
UC San Diego
Technical Reports

Title
A Systems Architecture for Ubiquitous Video

Permalink
https://escholarship.org/uc/item/8gc255s1

Authors
McCurdy, Neil J
Griswold, William G

Publication Date
2005-02-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gc255s1
https://escholarship.org
http://www.cdlib.org/

A Systems Architecture for Ubiquitous Video

Neil J. McCurdy
Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

nemccurd@cs.ucsd.edu

William G. Griswold
Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

wgg@cs.ucsd.edu

Abstract

Realityflythrough is a telepresence/tele-reality system

that works in the dynamic, uncalibrated environments

typically associated with ubiquitous computing. By op-

portunistically harnessing networked mobile video cam-

eras, it allows a user to remotely and immersively ex-

plore a physical space. This paper describes the archi-

tecture of the system, motivated by the real-time and dy-

namic requirements imposed by one application domain:

SWAT team command and control support.

RealityFlythrough is analogous to an operating sys-

tem in that it provides abstractions to the user that hide

inherent limitations in the underlying system. Just as an

operating system provides the illusion of infinite proces-

sors and infinite memory, RealityFlythrough provides

the illusion of complete live camera coverage in a phys-

ical environment.

1 Introduction

Ubiquitous computing is often described as computers

fading into the woodwork [3]. Ubiquitous video, then,

is cameras fading into the woodwork, and is captured

by the expression, “the walls have eyes.” Ubiquitous

video is characterized by wireless networked video cam-

eras located in every conceivable situation. The data is

transmitted either to a central server or simply into the

ether for all to view [2]. While many believe that such an

environment is inevitable, we do not have to wait for the

future to take advantage of ubiquitous video. There are a

number of situations that could benefit from having live,

situated access to ubiquitous video streams using today’s

technology.

For example, police Special Weapons and Tactics

(SWAT) teams [6] are routinely involved in high risk

tactical situations in which the Incident Command Post

(command and control) is situated some distance from

the incident site. It is the responsibility of the command

post, and specifically the team commander to direct the

field operations, but this activity is often done “blind”,

without the aid of visuals from the scene. The comman-

der forms an internal spatial model of the scene gener-

ated from either prior knowledge, maps, or reports from

the officers in the field, and must update and reference

this model throughout the event. Commands must be

issued to field officers from their point of view, further

straining the commander’s conceptual model [6].

Introducing video feeds to the team commander’s ar-

senal would be of obvious benefit. A naive solution

would equip each field officer with a head or shoul-

der mounted camera and have the video streams dis-

played on an array of monitors similar to those used in

many building security systems today. An ideal solution

would present the team commander with infinite cam-

eras allowing the commander to “fly” naturally around

the scene viewing the operations from any desired van-

tage point. A more practical solution provides the illu-

sion of the ideal system while operating under the con-

straints imposed by the real environment, including the

constraint that the resulting displays should not be mis-

leading.

We have created RealityFlythrough [10] [11], a sys-

tem that uses video feeds obtained from mobile ubiqui-

tous cameras to present the illusion of an environment

that has infinite camera coverage. The use of illusion

in RealityFlythrough is analogous to the illusions (ab-

stractions) that an operating system provides to a pro-

grammer. Programming a raw computer is challeng-

ing because of its finite, yet untamed, resources. An

operating system provides convenient programmability

through the abstraction of an unlimited number of se-

quential processors and unlimited shared storage. Ubiq-

uitous video is analogously limited (few cameras) and

untamed (imprecise position and orientation). Reali-

tyFlythrough, then, provides abstractions for the sensi-

ble viewing of ubiquitous video streams, thus easing the

task of making inferences from multiple separate video

streams. Stitching the multiple video streams together

into a single scene is a straightforwardly sensible ab-

straction of numerous video streams. With such an ab-

straction, the user need only understand one integrated

scene, as in a video game, rather than multiple feeds,

as in a building security system. However, limited re-

sources as well as the untamed elements of ubiquitous

video make such an abstraction non-trivial to construct.

The key limitation of ubiquitous video is the incom-

(a) (b)

(c) (d)

Figure 1: A transition from image (a) to image (d). Images (b) and (c) show the transition in progress as image (a) moves off the

screen to the left and image (d) moves in from the right. This transition corresponds to a rotation to the right.

plete coverage of the live video streams–every square

foot of a space cannot be viewed from every angle with

a live video stream at any chosen moment. For two cam-

eras pointing in two rather different directions, when the

user switches from viewing one camera to another, it

is often not obvious how the subject matter in the two

views relate to each other, nor is it obvious what is in the

intervening space between the two cameras. To address

this limitation, RealityFlythrough fills the intervening

space between two cameras with older imagery (cap-

tured from the live camera feeds), and provides segues

(i.e., transitions) between the two live cameras that se-

quences and blends the imagery in a way that provides

the sensation of a human performing a walking camera

pan.

The key untamed element of ubiquitous video is the

imprecision of both the location and orientation sensed

for a camera (due to both sensor latency and sensor

inaccuracy). Such imprecision gives misleading cues

to the user about how the subject matter seen in one

camera relates to the subject matter in another. For

example, the images might appear farther apart than

they really are. Under certain assumptions, offline vi-

sion techniques could perform seamless stitching [13].

To achieve real-time flythrough, this problem is instead

handled by stitching together the live and still imagery in

an abstraction that shows the misregistration in overlap-

ping images (with an alpha blend), rather than hiding it

through blending or clipping. Although this sacrifices

aesthetics, it increases sensibility through full disclo-

sure. For this technique to work, images must overlap.

This property is sought by the mechanism that captures

the older still images for filling.

As with operating system abstractions, the illusions

are imperfect and exact a price. The filled images are

still rather than moving, and are no more up to date than

the last time a camera panned over a location. Since

the system cannot anticipate the future, the still imagery

must be captured for every conceivable location at all

times, increasing memory requirements. The stitching

is also not seamless. Moreover, it should not be. A

SWAT commander, for example, must have awareness

of the physical limitations and the staleness of any data.

Consequently, static images display an age bar and our

stitchings intentionally show imperfections. And in the

spirit of an operating system performance monitor, addi-

tional views are provided to unmask the abstraction and

reveal the underlying system structure. For example, a

birdseye view abstraction shows the positions and ori-

entations of the live cameras, unmasking the illusion of

infinite camera coverage. An additional feature of the

abstraction is the ability to directly select a given cam-

era.

The contributions of this paper are the RealityFly-

through architecture, and its evaluation along three di-

mensions: (1) its support for the desired abstractions for

ubiquitous video, (2) scalability, and (3) its robustness

to changing user requirements that is the measure of ev-

ery good architecture. The architecture has three unique

qualities. First, it uniformly represents all image sources

and outputs as Cameras, supporting a rich yet simple set

of operations over those elements in achieving the de-

sired abstractions. Second, it employs a separate Transi-

tion Planner to translate the user’s navigation commands

into a sensible sequence of camera transitions and ac-

companying image blends. Third, it aggressively em-

ploys the Model-View-Controller design pattern to sep-

arate the world state of all the cameras from the user con-

trols, transition planner, windowing toolkit, and even the

underlying graphics library. Our experiments show good

support for the desired abstractions, as well as excellent

scalability in the number of live video sources and Cam-

eras. Support for evolution is explored through a series

of changes to the application.

The paper is organized as follows. Section 2 will de-

scribe the user experience, and Section 3 will compare

our system to related work. Section 4 will outline the

requirements of the system. We will present a high level

architectural overview of the system in Section 5, and

then drill into the RealityFlythrough engine in Section 6

to reveal how the illusion of infinite cameras is achieved.

Sections 7.1 and 7.2 will evaluate the architecture’s sup-

port of the system requirements, and Section 7.3 will

evaluate the architecture’s tolerance to change and sup-

port for future enhancements. Section 8 concludes the

paper.

2 User Experience

A large element of the user experience in RealityFly-

through is dynamic and does not translate well to the

written word or still photographs. We encourage the

reader to watch a short video [11] that presents an earlier

version of RealityFlythrough, but we do our best to con-

vey the subtlety of the experience in this section. When

observing the images in Fig. 1, keep in mind that the

transformation between the images is occurring within

about one second, and the two transitional frames repre-

sent only about 1/10th of the transition sequence.

The user’s display is typically filled with either an

image or a video stream taken directly from a camera.

When a new vantage point is desired, a short transition

sequence is displayed that helps the user correlate ob-

jects in the source image stream with objects in the des-

tination image stream. These transitions are shown in a

first person view and provide the user with the sensation

that she is walking from one location to another. The il-

lusion is imperfect, but the result is sensible and natural

enough that it provides the necessary contextual infor-

mation without requiring much conscious thought from

the user.

Figure 2: An illustration of how the virtual cameras project

their images onto a wall.

RealityFlythrough works by situating 2d images in

3d space. Because the position and orientation of ev-

ery camera is known, a representation of the camera can

be placed at the corresponding position and orientation

in virtual space. The camera’s image is then projected

onto a virtual wall (see Fig. 2). When the user is looking

at the image of a particular camera, the user’s position

and direction of view in virtual space is identical to the

position and direction of the camera. As a result, the

entire screen is filled with the image. Referring to Fig.

1, a transition between camera A (image (a) in the fig-

ure) and camera B (image (d) in the figure) is achieved

by smoothly moving the user’s position and view from

camera A to camera B while still projecting their images

in perspective onto the corresponding virtual walls. By

using OpenGL’s standard perspective projection matrix

to render the images during the transition, the rendered

view situates the images with respect to each other and

the viewer’s position in the environment. By the end of

the transition, the user’s position and direction of view

are the same as camera B’s, and camera B’s image fills

the screen.

It may be easier to understand how RealityFlythrough

works by envisioning the following concrete example.

Imagine standing in an empty room that has a different

photograph projected onto each of its walls. Each im-

age covers an entire wall. The four photographs are of a

360 degree landscape with one photo taken every 90 de-

grees. Position yourself in the center of the room looking

squarely at one of the walls. As you slowly rotate to the

left your gaze will shift from one wall to the other. The

first image will appear to slide off to your right, and the

second image will move in from the left. Distortions and

object misalignment will occur at the seam between the

photos, but it will be clear that a rotation to the left oc-

curred, and the images will be similar enough that sense

can be made of the transition. RealityFlythrough oper-

ates in a much more forgiving environment: the virtual

walls are not necessarily at right angles, and they do not

all have to be the same distance away from the viewer.

3 Related Work

There have been several approaches to telepresence

with each operating under a different set of assump-

tions. Telepresence [8], tele-existence [14], tele-reality

[13] [7], virtual reality and tele-immersion [9] are all

terms that describe similar concepts but have nuanced

differences in meaning. Telepresence and tele-existence

both generally describe a remote existence facilitated by

some form of robotic device or vehicle. There is typ-

ically only one such device per user. Tele-reality con-

structs a model by analyzing the images acquired from

multiple cameras, and attempts to synthesize photo-

realistic novel views from locations that are not cov-

ered by those cameras. Virtual Reality is a term used to

describe interaction with virtual objects. First-person-

shooter games represent the most common form of vir-

tual reality. Tele-immersion describes the ideal virtual

reality experience; in its current form users are im-

mersed in a CAVE with head and hand tracking devices.

RealityFlythrough contains elements of both tele-

reality and telepresence. It is like telepresence in that

the primary view is through a real video camera, and it is

like tele-reality in that it combines multiple video feeds

to construct a more complete view of the environment.

RealityFlythrough is unlike telepresence in that the cam-

eras are likely attached to people instead of robots, there

are many more cameras, and the location and orienta-

tion of the cameras is not as easily controlled. It is un-

like tele-reality in that the primary focus is not to create

photo-realistic novel views, but to help users to internal-

ize the spatial relationships between the views that are

available.

All of this work (including RealityFlythrough) is dif-

ferentiated by the assumptions that are made and the

problems being solved. Telepresence assumes an envi-

ronment where robots can maneuver, and has a specific

benefit in environments that would typically be unreach-

able by humans (Mars, for example). Tele-reality as-

sumes high density camera coverage, a lot of time to

process the images, and extremely precise calibration of

the equipment. The result is photorealism that is good

enough for movie special effects (“The Matrix Revolu-

tions” made ample use of this technology). An alter-

native tele-reality approach assumes a-priori acquisition

of a model of the space [12], with the benefit of generat-

ing near photo-realistic live texturing of static structures.

And finally, RealityFlythrough assumes mobile ubiqui-

tous cameras of varying quality in an everyday environ-

ment. The resulting system supports such domains as

SWAT team command and control support.

4 Requirements

In earlier work [10], we built a proof of concept sys-

tem which revealed a number of rich requirements for

harnessing ubiquitous video. Ubiquitous video is chal-

lenging because the cameras are everywhere, or at a

minimum can go anywhere. They are inside, outside,

carried by people, attached to cars, on city streets,

and in parks. Ubiquity moves cameras from the quiet

simplicity of the laboratory to the harsh reality of the

wild. The wild is dynamic—with people and objects

constantly on the move, and with uncontrolled light-

ing conditions; it is uncalibrated—with the locations

of objects and cameras imprecisely measured; and it is

variable—with video stream quality, and location accu-

racy varying by equipment being used, and the quantity

of video streams varying by location and wireless cover-

age. Static surveillance-style cameras may be available,

but it is more likely that cameras will be carried by peo-

ple. Mobile cameras that tilt and sway with their opera-

tors present their own unique challenges. Not only may

the position of the camera be inaccurately measured, but

sampling latency can lead to additional errors.

Our proof of concept system revealed the need for bet-

ter image quality, higher frame rates, greater sensor ac-

curacy with faster update rates, and better support for the

dynamic nature of ubiquitous video.

We used a SWAT team scenario as a concrete goal for

what the system should be able to support. As mentioned

in the introduction, the team commander currently main-

tains an internal spatial model of the incident site with-

out the aid of visuals. The status quo places a heavy

burden on the commander, and at least in the training

exercises observed by Jones and Hinds [6] costly mis-

takes do happen. Our own discussion with a SWAT team

member confirmed that the introduction of cameras in

the field would be welcome. Not only would they pro-

vide the commander with the much needed visuals, but

they would also reduce the amount of vocalization re-

quired by field officers, contributing to the stealth some-

times needed. Mobile cameras are a requirement in this

domain because still cameras are hard to place and could

easily be targeted and disabled. We should expect to

have about 25 officers, and therefore 25 cameras, in the

field.

Common knowledge about police operations com-

bined with the previous description reveal minimum re-

quirements for a system that could support SWAT: The

system must work at novel sites with minimal config-

uration; cameras should be mobile and therefore wire-

less; the system needs to handle very incomplete camera

coverage with fewer than 25 cameras in the field; and

the system must work in unforgiving environments and

should expect intermittent network connectivity.

Note that no SWAT teams have been involved in the

design of the system thus far. SWAT teams will be con-

sulted regarding user interface decisions after these basic

requirements are met.

Figure 3: Component diagram showing system overview.

5 System Overview

Given the requirements just outlined, how might the sys-

tem be built? First we need some cameras and location

sensors. We need to capture the image data from a cam-

era and compress it, and we also need to capture the

sensor data. We call the components that do this, Im-

age Capture and Sensor Capture, respectively. The data

then needs to be combined so that we can match the sen-

sor data to the appropriate frame in the image data. We

call the component that handles this: Stream Combine.

The resulting stream then needs to be sent across the net-

work to a machine that decodes the data and presents

it to the user. We have a modified MCU (Multipoint

Control Unit) that does the decoding, and a RealityFly-

through Engine that combines the streams and presents

the data to the user in a meaningful way. (Fig. 3 shows

the relationships between these components.)

All of the video transmission components are based

on the OpenH323 (http://www.openh323.org)

implementation of the H323 video conferencing stan-

dard. In theory the system can support any H323 client

without modification, but synchronizing the sensor data

would be difficult. We have created our own client that

merges the sensor data into the video stream. If the H323

standard required that clients generate a time stamp that

could be used to synchronize with external data, the sen-

sor data could be delivered by other means and synchro-

nization could occur on the server. Without a synchro-

nizing time stamp, though, we are forced to modify the

client to get the precision we desire. It is still possi-

ble to obtain reasonable synchronization with unmodi-

fied clients as long as some assumptions can be made

about network delays. We mention this only because

stand-alone video conferencing units that do hardware

video compression are already starting to emerge, and it

was a key design decision to follow standards so that we

could support third party components.

RealityFlythrough is written in C++ and makes heavy

use of OpenGL for 3D graphics rendering, and the boost

library (http://boost.org) for portable thread

constructs and smart pointers. A projection library

(http://remotesensing.org/proj) is used to

convert latitude/longitude coordinates to planar NAD83

coordinates, and the Spatial Index Library (http://

www.cs.ucr.edu/˜marioh/spatialindex) is

used for its implementation of the R-Tree datastruc-

ture [5] that stores camera locations. RealityFlythrough

is designed to be portable and is confirmed to work on

both Windows and Linux.

The Engine is roughly 16,000 lines of code (includ-

ing comments), and the MCU is only an additional 2600

lines of code written on top of OpenH323.

Figure 4: Component diagram showing an overview of

the RealityFlythrough engine. Unlabeled arrows represent

“calls” relationships. The dotted line is an event callback.

6 Engine Architecture

The RealityFlythrough Engine is the heart of the sys-

tem. Given the available video streams and the user’s

intentions as input, the engine is responsible for decid-

ing which images to display at any point in time, and for

displaying them in the correct perspective. Fig. 4 shows

the functional components of the engine. The standard

Model-View-Controller design pattern [4] is used to rep-

resent and display the current system state. The Still Im-

age Generator is responsible for producing and manag-

ing the still images that are generated from the live cam-

era feeds. These still images are used to backfill transi-

tions, but may also be worth viewing in their own right

since they may not be much older than the live feeds.

The Transition Planner/Executer is responsible for de-

termining the path that will be taken to the desired des-

tination, and for choosing the images that will be dis-

played along that path. The Transition Executer part of

the duo actually moves the user along the chosen path.

And finally, the Camera Repository acts as the store for

all known cameras. It maintains a spatial index of the

cameras to allow for quick and targeted querying of cam-

eras.

Figure 5: Class diagram showing the relationship of classes

that are directly related to the Model in the MVC design pat-

tern. For all class diagrams, open arrows represent inheri-

tance, and arrows that have diamonds at the base represent

containment. Filled in diamonds indicate that the contained

object is created and destroyed by the container. Open dia-

monds indicate that the container only has a reference to the

object.

6.1 Model-View-Controller

The objects that comprise the Model-View-Controller

support the abstraction of infinite camera coverage that

we are attempting to achieve. In Dijkstra’s THE operat-

ing system [3], each layer in the layered architecture pro-

vides an additional level of abstraction on and insulation

from the raw computer. We use the notion of a virtual

camera (Fig. 5) to support the abstraction of infinite cam-

era coverage. A virtual camera is simply a location, an

orientation, a field of view, and a list of the “best” cam-

eras that fill the field of view. The notion of “best” will

be explored in depth in Section 6.3 where we discuss the

Transition Planner/Executer, but for now it is sufficient

to think of it as the camera that most closely matches the

user’s intentions. A virtual camera, then, can be com-

posed of multiple cameras, including additional virtual

cameras. This recursive definition allows for arbitrary

complexity in how the view is rendered, while maintain-

ing the simplicity suggested by the abstraction: cameras

with an infinite range of view exist at every conceivable

location and orientation.

Model. The concept of a virtual camera is extended

all the way down to the Environment State (Fig. 5)

which is the actual model class of the Model-View-

Controller. The user’s current state is always using the

abstraction of a Virtual Camera even if the user is hitch-

hiking on a Physical Camera. In that particular case the

Virtual Camera happens to have the exact position, ori-

entation, and field of view of a Physical Camera, and

hence the physical camera is selected as the “best” cam-

era representing the view. The current state of the sys-

tem, then, is represented by a Virtual Camera, and there-

fore by a position, an orientation, and the physical cam-

eras that comprise the view. Changing the state is simply

a matter of changing one of these three data points.

Figure 6: Class diagram for the classes involved in the View

relationship of the MVC. The “Gl” in class names indicates

that the classes are OpenGL-specific.

Figure 7: The birdseye view. The arrows represent the camera

locations and directions of view. This picture corresponds to

the transition in Fig. 1.

View The Model-View-Controller design pattern nat-

urally supports multiple views into the system state.

There are currently two views (Fig. 6), but we envision

more (see Section 7.3). The two views are the First Per-

son View and the Birdseye View. The First Person View

is the primary view that displays the images from a first

person immersive perspective. This is the view that was

described in Section 2. The Birdseye View shows a top

down perspective on the scene, with cameras rendered as

arrows and the field of view of active cameras displayed

as cones emanating from the arrows (7).

The two views described above happen to both use

OpenGL for rendering, but the use of OpenGL is not

a requirement. Although it may seem that RealityFly-

through is heavily reliant on OpenGL, other than the

views, there is only one class in the system that knows

anything about OpenGL. That is the Physical Camera

GL class which contains the OpenGL specific parts of

a Physical Camera. By separating these concerns we

have made it relatively simple to use other rendering

platforms if desired, but more importantly other display

methods can be used in concert with OpenGL.

As mentioned in the introduction, the Birdseye View

not only provides a wide-area map view of the scene, but

also reveals some of the rawness of ubiquitous video that

is being abstracted away by the First Person View. The

birdseye view makes the live camera coverage (or lack

thereof) obvious and it reveals the ages and density of the

still images that are used for backfill (see Section 6.2).

There are currently three display modes available: (1)

show all cameras, (2) show only the cameras that have

been updated within some user specifiable interval, and

(3) show only the live cameras. In an ideal environment,

the user could ignore the information presented in the

birdseye view because a live image would be present at

every vantage point. A more typical scenario, and the

one we adopted in the experiment described in Section 7,

presents the user with the birdseye view that shows only

the locations of the live cameras. The assumption, then,

is that the intervening space is fully populated with still

imagery. In this mode, the illusion of infinite camera

coverage is still present, but the user is given some extra

insight into where live camera coverage is available.

Each view instantiates one or more renderers to actu-

ally render the cameras that are involved in the current

state. Since the definition of a Virtual Camera is recur-

sive, there may be multiple cameras that need to be ren-

dered. Each of these cameras has a state associated with

it: the opacity (intensity) at which the camera’s image

should be drawn for the alpha blend. There are currently

two types of renderers: Virtual Wall Renderer and Bird-

seye Renderer.

The Virtual Wall Renderer is used by the First Person

View. It renders images using the virtual wall approxi-

mation described in Section 2. The images are rendered

in a specific order, on the appropriate virtual walls, and

with the opacity specified in their state.

The Birdseye Renderer simply draws either the cam-

era arrow or the frustum cone depending on the current

state of the camera.

Controller The controller is a typical MVC controller

and does not require further comment.

6.2 Still Image Generation

Key to the success of the infinite camera abstraction is

the presence of sufficient cameras. If no imagery is

available at a particular location, no amount of trickery

can produce an image. To handle this problem, we take

snapshots of the live video feeds and generate additional

physical cameras from these. A Physical Camera con-

sists of an Image Source and a Position Source (Fig. 5).

The Image Source is a class responsible for connecting

to an image source and caching the images. The Posi-

tion Source, similarly, is responsible for connecting to a

position source and caching the position. A camera that

represents still images, then, is simply a camera that has

a static image source and a static position source. This

is contrasted with live cameras that have a Video Image

Source that continually updates the images to reflect the

video feed that is being transmitted, and a Dynamic Po-

sition Source that is continually updated to reflect the

current position and orientation of the camera.

To keep the still imagery as fresh as possible, the im-

ages are updated whenever a camera pans over a similar

location. Rather than just update the Image Source of an

existing camera, we have chosen to destroy the existing

camera and create a new one. This makes it possible to

do a transitional blend between the old image and the

newer image, without requiring additional programming

logic. The images fit neatly into our Camera abstraction.

The use of still imagery to help achieve the abstrac-

tion of infinite camera coverage is of course imprecise.

There are two ways that the limits of the abstractions are

disclosed to the user:

First, an age indicator bar is attached to the bottom

of every image. The bar is bi-modal to give the user

both high resolution age information for a short interval

(we currently use 60 seconds), and lower resolution age

information for a longer interval (currently 30 minutes).

With a quick glance at the bottom of the screen, it is

very easy for the user to get a sense of the age of an

image. We originally used a sepia tone for older images,

but in addition to this not giving the age granularity that

was required, it also contradicted our aim to not mask

reality. The user should see the images exactly as they

were captured from the cameras. It is quite possible that

information crucial to the user may be hidden by that

kind of image manipulation.

The second way the system provides additional dis-

closure is by giving the user the option to never see older

images. The user’s preferences are used in the “best

camera” calculation, and if no camera meets the crite-

ria, the virtual camera will simply show a a virtual floor

grid.

Figure 8: Class diagram showing the relationship of the

classes involved in transition planning.

6.3 Transition Planner/Executer

When the user changes views, the Transition Planner

(Fig. 8) is responsible for determining the path through

space that will be taken and the images that will be

shown along this path. The Transition Executer is re-

sponsible for moving the user along the chosen path.

There is a high degree of coupling between the plan-

ner and the executer because of the dynamic nature of

ubiquitous video. Consider a typical case where the

user wishes to move to a live camera. A naive approach

would determine the location and orientation of the live

camera, compute the optimal trajectory to get to the tar-

get location and orientation, determine the images to

be shown along the path, and finally execute the plan

that was just developed. This approach does not work

in a ubiquitous video environment for several reasons.

The primary problem is that the destination camera may

change its position and likely its orientation in the inter-

val between when the plan was computed and when the

execution of the plan has completed. The result will be

a plan that takes the user to the wrong destination. An-

other problem is that the images that are selected along

the path may not be the optimal ones. This is because

the cameras that provide the intervening imagery may

be live cameras as well, in which case their locations and

orientations may have changed in the time since the plan

was created. The result is that a live image that could

have been shown is missed, or perhaps worse, a live im-

age is shown that can no longer be seen from the current

vantage point, so instead no image is displayed. An-

other possibility is that the dynamically generated still

imagery is updated after the plan is generated, but the

older image is displayed instead.

To account for all of these problems the transition

planning needs to be done dynamically and interleaved

with the execution. There are a number of competing

issues that need to balanced when doing dynamic plan-

ning. It would seem that the ideal is to construct a plan at

every time step, but some parts of the planning process

are computationally expensive and need to be done spar-

ingly. Also, the user needs to be given time to process

the imagery that is being displayed, so even if a better

image is available, showing it immediately may actually

reduce comprehension.

The solution is to first introduce a dynamic Path ob-

ject that takes a Position Source rather than a Position as

its destination. The destination is now a moving target.

At every time step, the Path can be queried to determine

the current trajectory. With this trajectory, the Transi-

tion Planner can look ahead some interval and determine

the best image to display. This image (camera, really)

is added to the end of the camera queue. Each Virtual

Camera—and since the Transition Planner acts on the

Environment State remember that the Environment State

is a virtual camera—maintains a fixed-length queue of

cameras. When the queue is filled and a new camera is

added, the camera at the front of the queue (the oldest or

least relevant camera) is popped off the queue and thus

removed from the Virtual Camera. The new camera is

added with a time intensity, which means that the opac-

ity gradually increases with time. We currently have the

image blend to full opacity in one second.

This approach results in what appears to be a transi-

tion from one image to another, but along a dynamically

changing path and with images that were used earlier

still being displayed (if in view) to provide additional

contextual information. The piece of the puzzle that is

still missing is how the plan is constructed and adjusted

dynamically. The Transition Executer (Fig. 8) is respon-

sible for querying the Path at every time step and moving

the user along the desired trajectory. It is also responsi-

ble for notifying the Transition Planner at time inter-

vals set by the planner. These notification events give

the planner the opportunity to determine which image

(if any) to display next. Time is being used for signaling

instead of “destination reached” because having the Path

be dynamic means the destination may never be reached.

Time is an adequate approximation of this signal point.

To determine the images to show during a transition

the Transition Planner applies a series of Fitness Func-

tors to each camera in the neighborhood. The Fitness

Functors are weighted based on user preference. Some

of the fitness dimensions are: proximity (how close is

the camera to the specified position), rotation and pitch

(how well do the orientations match), screen fill (how

much of the screen would be filled with the image if it

were displayed), recency (how recently was the image

acquired), and liveness (is the camera live or not).

To further increase the sensibility of transitions, three

heuristics are used to decide which images to display:

(1) The current image should stay in view for as long

as possible, (2) once the to image can be seen from the

current position, no other images should be displayed,

and (3) there should be a minimum duration for sub-

transitions to avoid jumpiness. The first two items are

handled by always applying the Fitness Functors to the

current camera and the ultimate target camera regard-

less of whether they pass the “in the neighborhood test”,

and then boosting the fitnesses by a configurable scalar

value. This has the effect of giving extra weight to the

current and target cameras, thus indirectly satisfying our

heuristics. The third item is handled by adjusting the

time interval used for Transition Planner callbacks.

6.4 Camera Repository

The CameraRepository is simply a container for all of

the cameras (including the still cameras) that are known

to the system. To support efficient spatial querying of

the cameras, an R-Tree [5] is used to store the camera

locations. The exact locations of the live cameras are

not stored in the index because this would cause con-

tinuous updates to the index, and such precision is not

necessary when doing “get cameras in neighborhood”

queries. Instead, only location updates that are greater

than a configurable threshold result in a replacement in

the spatial index.

Each physical camera has certain fixed memory costs.

To minimize the use of limited OpenGL resources, the

cameras share a pool of texture maps. We have to store

the image somewhere, though, so each camera (Image

Source, really) allocates 768KB to store a 512x512 im-

age (the size is dictated by OpenGL’s texture map size

requirements) at a depth of 24bits. After a period of in-

activity, the Image Source frees memory by storing the

image to disk. Under normal loads, there is no percep-

tible difference in performance when an image is read

from disk.

7 Evaluation

An architecture must be evaluated along two dimen-

sions: does it work, and will it work in the future? In

this section we first present a user study that captures

the essence of the user experience and shows that the

abstractions presented are compelling and useful. Sec-

ond, we examine performance to get insight into the

scaleability of the system. Third, to evaluate how well

the architecture will accommodate future changes to the

application, we examine its robustness against a set of

significant changes and extensions.

7.1 Effectiveness of the Abstraction

An earlier paper on RealityFlythrough [10] showed that

users of the system had a positive experience and felt

that they had more of feeling of “being there” than they

would have had with the naive security monitor ap-

proach. We had these same subjects re-evaluate the ex-

perience with a system based on the architecture pre-

sented in this paper. This allows for a direct comparison

between the two systems both in terms of usability and

performance. While an architecture does impact usabil-

ity and the kinds of interfaces that can be designed, our

intent was not to evaluate the user interface. The appro-

priate user interface for the system depends on the appli-

cation domain, and we expect to design one specific for

SWAT teams.

To determine how the system was perceived by users,

we repeated the earlier experiment as closely as possi-

ble. We used the same subjects, the same equipment on

the user end, the same location for the flythrough. The

camera operators were asked to behave as they did in the

first experiment.

There were three hand-carried camera units in the

field. They consisted of a standard logitech web camera

(˜$100), a WAAS-enabled Garmin eTrex GPS (˜$125),

a tilt sensor manufactured by AOSI (˜$600), and an

802.11b equipped laptop. The tilt sensor provides com-

pass, tilt, and roll readings at 15hz. The video streams

were transmitted using the OpenH323 video conferenc-

ing standard at CIF (352x288) resolution.

The subjects’ task was: explore with the goal of get-

ting a sense of what is happening, see if there is anyone

they know, and determine if there is anything to draw

them to the site for lunch. The experiment was run twice

because some problems with the system were encoun-

tered on the first run. We discuss this first experiment

not only because the problems are revealing, but also

because the subjects’ negative reactions underscore their

frank views.

The first run of the new experiment was very posi-

tive from a technical standpoint. Three video streams

connected successfully, and a large number of still im-

ages were automatically generated, quickly filling the

entire region with cameras. Only 61 still cameras were

used in the earlier version of the experiment, but 100’s

were generated in this one, greatly increasing the cam-

era density. Despite the extra overhead incurred by auto-

generating the images and by planning transitions on the

fly, the system performance felt about the same. In fact,

the subjects made the statement that the “performance

was definitely much nicer.” The new H263 video codec

proved to be far superior to the H261 codec used previ-

ously. The frame rate varied by scene complexity, but

appeared to average about 6-8 frames per second. The

frame size was the same as was used previously, but the

image quality was better and the colors were much more

vivid. The generated still images were clear and of good

quality, validating the algorithm used to select frames to

be converted into still images. On several occasions the

subjects rapidly pointed out the age of images, indicat-

ing the success of the age indicator bar.

Even with all of these improvements, though, the sub-

jects were not left with a positive impression and had

to conclude that “from a usability standpoint, it went

down.” Transition sequences were met with comments

like “it seems like it’s awkward to move through several

of those stills”, and “[that] transition wasn’t smooth.”

Post-experiment analysis identified three sources for the

problems: (1) Too many images were being presented to

the user, not allowing time for one transition to be pro-

cessed mentally before another one was started. (2) The

attempt to acquire a moving target resulted in an erratic

path to the destination, causing disorientation. And, (3)

no attempt was made to filter the location data by sensor

accuracy. Still images were being generated even when

the GPS accuracy was very low, so transitions involved

nonsensical images detracting from scene comprehen-

sion.

Fortunately, none of these problems were difficult to

handle. In Section 7.3 we will discuss the actual mod-

ifications made because these unplanned changes exem-

plify the architecture’s robustness to changing require-

ments.

The experiment was repeated with much more posi-

tive results. Despite worse conditions at the experiment

venue (we shared the space with a well attended Hal-

loween costume contest), the subjects had much more

positive comments such as, “Let’s try one in the com-

pletely opposite direction. That was pretty nice.”, and

“It’s pretty accurate where it’s placing the images.”

“That was kind of cool. They weren’t quite all in the

same line, but I knew and felt like I was going in the

right direction.”

The costume contest placed some restrictions on

where the camera operators could go, and also forced

them to be in constant motion. The subjects found the

constant motion to be annoying (“they’re all over the

map”), and the motion placed quite a strain on the new

algorithm used to home in on a moving target. The sub-

jects actually preferred the calmness of the still images.

Midway through the experiment, we asked the operators

to slow down a bit, and the experience improved dramat-

ically: “Yeah, that’s what it is. So long as [the camera

operators’] rotation is smooth and slow, you can catch

up to it and have smooth transitions.”

The camera operators’ motion was probably more er-

ratic than normal, but the algorithm used to home in on

dynamic cameras still needs to be improved. It only

takes a fraction of a second for a person to turn her head

90 degrees, and people do this enough that we have to

be able to handle it. There are two possible solutions to

the homing problem: (1) Save the last 10 or so frames

of a video stream and always display them with the live

frame rendered on top. This would ensure that as the

user homed in on the target, relevant imagery would be

displayed in the vicinity. Part of what is disconcerting

with the current system is that there is a clear bound-

ary between the image and the background so the image

appears to bob around as it comes into sight. Display-

ing earlier frames would help blur that boundary. (2)

Modify the rotation speed of transitions to lock in on the

destination early, and thus prevent the bobbing effect.

Both of these possibilities will be discussed further in

Section 7.3.

Table 1: Summary of results.

7.2 System Performance

By measuring the performance of the system we hope

to provide some insight into the scalability of the archi-

tecture. Raw performance metrics mainly measure the

speed of the hardware and the quality of the compiler.

Seeing how the raw numbers vary under certain condi-

tions, however, reveals important details about the archi-

tecture.

The experiments with RealityFlythrough described

thus far have only been run using at most three video

streams. To determine the maximum number of simul-

taneous streams that can be handled by the server, we

ran some simulations. The capacity of the wireless net-

work forms the real limit, but since network bandwidth

will continue to increase, it is instructive to determine

the capacity of the server. We should estimate the ca-

pacity of a single 802.11b access point to give us a sense

of scale, however. For the image size and quality used in

the user studies, the H263 codec produces data at a rel-

atively constant 200Kbps. Empirical study of 802.11b

throughput has shown that 6.205Mbps is the maximum

that can be expected for applications [15]. This same

study shows that the total throughput drops drastically

as more nodes are added to the system. With more

than eight nodes, total throughput decreases to roughly

2Mbps. This reduction means we cannot expect to have

more than 10 streams supported by a single 802.11b ac-

cess point.

The bottleneck on the server is the CPU. As more

compressed video streams are added to the system, more

processor time is required to decode them. Some of the

other functional elements in RealityFlythrough are af-

fected by the quantity of all cameras (including stills),

but the experimental results show that it is the decoding

of live streams that places a hard limit on the number of

live cameras that can be supported.

The machine used for this study was a Dell Precision

450N, with a 3.06Ghz Xeon processor, 512MB of RAM,

and a 128MB nVidia QuadroFX 1000 graphics card. It

was running Windows XP Professional SP2. The video

streams used in the simulation were real streams that

included embedded sensor data. The same stream was

used for all connections, but the location data was ad-

justed for each one to make the camera paths unique. Be-

cause the locations were adjusted, still image generation

would mimic real circumstances. No image process-

ing is performed by the engine, so replicating the same

stream is acceptable for this study. The image streams

were transmitted to the server across a 1Gbit ethernet

connection. Since the image stream was already com-

pressed, very little CPU was required on the transmit-

ting end. A 1Gbit network can support more than 5000

simultaneous streams, far more than the server would be

able to handle. Network bandwidth was not a concern.

To obtain a baseline for the number of streams that

could be decoded by the server, we decoupled the MCU

from the engine. In the resulting system, the streams

were decoded but nothing was done with them. With

this system, we found that each stream roughly equated

to one percent of CPU utilization. 100 streams used just

under 100 percent of the cpu. The addition of the 113th

stream caused intermittent packet loss, with packet loss

increasing dramatically as more streams were added.

The loss of packets confirmed our expectation that the

socket buffers would overflow under load.

Having confirmed that the addition of live cameras

had a real impact on CPU utilization, we added the Re-

alityFlythrough engine back to the system. We did not,

however, add in the still image generation logic. To de-

termine the load on the system we looked at both the

CPU utilization and the system frame rate as new con-

nections were made. The system frame rate is indepen-

dent of the frame rates of the individual video feeds;

it is the frame rate of the transitions. It is desirable to

maintain a constant system frame rate because it is used

in conjunction with the speed of travel to give the user

a consistent feel for how long it takes to move a cer-

tain distance. As with regular video, it is desirable to

have a higher frame rate so that motion appears smooth.

To maintain a constant frame rate, the system sleeps for

an interval between frames. It is important to have this

idle time because other work (such as decoding video

streams) needs to be done as well.

For this experiment, we set the frame rate at 15fps, a

rate that delivers relatively smooth transitions and gives

the CPU ample time to do other required processing. As

Table 1 indicates, fifteen simultaneous video feeds is

about the maximum the system can handle. The aver-

age frame rate dips to 14fps at this point, but the CPU

utilization is not yet at 100 percent. This means that oc-

casionally the load causes the frame rate to be a little

behind, but in general it is keeping up. Jumping to 20

simultaneous connections pins the CPU at 100 percent,

and causes the frame rate to drop down to 10fps. Once

the CPU is at 100 percent, performance feels slower to

the user. It takes longer for the system to respond to

commands, and there is a noticeable pause during the

transitions each time the path plan is re-computed.

To evaluate the cost of increasing the number of cam-

eras, still image generation was turned on when the

system load was reduced to the 15 connection sweet

spot. Recall that still images are generated in a sepa-

rate thread, and there is a fixed-size queue that limits

the number of images that are considered. Still images

are replaced with newer ones that are of better quality,

and there can only be one camera in a certain radius and

orientation range. What this means is that there are a fi-

nite number of still images that can exist within a certain

area even if there are multiple live camera present. The

only effect having multiple live cameras may have is to

decrease the time it takes to arrive at maximum camera

coverage, and to decrease the average age of the images.

This assumes, of course, that the cameras are moving in-

dependently and all are equally likely to be at any point

in the region being covered.

The live cameras were limited to a rectangular region

that was 60x40 meters. A still image camera controlled

a region with a three meter radius for orientations that

were within 15 degrees. If there was a camera that was

within three meters of the new camera and it had an ori-

entation that was within 15 degrees of the new camera’s

orientation, it would be deleted.

We let the system get to a steady state of about 550

still images. The number of new images grows rapidly

at first, but slows as the density increases and more of the

new images just replace ones that already exist. It took

roughly 5 minutes to increase from 525 stills to 550. At

this steady state, we again measured the frame rate at

14fps and the CPU utilization at the same 95 percent.

The system still felt responsive from a user perspective.

These results indicate that it is not the increase in cam-

eras and the resulting load on the R-Tree that is respon-

sible for system degradation; it is instead the increase

in the number of live cameras, and the processor cy-

cles required to decode their images. This shows that

the architecture is scalable. Since the decoding of each

video stream can be executed independently, the number

of streams that can be handled should scale linearly with

both the quantity and speed of the processors available.

Depending on the requirements of the user, it is possible

to reduce both the bandwidth consumed and the proces-

sor time spent decoding by throttling the frame rates of

the cameras not being viewed. This would reduce the

number of still images that are generated; a tradeoff that

only the user can make.

7.3 Robustness to Change

The investment made in an architecture is only war-

ranted if it provides on-going value; in particular it

should be durable with respect to changing user require-

ments, and aid the incorporation of the changes dictated

by those new requirements. Below we discuss several

such changes, some performed, others as yet planned.

Only one of these changes was specifically anticipated

in the design of the architecture.

7.3.1 Planned Modification

The hitchhiking metaphor has dominated our design up

to this point. Another compelling modality for Real-

ityFlythrough is best described as the virtual camera

metaphor. Instead of selecting the video stream to view,

the user chooses the position in space that she wishes to

view, and the best available image for that location and

orientation is displayed. “Best” can either refer to the

quality of the fit or the recency of the image.

It should come as no surprise that the virtual camera

metaphor inspired much of the present design, so there

is a fairly straight forward implementation to support it.

The Virtual Camera is already a first class citizen in the

architecture. To handle a stationary virtual camera, the

only piece required is a Transition Planner that runs pe-

riodically to determine the “best” image to display. Part

of the virtual camera metaphor, though, is supporting

free motion throughout the space using video game style

navigation controls. The difficulty we will face imple-

menting this mode is in minimizing the number of im-

ages that are displayed to prevent the disorienting image

overload. This problem was easily managed with the

hitchhiking mode because a fixed (or semi-fixed) path is

being taken. The path allows the future to be predicted.

The only predictive element available in the virtual cam-

era mode is that the user will probably continue traveling

in the same direction. It remains to be seen if this is an

adequate model of behavior.

Another measure of a good architecture is that it is

no more complicated than necessary; it does what it was

designed to do and nothing more. The plan to support a

virtual camera mode explains why the Camera is used as

the primary representation for data in the system. Once

still images, video cameras, and “views” are abstracted

as cameras, they all become interchangeable allowing

for the simple representation of complicated dynamic

transitions between images.

7.3.2 Unplanned Modifications

In Section 7.1 we described three modifications to the

system that needed to be made between the first and sec-

onds runs of the experiment. Since these modifications

were unplanned, they speak to the robustness of the ar-

chitecture.

Reduce Image Overload. The goal of the first mod-

ification was to reduce the number of images that were

displayed during transitions. This change had the most

dramatic impact on the usability of the system, making

the difference between a successful and unsuccessful ex-

perience. The modification was limited to the Transition

Planner, and actually only involved tweaking some con-

figuration parameters. In Section 6.3 it was revealed that

the current and final destination cameras are given an ad-

ditional boost in their fitness. Adjusting the value of this

boost does not even require a re-start of the system.

Moving Camera Acquisition. The second modifica-

tion also involved transition planning, but in this case

the change occured in the Path class. The goal was

to improve the user’s experience as she transitions to a

moving target. The partial solution to this problem—

implemented for the second experiment—adjusts the

path that the user takes so that she first moves to the des-

tination camera’s original location and orientation, and

then does a final transition to the new location and orien-

tation. This makes the bulk of the transition smooth, but

the system may still need to make some course correc-

tions during the final transition. We presented some pos-

sible solutions to this “last mile” problem in Section 7.1,

and we explore them here. One option is to display the

last 10 or so frames of the destination camera in addition

to the current frame. This would have the effect of filling

in the scene around the current field of view and reduc-

ing the jumpiness that the user experiences. Despite the

apparent complexity of this suggestion, the modification

is relatively straightforward because of the Virtual Cam-

era abstraction. A Physical Camera can be created from

each of the previous frames (as is done during still image

generation), and these new cameras can be added onto

the camera queue that is a part of every Virtual Camera.

The queue is a fixed size, so the older frames will nat-

urally be pushed off and destroyed. All of the logic for

rendering these additional cameras is already in place so

no other modifications would be required. The other al-

ternative suggested for handling the “last mile” problem

was to boost the speed of the transition to make the final

aquisition happen faster. This would create a Star Wars

style “warp speed” effect. This modification can easily

be handled by modifying the Transition Planner to boost

the speed of the transition when it detects that it is in the

“last mile” phase.

Location Accuracy Filtering. The final modification

to the system was a little more substantial since it re-

quired modification to both the client and server soft-

ware. The goal was to filter the still images on loca-

tion accuracy. This change would have been trivial if we

were already retrieving location accuracy from the sen-

sors. As it was, the Sensor Capture component on the

client had to be modified to grab the data, and then on

the server side we had to add a location error field to our

Position class. Now that every Position had an error as-

sociated with it, it was a simple matter to modify the Still

Image Generator to do the filtering.

7.3.3 Future Modifications

Better High Level Abstraction. Forming continual cor-

relations between the first-person-view and the 2d bird-

seye representation takes cognitive resources away from

the flythrough scene and its transitions. We hope to be

able to integrate most of the information that is present

in the birdseye view into the main display. Techniques

akin to Halos [1] may be of help.

This modification to the system should only affect the

First Person View. Since we want to present the state in-

formation that is already available in the Birdseye View,

that same information need only be re-rendered in a way

that is consistent with the First Person View. If we want

to create a wider field of view we could increase the field

of view for the virtual camera that makes up the view.

Another possibility is to generate additional views that

are controlled by other virtual cameras. For example a

window on the right of the display could be controlled

by a virtual camera that has a position source offset by

45 degrees.

Sound. Sound is a great medium for providing con-

text, and could be an inexpensive complement to video.

By capturing the sound recorded by all nearby cameras,

and projecting it into the appropriate speakers at the ap-

propriate volumes to preserve spatial context, a user’s

sense of what is going on around the currently viewed

camera should be enhanced.

Sound will be treated like video. Each Physical Cam-

era will have a Sound Source added to it, and new views

supporting sound will be created. There might be a

3D Sound View which projects neighboring sounds, and

a regular Sound View for playing the sound associated

with the dominant camera.

Scale to Multiple Viewers with Multiple Servers.

Currently RealityFlythrough only supports a single user.

How might the system scale to support multiple users?

The MCU component currently resides on the same ma-

chine as the engine. One possibility is to move the MCU

to a separate server which can be done relatively easy

since the coupling is weak. The problem with this ap-

proach, though, is that the MCU is decompressing the

data. We would either have to re-compress the data,

which takes time, or send the data uncompressed, which

takes a tremendous amount of bandwidth. A better ap-

proach would be to leave the MCU where it is and in-

troduce a new relay MCU on the new server layer. The

purpose of the relay MCU would be to field incoming

calls, notify the MCU of the new connections, and if the

MCU subscribed to a stream, forward the compressed

stream.

With the latter approach we could also support con-

necting to multiple servers. The MCU is already capable

of handling multiple incoming connections, so the main

issue would be one of discovery. How would the viewer

know what server/s could be connected to? What would

the topography of the network look like? We leave these

questions for future work.

It is not clear where still image generation would oc-

cur in such a model. The easiest solution is to leave it

where it is: on the viewing machine. This has the ad-

ditional benefit of putting control of image generation in

the individual user’s hands. This benefit has a drawback,

though. Still images can only be generated if the user is

subscribed to a particular location, and then only if there

are live cameras in that location. What if a user wants to

visit a location at night when it is dark? It’s possible that

the user wants to see the scene at night, but it is equally

likely that she wants to see older daytime imagery. If

the still images are captured server side, this would be

possible.

Since server-side still image generation may stress the

architecture, we consider it here. The engine would not

have to change much. We would need a Still Image Gen-

erated listener to receive notifications about newly gen-

erated cameras. A corresponding Still Image Destroyed

listener may also be required. The camera that is created

would have a new Image Source type called Remote Im-

age Source. The Position Source would remain locally

static. The Remote Image Source could either pre-cache

the image, or request it on the fly as is currently done.

Performance would dictate which route to take.

8 Conclusion

Each of the modifications presented is limited to very

specific components in the architecture. This indicates

that the criteria used for separating concerns and com-

ponentizing the system was sound. Our experiments

showed good support for the desired abstractions, as

well as excellent scalability in the number of live video

sources and Cameras.

We have presented an architecture for a system that

harnesses ubiquitous video by providing the abstraction

of infinite camera coverage in an environment that has

few live cameras. We accomplished this abstraction by

filling in the gaps in coverage with the most recent still

images that were captured during camera pans. The ar-

chitecture is able to support this abstraction primarily

because of the following design decisions: (1) The Cam-

era is the primary representation for data in the system,

and is the base class for live video cameras, still im-

ages, virtual cameras, and even the environment state.

Because all of these constructs are treated as a camera,

they can be interchanged, providing the user with the

best possible view from every vantage point. (2) The

Transition Planner is an independent unit that dynami-

cally plans the route to a moving target and determines

the imagery to display along the way. New imagery is

displayed using an alpha blend which provides the illu-

sion of seamlessness while at the same time revealing

inconsistencies. The system is providing full disclosure:

helping the user make sense of the imagery, but revealing

inconsistencies that may be important to scene compre-

hension. Because the Transition Planner is responsible

for path planning, image selection, and the blending of

the imagery, it has a huge impact on the success of Re-

alityFlythrough. Having the control of such important

experience characteristics in a single componenent and

having many of those characteristics be user controllable

is key to the sucess of the current design. (3) Agressive

use of the Model-View-Controller design pattern made

the addition of the very important Birdseye View triv-

ial, and allows for future expandability. Many of the

enhancements outlined in the previous section will be

accomplished by simply adding new views.

References

[1] P. Baudisch and R. Rosenholtz. Halo: a technique for vi-

sualizing off-screen objects. In Proceedings of the con-

ference on Human factors in computing systems, pages

481–488. ACM Press, 2003.

[2] D. Brin. The Transparent Society. Perseus Books, 1998.

[3] E. W. Dijkstra. The structure of the “THE”-

multiprogramming system. Comm. ACM, 11(5):341–

346, 1968.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[5] A. Guttman. R-trees: a dynamic index structure for spa-

tial searching. In Proceedings of the 1984 ACM SIGMOD

international conference on Management of data, pages

47–57. ACM Press, 1984.

[6] H. Jones and P. Hinds. Extreme work teams: using swat

teams as a model for coordinating distributed robots.

In Proceedings of the 2002 ACM conference on Com-

puter supported cooperative work, pages 372–381. ACM

Press, 2002.

[7] T. Kanade, P. Rander, S. Vedula, and H. Saito. Virtualized

reality: digitizing a 3d time varying event as is and in real

time, 1999.

[8] H. Kuzuoka, G. Ishimo, Y. Nishimura, R. Suzuki, and

K. Kondo. Can the gesturecam be a surrogate? In EC-

SCW, pages 179–, 1995.

[9] J. Leigh, A. E. Johnson, T. A. DeFanti, and M. D. Brown.

A review of tele-immersive applications in the CAVE re-

search network. In VR, pages 180–, 1999.

[10] N. J. McCurdy and W. G. Griswold.

Harnessing mobile ubiquitous video.

http://www.cse.ucsd.edu/users/wgg/CSE118/rtf-percom-

sub.pdf, 2004.

[11] N. J. McCurdy and W. G. Griswold. Tele-

reality in the wild. UBICOMP’04 Adjunct Proceed-

ings, 2004. http://activecampus2.ucsd.edu/

˜nemccurd/tele_reality_wild_video.wmv.

[12] U. Neumann, S. You, J. Hu, B. Jiang, and

J. Lee. Augmented virtual environments

(ave) for visualization of dynamic imagery.

http://imsc.usc.edu/research/project/virtcamp/ave.pdf,

undated.

[13] R. Szeliski. Image mosaicing for tele-reality applica-

tions. In WACV94, pages 44–53, 1994.

[14] S. Tachi. Real-time remote robotics - toward networked

telexistence. In IEEE Computer Graphics and Applica-

tions, pages 6–9, 1998.

[15] T. I. Wlans. An empirical characterization of instanta-

neous throughput in 802.11b wlans.

