from zero.  Considering that the selected elite 
individuals in this algorithm have retained most of the good genes 
and that the influence of pc on the good gene structure is reduced, 
we set pc to 0.9. 

(4) pm.  Variation operations can effectively generate new 
individuals and prevent the genetic algorithm from degrading to a 
random search[33].  In this study, pm is set to 0.08. 

(5) tmax.  If the optimal solution to a problem is known, then 
finding the optimal solution is the corresponding termination 
condition.  However, if the optimal solution to a problem is 
unknown, then an iteration limit constant should be set as the 
termination condition[32].  The algorithm takes a long time because 
the photosynthesis yield per unit plant area taken as the fitness 
value takes a long time to compute; therefore, we set the iteration 
limit constant to 100 generations. 

5  Experiments and analysis 
The experiment is based on a GroIMP platform and is 

programmed in Java.  Our computer hardware is Intel (R) Core i5 
4590 with 2.66 GHz CPU, 8GB memory, and NVIDIA GTX 970 
graphics card.  The rice variety used in the experiment is double 
haploid rice (DH)[26]. 
5.1  Optimization of intercropping planting of maize and 
soybean plants 

The inter-planting mode is a mode that intercropping crops are 
planted in the same field in a certain proportion.  There has been a 
great deal of maize and soybean intercropping pattern research in 
field trials.  Based on the establishment of a maize/soybean 
intercropping function and structure model, the focuses of this 
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study are the inter-planting patterns with ratio 2:3 and 1:2 of the 
maize and the soybean plants, to study the intercropping and 
compact planting, as shown in Figure 3.  The distance between 
maize and soybeans, soybean and maize is defined as inter distance 
Din, the distance between maize and maize, soybean and soybean is 
defined as space distance DMM and DSS. 

 
Figure 3  The 1:2 maize/soybean intercropping pattern  

( m  represents the maize, the other one represents the soybean, 
inside the dotted line is the calculation region) 

 

In this algorithm, more light interception is the optimization 
target.  Through continuous iteration of the genetic algorithm to 
optimize the value of Din, DMM and DSS within their specified 
ranges, the best distance combination which maximizes light 
interception will be obtained. 

In the experiments, the ratios 2:3 and 1:2 were used as the 
maize/soybean intercropping mode for planting distance 
optimization.  Furthermore, the intercropping space distances, Din 
between maize and soybean population is within the range [5 cm, 
60 cm], and the simulated intercropping population was with 10 
columns.  As for the ratio 2:3, after many minutes running for 
growth, within the domain of Din and DMM or DSS, the optimal 
planting distance combination for optimized light interception can 
be calculated simulating unit land area, shown in Table 1.  The 
change of light interception quantity in 120 days’ growth process of 
initial plants and optimal plants are shown in Figure 4.  After 110 
days, the light interception is basically stable.  The light 
interception before optimization was 7416 mol/m2·d, while after 
optimization it is 9424 mol/m2·d, which is about 1.27 times more.  
Figure 5 shows the visualization simulation results of the 
soybean/maize population.  As for the ratio 1:2, after many times 
running for growth, within the domain of [5 cm, 60 cm], the results 
are shown in Table 1.  The change of light interception quantity in 
120 days’ growth process of initial plants and optimal plants are 
shown in Figure 4.  The light interception before optimization was 
7639 mol/m2·d, while after optimization is 10429 mol/m2·d, which 
is about 1.36 times more.  The results show that the combination 
of virtual plant model, the genetic optimization algorithm and the 
ability of the computer to process data at high speed leads to obtain 
the best combination of planting distances in the designated domain 
and under the designated inter-specific mode. 

 

Table 1  Optimal planting distance of maize/soybean 
intercropping 

in the ratio of 1:2 in the ratio of 2:3 
Planting  
distance Optimal  

distance 
Initial  

distance 
Optimal  
distance 

Initial  
distance 

Din 30 5 50 5 

DMS 30 5 50 5 

DSS 10 5 10 5 

 
Figure 4  Leaves’ light interception before and after optimization 

 

 
Figure 5  Population morphology of maize/soybean (2:3) 

 

5.2  Optimization of sole cropping of rice plants 
In traditional agriculture, the large distance between adjacent 

plants is generally defined as row spacing, and the small distance is 
referred to as plant spacing.  Most of the field trials have focused 
on narrow row spacing (15-33 cm), while some studies have 
investigated broad row spacing between 36 and 42 cm[34].  In most 
modern mechanized agricultural machinery, row spacing and plant 
spacing are fixed at 30 cm and at 12-16 cm, respectively.  In this 
experiment, the changes in the plant spacing (Dspacing) and the row 
spacing (Hspacing) are controlled within a certain range.  For 
example, Dspacing and Hspacing belong to the range of [10 cm, 30 cm] 
and the range of [15 cm, 45 cm], respectively.  The initial row 
spacing is set to 20cm, and initial plant spacing is set to 15 cm. 

Rice plantings in 4×4 and 5×5 patterns are constructed on the 
basis of the GroIMP platform to generate initial populations for 
genetic algorithms.  The construction of virtual scenes and the 
simulation of the rice yield are based on the functional structure 
model proposed by [26].  Each experiment is conducted three 
times.  The optimization results of plant spacing, row spacing, 
and yield per unit area are shown in Table 2.  The yield per unit 
area of the optimized plant population improves compared with 
the planting conditions of 20 cm row spacing and 15 cm plant 
spacing. 

 

Table 2  Plant spacing optimization results of rice population 

 Hspacing/cm Dspacing/cm 
Yield per unit 

area/g·m-2 
Increase in yield 
per unit area/%

Layouts 4×4 5×5 4×4 5×5 4×4 5×5 4×4 5×5

Initial factors 20 20 15 15 546.9 532.4 — — 

1 27.5 26.6 17.6 16.8 626.5 619.3 14.6 16.3

2 26.9 27.2 17.2 16.5 632.8 615.1 15.7 15.5

3 27.8 26.1 18.2 17.4 628.1 616.4 14.8 15.8
 

For the 4×4 plants, the yield per unit area is the largest at a 
plant spacing of 17.2 cm and a row spacing of 26.9 cm.  The plant 
and row spacing of the 5×5 plants are 16.8 and 26.6 cm, 
respectively.  As can be seen in Figures 6a and 6c, the 
non-optimized rice visualization scene shows a dense population 
with generally small panicles in the rice plants.  The middle rice 



January, 2020           Ding W L, et al.  Optimization method to obtain appropriate spacing parameters for crop cultivation            Vol. 13 No.1   151 

plants are affected by the light received because of the interlacing 
of the leaves of the surrounding plants, and their growth is weak.  
The optimized rice visualization scenes are shown in Figures 6b 
and 6d.  In the population, the plant spacing and the number of 
rice ears are large, the overall growth is excellent, and the yield per 
unit area of the optimized population is improved. 

 

  
a. 4×4  non-optimized b. 4×4  optimized 

 
c. 5× 5  non-optimized d. 5× 5  optimized 

 

Figure 6  Comparisons between different layouts of the rice plants 
 

5.3  Discussion 
In comparison with traditional plant spacing optimization, the 

method based on the virtual plant model and the optimization 
algorithm is a new effort towards modeling, which reduces the 
duration of an experiment, resolves the disadvantages of traditional 
field experiments in selecting plant strains, and eliminates space 
and environmental constraints.  This research achieves the 
integration of an optimization algorithm with the model systems in 
both temporal and spatial dimensions.  It is an exploration of a 
new application area of plant functional-structural models[28]. 

The virtual plant growth scene constructed in this study can 
reveal the changes in the morphological structure of plants at 
different planting distances.  The virtual plant growth scene 
combines physiological processes, such as photosynthesis, 
assimilation, and respiration.  Some data and modeling methods 
are derived from the previous studies[25,26,31,35].  

In the proposed plant spacing optimization, the photosynthesis 
yield per unit area is considered the optimization goal.  Although 
a high yield is an important indicator of the reasonability of plant 
spacing, the quality of rice grains[36] and the lodging resistance 
capacity of plants are also affected by plant spacing and indirectly 
or directly influenced by the rice plant.  These factors are related 
to many complex conditions, such as plant traits, air conditions, 
climate, water, soil nutrients, and inorganic salt, which should be 
subjected to numerous field experiments.  Therefore, the proposed 
optimization method should be further improved. 

In the aspect of virtual model construction, data collection is 
based on manual measurement with low accuracy, although data 
regarding the morphological structure of plants used in the 
modeling of this study were obtained through field experiments.  
In the future, data should be collected through image extraction and 
3D scanning to enhance the accuracy of plant modeling parameters.  
In system development, virtual plant construction, canopy leaf area 
calculation, plant spacing optimization and closure time have been 
completed.  In future research, the application of graphics 
hardware (GPU) should be considered to compute the shadows 
affecting photosynthesis. 

 

6  Conclusions 

A method of plant spacing optimization based on a genetic 
optimization algorithm was proposed in this study.  First, the 
virtual plant model, which combines the structure and 
physiological function of crop plants, was used to construct a 
planting scene.  The planting strategies with a higher yield were 
obtained for the intercropping of maize and soybean plants or the 
sole cropping of rice plants by the optimization algorithm 
respectively.  

This study provides new ideas for researchers studying the 
rational close planting of crops.  In view of the fact that the 
optimization algorithm of planting distance specifies the pattern 
and the planting distance change domain, we still need to explore a 
more suitable optimization algorithm for intercropping planting 
distance, especially the optimization algorithm in a specific 
planting pattern. 
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