
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Inverse modeling of soil moisture dynamics: Estimation of soil hydraulic properties and 
surface water flux

Permalink
https://escholarship.org/uc/item/8gb9m1gm

Author
Bandai, Toshiyuki

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gb9m1gm
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

Inverse modeling of soil moisture dynamics:
Estimation of soil hydraulic properties and surface water flux

A dissertation submitted in partial satisfaction of the requirements

for the degree Doctor of Philosophy

in

Environmental Systems

by

Toshiyuki Bandai

Committee in charge:

Professor Teamrat A. Ghezzehei, Chair
Professor John T. Abatzoglou
Professor Thomas C. Harmon
Professor Noémi Petra
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Abstract

Inverse modeling of soil moisture dynamics:
Estimation of soil hydraulic properties and surface water flux

by

Toshiyuki Bandai

in Environmental Systems

University of California, Merced

Professor Teamrat A. Ghezzehei, Chair

Soil moisture is essential for many applications, such as agricultural irrigation, wa-
ter resources management, and natural disasters, such as landslides and droughts.
With the advancement of measurement technology, a vast amount of soil moisture
data is available from ground-based sensors and remote sensing. How can we use
such abundant data in a meaningful way? For better interpretability and extrapo-
lation capability, soil moisture data should be analyzed based on a known physical
model through an inverse modeling framework. In the dissertation, I explored the in-
verse modeling of soil moisture dynamics based on the Richardson-Richards equation
(RRE) via techniques recently developed in applied mathematics. In Chapter 1, a
general introduction is presented. Chapter 2 investigated the application of a neural
network-based inverse method called physics-informed neural networks (PINNs). I
demonstrated that PINNs with domain decomposition could approximate the solution
to the RRE for layered soils by comparing PINNs with an analytical solution of the
RRE. Chapter 3 estimated soil hydraulic properties from upward infiltration experi-
ments using the Peters-Durner-Iden (PDI) model. I demonstrated that the PDI model
better captured soil moisture dynamics for dry conditions than the van-Genuchten
Mualem model. Chapter 4 discusses the estimation of surface water flux from soil
moisture measurements through inverse modeling. I compared an adjoint method
with PINNs and demonstrated through numerical examples that both methods gave
reasonable estimates of surface water flux from soil moisture measurements. How-
ever, the adjoint method was more robust than PINNs regarding the reconstructed
soil moisture profile for a data-limited case. In Chapter 5, I summarized the limita-
tions of the current approaches and discussed future perspectives of inverse modeling
of soil moisture dynamics.
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Chapter 1

Introduction

Soil moisture is vital in many applications (Robinson et al., 2008; Vereecken et al.,
2008; Babaeian et al., 2019). Monitoring soil moisture can assist in effective irrigation
and water resource management and predict the occurrence of landslides. Accurate
simulation of soil moisture dynamics for dry conditions is necessary to assess and
predict the impact of droughts. With the advancement of technology, more and more
soil moisture data are becoming available from ground-based sensors and remote
sensing. The overall research question of the dissertation is how we extract knowledge
and insight from the soil moisture data. I approached this research question by inverse
modeling, which aims to estimate unknown attributes of interest from measurement
data combined with their mathematical modeling (Vogel, 2002). Inverse modeling is
more promising than data-driven statistical methods because soil moisture data are
usually sparse in time and space. Also, physics-based modeling allows interpretation
and extrapolation (Willcox et al., 2021).

Soil moisture dynamics can be described by a non-linear partial differential equa-
tion (PDE), commonly referred to as the Richardson-Richards equation (RRE)
(Richardson, 1922; Richards, 1931). In the RRE, the hydraulic properties of soils are
represented by water retention curves (WRCs) and hydraulic conductivity functions
(HCFs). These two soil hydraulic functions (SHFs) embody the soil pore network
affected by soil texture and structure (Assouline and Or, 2013). SHFs are intrinsi-
cally scale-dependent functions, and thus converting laboratory-based SHFs into filed
scales is challenging (Miller et al., 1998). Therefore, SHFs need to be measured or
estimated for the scale of interest. In addition to SHFs, initial and boundary con-
ditions are required to solve the RRE. Particularly, the upper boundary condition,
or surface water flux (i.e., precipitation and evaporation), is an essential variable for
water balance. Measuring surface water flux is only possible by building costly lysime-
ters (Dijkema et al., 2017). To gain knowledge from soil moisture data via inverse
modeling based on the RRE, we need to optimize both SHFs and surface water flux.

The overarching goal of the dissertation is to develop an inverse framework to esti-
mate SHFs and surface water flux from near-surface soil moisture measurements. My
focus is to harness advancements in applied mathematics, such as physics-informed
neural networks (PINNs) (Raissi et al., 2019) and an adjoint method (Ghattas and
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CHAPTER 1. INTRODUCTION 2

Willcox, 2021), as well as a recent model of SHFs called the Peters-Durner-Iden (PDI)
model (Peters, 2013; Iden and Durner, 2014; Peters, 2014).

In Chapter 2, I applied PINNs to soil moisture dynamics for layered soils. PINNs
solve the forward and inverse problems governed by PDEs based on the universal
approximation capability of neural networks (Cybenko, 1989; Hornik, 1991). PINNs
have been used in many fields, such as incompressible flows (Jin et al., 2021), sub-
surface transport (He et al., 2020; Tartakovsky et al., 2020), and water dynamics in
soils (Bandai and Ghezzehei, 2021). However, the application of PINNs to soil mois-
ture dynamics in layered soils, where there exists discontinuity in SHFs at the layer
boundary, has not been tested. I evaluated the performance of PINNs to approxi-
mate the solution to the RRE by comparing it with analytical solutions and other
numerical methods, such as a finite difference method and a finite element method. I
demonstrated that the accuracy of PINNs with domain decomposition was compara-
ble to the other numerical methods. Nevertheless, training PINNs requires extensive
hyperparameter tuning and computational demand.

In Chapter 3, I investigated the performance of the PDI model to describe soil
moisture dynamics for dry conditions. Water molecules are adsorbed on the surface
of soil minerals and flow as thin films for dry conditions. Unlike the commonly used
van Genuchten-Mualem (VGM) model (Mualem, 1976; van Genuchten, 1980), the PDI
model can describe film flow for dry conditions. I used soil moisture data from upward
infiltration experiments for seven soils with distinctive textures conducted by Sadeghi
et al. (2017), where soil moisture was measured by a shortwave infrared (SWIR)
imaging camera. The SWIR framework enabled us to monitor the advancement
of sharp wetting fronts, where the effect of film flow is essential. I demonstrated
that the PDI model accurately captured soil moisture dynamics for dry conditions
than the VGM model. However, the inverse modeling framework was successful
only for medium-textured soils. Its application to coarse-textured and clay-rich soils
was challenging due to the violation of one-dimensional flow and homogeneous soil
assumptions, respectively.

In Chapter 4, I investigated the use of an adjoint method to estimate surface
water flux from near-surface soil moisture measurements. The inverse modeling is
computationally challenging because the number of parameters is the number of time
steps, which can be one hundred to one thousand. An adjoint method enabled us to
efficiently compute the gradient and the Hessian information (Hessian-vector prod-
uct). The objective function was minimized by the inexact Newton method (Steihaug,
1983; Eisenstat and Walker, 1996), where the Hessian-vector product, not the Hes-
sian itself, was used to solve the Newton system via a conjugate gradient method.
This adjoint framework was compared with PINNs by three numerical experiments.
The comparison demonstrated that both methods gave a reasonable estimate of the
surface water flux. However, the adjoint method was more robust than PINNs in
terms of the reconstructed soil moisture profile for a data-limited case.

In Chapter 5, I summarized the limitation of the current studies and discussed
future perspectives on inverse modeling of soil moisture dynamics.
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Chapter 2

Forward and inverse modeling of
water flow in unsaturated soils
with discontinuous hydraulic
conductivities using
physics-informed neural networks
with domain decomposition

Abstract. 1Modeling water flow in unsaturated soils is vital for describing various
hydrological and ecological phenomena. Soil water dynamics is described by well-
established physical laws (Richardson-Richards equation (RRE)). Solving the RRE
is difficult due to the inherent nonlinearity of the processes, and various numerical
methods have been proposed to solve the issue. However, applying the methods to
practical situations is very challenging because they require well-defined initial and
boundary conditions. Recent advances in machine learning and the growing avail-
ability of soil moisture data provide new opportunities for addressing the lingering
challenges. Specifically, physics-informed machine learning allows both the known
physics and data-driven modeling to be taken advantage of. Here, we present a
physics-informed neural networks (PINNs) method that approximates the solution to
the RRE using neural networks while concurrently matching available soil moisture
data. Although the ability of PINNs to solve partial differential equations, including
the RRE, has been demonstrated previously, its potential applications and limita-
tions are not fully known. This study conducted a comprehensive analysis of PINNs
and carefully tested the accuracy of the solutions by comparing them with analytical
solutions and accepted traditional numerical solutions. We demonstrated that the

1The current chapter is published as Bandai, T., & Ghezzehei, T. A. (2022). Forward and
inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities us-
ing physics-informed neural networks with domain decomposition. Hydrology and Earth System
Sciences, 26(16), 4469–4495. https://doi.org/10.5194/hess-26-4469-2022.
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CHAPTER 2. PINNS FOR UNSATURATED WATER FLOW 7

solutions by PINNs with adaptive activation functions are comparable with those by
traditional methods. Furthermore, while a single neural network (NN) is adequate
to represent a homogeneous soil, we showed that soil moisture dynamics in layered
soils with discontinuous hydraulic conductivities are correctly simulated by PINNs
with domain decomposition (using separate NNs for each unique layer). A key ad-
vantage of PINNs is the absence of the strict requirement for precisely prescribed
initial and boundary conditions. In addition, unlike traditional numerical methods,
PINNs provide an inverse solution without repeatedly solving the forward problem.
We demonstrated the application of these advantages by successfully simulating in-
filtration and redistribution constrained by sparse soil moisture measurements. As a
free by-product, we gain knowledge of the water flux over the entire flow domain, in-
cluding the unspecified upper and bottom boundary conditions. Nevertheless, there
remain challenges that require further development. Chiefly, PINNs are sensitive
to the initialization of NNs and are significantly slower than traditional numerical
methods.

2.1 Introduction

Near-surface soil moisture is a critical variable for understanding land–atmosphere
interactions. Its applications range from hydrological modeling and agricultural water
management to the prediction of natural disasters (Robinson et al., 2008; Vereecken
et al., 2008; Babaeian et al., 2019). Near-surface soil moisture is also a dominant
factor that regulates microbial activity and organic matter dynamics (Pries et al.,
2017).

With the technological advancement of soil moisture sensors and remote sensing,
the availability of soil moisture data is proliferating (e.g., Sheng et al., 2017; Babaeian
et al., 2019). To gain knowledge and insight from such abundant soil moisture data,
machine learning (ML) is an appealing tool as we have seen its successes in various
fields, such as image recognition, machine translation, and natural language process-
ing. However, soil moisture data are sparsely collected with measurement errors in
heterogeneous and complex soils. Therefore, it may not be enough to solely rely on a
data-driven machine learning approach. An alternative approach combines machine
learning with physical modeling, mainly described as differential equations. Such a
hybrid approach has attracted attention in computational physics and related fields
and is called scientific ML or physics-informed ML (Karniadakis et al., 2021).

Physical modeling of soil moisture is commonly conducted by solving a partial dif-
ferential equation (PDE) called the Richardson–Richards equation (RRE) (Richard-
son, 1922; Richards, 1931). Water transport properties in soils are expressed in the
RRE as two relations, the water retention curve (WRC) and the hydraulic conduc-
tivity function (HCF), which are both highly non-linear functions (Assouline and Or,
2013). This double non-linearity makes it challenging to analyze and solve the RRE,
which has been investigated by soil physicists and mathematicians for many decades
(Philip, 1969; Radu et al., 2008; Mitra and Vohraĺık, 2021). Indeed, the RRE is one of
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the most challenging PDEs in hydrology, and the large-scale soil moisture modeling
based on the RRE has been prohibitive due to the computational demand and its
unreliable solution (Paniconi and Putti, 2015; Farthing and Ogden, 2017).

Artificial neural networks (NNs) have attracted attention as an alternative nu-
merical solver of PDEs recently. While there are some similarities between artificial
NNs and biological NNs (i.e., our brain), in this context, artificial NNs should be con-
sidered as mathematical functions with specific architectures with many adjustable
parameters. Thus, artificial NNs are simply referred to as NNs in this study. Cy-
benko (1989) and Hornik (1991) mathematically proved that NNs can approximate
any continuous function under certain conditions. The application of NNs to vari-
ous fields relies on this so-called universal approximation capability to find functional
relationships between available input data and target variables. Regardless of the
tremendous implication of the universal approximation capability, it is not easy to
find NNs that can approximate such functional relationships. Therefore, significant
efforts have been devoted in the machine learning community to investigate how to
adjust NN parameters (or train NNs) for specific problems.

The solution to PDEs is a functional relationship between dependent and inde-
pendent variables. Therefore, it is straightforward to apply NNs to approximate the
solution. Lagaris et al. (1998) were among the first to use NNs to approximate the
solution to boundary value problems for PDEs. To train NNs, they defined a loss
function so that NNs satisfy both PDEs and the corresponding boundary conditions
and minimized the loss function to estimate the NN parameters. The minimization
of the loss function required the computation of the gradient of the loss function with
respect to the NN parameters as well as the partial derivatives of the PDEs. At that
time, such gradients and partial derivatives were computed by manual derivation and
programming. However, recent progress in the software environment (e.g., Tensor-
flow (Abadi et al., 2015) and Pytorch (Paszke et al., 2019)) implementing automatic
differentiation (Baydin et al., 2018) enabled us to compute such gradients and partial
derivatives in a scalable manner with advanced processors such as graphics process-
ing units (GPUs). With the technological progress, the NN-based methods to solve
PDEs were reformulated as physics-informed neural networks (PINNs) by Raissi et al.
(2019). PINNs have been applied to both forward and inverse modeling of PDEs in
various fields, such as incompressible flows (Jin et al., 2021), subsurface transport
(He et al., 2020; Tartakovsky et al., 2020), and water dynamics in soils (Bandai and
Ghezzehei, 2021). Karniadakis et al. (2021) provide a comprehensive review of PINN
approaches.

PINNs are particularly promising for ill-posed forward and inverse modeling. Tra-
ditional numerical solvers, such as finite difference methods (FDMs) and finite element
methods (FEMs), require well-defined initial and boundary conditions, but they are
often incomplete (i.e., ill-posed). This is usually the case for simulating near-surface
soil moisture in real-world field condition, where obtaining accurate initial and bound-
ary conditions is not possible without costly instrumentation (e.g., lysimeters or flux
towers) (e.g., Dijkema et al., 2017).

A natural question on PINNs is whether PINNs can replace traditional numerical
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solvers. According to previous studies and our experiences, it is currently hard for
PINNs to achieve the same accuracy as traditional methods in a competitive compu-
tational time. However, PINNs might be a competitive numerical solver for highly
non-linear PDEs (e.g., the RRE and the Navier-Stokes equation) in high dimensions,
where traditional numerical solvers become computationally demanding. For exam-
ple, when simulating water flow under infiltration based on the RRE using traditional
numerical methods, the spatial mesh must be very small near the soil surface to ob-
tain reliable solutions, which is computationally very expensive or intractable for a
three-dimensional watershed scale. Although there is progress in numerical methods
other than PINNs, including a discontinuous Galerkin method with adaptive spatial
and temporal meshes (Clément et al., 2021), it is worthwhile to seek the potential of
PINNs to solve the RRE.

In the study, we conducted a comprehensive analysis of PINNs as a forward and
inverse numerical solver of the one-dimensional RRE for homogeneous and heteroge-
neous soils. This paper is a continuation of our previous work (Bandai and Ghezzehei,
2021), where PINNs were used to estimate soil hydraulic properties from soil mois-
ture measurements. Unlike the previous work, we investigated the ability of PINNs
to solve the forward problem in addition to the inverse problem, and the framework
was extended to heterogeneous soils. Because of the rapid progress in the field, it is
impossible to test all the variants of PINNs and their training methods. Accordingly,
we implemented some promising PINN methods, including layer-wise locally adap-
tive activation function (L-LAAF) (Jagtap et al., 2020) and domain decomposition
(Jagtap and Karniadakis, 2020), where two NNs interact with each other through
interface conditions to account for the discontinuity of hydraulic conductivity across
layers (see Fig. 2.1). To validate and evaluate the solutions derived from PINNs, we
compared them to the analytical solutions given by Srivastava and Yeh (1991) and
numerical solutions by an FDM and an FEM. The effects of the architecture of NNs
and various parameters on the performance of PINNs were investigated. In addition
to the forward modelings, we conducted inverse modeling using synthetic data, where
a surface water flux upper boundary condition was estimated from near-surface soil
moisture measurements by PINNs. Finally, we discuss current challenges and future
perspectives of PINNs for forward and inverse modeling of soil moisture dynamics
based on the RRE.

2.2 Methods

2.2.1 Richardson-Richards equation

We consider water transport in unsaturated isothermal rigid soils. In this study,
hysteresis and vapor flow are ignored, and soil hydraulic properties are isotropic. The
mass balance of water in a control volume implies the continuity equation:

∂θ

∂t
= −∇ · q+ S, (2.1)
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Figure 2.1: (a): Schematic description of a soil consisting of two distinct layers
with soil moisture sensors. (b): Physics-informed neural networks (PINNs) with
domain decomposition for a two-layered soil. For each input t(i) and z(i), physics
and data constraints are computed through automatic differentiation. The neural
network parameters ΘU and ΘL are estimated by minimizing the loss function L.
(c): Computation by a single unit. The input values (x1, x2, x3) are summed with
weights (w1, w2, w3) and added by a bias term b. The result is fed into the activation
function σ. (d): The tanh function as an adaptive activation function with a fixed
scaling parameter s and a trainable slope parameter a. The figure was inspired by
Jagtap and Karniadakis (2020).
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where θ is the volumetric water content [L3 L−3]; t is the time [T]; q is the water
flux in three dimensions [L T−1]; S is the source term [T−1]. The water flux q can be
derived from the Buckingham-Darcy law (Buckingham, 1907):

q = −K(θ)∇H, (2.2)

where K is the hydraulic conductivity [L T−1] and H is the total water head [L],
which is the sum of the water potential in soils ψ [L] and the elevation head z (positive
upward). Equations (2.1) and (2.2) are combined to derive the Richardson-Richards
equation (RRE) (Richardson, 1922; Richards, 1931):

∂θ(ψ)

∂t
= ∇ · [K(θ)∇(ψ + z)] + S. (2.3)

This form of the RRE is called the mixed form RRE, where both the volumetric water
content θ and the water potential ψ appear in the equation. To solve the RRE, the
two relationships (i.e., θ(ψ) and K(θ)) need to be defined. The θ(ψ) relationship is
called the water retention curve (WRC), while K(θ) is referred to as the hydraulic
conductivity function (HCF). The WRC and HCF are called constitutive relationships
of the RRE that characterize the movement of the water in the pore space. WRCs and
HCFs are commonly expressed by parametric models such as the Brooks and Corey
model (Brooks and Corey, 1964), the van Genuchten-Mualem model (van Genuchten,
1980), and the Kosugi model (Kosugi, 1996). In this study, the one-dimensional RRE
without the source term S is studied, which is written as

∂θ(ψ)

∂t
=

∂

∂z

[
K(θ)

(
∂ψ

∂z
+ 1

)]
. (2.4)

The zero source term S means the neglect of plant water uptake, which is valid for bare
soils or soil moisture dynamics under infiltration. The one-dimensional assumption
can be reasonable because water flow in near-surface soils is predominantly vertical.

2.2.2 Analytical solutions

It is difficult to obtain analytical solutions to the RRE because of the non-linearity of
the WRC and the HCF. In particular, analytical solutions to the RRE for layered soils
are extremely scarce. Srivastava and Yeh (1991) provided one of a few analytical so-
lutions to the transient one-dimensional RRE for both homogeneous and two-layered
soils. The analytical solutions are based on the linearization of the RRE using the
following relationships for WRCs and HCFs for ψ < 0 (Gardner, 1958):

θ = θr + (θs − θr)eαGψ, (2.5)

K = Kse
αGψ, (2.6)

where θr is the residual water content [L3 L−3]; θs is the saturated water content [L3

L−3]; αG is the pore-size distribution parameter [L−1]; Ks is the saturated hydraulic



CHAPTER 2. PINNS FOR UNSATURATED WATER FLOW 12

conductivity [L T−1]. Note that the parameter αG can be interpreted using van-
Genuchten parameters αV G and nV G (van Genuchten, 1980), as αG ≈ 1.3αV GnV G
(Ghezzehei et al., 2007). Although the parametric expressions for WRCs and HCFs
as well as the parameter values used in the study do not necessarily represent hydraulic
properties of real soils, the analytical solutions can serve to validate and assess the
performance of PINN solutions to the RRE.

2.2.2.1 Homogeneous soil

The analytical solution for a homogeneous soil requires a set of initial and boundary
conditions. The lower boundary condition is a Dirichlet boundary condition ψ = ψlb
at z = −Z, where Z is the vertical length of the soil [L]. The initial condition is the
steady-state solution of the RRE determined by the lower boundary condition and
a constant water flux upper boundary condition q = qA at z = 0. The analytical
solution to the time-dependent RRE with the initial and lower boundary condition as
well as a constant water flux upper boundary condition q(t) = qB at z = 0 is written
in terms of K∗ := K/Ks:

K∗ = q∗B − (q∗B − eαGψlb)e−(z∗+Z∗)

− 4(q∗B − q∗A)e−z
∗/2e−t

∗/4
∞∑
n=1

sin(κn(z
∗ + Z∗)) sin(κnZ∗)e−κ

2
nt

∗

1 + Z∗/2 + 2κ2nZ
∗ , (2.7)

where q∗A := qA/Ks; q
∗
B := qB/Ks; z

∗ := αGz; Z
∗ := αGZ; t

∗ = αGKst/(θs − θr); κn
is the positive roots of the equation tan(κZ∗) + 2κ = 0. The analytical solution with
respect to the volumetric water content θ can be computed from K∗ through Eq. 2.5
and Eq. 2.6 . The explicit analytical solution clarifies larger αG introduces stronger
non-linearity of the solution.

2.2.2.2 Heterogeneous soil

Srivastava and Yeh (1991) provided one-dimensional analytical solutions of heteroge-
neous soils (i.e., two-layered soil). The analytical solution is based on the assumption
that αG is the same for both layers. Therefore, this analytical solution is limited
to analyzing layered soils that have a discontinuity in the hydraulic conductivity K
across the layers. In fact, the volumetric water content θ is continuous across the
layers as the water potential ψ. The initial and boundary conditions are the same as
the homogeneous case. The analytical solution is much more complicated than the
homogeneous one, so we refer to the original literature for the detail (Srivastava and
Yeh, 1991). However, we provide the computed analytical solutions and numerical
derivations on Bandai and Ghezzehei (2022b), which can be useful to validate other
numerical methods.



CHAPTER 2. PINNS FOR UNSATURATED WATER FLOW 13

2.2.3 Mathematical formulation of PINNs

2.2.3.1 Feedforward neural networks

Feedforward NNs are used to approximate the solution of PDEs in PINNs. In this
section, the mathematical formulation of feedforward NNs with L hidden layers with
layer-wise locally adaptive activation functions (L-LAAFs) (Jagtap et al., 2020) is
introduced. NNs are mathematical functions N mapping an input vector x ∈ Rnx to
an output vector ŷ ∈ Rny :

ŷ := N (x). (2.8)

The hat operator represents prediction throughout the paper. NNs are often repre-
sented as layers of units (or neurons), as in Fig. 2.1 (b), where two feedforward NNs
consisting of four hidden layers with six units are shown.

NNs are compositions of affine transformations (the composition of linear tranfor-

mation and translation) and non-linear functions. Herein, h[k] ∈ Rn[k]
for an integer

k such that 1 ≤ k ≤ L represents the vector value corresponding to the kth hidden
layer consisting of n[k] units. h[k] for each k is computed in the following manner:

h[1] := σ(sa[1](W[1]x+ b[1])),

h[2] := σ(sa[2](W[2]h[1] + b[2])),

... (2.9)

h[L−1] := σ(sa[L−1](W[L−1]h[L−2] + b[L−1])),

h[L] := σ(sa[L](W[L]h[L−1] + b[L])),

where W[k] and b[k] are the weight matrix and bias vector for the kth hidden layer;
s ≥ 0 is a fixed scaling factor; a[k] represents a trainable parameter changing the
shape of the element-wise activation function σ. The output of the NN is computed
as

ŷ := o(W[L+1]h[L+1] + b[L+1]), (2.10)

where o is the output function; W[L+1] and b[L+1] are the weight matrix and bias vec-
tor for the output layer. The collection of the weight matricesW := {W[1], ...,W[L+1]},
the bias vectors b := {b[1], ...,b[L+1]}, and the slope parameters a := {a[1], ..., a[L]}
are the parameters of the NN, which are denoted by Θ := {W,b, a} in this paper.

To understand the role of the parameters s and a[k] introduced in the L-LAAF
(Jagtap et al., 2020), consider a case where sa[k] = 1 for all k, and σ is the identity
function. In this case, the neural network N is nothing but an affine transformation
and cannot learn a non-linear relationship. In a standard NN, non-linear activation
functions, such as the hyperbolic tangent function (tanh), are used with sa[k] = 1
for all k to learn non-linear relationships between input and output variables. As
shown in Fig. 2.1 (d), the tanh function has a ”linear” regime near the origin and
exhibits the non-linearity outside the region. By increasing the parameter sa[k], we
can increase the slope of the activation function and narrow the ”linear” regime.
Jagtap et al. (2020) reported that larger sa[k] accelerated the training of PINNs and
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captured the high-frequency components of the solution of PDEs, while sa[k] that
were too large made the training unstable. Throughout the study, a[k] was initialized
to 0.05, and s was set to 20 when the L-LAAF was used.

2.2.3.2 Formulation of PINNs for the RRE

In this section, PINNs to solve the forward and inverse problems for the RRE are
described. First, we consider the forward modeling of the one-dimensional RRE
defined on a domain Ω = (−Z, 0), the boundary ∂Ω, and the time [0, T):

∂θ

∂t
=

∂

∂z

[
K

(
∂ψ

∂z
+ 1

)]
, z ∈ Ω, t ∈ (0, T ),

(2.11)

θ(z, 0) = g(z), z ∈ (Ω ∪ ∂Ω), (2.12)

θ(z, t) = h(z, t), z ∈ ∂ΩD, t ∈ (0, T ), (2.13)

q(z, t) := −K(z, t)

(
∂ψ(z, t)

∂z
+ 1

)
= i(z, t), z ∈ ∂ΩF , t ∈ (0, T ), (2.14)

where g(z) is the initial condition; h(z, t) is the Dirichlet boundary condition on the
Dirichlet boundary ∂ΩD; q(z, t) is the water flux in the vertical direction (positive
upward); i(z, t) is the water flux boundary condition on the flux boundary ∂ΩF . Here,
we only use the volumetric water content θ for the initial condition and the Dirichlet
boundary condition because the measurement of θ is more reliable than the water
potential ψ in practical situations, though the modification to the water potential
ψ is straightforward (see Sect. A.1.5). Although we limit ourselves to either the
Dirichlet or the water flux boundary condition, the framework can be extended to
other boundary conditions. In this study, we focus on a particular situation where
the soil surface (z = 0) is set to ∂ΩF , and the bottom (z = −Z) is set to ∂ΩD,
which corresponds to when soil moisture dynamics is induced by the surface water
flux q(0, t) (i.e., evaporation or infiltration) while the volumetric water content at the
bottom θ(−Z, t) is kept to is kept to h(−Z, t)

PINNs aim to approximate the solution of the one-dimensional RRE ψ(z, t) by a
NN N (z, t) with the NN parameters Θ = {W,b, a}. Because the water potential ψ
is negative in unsaturated soils, we used the identity function for the output function
o of the NN (Eq. 2.10) and transformed the output as

ψ̂(z, t) := − exp(N (z, t; Θ)) + β, (2.15)

where β is a fixed parameter, which can allow ψ̂(z, t) to be zero or positive (saturated).
To construct PINNs for the RRE, the residual of the RRE is defined as:

r̂(z, t; Θ) :=
∂θ̂

∂t
− ∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
. (2.16)

Here, θ̂ and K̂ are computed from ψ̂ with the predefinedWRC and HCF (i.e., θ(ψ) and
K(θ)). The partial derivatives in the residual are computed through the reverse mode
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automatic differentiation (Baydin et al., 2018). In this method, all the computations
of PINNs are formulated as computational graphs by the software (TensorFlow in this
study), and any derivatives related to the computations can be computed exactly,
unlike numerical differentiation. This algorithm is highly efficient when the number
of parameters is large and thus suitable for training neural networks with tens of
thousands or millions of parameters. The collection of the NN parameters Θ are
identified by minimizing a loss function, which is defined as

L(Θ) := λrLr(Θ) +
∑
i

λiLi(Θ), (2.17)

where λr is the weight parameter corresponding to the loss term for the residual of the
RRE Lr(Θ); λi is the weight parameter for the loss term Li(Θ) for i = {m, ic,D, F},
where m, ic,D, and F represent the measurement data, the initial condition, and the
Dirichlet and the water flux boundary conditions, respectively. Lr(Θ) and Li(Θ) for
i = {m, ic,D, F} are defined as:

Lr(Θ) :=
1

Nr

Nr∑
i=1

[r̂(zir, t
i
r)]

2, (2.18)

Lm(Θ) :=
1

Nm

Nm∑
i=1

[θ̂(zim, t
i
m)− θim]2, (2.19)

Lic(Θ) :=
1

Nic

Nic∑
i=1

[θ̂(ziic, 0)− g(ziic)]2, (2.20)

LD(Θ) :=
1

ND

ND∑
i=1

[θ̂(ziD, t
i
D)− h(ziD, tiD)]2, (2.21)

LF (Θ) :=
1

NF

NF∑
i=1

[q̂(ziF , t
i
F )− i(ziF , tiF )]2, (2.22)

where {zir, tir}Nri=1 denotes the Nr residual points (also called collocation points) at
which the residual of the PDE is evaluated; {θim, zim, tim}Nmi=1 denotes the Nm mea-
surement data points; {ziic}Nici=1 denotes the Nic initial condition points; {ziD, tiD}NDi=1

denotes the ND Dirichlet boundary condition points; {ziF , tiF}NFi=1 denotes the NF wa-
ter flux boundary condition points. Here, Lr forces PINNs to satisfy the PDE, and
Lm helps PINNs to fit the measurement data while Lic, LD, and LF enforce the initial
condition, the Dirichlet and the water flux boundary conditions, respectively. Note
that initial and boundary conditions can be encoded in a hard manner so that the
approximated solution automatically satisfies these conditions (Lagaris et al., 1998;
Sun et al., 2020). However, we encode these conditions in a soft manner and treat
them as data points as in Eq. 2.17 to leverage the flexibility of PINNs, which is es-
sential in practical situations where precise initial and boundary conditions are rarely
available.
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In the framework, the measurement data can be provided, which is not necessary to
make the forward modeling well-posed. PINNs can easily incorporate such additional
measurement data to improve accuracy and computational efficiency. As for the
inverse modeling, the implementation of the PINNs is almost identical to the forward
modeling. If we invert physical parameters in PDEs from measurement data (e.g.,
saturated hydraulic conductivity Ks), the parameters and the NN parameters are
simultaneously estimated. Also, one can drop the loss terms for the initial or boundary
conditions if they are not available, though this makes the problem ill-posed. In the
study, the forward and the inverse modeling was conducted in Sect. 2.3 and Sect.
2.4, respectively.

2.2.3.3 Errors in PINN solutions

Despite the increasing popularity and successes of PINNs in various fields, the the-
oretical understanding of PINNs is still limited. Shin et al. (2020) were among the
first who conducted a rigorous analysis of PINNs, where they formulated the gen-
eralization error of PINNs as the sum of the approximation error, the optimization
error, and the estimation error. The approximation error is the distance between
the best possible approximation by PINNs and the solution of PDEs. The optimiza-
tion error is due to the difficulty in minimizing the non-linear and non-convex loss
function. The estimation error is caused by the insufficiency of data to train PINNs.
They demonstrated theoretically and numerically that the sum of the approximation
and the estimation error decreased with the increase in the training data for linear
second-order elliptic and parabolic PDEs.

Mishra and Molinaro (2022) provided a theoretical framework to estimate the
generalization error of PINNs for a variety of PDEs, including non-linear PDEs. They
demonstrated that the generalization error would be sufficiently low if 1) PINNs are
trained well (i.e., small optimization error); 2) the number of residual points is large;
3) the solution of PDEs is sufficiently regular. In the study, we numerically analyzed
the accuracy of PINN solutions to the RRE and investigated whether their theoretical
claims could be applied to our case.

2.2.4 Implementation of PINNs

Training of NNs requires trial and error because the theoretical understanding of
the mechanism is still limited. However, feedforward NNs used in PINNs have been
investigated for many years, so empirical knowledge is available (Bengio, 2012; LeCun
et al., 2012). Those techniques are not new, but we would like to reiterate some of
them with the explanation of our implementation of PINNs. The PINN algorithm
for heterogeneous soils is summarized in Fig. 2.2. We used TensorFlow (Abadi et al.,
2015) to implement PINNs, and the source code is available in Bandai and Ghezzehei
(2022b).
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Algorithm 1 PINNs with domain decomposition

Step 0: Divide the spatial domain into ΩU and ΩL and assign two neural
networks NU and NL to each domain. Determine the architecture of two neural
networks NU and NL and weight parameters λi in the loss function L (Eq. 17).
Step 1: Construct the neural networks NU (z, t; ΘU ) and NL(z, t; ΘL) with
neural network parameters ΘU and ΘL.
Step 2: Initialize the neural network parameters to Θ0

U and Θ0
L.

Step 3: Given available data (e.g., initial and boundary conditions, measure-
ment data), train the neural networks NU and NL by minimizing the loss func-
tion L(ΘU , ΘL).
i ← 0
while i < max iteration Adam do

Θi+1
U ← Θi

U + Θ̂i
U

Θi+1
L ← Θi

L + Θ̂i
L

i ← i + 1
end while

while L-BFGS-B stopping criteria are not met do
Θi+1

U ← Θi
U + Θ̂i

U

Θi+1
L ← Θi

L + Θ̂i
L

i ← i + 1
end while

1

Figure 2.2: The algorithm for PINNs with domain decomposition for a two-layered
soil. ΩU and ΩL refer to the spatial domain for the upper and lower layers, respectively.
In Step 3, max iteration Adam is the maximum number of the Adam iteration (set
to 100000 in the study); Θ̂ represents the update for the neural network parameter
Θ; L-BFGS-B stopping criteria are summarized in Sect. 2.2.4.3.

2.2.4.1 Architecture of neural networks

Before training NNs, it is recommended to transform input data so that the compo-
nents of input variables x have zero mean, and each variable has a similar variance.
In our implementation, we did not transform or normalize input data (i.e., t ∈ [0, T ]
and z ∈ [−Z, 0]). However, when both input variables were positive, the training
of PINNs was difficult, as mentioned in LeCun et al. (2012). Thus, it is better to
transform input data for future studies. As for output variables, it is also important
to take into account their range, as in Eq. 2.15.

The architecture of NNs (i.e., the number of hidden layers L and units n[k] for k =
1, ..., L) determines the complexity of functions the NN can learn and thus depends on
PDEs of interest and the corresponding initial and boundary conditions. It is known
that the expressive capability of NNs grows exponentially with the number of hidden
layers (Raghu et al., 2017). We used the same number of units for all hidden layers,
and the effects of the architecture of NNs on PINN performance were experimentally
investigated. As for activation functions, symmetric activation functions with respect
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to the origin, such as the tanh function, are preferable to non-symmetric functions
such as the sigmoid function. Because PINNs require the second derivative of state
variables in the loss function, we used the tanh function for the activation functions
σ for all hidden layers.

2.2.4.2 Initialization

At the beginning of the training, the collection of the weight parameters W and the
bias parameters b have to be initialized. Glorot and Bengio (2010) demonstrated
that simple random initialization caused the activation functions to be ”saturated,”
meaning that the slope of the activation function becomes zero. To prevent this, they
introduced the Xavier initialization for the weight parameters W, which was used
in our implementation. The bias parameters b were initialized to be 0. Because the
initialization ofW significantly affects PINN solutions, different sets of randomization
must be tested. Therefore, we used ten different random seeds for the initialization
of each setting of PINNs. In addition to W and b, we can tune the parameter β in
Equation 2.15 to give different initializations of ψ̂.

2.2.4.3 Training

PINNs were trained to minimize the loss function (Eq. 2.17). The loss term for the
residual Lr was evaluated at randomly sampled residual points in the spatial and
temporal domain (Fig. A.1 (b)). For each problem, the same residual points were
used. We tested the residual-based adaptive refinement algorithm proposed by Lu
et al. (2021b), where residual points are chosen where the residual of PDEs is high.
For our case study, the effectiveness of the algorithm was minor, and thus the results
are only shown in the Appendix (see Sect. A.1.1 and Fig. A.1).

The weight parameters in the loss function λi (Eq. 2.17) play a crucial role in
minimizing the loss function. In the original PINN framework proposed by Raissi
et al. (2019), all λi were set to 1. However, Wang et al. (2021) demonstrated that
the loss terms corresponding to initial and boundary conditions need to be penalized
more, and optimal values of those weight parameters are problem-dependent. To
overcome this challenge, they proposed the learning rate annealing algorithm (Wang
et al., 2021), where the weight parameters in the loss function λi are updated during
training to balance the relative importance of each loss term. We tested the algorithm,
but this resulted in a modest improvement compared to the L-LAAF, so the results
are given in the Appendix (Sect. A.1.2 and Fig. A.2). In the study, the effects of λi
were investigated in Sect 2.3.1.5.

It is common to use a stochastic gradient descent algorithm to minimize the loss
function to train NNs. In this study, we used the Adam algorithm (Kingma and Ba,
2014). Because the Adam optimizer is not enough to achieve solutions with high
accuracy, previous studies on PINNs employed a two-step optimization strategy, and
we followed it. First, the loss function was minimized using 105 iterations of the
Adam algorithm in TensorFlow (Abadi et al., 2015) with the exponential decay of



CHAPTER 2. PINNS FOR UNSATURATED WATER FLOW 19

the learning rate. The initial learning rate was set to 0.001 with the decay rate of
0.90, the decay step was set to 1000, and the other parameters were set to their
default values. The Adam algorithm used a ”mini-batch” of the data, where only
128 of all residual points were considered while all the initial and boundary data
points were used for each iteration. After the Adam algorithm, the loss function
was further minimized through the L-BFGS-B optimizer (Byrd et al., 1995) from
Scipy (Virtanen et al., 2020), which was terminated once the loss function converged
with prescribed thresholds. The L-BFGS-B algorithm can utilize the information on
the approximated curvature of the loss function and find a better local minimum
than a stochastic gradient descent for the case of PINNs. The following L-BFGS-B
parameters were used: maxcor = 50, maxls = 50, maxiter = 50000, maxfun = 50000,
ftol = 1.0× 10−10, gtol = 1.0× 10−8, and the default values for the other parameters.
Although it is desirable to tune the parameters for each optimizer, we fixed those
parameters in the study.

2.2.4.4 Domain decomposition

Natural soils have distinctive layering, and the hydraulic properties of each layer vary
between the layers, which results in continuous but not a differentiable water potential
distribution in the soil profile. To deal with such spatial heterogeneity, Jagtap and
Karniadakis (2020) proposed a domain decomposition method for PINNs, where a
computational domain is divided into sub-domains, and a NN is assigned to each sub-
domain. Then, the NNs interact with each other during the training through interface
conditions such as the continuity of mass and flux. Such interface conditions can be
incorporated into the loss function. For simulating water flow in a two-layered soil,
two NNs NU and NL are assigned to the upper and lower layer, and the continuities of
water potential, water flux, and the residual of the RRE are imposed at the boundary:

ψ̂U(zI , t) = ψ̂L(zI , t), (2.23)

q̂U(zI , t) = q̂L(zI , t), (2.24)

r̂U(zI , t) = r̂L(zI , t), (2.25)

where the subscripts U and L mean a value with the subsucripts (e.g., ψ̂U) was com-
puted by NU and NL, respectively; zI represents the spatial coordinate of the inter-
face. These interface conditions are incorporated into the loss function as a loss term
(Eq. 2.17):

LIψ(ΘU ,ΘL) :=
1

NI

NI∑
i=1

[ψ̂U(zI , t
i)− ψ̂L(zI , ti)]2, (2.26)

LIq(ΘU ,ΘL) :=
1

NI

NI∑
i=1

[q̂U(zI , t
i)− q̂L(zI , ti)]2, (2.27)

LIr(ΘU ,ΘL) :=
1

NI

NI∑
i=1

[r̂U(zI , t
i)− r̂L(zI , ti)]2, (2.28)
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where NI is the number of points on the interface, where the loss terms are evaluated;
ΘU and ΘL are the neural network parameters for NU and NL, respectively. In the
implementation, we found that the logarithmic transformation of water potential ψ
was helpful to balance the loss terms. Therefore, instead of LIψ , we imposed the
continuity of the output of the neural networks, as in

LIN (ΘU ,ΘL) :=
1

NI

NI∑
i=1

[NU(zI , ti)−NL(zI , ti)]2. (2.29)

Note that the original literature Jagtap and Karniadakis (2020) trained each NN
separately by constructing multiple loss functions for parallel computation, but we
trained the two NNs (NU and NL) simultaneously. The algorithm is summarized in
Fig. 2.2. Although our algorithm is for a two-layered soil in one dimension, this
method can be extended to more layers with more complex geometries in higher
dimensions (Jagtap and Karniadakis, 2020).

2.2.5 Evaluation of numerical error

Numerical errors of PINNs and the other numerical methods (i.e., FDMs and FEMs)
in terms of the volumetric water content θ and the water potential ψ were evaluated
by comparing the analytical solutions to those numerical solutions computed on a
uniform grid with a spatial step of 0.1 cm and temporal step of 0.1 h. Absolute error,
relative absolute error, squared error, and relative squared error were computed.
Because these different types of errors exhibited strong correlations, we show, in the
following sections, relative squared error in terms of the volumetric water content ϵθ

defined as:

ϵθ :=

∑
t

∑
z(θ̂(t, z)− θ(t, z))2∑
t

∑
z θ(t, z)

2
, (2.30)

where θ and θ̂ represent analytical and numerical solutions, respectively.

2.3 Forward modeling

In this section, we report the main results of the forward modeling of water trans-
port in homogeneous and heterogeneous soils using PINNs. PINN solutions of the
RRE with varying NN architectures and parameters were evaluated using the one-
dimensional analytical solutions by Srivastava and Yeh (1991) for homogeneous and
heterogeneous soils introduced in Sect. 2.2.2. To assess the performance of PINNs,
numerical solutions obtained by an FDM and an FEM are also presented. The im-
plementation of the FDM for the homogeneous case is described in Sect. A.1.3 while
the FEM solution for the heterogeneous case was obtained by HYDRUS-1D (Šimůnek
et al., 2013).
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2.3.1 Homogeneous soil

We simulated water infiltration into a homogeneous soil using the RRE. This simple
setup was used to understand the characteristics of PINNs with different settings.
We specifically investigated 1) the effects of NN architecture (the number of layers
and units as well as the use of the layer-wise locally adaptive activation function (L-
LAAF)); 2) the effects of the weight parameters λi in the loss function (Eq. 2.17); 3)
the effects of the number of the residual points and the upper boundary data points.

2.3.1.1 Problem setup

We considered soil moisture dynamics in a homogeneous soil induced by a constant
water flux on the surface (z = 0 cm), as introduced in Sect. 2.2.2.1, where Z = 10 cm,
T = 10 h, qA = −0.1 cm h−1, qB = −0.9 cm h−1, ψlb = 0 cm, θr = 0.06; θs = 0.40;
αG = 1.0 cm−1; Ks = 1.0 cm h−1.

2.3.1.2 Characteristics of PINN solution

The numerical solution by PINNs and the analytical solution are shown in Fig. 2.3
(a). The PINN solution was obtained by using a NN of 5 hidden layers with 50 units
using the L-LAAF, which was determined after testing various settings described in
the following sections. Nic = 101 initial data points (z = −10.0,−9.9, ...,−0.1, 0.0
cm), Nub = 1000 upper boundary data points (t = 0.01, 0.02, ..., 9.99, 10.0 h), and
Nlb = 100 lower boundary data points (t = 0.1, 0.2, ..., 9.9, 10.0 h) were used to train
the NN. The number of residual points Nr was set to 10000. The weight parameters λi
in the loss function were set to ten for the initial condition (λic), the lower boundary
condition (λlb), and the water flux upper boundary condition (λub) while λr was set
to one for the residual loss term. The difference between the PINN and the analytical
solution in the volumetric water content θ is shown in the right column of Fig. 2.3
(a). Larger errors were observed near the initial and upper boundary conditions,
where strong non-linearity exists due to the surface water flux. Except for this,
PINNs could approximate the solution with high accuracy. Figure 2.3 (b) showed
the FDM solution with a spatial mesh dz = 0.1 cm and a time step dt = 0.01 h,
which is comparable to the temporal resolution of the upper boundary data points
given to the PINN. In comparison with the FDM solution, the PINN solution was
quite reasonable (ϵθ = 4.86 × 10−4 for the PINN and ϵθ = 9.72 × 10−4 for the FDM
solutions, respectively). Note that the degrees of freedom of the FDM solution were
101000, while the number of parameters of the NN was 10406, which demonstrates
the memory efficiency of PINNs. Also, the number of residual points of PINNs
was much smaller than the degrees of freedom of the FDM. However, increasing
the number of residual points did not improve the PINN solution, as discussed in
Sect. 2.3.1.6, while the FDM solution improved by further minimizing dz and dt
(ϵθ = 1.03 × 10−5 was obtained for dz = 0.01 cm and dt = 0.0001 h, as shown in
Fig. A.3). It is important to note here that an FDM with such a very fine mesh size
requires solving a large linear system multiple times for each time step because the
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(a) Physics-informed neural networks (PINNs)

(b) Finite difference method
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Figure 2.3: Homogeneous soil. (a): Physics informed neural network (PINN) solution
in terms of volumetric water content θ [-] (left column). The neural network consisted
of 5 hidden layers with 50 units with the layer-wise adaptive activation function. True
analytical solution (center column) is given by Srivastava and Yeh (1991) (see Sect.
2.2.2.1), and the difference between the PINN and true solutions are shown in the
right column. (b): Numerical solution by a finite difference method with a spatial
mesh of dz = 0.1 cm and a time step dt = 0.01 h.

RRE is a non-linear PDE, and the number of the iteration increases with decreasing
dz, which leads to significant computational demand. This situation becomes worse
for higher dimensions. Although we do not test PINNs for higher dimensions, other
studies demonstrated the effectiveness of PINNs for higher dimensions (Mishra and
Molinaro, 2022). This is the main reason we see the potential of PINNs for a large-
scale simulation based on the RRE.

2.3.1.3 Training PINNs

A typical evolution of the loss terms in the loss function during the training (the
Adam and L-BFGS-B algorithms) is shown in Fig. 2.4 (a). In most cases, the Adam
algorithm gave a good minimum of the loss function, and the following L-BFGS-B
algorithm met its termination criteria immediately (a spike was observed just before
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Figure 2.4: Homogeneous soil. (a): The evolution of the loss terms for the initial
condition Lic, the upper boundary condition Lub, the lower boundary condition Llb,
and the residual Lr during the Adam (100000 iterations) and the following L-BFGS-
B training. (b): The evolution of the adaptive parameter sa for layer-wise locally
adaptive activation functions (Eq. 4.78) for each hidden layer (Layer 1 is next to the
input layer).

the termination). Among the loss terms, the residual loss Lr remained high after
the training (Lr ≈ 10−6). Lr indicates whether the RRE was satisfied in the spatial
and temporal domain and determines the performance of PINNs. The characteristics
of Lr are further explored in Sect. 2.3.1.7. Figure 2.4 (b) shows the evolution of
the adaptive parameter sa for the L-LAAF for each hidden layer (Eq. 4.78). The
parameter sa changes the slope and the linear regime of activation functions, as shown
in Fig. 2.1 (d). The parameter sa varied with the iterations of the Adam algorithm
and reached its limiting value for each hidden layer. sa for the second hidden layer
was the highest, and a smaller sa value was observed for hidden layers closer to the
output layer.

Figure 2.5 demonstrates how PINNs learn the solution to the RRE during the
training. At the initialization (Fig. 2.5 (a)), the PINN solution greatly differed from
the true solution. However, PINNs quickly learned the lower boundary condition (see
Fig. 2.5 (b)). Although the initial condition was given as data points, it took more
iterations for PINNs to learn it because of the high non-linearity near the surface
induced by the water flux boundary condition. This corresponds to the increase in
the adaptive parameter sa for the L-LAAF (see Fig. 2.4 (b)). The limiting value
of sa for the second hidden layer was 3.4, which makes the tanh function highly
non-linear and closer to the step function (see Fig. 2.1 (d)). We concluded that
the L-LAAF helped PINNs learn the highly non-linear solution of the RRE. Figure
2.5 clearly illustrated that PINNs first learned less complex parts of the solution and
then captured the more complex parts. The tendency of feedforward NNs to learn less
complex functions is called ”spectral bias,” and Wang et al. (2022) demonstrated that
this spectral bias caused PINNs to fail to learn complex solutions of PDEs. Further
research is needed on how PINNs can learn more complex solutions of the RRE, for
example, where wetting and drying cycles are studied.
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Figure 2.5: Homogeneous soil. The evolution of physics-informed neural network
(PINN) solution (points) during the training with the true solution (solid lines). (a):
Initialization of PINNs. (b) to (g): 1000, 2000, 5000, 10000, 20000, 40000 iterations
of the Adam algorithm. (h): The end of 100000 iterations of the Adam algorithm
and the following L-BFGS-B algorithm.
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Figure 2.6: Homogeneous soil. Relative squared error in terms of volumetric water
content ϵθ for different numbers of hidden layers (a) and units (b) with and without
the use of the layer-wise locally adaptive activation function (L-LAAF). In Fig. (c),
the averaged ϵθ were computed for each neural network architecture, and the values
were plotted against the number of the weight parameters of each neural network.
The arrow indicates the lowest averaged ϵθ, which corresponds to neural networks
with 5 hidden layers with 50 units used in Fig. 2.3.

2.3.1.4 Effects of neural network architecture

The effects of the number of hidden layers and units of NNs as well as the use of the
L-LAAF were investigated. The candidate numbers of hidden layers and units were
1, 2, 3, 4, 5, 6 for hidden layers and 10, 20, 30, 40, 50, 60 for units. The L-LAAF was
turned on and off, and ten different random seeds were used for the NN initialization
for each NN architecture, which resulted in a total of 720 runs.

The summary of the results is shown in Fig. 2.6. In Fig. 2.6 (a) and (b), all
the 720 data points are plotted while the averaged data for each NN architecture
are shown in Fig. 2.6 (c) against the number of the weight parameters of each NN
architecture. In Fig. 2.6 (a), smaller relative squared error ϵθ were observed for a
larger number of hidden layers. Four hidden layers appeared to be enough for NNs
to approximate the solution. As for the number of units, increasing the number gave
smaller ϵθ though the effect seemed less relevant than that for hidden layers. It is
clear from Fig. 2.6 (c) that the use of the L-LAAF improved the performance of
PINNs. From this analysis, we determined the best NN architecture to be 5 hidden
layers with 50 units with the L-LAAF indicated by the arrow in Fig. 2.6 (c), whose
solution is shown in Fig. 2.3.

2.3.1.5 Effects of weight parameters in loss function

The effects of the weight parameters λi in the loss function (Eq. 2.17) were studied
by varying λi for the initial and boundary conditions while λr was fixed to one.
We denote λub and λlb as the weight parameters for the upper and lower boundary
conditions, respectively. Five different values (1, 3, 10, 30, 100) were tested for each
weight parameter with ten different NN initializations, which resulted in a total of
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1250 simulations, where the NN architecture was fixed to 5 hidden layers with 50
units with the L-LAAF.

Figure 2.7 shows the effects of the weight parameters λi for i = ic, ub, lb on the
loss terms Li in the loss function and the PINN performance evaluated by the relative
squared error ϵθ. Each panel in the figure contains all the 1250 simulations, and the
effects of the initialization and the λi are mixed. Figure 2.7 (a), (e), and (i) demon-
strated that higher weight parameters λi attained lower values of the corresponding
loss terms Li, which was expected. Another noticeable feature is that the loss term
for the residual Lr increased with the increasing λi while λr was fixed to one. It was
considered that higher weight parameters λi for the initial and boundary conditions
minimized the emphasis on the residual loss term Lr (see Fig. 2.7 (k) and (j)). The
increased Lr lead to less accurate solutions or higher ϵθ, which is evident in Fig. 2.7
(m) and (j). These complicated trends make the PINN approach less consistent than
traditional numerical methods. Note that automatic but empirical tuning of λi pro-
posed by Wang et al. (2021) did not improve the results in our case, particularly with
the L-LAAF, which is shown in Fig. A.2. Because finding the optimal values for λi is
not our primary purpose, we use the value of ten for all the three weight parameters
λi for the following analysis.

2.3.1.6 Effects of number of residual and boundary data points

The effects of the number of residual pointsNr, where the residual of the RRE is evalu-
ated, were investigated by varying the numberNr ∈ {1000, 3000, 10000, 30000, 100000},
which resulted in 50 runs in total. NN architecture was fixed to 5 layers with 50 units
with the L-LAAF. As expected, larger error was observed when smaller number of
residual points was used (see Fig. 2.8 (a)). However, even if we increased the number
to 30000 and 100000, the performance of PINNs did not improve. We concluded that
this was due to the simultaneous but opposite effect of the number Nr on the loss
term Lr, as shown in Fig. 2.8 (b). This was because increasing Nr is equivalent to
minimizing the importance of each residual point randomly selected in the spatial
and temporal domain. Note that we tested the residual-based adaptive refinement
algorithm proposed by Lu et al. (2021b), where additional residual points are added
while training NNs based on the distribution of the residual values. As shown in Fig.
A.1 (a), the algorithm seemed to improve the performance of PINNs, but the effec-
tiveness was minor. These findings demonstrate the difficulty in finding an optimal
strategy to distribute residual points for PINNs to learn solutions to PDEs with high
accuracy.

Also, the effects of the number of upper boundary data points Nub were studied,
where Nub = {100, 300, 1000, 3000, 10000}. NN architecture and training algorithms
were set to the same as Sect. 2.3.1.2. Figure 2.9 (a) showed that more than 300
upper boundary data points Nub are necessary for PINNs to learn the solution well.
This is because PINNs required enough upper boundary data points to capture the
surface flux in particular near the initial condition. However, increasing Nub from
300 did not improve the performance of PINNs. At the same time, we observed the
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Figure 2.7: Homogeneous soil. The effects of the weight parameters in the loss func-
tion (Eq. 2.17) for the initial condition λic, the lower boundary condition λlb, and
the upper boundary condition λub on the loss terms Lic, Llb, Lub, Lr for the initial
and boundary conditions and the residual of the PDE, respectively, and the relative
squared error in terms of volumetric water content ϵθ. λr was fixed to one.
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Figure 2.8: Homogeneous soil. (a): The effect of the number of residual points Nr on
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Figure 2.9: Homogeneous soil. (a): The effect of the number of upper boundary data
Nub on the relative squared error ϵθ. (b): The effect on the loss term for the upper
boundary condition Lub.

increase in the loss term for the upper boundary condition Lub, as shown in 2.9 (b).
This observation is similar to the case for the residual points and makes it difficult
to determine optimal Nub. The difficulty in tuning parameters for PINNs is further
explained in the next section.

2.3.1.7 Toward more consistent performance of PINNs

We demonstrated that PINNs can approximate the solution to the RRE with accuracy
comparable to the FDM. However, a significant amount of effort was needed to tune
the NN architecture and parameters, and those optimal settings depend on problems
of interest, which makes it very challenging for PINNs to be consistent numerical
solvers of PDEs. To understand why the performance of PINNs is not consistent,
we investigated the relationships between Li and ϵθ by compiling the results from
the previous sections. The left column of Fig. 2.10 corresponds to a fixed NN (5
hidden layers with 50 units with the L-LAAF), and the center column is for NNs
with varying architecture (the number of hidden layers and units) with the L-LAAF
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(from Sect. 2.3.1.4), while the right column is for a fixed NN with varying weight
parameters λi in the loss function (from Sect. 2.3.1.5). Note that the dimension of the
loss function (i.e., the number of adjustable parameters) is the same for the first and
third columns because the NN architecture is the same, while the shape or landscape
of the loss function is different because of the varying weight parameters λi.

As for the first column, the PINN solution was consistent regardless of the random
seeds used for the NN initialization. Although there were some differences in the
accuracy, a detailed examination of the PINN solutions revealed that the errors mainly
came from near the upper boundary. Thus, we concluded that we obtained consistent
PINN solutions for this problem once we determined the NN architecture. However,
determining NN architecture is still empirical and depends on problems. Based on
other studies and our experiences, NNs consisting of less than ten hidden layers appear
to be enough to approximate the solution to PDEs. However, the application of
PINNs to PDEs with large spatial and temporal domains requires more investigation.

Figure 2.10 (k) and (l) demonstrates that the residual loss Lr is well correlated
with ϵθ, which coincides with the theoretical study by Mishra and Molinaro (2022).
This observation might indicate that smaller residual loss Lr is more important than
other loss terms. If this speculation is true, this implies the possibility of transfer
learning, where NNs are pre-trained with only the residual of PDEs without initial
and boundary conditions and later fine-tuned by them, which could drastically reduce
the computational work and needs more investigation.

2.3.2 Heterogeneous Soil

In this section, we simulated a one-dimensional infiltration into a two-layered soil with
a length of 20 cm. Because each layer has a distinct saturated hydraulic conductivity
Ks, the solution to the RRE is not differentiable at the boundary of the layers. Thus,
we implemented the domain decomposition method (see Sect. 2.2.4.4) by dividing the
spatial domain into the upper domain ΩU (−10 ≤ z ≤ 0 cm) and the lower domain ΩL

(−20 ≤ z ≤ 10 cm). NNs NU(z, t; ΘU) and NL(z, t; ΘL) were assigned to ΩU and ΩL,
respectively. The two NNs interact with each other through the interface conditions
described in Sect. 2.2.4.4 and were trained simultaneously, although separate training
is also possible, as in Jagtap and Karniadakis (2020).

We compared the PINN solution with an FEM solution obtained by HYDRUS-1D
(Šimůnek et al., 2013). FEMs are similar to PINNs in that both methods use some
basis functions to approximate the solution of PDEs. While PINNs use NNs as the
basis function, the FEM implemented in HYDRUS-1D uses a linear finite element
as the basis function. Although HYDRUS-1D implements a variable time step, we
used a constant time for the comparison. Because WRCs and HCFs defined by Eq.
2.5 and 2.6 are not implemented in HYDRUS-1D, we used a lookup table feature to
provide HUDRUS-1D with the WRC and HCF manually.
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Figure 2.10: Homogeneous soil. The relationships between loss terms Li and the rel-
ative squared error in terms of volumetric water content ϵθ for a fixed neural network
(NN) with different NN initializations (left column), NNs with varying architecture
(center column), and a fixed NN with varying weight parameters λi in the loss func-
tion (right column). Lic, Llb, Lub, and Lr are the loss terms for the initial condition,
lower and upper boundary conditions, and the residual of the PDE, respectively.
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2.3.2.1 Problem Setup

WRCs and HCFs relationships for the soils are the same for the homogeneous case.
The saturated conductivity Ks is 10.0 and 1.0 cm s−1 for the upper layer (from
z = −10 cm to z = 0 cm) and the lower layer (from z = −20 cm to z = −10 cm),
respectively. Other parameters θs, θr, and α for the two layers as well as the initial
and boundary conditions are the same as the homogeneous case.

2.3.2.2 Characteristics of PINN solution

Figure 2.11 (a) shows the PINN solution with the analytical solution introduced in
Sect. 2.2.2.2. Both NNs NU and NL consisted of 5 hidden layers with 50 units with
the L-LAAF, and β was set to one. Randomly sampled 10000 residual points and
equally spaced 101 initial data points were used for both NNs. The upper and lower
boundary conditions were given as the case for the homogeneous soil. To connect the
two NNs, randomly sampled 1000 points were used for the three interface continuity
conditions: the water flux LIq (Eq. 2.27); the residual LIr (Eq. 2.28); the NN
output LIN (Eq. 2.29). All the weight parameters in the loss function λi were set
to ten while λr for the lower layer was set to one. Figure 2.11 (b) showed the FEM
solution obtained using HYDRUS-1D with dz = 0.1 cm and dt = 0.01 h, which is
comparable to the temporal resolution of the upper boundary data points given to
the PINNs. The PINN solution was superior to the HYDRUS-1D solution (ϵθ =
3.99 × 10−3 for the PINN and ϵθ = 1.67 × 10−2 for the FEM solution, respectively),
while the HYDRUS-1D solution underestimated the volumetric water content in the
upper layer near the boundary, which coincides with Brunone et al. (2003). This is
because only the matric potential continuity is guaranteed in HYDRUS-1D, while
both matric potential and water flux continuity conditions were imposed for the
PINNs. Also, HYDRUS-1D consistently overestimated the volumetric water content
at the wetting front in the lower layer, while consistent errors were not observed for
the PINN solution. From this comparison, we concluded that PINNs with domain
decomposition can approximate the solution of the RRE for a two-layered soil with
discontinuous hydraulic conductivity.

2.3.2.3 Training PINNs

The left column of Fig. 2.12 shows the evolution of the loss terms. All the loss terms
for both layers remained higher than those for the homogeneous case (see Fig. 2.4),
which demonstrated the difficulty in training PINNs for the layered soil case. While
the Adam algorithm resulted in a well-approximated solution for the homogeneous
case, the L-BFGS-B algorithm played an important role for the heterogeneous case,
particularly in reducing the loss term for the upper boundary condition Lub and the
residual Lr for the upper layer. Figure 2.12 (c) illustrated that the three interface
conditions were satisfied well.

The right column of Fig. 2.12 shows how the adaptive parameters sa for the
L-LAAF changed during the training. We expected sa for the lower layer to be
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Figure 2.11: Heterogeneous soil. The saturated conductivity Ks is 10.0 and 1.0 cm
s−1 for the upper and lower layer, respectively. (a): Physics informed neural network
(PINN) solution in terms of volumetric water content θ [-] obtained by two neural
networks of 5 hidden layers with 50 units with the layer-wise adaptive activation
function (left column). True analytical solution (center column) is given by Srivastava
and Yeh (1991) (see Sect. 2.2.2.2), and the difference between the PINN and true
solutions are shown in the right column. (b): Numerical solution by a finite element
method was obtained with a spatial mesh of dz = 0.1 cm and a time step dt = 0.01
h using HYDRUS-1D (Šimůnek et al., 2013).
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similar to the homogeneous case because the solution for the lower layer is similar to
the homogeneous case. However, Fig. 2.12 (b) showed that sa for the lower layer
was much smaller than that for the homogeneous case while similar trends of sa
for different hidden layers were observed (i.e., layer 2 was the highest). sa for all
the layers of both layers reached their limiting values after approximately 20000 to
30000 iterations of Adam algorithm, which coincided with the homogeneous case and
Jagtap et al. (2020). This indicated that if we can find a better initial guess of sa for
each layer, we may be able to speed up the training of PINNs, which requires further
research.

Figure 2.13 demonstrated how PINNs learned the solution. At the initialization
(Fig. 2.13 (a)), there is discontinuities at the boundary, which is evident for t = 10 h.
The continuity conditions and the lower boundary condition were quickly met. The
PINNs started to capture the flow of soil moisture at the 20000 iterations of the Adam
algorithm (Fig. 2.13 (e)), which coincided with when the adaptive parameters sa for
the L-LAAF reached their limiting values (see the right column of Fig. 2.12). Even
at the end of the Adam algorithm, there are large errors in the PINN solution near
the surface and wetting fronts in the lower layer (Fig. 2.13 (g)). Those errors were
further minimized by the L-BFGS-B algorithm (Fig. 2.13 (h)). This demonstrated
that a second-order method such as the L-BFGS-B algorithm is necessary to train
PINNs when the solution to PDEs is complicated.

2.3.2.4 Effects of number of interface points and weight parameters in
loss function

We investigated the effects of the number of interface pointsNI on PINN performance.
The number varied from 100, 300, 1000, 3000, and 10000, and ten different random
seeds were used for each setting. Figure 2.14 (a), (b), and (c) showed that the effects
on the loss terms for the interface conditions were negligible. The relative squared
error ϵθ decreased with the number NI from 100 to 300, but the effect was negligible
for larger NI (see Fig. 2.14 (d)). Thus, we concluded that the effects NI were minor
and used 1000 interface points in the following analysis.

We also investigated the effects of the weight parameters λi in the loss function.
We fixed λr for the lower layer to be one and λi for the initial condition and the lower
boundary condition for the lower layer to be ten while λi for the upper layer and
the interface conditions were varied from 1, 10, and 100 (i.e., λi for the different loss
terms in the upper layer are the same). Ten different initializations were conducted.
Figure 2.15 (a) shows PINNs were more likely trapped by a local minimum of the
loss function when λi for the upper layer was smaller, indicated by the cloud of the
data points. However, the best PINN solution appeared not to be affected by λi.
Similar observations were made for the effects on the loss terms corresponding to
the upper layer (see Fig. A.4). Figure 2.15 (b) illustrated the effects of λi for the
interface conditions. When λi were larger, the PINNs produced worse solutions, and
it was evident that PINNs suffered from a local minimum of the loss function. Similar
conclusions were made from the effects on the loss terms for the upper layer (see Fig.
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Figure 2.12: Heterogeneous soil. (a): The evolution of the loss terms in the loss
function (left column) and adaptive parameters sa for the layer-wise locally adaptive
activation function (Eq. 4.78) for each hidden layer (right column) during the Adam
(100000 iterations) and the following L-BFGS-B training for the neural network for
the upper layer. Here, Layer 1 is next to the input layer. (b) Those for the lower
layer. (c): The evolution of the loss terms for the interface conditions.
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Figure 2.13: Heterogeneous soil. The evolution of the PINN solution during the
training. (a): Initialization of the PINNs. (b) to (f): 1000, 5000, 10000, 20000,
40000 iterations of the Adam algorithm. (g): The end of 100000 iterations of the
Adam algorithm. (h): The end of the L-BFGS-B algorithm.
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Figure 2.14: Heterogeneous soil. The effects of the number of interface data points
NI . (a): The loss term for the continuity of the residual LIr . (b): The loss term
for the continuity of the water flux LIq . (c): The loss term for the continuity of the
the neural network output LIN . (d): The relative squared error with respect to the
volumetric water content ϵθ.

A.4). These observations led us to conclude that choosing the right weight parameters
λi in the loss function is very important and challenging for the heterogeneous case
to achieve accurate and consistent solutions to the RRE.

2.4 Inverse modeling

In this section, we demonstrate that inverse modeling can be easily implemented
using PINNs. Here, we aim to estimate a surface water flux (i.e., upper boundary
condition) from near-surface moisture measurements in a layered soil. Surface water
flux is the result of precipitation, evaporation, and surface runoff and thus essen-
tial information for land surface modeling and groundwater management. Although
rainfall measurements can be used as surface water flux, the measurements are gen-
erally spatially scarce and noisy. Therefore, it is important to estimate surface water
flux from near-surface soil moisture data. In this line of research, Sadeghi et al.
(2019) employed the analytical solution of the linearized RRE, and Li et al. (2021a)
proposed a deterministic inverse algorithm to estimate surface water flux given past
surface water flux. Brocca et al. (2013) used a simple soil water balance equation to
estimate rainfall. These studies assumed soil hydraulic properties are homogeneous



CHAPTER 2. PINNS FOR UNSATURATED WATER FLOW 37

1 10 100
λi for Upper Layer

10−3

10−2

10−1

100

R
el

a
ti

v
e

S
q
u
a
re

d
E

rr
o
r
εθ (a)

1 10 100
λi for Interface

10−3

10−2

10−1

100

R
el

a
ti

v
e

S
q
u
a
re

d
E

rr
o
r
εθ (b)

Figure 2.15: Heterogeneous soil. The effects of weight parameters λi in the loss
function on the performance of PINNs with respect to the relative squared error of
the volumetric water content ϵθ. (a): Upper layer. (b): Interface conditions.

(Labolle and Clausnitzer, 1999). Here, we present an inverse framework based on
PINNs to estimate surface water flux from near-surface soil moisture measurements
in a two-layered soil, as an extension of our previous work (Bandai and Ghezzehei,
2021).

2.4.1 Problem setup

We consider a one-dimensional soil moisture dynamics in a layered soil. The upper
layer is a 10 cm depth of loam soil (0 to -10 cm), and the lower layer is a 10 cm
depth of sandy loam (-10 to -20 cm). The WRCs and HCFs of the soils for ψ < 0 are
represented by the van-Genuchten Mualem model (Mualem, 1976; van Genuchten,
1980):

θ = θr +
θs − θr

(1 + (−αV Gψ)nV G)m
, (2.31)

K = KsS
l
e(1− (1− S1/m

e )m)2, (2.32)

where θr is the residual water content [L3 L−3]; θs is the saturated water content [L3

L−3]; αV G [L−1] and nV G [-] determine the shape of the WRC; Ks is the saturated
hydraulic conductivity [L T−1]; l is the tortuosity parameter; m = 1 − 1/nV G; Se is
the effective saturation defined as

Se :=
θ − θr
θs − θr

. (2.33)

The parameters for the two soils were set in the following way: θr = 0.078, θs = 0.43,
nV G = 1.56, Ks = 1.04, and l = 0.5 for the loam soil (upper layer); θr = 0.065,
θs = 0.41, nV G = 1.89, Ks = 4.42, and l = 0.5 for the sandy loam soil (lower layer).
The lower boundary is a constant pressure head set to ψ = −1000 cm, and the upper
boundary condition is a variable surface water fluxes as follows: −0.3 cm h−1 from
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t = 0 to t = 8 h; 0.02 cm h−1 from t = 8 to t = 12 h; −0.2 cm h−1 from t = 12
to t = 20 h. The positive and negative values represent evaporation and infiltration,
respectively. The initial condition was set to ψ = −1000 cm for all the depths. To
generate synthetic data for the abovementioned scenario, we employed HYDRUS-1D
(Šimůnek et al., 2013) to compute the numerical solution of the RRE with dt = 0.0001
h and dz = 0.02 cm. The numerical solution by HYDRUS-1D is not necessarily
accurate because it may contain undesirable numerical errors near the interface, as
observed in Section 3.2 although we confirmed the global mass balance of the solution.
We further added a Gaussian noise with a mean of 0 and a standard deviation of
0.005 to the numerical solution. We sampled the simulated noisy synthetic data
at predetemined locations to mimic soil moisture measurements by in-situ sensors.
We tested three patterns of the measurement locations zm [cm]: zm ∈ {−5,−15};
zm ∈ {−3,−7,−13,−17}; zm ∈ {−1,−5,−9,−13,−17}. The temporal resolution of
the measurements was 0.1 h.

2.4.2 PINNs inverse solution

To infer the surface water flux upper boundary condition, we constructed PINNs with
domain decomposition. The two NNs consisted of 5 hidden layers with 50 units, as
in Sect. 2.3.2, and β = 0 was used for the output of both NNs (Eq. 2.15). Unlike
the forward modeling, the initial and boundary data points were not used, and the
sampled synthetic data points and randomly sampled collocations points were only
used to train the NNs. Therefore, the loss function is the sum of the loss term for the
measurement data Lm, the residual of the RRE Lr, and the three interface conditions
(LIr , LIq , and LIN ). As for the weight parameters λi for each loss term, λi = 10 for
the measurement data for both layers and the residual loss for the upper layer and
λi = 1 for the interface conditions, while λi = 1 for the residual loss for the lower
layer as a reference. We tested ten different NN initializations for each measurement
scheme, and thus a total of 30 simulations were conducted. Note that the surface
water flux i(t) was estimated by evaluating Eq. 2.14 with the solution of the RRE
by PINNs.

Figure 2.16 showed the best-recovered solution and estimated surface upper bound-
ary condition for the three measurement schemes. As expected, more accurate re-
covered solutions were obtained from dense soil moisture measurements (see also Fig.
A.7). However, interestingly, NNs more likely were trapped by bad solutions when
more measurement data were given (see Fig. A.7). This means a large amount of
data does not necessarily lead to a good performance of PINNs because large data
make the training of PINNs more difficult. This is a practically important point and
requires further investigation. As for the two measurement location scheme (Fig.
2.16 (a)), the wetting front reached the top measurement point (zm = −5 cm) at
approximately t = 3 h, which coincided with when the estimated surface water flux
i was reasonable. After that time, both the recovered solution and estimated surface
water flux were quite reasonable. Similar trends were observed for the other two mea-
surement schemes (Fig. 2.16 (b) and (c)). This suggested that we need soil moisture
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measurement data closer to the surface (z = 0 cm) to capture the wetting front and
the infiltration rate. Figure S8 in the Appendix showed the evolution of the loss
terms L corresponding to the measurement data, residual, and the interface condi-
tions. Although the direct comparison between the forward and inverse modeling is
not possible because the problem settings are different, we observed smaller residual
loss terms Lr for the inverse modeling. This observation and our experiences indicate
that PINNs are more effective for the inverse problem than the forward modeling be-
cause data points inside the spatial and temporal domain are more informative than
initial and boundary conditions for NNs to find the solution to PDEs.

We note that soil hydraulic parameters are known for both layers in this test,
which is not the case for field applications. Depina et al. (2021) implemented PINNs
with a global optimization algorithm to estimate the van-Genuchten parameters of
a homogeneous soil (Ks, αV G, and nV G) from soil moisture measurements, and the
framework was tested against for both synthetic and laboratory infiltration exper-
iment data. They demonstrated that PINNs with a global optimization algorithm
could determine the van-Genuchten parameters for a homogeneous soil. In fact, the
current study was motivated by the need to verify a PINN approach to estimate such
soil hydraulic parameters of a layered soil for field applications. Our next research
objective is to implement PINNs that can estimate both the upper surface boundary
condition and soil hydraulic parameters (e.g., van-Genuchten parameters) for layered
soils and test them with soil moisture and surface water flux data measured in a
lysimeter. Note that the estimation of surface water flux was reasonable when the
value is positive (i.e., evaporation) in the example, but it would probably not be
the case for field applications because evaporation requires coupled heat and water
transport models. Applying PINNs to multi-physics in unsaturated hydrology is also
our next research step.

2.5 Advantages and disadvantages of PINNs

Regardless of the potential of PINNs to solve PDEs, several studies reported their
failures and limitations (Fuks and Tchelepi, 2020; Sun et al., 2020; Wang et al., 2021).
Although there are some theoretical studies on the convergence and error analysis of
PINNs (e.g., Mishra and Molinaro, 2022; Shin et al., 2020), theoretical understand-
ing of PINNs is still in its infancy (Karniadakis et al., 2021). We summarize the
advantages and disadvantages of PINNs compared to traditional numerical methods
(e.g., finite difference, finite element, and finite volume methods) to potentially use
the method to solve essential questions in hydrology, including large-scale forward
and inverse modeling.

One main drawback of PINNs for forward modeling is their computational time.
For our case studies, it took approximately 30 and 90 min for the homogeneous
and heterogeneous forward modeling using a desktop computer with GPU (NVIDIA
GeForce RTX 2060), while it took less than 1 min for HYDRUS-1D to solve the
heterogeneous problem. PINNs might be more competitive for large-scale hydrology
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Figure 2.16: Inverse modeling to estimate surface water flux from soil moisture mea-
surements in a layered soil (upper layer: loam soil; lower layer: sandy loam soil).
True solution generated by HYDRUS-1D and the recovered solution by PINNs (left
column) and the true and estimated upper surface water flux boundary condition
(right column) for different measurement locations zm [cm]. (a): zm ∈ {−5,−15}.
(b): zm ∈ {−3,−7,−13,−17}. (c): zm ∈ {−1,−5,−9,−13,−17}.
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problems, which needs further investigation.
For forward modeling, PINNs can treat initial and boundary conditions as data

points. This feature is advantageous over traditional numerical methods because the
accurate initial and boundary conditions are virtually impossible to obtain in prac-
tical conditions. On the other hand, traditional methods can take into account the
uncertainties of the initial and boundary conditions through the Bayesian approach,
while it requires solving the forward problem many times. Although uncertainty
quantification through PINNs is open and challenging questions (Psaros et al., 2022),
the capability of PINNs to deal with noisy and incomplete initial and boundary con-
ditions is noteworthy.

Traditional numerical methods require mesh generation, which can be tedious
when the spatial domain is complicated. On the other hand, PINNs can be easily
modified to accommodate such complicated geometries (Raissi et al., 2020). However,
it is challenging to correctly impose boundary conditions on PINNs while they are
imposed softly in the loss function in this study. Regarding hydrology application,
system-dependent boundary conditions such as ponding and evaporation conditions
are challenging to implement because PINNs solve PDEs in spatial and temporal do-
mains simultaneously, rather than sequentially, as in traditional time-stepping meth-
ods. This difficulty may be a technical issue, but the loss function would be more
complicated with such system-dependent boundary conditions, and thus training NNs
would be more difficult.

One of the main challenges of PINNs is training PINNs for large-scale modeling. In
particular, a long-term simulation such as wetting and drying cycles requires PINNs
to approximate very complicated functions. We may sequentially train PINNs in time
but lose the ability of PINNs to solve PDEs simultaneously in space and time, and
numerical and optimization errors accumulate with time stepping.

The application of PINNs to multi-scale and multi-physics problems is currently
challenging, although there are some pioneering studies in hydrology (He et al., 2020).
It is known that the solution of PINNs to a multi-scale problem is not always accurate,
even for simple problems, because NNs tend to learn ”easy” or low-frequency parts of
the solution (Wang et al., 2022). Although the study was only concerned with water
flow in unsaturated soils, near-surface soil moisture dynamics is essentially coupled
heat and water transport. Therefore, further research is needed for the application
of PINNs to multi-physics simulations in unsaturated soils.

One advantage of PINNs specific to the RRE is that there is no need for temporal
discretization, which results in mass balance issue (Celia et al., 1990). Also, PINNs
solutions are differentiable and thus can be used to derive water flux easily without
post-processing, as in Scudeler et al. (2016). Furthermore, PINNs can store the
solutions of PDEs efficiently with a smaller number of degrees of freedom, particularly
for high dimensions (Karniadakis et al., 2021). Those merits can make PINNs a
good candidate for a numerical solver of large-scale modeling based on the RRE.
Nevertheless, these advantages depend on how accurately PINNs satisfy the RRE.

In terms of inverse modeling, PINNs have some interesting features. First, PINNs
do not have to solve the forward modeling to solve the inverse problem. On the
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other hand, standard inverse methods require solving the forward modeling many
times to adjust parameters of interest. This feature makes the computation of PINNs
efficient. However, as shown in the study, PINNs do not precisely impose PDEs
constraints as traditional methods, where the forward modeling is actually solved.
Further research is needed to minimize the residual loss term so that known physics
is precisely imposed. Second, when estimating boundary conditions as in the study
or initial condition from data, PINNs do not require the discretization of those target
functions. In traditional methods, it is common to represent the target functions
as a linear combination of some basis functions (e.g., finite elements) and estimate
the coefficients of the basis functions. In PINN framework, such discretization is
not necessary, and those target function values can be evaluated directly from NNs.
Overall, although PINNs have interesting and attractive characteristics, fully utilizing
the potential requires further research. In the next section, future perspectives of
PINNs are mentioned.

2.6 Conclusions and future perspectives

We presented a numerical method based on neural networks (NNs), called physics-
informed neural networks (PINNs), to solve the Richardson-Richards equation (RRE)
to simulate water flow in unsaturated homogeneous and heterogeneous soils. We
tested recently proposed PINN algorithms on our problems and found that the layer-
wise locally adaptive activation function (L-LAAF) developed by Jagtap et al. (2020)
was effective. The L-LAAF changes the slope and the linear regime of the activation
functions in NNs and helps PINNs approximate the solution of the RRE well. First,
we tested the PINN approach for the homogeneous soil case. By comparing the PINN
solution to the analytical solution by Srivastava and Yeh (1991) and the numerical
solution by a finite difference method, we demonstrated that ”well-trained” PINNs
can be competitive in terms of accuracy and memory efficiency. However, training
PINNs requires significant efforts to tune various parameters of NNs, including NN
architecture and weight parameters in the loss function. We systematically investi-
gated the effects of those parameters on the performance of PINNs and demonstrated
that those interrelated effects make PINN approach less consistent. Although some
automatic but empirical algorithms to tune those parameters improved the perfor-
mance of PINNs to some extent, it was difficult for PINNs to consistently obtain
solutions to the PDE with high accuracy, and the results were strongly dependent
on the initialization of NNs. Our empirical but comprehensive observations provide
some suggestions on the choice of the parameters, but we do not think they can be
applied to various cases, and thus further studies are necessary.

We tested PINN approach for a layered soil, where hydraulic conductivity is dis-
continuous across the layer boundary. The analytical solution by Srivastava and Yeh
(1991) was used to verify the PINN solution. We demonstrated that PINNs with
domain decomposition proposed by Jagtap and Karniadakis (2020) successfully ap-
proximated the solution of the RRE for a two-layered soil. The comparison with a
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finite element method using popular software, HYDRUS-1D (Šimůnek et al., 2013),
was made. The PINN solution was superior to HYDRUS-1D for the problem because
the interface conditions on the layer boundary were well imposed for the PINN ap-
proach but not for HYDRUS-1D. Nevertheless, the study demonstrated that obtaining
PINN solutions for the problem with consistent accuracy was challenging because of
the difficulty in choosing the right weight parameters in the loss function, which de-
termines the relative importance of physical constraints for the problem (e.g., initial
and boundary conditions).

We further applied the PINNs with domain decomposition to the inverse modeling
to estimate a water flux upper boundary condition from noisy sparse soil moisture
measurements. The inverse modeling was easily formulated by the PINN approach,
and the effects of the measurement schemes were studied. The upper boundary con-
dition was reasonably inverted from the noisy data, in particular when measurement
data near the soil surface were available. However, our results demonstrated that a
large amount of data do not necessarily lead to a good performance of PINNs because
training PINNs is more difficult with more data. Further research is needed to make
PINNs learn from a larger amount of data and simultaneously determine both soil
hydraulic properties and surface water flux for layered soils.

The PINN algorithm presented here is focused on water flow in unsaturated soils.
However, there are many situations where we need to simulate saturated-unsaturated
flow, such as ponding conditions and interactions with groundwater. Our preliminary
tests gave positive results on the extension of PINNs to saturated-unsaturated cases.
Readers may refer to the author comment in the interactive public discussion (Bandai
and Ghezzehei, 2022a).

PINNs have the potential to solve issues traditional numerical methods cannot
solve by leveraging the capability of NNs to approximate complex functions efficiently.
However, the mathematical complexities of the forward and inverse problems are
lumped into a complicated non-linear, non-convex minimization problem. Whether
PINNs can perform well depends on whether we can solve the resulting minimization
problem well. Another difficulty comes from the fact that PINNs have an unusual
regularization term in the loss function as the form of the residual of PDEs. This
term is very different from standard regularization terms such as L1 and L2 regular-
izations because it contains the derivative of the output of NNs with respect to their
input. The mathematical and exploratory investigation of the minimization problem
and the regularization term is necessary for further improvements of PINNs. The
investigation may include a vast amount of literature on NNs and PDE constrained
optimization. There are many methods and findings that have not been well tested
against PINNs, including transfer learning, second-order optimization methods, and
the correspondence with adjoint-state methods (Petra and Stadler, 2011). We will
investigate those areas to improve the understanding of PINNs and use PINNs for
large-scale modeling in hydrology.

Aside from PINNs, the latest research trends have been directed toward learning
the ”operator” of PDEs rather than their solutions given initial and boundary condi-
tions, as in the study. This new research field has been led by two main groups (Lu
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et al., 2021a; Li et al., 2021b), and they aim to develop operator learning methods
applicable to general PDEs, of course including the ones in hydrology. Do we wait
until they develop general PDE simulators or provide a unique perspective in soil
physics and hydrology? We need to consider how we contribute to the rapid progress
of the fields as domain scientists (Nearing et al., 2021).

2.7 List of abbreviations

FDMs: Finite difference method
FEMs: Finite element methods
GPUs: Graphics processing units
HCF: Hydraulic conductivity function
L-LAAF: Layer-wise locally adaptive activation function
ML: Machine learning
NNs: Neural networks
PDE: Partial differential equation
PINNs: Physics-informed neural networks
RRE: Richardson-Richards equation
WRC: Water retention curve

2.8 List of notation

superscript
·̂ : prediction except for used for Θ̂
·∗: dimensionless for the analytical solutions

subscript
·D: Dirichlet boundary condition
·F : water flux boundary condition
·I : interface
·IN : interface condition regarding the continuity of neural network output
·Iq : interface condition regarding the continuity of water flux
·Ir : interface condition regarding the continuity of the residual of the RRE
·Iψ : interface condition regarding the continuity of water potential
·ic: initial condition
·lb: lower boundary condition
·L: lower layer
·m: measurement data
·r: residual
·ub: upper boundary condition
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·U : upper layer

alphabet
a: the collection of trainable parameters for adaptive activation functions for a neural
network
a[k]: trainable parameter for the element-wise non-linear activation function
b: the collection of bias vectors for a neural network
b[k]: bias vector for the kth hidden layer
dt: time step for finite difference and finite element solutions [T]
dz: spatial mesh for finite difference and finite element solutions [L]
g(z): initial condition
h(z, t): Dirichlet boundary condition
H: total water head [L]
h[k]: vector for the kth hidden layer
i(z, t): water flux boundary condition
K: hydraulic conductivity [L T−1]
Ks: saturated hydraulic conductivity [L T−1]
l: tortuosity parameter [-]
L: the number of hidden layers
L: loss function
Li: loss term for i constraints
m: a van-Genuchten parameter
n[k]: dimension of a vector corresponding to the kth hidden layer
nV G: van-Genuchten parameter [-]
nx: dimension of input vector x
ny: dimension of output vector ŷ
Ni: the number of points for i constraints
N : neural network functions
o: output functions
q: water flux in the vertical direction (positive downward) [L T−1]
q: water flux in three dimensions [L T−1]
qA: constant water flux at the surface to determine the initial condition of the ana-
lytical solutions [L T−1]
qB: constant water flux at the surface used in the analytical solutions [L T−1]
r̂: the residual of the RRE
s: fixed scaling factor for adaptive activation functions
S: source term [T−1]
t: time [T]
T : final time [T]
W: the collection of the weight matrices for a neural network
W[k]: weight matrix for the kth hidden layer
x: input vector
ŷ: output vector
z: vertical coordinate or elevation head (positive upward) [L]
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Z: the vertical length of a soil [L]

Greek alphabet
αG: pore-size distribution parameter [L−1]
αV G: van-Genuchten parameter [L−1]
β: fixed parameter for the output of neural networks
ϵθ: relative squared error in terms of volumetric water content
θ: volumetric water content [L3 L−3]
θr: residual volumetric water content [L3 L−3]
θs: saturated volumetric water content [L3 L−3]
Θ: neural network parameters
Θ̂: update of neural network parameters for each iteration of optimization algorithms
κn: infinite sequence to compute the analytical solution
λi: weight parameters in the loss function
σ: element-wise non-linear activation function
ψ: water potential in soils [L]
ψlb: water potential at the bottom boundary [L]
Ω: spatial domain
∂Ω: spatial boundary

others
:=: equal by definition
∇: nabla
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Chapter 3

Estimating soil hydraulic
properties from complete dryness
using shortwave infrared imaging
and inverse modeling

Abstract. 1Accurate simulation of soil moisture dynamics for dry conditions is
essential for projecting the impact of droughts. A commonly used soil hydraulic
model, the van-Genuchten Mualem (VGM) model, is not suitable for describing water
retention and hydraulic conductivity for dry conditions. We investigated whether an
alternative model, called the Peters-Durner-Iden (Iden) model, better describes soil
moisture dynamics for dry conditions. With that aim, we conducted inverse modeling
of the Richardson-Richards equation (RRE) with the VGM and the PDI models. Soil
moisture and cumulative infiltration data from upward infiltration experiments for
seven soils with distinctive textures were used. Soil moisture data measured by a
shortwave infrared (SWIR) imaging camera enabled us to monitor the advancement of
wetting fronts clearly, where soil hydraulic properties for dry conditions play essential
roles. We demonstrated that the RRE with the PDI model captured soil moisture
dynamics better than that with the VGM model. However, the inverse modeling
was only successful for sandy loam and loam soils, and we faced difficulties for sandy
soils due to the violation of the one-dimensional flow assumption and clay-rich soils
because of the heterogeneity in soil hydraulic properties.

1A preliminary study of the current chapter was presented as Bandai, T., Sadeghi, M., Babaeian,
E., Tuller, M., Jones, S. B., Ghezzehei, T. A. Characterization of unsaturated water flow in soils using
short-wave infrared imaging through inverse modeling. ASA, CSSA, SSSA International Annual
Meeting 2021, Salt Lake City, USA (November 2021).
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3.1 Introduction

Faced with droughts in arid regions and their projected increase, we need more ac-
curate simulations of soil moisture dynamics in dry soils. While water flows in large
pores for medium to wet conditions, for dry conditions, water molecules are adsorbed
onto the surface of soil mineral and organic particles and flow as thin films. Un-
fortunately, current climate and hydrological models do not consider such processes
well.

The situation has also been true for the state of the practice in soil physics. Con-
ceptually, such processes have been well recognized since the beginning of the field
(Buckingham, 1907). When simulating soil moisture dynamics using the Richardson-
Richards equation (RRE) (Richardson, 1922; Richards, 1931), we need a water re-
tention curve (WRC) or the relation between the volumetric water content θ and the
water potential ψ as well as a hydraulic conductivity function (HCF) that relates the
water potential ψ to the hydraulic conductivity K. Commonly, the van Genuchten
(VG) model (van Genuchten, 1980) is used to represent the WRC of soil, and the
statistical model of hydraulic conductivity proposed by Mualem (1976) is combined
with the VG model to obtain the HCF. While this van Genuchten-Mualem (VGM)
framework has been useful when simulating soil moisture dynamics in many situa-
tions, it has been criticized on several grounds, including its poor performance for
dry conditions (Hills et al., 1989).

Many parametric models for WRCs, including the VG model, describe WRCs
using power-law or S-shaped functions. However, they do not adequately represent
WRCs for dry conditions, which exhibit a linear relation on a semi-log scale (Campbell
and Shiozawa, 1992; Schneider and Goss, 2012). Another issue is a parameter in the
VG model called the residual water content θr (Nimmo, 1991). If the VG model is
used to describe WRCs for conditions from complete dryness, θr must be set to zero,
which makes it difficult for the model to fit medium soil moisture data. Also, the VG
model lacks physical descriptions of adsorptive water for dry conditions. The Mualem
model of hydraulic conductivity also has issues for dry conditions. The Mualem model
assumes soil water flow is only driven by capillarity in a bundle of cylindrical tubes
and neglects film water flow on soil minerals and corner flow in angular pores (Tuller
and Or, 2001).

In the last two decades, several physical or semi-physical models have been pro-
posed to describe WRCs and HCFs accounting for film and corner flows in addition
to capillary flow (Tuller and Or, 2001; Peters and Durner, 2008; Lebeau and Konrad,
2010; Zhang, 2011; Peters, 2013; Iden and Durner, 2014; Peters, 2014). Tuller and
Or (2001) derived WRCs and HCFs by upscaling a pore-scale model assuming that
water is held in an angular pore and silt-shaped spaces (Tuller et al., 1999), and they
provided a solid foundation for the physical description of capillary and adsorptive
water. However, the ability of the model to fit experimental data was limited due
to the probability distribution used to represent the pore-size distribution, although
this restriction could be loosened by abandoning a closed-form expression of HCFs
(Tuller and Or, 2001). Other models (Lebeau and Konrad, 2010; Zhang, 2011; Peters,
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2013) were developed by using empirical models for WRCs and modifying the physi-
cal model proposed by Tokunaga (2009) for film water flow. Among them, the model
by Peters (2013) is simple enough to be combined with the RRE but physically con-
sistent for both capillary and film water from complete oven-dry to saturation. The
model was further improved by Iden and Durner (2014) and Peters (2014) and is
referred to as the Peters-Durner-Iden (PDI) model.

The PDI model partitions soil water into capillary and non-capillary water (i.e.,
film and corner water) and can incorporate vapor flow contributions into the hydraulic
conductivity. Thus, the PDI model has a distinctive advantage for dry conditions
compared to the VGM model and has been tested in such conditions (Luo et al.,
2020; Iden et al., 2021). However, the PDI model needs one more parameter to
describe the saturated conductivity for non-capillary water Ksnc. There are no direct
methods to measure this parameter, and it needs to be estimated from experimental
data. However, measuring hydraulic conductivity for dry conditions, where the effect
of non-capillary water is eminent, is time-consuming and prone to noise caused by
temperature and evaporation (Tokunaga, 2009). Thus, inverse modeling of the RRE
with soil moisture dynamics data is more promising. However, such studies are limited
and only concerned with evaporation, not infiltration.

To fill the research gap, we estimated WRCs and HCFs from oven-dry to com-
plete saturation by inverse modeling of the RRE with the PDI model using upward
infiltration experimental data for seven soils with distinctive textures by Sadeghi
et al. (2017). Sadeghi et al. (2017) used a shortwave infrared (SWIR) imaging cam-
era with a spatial resolution (sub mm-scale) to measure volumetric water content
based on the physical model by Sadeghi et al. (2015). The SWIR framework provides
higher-resolution soil moisture data on both space and time scales than conventional
methods, such as time domain reflectometry (TDR). This advantage enables us to
monitor the advancement of wetting fronts more accurately, where we expect to ob-
serve the effect of non-capillary flow. Using a similar approach, Babaeian et al. (2021)
estimated the VGM parameters for the wetting branch using inverse modeling of the
RRE and SWIR water content estimates, but the fitting was not sufficient for fine-
textured soils and the dry end of the WRC. We expect that using the PDI model
improves the fitting for dry conditions. We compared the performance of the PDI
model with that of the VGM model and demonstrated that the PDI model is better
at capturing soil moisture dynamics for dry conditions. In addition, we observed the
heterogeneity of soil hydraulic properties in the artificially packed soils and discussed
the effects on the inverse modeling.
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3.2 Methods

3.2.1 Upward infiltration experimental data with shortwave
infrared imaging

We used upward infiltration experimental data measured at Utah State University
for the inverse modeling. Because the experimental data were presented in Sadeghi
et al. (2017), we briefly summarize the experimental setup and their framework to
use shortwave infrared (SWIR) imaging to obtain soil moisture data.

Sadeghi et al. (2017) conducted constant-head upward infiltration experiments
for seven different soils collected in Arizona. The physical and chemical properties of
the soils were measured at the University of Arizona and summarized in Table 3.1.
Fig. 3.1 shows the water retention curve (WRC) for each soil measured by using
Tempe Cells (Soilmoisture Equipment Corp., USA) and WP4 Dewpoint Potentiome-
ter (METER Group, Inc. USA). The saturated hydraulic conductivity was measured
by constant head method using a cylinder with a diameter of 66 mm and a height
of 69 mm. Bulk densities for the upward infiltration experiments, WRC, and satu-
rated hydraulic conductivity measurements are slightly different due to packing, as
shown in Table 3.1. We refer the water retention data (Fig. 3.1) and the saturated
conductivity measurement data as the independently measured WRC and Ks, respec-
tively, to avoid confusing them with WRCs and HCFs estimated from the upward
infiltration experimental data. Note that Sadeghi et al. (2018) measured particle size
distributions and mineral compositions for the soils, except for AZ2 soil.
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Figure 3.1: Water retention curves (WRCs) for the soils used in the upward infiltration
experiments. These data were measured independently from the upward infiltration
experiments.

Each soil was oven-dried, sieved with a 2 mm sieve, and uniformly packed into a
Hele-Shaw cell (referred to as the experimental box hereafter) with a 10 cm width, a
10 cm height, and a 5 cm thickness (transmission coefficient: 98%). A metal mesh
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Figure 3.2: A shortwave infrared (SWIR) image taken for AZ7 soil at the time t = 100
min. (a): SWIR image; (b): Soil reflectance [-]; (c): Volumetric water content [-].

with a 3 mm thickness was placed at the bottom of the experimental box to enhance
uniform water entry. The top of the experimental box was open to the atmosphere.
A time domain reflectometry (TDR) array (Sheng et al., 2017) was inserted into the
experimental box during the packing, though we did not used the volumetric water
content measured by the TDR array in the study. The established bulk density for the
upward infiltration experiment for each soil is summarized in Table 3.1. To induce
upward infiltration, they applied the zero pressure head at the bottom of the soil
column by connecting a Mariotte bottle to the experimental box. The soil column
was weighed during the experiments by a laboratory scale with a resolution of 0.01 g
to obtain cumulative infiltration data, which were used for the inverse modeling.

To obtain soil moisture data on high spatial and temporal resolutions, they used
a SWIR imaging camera (SWIR 640 P-Series camera; Infrared Cameras Inc., USA)
to monitor the experiments. The soil reflectance for a wavelength between 900 – 1700
nm was measured by the camera with two standard panels with known reflectance:
a panel with Magic Black coating (ACKTAR Ltd., Israel) with 2% reflectance in the
SWIR domain and a white Spectralon Diffuse Reflectance Standard panel (Labsphere
Inc., USA) with an average reflectance of 99% in the SWIR range. The spatial
resolution was approximately 0.03 cm. An example of the SWIR image and the soil
reflectance measurement taken for AZ7 soil is shown in Fig. 3.2, which demonstrates
the soil reflectance captured the wetting front clearly. The SWIR imaging and the
scale measurement were conducted with a predetermined interval for each soil (0.25
minutes for AZ2, AZ4B, and AZ13 soils, and 1 minute for the other soils).

The soil reflectance measured by the SWIR camera was converted into two-
dimensional soil moisture data using a physics-based model proposed by Sadeghi
et al. (2015). The model is based on the Kubelka and Munk (1931) theory of re-
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flectance, where soil reflectance R [-] is related to the light absorption coefficient of
soil k [L−1] and the light scattering coefficient of soil s [L−1]:

r :=
k

s
=

(1−R)2
2R

. (3.1)

Here the ratio r is commonly called the ”transformed reflectance.” Sadeghi et al.
(2015) assumed that the scattering of water in soils is negligible compared to that
for an oven-dry soil, which may be true for a SWIR range, and derived a simple
expression for the volumetric water content θ of a soil:

θ = θs
r − rd
rs − rd

, (3.2)

where θs is the saturated volumetric water content [-], rs and rd are the transformed
reflectance for saturated and oven-dry soils, respectively. This linear model can be
calibrated by measuring r, rd, and θ. Sadeghi et al. (2018) proved that the point-scale
model (Eq. 3.2) can be extended to a soil column scale provided that rs, rd, and θs are
uniform in the soil column. This proof underpins the validity of calibrating the model
by replacing θ by the averaged volumetric water content of the soil column θ̄, which
can be measured by weighing the soil column, and r by the averaged transformed
reflectance r̄. We took the same approach, and the result of the calibration for each
soil is shown in Fig. 3.3, which demonstrates that the linear relationship was held
well. However, we observed some deviations from the linear relationship for near-
saturated conditions particularly for clay rich soils (e.g., AZ13 and AZ18 soils). This
is due to the neglect of the Fresnel reflectance, which may not be negligible when soils
are near-saturation (Sadeghi et al., 2015). Using the calibration lines, we converted
the soil reflectance into the two-dimensional volumetric water content data for each
SWIR image (see Fig. 3.2 (c)).

The volumetric water content θ at the beginning of each upward experiment was
assumed to be zero. This may not be true because the soils must have absorbed water
from the laboratory air. Assuming a 293 K laboratory room temperature and a 40%
relative humidity, the water potential corresponding to the vapor water is about −106
cm according to the Kelvin equation. Based on the WRC measurements (see Fig.
3.1), θ would be approximately 0.05 for dry AZ18 soil for the water potential. We
did not correct this error because the exact water potential of the laboratory was
unknown, and the correction would not change the study’s conclusion. Thus, the
measured volumetric water content at the beginning of the experiments was assumed
to be zero for all the soils.

The pixel-wise volumetric water content data were noisy, and we computed the
average of the volumetric water content at each depth. We computed the average in
two ways: average over a point and a horizontal line. First, we define the coordinate
system (x, z), where x is the horizontal coordinate with x = 0 being at the left of
the experimental box and z is the vertical coordinate with z = −10 cm set to the
bottom of the experimental box (see Fig. 3.2 (c)). As for the point average, we define
a rectangular box (x, z) such that x ∈ [x0− δx, x0 + δx] and z ∈ [z0− δz, z0 + δz] for a
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Figure 3.3: The calibration of the linear model (Eq. 3.2) for each soil, where the
point-wise volumetric water content θ is replaced by the averaged volumetric water
content θ̄, and the transformed reflectance r is replaced by the averaged transformed
reflectance in the soil column r̄.

point (x, z) = (x0, z0) and computed the average of the volumetric water content at
pixels contained in the rectangular box. We set δx = δz and x0 = 5 cm. As for the
horizontal average, we also define a rectangular box (x, z) such that z ∈ [z0−δz, z0+δz]
for a depth z = z0 and all x ∈ [0, 10] and computed the average of the volumetric
water content at pixels contained in the rectangular box. For both cases, we set the
threshold value δz = 0.25 cm, which corresponds to 8 pixels. Thus, the point average
is the average of about 64 pixels, and the horizontal average is the average over 2664
pixels. Fig. 3.4 shows the point and the horizontal average at z = −4.5 cm for AZ7
soil. The breakthrough curve for the point averaged θ was sharper than that for the
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Figure 3.4: The point and the horizontal average of the volumetric water content for
AZ7 soil at a depth z = −4.5 cm.

horizontal averaged θ. In the inverse modeling, we used both data to estimate soil
hydraulic parameters.

3.2.2 Forward modeling

3.2.2.1 Richardson-Richards equation

One-dimensional water transport in isotropic, isothermal, and rigid soils can be de-
scribed by the Richardson-Richards equation (Richardson, 1922; Richards, 1931):

∂θ(ψ)

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
+ 1

)]
for z ∈ (−Z, 0) and t ∈ (0, T ), (3.3)

where θ is the volumetric water content [L3 L−3], z is the vertical coordinate (pos-
itive upward) [L], t is the time [T], ψ is the water potential [L], K is the hydraulic
conductivity [L T−1], Z is the length of the soil column [L], T is the final time [T].
θ and K are both functions of ψ, and several parametric models have been proposed
(Assouline and Or, 2013), which will be described in Sect. 3.2.2.2. We consider the
following initial and boundary conditions:

ψ(z, 0) = ψi(z), z ∈ [−Z, 0], (3.4)

ψ(−Z, t) = ψlb, t ∈ (0, T ), (3.5)

q(z, t) := −K(z, t)

(
∂ψ(z, t)

∂z
+ 1

)
= 0, z = 0, t ∈ (0, T ), (3.6)
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where ψi is the initial condition, ψlb is the water potential at the lower boundary,
q(z, t) is the water flux in the vertical direction. ψi was set to −106.8 cm because the
soil was (assumingly) oven-dry at the beginning of each upward infiltration experiment
(Schneider and Goss, 2012), and the lower boundary condition was ψlb = −0.01 cm.
Because we only used the experimental data before water reached the top of the
experimental box, the upper water flux boundary condition was set to 0 for all t.

3.2.2.2 Soil hydraulic functions

The van Genuchten-Mualem (VGM) model (Mualem, 1976; van Genuchten, 1980)
and Peter-Durner-Iden (PDI) model (Peters, 2013; Iden and Durner, 2014; Peters,
2014) were used to represent the soil hydraulic functions θ(ψ) and K(ψ). In the
VGM model, θ(ψ) is written as (van Genuchten, 1980):

θ(ψ) = θr + (θs − θr)Γ(ψ), (3.7)

where θr is the residual volumetric water content [-], θs is the saturated volumetric
water content [-], Γ is referred to as the VG saturation function here and defined as:

Γ(ψ) := (1 + (−αψ)n)−m, (3.8)

where α [L−1] and n [-] are van Genuchten fitting parameters, m is defined as m =
1− 1/n. K(ψ) is written as:

K(ψ) = KsΓ(ψ)
τ (1− (1− Γ(ψ)1/m)m)2, (3.9)

whereKs is the saturated hydraulic conductivity [L T−1], τ is the tortuosity parameter
[-].

Although the VGM model has been widely used, the applicability of the model
to dry soils has been questioned. Many studies criticized the non-physical parameter
θr (Nimmo, 1991). Also, the VGM model ignores film and corner flow in pore space,
which underestimates hydraulic conductivity for dry conditions (Tuller and Or, 2001).
Several models have been proposed to describe WRCs for the full range of water
content (Peters and Durner, 2008; Lebeau and Konrad, 2010; Zhang, 2011). For the
inverse modeling, we selected the Peter-Durner-Iden (PDI) model to describe WRCs
and HCFs for conditions from oven-dry to full saturation because of its simplicity. In
the PDI model below, we did not consider vapor flow. Also, note that the PDI model
shares the parameters with the VGM model. Although we did not differentiate them
by notations, we ensure that there is no confusion.

The WRC in the PDI model is described by the sum of capillary and non-capillary
(i.e., film and corner) water:

θ(ψ) = (θs − θr)Sc(ψ) + θrSnc(ψ), (3.10)

where Sc is the capillary saturation function, and Snc is the non-capillary saturation
function. Here, the residual water content θr is interpreted as the maximum volumet-
ric water content for non-capillary water. To ensure the capillary water becomes zero
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at the water potential of oven-dryness ψ0, the PDI model re-scaled the VG saturation
function to obtain the capillary saturation function:

Sc(ψ) =
Γ(ψ)− Γ0

1− Γ0

, (3.11)

where Γ0 = Γ(ψ0). We used ψ0 = 106.8 cm (Schneider and Goss, 2012), which
corresponds to the water potential for oven-dry soils. Note that the effect of the
rescaling compared to the original VG model is negligible for sandy soil and silt loam
but eminent for clay loam soils for dry conditions (Iden and Durner, 2014). The
saturation function for the non-capillary water is described by the following empirical
equation:

Snc = 1 +
1

ψ′
α − ψ′

0

(
ψ′ − ψ′

α + b ln

(
1 + exp

(
ψ′
α − ψ′

b

)))
, (3.12)

where ψ′ = log10(−ψ), ψ′
α = log10(α

−1), ψ′
0 = log10(−ψ0), and b is a smoothing

parameter empirically calculated as

b = 0.1 +
0.2

n2

(
1− exp

(
−
(

θr
θs − θr

)2
))

. (3.13)

The hydraulic conductivity for the PDI model is the weighted sum of the capillary
and non-capillary parts:

K(ψ) = Kc(ψ) +Knc(ψ), (3.14)

where Kc and Knc are hydraulic conductivity for capillary water and non-capillary
water, respectively. The hydraulic conductivity of the capillary flow is given as

Kc(ψ) = KscS
τ
c

1−
(
1− Γ(ψ)1/m

)m(
1− Γ

1/m
0

)m
2

, (3.15)

where Ksc is the saturated hydraulic conductivity for the capillary flow [L T−1]. Note
that the τ must be larger than -1 to satisfy the monotonicity and concavity constraints
of HCFs (Peters, 2014).

The conductivity for non-capillary flow is obtained by the Tokunaga’s model
(Tokunaga, 2009):

Knc(ψ) = Ksnc

(
ψ0

ψα

)a(1−Snc(ψ))
, (3.16)

where Ksnc is the saturated hydraulic conductivity for the non-capillary flow [L T−1],
ψα = −α−1, and a is the slope of Knc(ψ) in the log-log plot [-].



CHAPTER 3. INVERSE MODELING FOR DRY CONDITIONS 64

3.2.2.3 Finite element methods

The RRE with the initial and boundary conditions given soil hydraulic functions were
solved by a finite element method. The solution to the RRE, ψ(z, t), was approxi-
mated by the discrete solution ψh(z, t):

ψh(z, t) :=
Ns∑
j=1

ψj(t)ϕj(z), (3.17)

where Ns is the number of nodes, ϕj for j = 1, ..., Ns are the linear basis functions,
ψj(t) is the water potential at the node j at the time t. Discrete volumetric water
content θh and hydraulic conductivity Kh were also approximated by the linear basis
functions, and the nodal volumetric water content θj(t) and hydraulic conductivity
Kj(t) were computed from the water potential at the same node ψj(t) using the WRC
and the HCF. Using the standard Galerkin method, we obtain the discrete variational
problem, where we seek ψh such that∫ 0

−Z

∂θh
∂t

ϕi dz +

∫ 0

−Z
Kh

(
∂ψh
∂z

+ 1

)
∂ϕi
∂z

dz = 0 (3.18)

for i = 1, ..., Ns. The temporal derivative was discretized by the backward Euler
method by introducing the times tn for n = 0, ..., Nt, such that

0 = t0 < t1 · · · < tn < · · · < tNt = T, (3.19)

and the corresponding time steps ∆tn = tn − tn−1 for n = 1, ..., Nt, where the super-
script n represents the time t = tn. For the time t = tn with n = 1, ..., Nt, we obtain
the discrete variational problem, where we seek ψnh such that∫ 0

−Z

θnh − θn−1
h

∆tn
ϕi dz +

∫ 0

−Z
Kn
h

(
∂ψnh
∂z

+ 1

)
∂ϕi
∂z

dz = 0 (3.20)

for i = 1, ..., Ns. Mass-lumping was used for the temporal derivative term (the first
integral in Eq. 3.20) to obtain a smooth and non-oscillatory solution (Neuman, 1973;
Celia et al., 1990). The resulting non-linear variational problem needs to be solved
with iterative methods. Although the modified Picard method proposed by Celia
et al. (1990) is commonly used to solve the non-linear system, we used the Newton
method with Armijo line search (Kelley, 2018). The non-linear variational problem
above can be written as the systme of non-linear equations (readers may find Scudeler
et al. (2016) useful):

F(ψn,k) = 0, (3.21)

where F denote the system of the non-linear equations, ψn,k := [ψn,k1 , ψn,k2 , ..., ψn,kNs ]
T

is the solution at the kth Newton iteration with ψn,0 = ψn−1. For each Newton
iteration, the Newton direction d was determined by solving the Newton system:

F′(ψn,k)dk = −F(ψn,k), (3.22)
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where the Jacobian matrix F′ was computed with analytical dθ
dψ

and dK
dψ

, and the linear
system was solved by Gaussian elimination. The Newton step size is determined by
Armijo line search:

ψn,k+1 = ψn,k + λdk, (3.23)

with the initial λ = 1, and λ was reduced by a factor 0.5 when the sufficient decrease
condition

||F(ψn,k+1)|| < (1− cλ)||F(ψn,k)||, (3.24)

where c = 10−4, was not met. The Newton iteration was terminated when

||F(ψn,k)|| ≤ τa + τr||F(ψn,0)||, (3.25)

where τa = 10−7 and τr = 10−7.
While the modified Picard method only needs to evaluate the derivative of the

volumetric water content ∂θ
∂ψ
, the Newton method requries the derivative of the hy-

draulic conductivity ∂K
∂ψ

in addition to ∂θ
∂ψ
. As a result, the computational efficiency

we can expect for the Newton method is often diminished by the additional evaluation
of ∂K

∂ψ
, as reported by Lehmann and Ackerer (1998). However, we experienced that

the Newton method is more efficient than the modified Picard method for simulat-
ing the upward infiltration when using the PDI model, while the two methods were
comparable for the VGM model. Because we did not investigate the efficiency of the
Newton method for other situations, we do not discuss which method is more efficient
for the PDI model.

3.2.2.4 Cumulative flux calculation

Because we used the cumulative infiltration data for the inverse modeling, we need
to compute the water flux at the lower boundary. Although we could compute the
flux at the lower boundary by discretizing the Buckinghan Darcy law (Eq. 3.6),
the computed flux may not be accurate when using a linear finite element method.
Therefore, we computed the lower boundary flux based on the mass balance with
the known upper boundary flux (Vogel et al., 1996). By integrating the continuity
equation, we obtain

qlb = qub +

∫ 0

−Z

∂θ

∂t
dz, (3.26)

where qlb and qub are water fluxes at the lower and upper boundaries, respectively.
Because qub was set to zero, the cumulative water flux at the lower boundary I(t) (or
cumulative infiltration) can be calculated as

I(t) =

∫ t

0

qlb dt =

∫ t

0

∫ 0

−Z
θ(z, t) dz dt. (3.27)

Here, the integral was evaluated by the trapezoidal rule.
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3.2.3 Inverse modeling

The numerical solution to the RRE with the initial and boundary conditions (Eq.
3.3) was fitted to the experimental data by varying parameters in the VGM and PDI
models. As for the VGMmodel, there are six parameters, θr, θs, α, n, Ks, and τ , while
there is one additional parameter Ksnc in the PID model. Ideally, all the parameters
should be estimated simultaneously for each model. However, the experimental data
contained limited information on those parameters, which makes the inverse problem
ill-posed (i.e., non-unique solution and stability against noise). We dealt with the
ill-posedness by three methods.

First, instead of using a local optimization method, we used a global optimization
method called the shuffled complex evolution developed by the University of Arizona
(SCE-UA) (Duan and Gupta, 1992). This method combines the Nelder-Mead method
(Nelder and Mead, 1965) with evolutionary algorithms. This method allows us to
define the range of the target parameters, which helps to deal with the ill-posedness,
too. Readers should refer to Duan and Gupta (1992) and Duan et al. (1994) for the
detail.

Second, we limited the number of parameters to be estimated, and fixed values
were used for θr and τ for both models. As for θr, θr = 0 was used for the VGM
model. The θr for the PDI model was based on the θr value estimated by fitting the
PDI model to the independently measured WRC (Fig. 3.1) with a correction due to
bulk density differences. Fitting the VGM and the PDI models to the experimental
WRC was conducted by using the SCE-UA algorithm. Fig. 3.5 shows the fitted
models, and Table 3.2 shows the estimated parameters. τ = 0.5 was used for both
models. We should note that the tortuosity parameter τ for the VGM model should
be treated as a fitting parameter (Schaap and Leij, 2000). This parameter greatly
changes the shape of the HCF and can increase the hydraulic conductivity K for dry
conditions if the value is small. Although this could improve the fitting of the VGM
model to the experimental data, we decided not to allow τ to vary because of the high
correlation with Ks and the unphysical negative value of the parameter. Therefore,
we fixed the parameter τ = 0.5 and focused on the comparison between the VGM
and the PDI models.

Third, we added a regularization term regarding the parameter n in an objective
function to deal with the ill-posedness. This was because of the high correlation
between n and Ks parameters for both models (Ksc for the PDI model). We used
a n value estimated from the independently measured WRC as prior information.
Therefore, we defined the objective function J as

J (Θ) =
Nθ∑
i=1

(
θ̂i(Θ)− θiobs

)2
+

NI∑
i=1

(
Î i(Θ)− I iobs

)2
+ γ (log10 n− log10 n

′)
2
, (3.28)

where N θ and N I are the numbers of observations for the volumetric water content
θobs and cumulative infiltration Iobs, Θ is a set of parameters to be estimated (i.e.,
Θ = {θs, α, n,Ks} for the VGM model and Θ = {θs, α, n,Ksc.Ksnc} for the PDI
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Table 3.2: Estimated soil hydraulic parameters for the VGM and the PDI models
from the independently measured water retention curve data, shown in Fig. 3.1.

Soil Soil Hydraulic Model θr θs α n
- - cm−1 -

AZ2 VGM 0.027 0.364 0.0176 3.629
AZ2 PDI 0.049 0.363 0.0181 4.152
AZ4B VGM 0.035 0.388 0.0184 1.820
AZ4B PDI 0.106 0.379 0.0155 2.696
AZ7 VGM 0.017 0.391 0.0117 1.416
AZ7 PDI 0.101 0.387 0.0107 1.602
AZ11 VGM 0.023 0.411 0.0061 1.351
AZ11 PDI 0.194 0.403 0.0041 2.315
AZ13 VGM 0.000 0.422 0.0296 1.215
AZ13 PDI 0.242 0.419 0.0297 1.510
AZ15 VGM 0.000 0.444 0.0027 1.276
AZ15 PDI 0.242 0.440 0.0027 1.744
AZ18 VGM 0.000 0.452 0.0084 1.196
AZ18 PDI 0.188 0.460 0.0454 1.005

model), θ̂ and Î are the calculated volumetric water content and the cumulative flux
at the lower boundary by solving the forward model given the parameters Θ, γ is the
regularization parameter set to one, n′ is the parameter n estimated from the inde-
pendently measured WRCs (i.e., values in Table 3.2). We used the volumetric water
content measurement at 8 depths (z = −8.5,−7.5,−6.5,−5.5,−4.5,−3.5,−2.5,−1.5
cm) and the cumulative infiltration I at all the times where the SWIR iamges were
taken until the wetting front reached z = −0.5 cm (i.e., 0.5 cm below the soil surface).

The objective function can be interpreted as a least-square estimation with a
regularization term. Here, we assumed that the variance of the discrepancy between
the model and the experimental data was the same for the volumetric water content
and the cumulative infiltration. In fact, it turned out that they were similar when
the fitting was appropriate regardless of the difference in the range of the values.
This was because the cumulative infiltration data were less noisy than the volumetric
water content data. The regularization term can be interpreted as prior information.
We assumed the parameter n is similar to the n estimated from the independently
measured WRC data. Because this may not be accurate, we need to be careful when
interpreting the estimated parameters; the estimated parameters here are dependent
on the experimental data and all the assumptions we made.

3.2.4 Implementations

The inverse modeling requires a robust implementation of the forward modeling and
the optimization algorithm. Particularly, the forward modeling must be robust to
enable extensive parameter searches. The finite element method described above
was implemented using FEniCS library (Logg et al., 2012), which consists of a C++
implementation with a Python interface. Soil hydraulic functions (i.e., VGM and
PDI model) were implemented in C++ to speed up the computation, and the rest
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Figure 3.5: The van Genuchten-Mualem (VGM) model and the Peter-Durner-Iden
(PDI) model fitted to the independently measured water retention curves for all soils.

was written in Python. An adaptive time-stepping method based on the number
of the Newton iterations was used to speed up the forward modeling (Vogel et al.,
1996). Solving the forward problem is not straightforward because the experimental
data require us to simulate soil moisture dynamics from oven-dry to near-saturation
conditions. As for very dry conditions, we enforced θ and K to be zero for ψ < ψ0 for
the PDI model, but no such corrections were made for the VGM model. The Newton
method with the Armijo line search enabled us to use a larger time step than the
modified Picard method without convergence issues. Contrary to our expectations,
we were faced with convergence issues for near-saturation conditions. This occurred
during the inverse modeling when a parameter n was approximately larger than six
or the saturated hydraulic conductivity Ks was high, which induced fast water flow
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and saturated the soil very quickly. In such a situation, both the modified Picard and
Newton method experienced convergence issues due to the zero slope of WRCs. This
could be alleviated by introducing an artificial slope into WRCs. Because it was not
desirable to introduce such an artificial error, we stopped the forward modeling when
we detected the increase in the volumetric water content at the top of the experimental
box. Note that θ, ∂θ

∂ψ
, K, and ∂K

∂ψ
were set to θs, 0, the maximum conductivity (Ks for

the VGM model and Ksc+Ksnc for the PDI model), and 0 for ψ ≥ 0 for both models.
Also, a large n value made the computation of ∂K

∂ψ
ill-defined when ψ was very close

to zero because the VG saturation function Γ became one even when ψ < 0 for both
models due to the limited number of digits. Thus, we forced Γ < 1− 10−12. Finally,
we stopped the forward modeling when the Newton iteration or the line search failed
within the predetermined maximum iterations (100 for both). This occurred when
the soil became saturated, and it is reasonable to ignore such cases.

Inverse modeling was implemented by combining the forward modeling explained
above with the SCE-UA algorithm implemented in Python. Parameters α, n, Ks

(Ksc for the PDI model), and Ksnc were transformed as follows:

αt = log10(
1
α
), (3.29)

nt = log10(n), (3.30)

Kt
s = log10(Ks), (3.31)

Kt
snc = log10(Ksnc), (3.32)

where αt, nt, Kt
s, and Kt

snc are the transformed parameters. The range of the pa-
rameters is summarized in Table 3.3. The range of θs was determined based on
the measured volumetric water content data. The other ranges were determined by
trial and error (i.e., diagnosing the convergence of each parameter in the SCE-UA
algorithm).

There exist tuning parameters in the SCE-UA algorithm, and we used the default
setting recommended in Duan et al. (1994) with the number of complexes of 4. We
allowed the maximum evaluations of the forward modeling to be 5000 until conver-
gence criteria were met. The convergence criteria are twofold. The first one is the
geometric mean of the relative range of the parameters to be less than 0.0001. The
second one is that the objective function does not improve by 0.1% in the last ten
evolution loops. The same tuning parameters were used for the WRC fitting.

3.2.5 Evaluations

The results of the inverse modeling were evaluated by computing the relative error ϵ
for the volumetric water content and the cumulative water flux defined as:

ϵδ :=

(
1
Nδ

∑Nδ

i (δ̂i − δiobs)2
1
Nδ

∑Nδ

i (δiobs)
2

)1/2

(3.33)

for δ = θ, I, where δobs is the measurement data, δ̂ is the predicted value by the
forward modeling, N δ is the number of the measurement data.
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Table 3.3: The range of soil hydraulic parameters for the VGM and the PDI models
searched by the SCE-UA algorithm. K∗

s is the independently measured saturated
conductivity shown in Table 3.1.

Parameter Units Soil Min Max

θs - AZ2 0.24 0.34
θs - AZ4B 0.31 0.41
θs - AZ7 0.32 0.42
θs - AZ11 0.35 0.45
θs - AZ13 0.33 0.43
θs - AZ15 0.40 0.65
θs - AZ18 0.35 0.45
α cm−1 - 0.00001 0.1
n - - 1.0001 7.5

Ks or Ksc cm s−1 - K∗
s × 10−4 K∗

s × 102

Ksnc cm s−1 - K∗
s × 10−8 K∗

s × 10

3.3 Results and discussions

Fig. 3.6 to 3.9 show the fitted numerical solutions with the VGM and the PDI models
to the horizontal and point soil moisture and the cumulative water flux for all the
soils, and Table 3.4 shows the results of the inverse modeling. Fig. 3.10 shows the
estimated the wetting branch of the WRCs and HCFs from the inverse modeling with
the drying branch of those estimated from the independently measured WRCs and
saturated hydraulic conductivity. We present and discuss the results of the inverse
modeling by dividing the seven soils into three groups: AZ2 and AZ4B soils, AZ7 and
AZ11 soils, AZ13, AZ15, and AZ18 soils.

3.3.1 AZ2 and AZ4B soils: Validity of one-dimensional flow

Fig. 3.6 (a) and (b) show that the numerical solutions with the VGM model could
not describe the cumulative water flux for AZ2 and AZ4B soils, respectively. In these
two coarse-textured soils, we observed the violation of the one-dimensional flow as-
sumption, as shown in Fig. 3.11 (a) and (b), respectively. The fitting of the numerical
solutions with the VGM and the PDI models to the soil moisture data (both horizontal
and point average data) was also not good for the two soils. We, therefore, concluded
that the experimental data for AZ2 and AZ4B soils were not compatible with the
one-dimensional RRE regardless of the soil hydraulic functions. The sand percentage
for the two soils was over 80%, and the saturated hydraulic conductivities were both
high (see Table 3.1), which induced non-one-dimensional flow near the bottom of
the experimental column at the beginning of the experiments. Future studies should
pay special attention to the design of the inlet of the experimental box to prevent
two or three-dimensional flows for coarse-textured soils. We also note that Šimůnek
et al. (2001) attributed the failure of the one-dimensional RRE to describe cumula-
tive infiltration data to a non-equilibrium flow between inter- and intra-aggregates.
We did not observe such phenomena even though some aggregates were present. For
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Table 3.4: Estimated soil hydraulic parameters for the VGM and the PDI models
obtained by the inverse modeling with the upward infiltration experimental data. ϵθ

and ϵI are the L2 relative error defined by Eq 3.33. The column ”reliability” shows the
qualitative evaluation of the fittings by three ranks (reliable, middling, and failed).

Soil Soil Hydraulic Model Data type ϵθ ϵI Reliability θs α n Ks or Ksc Ksnc

- - - cm−1 - cm s−1 cm s−1

AZ2 VGM point 2.10 ×10−1 1.32 ×10−1 failed 0.272 3.99 ×10−5 3.437 7.61 ×10−7

AZ2 VGM horizontal 2.51 ×10−1 1.31 ×10−1 failed 0.272 3.49 ×10−5 3.250 6.78 ×10−7

AZ2 PDI point 2.02 ×10−1 1.31 ×10−1 failed 0.268 7.35 ×10−5 3.864 1.29 ×10−6 1.44 ×10−8

AZ2 PDI horizontal 2.41 ×10−1 1.31 ×10−1 failed 0.268 2.78 ×10−5 3.490 4.89 ×10−7 1.02 ×10−8

AZ4B VGM point 2.21 ×10−1 1.62 ×10−1 failed 0.326 2.41 ×10−5 1.624 9.03 ×10−7

AZ4B VGM horizontal 2.66 ×10−1 1.62 ×10−1 failed 0.316 3.60 ×10−5 2.002 9.01 ×10−7

AZ4B PDI point 2.28 ×10−1 1.62 ×10−1 failed 0.311 4.42 ×10−5 2.226 9.14 ×10−7 1.35 ×10−8

AZ4B PDI horizontal 2.57 ×10−1 1.62 ×10−1 failed 0.321 8.12 ×10−5 2.277 1.47 ×10−6 4.14 ×10−8

AZ7 VGM point 9.33 ×10−2 9.51 ×10−3 reliable 0.333 4.57 ×10−2 2.006 1.21 ×10−4

AZ7 VGM horizontal 8.02 ×10−2 8.32 ×10−3 reliable 0.335 5.16 ×10−2 2.140 1.29 ×10−4

AZ7 PDI point 6.95 ×10−2 8.17 ×10−3 reliable 0.376 4.89 ×10−1 1.107 1.08 ×10−4 1.79 ×10−4

AZ7 PDI horizontal 4.80 ×10−2 6.90 ×10−3 reliable 0.375 3.85 ×10−1 1.134 2.05 ×10−3 1.20 ×10−4

AZ11 VGM point 8.82 ×10−2 1.95 ×10−2 reliable 0.374 6.62 ×10−2 1.639 2.10 ×10−4

AZ11 VGM horizontal 7.02 ×10−2 1.82 ×10−2 reliable 0.382 7.00 ×10−2 1.646 2.20 ×10−4

AZ11 PDI point 8.23 ×10−2 1.54 ×10−2 reliable 0.398 6.83 ×10−1 1.069 1.88 ×10−2 1.83 ×10−4

AZ11 PDI horizontal 6.78 ×10−2 1.51 ×10−2 reliable 0.379 1.43 ×10−1 1.286 1.05 ×10−3 9.11 ×10−6

AZ13 VGM point 1.02 ×10−1 1.69 ×10−2 failed 0.394 1.31 ×10−1 1.204 4.14 ×10−3

AZ13 VGM horizontal 9.18 ×10−2 1.45 ×10−2 middling 0.401 1.59 ×10−1 1.204 5.51 ×10−3

AZ13 PDI point 1.24 ×10−1 1.99 ×10−2 failed 0.358 1.32 ×10−1 1.392 1.65 ×10−3 6.05 ×10−6

AZ13 PDI horizontal 1.10 ×10−1 1.68 ×10−2 middling 0.368 1.79 ×10−1 1.355 2.83 ×10−3 1.17 ×10−5

AZ15 VGM point 2.14 ×10−1 3.17 ×10−2 failed 0.476 5.92 ×10−5 1.486 6.06 ×10−7

AZ15 VGM horizontal 1.63 ×10−1 3.04 ×10−2 failed 0.459 1.18 ×10−3 1.347 1.76 ×10−5

AZ15 PDI point 2.01 ×10−1 3.40 ×10−2 failed 0.430 7.02 ×10−3 2.751 2.85 ×10−5 1.03 ×10−7

AZ15 PDI horizontal 1.57 ×10−1 3.10 ×10−2 failed 0.426 3.80 ×10−5 3.087 1.35 ×10−7 1.35 ×10−9

AZ18 VGM point 1.44 ×10−1 2.34 ×10−2 failed 0.408 5.11 ×10−2 5.487 2.72 ×10−5

AZ18 VGM horizontal 1.12 ×10−1 1.76 ×10−2 failed 0.433 6.74 ×10−2 1.399 1.78 ×10−4

AZ18 PDI point 1.30 ×10−1 2.19 ×10−2 failed 0.410 5.11 ×10−2 1.530 8.99 ×10−5 1.34 ×10−7

AZ18 PDI horizontal 1.03 ×10−1 1.66 ×10−2 failed 0.422 9.21 ×10−2 1.313 3.09 ×10−4 1.54 ×10−6

the other five soils, the estimated cumulative water flux was reasonably compatible
with the measured data, which implied that the one-dimensional flow assumption was
valid for the five soils. We also confirmed the one-dimensional flow assumption by
the SWIR images, as exemplified by the one for AZ7 soil shown in Fig. 3.11 (c).

3.3.2 AZ7 and AZ11 soils: Advantage of PDI model

For AZ7 soil (sandy loam soil), the RRE with the VGM model well captured the
horizontal averaged soil moisture data, as shown in Fig. 3.6 (c), except for very dry
and near-saturation conditions. For very dry conditions, the numerical solution with
the PDI model could fit the horizontal averaged soil moisture data better than that
with the VGM model (see Fig. 3.7 (c)). This demonstrates that the PDI model is
better than the VGM model for describing soil moisture dynamics for dry conditions.
However, the numerical solution with the PDI model overestimated the horizontal
averaged water content for near-saturation conditions. This was attributed to the fact
that the PDI model overestimates water retention for near saturation. Vogel et al.
(2001) investigated the effect of the shape of WRCs for near-saturation conditions on
upward infiltration and demonstrated that introducing an air entry value to the VGM
model significantly changed the timing of the arrival of wetting fronts. Nevertheless,
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Figure 3.6: Numerical solutions with the VGM model fitted to the horizontal average
volumetric water content data from the upward infiltration experiments.

the modified VGM model with an air entry value would not describe the gradual
increase in the volumetric water content observed in the upward experiments here.
Future studies should address this issue by, for example, introducing a finite slope
near saturation.

Compared to the horizontal averaged data, the point averaged data showed sharper
wetting fronts (see Fig. 3.8 (c)). The fitting of the numerical solutions was better
for the horizontal average than the point average for the VGM and PDI models for
AZ7 soil (see Table 3.4). This was because the point average data were more af-
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Figure 3.7: Numerical solutions with the PDI model fitted to the horizontal average
volumetric water content data from the upward infiltration experiments.

fected by the heterogeneity of soils, which contradicts the RRE assuming the soil is
homogeneous. In the next section, we discuss the effects of the heterogeneity of soils.

In terms of the estimated WRCs, Fig. 3.10 (c) demonstrate that there was no
significant difference between the horizontal and point averaged soil moisture data
for AZ7 soil. This was because the heterogeneity of the soil was relatively small,
and the water flow was uniform. The estimated WRCs for the VGM model were
quite different from those for the PDI model (see Fig. 3.10 (c)). The PDI model
suggested more water retention for dry conditions (ψ < −103 cm) than the VGM
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Figure 3.8: Numerical solutions with the VGM model fitted to the point average
volumetric water content data from the upward infiltration experiments.

model. Unfortunately, the wetting branch of water retention data is not available,
and we could not verify the validity of the estimated WRCs. However, the WRCs with
the PDI model appeared to close a hysteresis loop with the independently measured
WRCs. This should be expected considering the effect of hysteresis is minor for dry
conditions (i.e., adsorptive water regime). This observation increased the reliability
of the estimated WRCs by the PDI model than those with the VGM model.

The saturated hydraulic conductivity Ks of AZ7 soil for the VGM model was
about 1.2× 10−4 cm s−1, which is in the same magnitude as the independently mea-
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Figure 3.9: Numerical solutions with the PDI model fitted to the point average vol-
umetric water content data from the upward infiltration experiments.

sured Ks (Table 3.1). For the PDI model, the estimated Ksc from the point average
data was comparable to the independently measured Ks. However, Ksc for the PDI
model estimated from the horizontal average soil moisture data was higher than in-
dependently measured Ks by one order magnitude, although the estimated HCFs for
the horizontal and point average data were almost indistinguishable (see Fig. 3.10
(c)). We attributed this to the limited information on soil hydraulic functions near
saturation in the upward infiltration experimental data. If we applied a pressure heat
above zero at the bottom of the experimental box, we would gain more information
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on soil hydraulic functions for near saturation (Latorre and Moret-Fernández, 2019).
The results for AZ11 soil were comparable to those for AZ7 soil (see Table 3.4).

AZ7 and AZ11 soils exhibited the lowest heterogeneity among the soils, which was
evident in the SWIR images. We concluded that the inverse modeling with the one-
dimensional RRE using upward infiltration experimental data is most effective for
sandy loam and loam soils.

3.3.3 AZ13, AZ15, and AZ18 soils: Effects of heterogeneity

For the other soils, AZ13, AZ15, and AZ18 soils, there was difficulty in fitting the
numerical solutions due to the heterogeneity of the soils. For AZ13, the numerical
solution with the PDI model captured the overall trend of the horizontal averaged
soil moisture data, as shown in Fig. 3.7 (e), but not for the point average data
(see Fig. 3.9 (e)). We attributed this to the heterogeneity of the soil due to local
variances of WRCs and HCFs. Also, the heterogeneity in soil optical properties could
introduce errors in the SWIR-based volumetric water content data. The linear model
(Eq. 3.2) assumed that the soil optical properties rs and rd are constant in the
soil column. However, this assumption may be violated in AZ13, AZ15, and AZ18
soils, adding uncertainty to the estimated volumetric water content data. The SWIR
images demonstrated the existence of local heterogeneity of soil hydraulic properties
in AZ13 soil, as exemplified in Fig. 3.11 (d). Also, the soil moisture data at z = −2.5
cm in Fig. 3.9 (e) became larger than that at z = −3.5 cm after the arrival of the
wetting front, which demonstrates the heterogeneity of the porosity in the packed
soil. The estimated WRC with the PDI model agreed well with the WRCs fitted
to the independently measured WRCs for dry conditions. Nevertheless, we have less
confidence in the estimated WRCs because the quality of the fitting was not good as
AZ7 and AZ11 soils.

For AZ15 and AZ18 soils, more significant effects of the heterogeneity of soil hy-
draulic properties were observed. Also, the Fresnel reflectance might have contributed
to the heterogeneity of the retrieved volumetric water content for these clay rich soils
(Sadeghi et al., 2015). As a result, the numerical solutions with both models could
not adequately describe the soil moisture data except for the timing of the arrival of
the wetting fronts. The heterogeneity of soil hydraulic properties was due to the high
percentage of clay materials in these two soils. Therefore, we concluded that the cur-
rent framework of the inverse modeling with the upward infiltration experiment data
could not reliably estimate soil hydraulic properties of soils with many clay materials
due to the resulting heterogeneity.

3.4 Conclusions and perspectives

Water retention curves (WRCs) and hydraulic conductivity functions (HCFs) are nec-
essary to simulate soil moisture dynamics based on the Richardson-Richards equation
(RRE). A commonly used van Genuchten-Mualem (VGM) model is not suitable for
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describing WRCs and HCFs for dry conditions. An alternative model, the Peter-
Durner-Iden (PDI) model, provides WRCs and HCFs from oven-dryness to saturated
conditions. We investigated whether the RRE with the PDI model can describe up-
ward infiltration into very dry soils with distinctive textures through inverse modeling.
We used upward infiltration experiment data presented in Sadeghi et al. (2017), where
a shortwave infrared (SWIR) camera was used to monitor soil moisture dynamics with
high resolution in space and time, along with cumulative infiltration (i.e., water flux
at the lower boundary) measured by a laboratory scale.

Numerical solutions to the one-dimensional RRE were incompatible with soil mois-
ture and cumulative water flux data for two soils with a very high sand percentage
(over 80%). The SWIR images allowed us to confirm the two-(or possibly three)
dimensional flow near the bottom of the experimental box, which contradicts the
one-dimensional assumption of the RRE. For the other soils, the cumulative water
flux was well described by the numerical solutions, and the SWIR images confirmed
the one-dimensional flow.

For sandy loam and loam soils (AZ7 and AZ11 in Table 3.1), the numerical so-
lutions with the PDI model better captured soil water dynamics for dry conditions
than those with the VGM model. As a result, the wetting branch of the estimated
WRCs with the PDI model showed more water-holding capacity for dry conditions
than those with the VGM model. Although the wetting branch of the WRCs was not
independently measured, the estimated WRCs with the PDI model were consistent
with the independently measured WRCs for the drying branch in that they formed
a hysteresis loop. The estimated saturated hydraulic conductivity had a reasonable
agreement with the one independently measured. We concluded that the current
framework of the inverse modeling with the upward infiltration experimental data is
suitable for sandy loam and loam soils. Nevertheless, the fitting was not adequate
for near-saturation conditions. For future studies, we should introduce a finite slope
in WRCs near saturation. Also, rather than parametric models, such as the VGM
and the PDI models, more flexible functions should be used to describe WRCs and
HCFs. For example, previous studies used polynomial functions (Bitterlich et al.,
2004) and neural networks (Bandai and Ghezzehei, 2021) to describe them. By using
such flexible functions, we might be able to ”discover” WRCs and HCFs that cannot
be described by commonly used parametric models.

For soils with a large clay percentage, the fittings of the numerical solutions to
the measured soil moisture data were not satisfactory due to the heterogeneity of the
soils due to local variations in soil hydraulic properties (i.e., porosity and saturated
hydraulic conductivity). The SWIR images enabled us to confirm the existence of
non-uniform flow due to such heterogeneity. Dealing with such micro-heterogeneity
of soils in the inverse modeling of soil moisture is challenging. For forward modeling,
Miller and Miller’s similar media theory (Miller and Miller, 1956; Sadeghi et al., 2016)
has commonly been used to simulate soil moisture dynamics in heterogeneous soils.
However, we are not aware of studies estimating parameters in such models with
inverse modeling. Solving such a problem would be the next step of inverse modeling
in soil moisture dynamics.
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3.5 List of abbreviations

HCF: Hydraulic conductivity function
PDI: Peter-Durner-Iden
RRE: Richardson-Richards equation
SWIR: Shortwave infrared
TDR: Time domain reflectometry
UI: Upward infiltration
VG: van Genuchten
VGM: van Genuchten-Mualem
WRC: Water retention curve

3.6 List of notations

Superscript
·t: logarithmic transformation for the inverse modeling
·̂: compute values obtained by solving the forward problem
Subscript
·j(t): finite element coefficient at node j at time t [L]
Alphabet
a: slope parameter in the PDI model [-]
b: smoothing parameter in the PDI model [-]
c: parameter for line search
d: Newton direction
f(t): water flux at the top boundary at time t [L T−1]
F: system of non-linear equations
F′: Jacobian matrix
I: cumulative flux at the lower boundary [L]
k: light absorption coefficient [L−1]
K: hydraulic conductivity [L T−1]
Kc: hydraulic conductivity for capillary water [L T−1]
Knc: hydraulic conductivity for non-capillary water [L T−1]
Ks: saturated hydraulic conductivity [L T−1]
K∗
s : independently measured saturated hydraulic conductivity [L T−1]

Ksc: saturated hydraulic conductivity for capillary water [L T−1]
Ksnc: saturated hydraulic conductivity for non-capillary water [L T−1]
J : objective function
m: van Genuchten parameter [-]
n: van Genuchten parameter [-]
n′: van Genuchten parameter n estimated from the independently measured WRCs
[-]
N I : number of observations for the cumulative infiltration [-]
Ns: number of spatial nodes [-]
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Nt: number of temporal steps [-]
N θ: number of observations for the volumetric water content [-]
q: water flux [L T−1]
r: transformed reflectance [-]
r̄: averaged transformed reflectance [-]
rd: transformed reflectance for oven-dry soils [-]
rs: transformed reflectance for saturated soils [-]
R: soil reflectance [-]
Sc: capillary saturation function [-]
Snc: non-capillary saturation function [-]
s: light scattering coefficient [L−1]
t: time [T]
T : final time [T]
x: horizontal coordinate [L]:
z: vertical coordinate [L]:
Z: length of soil column [L]:
Greek alphabet
α: van Genuchten parameter [L−1]
γ: regularization parameter
Γ: van Genuchten saturation function [-]
δz: threshold value to compute average values [L]
∆tn: time step at the time tn [T]
ϵδ: relative error for the variable δ
θ: volumetric water content [-]
θ̄: averaged volumetric water content of the soil column [-]
θr: residual volumetric water content [-]
θs: saturated volumetric water content [-]
Θ: set of parameters in the VGM model or the PDI model estimated in the inverse
modeling
λ: step size for line search
τ : tortuosity parameter [-]
τa: absolute threshold for Newton iterations [-]
τr: relative threshold for Newton iterations [-]
ψ: water potential [L]
ψ′: log transformed water potential (ψ′ = log10(−ψ))
ψ0: water potential of oven-dryness [L]
ψi: initial condition of the water potential [L]
ψlb: water potential at the lower boundary [L]
ϕj: linear basis function for a node j
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Figure 3.10: Estimated water retention curves (WRCs) and hydraulic conductivity
functions (HCFs) from the inverse modeling with the horizozan and the point av-
eraged soil moisture data. WRCs fitted to the independently measured WRCs are
also shown and denoted as WRC fitting. The VGM-WRC fitting lines for HCFs were
computed by the VGM model fitted to the independently measured WRCs and sat-
urated conductivity.
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Figure 3.11: Shortwave infrared (SWIR) images. (a) and (b): The violation of one-
dimensional flow for AZ2 and AZ4B soils, respectively. (c): Uniform one-dimensional
flow observed for AZ7 soil. (d): Non-uniform flow caused by the heterogeneity of
AZ13 soil.
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Chapter 4

Estimation of surface water flux
from soil moisture measurement:
Comparison between
physics-informed neural networks
and adjoint method

Abstract. 1Surface water flux is an important variable for water resource manage-
ment. Accurate measurement of surface water flux is only possible by building costly
lysimeters. In this work, we seek to use near-surface soil moisture measurements to
estimate surface water flux. Surface water flux can be interpreted as a boundary
condition for a non-linear time-dependent Richardson-Richards equation (RRE), a
partial differential equation (PDE) that models water transport in soils. Thus, esti-
mating surface water flux can be framed as estimating this boundary condition of the
PDE from near-surface soil moisture measurements. Solving this PDE-constrained
optimization problem is computationally challenging due to the large parameter di-
mension stemming from discretization. Here, we used first and second-order adjoint-
based derivative information and applied Newton’s method to minimize the objective
function. We compared the performance of this approach with physics-informed neu-
ral networks. Both methods gave comparable estimates of surface water flux in three
numerical experiments. However, the adjoint method was more robust in terms of
the reconstructed soil moisture profile under a data-limited situation.

1The preliminary work of the current chapter was presented as Bandai, T., Ghezzehei, T. A.,
Petra, N. Estimation of rainfall rates from soil moisture measurements through PDE-constrained
optimization. HydroML Symposium, Pennsylvania, USA, (May 2022).

86



CHAPTER 4. PINNS VS ADJOINT METHODS 87

4.1 Introduction

In the last few decades, measuring soil moisture has become routine in hydrological
and meteorological field stations. Recently, the networks of soil moisture measure-
ments have been organized to foster their usage (Cosh et al., 2021; Dorigo et al.,
2021). Most soil moisture monitoring programs were established to verify soil mois-
ture estimates provided by satellite remote sensing. Also, soil moisture data enable us
to assess drought conditions. While these direct usages of soil moisture measurement
will continue to be valuable, we should aim to extract more information from soil
moisture measurements. There is no doubt that soil moisture data contain informa-
tion on water flow and soil hydraulic properties. While data-driven approaches might
be popular at the moment, it is indispensable to develop physics-based algorithms
to extract information from soil moisture data for interpretability and extrapolation
capability (Willcox et al., 2021).

Brocca et al. (2013) developed an algorithm based on the mass conservation of
water to estimate surface water flux (i.e., infiltration and evaporation) from soil mois-
ture measurements. However, the mass conservation of water is not enough to de-
scribe the strong dependency of water flow on the wetness of soils. By combining the
Buckingham-Darcy law (Buckingham, 1907), which states that water flow in soils is
driven by the gradient of the potential energy of water, with the mass conservation, a
non-linear time-dependent partial differential equation (PDE) called the Richardson-
Richards equation (RRE) was established to simulate water flow in soils (Richardson,
1922; Richards, 1931). While the RRE has been successfully used to analyze soil
moisture data from laboratory experiments, the application of the RRE to field soil
moisture measurements is still challenging. This is because of the uncertainty in soil
hydraulic properties and boundary conditions. In the last two decades, attention has
been focused on estimating soil hydraulic properties by inverse modeling based on
the RRE. While the constant (or zero water potential gradient) lower boundary con-
dition might be justifiable in field conditions, the upper boundary condition must be
precisely specified. However, rainfall rates measured by tipping bucket rain gauges
are affected by wind and contain many measurement errors (Pollock et al., 2018).
Also, the eddy covariance method to estimate evaporation is costly and does not
necessarily provide appropriate estimates because of scale mismatch. The only ava-
ialble way to accurately measure the upper boundary condition is to build lysimeters
that capture all water gain or loss. In fact, soil moisture dynamics in fields were
successfully analyzed by the RRE if well-defined boundary conditions were given by
lysimeters (Dijkema et al., 2017; Groh et al., 2018). However, building and main-
taining lysimeters are expensive and time-consuming, and standard hydrological and
meteorological stations are not equipped with lysimeters. Therefore, we need to op-
timize the upper boundary condition in addition to soil hydraulic properties by soil
moisture data. To achieve this goal, Sadeghi et al. (2019) employed an analytical
solution to the linearized RRE. Although the analytical model has shown promising
results, its accuracy and applicability for extreme wet and dry conditions are limited,
probably due to the linearization.
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The inverse problem to estimate the upper boundary (i.e., surface water flux) is
a large-scale optimization problem because the number of parameters is the num-
ber of time steps for the RRE. To overcome this challenge, Bandai and Ghezzehei
(2021) and Bandai and Ghezzehei (2022) applied a neural network (NN) based in-
verse method called physics-informed neural networks (PINNs) (Raissi et al., 2019).
PINNs approximate the solution to PDEs based on the so-called universal approxima-
tion capability of NNs (Cybenko, 1989; Hornik, 1991). PINNs have been used to solve
the forward and inverse problems governed by various PDEs, such as Navier-Stokes
equation (Jin et al., 2021). In the PINN framework, forward and inverse problems
governed by PDEs are translated into a minimization problem, where gradient-based
optimization methods are used. The success of PINNs hinges on the exact evalu-
ation of the gradient of the objective function and the partial derivatives in PDEs
by automatic differentiation (AD) implemented on highly efficient machine learning
libraries, such as TensorFlow (Abadi et al., 2015). Although traditional methods,
such as finite difference and finite element methods, are more stable and efficient for
forward modeling, PINNs are quite promising for inverse modeling because PINNs
do not require well-defined initial and boundary conditions. Bandai and Ghezzehei
(2021) demonstrated that PINNs could be used to estimate surface water flux from
near-surface soil moisture measurements in a homogeneous soil using synthetic data.
In their framework, soil hydraulic properties are approximated by NNs, and surface
water flux is estimated by the Buckingham Darcy law with the estimated hydraulic
conductivity and the water potential gradient at the surface computed by AD. Al-
though they demonstrated the potential of PINNs, the results depend on the amount
of available data and extensive hyperparameter tunings. Thus, in their following
study, the capability of PINNs to solve the RRE given soil hydraulic properties was
systematically investigated by analytical solutions to the RRE for homogeneous and
two-layer soils (Bandai and Ghezzehei, 2022). They demonstrated that the layer-wise
locally adaptive activation function proposed by Jagtap et al. (2020) was effective
in training NNs among other methods. More comprehensive reviews on PINNs are
given by Karniadakis et al. (2021).

Behind the increasing attention and popularity of machine learning, a more clas-
sical method called an adjoint method from optimal control theory had been steadily
improved to solve large-scale inverse problems governed by PDEs in the last few
decades (Ghattas and Willcox, 2021). In the adjoint method, the inexact Newton
method (Eisenstat and Walker, 1996) is used to solve the minimization problem from
the inverse problem. The linear system resulting from the Newton method has the
gradient of the objective function and the Hessian. The linear system is solved by a
conjugate gradient method, which only requires the Hessian-vector product, not the
Hessian itself. This is the key to the application of the adjoint method to large-scale
inverse problems because the construction of the Hessian itself is intractable. In the
framework, the gradient and the Hessian-vector product are computed by solving a
so-called adjoint PDE and the linearized forward and adjoint PDEs. The adjoint
method has been successfully applied to large-scale inverse problems in geosciences,
such as ice sheets in Antarctica (Isaac et al., 2015). However, the application of
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adjoint methods to the RRE has not been achieved except for a few studies, such
as Santos et al. (2006), where an adjoint method was used to estimate saturated
hydraulic conductivity field from water potential measurements. Nevertheless, the
study used only the gradient, not the Hessian information.

Because a close relation between adjoint methods and AD is recognized (Haber
and Ruthotto, 2018), there must be similarities between them. By comparing the two
methods, we can improve our understanding of the advantage of each method and
their limitations. Mowlavi and Nabi (2022) compared the two methods and demon-
strated that both methods gave comparable results for various inverse problems (i.e.,
Laplace, Burgers, Kuromoto-Sivashinsky, and Navier-Stokes equation). In the study,
the adjoint method only computes the gradient, not the Hessian-vector product.

The objective of the study is to compare the two methods for the inverse prob-
lem governed by the RRE in the context of the estimation of surface water flux
from soil moisture measurements. Specifically, we investigate the accuracy of the
estimated surface water flux in the presence of noise in the data, the effect of regu-
larization parameters, and computational demand for a large-scale problem through
three numerical examples. While soil hydraulic properties are also critical sources of
uncertainty, we assumed they were known and focused on the estimation of the upper
boundary condition to study the characteristics of the two methods.

4.2 Forward problem: Vertical water flow in soils

Vertical soil moisture dynamics in a rigid, isotropic, homogeneous soil on a spatial
domain Ω := (−Z, 0) can be described by the Richardson-Richards equation (RRE):

∂θ(ψ)

∂t
=

∂

∂z

(
K(ψ)

∂ψ

∂z
+K(ψ)

)
in Ω× (0, T ), (4.1)

where t is the time [T], T is the final time [T], z is the spatial coordinate with pos-
itive upward with z = 0 set to the surface of the soil, Z is the length of the soil
[L], ψ is the water potential [L], θ is the volumetric water content [L3 L−3], K(ψ)
is the hydraulic conductivity [L T−1]. Physical concepts behind Equation 4.1 stem
from the extension of Darcy’s law for saturated porous media to unsaturated flow
by Buckingham (1907) and the subsequent formulation by Richardson and Richards
(Richardson, 1922; Richards, 1931). The volumetric water content θ and hydraulic
conductivity K are both non-linear functions of the water potential ψ and represent
the macroscopic water transport properties of the soil. These two functions are re-
ferred to as the water retention curve (WRC) and hydraulic conductivity function
(HCF). The two functions are affected by water retention and flow processes in the
complicated pore geometry (Assouline and Or, 2013) and are commonly determined
by laboratory experiments or inverse modeling. Note that WRCs θ(ψ) exhibit hys-
teresis under wetting and drying (i.e., θ is not a unique function of ψ but also depends
on its trajectory). However, we neglected the effect of hysteresis in this study.
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Several parametric models are available to represent WRCs θ(ψ) and HCFs K(ψ)
(Brooks and Corey, 1964; Mualem, 1976; van Genuchten, 1980; Kosugi, 1996). A key
concept is that both θ and K depend on the geometry of pore spaces in soils, and they
are not independent (i.e., share parameters). We selected the Brooks and Corey (BC)
model (Brooks and Corey, 1964) for simplicity. However, the mathematical framework
presented here can be applied to other models, such as the van Genuchten- Mualem
model (Mualem, 1976; van Genuchten, 1980). WRCs θ(ψ) for the BC model is

θ(ψ) = θr + (θs − θr)Se(ψ) = θr +

(
ψ

ψc

)−λ
for ψ < ψc, (4.2)

θ(ψ) = θs for ψ ≥ ψc, (4.3)

where θr is the residual volumetric water content [-], θs is the saturated volumetric
water content [-], Se is the effective saturation [-], ψc is the air-entry value [L], λ is
the pore-size distribution parameter [-]. Usually, λ ranges between 0.3 (wide pore-
size distribution) and 10.0 (uniform pore-size distribution). For ψ < ψc, the first and
second derivatives of θ(ψ) are as follows:

∂θ

∂ψ
= −(θs − θr)λ

ψ

(
ψ

ψc

)−λ
, (4.4)

∂2θ

∂ψ2
=

(θs − θr)λ(λ+ 1)

ψ2

(
ψ

ψc

)−λ
. (4.5)

HCFs K(ψ) for the BC model is

K(ψ) = KsS
l+2+2/λ
e for ψ < ψc, (4.6)

K(ψ) = Ks for ψ ≥ ψc, (4.7)

whereKs is the saturated hydraulic conductivity [L T−1], l is the tortousity parameter
[-]. For ψ < ψc, the first and second derivatives of K(ψ) are as follows:

∂K

∂ψ
= −Ks(l + 2 + 2λ)λ

ψc
Sl+3+2/λ
e , (4.8)

∂2K

∂ψ2
=

Ks(l + 2 + 2λ)(l + 2 + 3λ)λ2

ψ2
c

Sl+2+4/λ
e . (4.9)

This study used the BC parameters for sandy loam soil provided in Rawls et al. (1982).
Also, we changed the parameter λ to demonstrate the effect of the non-linearity of
WRCs. Table 4.1 shows the BC parameters for the original and modified values, which
are referred to as Sandy Loam A and B, respectively. The corresponding WRCs θ(ψ)
and HCFs K(ψ) and their first and second derivatives are shown in Figure 4.1, where
Sandy Loam A exhibits stronger non-linearity than Sandy Loam B.

To simulate vertical movement of water in soils, we imposed a Neumann flux
boundary condition on the top boundary ∂ΩN := {z|z = 0} while the bottom bound-
ary ΩD := {z|z = −Z} is the constant Dirichlet boundary condition along with the
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Figure 4.1: Water retention curves θ(ψ) and hydraulic conductivity functions K(ψ)
and their first and second derivatives for Sandy Loam A and Sandy Loam B (see
Table 4.1). The derivatives were set to zero for ψ ≥ ψc and thus not visible for the
derivatives of K.

Table 4.1: Brooks and Corey parameters for the soils used in the study (Rawls et al.,
1982).

Soil Type θs [-] θr [-] ψc [cm] λ [-] Ks [cm h−1] l [-]

Sandy Loam A 0.453 0.041 -14.66 0.322 2.59 0.5
Sandy Loam B 0.453 0.041 -14.66 0.100 2.59 0.5
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initial condition:

ψ(z, 0) = ψ0(z), on Ω, (4.10)

ψ(−Z, t) = ψD(t), on ΩD t ∈ (0, T ), (4.11)

q(z, t) := −K(z, t)

(
∂ψ(z, t)

∂z
+ 1

)
= −m(t), on ΩF , t ∈ (0, T ), (4.12)

where ψ0(x) is the initial condition [L], q is the water flux [L T−1], m(t) is the
Neumann flux boundary condition representing the water flux into the soil [L T−1],
which is defined to be positive when water flows into the domain, ψD is the water
potential at the Dirichlet boundary [L].

4.2.1 Finite element solution to forward problem

We solved the RRE (Equation 4.1) with the initial and boundary conditions (Equa-
tions 4.10 – 4.12) by a finite element method with mass lumping (Celia et al., 1990;
Guermond and Pasquetti, 2013). Let us introduce trial and test spaces V and V̂ ,
respectively, where

V = {v ∈ H1(Ω) : v = ψD(t) on z ∈ ∂ΩD for each t ∈ (0, T )}, (4.13)

V̂ = {v ∈ H1(Ω) : v = 0 on z ∈ ∂ΩD for each t ∈ (0, T )}. (4.14)

Here, H1(Ω) is the Sololev space containing functions v such that v2 and |∇v|2 have
finite integrals over Ω. We multiplied the residual of the PDE by a test function
p ∈ V̂ and integrated it by parts in space, which results in a continuous variational
problem, where we seek ψ ∈ V such that∫

Ω

∂θ(ψ)

∂t
p dz +

∫
Ω

K(ψ)

(
∂ψ

∂z
+ 1

)
∂p

∂z
dz −

∫
ΩF

m(t)p(z) ds = 0 (4.15)

for all p ∈ V̂ . We dicretized the continuous variational problem into a discrete
variational problem by introducing finite dimensional trial and test spaces Vh ∈ V
and V̂h ∈ V̂ , respectively. Linear finite elements with Ns nodes were used for the
basis functions of Vh and V̂h. The volumetric water θ and the hydraulic conductivity
K were also approximated by the linear functions with coefficients computed from
the water potential ψ at each node with the given WRC and HCF (Scudeler et al.,
2016). Thus,

ψ(x, t) ≈ ψh(z, t) =
Ns∑
i=1

ψi(t)ϕi(z), (4.16)

θ(z, t) ≈ θh(z, t) =
Ns∑
i=1

θ(ψi(t))ϕi(z) =
Ns∑
i=1

θi(t)ϕi(z), (4.17)

K(z, t) ≈ Kh(z, t) =
Ns∑
i=1

K(ψi(t))ϕi(z) =
Ns∑
i=1

Ki(t)ϕi(z), (4.18)
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where Ns is the number of the spatial nodes, ϕi is the linear function at node i. Then,
the discrete variational problem for time t becomes to find [ψ1(t), ψ2(t), ..., ψNs(t)]

T

such that∫
Ω

∂θh
∂t

ph dz +

∫
Ω

Kh

(
∂ψh
∂z

+ 1

)
∂ph
∂z

dz −
∫
ΩF

m(t)ph(z) ds = 0 (4.19)

for all ph ∈ V̂h. The temporal derivative was approximated by the backward Euler
method. For that purpose, we introduce the times tn for n = 0, 1, ..., Nt, such that

0 = t0 < t1 · · · < tn < · · · < tNt = T, (4.20)

and the corresponding time steps ∆tn = tn − tn−1 for n = 1, ..., Nt, where the super-
script n represents the time t = tn. Constant time stepping was used for simplicity
in the study (i.e., ∆tn = ∆t for n = 1, ..., Nt.). As for the boundary condition m, let
us introduce another functional space

M = {v ∈ H1(0, T )}, (4.21)

and m is discretized on by a discrete space Mh ∈ M. Linear finite elements were
used to represent the discretized m:

m(t) ≈ mh(t) =
Nt∑
i=0

miχi(t), (4.22)

where χi(t) is the linear function at node i.
ψ0
h was obtained by interpolating the initial condition ψ0. For the time t = tn

with n = 1, ..., Nt, the discrete variational problem is finding ψn := [ψn1 , ψ
n
2 , ..., ψ

n
Ns
]T

such that∫
Ω

θnh − θn−1
h

∆tn
ph dz +

∫
Ω

Kn
h

(
∂ψnh
∂z

+ 1

)
∂ph
∂z

dz −
∫
ΩF

mh(t
n)ph(z) ds = 0, (4.23)

for all ph ∈ V̂h. The variational problem above is non-linear in terms of ψn because
of the non-linear functions θ and K. The resulting system of non-linear equations
was solved by Newton’s method with Armijo line search (Armijo, 1966; Kelley, 2018).
After replacing the test function ph by ϕi for i = 1, 2, ..., Ns and using mass lumping
on the mass matrix in the temporal derivative term to obtain a smooth solution (Celia
et al., 1990; Guermond and Pasquetti, 2013), the system of non-linear equations for
t = tn can be written as:

Fn(ψn) = 0, (4.24)

where Fn := [F n
1 (ψ

n), F n
2 (ψ

n), ..., F n
Ns
(ψn)]T for n = 1, 2, ..., Nt with

F n
i (ψ

n) = ML(θn − θn−1) + ∆t(Kψn + b1 − b2) (4.25)
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where θn := [θn1 , θ
n
2 , ..., θ

n
Ns
]T , ML is the lumped mass matrix whose ijth element is

ML
ij =

(∑
j

Mij

)
δij, (4.26)

where M is the mass matrix with its ijth element Mij =
∫
Ω
ϕiϕj dz, δij is the Kro-

necker symbol, K is the stiffness matrix with a non-linear coefficient, whose ijth
element is

Kij =

∫
Ω

Kh
∂ϕj
∂z

∂ϕi
∂z

dz, (4.27)

b1 is the vector with its ith element

b1,i =

∫
Ω

Kh
∂ϕi
∂z

dz, (4.28)

b2 is the vector with its ith element

b2,i =

∫
ΩF

mh(t
n)ϕi ds. (4.29)

The integrals for K and b1 were evaluated by the Gauss integration with one point
and unit weight, while other integrals were evaluated exactly (Scudeler et al., 2016).
Because the initial condition ψ0 was given and interpolated to obtain ψ0

i for i =
1, 2, ..., Ns, we define F0(ψ0) := [F 0

1 (ψ
0), F 0

2 (ψ
0), ..., F 0

Ns
(ψ0)]T = 0 with

F 0
i (ψ

0) = ψ0
i − ψ0(z = zi), (4.30)

where zj is the spatial coordinate corresponding to the node i.
We assemble all Fn for n = 0, 1, ..., Nt as F̄ := [(F0)T , (F1)T , ..., (FNt)T ]T ∈

RNs(Nt+1). In the same manner, we assemble the state variable as
ψ̄ := [(ψ0)T , (ψ1)T , ..., (ψNt)T ]T ∈ RNs(Nt+1). They will be used to derive the adjoint
equation in the next section.

For t = tn with n = 1, 2, ..., Nt, the system of non-linear equations Fn was solved
by the Newton method. Let ψn,k denote the solution at the kth Newton iteration for
k = 0, 1, 2, ... with ψn,0 = ψn−1. For the kth Newton iteration, the Newton direction
dk is determined by solving the Newton system:

F′(ψn,k)dk = −Fn(ψn,k), (4.31)

where the Jacobian matrix F′ := ∂F
∂ψ

(see Sect. B.1.1) was computed by analytical

θ′(ψ) and K ′(ψ), and the linear system was solved by the Gaussian elimination. The
Newton step size is determined by Armijo line search:

ψn,k+1 = ψn,k + λdk, (4.32)

with the initial α = 1, and α is reduced by a factor 0.5 when the sufficient decrease
condition

||F(ψn,k+1)|| < (1− cα)||F(ψn,k)||, (4.33)
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where c = 10−4, is not met. The Newton iteration was terminated when

||F(ψn,k)|| ≤ τa + τr||F(ψn,0)||, (4.34)

where τa = 10−7, τr = 10−7.

4.3 Inverse modeling: Estimation of surface

water flux from soil moisture measurements

In this section, we describe the inverse problem to estimate surface water flux from
soil moisture measurements based on the RRE. We employed two methods: adjoint
methods and physics-informed neural networks (PINNs). In the following subsections,
adjoint methods and PINNs for the RRE are explained, and the comparison between
the two algorithms is discussed at the end of this section. We may unavoidably use
the same notation for adjoint methods and PINNs, but we will ensure that there is
no ambiguity.

4.3.1 Adjoint methods

In adjoint methods, there are two approaches to derive the gradient and the Hessian
information (Hessian-vector product): discretize-then-optimize (DTO) and optimize-
then-discretize (OTD) approaches Chavent (2010). The gradient and the Hessian-
vector product obtained by the two approaches do not always coincide (Wilcox et al.,
2015). Our implementation is based on the DTO approach because of the stabilized
finite element method (i.e., mass lumping) to solve the forward problem. However,
the OTD approach provides cleaner and more insightful expressions, and we present
both derivations and remark on the difference between the two approaches when
appropriate.

4.3.1.1 Regularized inverse problem

The inverse problem is to estimate surface water flux m given (possibly noisy) soil
moisture data θobs measured at z ∈ {z1obs, .., zNobs

obs } by Nobs sensors, which are sparsely
located but continuously measure volumetric water content θ. This inverse problem
can be formulated as minimizing the following functional:

min
m
J (m) :=

1

2

∫ T

0

∫
Ω

(Bθ(ψ)− θobs)2 dzdt+R(m), (4.35)

where ψ is the solution to the forward problem given the WRC θ(ψ) and HCFK(ψ), B
is an observational operator that extracts soil moisture at the measurement locations,
and R is an regularization term to penalize oscillatory components of m:

R(m) :=
γ

2

∫ T

0

(
dm(t)

dt

)2

dt, (4.36)



CHAPTER 4. PINNS VS ADJOINT METHODS 96

where γ > 0 is the regularization parameter. This regularization term is required to
prevent the inverse solution from being severely degraded by the noise in the data.

The objective functional J (m) is discretized by approximating ψ, θ, and m in
the same way as Sect. 4.2.1. The first term of the objective functional can be
approximated as:

1

2

∫ T

0

∫
Ω

(Bθ(ψ)− θobs)2 dzdt ≈
1

2

∫ T

0

(Bθ(t)− θobs(t))T (Bθ(t)− θobs(t)) dt, (4.37)

where B ∈ RNobs×Ns is a matrix consisting of zero and one, θobs(t) ∈ RNobs is the
vector consisting of the volumetric water content measured by Nobs sensors. After
discretizing the regularization term, we obtain the following discretized objective
function:

J(m) :=
1

2

∫ T

0

(Bθ(t)− θobs(t))T (Bθ(t)− θobs(t)) dt+
γ

2
mTKmm, (4.38)

where m = [m0,m1, ...,mNt ]T , Km is the stiffness matrix for the basis function χi,

whose ijth element is Km
i,j =

∫ T
0
∇χi · ∇χj dt. The temporal integration in the first

term was approximated by a Trapezoidal rule, while the stiffness matrix Km was
evaluated analytically.

4.3.1.2 Inexact Newton-CG method to solve inverse problem

To minimize the discretized objective function (Eq. 4.38), we employed the inexact
Newton-conjugate gradient (Newton-CG) method (Nocedal and Wright, 2006). The
Newton-CG method is quadratically convergent near the solution, and globalization
was achieved by the Armijo line search (Armijo, 1966). More detailed explanations of
the Newton-CG method can be found in Petra et al. (2012) and Ghattas and Willcox
(2021).

Let us denote the gradient and the Hessian of the objective function as g ∈ RNm

and H ∈ RNm×Ns , respectively. The kth Newton iteration is written as

Hkm̃k = −gk, (4.39)

where the superscript k represents the kth Newton iteration, Hk and gk are the
gradient and the Hessian at the kth solution mk, m̃k is the Newton direction. Then,
the Armijo line search follows:

mk+1 = mk + αm̃k, (4.40)

where the initial α = 1 and reduced by a factor 0.5 when the sufficient decrease
condition

J(mk+1) < J(mk)− cα(gk)Tm̃k, (4.41)

with c = 10−4, is not met.
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Solving the linear system (Eq. 4.39) for large Nm is computationally very expen-
sive because the construction of the Hessian matrix Hk requires solving linearized
forward and adjoint problems, which will be described later, Nm times. Thus, the
linear system is solved by a conjugate gradient method, where the only Hessian-
vector product is needed, not the Hessian matrix Hk itself. The CG iterations were
preconditioned by the regularization operator

P := γKm + 0.1γMm, (4.42)

where Km and Mm are the stiffness and mass matrices of the parameter space, re-
spectively.

The inexact Newton method (Steihaug, 1983; Eisenstat and Walker, 1996) seeks
the approximate solution to the linear system by finding the inexact Newton direction
m̃k such that

||Hkm̃k + gk|| ≤ ηk||gk||, (4.43)

where the left-hand side is the residual of the Newton system (Eq. 4.39), and ηk is
called the forcing term, which determines how exactly the Newton system is solved.
The forcing term affects the local convergence property of the Newton method and
determined as ηk = min(0.5,

√
gk/g0). The rationale for the ηk is that we do not

have to solve the Newton system accurately when the current solution is far from the
solution to the inverse problem. Also, we used the Steihaug termination criteria to
prevent negative curvature,

(m̃k)THkm̃k ≤ 0. (4.44)

The Newton iterations are terminated when the norm of the gradient ||gk|| becomes
smaller than a threshold set to 10−7. In the following sections, we describe how to ob-
tain the gradient and the Hessian-vector product for both OTD and DTO approaches.

4.3.1.3 Optimize-then-Discretize approach

In this section, we explain the OTD approach to obtain the gradient and the Hessian-
vector product of the objective functional (Eq. 4.35) via the formal Lagrangian
method (Chavent, 2010). We begin by formulating the Lagrangian for the gradient
derivation:

Lg(ψ, p, q,m) :=
1

2

∫ T

0

∫
Ω

(Bθ(ψ)− θobs)2 dzdt+
γ

2

∫ T

0

(
dm(t)

dt

)2

dt

+

∫ T

0

∫
Ω

∂θ(ψ)

∂t
p+K(ψ)

(
∂ψ

∂z
+ 1

)
∂p

∂z
dzdt

−
∫ T

0

∫
ΩF

mpdsdt+

∫
Ω

(ψ(z, 0)− ψ0)q dz. (4.45)

Here, the first term represents the data misfit, the second term represents the reg-
ularization, the third and forth terms represent the constraint by the forward prob-
lem, and the last term imposes the initial condition weakly via another test function
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q(z) ∈ V̂ . We refer the water potential ψ(z, t) and the test function p(x, t) to the state
variable and the adjoint variable, respectively. To derive the gradient, we seek the
stationary conditions of the Lagrangian Lg(ψ, p, q,m) with respect to its arguments.
The variation of Lg with respect to p and q simply recovers the forward problem and
the initial condition, respectively. By requiring the variation of Lg with respect to
the state variable ψ in the direction ψ̂ ∈ V̂ vanish, we obtain the weak form of the
adjoint PDE:

Lgψ(ψ, p, q,m)(ψ̂) =

∫ T

0

∫
Ω

(Bθ(ψ)− θobs)Bθ′(ψ)ψ̂ dzdt

+

∫ T

0

∫
Ω

∂θ′(ψ)ψ̂

∂t
p+

(
K ′(ψ)

∂ψ

∂z
ψ̂ +K(ψ)

∂ψ̂

∂z
+K ′(ψ)ψ̂

)
∂p

∂z
dzdt

+

∫
Ω

ψ̂(z, 0)q dz = 0. (4.46)

The strong form of the adjoint PDE can be recovered by removing ψ̂ from the deriva-
tive terms by integration by parts:∫ T

0

∫
Ω

(
−θ′(ψ)∂p

∂t
+

(
K ′(ψ)

∂ψ

∂z
+K ′(ψ)

)
∂p

∂z
− ∂

∂z

(
K(ψ)

∂p

∂z

))
ψ̂

+

∫ T

0

∫
Ω

(B∗(Bθ(ψ)− θobs)θ′(ψ)) ψ̂ dzdt

+

∫
Ω

θ′(ψ(z, T ))ψ̂(z, T )p(z, T )dz +

∫
Ω

ψ̂(z, 0)(q − θ′(ψ)p(z, 0))dz

+

∫ T

0

K(ψ(t, 0))
∂p(t, 0)

∂z
ψ̂(t, 0) dt = 0 (4.47)

for all ψ̂ ∈ V̂ . Here B∗ is the adjoint of the observational operator. Because ψ̂ is
arbitrary, the third term reveals that q = θ′(ψ(z, 0))p(z, 0), and the remaining terms
leads to the strong form of the adjoint PDE:

−θ′(ψ)∂p
∂t

+

(
K ′(ψ)

∂ψ

∂z
+K ′(ψ)

)
∂p

∂z
− ∂

∂z

(
K(ψ)

∂p

∂z

)
= −B∗(Bθ(ψ)− θobs)θ′(ψ), (4.48)

p(z, T ) = 0, (4.49)

p(z, t) = 0 on ∂ΩD, (4.50)

K(ψ)
∂p

∂z
= 0 on ∂ΩN . (4.51)

The adjoint PDE is linear in terms of the adjoint variable p and needs to be solved
backward in time from the terminate condition p(z, T ) = 0.

Now, we are ready to derive the gradient by taking the variation of the objective
functional with respect to m in the direction of m̂ ∈M:

Lgm(ψ, p, q,m)(m̂) = γ

∫ T

0

dm(t)

dt

dm̂

dt
dt−

∫ T

0

∫
ΩF

m̂p dsdt. (4.52)
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Here, p satisfies the adjoint PDE, which depends on the solution to the forward PDE.
Next, we describe how to derive the Hessian-vector product through adjoint meth-

ods. We begin with formulating the Lagrangian functional for the Hessian-vector
product:

LH(ψ, p,m, ψ̃, p̃, m̃) := γ

∫ T

0

dm(t)

dt

dm̃

dt
dt−

∫ T

0

∫
ΩF

m̃p dsdt

+

∫ T

0

∫
Ω

∂θ(ψ)

∂t
p̃+K(ψ)

(
∂ψ

∂z
+ 1

)
∂p̃

∂z
dzdt−

∫ T

0

∫
ΩF

mp̃ dsdt

+

∫
Ω

(ψ(z, 0)− ψ0)θ
′(ψ(z, 0))p̃(z, 0) dz

+

∫ T

0

∫
Ω

(Bθ(ψ)− θobs)Bθ′(ψ)ψ̃ dzdt

+

∫ T

0

∫
Ω

∂θ′(ψ)ψ̃

∂t
p+

(
K ′(ψ)

∂ψ

∂z
ψ̃ +K(ψ)

∂ψ̃

∂z
+K ′(ψ)ψ̃

)
∂p

∂z
dzdt

+

∫
Ω

ψ̃(z, 0)θ′(ψ(z, 0))p(z, 0) dz = 0. (4.53)

Here the first and the second terms represent the gradient in the direction of m̂ ∈M,
the forward PDE (the third and forth terms) is enforced by the Lagrange multiplier
(incremental adjoint variable) p̃ ∈ V̂ while the adjoint PDE (the sixth and seventh
terms) by the Lagrange multiplier (incremental forward variable) ψ̃ ∈ V̂ , and we
replaced q by θ′(ψ(z, 0))p̃(z, 0) for the initial condition of the forward PDE and by
θ′(ψ)p(z, 0) for the initial condition of the adjoint PDE, which appears in the last
term of the weak form of the adjoint PDE.

To derive the Hessian-vector product, we require the variations of the Lagrangian
with respect to its arguments vanish. By requiring the variations with respect to p̃, ψ̃,
and m̃ vanish recovers the forward PDE, adjoint PDE, and the gradient, respectively.
We require the variation with respect to the adjoint variable p in the direction of
p̂ ∈ V̂ vanish:

LHp (u, p,m, ũ, p̃, m̃)(p̂) = −
∫ T

0

∫
ΩF

m̃p̂ dsdt

+

∫ T

0

∫
Ω

∂θ′(ψ)ψ̃

∂t
p̂+

(
K ′(ψ)

∂ψ

∂z
ψ̃ +K(ψ)

∂ψ̃

∂z
+K ′(ψ)ψ̃

)
∂p̂

∂z
dzdt

+

∫
Ω

θ′(ψ)p̂(z, 0)ψ̃(z, 0) dz = 0 (4.54)

for all p̂. By removing the spatial derivative of p̂ by integration by parts in space
and utilizing the fact that p̂ is arbitrary, we obtain the following strong form of the
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incremental forward PDE:

∂θ′(ψ)ψ̃

∂t
− ∂

∂z

(
K ′(ψ)

∂ψ

∂z
ψ̃ +K(ψ)

∂ψ̃

∂z
+K ′(ψ)ψ̃

)
= 0, (4.55)

ψ̃(z, 0) = 0, (4.56)

ψ̃(z, t) = 0 on ∂ΩD, (4.57)

K ′(ψ)
∂ψ

∂z
ψ̃ +K(ψ)

∂ψ̃

∂z
+K ′(ψ)ψ̃ = m̃ on ∂ΩN . (4.58)

The incremental forward PDE is linear given ψ and m̃. Next, we require the variation
with respect to the state variable ψ in the direction of ψ̂ ∈ V̂ vanish:

LHψ (ψ, p,m, ψ̃, p̃, m̃)(ψ̂)

=

∫ T

0

∫
Ω

∂θ′(ψ)ψ̂

∂t
p̃+

(
K ′(ψ)ψ̂

(
∂ψ

∂z
+ 1

)
+K(ψ)

∂ψ̂

∂z

)
∂p̃

∂z
dzdt

+

∫
Ω

ψ̂(z, 0)θ′(ψ(z, 0))p̃(z, 0) + (ψ(z, 0)− ψ0)θ
′′(ψ(z, 0))ψ̂(z, 0)p̃(z, 0) dz

+

∫ T

0

∫
Ω

Bθ′(ψ)ψ̂Bθ′(ψ)ψ̃ + (Bθ(ψ)− θobs)Bθ′′(ψ)ψ̂ψ̃ dzdt

+

∫ T

0

∫
Ω

∂θ′′(ψ)ψ̂ψ̃

∂t
p dzdt

+

∫ T

0

∫
Ω

(
K ′′(ψ)

∂ψ

∂z
ψ̃ψ̂ +K ′(ψ)

∂ψ̂

∂z
ψ̃ +K ′(ψ)ψ̂

∂ψ̃

∂z
+K ′′(ψ)ψ̂ψ̃

)
∂p

∂z
dzdt

= 0 (4.59)

for all ψ̂. Here, we used ψ̃(z, 0) = 0. By removing the spatial and temporal derivative
of ψ̂ by integration by parts in space and time, respectively, and utilizing the fact
that ψ̂ is arbitrary, we obtain the following strong form of the incremental adjoint
PDE:

−θ′(ψ)∂p̃
∂t

+ K ′(ψ)

(
∂ψ

∂z
+ 1

)
∂p̃

∂x
− ∂

∂z

(
K(ψ)

∂p̃

∂z

)
= −

(
K ′′(ψ)

∂ψ

∂z
ψ̃ +K ′(ψ)

∂ψ̃

∂z
+K ′′(ψ)ψ̃

)
∂p

∂z
+

∂

∂z

(
K ′(ψ)ψ̃

∂p

∂z

)
+ θ′′(ψ)ψ̃

∂p

∂t
− B∗B(θ′(ψ))2ψ̃ − B∗(Bθ(ψ)− θobs)θ′′(ψ)ψ̃, (4.60)

p̃(z, T ) = 0, (4.61)

p̃(z, t) = 0 on ∂ΩD, (4.62)

K(ψ)
∂p̃

∂z
= −K ′(ψ)ψ̃

∂p

∂z
on ∂ΩN . (4.63)

The incremental adjoint PDE is linear with respect to the incremental adjoint variable
p̃.
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Finally, we are ready to evaluate the Hessian action (Hessian-vector product after
discretization). The variation with respect to m in the direction of m̂ ∈M yields

LHm(ψ, p,m, ψ̃, p̃, m̃)(m̂) = γ

∫ T

0

dm̂

dt

dm̃

dt
dt−

∫ T

0

∫
ΩF

m̂p̃ dsdt. (4.64)

In the expression above, only the incremental adjoint p̃ appears, but it depends on
all the other variables ψ, p, and ψ̃. Thus, the Hessian-vector product requires solving
the forward PDE, the adjoint PDE, and the incremental forward and adjoint PDEs.

4.3.1.4 Discretize-then-Optimize approach

As in the OTD approach, we use the formal Lagrangian method (Chavent, 2010) to
derive the gradient and the Hessian-vector product in the DTO approach, as well.
We begin with deriving the gradient by formulating the Lagrangian:

Lg(ψ̄,m, p̄) = J(m) + p̄T F̄, (4.65)

where p̄ ∈ RNs(Nt+1) is the adjoint variable enforcing the constraint by the forward
problem F̄. As in the OTD approach, we require the derivatives of the Lagrangian
with respect to the arguments vanish. The derivative in terms of the state variable
ψ̄ is

∂Lg

∂ψ̄
=
∂D

∂ψ̄
+ p̄T

∂F̄

∂ψ̄
= 0, (4.66)

where D = 1
2

∫ T
0
(Bθ(t)− θobs(t))T (Bθ(t)− θobs(t)) dt. The detail of ∂F̄

∂ψ̄
and ∂D

∂ψ̄
can

be found in Sect. B.1.1 and B.1.2. By transposing both sides, we obtain the adjoint
equation (also see Sect. B.1.3):(

∂F̄

∂ψ̄

)T
p̄ = −

(
∂D

∂ψ̄

)T
. (4.67)

Note that the left-hand side is available from the Newton solver for the forward
problem. To derive the gradient, we require the derivative of the Lagrangian with
respect to m vanish:

∂Lg

∂m
= γmTKm + p̄T

∂F̄

∂m
= 0, (4.68)

where ∂F̄
∂m

is derived in Sect. B.1.4. Because the gradient is the transpose of the
derivative, the gradient g is

g = γKmm+

(
∂F̄

∂m

)T
p̄. (4.69)

Next, we formulate the Lagrangian for the Hessian-vector product (i.e., minimizing
the directional derivative in the direction of m̃ given the forward and adjoint problems
are satisfied):

LH(ψ̄,m, p̄; ¯̃ψ, m̃, ¯̃p) = m̃T (γKmm+CT p̄) + ¯̃p
T
F̄+ ¯̃

ψ
T
(AT p̄+ d), (4.70)
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where ¯̃ψ ∈ RNs(Nt+1) and ¯̃p ∈ RNs(Nt+1) are incremental forward and adjoint variables,
respectively, m̃ is the vector to be applied to the Hessian, C := ∂F̄

∂m
, A := ∂F̄

∂ψ̄
, and

d :=
(
∂D
∂ψ̄

)T
.

By requiring the derivative of the Lagrangian with respect to the adjoint variable
vanish, we obtain

∂LH

∂p̄
= m̃TCT + ¯̃ψ

T
AT = 0. (4.71)

Transposing the equation above results in the incremental forward problem (also see
Sect. B.1.5):

A ¯̃
ψ = −Cm̃. (4.72)

There are no new derivations required for the incremental forward problem because
both A and C are available.

Next, we require the derivative of the Lagrangian with respect to the state variable
vanish, we obtain

∂LH

∂ψ̄
= m̃T ∂C

T p̄

∂ψ̄
+ ¯̃p

T
A+ ¯̃ψ

T ∂AT p̄

∂ψ̄
+ ¯̃ψ

T ∂d

∂ψ̄
= 0. (4.73)

The detail of ∂AT p̄
∂ψ̄

and ∂d
∂ψ̄

are described in Sect. B.1.6 and B.1.7, respectively. By

using the fact that ∂CT p̄
∂ψ̄

= 0 and transposing the equation above, we obtain the

incremental adjoint equation (also see Sect. B.1.8):

AT ¯̃p = −
((

∂AT p̄

∂ψ̄

)T
+

(
∂d

∂ψ̄

)T)
¯̃
ψ. (4.74)

Note that the left hand side is the same as the for the adjoint problem.
Finally, the derivative of the Lagrangian with respect to m gives

∂LH

∂m
= γm̃TKm + ¯̃p

T
C, (4.75)

where we used the fact that ∂CT p̄
∂m

= 0 and ∂AT p̄
∂m

= 0. The transpose of the equation
avobe is the gradient of the directional derivative in the direction of m̃, which is the
Hessian-vector product

Hm̃ = γKmm̃+CT ¯̃p. (4.76)

It is clear that we need the incremental adjoint variable ¯̃p to compute the Hessian-
vector product, and the rest of the expressions are the same as the gradient (Eq.
4.69).
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4.3.2 Physics-informed neural networks

Physics-informed neural networks (PINNs) use neural networks to approximate the
solution to PDEs based on the universal approximation capability of NNs (Cybenko,
1989; Hornik, 1991). In the last few years, many studies have been conducted to
understand how PINNs work for different types of PDEs. So far, it is known that
the original PINNs framework proposed by Raissi et al. (2019) does not always work
well for the forward modeling of PDEs (e.g., Fuks and Tchelepi (2020)), and mod-
ified PINN frameworks were proposed and tested (Wang et al., 2022; Patel et al.,
2022). As for inverse modeling, PINNs have shown promising results in various fields
Raissi et al. (2019); Jin et al. (2021); Bandai and Ghezzehei (2022). Our previous
studies demonstrated that PINNs could be used to estimate surface water flux from
soil moisture measurements (Bandai and Ghezzehei, 2021, 2022). In this study, we
compare PINNs with adjoint methods to understand the capabilities and limitations
of both methods.

Our implementation of PINNs is presented in Bandai and Ghezzehei (2022) with
slight modifications to enable the comparison between PINNs and adjoint methods.
In the PINN framework, we aim to approximate the solution to the RRE ψ(z, t)
by a feedforward neural network N (z, t). Here, we begin with the mathematical
formulation of feedforward NNs with L hidden layers with layer-wise locally adaptive
activation function (L-LAAFs) (Jagtap et al., 2020). NNs transform the input vector
x ∈ Rnx into the output vector

ŷ := N (x), (4.77)

where the hat represents prediction in this section, while it means test functions in
adjoint methods. The input vector x is transformed by the composition of affine
transformation and non-linear activation functions in the following way:

h[1] := σ(sa[1](W[1]x+ b[1])),

h[2] := σ(sa[2](W[2]h[1] + b[2])),

... (4.78)

h[L−1] := σ(sa[L−1](W[L−1]h[L−2] + b[L−1])),

h[L] := σ(sa[L](W[L]h[L−1] + b[L])),

where h[k] ∈ Rn[k]
for k = 1, ..., L is the vector corresponding to the kth hidden layer

with n[k] units, W[k] and b[k] are weight matrices and bias vectors, respectively, for
the kth hidden layer, s ≥ 0 is a fixed scaling parameter set to 20, a[k] is a tuning
parameter changing the shape of the element-wise activation function σ for the kth
hidden layer. In this study, we used the hyperbolic tangent function (tanh) for the
activation function. Then, the output vector ŷ is computed as

ŷ := o(W[L+1]h[L+1] + b[L+1]), (4.79)

where o is the output function, W[L+1] and b[L+1] are the weight matrix and bias
vector for the output layer. We assemble all the weight matrices and bias vectors
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as W := {W[1], ...,W[L+1]} and b := {b[1], ...,b[L+1]}, and the slope parameters as
a := {a[1], ..., a[L]}. Then, the NN parameters we need to estimate are summarized as
Θ := {W,b, a}.

Because the water potential is negative for unsaturated soils, we used the identity
function for the output function o and the following transformation on the output of
NNs:

ψ(z, t) ≈ ψ̂(z, t) = − exp(N (t, z; Θ)) + β, (4.80)

where β is a fixed parameter that allows the water potential to be positive if we wish.
In this study, we set β = 1. To construct PINNs, we define the residual of the PDE
as

r̂(z, t; Θ) :=
∂θ̂

∂t
− ∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
, (4.81)

where θ̂ and K̂ are computed from ψ̂ with given WRCs and HCFs. To estimate the
NN parameters Θ, we minimize the objective function

L(Θ) := Ldata + γLr, (4.82)

where γ is the regularization parameter, and data-misfit term Ldata and regularization
term Lr are defined as

Ldata(Θ) :=

Ndata∑
i=1

[θ̂(zidata, t
i
data)− θidata]2, (4.83)

Lr(Θ) :=
Nr∑
i=1

[r̂(zir, t
i
r)]

2, (4.84)

where {θidata, zidata, tidata}Ndata
i=1 denotes the Ndata data points, {zir, tir}Nri=1 denotes the Nr

residual points (also called collocation points) at which the residual of the PDE is
evaluated. The residual points were randomly selected from the whole spatial and
temporal domains. In the study, the initial condition and the Dirichlet boundary
condition at the lower boundary were incorporated as data points. Thus, Nobs in the
PINN framework here is not the same as Ndata in the adjoint method. To evaluate the
regularization term Lr, we need to compute the partial derivatives in the residual. In
the PINN framework, this is conducted by automatic differentiation (Baydin et al.,
2018).

The objective function was minimized by the 105 iterations Adam optimizer
(Kingma and Ba, 2014) followed by the L-BFGS-B optimizer (Byrd et al., 1995).
The exponential decay of the learning rate was used for the Adam optimizer with the
initial learning rate of 0.001, the decay rate of 0.9, and the decay step of 1000. The
other parameters were set to their default values implemented in TensorFlow (Abadi
et al., 2015). Only 128 of the randomly selected residual points are used for each iter-
ation in the Adam optimizer, while all the data points are considered. The L-BFGS-B
optimizer follows the Adam optimizer and is terminated once the loss function con-
verges with prescribed thresholds. We used the L-BFGS-B optimizer implemented in
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Scipy (Virtanen et al., 2020) with the following parameters: maxcor = 50, maxls =
50, maxiter = 50000, maxfun = 50000, ftol = 1.0× 10−10, gtol = 1.0× 10−8, and the
default values for the other parameters.

After training the NNs, the surface water flux is evaluated by the Buckingham
Darcy law (Eq. 4.12), where the gradient of the water potential is evaluated by
automatic differentiation. This may not seem comparable to the implementation of
adjoint methods, where the surface water flux is approximated by a finite element
method. However, this implementation most exploits the flexibility of PINNs and
is particularly advantageous for complex geometries. In the numerical examples, we
discuss the consequences of the difference in the surface water flux evaluation between
the methods.

4.3.3 Comparison between adjoint method and
physics-informed neural networks

Before we discuss numerical examples, we discuss the comparison between the adjoint
method and PINNs, which is summarized in Table 4.2. The adjoint method uses
linear functions (or possibly higher-order elements) to approximate the solution to
PDEs if the PDEs are discretized by finite element methods. The finite element
coefficients are obtained by solving the system of non-linear equations resulting from
the discretization of the PDEs. On the other hand, PINNs use NNs to approximate
the solution, and the NN parameters are obtained by solving a minimization problem.
The way to obtain the solution to PDEs for each method is directly related to whether
the physics the PDEs describe is correctly imposed. As for the adjoint method, the
physics is correctly embedded in the solution as long as the discretization of the PDEs
is appropriate because the system of the non-linear equations is solved accurately.
This is not always the case for PINNs because the minimization problem is high-
dimensional, non-linear, and non-convex, and thus accurately solving the problem is
very difficult, and there is no guarantee that the obtained solution satisfies the physical
requirements (Patel et al., 2022). As we demonstrate in the numerical examples,
PINN’s solution is not necessarily correct if the amount of data is limited.

We need to deal with the noise in the data to prevent the noise from severely
damaging the solution to the inverse problem. In the adjoint method, a regularization
term is added to the objective function to penalize highly oscillatory components in
the solution. Adding the regularization term plays a role in smoothing the solution
and helping the Newton method to converge faster because it damps small eigenvalues
of the Hessian. In contrast, there is no explicit strategy to deal with noise in the
data in the PINN framework, while the PDE residual is added as a ”regularization
term” in the objective function (Eq. 4.82). By comparing it with the Lagrangian
function for the adjoint method, we may interpret the regularization parameter γ
in PINNs as the adjoint variable in the adjoint method. In this perspective, the
regularization parameter γ should be a function of space and time, not a constant,
and becomes smaller as the data-misfit term becomes smaller because the solution to
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the adjoint PDE becomes small when the data-misfit term is small (see Eq. 4.48). The
regularization term γ in the PINN framework has been studied, and several methods
have been proposed and tested. It would be interesting to pursue the relationship
with the adjoint variable in future studies.

Regarding the method to minimize the objective function, the adjoint method uses
the Newton method with the gradient and the Hessian-vector product obtained by
solving the adjoint PDE and the incremental forward and adjoint PDEs. On the other
hand, PINNs use a stochastic gradient method or a Quasi-Newton method, where
only the gradient computed by automatic differentiation is used. We are unaware of
studies training PINNs with the Hessian information (not the Hessian approximation
by gradient, such as the L-BFGS-B method), while the Newton method on NNs has
been studied (Dauphin et al., 2014).

For time-dependent problems, the adjoint problem can have memory storage lim-
itations because the Hessian-vector product requires the whole solutions for the for-
ward and adjoint problems and the incremental forward and adjoint problems, which
may be intractable for large-scale problems. In that case, we use a checkpointing
method Ghattas and Willcox (2021) to trade additional computational burdens for
memory storage. On the other hand, PINNs do not have such memory storage limi-
tations for time-dependent problems. However, it is known that as the scale becomes
larger, it is more challenging to train PINNs. To overcome this challenge, Wight
and Zhao (2021) proposed and tested sequential training. We do not implement the
checkingpoint method or the sequential training but discuss the limitations of the
adjoint method and PINNs for large-scale time-dependent problems in a numerical
example.

4.4 Numerical examples

In this section, we outline three numerical examples to assess the performance of
the adjoint method and PINNs to estimate surface water flux from soil moisture
measurements. In the three cases, we assumed that soil moisture dynamics is vertical
and described by the RRE (Eq. 4.1) and the initial and boundary conditions, and
the BC parameters for Sandy Loam A in Table 4.1 were used for the WRC and the
HCF. For all the numerical experiments, we used synthetic measurements generated
by solving the forward problem for each example. To account for measurement and
model errors, we added Gaussian noise with a mean of zero and a standard deviation
of 0.005 to the numerical solution. The number of measurement locations varies from
five locations for Examples 1 and 2 to one for Example 3. The measurement data at
the locations were extracted from the noisy synthetic data for the inverse modeling.

The performance of the methods were assessed by the accuracy of the recon-
structed forward solution θ and the estimated inverse solution m by computing the
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L2 relative error ϵ for each variable:

ϵδ :=

(
1
N

∑N
i (δ̂

i − δitrue)2
1
N

∑N
i (δ

i
true)

2

)1/2

(4.85)

for δ = θ,m, where δ̂ and δtrue are predicated and true values for each variable
evaluated at all the node points.

The Adjoint method was using FEniCS (Logg et al., 2012), which is a finite
element package implemented in C++ with a Python interface. To speed up the
computation, we implemented the BC model in C++, and the rest was written in
Python. We used the conjugate gradient method implemented in hiPPYlib (Villa
et al., 2020) to solve the Newton system (Eq. 4.39). The Newton method used in
the forward modeling does not necessarily converge well when the upper boundary
condition imposes too strong evaporation from the soil. This happened at the first
Newton iteration in the inverse modeling. Therefore, we stopped the forward model-
ing when we detected such behaviors from the number of Newton iterations for the
forward modeling.

PINNs were implemented in Python using TensorFlow (Abadi et al., 2015). The
weight parameters W were initialized by the Xavier initialization (Glorot and Bengio,
2010), while the bias parameters b and the slope parameters a were initialized to 0 and
0.05, respectively. Three different weight initializations were conducted to account
for the effect of the weight initialization for each example. For all the numerical
examples, we used NNs with five hidden layers with fifty units. Thus, the number
of NN parameters was 10406. The computational time presented in the study was
obtained with Intel(R) Core(TM) i7-9700K CPU 3.60GHz. In the next section, we
describe the details and the purpose of each model problem.

4.4.1 Example 1

The first example is carried out to verify the implementation of the adjoint method
(gradient and the Hessian-vector product evaluations) and provides a baseline for the
performance of each method. The length of the soil Z was set to 100 cm, and the
final time T was 10 hours. A uniform initial condition ψ0 = −5000 cm for z ∈ Ω
and a constant Dirichlet boundary condition ψD = −5000 cm were used. The surface
water flux boundary condition m was set to m = 2.0 sin(tπ/T ), as shown in Fig. 4.7.
As for the finite element method, a constant spatial mesh and time-stepping were
used, and Ns and Nt were set to 201 and 200, respectively. Thus, the number of
finite element coefficients for the forward solution and the time-dependent boundary
condition was 40401 and 201, respectively. The initial guess of the inexact Newton-CG
method was m0 = 1.0 sin(tπ/T ). In PINNs, 10000 randomly selected residual points
were used to train NNs. The volumetric water content measured at five locations
z = −10,−20,−30,−40,−50 cm were used as measurement data.
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4.4.2 Example 2

In this example, we investigated the ability of the two methods to recover a high-
frequency component of the upper boundary condition. To achieve that, we set the
surface water flux as m = 2.0 sin(tπ/T ) + 0.2 sin(tπ), as shown in Fig. 4.16. The
other settings were the same as Example 1.

4.4.3 Example 3

In the last example, we considered soil moisture dynamics for a more extended period
to study the robustness of the two methods. The final time T was set to 100 hours,
and the length of the soil Z was set to 300 cm to prevent the water from reaching the
bottom of the soil. The initial and the lower boundary condition were the same as
Example 1. We set the surface water flux condition as Fig. 4.25, where three rainfall
events and evaporation between the rainfalls were simulated. The rainfall rate for
each event was set to 1 cm hours−1 for 0 < t < 10, 2.0× sin(t− 20)π/T cm hours−1

for 20 < t < 30, 2.0×sin((t−50)π/T )+0.2×sin((t−50)π) cm hours−1 for 50 < t < 60,
and 1.0 cm hours−1 for 80 < t < 90, the evaporation rate was 0.2 cm hours−1.As for
the finite element method, a constant spatial mesh and time-stepping were used, and
Ns and Nt were set to 601 and 2000, respectively. Thus, the number of finite element
coefficients was 1202601. In PINNs, 100000 randomly selected residual points were
used to train NNs. The volumetric water content measured at z = −5 cm was used,
which can be considered as soil moisture data from satellite remote sensing data.

4.5 Results and discussions

4.5.1 Example 1

First, the implementation of the gradient and the Hessian-vector product in the ad-
joint method was verified by comparing them with a finite difference method. The
gradient and the Hessian-vector product were evaluated at m = 1.0 sin(tπ/T ), and
the regularization parameter γ was set to 10−4. To compare them with a finite dif-
ference approximation, we computed the directional derivative (Gradient action) in
the direction of a randomly selected vector for the gradient, and a similar approach
was used for the Hessian action. Fig. 4.2 (a) demonstrates that the error between
the gradient action derived from the adjoint method and a finite difference method
converged to zero with a first order until numerical errors are not negligible. A similar
trend was observed for the Hessian-vector product, as in Fig. 4.2 (b). These finite
difference tests validated our implementation of the gradient and the Hessian-vector
product via the adjoint method.

Fig. 4.3 (a) and (b) showed the best-fitted volumetric water content θ for the
adjoint method and PINNs, respectively, with the true solution represented by the
markers. The regularization parameter γ was set to 10−4 and 0.05 for the adjoint
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Figure 4.2: Example 1: The gradient (a) and the Hessian-vector product (b) were
compared with finite difference approximations. The x-axis (Eps ϵ) represents the
step size of the finite difference approximation.
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Figure 4.3: Example 1: The best-fitted solution to the forward problem (solid lines)
against the true solution (markers) for the adjoint method (a) and PINNs (b) from
data at five measurement locations z = −10,−20,−30,−40,−50 cm.

method and PINNs, respectively. The effect of the regularization parameter is dis-
cussed later. The relative L2 error ϵθ was 0.0156 and 0.0164 for the adjoint method
and PINNs, respectively. Fig. 4.4 and Fig. 4.5 demonstrate more detailed distri-
butions of the error. For the adjoint method, larger errors were observed near the
surface of the soil near the initial condition t = 0 because the estimation of the upper
boundary condition was not accurate due to the fact that the water did not reach
the first measurement location at z = −10 cm for a small t. In PINNs, larger errors
were observed at the tip of wetting fronts, which is evident in Fig. 4.5 and Fig. 4.6.
For Example 1, both methods were able to reconstruct the solution to the forward
problem with accuracy because the number of measurement locations was sufficient.

The solution to the inverse problem m with the regularization parameter γ =
1.0× 10−4 for the adjoint and γ = 0.05 for PINNs is shown in Fig. 4.7. The L2 error
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Figure 4.4: Example 1: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for the adjoint method. A small number 10−9

was added to the error for the visualization.

Figure 4.5: Example 1: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for PINNs.

ϵm was 0.065 for both methods. Both estimated surface water fluxes were satisfactory
except for the boundaries. The adjoint method overestimated the surface water flux at
both boundaries. This is because of the limited number of observation points and the
boundary condition of the parameter spaceM. On the other hand, PINNs’ surface
water flux was close to zero for both boundaries. This resulted from the estimated
uniform distribution of the water potential near the surface at near t = 0 and t = 10.
Nevertheless, there are errors for small t for PINNs as well due to the fact that water
did not reach the first observational point z = −10 cm.

Next, we discuss the performance of the minimization algorithm for each method.
Table 4.3 shows the result of the Newton-CG method for the adjoint method. At the
initial Newton iteration, we needed many line searches because of the convergence
issues of the forward solver when the surface water flux m imposed very strong evap-
oration. The total CG iterations were 84, and it took 390 seconds. As for PINNs,
the evolution of the loss terms is shown in Fig. 4.8 (a) and (b) for the Adam and the
L-BFGS-B optimizers, respectively. Note that the loss term for the residual Lr for the
Adam optimizer is not identical to the one for the L-BFGS-B optimizer because the
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Figure 4.6: Example 1: The residual of the PDE on log-scale for PINNs.
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Figure 4.7: Example 1. The true (blue solid line) and the estimated surface water
flux from data at five measurement locations z = −10,−20, 30,−40,−50 cm for the
adjoint method (dotted pink) and PINNs (dotted grey).

former only used 128 residual points while the latter used the whole residual points.
It took 828 and 663 seconds for each optimizer. For Example 1, the adjoint method
was faster than PINNs.

Next, we investigated the effect of the regularization parameter γ for both methods
by plotting a so-called L-curve (Hansen, 2000). The L-curve for the adjoint method
is shown in Fig. 4.9 (a), where the square of the regularization term

√
mTKmm

in Eq. 4.38 was plotted against the square of the data-misfit term
∫ T
0
(Bθ(t) −

θobs(t))
T (Bθ(t) − θobs(t)) dt for different regularization parameter γ ∈ {10−6, 5 ×

10−6, 10−5, 5−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2}. A common strategy is
to choose γ at which the curvature of the L-curve is maximum (Hansen, 2000). In this
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Table 4.3: Example 1: The performance of the Newton-Conjugate gradient (CG)
method.

Newton iteration CG iterations Line searches Cost Norm of the gradient

1 1 13 4.46× 10−2 2.08× 10−1

2 1 0 2.98× 10−2 1.11× 10−1

3 1 0 2.08× 10−2 7.40× 10−2

4 2 0 7.24× 10−3 3.86× 10−2

5 1 0 5.26× 10−3 4.25× 10−2

6 2 0 1.35× 10−3 1.99× 10−2

7 1 0 1.19× 10−3 1.10× 10−2

8 3 0 7.68× 10−4 3.20× 10−3

9 9 0 7.26× 10−4 7.28× 10−4

10 17 0 7.22× 10−4 2.87× 10−4

11 15 0 7.22× 10−4 6.02× 10−6

12 31 0 7.22× 10−4 4.62× 10−8
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Figure 4.8: Example 1: The evoluion of the loss terms for the Adam optimizer (a)
and the L-BFGS-B optimizer (b).

study, however, we chose the regularization parameter γ based on the accuracy of the
estimated solution m because we observed the regularization parameter γ suggested
by the L-curve gave too-smoothed solutions (see 4.10). For Example 1, we chose
γ = 1.0 × 10−4 for the adjoint method, which is close to the point of the maximum
curvature of the L-curve, while we see more deviations in the next two examples.
As for PINNs, there are no available theories regarding how to appropriately choose
the regularization parameter γ. For comparison, we show the L-curve for PINNs in
Fig.4.9 (b), where the regularization term

√Lr was plotted against the data-misfit
term

√Ldata for different γ ∈ {10−3, 5×10−3, 10−2, 5×10−2, 0.1, 0.5, 1, 5, 10}. Because
we used three different initializations of NNs, there are three data points for each regu-
larization parameter γ, which is shown by different colors (we observed similar results
from different initializations). We observed a linear relationship on the log-log scale
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Figure 4.9: Example 1: The L-curve for the adjoint method (a) and physics-informed
neural networks (PINNs) (b). The different colors in (b) represent results from dif-
ferent initialization of NNs.

with some outliers for high γ. In such high γ, we observed a too-smoothed solution
m, which is similar to the too-smoothed solution obtained by the adjoint method.
We selected γ = 0.05 based on the best-reconstructed inverse solution. Fig. 4.10
demonstrates the effect of the regularization parameter γ on the inverted solution m
for the adjoint method. It is clear that the inverted solution was severely affected
by the noise in the data when the regularization parameter γ was very low. On the
other hand, if the regularization parameter γ was too high, the estimated surface flux
deviated from the true one. Similar results were obtained for PINNs, as shown in
Fig. 4.11. A large γ leaded to a wrong solution (e.g., γ = 10). However, the effect
of the noise in the data appeared to be smaller than that of the adjoint method, re-
gardless of no explicit regularization in the PINN framework. This may be related to
NNs’ property, the so-called spectral bias, where NNs tend to converge to a smoothed
solution (Wang et al., 2022).

4.5.2 Example 2

In this example, we investigated whether both methods could recover a high-frequency
component of the upper boundary condition. Fig. 4.12 showed the best-fitted θ for the
adjoint method (a) and the PINNs (b), respectively. The regularization parameter γ
was 10−5 and 0.01 for the adjoint method and PINNs, respectively. The relative L2

error ϵθ was 0.00500 and 0.0281 for the adjoint method and PINNs, respectively. Fig.
4.13 and Fig. 4.14 demonstrate more detailed distributions of the error.

The estimated upper boundary condition m is shown for each method in Fig.
4.16. The L2 error ϵ

m was 0.0497 and 0.0950 for the adjoint and PINNs, respectively,
demonstrating that the adjoint method was better in terms of estimating the high-
frequency component of the upper boundary condition than PINNs for this example.
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Figure 4.10: Example 1: The effect of the regularization parameter γ on the estimated
solution m for the adjoint method.
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Figure 4.11: Example 1: The effect of the regularization parameter γ on the estimated
solution m for PINNs.



CHAPTER 4. PINNS VS ADJOINT METHODS 116

0.1 0.2 0.3 0.4 0.5

Volumetric Water Content θ [-]

−100

−80

−60

−40

−20

0

D
ep

th
z

[c
m

]

(a):Adjoint method

0.1 0.2 0.3 0.4 0.5

Volumetric Water Content θ [-]

−100

−80

−60

−40

−20

0

(b):PINNs

t = 0.0 hours

t = 2.0 hours

t = 4.0 hours

t = 6.0 hours

t = 8.0 hours

t = 10.0 hours

Figure 4.12: Example 2: The best-fitted solution to the forward problem (solid lines)
against the true solution (markers) for the adjoint method (a) and PINNs (b) from
data at five measurement locations z = −10,−20,−30,−40,−50 cm.

Figure 4.13: Example 2: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for the adjoint method. A small number 10−9

was added to the error for the visualization.

Next, we discuss the performance of the minimization algorithms. Table 4.4 shows
the result for the Newton-CG method for the adjoint method. The total CG iteration
was 206, and it took 779 seconds. Compared to Example 1, the number of CG
iterations increased. This was because of the small eigenvalues of the Hessian due to
the lower γ used in Example 2. As for PINNs, the evolution of the loss terms is shown
in Fig. 4.17 (a) and (b) for the Adam and the L-BFGS-B optimizers, respectively.
Regarding computational time, it took 898 and 1651 seconds for the Adam and the
L-BFGS-B optimizers, respectively. Compared to Example 1, more iterations of the
L-BFGS-B optimizer were needed for the convergence.

Fig. 4.18 (a) and (b) shows the L-curve for the adjoint method and PINNs, re-
spectively. For the adjoint method, the regularization parameters were γ ∈ {10−6, 5×
10−6, 10−5, 5−5, 7.5 × 10−5, 10−4, 2.5 × 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2},
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Figure 4.14: Example 2: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for PINNs.

Figure 4.15: Example 2: The residual of the PDE on log-scale for PINNs.

while γ ∈ {10−3, 5 × 10−3, 10−2, 5 × 10−2, 0.1, 0.5, 1, 5, 10} were used for PINNs. For
the adjoint method, the best result was obtained with γ = 10−5, which is far from at
which the curvature of the L-curve is maximum. For PINNs, γ = 0.01 gave the best
result. Fig 4.19 shows the effect of the regularization parameter γ on the inverted
solution m for the adjoint method. When the regularization parameter was γ = 10−6,
the inverted solution was severely affected by the noise in the data. On the other
hand, when the regularization parameter γ was larger than 10−4, the high-frequency
component was not well recovered. Considering the fact that we could not estimate
the best γ based on the L-curve (Fig. 4.18), it would be challenging to extract such a
high-frequency component of the upper boundary condition in real applications. Sim-
ilar results were obtained for PINNs, as shown in Fig. 4.20. As in the adjoint method,
we could extract the high-frequency component of the upper boundary condition if
the regularization parameter γ was appropriate.
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Figure 4.16: Example 2. The true (blue solid line) and the estimated surface water
flux from data at five measurement locations z = −10,−20, 30,−40,−50 cm for the
adjoint method (dotted pink) and PINNs (dotted grey).

Table 4.4: Example 2: The performance of Newton-Conjugate gradient (CG) method.

Newton iteration CG iterations Line searches Cost Norm of the gradient

1 1 16 1.25× 10−1 2.10× 10−1

2 1 0 9.51× 10−2 2.01× 10−1

3 1 0 2.55× 10−2 1.31× 10−1

4 1 0 2.03× 10−2 5.72× 10−2

5 2 0 5.07× 10−3 3.87× 10−2

6 1 0 3.64× 10−3 3.74× 10−2

7 2 0 1.13× 10−3 1.64× 10−2

8 3 0 7.21× 10−4 6.57× 10−3

9 11 0 5.98× 10−4 8.90× 10−4

10 9 0 5.94× 10−4 3.38× 10−4

11 35 0 5.92× 10−4 7.96× 10−5

12 23 0 5.92× 10−4 9.75× 10−6

13 48 0 5.92× 10−4 6.28× 10−7

14 68 0 5.92× 10−4 1.69× 10−9

4.5.3 Example 3

This example examines the performance of the two methods for longer soil moisture
dynamics. Fig. 4.21 (a) and (b) show the best-fitted soil moisture θ for the adjoint
method and PINNs, respectively. Fig. 4.22 and 4.23 show more detailed distribution
of each method. The regularization parameter was γ = t× 10−5 and γ = 0.1 for the
adjoint method and PINNs, respectively. The accuracy of the reconstructed forward
solution ϵθ was 0.0489 and 0.131 for the adjoint method and PINNs, respectively.
This numerical example clearly demonstrates the advantage of the adjoint method
for a data-limited case. In this case, only the soil moisture data at z = −5cm was
available, and the PINNs could not reconstruct the solution to the forward problem
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Figure 4.17: Example 2: The evoluion of the loss terms for the Adam optimizer (a)
and the L-BFGS-B optimizer (b).
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Figure 4.18: Example 2: The L-curve for the adjoint method (a) and physics-informed
neural networks (PINNs) (b). The different colors in (b) represent results from dif-
ferent initialization of NNs.

accurately (see Fig. 4.21 (b)). However, note that the residual of the PDE was better
minimized than those for the previous examples, as shown in Fig. 4.24, which was
due to the larger number of residual points.

Nevertheless, the estimated surface flux m by PINNs was not particularly worse
than that of the adjoint method (ϵm was 0.0797 and 0.111 for the adjoint method and
PINNs, respectively), which is shown in Fig. 4.25.

Next, we discuss the performance of the minimization algorithms. Table 4.5 shows
the result for the Newton-CG method for the adjoint method. The total CG iteration
was 623, and it took 21533 seconds. This was because the upper boundary condition
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Figure 4.19: Example 2: The effect of the regularization parameter γ on the estimated
solution m for the adjoint method.
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Figure 4.20: Example 2: The effect of the regularization parameter γ on the estimated
solution m for PINNs.
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Figure 4.21: Example 3: The best-fitted solution to the forward problem (solid lines)
against the true solution (markers) for the adjoint method (a) and PINNs (b) from
data at five measurement locations z = −5 cm.

Figure 4.22: Example 3: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for the adjoint method. A small number 10−9

was added to the error for the visualization.

has more modes than previous examples. As for PINNs, the evolution of the loss
terms is shown in Fig. 4.26 (a) and (b) for the Adam and the L-BFGS-B optimizers,
respectively. Regarding computational time, it took 1820 and 23596 seconds for the
Adam and the L-BFGS-B optimizers, respectively. Although both methods required
much longer computational time, the adjoint method was still faster than PINNs.
Nevertheless, both methods have plenty of room for improvement in the implemen-
tation. For example, an adaptive time-stepping method would drastically speed up
the adjoint method.

Finally, we discuss the effect of the regularization parameter γ for each method.
Fig. 4.27 (a) and (b) shows the L-curve for the adjoint method and PINNs, respec-
tively. For the adjoint method, the regularization parameters were
γ ∈ {10−5, 5−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2}, while
γ ∈ {10−3, 5 × 10−3, 10−2, 5 × 10−2, 0.1, 0.5, 1, 5, 10} were used for PINNs. For the
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Figure 4.23: Example 3: The predicted (left), the true (center), and the error in log
scale (right) volumetric water content θ for PINNs.

Figure 4.24: Example 3: The residual of the PDE on log-scale for PINNs.

adjoint method, the best result was obtained with γ = t× 10−5, which is far from at
which the curvature of the L-curve is maximum. For PINNs, γ = 0.1 gave the best
result. Fig 4.28 shows the effect of the regularization parameter γ on the inverted
solution m for the adjoint method. When the regularization parameter was γ = 10−5,
the inverted solution was severely affected by the noise in the data, particularly during
which the evaporation was simulated. On the other hand, when the regularization
parameter γ was larger than 0.01, the adjoint method underestimated the surface
water flux for the rainfall events. The result demonstrates the difficulty in estimating
the surface water flux for evaporation periods, which are small in magnitude and
prone to noise in the data. Similar results were obtained for PINNs, as shown in Fig.
4.29. Interestingly, compared to the adjoint method, the surface water flux estimate
during the evaporation periods was less affected by the noise in the data for PINNs.
Nevertheless, it is necessary to choose the right regularization parameter γ to recover
the upper boundary condition well.
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Figure 4.25: Example 3. The true (blue solid line) and the estimated surface water
flux from data at five measurement locations z = −5 cm for the adjoint method
(dotted pink) and PINNs (dotted grey).

Table 4.5: Example 3: The performance of Newton-Conjugate gradient (CG) method.

Newton iteration CG iterations Line searches Cost Norm of the gradient

1 2 0 2.59× 10−1 4.39× 10−1

2 2 0 2.15× 10−1 6.15× 10−2

3 1 11 9.38× 10−2 3.94× 10−2

4 2 2 5.41× 10−2 4.48× 10−2

5 5 6 3.41× 10−2 5.86× 10−2

6 4 1 1.65× 10−2 4.95× 10−2

7 4 0 7.81× 10−3 2.93× 10−2

8 6 0 3.09× 10−3 1.27× 10−2

9 16 0 1.62× 10−3 5.17× 10−3

10 57 0 1.38× 10−3 1.37× 10−3

11 107 0 1.37× 10−3 2.39× 10−4

12 172 0 1.37× 10−3 1.50× 10−5

13 245 0 1.37× 10−3 9.91× 10−8

4.6 Conclusions

Surface water flux is an essential variable for land surface modeling and water man-
agement. Estimating surface water flux from soil moisture measurements can be
formulated as the inverse problem governed by the Richardson-Richards equation
(RRE). This inverse problem is a large-scale numerical optimization problem and
thus requires efficient techniques to overcome the computational challenge.

We applied two inverse methods to the inverse problem: physics-informed neural
networks (PINNs) and an adjoint method. In PINN framework, the solution to
the RRE is approximated by NNs, and NNs are trained by available data and the
constraint by the PDE. On the other hand, the RRE is solved by a finite element
method in the adjoint method, and the inverse problem is solved by minimizing
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Figure 4.26: Example 3: The evoluion of the loss terms for the Adam optimizer (a)
and the L-BFGS-B optimizer (b).
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Figure 4.27: Example 3: The L-curve for the adjoint method (a) and physics-informed
neural networks (PINNs) (b). The different colors in (b) represent results from dif-
ferent initialization of NNs.

an objective function via the (inexact) Newton method with the gradient and the
Hessian information (Hessian-vector product) obtained by solving a so-called adjoint
problem and the linearized forward and adjoint problems. Because the automatic
differentiation used in training NNs is a special case of an adjoint method, it would
be valuable to compare the two methods.

We investigated the performance, advantages, and limitations of the two methods
through three numerical examples. The first numerical example demonstrated that
both methods could estimate the upper boundary condition from soil moisture mea-
surements at five locations. For this example, the adjoint method was faster than
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Figure 4.28: Example 3: The effect of the regularization parameter γ on the estimated
solution m for the adjoint method.
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Figure 4.29: Example 3: The effect of the regularization parameter γ on the estimated
solution m for PINNs.
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PINNs. The effect of the regularization parameter γ for each method was investi-
gated, and both behaved similarly for large γ but not for small γ, where the adjoint
method was more affected by the noise in the data than PINNs.

The second numerical example investigated the ability of the two methods to ex-
tract a high-frequency component of the upper boundary condition. It was found
that both methods could extract the high-frequency component if the regularization
parameter γ was appropriately chosen. Compared to Example 1, it took longer com-
putational times for both methods because the data used in this example were more
informative than in the first example.

In the final example, the robustness of the two methods for a more realistic longer
soil moisture dynamics (100 hours), where only soil moisture measurement at z = −5
cm was used for the inverse modeling. It was demonstrated that the adjoint method
was superior to PINNs in the data-limited situation in terms of the accuracy of the
reconstructed forward solution. The estimated surface water flux was satisfactory
for both methods, while both methods required much longer computational time
than previous examples. Although the adjoint method was faster than PINNs in our
computational environment, the adjoint method needed about 6 hours for the inverse
modeling.

This result was unsatisfactory considering our original expectation because we
aimed to combine this algorithm with other algorithms to estimate the upper bound-
ary condition and soil hydraulic properties simultaneously. The adjoint method could
speed up if we use an adaptive time-stepping method. Although the study demon-
strates the robustness of the adjoint method than PINNs, it is still noteworthy of
the NN capability to approximate the solution to the PDEs. The number of NN pa-
rameters was much smaller than that of finite element coefficients used in the adjoint
method. Also, the study illustrates the importance of the regularization parameter
for both methods. Unfortunately, a common strategy used in the adjoint method (L-
curve method) did not provide the best estimate of the regularization parameter. The
regularization parameter for PINNs is still unclear though the relationship with the
adjoint variable in the adjoint method should be explored. Finally, it would be highly
desirable to implement the adjoint method with automatic differentiation to apply
this method with more complicated but realistic soil hydraulic functions, including
the effect of hysteresis.

4.7 List of abbreviations

BC: Brooks and Corey
DTO: Discretize-then-Optimize
FEMs: Finite element methods
HCF: Hydraulic conductivity function
L-LAAF: Layer-wise locally adaptive activation Function
NNs: Neural networks
OTD: Optimize-then-discretize
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PDE: Partial differential equation
PINNs: Physics-informed neural networks
RRE: Richardson-Richards equation
WRC: Water retention curve

4.8 List of notation

superscript
·̂ : test function in the adjoint method and prediction in PINNs except for used for Θ̂
·̃: incremental variables
·k: kth Newton iteration
·n: nth time step

subscript
·D: Dirichlet boundary condition
·F : water flux boundary condition
·h: discretized space or function
·obs: observation
·0: initial condition
·lb: lower boundary condition
·data: data for PINNs training
·r: residual
·ub: upper boundary condition
·U : upper layer

alphabet
a: the collection of trainable parameters for adaptive activation functions for a neural
network
a[k]: trainable parameter for the element-wise non-linear activation function
A: derivative of the constraint by the forward problem
b: the collection of bias vectors for a neural network
b[k]: bias vector for the kth hidden layer
B: matrix from the observational operator
B: observational operator
B∗: adjoint of observational operator
c: parameter for line search
C: derivative of the constraint by the forward problem by the parameter
d: derivative of the data-misfit term by the state variable
D: data-misfit term
F: system of non-linear equations
F′: Jacobian matrix
g: gradient vector



CHAPTER 4. PINNS VS ADJOINT METHODS 128

h[k]: vector for the kth hidden layer
H: Hessian matrix
H1: Sobolev space
J: discretized objective function
J : objective functional
K: hydraulic conductivity [L T−1]
K: stiffness matrix
Km: stiffness matrix on parameter space
Ks: saturated hydraulic conductivity [L T−1]
l: tortuosity parameter [-]
L: the number of hidden layers
Lg: Lagrangian for the gradient evaluation
LH : Lagrangian for the Hessian-vector product evaluation
L: loss function in PINNs
Lg: Lagrangian functional for the gradient evaluation
LH : Lagrangian functional for the Hessian-vector product evaluation
Li: loss term for i constraints
m: Neumann flux boundary condition
m: discretized flux boundary condition
m̃: Newton direction
M: mass matrix
M: functional space for parameter space
ML: lumped mass matrix
N : neural network functions
n[k]: dimension of a vector corresponding to the kth hidden layer
nx: dimension of input vector x
ny: dimension of output vector ŷ
Ndata: the number of data points
Nr: the number of residual points
Ns: the number of spatial nodes
Nt: the number of temporal steps
o: output functions
p: test function
p: Discretized adjoint variable
P: regularization operator
q: water flux in the vertical direction (positive downward) [L T−1] or test function in
the OTD approach
r̂: the residual of the RRE
R: regularization term
s: fixed scaling factor for adaptive activation functions
Se: effective saturation [-]
t: time [T]
T : final time [T]
V : trial space



CHAPTER 4. PINNS VS ADJOINT METHODS 129

V̂ : test space
W: the collection of the weight matrices for a neural network
W[k]: weight matrix for the kth hidden layer
x: input vector
ŷ: output vector
z: vertical coordinate (positive upward) [L]
Z: the vertical length of a soil [L]

Greek alphabet
α: step size of line search
β: fixed parameter for the output of neural networks
γ: regularization parameter
δij: Kronecker symbol
∆tn: time step at the time tn [T]
ϵδ: L2 relative error for variable δ
η: forcing term
θ: volumetric water content [L3 L−3]
Θ: neural network parameters
Θ̂: update of neural network parameters for each iteration of optimization algorithms
θn: collection of θ at all spatial nodes for the time tn

θr: residual volumetric water content [L3 L−3]
θs: saturated volumetric water content [L3 L−3]
λ: pore-size distribution parameter [-]
σ: element-wise non-linear activation function
τa: absolute threshold for Newton iterations
τr: relative threshold for Newton iterations
ψ: water potential in soils [L]
ψ0: initial condition of the water potential in soils [L]
ψc: air-entry value [L]
ψlb: water potential at the bottom boundary [L]
χi: linear function at node i for parameter space
ϕi: linear function at node i
Ω: spatial domain
∂Ω: spatial boundary

others
:=: equal by definition
∇: Nabla
·̄: assembly over all the time steps
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Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-c., Camarero, J. J., and Capello, G.
(2021). The International Soil Moisture Network : serving Earth system science
for over a decade. Hydrology and Earth System Sciences, 25:5749–5804.

Eisenstat, S. C. and Walker, H. F. (1996). Choosing the forcing terms in an inexact
Newton method. SIAM Journal of Scientific Computing, 17(1):16–32.

Fuks, O. and Tchelepi, H. A. (2020). Limitations of physics informed machine learning
for nonlinear two-phase transport in porous media. Journal of Machine Learning
for Modeling and Computing, 1(1):19–37.

Ghattas, O. and Willcox, K. (2021). Learning physics-based models from data: per-
spectives from inverse problems and model reduction. Acta Numerica, 30:445–554.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256, Sardinia, Italy, May 13 - 15.
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Chapter 5

Conclusion Remarks

In the dissertation, I explored various aspects of inverse modeling of soil moisture
dynamics based on the Richardson-Richards equation (RRE)
(Richardson, 1922; Richards, 1931). As concluding remarks, I summarize the limita-
tion of the current approaches and discuss future perspectives.

Chapter 2 showed that physics-informed neural networks (PINNs) (Raissi et al.,
2019) were promising for inverse modeling of soil moisture dynamics. However, the
current limitation of PINNs is that the application of PINNs to real soil moisture
data is still challenging. Almost all the studies of testing PINNs are limited to simple
synthetic data, and very few used PINNs with actual observations (Depina et al.,
2021). It is challenging to train PINNs with actual soil moisture data because they
are sparse and noisy. This results from using feedforward neural networks in PINNs,
which provide tremendous flexibility but lack structure. Future studies might solve
this issue by finding more problem-specific architecture of neural networks or trans-
forming training data.

In Chapter 3, I demonstrated that the RRE with the Peters-Durner-Iden (PDI)
model (Peters, 2013; Iden and Durner, 2014; Peters, 2014) could capture soil mois-
ture dynamics more accurately than the one with the van Genuchten-Mualem (VGM)
model (Mualem, 1976; van Genuchten, 1980) using upward infiltration experimental
data. Nevertheless, the inverse modeling framework was only successful for medium-
textured soils, and I faced difficulties with coarse-textured and clay-rich soils. As for
coarse-textured, the experimental data violated the one-dimensional flow assumed
in the RRE. Although this could be alleviated by a better design of experimental
setup, it may be more appropriate to use two-dimensional RRE by taking advantage
of two-dimensional soil moisture data provided by a shortwave infrared imaging cam-
era. However, it would increase the computational burden significantly. For clay-rich
soils, the heterogeneity of the soils violated the homogeneous assumption used in the
RRE. Dealing with such heterogeneities in the inverse modeling framework is compu-
tationally very challenging, while Miller and Miller’s similar media theory (Miller and
Miller, 1956) might be promising. In this work, I used a gradient-free global optimiza-
tion algorithm because it has been recognized that gradient-based algorithms are not
suitable for inverse modeling to estimate soil hydraulic properties due to many bad

135



CHAPTER 5. CONCLUSION REMARKS 136

local optima. However, I believe this is due to the parameterization of soil hydraulic
properties (e.g., the VGM and the PDI model), not the problem itself (i.e., the RRE
and soil moisture data). Future studies should aim to find better parameterization of
soil hydraulic properties that allow the use of gradient-based optimization algorithms,
which are faster than global optimization algorithms. Promising approaches would
be replacing such parametric models with more flexible functions, such as neural
networks (Bandai and Ghezzehei, 2021) and finite elements.

In Chapter 4, I discussed the estimation of surface water flux from soil moisture
measurements through an adjoint method (Ghattas and Willcox, 2021). The com-
parison between the adjoint method and PINNs clarified the similarities and differ-
ences between the methods, and numerical experiments demonstrated that the adjoint
method is more robust than PINNs in terms of the reconstructed soil moisture profile
for a data-limited case. One of the main limitations of the current adjoint method
is that it does not optimize soil hydraulic properties. We can combine the adjoint
method with another optimization algorithm for a small-scale problem to estimate
surface water flux and soil hydraulic properties simultaneously. However, for large-
scale problems, it would be computationally very demanding. Although we could
re-implement the adjoint method for parameters to describe soil hydraulic properties,
such implementation is time-consuming and error-prone. Using automatic differenti-
ation would solve such issues but be slower than the adjoint method. Nevertheless,
automatic differentiation (Baydin et al., 2018) would be necessary considering the
complexity of soil hydraulic properties, including the effect of hysteresis (Assouline
and Or, 2013). Therefore, future studies should combine adjoint methods with au-
tomatic differentiation. For example, at the initial stages of research, automatic
differentiation enables us to implement inverse modeling much easier than adjoint
methods. Once computational demand becomes an issue, we could replace automatic
differentiation with adjoint methods. Such hybrid approaches would enable us to
develop an inverse modeling framework that can analyze actual soil moisture data.
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Appendix A

Supplementary materials for
Chapter 2

A.1 Supplementary Text

A.1.1 Residual-based adaptive refinement

The original PINN framework proposed by Raissi et al. (2019) has difficulty in approx-
imating the solution of PDEs that have steep gradients. To overcome this challenge,
Lu et al. (2021) proposed the residual-based adaptive refinement (RAR) algorithm,
which distributes collocation points during the training in the locations where the
residual of PDEs is large.

In this study, as in Lu et al. (2021), after 10000 iterations of the Adam optimizer,
the residual was evaluated at randomly sampled 106 locations from the whole spatial
and temporal domain (see Fig. A.1 (b)). The collocation points were ordered accord-
ing to the residual values, and the highest ten collocation points were added to the
collocation points that were originally given. We iterated this procedure ten times
before the L-BFGS-B algorithm was used to further minimize the loss function.

We tested the RAR algorithm for the forward modeling of the homogeneous soil
(Sect. 3.1 in the main text), and the results are shown in Fig. A.1. The RAR
algorithm appeared to improve the performance of PINNs for the problem, but the
effects were minor. Therefore, we did not use the algorithm for further analysis.

A.1.2 Learning rate annealing

Wang et al. (2021) proposed the adaptive learning rate (ALR) algorithm, where the
weight parameters in the loss function λi are updated in the following way:

λn+1
i = (1− α)λni + αλ̂i

n
for i = m, ic,D, F, (A.1)

where

λ̂i
n
=

maxWn{|∇WnLr(Θn)|}
|∇Wnλni Li(Θn)|

, for i = m, ic,D, F, (A.2)
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where the bar represents the mean of the values below the bar; Θn is the neural net-
work parameters including the weight matrices Wn at nth iteration of the algorithm.
In the study, α was set to 0.1, and the algorithm was used to update λi every 10
iterations of the the Adam algorithm to balance the relative importance of each loss
term .

The ALR algorithm was tested for the forward modeling for the homogeneous soil
case in Sect. 3.1 of the main text. The three weight parameters λic, λub, and λlb for
the initial, upper boundary, and lower boundary condition, respectively, were initially
set to ten, while they were updated using the ALR algorithm during the training (see
Fig. A.2 (b)). Figure A.2 demonstrated that the effectiveness of the ALR algorithm
was not clear compared to the L-LAAF algorithm. Figure A.2 (c) showed that the
loss term for the residual Lr was not minimized as the L-LAAF algorithm (shown in
Fig. 4 of the main text). Therefore, we only used the L-LAAF algorithm in the study
for further analysis.

A.1.3 Finite difference method

A finite difference method was implemented on Matlab R2020b to solve the one-
dimensional RRE to evaluate the performance of PINNs. To deal with the non-linear
terms in the RRE, the modified Picard iteration was used (Celia et al., 1990). A
constant spatial mesh size dz and time step dt were used. The internodal hydraulic
conductivity K was computed from the geometric average of the adjacent nodes.
The upper boundary condition given as a constant water flux was evaluated using a
second-order one-sided finite difference approximation (LeVeque, 2007). Figure A.3
shows that the numerical error ϵθ decreased with decreasing dt (Fig. A.3 (a)) and dz
(Fig. A.3 (b)).

A.1.4 Effects of weight parameters in loss function for
heterogeneous case

In Sect. 3.2.4 in the main text, we investigated the effects of weight parameters λi in
the loss function for the heterogeneous case. Here, the effects on the loss terms are
shown. Figure A.4, A.5, and A.6 shows the effects on the loss terms for the upper
layer, the lower layer, and the interface conditions, respectively.

A.1.5 Use of water potential measurements

It is straightforward to modify the PINN algorithm for water potential measurements.
Note that we used the logarithm of the negative water potential measurements in
the loss function. We used the water potential measurement data from the same
HYDRUS-1D simulation used in the inverse modeling in the main text to estimate the
surface water flux. Figure A.9 showed that the estimated surface flux was comparable
to the case using volumetric water content.
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A.2 Supplementary Figures
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Figure A.1: (a): The effects of the residual-based adaptive refinement algorithm on
the performance of PINNs for the forward problem for the homogeneous soil. (b):
The distribution of the original and added collocation points for the same problem.
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Figure A.2: The effects of the adaptive learning rate (ALR) algorithm for the forward
problem of the homogeneous soil case. (a): The relative squared error ϵθ for PINNs
with and without the ALR and L-LAAF algorithms. (b): The evolution of the weight
parameters in the loss function during the Adam algorithm. (c): The evolution of
the loss terms during the training.
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Figure A.3: (a): The relative squared error with respect to volumetric water content
ϵθ for the finite difference solution with varying time steps dt. The spatial mesh size
dz was fixed to 0.1 cm. (b): The relative squared error with respect to volumetric
water content ϵθ for varying spatial mesh size dz. The time step dt was fixed to 0.0001
h.
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Figure A.4: Heterogeneous soil. The effects of weight parameters λi in the loss
function on the loss terms corresponding to the upper layer. The left and right
columns correspond to the effects of λi for the upper layer and interface conditions,
respectively. (a) and (b): Loss term for the initial condition Lic. (c) and (d): Loss
term for the upper boundary condition Lub. (e) and (f): Loss term for the residual
of the PDE Lr.
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Figure A.5: Heterogeneous soil. The effects of weight parameters λi in the loss
function on the loss terms corresponding to the lower layer. The left and right columns
correspond to the effects of λi for the upper layer and interface conditions, respectively.
(a) and (b): Loss term for the initial condition Lic. (c) and (d): Loss term for the
lower boundary condition Lub. (e) and (f): Loss term for the residual of the PDE Lr.
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Figure A.6: Heterogeneous soil. The effects of weight parameters λi in the loss
function on the loss terms corresponding to the interface conditions. The left and right
columns correspond to the effects of λi for the upper layer and interface conditions,
respectively. (a) and (b): Loss term for the continuity in the neural network output
LIN . (c) and (d): Loss term for the continuity in the water flux LIq . (e) and (f):
Loss term for the continuity in the residual of the PDE LIr .
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Figure A.7: The relative squared error in terms of volumetric water content ϵθ for
different numbers of measurement locations.
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Figure A.8: Inverse modeling to estimate surface water flux from soil moisture mea-
surements in a layered soil (upper layer: loam soil; lower layer: sandy loam soil).
The evolution of loss terms for the upper layer (left column), lower layer (center
column), and the interface conditions (right column) for different measurement lo-
cations zm [cm]. (a): zm ∈ {−5,−15}. (b): zm ∈ {−3,−7,−13,−17}. (c):
zm ∈ {−1,−5,−9,−13,−17}.
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Figure A.9: Inverse modeling to estimate surface flux from five water potential mea-
surements in a layered soil (z ∈ −1,−5,−9,−13,−17 cm). The left figure shows the
comparison between the true and PINNs’ volumetric water content. The right figure
shows the true and estimated surface water flux.
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Appendix B

Supplementary materials for
Chapter 4

B.1 Discretize-then-Optimize approach

In this section, we describe the detail of the DTO approach.

B.1.1 Derivative of forward problem in terms of state

In this section, we describe the derivative of the forward problem with respect to the
state ∂F̄

∂ψ̄
∈ RNs(Nt+1)×Ns(Nt+1). We begin with F0. The initial condition (Eq. 4.30)

gives
∂F0

∂ψ0 = I and
∂F0

∂ψn = 0 for 1 ≤ n ≤ Nt. (B.1)

As for Fn for n = 1, 2, ..., Nt, Equation 4.25 gives(
∂Fn

∂ψn−1

)
ij

=
∂F n

i

∂ψn−1
j

= −ML
ij

∂θn−1
i

∂ψn−1
j

, (B.2)(
∂Fn

∂ψn

)
ij

=
∂F n

i

∂ψnj
= ML

ij

∂θni
∂ψnj

+

∆t

(
K ′(ψnj )

∫
Ω

ϕj
∂ψnh
∂z

∂ϕi
∂z

dz +

∫
Ω

Kh
∂ϕj
∂z

∂ϕi
∂z

dz +K ′(ψnj )

∫
Ω

ϕj
∂ϕi
∂z

dz

)
,(B.3)(

∂Fn

∂ψk

)
ij

=
∂F n

i

∂ψkj
= 0 for k ̸= n− 1, n. (B.4)

Here, we define a diagonal matrix Θn, whose ijth element is
∂θni
∂ψnj

δij and a matrix Nn,

whose ijth element is

Nn
ij := K ′(ψnj )

∫
Ω

ϕj
∂ψnh
∂z

∂ϕi
∂z

dz +

∫
Ω

Kh
∂ϕj
∂z

∂ϕi
∂z

dz +K ′(ψnj )

∫
Ω

ϕj
∂ϕi
∂z

dz. (B.5)
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Note that we assume ψn is the exact solution to the non-linear problem (Equation

4.25). Then, the Jacobian matrix ∂F̄
∂ψ̄

can be written as a block matrix:

∂F̄

∂ψ̄
=



I 0 0 ... 0 0 0

−MLΘ0 MLΘ1 + ∆tN1 0 ... 0 0 0

0 −MLΘ1 MLΘ2 + ∆tN2 ... 0 0 0

. . .

0 0 0 ... −MLΘNt−2 MLΘNt−1 + ∆tNNt−1 0

0 0 0 ... 0 −MLΘNt−1 MLΘNt + ∆tNNt


.

(B.6)

B.1.2 Derivative of data-misfit term with respect to state

This section derives ∂D
∂ψ̄

, where D = 1
2

∫ T
0
(Bθ(t) − θobs(t))T (Bθ(t) − θobs(t)) dt. By

the trapezoital rule, the integral can be approximated as∫ T

0
(Bθ(t)− θ0obs)T (Bθ(t)− θobs(t)) dt

≈ 1

2
∆t(Bθ0 − θ0obs)T (Bθ0 − θ0obs) + ∆t(Bθ1 − θ1obs)T (Bθ1 − θ1obs)

+ ...

+ ∆t(Bθn−1 − θn−1
obs )

T (Bθn−1 − θn−1
obs ) +

1

2
∆t(Bθn − θnobs)T (Bθn − θnobs), (B.7)

where θnobs for n = 0, 1, ..., Nt is a vector consisting of the volumetric water content
data collected at the measurement locations. Thus,

∂D

∂ψni
= 0 for zi ̸∈ {z1obs, .., zNobs

obs } and n = 0, ..., Nt, (B.8)

∂D

∂ψni
=

1

2
∆t(θni − θnobs, i)

dθ

dψ
(ψni )

for zi ∈ {z1obs, .., zNobs
obs } and n = 0, Nt, (B.9)

∂D

∂ψni
= ∆t(θni − θnobs, i)

dθ

dψ
(ψni )

for zi ∈ {z1obs, .., zNobs
obs } and n = 1, 2, ..., Nt − 1, (B.10)

where zi is the spatial coordinate corresponding to ith node for i = 1, ..., Ns, θ
n
obs, i is

the volumetric water content measurement at z = zi. Thus,

(
∂D

∂ψ̄

)T
= ∆t


1
2
Θ0BT (Bθ0 − θ0obs)
Θ1BT (Bθ1 − θ1obs)

...
ΘNt−1BT (BθNt−1 − θNt−1

obs )
1
2
ΘNtBT (BθNt − θNtobs)

 . (B.11)

B.1.3 Adjoint problem

The adjoint problem is (
∂F̄

∂ψ̄

)T
p̄ = −

(
∂D

∂ψ̄

)T
. (B.12)
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From Eq. B.6 and B.11, the adjoint equations are

p0 = −1

2
∆tΘ0BT (Bθ0 − θ0obs) +MLΘ0p1, (B.13)

(MLΘn +∆t(Nn)T )pn = −∆tΘnBT (Bθn − θnobs) +MLΘnpn+1

for n = Nt − 1, ..., 1, (B.14)

(MLΘNt +∆t(NNt)T )pNt = −1

2
∆tΘNtBT (BθNt − θNtobs), (B.15)

which are solved backward in time (i.e., from pNt). By comparing the adjoint equa-
tions and the adjoint PDE (Eq. B.1.3), we can recognize that the terminal condition
for the OTD approach is p(z, T ) = 0, while the adjoint variable for the last time step
pNt is not zero if there is a difference between the estimated and measured volumetric
water content at the measurement locations.

B.1.4 Derivative of forward problem in terms of parameter

Next, the derivative of the forward problem with respect to the parameter ∂F̄
∂m
∈

RNs(Nt+1)×(Nt+1) is described. The initial condition (Equation 4.30) gives

∂F0

∂m
= 0. (B.16)

As for Fn for n = 1, 2, ..., Nt, Equation 4.25 gives(
∂Fn

∂mn

)
i

= −∆t
∫
∂ΩF

ϕi ds, (B.17)(
∂Fn

∂mk

)
i

= 0 for k ̸= n. (B.18)

We define a vector b, where its ith element bi is

bi =

∫
∂ΩF

ϕi ds. (B.19)

Then, the Jacobian matrix ∂F̄
∂m

can be written as a block matrix:

∂F̄

∂m
=



0 0 0 ... 0 0 0
0 −∆tb 0 ... 0 0 0
0 0 −∆tb ... 0 0 0

. . .

0 0 0 ... 0 −∆tb 0
0 0 0 ... 0 0 −∆tb


. (B.20)
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B.1.5 Incremental forward problem

The incremental forward problem is

∂F̄

∂ψ̄
¯̃ψ = − ∂F̄

∂m
m̃, (B.21)

and from Eq. B.6 and B.20, the incremental forward equations are

ψ̃
0

= 0, (B.22)

(MLΘn +∆tnNn)ψ̃
n

= ∆tm̃nb+MLΘn−1ψ̃
n−1

for n = 1, ..., Nt,(B.23)

where m̃i is the ith element of the vector m̃.

B.1.6 Derivative of adjoint problem

∂AT p̄
∂ψ̄

is the derivative of the left-hand side of the adjoint problem (Eq. 4.67). Because
the adjoint equation for each time step only depends on the state variable on the same

time step, the matrix ∂AT p̄
∂ψ̄

is a diagonal block matrix, whose nth (n = 0, 1, ..., Nt)

main diagonal element is denoted by
(
∂AT p̄
∂ψ̄

)
n
, and then(

∂AT p̄

∂ψ̄

)
0

= −MLΘ0p1, (B.24)(
∂AT p̄

∂ψ̄

)
n

= MLΘn(pn − pn+1) + ∆tXn for n = Nt − 1, ..., 1, (B.25)(
∂AT p̄

∂ψ̄

)
Nt

= MLΘNtpNt +∆tXn for n = Nt, (B.26)

where Θn is a diagonal matrix, whose ith main diagonal element is d2θ
dψ2 (ψ

n
i ), X

n :=
∂(Nn)Tpn

∂ψn
. The ijth element of the matrix Xn is

(X)ij =
∂((Nn)Tpn)i

∂ψnj
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k((N
n)T )ikp
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k

∂ψnj
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∂
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∂
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Kh
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ϕi

∂ϕk
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)

∂ψnj

=
∂
(
K ′(ψni )
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ϕi
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dz +

∫
Ω
Kh

∂ϕi
∂z
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∫
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)

∂ψnj

= K ′′(ψni )δij
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Ω
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∂z
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∂z

dz +K ′(ψni )

∫
Ω
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∂ϕj
∂z
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dz

+ K ′(ψnj )

∫
Ω

ϕj
∂ϕi
∂z
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∂z

dz +K ′′(ψni )δij

∫
Ω

ϕi
∂pnh
∂z

dz. (B.27)
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B.1.7 Second derivative of data-misfit term with respect to
state

We need to compute the second derivative of data-misfit term with respect to state ∂d
∂ψ̄

,

which is a block diagonal matrix, whose nth main diagonal element (n = 0, 1, ..., Nt)

is denoted by
(
∂d
∂ψ̄

)
n
, and then(
∂d

∂ψ̄

)
n

=
1

2
∆t
(
ΘnBT (Bθn − θnobs) +ΘnBTBΘn

)
for n = 0, Nt, (B.28)(
∂d

∂ψ̄

)
n

= ∆t
(
ΘnBT (Bθn − θnobs) +ΘnBTBΘn

)
for n = 1, ..., Nt − 1. (B.29)

B.1.8 Incremental adjoint problem

The incremental adjoint problem is

AT ¯̃p = −
((

∂AT p̄

∂ψ̄

)T
+

(
∂d

∂ψ̄

)T)
¯̃
ψ, (B.30)

and from Eq. B.24 and B.28 the incremental adjoint equations are

p̃0 = −
(
−MLΘ0p1 +

1

2
∆t

(
Θ0BT (Bθ0 − θ0obs) +Θ0BTBΘ0

))
ψ̃0 +MLΘ0p̃1, (B.31)

(MLΘn +∆t(Nn)T )p̃n =

−
(
MLΘn(pn − pn+1) + ∆t (Xn)T +∆t

(
ΘnBT (Bθn − θnobs) +ΘnBTBΘn

))
ψ̃n

+MLΘnp̃n+1 for n = 1, ..., Nt − 1, (B.32)

(MLΘNt +∆t(NNt )T )p̃Nt =

−
(
MLΘNtpNt +∆t

(
XNt

)T
+

1

2
∆t

(
ΘnBT (Bθ0 − θ0obs) +ΘnBTBΘn

))
ψ̃Nt , (B.33)

which are solved backward in time (i.e., from the last row). By comparing the in-
cremental adjoint equations and the adjoint PDE (Eq. 4.74), we can recognize that
the terminal condition for the OTD approach is p̃(z, T ) = 0, while the incremental
adjoint variable for the last time step p̃Nt is not zero.




