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Abstract

Axisymmetric numerical simulations continue to provide insight into how the structure,

dynamics, and maximum windspeeds of tornadoes, and other convectively-maintained vortices,

are influenced by the surrounding environment. This work is continued with a new numerical

model of axisymmetric incompresible flow that incorporates adaptive mesh refinement. The

model dynamically increases or decreases the resolution in regions of interest as determined by a

specified refinement criterion. Here, the criterion used is based on the cell Reynolds number

, so that the flow is guaranteed to be laminar on the scale of the local grid spacing.

The model is used to investigate how the altitude and shape of the convective forcing, the

size of the domain, and the effective Reynolds number (based on the choice of the eddy viscosity

ν) influence the structure and dynamics of the vortex. Over a wide variety of domain and forcing

geometries, the vortex Reynolds numberΓ/ν (the ratio of the far-field circulation to the eddy vis-

cosity) is shown to be the most important parameter for determining vortex structure and behav-

ior. Furthermore, it is found that the vertical scale of the convective forcing only affects the vortex

inasmuch as this vertical scale contributes to the total strength of the convective forcing. The hor-

izontal scale of the convective forcing, however, is found to be the fundamental length scale in the

problem, in that it can determine both the circulation of the fluid that is drawn into the vortex core,

and also influences the depth of the swirling boundary layer. Higher mean windspeeds are sus-

tained as the eddy viscosity is decreased; however, it is observed that the highest windspeeds are

found in the high-swirl, two-celled vortex regime rather than in the low-swirl, one-celled regime,

which is contrast with some previous results.

∆x∆v ν⁄
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The conclusions drawn from these results are applied to dimensional simulations with

scales similar to the mesocyclone/thunderstorm environment. Tornado-like vortices are repro-

duced, using a constant eddy viscosity with such values as 40 m2s-1, which have maximum wind-

speeds, radii of maximum winds, and boundary layer depths which are quite similar to those

recently observed with portable Doppler radar. Based on the results of both nondimensional and

tornado-scale simulations, scaling laws are empirically derived for the internal length scales in

tornado-like vortices, such as the depth of the boundary layer and the radius of maximum winds.
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1. Introduction
a. Recent results on the structure and dynamics of tornado-like vortices

Axisymmetric modelling of the forced convergence of rotating fluid near a lower bound-

ary has been an invaluable tool in the study of a tornado’s interaction with the surface. The early

models, such as Rotunno (1977,1979), Walko and Gall (1986), and Howells et al. (1988) were

designed to represent axisymmetric versions of laboratory models such as those used by Ward

(1972) and Church et al. (1979). In these models (physical and numerical) rotating air was fed

into the lower levels of a cylindrical chamber and drawn out through the top with some kind of

forcing (a fan or boundary conditions). The most important result from the laboratory studies was

that the structure and behavior of the resulting vortex was well-correlated with the ratio of the cir-

culation of the fluid entering the vortex chamber to the volume flow rate of the air through the

chamber, a parameter generally known as the swirl ratio. Perhaps the most important discovery

found with the numerical models, first made by Rotunno (1979) and furthered explored by How-

ells et al. (1988), is that the near-surface windspeeds are substantially higher when no-slip bound-

ary conditions are used at the surface. This observation identifies the importance of radial inflow

in the swirling boundary layer which amplifies the convergence of the rotating fluid just above the

boundary layer.

Rather than using a domain based on laboratory models, Fiedler (1993, 1994) (hereafter

F93 and F94) simulated the formation of a vortex in a closed domain through the convergence of

incompressible fluid in solid body rotation. This convergence was forced by the imposition of a

fixed buoyancy function along the center axis. The integral of this vertical forcing along the center
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axis provides a velocity scale that can be considered analogous to the same velocity scale associ-

ated with the convective available potential energy (CAPE) in the atmosphere. This velocity scale

provides a direct connection between the maximum windspeeds in a tornado and those observed

in the closed-domain model.

Nolan and Farrell (1999a) (hereafter NF99) used a similar numerical model of axisymmet-

ric, incompressible fluid flow in a closed domain to study tornado-like vortices. Rather than focus-

ing on the maximum windspeeds, they examined how the structure and dynamics of such vortices

depend on the parameters that arise from dimensional analysis. They found that the results were

best described by two dimensionless parameters. One of these is aconvective Reynolds number

, (1.1)

whereU, defined by

, (1.2)

is a velocity scale based on the integral of the convective forcing [see (3.5) below] along the cen-

ter axis of the domain,L is the length scale in the domain, andν is the model eddy viscosity. The

other dimensionless parameter is avortex Reynolds number

(1.3)

whereΓ is the circulation of the fluid in the far field; when the fluid is in solid body rotation at

rotation rateΩ, . The way in which these parameters controlled the results could be mea-

sured both in terms of the maximum azimuthal windspeeds in the vortex core and in terms of the

structure and time-dependent behavior of the flow. For example, the average maximum wind-
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speeds were found to follow the relation:

(1.4)

whereU is the convective velocity scale from (1.2) andCv is a velocity coefficient whose value

typically lies between 0.7 and 1.0 and depends, albeit weakly, on bothReV andReC. Furthermore,

NF99 found that there is a particular choice ofReV which maximizesCv for all values ofReC, and

this maximum value ofCv increases with increasingReC. The physical interpretation of these

relationships is as follows: 1) there is a universal structure for the tornado-like vortex which max-

imizes the azimuthal wind speeds, and 2) the windspeeds will increase as the viscosity is

decreased, provided the circulation in the far-field is adjusted so as to maintain the ideal structure.

The value ofCv is significant because one of the problems with earlier axisymmetric sim-

ulations is that they did not predict sufficiently high windpseeds. For example, with a CAPE of

2500 J kg-1 we have a convective velocity scale ofU=70.7 m s-1; for a typical value ofCv=0.7 we

would have onlyVmax=49.5 ms-1. Values ofCv closer to 1.0 would bring the model results closer

to typically observed or estimated tornadic windspeeds of 70-80 m s-1. By using a spatially vary-

ing viscosity, so that the upper levels of the domain did not require high resolution, Fiedler (1994)

did observe azimuthal windspeeds which indicate when the nondimensional viscosity in

the boundary layer wasν=0.000125, one quarter of the value used for most of the simulations in

F93 and NF99. However, more recently reported axisymmetric simulations with similar configu-

rations by Fiedler (1998) indicate that the long-time mean ofCv in those cases is closer to 1.0.

The structure of the flow through the vortex core, and whether this flow is steady or

unsteady, was found by NF99 to depend strongly on the vortex Reynolds numberReV and only

very weakly onReC. While the laboratory modelers (Ward, 1972; Church et al., 1979) found that

the structure of the vortex could be predicted by the swirl ratio, in a closed-domain model the low-

Vmax CvU=

Cv 1.1≈
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level inflow of radial and angular momentum are not under the control of the modeler, but rather

are determined by the swirling boundary layer which develops underneath the larger vortex aloft.

NF99 introduced aninternalswirl ratio which is analogous to the swirl ratio for laboratory exper-

iments. This internal swirl ratio is defined using an arbitrary control volume around the intense

part of the vortex to measure the ratio of the circulation entering the vortex core to the volume

flow rate through the core, i.e.:

(1.5)

where is the circulation1, v andw are the azimuthal and vertical velocity

fields, andr0 andh0 are the radius and height of the control volume that is adjacent to the surface

and surrounds the vortex core. Despite the prefactor held over from the original swirl

ratio (see Church et al., 1979), observed numerical values ofSI are not similar to those of the orig-

inal swirl ratio; furthermoreSI is arbitrary since it depends strongly on the choice of control vol-

ume (r0 andh0). However, NF99 found that this definition of swirl ratio shares the same utility as

its predecessor in that a correlation can be made between the structure of the tornado-like vortex

and the value ofSI, such that asSI increases the vortex transitions from a one-celled vortex to a

drowned vortex jump and ultimately to a two-celled vortex. As shown in Fig. 1, it was found that

the value ofSI was approximately a function of onlyΩ/ν for a wide range of parameter space,

thus showing how the structure of the flow in the vortex core is a function ofReV but not ofReC

(when the length scale is fixed, ). The unsteadiness of the flow in the core, as measured by

1.  A factor of  is included in the circulation which appears in the swirl ratio. Elsewhere it is neglected.

SI
r0

2h0
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0
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∫
w r z0,( )2πr rd

0

r0

∫
------------------------------------------=

Γ∗ r z,( ) 2πrv r z,( )=

2π

r0 2h0⁄

Γ Ω∝



7

the variance ofSI (not shown - see NF99), was nearly zero forReV<250, but then rapidly

increased forReV>250. As can be seen from the lower-right hand part of Fig. 1, the accuracy of

the relationship appears to break down in this region. This unsteadiness was shown

to be caused by axisymmetric disturbances propagating down into the vortex from the upper part

of the domain; such downward propagation is allowed to occur by both a decrease in the vertical

velocities and an increase in the gradients of the azimuthal winds in the vortex core.

Despite its utility, the internal swirl ratio suffers from some flaws. First, its definition is

quite arbitrary and its value depends strongly on the size and shape of the control volume. Second,

we have observed in highly unsteady simulations (usually associated with a two-celled vortex)

that occasionally there can be a net flow reversal in the vortex core, such that the internal swirl

ratio becomes negative or undefined. An alternative measure of the structure of the vortex is the

vortex aspect ratio, defined as the ratio of the radius of maximum azimuthal winds (RMW) to the

altitude of maximum azimuthal winds (ZMW):

. (1.6)

Fig. 2 shows the mean value ofAV as a function ofΩ andν for the same ensemble of simulations

as those used to produce Fig. 1. WhileAV is not quite as well matched withΩ/ν as isSI, there is

still a meaningful correlation. It is interesting to note that the correlation is the strongest for large

ReV, which is exactly whereSI has the worst correlation, indicating thatAV is a more reliable

measure of the vortex structure in the unsteady flow regime. Furthermore,AV does not become

undefined during flow reversals, and unlikeSI it can be measured directly with Doppler radar [see,

for example, the observations of Wurman et al., (1996) where the location of the maximum azi-

muthal winds is easily identified].

SI f ReV( )=

AV
RMW
ZMW
---------------=
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b. A general paradigm for intense atmospheric vortices

The term “tornado-like vortex” was used by Fiedler (1993) to describe the crude represen-

tation of a tornado that can be generated in a simple numerical model. The model vortex, and tor-

nadoes, share the fundamental elements necessary to produce an intense, vertically oriented

vortex at the surface: rotating fluid in contact with the surface, forced to converge at low levels by

overhead convection. These basic elements are also the necessary ingredients for the formation of

other intense atmospheric vortices of different scales: the dust devil, which occurs when low-level

rotation interacts with a developing thermal (Sinclair, 1969, 1973); waterspouts, which are

believed to occur when a cumulus tower updraft interacts with a low-level shear zone (Golden,

1974a, 1974b; Simpson et al., 1986; Golden and Bluestein, 1993); and non-mesocyclone torna-

does, which are dynamically equivalent to waterspouts (hence the nickname “landspouts”)

(Wakimoto and Wilson, 1989; Brady and Szoke, 1989; Lee and Wilhelmson, 1997a, 1997b).

The term “tornado-like” vortex can be expanded to include all vortices which are created

by the forced convergence of low-level rotation - whether in the atmosphere, in the laboratory, or

in numerical models. From visual observation, dust devils, waterspouts, and tornadoes have

remarkable dynamical similarity, especially in regards to their interaction with the surface (their

swirling boundary layers). Such observations are further supported by the strong similarities in

the structure of vortices produced in laboratory models, laboratory-analog numerical models, and

closed-domain numerical models.These facts lead us to believe that the details of the source of

rotation (vertical vorticity) and the source of convection (vertical motion) are not important to the

dynamics of these intense vortices - particularly in regards to their surface interaction.

Which leads us to the question: which properties of the convective and rotational forcings

are important to the tornado-like vortex? As outlined above, the work of Fiedler (1993, 1994,
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1998), Trapp and Davies-Jones (1997), and NF99 have begun to answer some of these questions.

However, some seemingly relevant issues have not been addressed in these previous studies. Does

the vertical extent of the domain, and in particular the interaction of the convective outflow with

an upper boundary (tropopause), have an impact on the low-level vortex? Do the size and shape of

the convective forcing play a role? Also, what determines the length scales in the tornado-like vor-

tex (i.e., the radius of maximum winds, the depth of the boundary layer)? Can they be predicted

from the environment?

In this report we investigate how the geometries of both the model domain and the vertical

forcing field affect the structure, dynamics, and length scales of tornado-like vortices. We also fur-

ther explore the relationships found by NF99 by investigating the dynamics of tornado-like vorti-

ces over a wider range of parameters. Section 2 discusses our numerical model which uses the

feature of adaptive mesh refinement so that high Reynolds number simulations in large domains

can be performed accurately and efficiently. In section 3 the model results are validated by com-

parison to equivalent full-resolution simulations. In section 4 we investigate how the size of the

domain, the location of the forcing field, and its geometry affect the vortex dynamics. In section 5

we show the results of simulations with higher Reynolds numbers. Section 6 presents the results

of simulations with dimensional scales chosen to reproduce tornado-like vortices with similar

length and velocity scales as those observed in the atmosphere. In Section 7 we discuss how these

length scales can be predicted. Conclusions are drawn in section 8.

2. Numerical Modelling of Tornado-Like Vortices and the
Use of Adaptive Mesh Refinement

In past and recent years, two approaches have been taken to mitigate the computational

demands of simulating tornado-like vortices. The first, which was widely used in early numerical
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simulations, is to restrict the domain to the point where only the most intense part of the vortex is

resolved: the boundary layer, the “corner” region near the surface, and the vortex breakdown

immediately aloft. Such models were essentially numerical analogues of the early laboratory

models, which fed swirling air in through an opening in the sides of the domain and drew air out

through an opening at top of the domain (Rotunno, 1977, 1979; Walko and Gall, 1984; Howells et

al., 1988). The second approach is the use of stretched grids. For the tornado problem, the grids

have been stretched so that the grid spacing decreases near the center axis and near the surface,

with the highest density of grid points occurring in the corner region nearr=0, z=0. This method

has been used in both two- and three-dimensional models by Fiedler (1993, 1994, 1998), Trapp

and Fiedler (1995), and Trapp and Davies-Jones (1997) so that a much larger domain could be

used while still resolving the boundary layer. Both domain restrictionand grid stretching have

been used by W. Lewellen et al. (1997) and D. Lewellen et al. (2000) in their Large-Eddy-Simula-

tions of the corner region.

For the purposes of this study, whose main goal is to elucidate the relationships between

the structure and dynamics of the tornado-like vortex and the larger environment, restriction of the

domain to the corner flow region cannot be used. Such domain restriction, by construction, decou-

ples the vortex from the surrounding environment, and mustassumepredetermined properties for

the inflow and outflow of the corner region. As Lewellen et al. (2000) showed in some detail,

changes in the inflow and outflow boundary conditions have significant impacts on the near-sur-

face vortex structure. Similar conclusions were found by Smith (1987) and Fiedler (1995). Thus

the logical choice for this study is the use of a larger, closed domain.

While stretched grids offer many advantages over regularly spaced grids, they also have

some limitations. In particular, stretched grids such as those used by Fiedler (1993, 1994, 1998)



11

and Trapp and Davies-Jones (1997) are focused on only one region of dynamical interest and are

fixed in time. Trapp and Fiedler (1995) used a stretched grid which evolved in time, but could

only focus on one region of interest at each moment. Thus, one cannot be assured that the flow is

sufficiently resolved in all parts of the domain at all times. Furthermore, to maintain numerical

stability, stretched grids require higher dissipation (viscosity) in the parts of the domain with

larger grid spacing, which may have some effect on the dynamics. For example, viscosity which

increases with height (to account for decreasing resolution) could have an effect on the location

and character of the vortex breakdown that occurs in the tornado’s outflow.

We choose instead to use the method of Adaptive Mesh Refinement (AMR). The idea of

multiply nested, refined grids is not in itself new, and has been used with great success in compu-

tational fluid dynamics, including numerical simulations of supercell thunderstorms, some of

which have even produced low-level vortices similar to tornadoes (Wicker and Wilhelmson, 1995;

Grasso and Cotton, 1995). However, our AMR model has three additional features: 1) The loca-

tions of the refined grids are not determined intermittently by the user, but rather are controlled by

an arbitrary refinement condition; 2) refined grids are added and removed automatically by the

model as the flow evolves; and 3) an unlimited (except by computational resources) number of

refined grids, and also levels of refinement, can be supported by the model, i.e., the model can

have several levels of refinement focused on several distinct regions of dynamical interest at the

same time.

We will briefly describe the essential features of our numerical model of axisymmetric,

incompressible flow with AMR. The complete details of the method and some examples of its

application are described in Almgren, et al. (1998). The velocities and pressure in the equations of

motion [(3.1)-(3.4) below] are solved using an approximate projection method on an adaptive
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hierarchy of rectangular grids. The term “projection” identifies the method as a two-step process:

first, the equations of motion are integrated forward in time for one time step, without regard to

the incompressibility constraint. Second, the change in the velocity fields is projected onto the

space of divergence free fields, and only the divergence-free part is retained. The method is con-

sidered “approximate” in that the divergence of the resulting velocity field is not exactly zero, but

, where h is the grid spacing. The enforcement of the incompressibility condition in

approximate projection methods can generally be performed much more efficiently than in exact

projection methods, with very little penalty in terms of overall accuracy.

The “adaptive hierarchy of rectangular grids” refers to a collection of two-way interacting,

nested grids which are continuously updated as the flow evolves. The initial creation of the grid

hierarchy, and the subsequent regridding operations, are based on refinement criteria specified by

the user. In all the calculations presented here, we use as a refinement criterion thecell Reynolds

number

, (2.1)

which is the product of the larger grid spacing and the largest velocity difference across each cell

divided by the kinematic viscosityν. Recell is a useful measure of how well the flow is resolved by

the local grid spacing, and refinement criteria on the order of are shown below to give

good results. By using such criteria, we are assured that the flow is always laminar on the scale of

the local grid spacing.

3. Reproduction of Full-Resolution Results with Adaptive-
Mesh Refinement

In this section we use a single-grid version of the model described above to perform a

O h2( )

Recell
max ∆r ∆z,{ } max× ∆u ∆v ∆w, ,{ }

ν
-------------------------------------------------------------------------------------=

Recell 20<
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numerical simulation of a tornado-like vortex. We then perform identical simulations with a base

grid of substantially lower resolution but which use the adaptive mesh refinement capability of the

model. The results show that an AMR model can accurately reproduce the results of a full-resolu-

tion model.

a. Equations of motion

We proceed directly to the non-dimensional equations of motion. For a discussion of the

dimensional equations, non-dimensionalization, and the relevance of the dimensionless parame-

ters, see NF99 and earlier references [e.g., F93, Howells et al., (1988)]. For axisymmetric, incom-

pressible flow, the momentum equations in the radial, azimuthal, and vertical directions are,

respectively,

, (3.1)

, (3.2)

, (3.3)

while the incompressibility condition is

, (3.4)

whereu is the radial velocity,v is the azimuthal (swirling) velocity,w is the vertical velocity,p is

the pressure,ν is the kinematic viscosity, andFz is a spatially varying vertical forcing which will

be defined below.

b. The basic simulation and measured parameters of the flow in the vortex core

For purposes of comparison, we will return to the original F93 initial and boundary condi-
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tions for axisymmetric incompressible simulations in a closed domain. The domain lies in the

range and , with no-slip, solid-wall boundary conditions on all sides except on

the center axisr=0. While F93 put his domain into solid-body rotation by incorporating a Coriolis

term into the equations of motion, in our case this effect is reproduced by initializing the fluid in

solid-body rotation at the same rate , and keeping the boundaries fixed at this rotation

rate. The flow is driven by a fixed vertical forcing field in the form of a Gaussian bubble in the

center of the domain:

. (3.5)

In subsequent sections we will vary the location and shape of the convective forcing, so it is useful

to rewrite (3.5) as

(3.6)

where , , and are the horizontal and vertical length

scales, respectively.

At t=0, the flow is at rest except for the solid-body rotation, i.e., and

. The development of a tornado-like vortex from fluid in solid-body rotation has been dis-

cussed extensively by Fiedler (1993, 1994) and NF99, so we will not provide a discussion of the

development of the vortex, but instead address how well the AMR model reproduces the results

with full resolution. For this purpose we ran three simulations of the F93 type: one with a fixed

resolution of 256x128 gridpoints in the horizontal and vertical directions, respectively; and two

with a base resolution of 64x32 gridpoints and a maximum of two levels of factor two refinement,

so that the highest resolution in the regions of dynamical interest matched that of the fixed

0 r 2≤ ≤ 0 z 1≤ ≤

Ω 0.2=

Fz r z,( ) 1.264e 20 r2 z 0.5–( )2+[ ]–
=

Fz Cbe

r2

σh
2

--------
z z forc–( )2

σv
2

--------------------------+
 
 
 

–

=

Cb 1.264= z forc 0.5= σh σv 0.2236= =

u w 0= =

v Ωr=



15

256x128 case. The two AMR simulations of the F93 simulation were different only in regards to

their refinement conditions: one used as a refinement condition thatRecell [defined above in (2.1)]

be less than 20 everywhere, whereas the other requiredRecell < 10.

Fig. 3 shows the maximum vertical, azimuthal, and negative radial velocities in the three

F93 simulations fromt=0 to t=70. It is readily apparent that both AMR simulations do a fairly

good job of reproducing the full grid results. One can also see that theRecell<10 simulation is con-

sistently closer to the full grid results than theRecell<20 simulation. This is demonstrated even

more clearly in Fig. 4, which shows close-ups of the maximum vertical and azimuthal velocities

separately. While theRecell<20 simulation occasionally shows significant departures from the full

grid solutions, theRecell<10 simulation follows the full grid solution very closely with occasional

deviations on the order of 5% for the vertical velocities and even smaller for the azimuthal and

radial velocities.

The AMR code with a properly chosen refinement condition (usuallyRecell<10 or less)

quite accurately reproduces the results of a full grid simulation for short times. However, over the

course of studying a wide variety of refinement conditions for long-time simulations we have

found that the AMR code cannot reproduce the exact details of a full grid simulation for long

times. As an example, consider the results shown in Fig. 5, which compares the azimuthal wind

fields and the wind vectors in ther-z plane (often called themeridional velocity vectors) at t=100

for the AMR simulation and the full-resolution simulation. For clarity, these vectors are generated

using only the base-grid data in the AMR simulation, and are interpolated onto a 63x32 grid in the

full-resolution simulation. The results are nearly indistinguishable for the azimuthal velocities in

the vortex core. In the far field, where the resolution of the AMR simulation is lower than that of

the full-resolution simulation, one can clearly see some differences. Fig. 6 shows the long-term
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evolution for each simulation in terms of the maximum windpseeds and the vortex aspect ratio.

From these figures we can draw two conclusions: 1) after a period of nearly steady flow, the flow

in the vortex core becomes unsteady with large oscillations in the vertical windspeeds and the vor-

tex structure; 2) while the AMR simulation does not follow the evolution of the full resolution

simulation exactly, it reproduces the behavior in a statistical sense. Mean values forCv, the height

of the maximum azimuthal winds (ZMW), the vortex aspect ratioAV, and the standard deviation

of AV, are shown in Table 2 for the full resolution and the AMR simulation with .

Since it is generally observed that ZMW is coincident with the height where the radial inflow goes

to zero, we consider it to be equivalent to the depth of the swirling boundary layer. These statistics

were computed fromt=100 tot=200 in the simulations. The meanCv are within 1% of each other

for the two cases and the meanAV are within 2% of each other. The standard deviation ofAV is

12% less in the AMR simulation. The reason for this difference is not clear, although one can

speculate that the larger numerical dissipation inherent to the regions of coarser gridding could

decrease the variance in the AMR case. Nonetheless, these results are very encouraging because

we are not interested in the exact evolution of axisymmetric tornado-like vortices, but rather in the

long-time average maximum velocities and vortex structures generated by a particular set of

model parameters.

The utility of adaptive mesh refinement is illustrated by considering the differences in

memory use and CPU time between the full resolution and AMR cases. The full resolution simu-

lation used 256x128 = 32,768 grid cells, and took 754 seconds of CPU time on a Sun Ultra 1 pro-

cessor to integrate the equations of motion fromt=200 tot=201. The AMR simulation withRecell

< 10 att=200 had a base grid of 64x32 = 2048 grid cells, one level 1 grid covering 56.25% of the

domain with 4608 cells, and three level 2 grids covering 10.74% of the domain with 3520 cells,

Recell 10<
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for a total of 10,176 cells. The CPU time on the same processor fromt=200 tot=201 was 274 sec-

onds.

4. Changes in Model Geometry
In this section we explore how changes in the size of the domain and the location and

shape of the convective forcing field affect the structure and maximum windspeeds of the vortex.

The names for each simulation and their relevant parameters are summarized in Table 1. The

resulting velocity coefficients, vortex aspect ratios, and boundary layer depths for all the simula-

tions are summarized in Table 2. Except where noted, these statistics were computed fromt=100

to t=200 in each simulation.

a. Simulations with larger domains

Using a closed domain with a ceiling atz=1 certainly seems restrictive when using a con-

vective forcing field that is maximized atz=0.5 and when the outflow from the vortex core clearly

impinges on the ceiling, especially during the initial evolution of the vortex (see F93 and NF99).

Fiedler (1993, 1994) argued that the ceiling at the top of the domain was analogous to the tropo-

pause, and the vertical extent of the domain was meant to represent the entire troposphere. While

this may be valid for the main updrafts in supercell thunderstorms, not all atmospheric tornado-

like vortices are associated with convection that reaches the tropopause (i.e., waterspouts, dust

devils). Thus it is worthwhile to determine the effect of moving the “ceiling” further away from

the surface.

Our first step was to repeat the F93 simulation but with the upper boundary of the domain

moved up toz=2, using AMR with a base grid of 64x64 gridpoints and an unlimited number of

levels of refinement. This is simulation F93ZDBL. The time evolution of the maximum velocities

and the vortex aspect ratio are shown in Fig. 7 and the azimuthal wind field and meridional veloc-
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ity vectors are shown in Fig. 8. The vortex which ultimately develops in this simulation is essen-

tially identical to the one which develops in the original F93 simulation, especially near the

surface. The notable difference in the results is that when the domain height is increased the vor-

tex transitions much more rapidly to the unsteady dynamics observed in the last 100 time units of

the F93 simulation, and it appears that the vortex is a bit more unsteady than before. Also, the vor-

tex outflow, as indicated by the meridional velocity vectors in Fig. 8b, extends higher and further

out than in the case with the ceiling atz=1.

Another important observation is that the downward flow in the core of the vortex appears

to be at least as vigorous as in the F93 simulation. This suggests that in the previous case the prox-

imity of the ceiling did not enhance this downward flow. Additional simulations with still higher

upper boundaries, and also outer boundaries that were further from the axis (not shown), gave

nearly identical results.

b. Convective forcing further from the surface

The way in which the evolution of the vortex depends on the altitude and the shape of the

convective forcing field has previously been investigated by Trapp and Davies-Jones (1997).

Using the same axisymmetric model as Fiedler (1994), with similar boundary conditions and con-

vective forcing functions, they investigated under what circumstances the tornado-like vortex

formed by a mechanism known as thedynamic pipe effect(DPE). A DPE occurs when the lowest

levels of the convective forcing are sufficiently far above the surface. At first, the convective forc-

ing induces convergence of the rotating fluid only immediately below. The amount of actual fluid

convergence which occurs is limited by local increase in the centripetal force, but the local inten-

sification of the rotation creates a region of lower pressure beneath the convective forcing. This

low pressure induces more convergence below, which then induces more low pressure and so on.
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By this mechanism the effect of convective forcing at high altitudes is propagated downwards

until it reaches the surface, where due to interaction with the surface an intense vortex forms.

In this paper we focus not on the initial development of the vortex but on the long-term

windspeeds and structure of the vortex which forms. Simulation HIBUBL was the same as

F93ZDBL except that the height of the convective forcing was changed to . The

results are nearly identical to what we have seen before, except that the vortex is less unsteady and

with a slightly lower aspect ratio. While the flow field near the surface is shown in Fig. 9 to be

essentially the same as what we have seen before, the tornado outflow does not diverge away from

the center axis at an altitude ofz=0.4, but instead continues upwards and even appears to re-accel-

erate as it approaches the convective forcing. We also see secondary maxima in the azimuthal and

vertical velocities in the vicinity ofz=0.9,r=0.2. These secondary maxima are caused by a local

intensification of the rotation and vertical motion caused by the convective forcing field. Addi-

tional simulations with convective forcing at still higher altitudes (not shown) gave similar results.

c. The shape of the convective forcing

In the analysis of NF99, it was assumed that there was only one important length scale in

the determination of the character of the vortex. This length scale was assumed to be the vertical

height of the domain, which also happened to be equal to the vertical and horizontal scales of the

convective forcing. However, we have already shown that the size of the domain and the height of

the convective forcing have little impact on the character of the vortex.

It remains to be seen how the vertical and horizontal dimensions of the convective forcing

affect the results. For these simulations, the convective forcing remains centered at the altitude

zforc = 1.0. We proceed by first doubling the vertical extent of the convective forcing in a simula-

tion called TALLBUBL. However, since the convective velocity scaleU is determined by the inte-

z forc 1.0=
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gral of the forcing along the vertical axis, to maintainU=1 we decrease the magnitude of the

forcing by a factor of one half, i.e, . The results of such a simulation are summarized

in Table 2 and we can see that there has been no appreciable change in the velocity coefficient or

the aspect ratio.

Next, we return the vertical extent of the forcing to its original size and then double its

horizontal extent for simulation WIDBUBL. Theoretically, this should not cause a change in the

velocity scale. The resulting mean velocity coefficient ofCv=0.7601 is slightly higher, but clearly

more significant are the changes in the mean and variance ofAV which are 3.8854 and 0.7808,

respectively. Increasing the horizontal extent of the convective forcing has substantially changed

the structure of the vortex. The change can be seen in a snapshot of the azimuthal wind fields and

the meridional velocity vectors, shown in Fig. 10, where it is apparent that the vortex has a two-

celled structure with a very wide core. What is the reason for this change? NF99 claimed that the

structure should only depend onReV - but is in fact the structure also closely tied to the horizontal

scale of the convective forcing?

Since the fluid in the far-field is in solid-body rotation, the circulation of the fluid increases

with the square of the distance from the axis. If the convective circulation reaches out farther from

the axis, the fluid it brings into the tornadic vortex will have a substantially higher circulation.

Since the circulation of the fluid drawn into the vortex scales as , we should be able to

make a vortex with the sameReV by reducingΩ to 25% of its previous value. To test this hypoth-

esis, we ran simulation WIDBUBLΩ.05 with the same, wider convective forcing but with one

quarter the rotation rate,Ω=0.05. The results, shown in Fig. 11 and Table 2, indicate that the vor-

tex structure is once again that of a DVJ with an meanAV=1.4085. It also appears that wider con-

vective forcing allows for slightly higher windspeeds as compared to the F93 and HIBUBL

Cb 0.632=

Γ ΩL2∼
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simulations. Further simulations with different convective forcing widths and rotation rates con-

firmed these observations. In regards to predicting the structure of the vortex, the appropriate

length scale to use in the calculation of is in fact the width of the convec-

tive forcing. This, however, only applies to simulations with solid-body rotation in the far-field.

Another interesting result is that the depth of the swirling boundary layer (ZMW) and the

radius of maximum winds (RMW) are both approximately twice as large in simulation WID-

BUBLΩ.05. The change in the depth of the boundary layer is surprising, since it did not increase

in depth when theonly change was to make the convective forcing wider. The relationship

between the length scales in the vortex core and the horizontal scale of the convective forcing will

be explored further in section 7.

5. Results for Higher Reynolds Numbers
Some of the claims made by NF99 were in regards to how the vortex behaves as the eddy

viscosityν is decreased. In particular, NF99 claimed that 1) as the viscosity is decreased, the cir-

culation of the fluid must be decreased proportionally in order to keep the same vortex structure;

2) if one does decrease the circulation accordingly, the mean maximum windspeeds would

increase; and 3) the maximum windspeeds were observed when the vortex was in a “low-swirl,”

one-celled vortex structure. In the following sections we evaluate these claims using the AMR

model.

a. Vortex structure

The obvious first step in investigating how the vortex structure changes at higher Reynolds

numbers is to increase the amplitude of the convective forcing. In simulation F93DBLU, the con-

vective forcing was increased by a factor of 4 (Cb=5.07) so that the convective velocity scale was

doubled, i.e.,U=2.0. After a short time, the simulation produced a tornado-like vortex that was

ReV Γ ν⁄ ΩL2 ν⁄= =
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nearly identical to those seen before, except that the velocities throughout the vortex core were

almost exactly doubled, as indicated by the results in Table 2. This confirms that increasing the

strength of the convective forcing does not have the same effect as increasing the flow rate

through a tornado vortex chamber, and that the vortex Reynolds numberΓ/ν is the important

parameter for predicting vortex structure.

By substantially increasing the background rotation rateΩ, one can easily cause the struc-

ture of the vortex to change from a drowned vortex jump to that of a two-celled vortex. We call

this simulation HISWIRL2CELL. An snapshot of the flow in this simulation is shown in Fig.

12ab, which is the result of an F93-type simulation withν=0.0005 andΩ=0.5. The vortex Rey-

nolds numberReV=1000 produces a vortex that jumps back and forth between two-celled and

drowned vortex jump structures but spends most of its time in the two-celled state. These transi-

tions are caused when large-amplitude axisymmetric rolls, which are propagating down the vortex

core, reach the surface (NF99, sec. 6a). The vortex statistics are shown in Table 2.

Next we consider a similar simulation withReV=1000, but instead withν=0.0002 and

Ω=0.2, which is referred to as LOWSWIRL2CELL. This results again in a vortex with a predom-

inantly two-celled structure, as shown in Fig. 12cd. The instantaneous flow structure is clearly

more complex in this case due to the substantially lower viscosity, but the overall structure of the

vortex is quite similar to that in HISWIRL2CELL. The lower viscosity also allows for a higher

mean windspeed withCv=0.8104.

b. Maximum windspeeds

By decreasingΩ accordingly, we can recover the drowned vortex jump structure for the

vortex when the model has lower viscosities, as in the previous section. The simulation

LOWSWIRLDVJ refers to the case whereΩ=0.08 andν=0.0002. The drowned vortex jump
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structure is recovered (not shown) and we findCv=0.7972. While this is slightly higher than in all

the F93-type simulations, it is smaller than that found above with the same viscosity andΩ=0.2.

In contrast to what was found by NF99, decreasing the rotation rateΩ so that the vortex evolved

towards a “one-celled” structure does not in fact increase the maximum windspeeds. This was

confirmed by the results of additional simulations with still smaller values forΩ (not shown).

Rather, we find that the highest windspeeds are found with higher circulations that produce wide-

based, two-celled vortices. Possible reasons for this difference will be discussed in the Conclu-

sions.

We have endeavored to find the highest mean azimuthal windspeeds that our closed-

domain model can produce. We have previously found that the windspeeds increase for smaller

viscosities, and that the two-celled vortex structures have the highest windspeeds. We also saw

above that the maximum windspeeds were somewhat higher for wider convective forcing fields.

Despite the computational advantages offered by adaptive mesh refinement, the computational

cost for equal amounts of simulation time increases drastically with decreasing eddy viscosityν.

With these points in mind, we ran simulation LOWESTVISC which hadΩ=0.1, ν=0.0001, and

the wider convective forcing field withσh=0.4472. The resulting tornado-like vortex had substan-

tially higher mean windspeeds than any of the previous simulations with a meanCv=1.04. The

vortex core was very wide, withAV=4.06, and flow in the core was very unsteady, as summarized

by the results in Table 2.

6. Tornado-Scale Simulations
a. Motivation

Let us summarize the important conclusions drawn from the solid-body rotation simula-

tions:
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1. Increasing the size of the domain has little effect on the vortex structure and

maximum windspeeds.

2. The altitude (height) of the convective forcing has little effect on low-level

vortex structure and maximum windspeeds. The vertical extent (depth) of

the convective forcing also does not affect the vortex structure, and deter-

mines the low-level windspeeds only to the extent to which it contributes to

the convective velocity scale (the effective CAPE).

3. The width (horizontal scale) of the convective forcing determines the vortex

structure to the extent to which it determines the circulation of the fluid that

is drawn into the vortex core. Increasing the width also produces somewhat

higher windspeeds, and seems to affect the depth of the boundary layer in

some cases.

4. Decreasing the viscosity allows for higher windspeeds and decreases the

depth of the swirling boundary layer.

These conclusions were drawn entirely from simulations where the fluid in the far field was in

solid-body rotation. A natural question to ask is whether or not the same conclusions apply when

the circulation in the far field reaches a finite limit.

Fiedler (1993) commented that the tornado-like vortices produced in his model were crude

models of actual tornadoes, because their internal length scales were an order of magnitude larger

than those observed. Our results show these length scales are not related to the size of the domain

(i.e., the height of the tropopause), but rather to the properties of the environmental forcing and

the eddy viscosity. In the next section we will use these ideas to produce tornado-like vortices on

dimensional scales which match the characteristic scales of observed tornadoes.

b. Mesocyclone-scale domain and forcing

We now construct a simple, axisymmetric model of the interaction of a thunderstorm-scale
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updraft with mesocyclone-scale vortex, using dimensional scales in accord with observations. We

again use a closed domain and a fixed convective vertical forcing field, but we re-write the magni-

tude of the forcing in terms of a maximum temperature anomaly and a mean background tem-

perature  in a Boussinesq fluid:

(6.1)

whereg is the gravitational acceleration.

Rather than putting the system into solid body rotation, we instead construct a more realis-

tic rotational environment. The azimuthal velocity field is initialized as a Rankine vortex with a

maximum windspeed that occurs at some radius of maximum winds2 rmax. However, unlike

the solid-body rotation simulations, the azimuthal velocity is set to zero at the surface, and the

transition between the no-slip surface and the Rankine vortex aloft is modelled with a logarithmic

profile. Explicitly:

, (6.2)

with

(6.3)

wherez0 is the top of the friction layer andztop is the top of the logarithmic layer. By settingv to

2. Not to be confused with RMW, the radius of maximum wind of the tornado-like vortex.
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zero belowz0 we are neglecting the azimuthal wind in the friction layer; alternatively we could

considerz0 to be a roughness length below which there is no meaningful flow. The fluid outside of

rmaxrepresents an unlimited supply of fluid with a constant circulation . To maintain

this unlimited supply, we keep the circulation approximately constant in the far field (far from the

tornado-like vortex) by adding a forcing term to the azimuthal momentum equation which contin-

ually drives the azimuthal velocity beyondrmax back to this constant value, i.e.,

(6.4)

whereτ is a time scale for the relaxation. The upper and lateral boundaries are changed to free-

slip conditions, since they are no longer needed to maintain the supply of angular momentum.

In recent years, a number of field studies - particularly those associated with project VOR-

TEX (Rasmussen et al., 1994) - have produced remarkably detailed observations of the interior

environment of supercell thunderstorms (Wakimoto and Atkins, 1996; Bluestein et al., 1997,

Wakimoto et al., 1998; Wakimoto and Liu, 1998; Trapp, 1999). Reasonable choices for length and

velocity scales for tornado-scale simulations can be drawn from these observations. For the larger,

mesocyclone-like vortex, we let and . The depth of the mesocy-

clone swirling boundary layer is chosen to be and the roughness length .

The far-field circulation is relaxed back to its original value at a time scale .

We use a closed domain with an upper boundary at and an outer boundary at

. While 8 km is considerably lower than the mid-latitude tropopause, it is approxi-

mately equal to the scale height of the atmosphere, which is also equal to the depth the atmo-

sphere would take if the same mass of fluid were incompressible with constant density, as is the
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case in our model. The convective forcing field is centered at , with vertical and

horizontal scales . The maximum temperature anomaly is in an

environment with a mean temperature . The initial azimuthal velocity and the convec-

tive forcing field (in terms of temperature anomaly) are shown in Fig. 13. The convective forcing

has 2469 J kg-1 of CAPE with an associated convective velocity scaleU = 70.3 ms-1. While the

maximum temperature anomaly is quite a bit higher than the maximum temperature anomalies

usually predicted by highly unstable environmental soundings, this accounts for the contracted

vertical scale of the convection and allows for a CAPE typical of strong thunderstorms. The initial

base grid has 256 points in the radial and vertical directions, such that . We

setν = 40 m2s-1.

Snapshots of the circulationΓ and vertical velocity fields att=1616 s are shown in Fig. 14.

These results show a scale separation between the full model domain, the convective forcing, and

intense, low-level vortex; note how small the tornado-like vortex is in comparison with the large-

scale features of the flow and the rest of the domain. A close-up of the azimuthal velocity field of

the near-surface vortex is shown in Fig. 15, which in this case exhibits a drowned vortex jump

structure nearly identical in shape to many of the vortices generated in the solid-body rotation

experiments. The RMW at this time is 158 m and the ZMW is 119 m, consistent with the observa-

tions of Wurman et al. (1996). The velocities are also comparable, withVmax= 73 ms-1 versus the

70 ms-1 observed. Thus we find that a tornado-like vortex very similar in structure to the one

observed by Wurman et al. (1996) can be produced with a far-field circulation associated with a

maximum azimuthal velocity of 15 ms-1 at 2 km radius, and a constant eddy viscosity of 40 m2s-

1. The vortex reaches a quasi-steady state roughly aftert=1500 s, with mean values forCv = 0.83

(meanVmax=64.3 ms-1), AV = 1.66, RMW = 188.2 m, and ZMW = 116.2 m.

z forc 4 km=

σv σh 2 km= = T' 20 K=

T 280 K=

∆r ∆z 31.25 m= =
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Examination of the secondary (meridional) circulation in the tornado-scale simulations

reveals some features which are quite different from the solid-body rotation simulations. Fig. 16

shows a vector plot of the meridional flow, interpolated onto a 32x32 grid, at the same time as the

instantaneous velocity fields shown in Fig. 14 and Fig. 15. On the larger scale, the meridional cir-

culation is very different than what was seen in the solid-body rotation simulations. In the solid-

body rotation simulations, the radial inflow of the swirling boundary layer begins substantially

farther from the axis than the width of the convective forcing, and continues all the way into the

core of the vortex (see, e.g., Fig. 5). In the tornado-scale simulation, however, one can clearly

identify two distinct radial inflow regions. The outer region begins at the domain’s outer boundary

and flows inward to aboutr=4 km, then separates from the surface and flows up through the con-

vecting region. Interestingly, this mesocyclone-scale meridional circulation is quite similar to that

analyzed by Trapp (1999, Fig.7) from radar observations of a nontornadic supercell. The second

radial inflow region is much smaller in scale and is clearly associated with the tornado-like vortex,

as shown in Fig. 15b; however, the radial extent of the smaller radial inflow region is substantially

less than the width of the convective forcing. As a result of the separation of the outer boundary

layer, the circulation of the fluid which does arrive in the tornado core is substantially lower than

the circulation in the far field, as can be seen from inspection of Fig. 14b. Indeed, the vortex Rey-

nolds number that would be associated with the circulation in the far field

( ) is much higher than the values typically associated with a

drowned vortex jump. The large radial gradients ofΓ which can be seen in Fig. 14b near the cen-

ter axis suggests that the flow has an azimuthal velocity profile much closer to solid-body rotation

than to potential flow. The tornado-like vortex, and its more intense swirling boundary layer,

appears to form within this region and its internal length scales may possibly be determined by the
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local rotation rate of the overhead fluid, rather than specifically by the circulation in the far-field.

One must also consider that this double-structure of the meridional circulation may be

related to the dimensional scales of these simulations, or to the fact that the mesocyclone vortex is

required to transition to zero flow at the surface via the log-layer described in (6.3). To address

this possibility, we performed some additional F93-type simulations where the circulation in the

far-field was held at a constant value, the log-layer was removed, and the lower boundary was also

required to rotate with the fluid aloft. The results of these simulations were strongly dependent on

the choice for the radiusrmax of the solid body rotation core, and some examples are shown in

Fig. 17. In each case, was chosen so that the core rotation rate remained . With

rmax=1.0, the results are nearly identical to those simulation F93AMR. However, withrmax=0.5, a

near-surface vortex fails to form, even though the solid-body core is 2.5 times wider than the con-

vective forcing. These results indicate that the successful development of a tornado-like vortex is

strongly dependent on the existence of a sufficiently broad core of vorticty in the rotating environ-

ment.

The double-structure of the meridional circulation casts doubt as to whether similar

dependencies on the environmental parameters found in the solid-body rotation simulations will

apply to simulations with finite circulation in the far-field (see section 6a). We performed three

additional tornado-scale simulations. The parameters for all four tornado-scale simulations are

outlined in Table 3, and the statistical results of long simulations (averaged fromt=1800 s to

t=2400 s) are shown in Table 4. The changes in vortex structure are qualitatively consistent with

the changes expected from the results of the solid-body rotation simulations: simulation TORNA-

DOHIVORT, with twice the circulation in the far-field, has a substantially wider core; TORNA-

DOHIVISC, with twice the eddy viscosity, has a deeper boundary layer and a lower aspect ratio

V∗ Ω 0.2=
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( ), and TORNADOWIDE, with 50% wider convective forcing, has a slightly deeper

boundary layer. Other aspects, however, are not consistent; for example, the mean velocity coeffi-

cientCv is very low for the simulation with the wider convective forcing.

7. Length Scales in Tornado-Like Vortices
Analytical and numerical methods have been applied to the study of swirling boundary

layers for some time. In the case where the fluid above the surface is in solid body rotation, a clas-

sical Ekman layer develops, as shown by Greenspan and Howard (1963) [see also the text by

Greenspan (1990)]. Eliassen (1971) and Eliassen and Lystad (1977) extended these results to the

cases with modified lower boundary conditions (to account for turbulence) beneath vortices with

varying velocity profiles. They found that a similar boundary layer develops, and that the depth of

the boundary layer can be predicted from

(7.1)

where

(7.2)

is the inertial stability of the overhead vortex.

Unfortunately (7.1)-(7.2) fails for a potential (1/r) vortex. The early work of Barcilon

(1967) and Carrier (1971) on boundary layers beneath potential vortices identified the importance

of the vortex Reynolds number . Burggraf et al. (1971) numerically integrated the equations

of motion beneath a potential vortex and found that the depth of the boundary layer scales as

(7.3)
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whererb indicates the distance from the center axis where the boundary layer begins (as in the

case with a finite disc of radiusrb immersed in rotating fluid). With tornadoes specifically in mind,

Kuo (1971) attempted a similar calculation under the assumption that the overhead potential vor-

tex was maintained in intensity. He did find some properties similar to those of observed and sim-

ulated tornadoes, such that there is a local maximum in the azimuthal velocity generated near the

surface, and that the boundary layer depth increases towards the center axis.

We have observed that the depth of the boundary layer (ZMW) and the radius of maxi-

mum winds (RMW) show some dependence on the horizontal scale of the convective forcing.

Furthermore, in solid-body rotation simulations, this horizontal scale determines the circulation of

the fluid that is drawn into the vortex core. It therefore appears that the horizontal scale of the con-

vective forcing, which we shall labelLh, is the best candidate for the fundamental length scale in

the problem [i.e., it should be used forL in (1.1) and (1.3)]. We also have the convective velocity

scaleU, the far-field circulationΓ, and the eddy viscosityν. NF99 showed that four different

dimensionless parameters can be constructed from these four dimensional scales, and that any two

(but only two) of them can be used together to describe the full range of possible outcomes. NF99

also found that the most useful choices of these four parameters to use together were the vortex

Reynolds numberReV and the convective Reynolds numberReC, by showing that 1) the vortex

structure depended almost exclusively onReV, and 2) for fixedReV, the maximum windspeeds

increased with increasingReC. The small increase in maximum windspeeds seen with wider con-

vective forcing also supports usingLh in the definition ofReC.

For the length scales in the vortex core, such as the depth of the swirling boundary layer,

dimensional analysis suggests the following relationship:
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(7.4)

whereCZMW is an unknown coefficient. Through a careful examination of our results, we can try

to guess the nature of the functionf. First, the results indicate thatf is an only very weakly varying

function of ReC, possibly even constant for large values. This can be seen by comparing the

results of simulations HISWIRL2CELL and LOWSWIRL2CELL. Between these two simula-

tions,ReV was held constant, butν was decreased by 60%, requiring a large change inReC. Yet,

the mean value of ZMW decreased only 4.5%. This suggests that to a first approximation we may

neglect the variation ofReC in f.

In simulation WIDBUBL, we doubledσh, and yet the mean ZMW decreased slightly,

rather than doubling in size. To resolve this discrepancy, recall that in the solid-body rotation sim-

ulations, the circulation scales as (here we assume ). Thus, changes inLh alone

will not cause a change in ZMW provided that the function has the form

. (The slight decrease in ZMW may be accounted for by a slight decrease inf

with increasing , which we are neglecting.) This suggests the following simplified rela-

tionship for the depth of the boundary layer:

(7.5)

It is interesting to note that in the solid-body rotation case, (7.5) predicts ,

which is identical to the depth of the classic Ekman boundary layer (Greenspan, 1990, p. 36),

whereas if the circulation in the far-field is constant, we have recovered (7.3) - the results of Burg-

graf et al., (1971). If this relationship were accurate, then a single value ofCZMW should be con-

sistent with the results from all the simulations. Based on the observed mean values of ZMW, we
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computed the corresponding values ofCZMW in all solid-body rotation simulations. The results

are summarized in Table 2. The computed values lie in the range , with a

mean of 1.42.

Can a similar analysis be used to predict RMW? If a parcel of fluid did not lose any angu-

lar momentum as it was advected towards the center axis, we would expect it to achieve the max-

imum velocity (equal to the CAPE velocity scale if ) at . dimensional analysis

then suggests

(7.6)

Again, we will use our results to attempt to infer the properties of the function g. NF99 (see also

Fig. 2) found that the vortex aspect ratio was essentially a function ofReV and had only a weak

dependence onReC. To a first approximation, then,

(7.7)

should in fact be approximately a function ofReV only. To make this so, let us first assume thatg

is separable, i.e., . Now, with some manipulation, (7.7) can be re-

written as

. (7.8)

For AV to be (approximately) only dependent onReV, then we must have . (7.6)

then becomes

. (7.9)

1.32 CZMW 1.51< <

Cv 1∼ r Γ U⁄=

RMW CRMW
Γ
U
---- 

  g ReV ReC,( )=

AV
RMW
ZMW
---------------

CRMW Γ U⁄( )g ReV ReC,( )

CZMW ν Γ⁄( )1 2⁄ Lh

-----------------------------------------------------------------= =

g ReV ReC,( ) h ReV( )k ReC( )=

AV CA ReV( )
3
2
---

h ReV( )k ReC( ) ReC( ) 1–
=

k ReC( ) ReC∼

RMW CRMW
Γ
U
---- 

  h ReV( )ReC=
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All that remains is to estimate the form of the function . Between the HIBUBL simula-

tions and the WIDBUBL simulations, the RMW approximately increased by a factor of 2.38,

while the only environmental change was a doubling in the widthσh of the convective forcing.

Using , , and , we find a doubling ofσh will cause

a 2.38 increase in RMW if . Thus we arrive at an approximate scaling law

for the radius of maximum winds

(7.10)

Again, to test the validity of this scaling law, we use the steady-state results of all the simulations

to solve forCRMW; if CRMW is the same for all the simulations, the scaling law is valid. The

results of these calculations are shown in Table 2, where it is shown that

with a mean value of 0.3366. The value of 0.182 is a significant outlier that which results from the

LOWESTVISC simulation. This anomalous value may be a result of neglecting the effect of the

convective Reynolds numberReC on the vortex structure, sinceReC is at least 4 times higher in

this simulation than all the others.

Finally, we must ask whether or not these scaling laws also apply to the case where the cir-

culation in the far-field is finite, rather than in solid body rotation. Using the scaling laws (7.5) and

(7.10), we computed values forCZMW andCRMW for the tornado-scale simulations. The results

are shown in Table 4. We find that the values forCZMW are somewhat consistent between the

solid-body rotation simulations and the tornado-scale simulations. The values ofCRMW, while

being near in value to each other among the tornado-scale simulations, are all an order of magni-

tude smaller than in the solid-body rotation simulations. This inconsistency is caused by the ambi-

h ReV( )

Γ Ωσh
2

= ReV Ωσh
2( ) ν⁄= ReC Uσh( ) ν⁄=

h ReV( ) ReV
0.8743–

=

RMW CRMW
Γ
U
---- 

  ν
Γ
--- 

  0.8743 ULh

ν
---------- 

 =

0.182 CRMW 0.3829≤ ≤
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guities in the circulation and horizontal length scales that are caused by the double-structure of the

meridional circulation in the tornado-scale simulations.

8. Conclusions
We have used adaptive mesh refinement to clarify and expand upon the previous results of

Nolan and Farrell (1999a). The important conclusions are summarized in the beginning of section

6 above. The results indicate that the structure and maximum windspeeds of tornadoes are less

dependent on the “details” of the storm environment than one might expect. In particular, the

maximum windspeeds of tornadoes are almost solely dependent on the vertically integrated inten-

sity of the overhead convection, with only a relatively weak dependence on the structure of the

vortex (as indicated by the fact that the velocity coefficient lies in the relatively narrow range

). Furthermore, this intensity has only a weak dependence on theshapeof the con-

vection which sustains it. We do find that the highest windspeeds occur when the vortex has a

two-celled structure with a wide base, which is in contrast with the earlier findings of NF99.

The reason for the difference between our results and those of NF99 likely has to do with

numerical resolution in the boundary layer. As the vortex transitions to a two-celled state, the

swirling boundary layer becomes progressively shallower. Under-resolution of this layer will lead

to spurious dissipation of radial and angular momentum, ultimately causing lower mean wind-

speeds. While it has generally been reported in the literature that the highest windspeeds occur

when the vortex is in the DVJ state, some laboratory studies have found higher windspeeds in the

high-swirl regime (Baker and Church, 1979). Fiedler (1994, 1998) also found the highest mean

azimuthal windspeeds occurring in two-celled vortices. Certainly, this would be consistent with

the general observation that the most damaging tornadoes usually have wide bases.

Our results did agree with the findings of NF99 that the structure of the vortex depends on

0.7 Cv 1.0< <
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the ratio of the circulation of the fluid that is drawn into the vortex to the eddy viscosity of the

fluid, i.e., the vortex Reynolds numberΓ/ν. Furthermore, by using dimensional scales for the con-

vection and far-field circulation that are consistent with the tornado environment, we found that

realistic values for the maximum windspeeds, the radius of maximum winds, and the depth of the

tornadic boundary layer can be reproduced using typical values for the eddy viscosity such as

ν=40 m2s-1; however, a minimum grid spacing of 3.9 meters (in an 8km x 8km domain) was nec-

essary to sufficiently resolve the dynamics. Since the effect of diffusion is by far the greatest in the

near-surface boundary layer, the physical significance of the eddy viscosity carries over to the tur-

bulence generated by surface roughness in actual tornadoes. This suggests that identical thunder-

storm environments may produce very different tornadoes over different surfaces, i.e., land versus

water, city buildings versus open plains. This is also consistent with observations and laboratory

experiments [see, for example, the review by Church and Snow (1993) and the references

therein.]

Certainly, asymmetric and three-dimensional processes are prevalent in tornadoes and will

likely be critical in developing a complete understanding of these and other intense atmospheric

vortices. Fiedler (1998) has shown that substantially higher transient, localized windspeed max-

ima are observed in three-dimensional models of tornado-like vortices. These instantaneous, high-

est windspeeds are associated with the smaller scale “suction vortices” that form in the region of

large shear between the RMW and the relatively stagnant core. Furthermore, both numerical sim-

ulations (Lewellen et al., 1997) and recent theoretical work on asymmetric vortex dynamics

(Nolan and Farrell, 1999b) indicate that three-dimensional dynamics enhance the mean, azimuth-

ally averaged windspeeds as well as the instantaneous maxima. Fortunately, continuing advances

in computer speed and memory will allow for more three-dimensional modelling at higher and
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higher resolutions, along with higher-order turbulence closure schemes. It is also encouraging to

note that the speed and memory savings associated with adaptive mesh refinement in two dimen-

sions will be even more substantial in three dimensions.
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Table 1  Summary of parameters for solid-body rotation simulations.

Simulation
Name

Domain
Height

Base
Grid

Max.
ref.
lvs.

Ω ν Cb

F93FULL 1.0 256x128 0 0.2 0.0005 1.264 0.5 0.2236 0.2236

F93AMR 1.0 64x32 2 0.2 0.0005 1.264 0.5 0.2236 0.2236

F93ZDBL 2.0 64x64 3 0.2 0.0005 1.264 0.5 0.2236 0.2236

HIBUBL 2.0 64x64 3 0.2 0.0005 1.264 1.0 0.2236 0.2236

TALL-
BUBL

2.0 64x64 3 0.2 0.0005 0.632 1.0 0.2236 0.4472

WIDBUBL 2.0 64x64 3 0.2 0.0005 1.264 1.0 0.4472 0.2236

WID-
BUBLΩ.05

2.0 64x64 3 0.05 0.0005 1.264 1.0 0.4472 0.2236

F93
DBLU

1.0 64x32 3 0.2 0.0005 5.07 0.5 0.2236 0.2236

HISWIRL
2CELL

1.0 128x64 3 0.5 0.0005 1.264 0.5 0.2236 0.2236

LOW
SWIRL
2CELL

1.0 128x64 3 0.2 0.0002 1.264 0.5 0.2236 0.2236

LOW
SWIRL

DVJ

1.0 128x64 3 0.08 0.0002 1.264 0.5 0.2236 0.2236

LOWEST
VISC

1.0 256x128 3 0.1 0.0001 1.264 0.5 0.4472 0.2236

z forc σh σv
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Table 2  Summary of statisitical results for solid-body rotation simulations.

Simulation

F93FULL 0.7318 0.1205 0.0725 1.7400 0.4810 1.450 0.370

F93AMR 0.7320 0.1218 0.0722 1.7509 0.4262 1.444 0.374

F93ZDBL 0.7444 0.1124 0.0726 1.6188 0.5677 1.452 0.345

HIBUBL 0.7384 0.1153 0.0683 1.7039 0.2517 1.366 0.354

TALL
BUBL

0.7360 0.1121 0.0717 1.5891 0.2732 1.434 0.344

WIDBUBL 0.7609 0.2745 0.0716 3.8854 0.7808 1.432 0.354

WID
BUBLΩ.05

0.7838 0.1846 0.1370 1.4085 0.4797 1.370 0.283

F93DBLU 0.7734 0.1079 0.0710 1.6031 0.4597 1.420 0.331

HISWIRL
2CELL

0.7067 0.1400 0.0475 2.9733 0.3941 1.502 0.383

LOW
SWIRL
2CELL

0.8129 0.1196 0.0454 2.7966 0.8140 1.436 0.327

LOW
SWIRL

DVJ

0.7970 0.0991 0.0694 1.4864 0.3521 1.388 0.304

LOWEST
VISC

1.04 0.158 0.0420 4.06 0.9677 1.323 0.182

Cv RMW ZMW AV AV AV–( )
2

 
 

1
2
---

CZMW CRMW
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Table 3  Summary of Tornado-Scale Simulation Parameters.

Simulation
Name

Base
Grid

Max.
ref.
lvs.

rmax
(m) (ms-1)

ν
(m2s-1) (m) (m) (m)

TORNADO 256x256 3 2000 15 40 4000 2000 2000

TORNADO
HIVORT

256x256 3 2000 30 40 4000 2000 2000

TORNADO
HIVISC

256x256 3 2000 15 80 4000 2000 2000

TORNADO
WIDE

256x256 3 2000 15 40 4000 3000 2000

V∗ z forc σh σv
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Table 4  Summary of Statistical Results for Tornado-Scale Simulations.

Simulation
(m) (m)

TORNADO 0.83 188.2 116.2 1.66 0.383 1.59 0.0409

TORNADO
HIVORT

1.11 289.44 102.2 3.07 1.23 1.98 0.0577

TORNADO
HIVISC

0.56 204.0 175.6 1.18 0.29 1.70 0.0484

TORNADO
WIDE

0.59 173.2 154.0 1.24 0.664 1.41 0.0251

Cv
RMW ZMW AV AV AV–( )

2

 
 

1
2
---

CZMW CRMW
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Fig. 1 Contour plot of the mean value of the internal swirl ratio as a function of the
domain rotation rateΩ and the eddy viscosityν.
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Fig. 2 Contour plot of the mean vortex aspect ratio as a function of the domain rota-
tion rate and the eddy viscosity.
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Fig. 3 Maximum vertical, azimuthal, and negative horizontal velocities for the F93
simulation with 256x128 gridpoints (solid), the AMR simulation with
Recell<20 (dash-dot), and the AMR simulation withRecell<10 (dashed).
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Fig. 4 Same as previous but for a) the maximum vertical velocities only, and b) for
the maximum azimuthal velocities only.
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Fig. 5 A direct comparison velocity fields for the F93 simulations att=100.0, a) azi-
muthal velocities and vertical forcing, with AMR; b) meridional velocity vec-
tors on the base grid, with AMR;  c) azimuthal velocities and vertical forcing
with full resolution throughout the domain; d) meridional velocity vectors
with full resolution - here the data has been interpolated onto a 64x32 grid.
Plots are restricted to the part of the domain where .

a) b)
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Fig. 6 Maximum velocities and vortex aspect ratios as a function of time during the
AMR and full resolution F93 simulations: a) maximum azimuthal velocities
(dashed), vertical velocities (dash-dot), and inward radial velocities (solid),
AMR; b) vortex aspect ratio, AMR; c) maximum velocities, full resolution; d)
vortex aspect ratio, full resolution.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
−Umax (solid), Vmax(dashed), Wmax(dashdot) − F93 omega=0.2 nu=0.0005 64x32AMR

time

m
ax

im
um

 v
el

oc
ity

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4
Vortex Aspect Ratio vs. time − F93 omega=0.2 nu=0.0005 64x32AMR

time

R
m

ax
/Z

m
ax

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
−Umax (solid), Vmax(dashed), Wmax(dashdot) − F93 omega=0.2 nu=0.0005 256x128

time

m
ax

im
um

 v
el

oc
ity

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4
Vortex Aspect Ratio vs. time − F93 omega=0.2 nu=0.0005 256x128

time

R
m

ax
/Z

m
ax

a) b)

c) d)



55

Fig. 7 Results for the F93ZDBL simulation: a) maximum azimuthal velocities
(dashed), vertical velocities (dash-dot), and inward radial velocities (solid);
b) vortex aspect ratio.
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Fig. 8 Azimuthal and vertical velocity fields att=200 for the F93ZDBL simulation:
a) azimuthal velcoities and vertical forcing; b) meridional velocity vectors on
the base grid in the region 0 <r < 1.0, 0 <z < 1.0.
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Fig. 9 Azimuthal and vertical velocity fields att=200 for the HIBUBL simulation: a)
azimuthal velcoities and vertical forcing; b) meridional velocity vectors on the
base grid in the region 0 <r < 1.0, 0 <z < 1.0.
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Fig. 10 Azimuthal and vertical velocities att=100 for the WIDBUBL simulation: a)
azimuthal velocities and vertical forcing; b) meridional velocity vectors on the
base grid in the region 0 <r < 1.0, 0 <z < 1.0.
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Fig. 11 Azimuthal and vertical velocities att=100 for the WIDBUBLΩ.05 simulation:
a) azimuthal velocities and vertical forcing; b) meridional velocity vectors on
the base grid in the region 0 <r < 1.0, 0 <z < 1.0.
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Fig. 12 Azimuthal and vertical velocities att=200 for the HISWIRL2CELL and
LOWSWIRL2CELL simulations and : a) azimuthal velocities,
HISWIRL2CELL; b) meridional velocity vectors on hte base grid in the
region 0 <r < 0.5, 0 <z < 0.5. HISWIRL2CELL; c) azimuthal velocities,
LOWSWIRL2CELL, d) meridional velocity vectors on the base grid in the
region 0 <r < 0.5, 0 <z < 0.5, LOWSWIRL2CELL The vertical forcings are
the same as in Fig. 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

z

Azimuthal Velocity max=0.76217 min=0 interval=0.084685

a) b)

c) d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

z

Azimuthal Velocity max=0.99613 min=0 interval=0.11068

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r
z

R−Z Velocity Vectors max |v|=3.45e−01

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r

z

R−Z Velocity Vectors max |v|=4.24e−01



61

Fig. 13 Contour plots of the initial azimuthal velocity field (solid) and the effective
temperature anomaly (dashed) associated with the convective forcing for the
tornado-scale simulations.
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Fig. 14 Contour plots of the a) azimuthal velocity field, and b) the circulationΓ in the
tornado-scale simulation att=1616 s.
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Fig. 15 Close-up of the a) azimuthal velocity field and b) meridional velocity vectors
in the low-level vortex generated in the tornado-scale simulation att=1616 s.
Only the data from the base grid is used in the vector plot.
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Fig. 16 Meridional velocity vectors att=1616 in the tornado-scale simulation. The
data is derived from the base grid, interpolated onto a 32x32 grid.
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Fig. 17 Snapshots of azimuthal velocity and circulation in F93-type simulations with
finite circulation in the far field: a) azimuthal velocity,rmax=1.0; b) circula-
tion, rmax=1.0; c) azimuthal velocity,rmax=0.5; d) circulation,rmax=0.5.
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