Title
Polishing the Gold Standard: The Role of Orbital Choice in CCSD(T) Vibrational Frequency Prediction

Permalink

https://escholarship.org/uc/item/8gc3s1gn

Journal

Journal of Chemical Theory and Computation, 17(2)

ISSN

1549-9618

Authors

Bertels, Luke W
Lee, Joonho
Head-Gordon, Martin
Publication Date
2021-02-09
DOI
10.1021/acs.jctc.0c00746

Supplemental Material
https://escholarship.org/uc/item/8gc3s1gr\#supplemental
Peer reviewed

Polishing the Gold Standard: The Role of Orbital Choice in CCSD(T) Vibrational Frequency Prediction

Luke W. Bertels, ${ }^{\dagger}$ Joonho Lee, ${ }^{\dagger, \ddagger}$ and Martin Head-Gordon*, ${ }^{*, \llbracket}$
\dagger Department of Chemistry, University of California, Berkeley, California 94720, USA.
\ddagger Department of Chemistry, Columbia University, New York, New York 10027, USA.
【 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, USA.
E-mail: mhg@cchem.berkeley.edu

Abstract

While $\operatorname{CCSD}(\mathrm{T})$ with spin-restricted Hartree-Fock (RHF) orbitals has long been lauded for its ability to accurately describe closed-shell interactions, the performance of $\operatorname{CCSD}(\mathrm{T})$ on open-shell species is much more erratic, especially when using a spinunrestricted HF (UHF) reference. Previous studies have shown improved treatment of open-shell systems when a non-HF set of molecular orbitals, like Brueckner or KohnSham density functional theory (DFT) orbitals, is used as a reference. Inspired by the success of regularized orbital-optimized second-order Møller-Plesset perturbation theory (κ-OOMP2) orbitals as reference orbitals for MP3, we investigate the use of κ-OOMP2 orbitals and various DFT orbitals as reference orbitals for $\operatorname{CCSD}(\mathrm{T})$ calculations of the corrected ground-state harmonic vibrational frequencies of a set of 36 closed-shell (29 neutrals, 6 cations, 1 anion) and 59 open-shell diatomic species (38 neutrals, 15 cations, 6 anions). The aug-cc-pwCVTZ basis set is used for all calculations.

The use of κ-OOMP2 orbitals in this context alleviates difficult cases observed for both UHF orbitals and OOMP2 orbitals. Removing 2 multireference systems and 12 systems with ambiguous experimental data leaves a pruned data set. Overall performance on the pruned data set highlights $\operatorname{CCSD}(\mathrm{T})$ with a B97 orbital reference (CCSD (T) :B97), $\operatorname{CCSD}(\mathrm{T})$ with a κ-OOMP2 orbital reference $(\operatorname{CCSD}(\mathrm{T}): \kappa$-OOMP2), and $\operatorname{CCSD}(\mathrm{T})$ with a B97M-rV orbital reference ($\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97 \mathrm{M}-\mathrm{rV})$ with RMSDs of $8.48 \mathrm{~cm}^{-1}$ and $8.50 \mathrm{~cm}^{-1}$, and $8.75 \mathrm{~cm}^{-1}$ respectively, outperforming $\operatorname{CCSD}(\mathrm{T})$:UHF by nearly a factor of 5 . Moreover, the performance on the closed- and open-shell subsets show these methods are able to treat open-shell and closed-shell systems with comparable accuracy and robustness. $\operatorname{CCSD}(\mathrm{T})$ with RHF orbitals is seen to improve upon UHF for the closed-shell species while spatial symmetry breaking in a number of restricted openshell HF (ROHF) references leads $\operatorname{CCSD}(\mathrm{T})$ with ROHF reference orbitals to exhibit the poorest statistical performance of all methods surveyed for open-shell species. The use of κ-OOMP2 orbitals has also proven useful in diagnosing multireference character that can hinder the reliability of $\operatorname{CCSD}(\mathrm{T})$.

Introduction

Coupled cluster theory with single, double, and perturbative triple excitations $[\operatorname{CCSD}(\mathrm{T})]^{1}$ with spin-restricted Hartree-Fock (RHF) orbitals is considered the "gold standard" by many quantum chemists for its ability to routinely provide results approaching chemical accuracy for energies and properties of closed-shell species at a reasonable computational cost. ${ }^{2-4}$ With the ability to achieve sub-kcal mol ${ }^{-1}$ errors at a computational cost of $\mathcal{O}\left(N^{7}\right)$ and a memory cost of $\mathcal{O}\left(N^{4}\right)$, where N is the size of the basis, $\operatorname{CCSD}(\mathrm{T})$ strikes an advantageous accuracy-to-cost balance between coupled cluster theory with single and double excitations $(\mathrm{CCSD})^{5}\left(\mathcal{O}\left(N^{6}\right)\right.$ computational cost, $\mathcal{O}\left(N^{4}\right)$ memory cost) and explicit treatment of the triple excitations (CCSDT) $)^{6}\left(\mathcal{O}\left(N^{8}\right)\right.$ computational cost, $\mathcal{O}\left(N^{6}\right)$ memory cost). For openshell species, however, the performance of $\operatorname{CCSD}(\mathrm{T})$ (especially on top of spin-unrestricted

HF (UHF) orbitals) is less clear. A study of bond lengths and frequencies of 33 small radical species by Byrd et. al ${ }^{7}$ reported that $\operatorname{CCSD}(\mathrm{T})$ with a UHF reference $(\operatorname{CCSD}(\mathrm{T}): U H F)$ shows little to no statistical improvement over CCSD^{5} for geometries and frequencies. Beran et al., ${ }^{8}$ in a study of harmonic vibrational frequencies of diatomic radicals, reported poor behaviour of $\operatorname{CCSD}(\mathrm{T})$:UHF for several species in the set including, CO^{+}and NO. Subsequent studies of these problem systems by Szalay et. al ${ }^{9}$ investigated the source of this mixed performance. Stanton and Gauss ${ }^{10}$ reviewed several potential factors leading to this discrepancy in describing open-shell species, including multireference (MR) character, spincontamination, symmetry breaking, and instabilities and near-instabilities in the reference wavefunction. The use of restricted open-shell HF (ROHF) orbitals has been found to somewhat improve the performance on vibrational frequencies over UHF, though the former are prone to errors due to spatial symmetry breaking. ${ }^{10,11}$ While in the limit of full configuration interaction the energy and properties are invariant to the choice of reference orbitals, any truncated approximate method will incur some level of orbital dependence.

Several strategies have been proposed as alternative references to UHF for CC calculations. The use of Brueckner orbitals in CC theory (BCC), which by definition have no singles contribution to the coupled cluster wavefunction, attempts to incorporate the most important electron correlations at the level of the reference. ${ }^{12-16} \mathrm{BCC}$ approaches have been known to preserve wavefunction symmetries as well, yielding more accurate properties. ${ }^{17-20}$ In a similar vein, the molecular orbitals (MOs) can be directly optimized in the presence of CCD correlation energies as in the orbital-optimized coupled cluster doubles (OD) and orbital optimized coupled-cluster doubles and perturbative triples $[\mathrm{OD}(\mathrm{T})]$ approaches. ${ }^{21-23}$ The use of $\mathrm{OD}(\mathrm{T})$ by Beran et al. ${ }^{8}$ was shown to significantly suppress errors in the computed harmonic frequencies of $\mathrm{CN}, \mathrm{CO}^{+}$, and NO compared to $\mathrm{CCSD}(\mathrm{T}): \mathrm{UHF}$. Brueckner and/or optimized coupled cluster orbitals are costly to obtain; $\mathrm{BCCD}(\mathrm{T})$ and $\mathrm{OD}(\mathrm{T})$ typically are far more computationally expensive than $\operatorname{CCSD}(\mathrm{T})$ as orbital optimization is often more challenging than varying the singles amplitude. Given this steep computational cost,
methods to approximate Brueckner or otherwise optimized orbitals at a lower cost are highly desirable.

One such approximate approach to incorporate correlation into the reference orbitals for a correlated calculation is the use of Kohn-Sham density functional theory (DFT) orbitals as a reference. The use of BLYP ${ }^{24,25}$ orbitals by Beran et al. ${ }^{8}$ was shown to substantially improve the computed vibrational frequencies of radical diatomic species over UHF orbitals. More recently, Fang et al. ${ }^{26}$ and Fang et al. ${ }^{27}$ have demonstrated the efficacy of CCSD(T) with DFT orbitals in the prediction of thermodynamic properties of UCl_{6} and several diatomic transition metal compounds, respectively. Aside from their use in CC calculations, DFT orbital references have been used successfully for excited state configuration interaction, ${ }^{28}$ as guiding functions in quantum Monte Carlo, ${ }^{29}$ and for perturbation theory in the context of double-hybrid DFT^{30} and scaled third-order MP theory (MP3). ${ }^{31}$ In addition to their inexpensive computational cost $\left(\mathcal{O}\left(N^{3}\right)\right)$, DFT orbitals offer improved stability against symmetry breaking compared to HF orbitals. ${ }^{32} \mathrm{~A}$ connection between DFT orbitals and Brueckner orbitals has been proposed by several researchers as well. ${ }^{33-35}$

Orbital-optimized second-order Møller-Plesset perturbation theory (OOMP2) and its variants offer another way to approximate higher-order orbital optimized-methods at a cost of $\mathcal{O}\left(N^{5}\right)$ per iteration. ${ }^{36-38}$ Orbital optimization at the MP2 level, in addition to improving energetics, is often seen to reduce spin-contamination in the optimized reference. ${ }^{36,37,39}$ Recently Haggag et al. ${ }^{40}$ utilized OOMP2 reference orbitals for CC calculations on the triplet state of permanganate to combat spin contamination seen at the UHF level. Despite these benefits, OOMP2 exhibits three unsatisfying characteristics that limit its application: divergence in the cases of small orbital energy gaps, ${ }^{41}$ the loss of Coulson-Fischer points, ${ }^{42}$ and "artificial" symmetry restoration. ${ }^{43,44}$ The correlation energy functional for MP2 is

$$
\begin{equation*}
E_{\mathrm{MP} 2}=-\frac{1}{4} \sum_{i j a b} \frac{|\langle i j \| a b\rangle|^{2}}{\Delta_{i j}^{a b}} \tag{1}
\end{equation*}
$$

where $\Delta_{i j}^{a b}=\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}$ is the non-negative orbital energy denominator. This energy is seen to diverge in cases where the denominator becomes small, as can occur when stretching bonds. This behavior leads to poor performance of OOMP2 when predicting harmonic vibrational frequencies due to over-stabilization of bond-stretched configurations. ${ }^{41}$ Secondly, OOMP2 often fails to continuously transition from restricted to unrestricted solutions even when the unrestricted solution is lower in energy. ${ }^{45}$ Thirdly, OOMP2 has been shown in some cases to "artificially" restore spin-symmetry to systems where the spin symmetry breaking is an "essential" feature of the system due to MR character of the system. ${ }^{43,44}$

In order to address the problematic aspects of OOMP2, two of us developed κ-OOMP2, a regularized variant of OOMP2. ${ }^{38}$ The κ-OOMP2 correlation energy functional is given by

$$
\begin{equation*}
E_{\kappa-\mathrm{OOMP} 2}(\kappa)=-\frac{1}{4} \sum_{i j a b} \frac{|\langle i j \| a b\rangle|^{2}}{\Delta_{i j}^{a b}}\left(1-e^{-\kappa \Delta_{i j}^{a b}}\right)^{2}, \tag{2}
\end{equation*}
$$

where κ is a regularization parameter that damps contributions to the correlation energy when the orbital energy denominator becomes small. Regularization parameter values $\kappa \leq 1.5 E_{h}^{-1}$ were shown to restore Coulson-Fischer points for a series of bond-breaking curves. ${ }^{38}$ Training of the regularization parameter on the W4-11 thermochemistry data set ${ }^{46}$ led to an optimal κ value of $1.45 E_{h}^{-1} .{ }^{38}$ With this parameter value, κ-OOMP2 was able to outperform OOMP2 on the TA13 data set ${ }^{47}$ of radical-closed-shell interaction energies. ${ }^{38}$ Further application to symmetry breaking in fullerenes revealed the ability of κ-OOMP 2 to distinguish between essential and artificial symmetry breaking. ${ }^{43,44}$

We recently developed a scaled variant of MP3 that utilizes κ-OOMP2 orbitals as a reference which we will denote as MP2.8: κ-OOMP2. ${ }^{48}$ MP2.8: κ-OOMP2 and its unscaled version, MP3: κ-OOMP2, outperformed CCSD on five of the seven data sets investigated at the cost of a single $\mathcal{O}\left(N^{6}\right)$ iteration. The use of κ-OOMP2 orbitals strongly improves upon the performance of MP3 with UHF orbitals as well, especially in cases of spin-symmetry breaking.

Inspired by MP2.8: κ-OOMP2, ${ }^{48}$ the work of Beran et al., ${ }^{8}$ and the success of κ-OOMP2 in treating radical species in the TA13 set ${ }^{38}$ and in producing minimally spin-contaminated references for biradicaloid systems, ${ }^{49}$ in this work we explore the use of κ-OOMP2 orbitals as a reference for $\operatorname{CCSD}(\mathrm{T})$ computation of vibrational frequencies. Errors are calculated with respect to experimental values and compared against $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals, OOMP2 orbitals, and several flavors of DFT orbitals. This use of κ-OOMP2 orbitals as a reference for $\operatorname{CCSD}(\mathrm{T})$ was previously explored in the computation of spin-gaps in an iron porphyrin complex and showed an improvement over conventional $\operatorname{CCSD}(\mathrm{T}) .{ }^{50}$

Computational Methods

We consider nine methods as generators of MOs for use as references: UHF, R(O)HF, two OOMP2 methods (OOMP2 ${ }^{36,37,51}$ and κ-OOMP2 ${ }^{38}$), and five density functionals (BLYP, ${ }^{24,25}$ B97M-rV, ${ }^{52}$ B97, ${ }^{53} \omega \mathrm{~B} 97 \mathrm{X}-\mathrm{V},{ }^{54}$ and $\left.\omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}^{55}\right)$. A regularization parameter value of $\kappa=1.45 E_{h}^{-1}$ was chosen for κ-OOMP2, as suggested by Lee and Head-Gordon. ${ }^{38}$ Both the OOMP2 and κ-OOMP2 calculations were carried out using the resolution-of-the-identity (RI) approximation. ${ }^{56,57}$ The functionals B97M-rV, B97, $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}$, and $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}$ were chosen on the basis of their performance in a recent benchmark of over 200 density functionals in which they were found to be the best performing meta-GGA, global hybrid GGA, range-separated hybrid GGA, and range-separated hybrid meta-GGA functionals, respectively. ${ }^{58}$ The DFT calculations were performed using an ultra-fine integration grid of 99 radial points and 590 angular points per atom. Wavefunction stability analysis ${ }^{45,59}$ was performed on the UHF and DFT solutions to ensure that all orbitals used properly minimize their corresponding SCF energies. All unstable solutions (saddle points) were displaced and reoptimized to local minima. OOMP2 and κ-OOMP2 calculations were performed starting from a locally stable UHF solution. Both the reference calculations and $\operatorname{CCSD}(\mathrm{T})$ calculations were performed using unrestricted wavefunctions with the exception of the RHF and ROHF references. Orbitals
for the non-HF references were semi-canonicalized prior to the CC calculations.
All calculations were performed with the aug-cc-pwCVTZ basis ${ }^{60-64}$ set to capture the effects of core correlation. A core-valence basis set was utilized to account for the role of core-valence correlations in molecular property calculations. The use of the weighted, triple- ζ variant is justified by the faster convergence of properties to the complete basis set limit seen with cc-pwCVnZ over cc-pCVnZ. ${ }^{62}$ Augmented functions were chosen to better treat the anions in the data set. The corresponding auxiliary basis set was utilized for the OOMP2 and κ-OOMP2 calculations (with cc-pwCVQZ-RI utilized for Li , Be , Na , and Mg). ${ }^{65-67}$ Atoms H-F have all electrons correlated and atoms $\mathrm{Na}-\mathrm{Cl}$ utilize a frozen He core. All electronic structure calculations were performed using the Q-Chem package of electronic structure programs. ${ }^{68}$ For a given reference, the corrected harmonic vibrational frequency was determined by fitting a quartic polynomial to seven equally-spaced points ($0.005 \AA$ between adjacent points) distributed near the minimum of the potential and applying Dunham analysis to the fitting coefficients to account for the effects of rotation. ${ }^{69}$ Equilibrium bond lengths from the fitting procedure are reported in Tab. S2 and S3. The frequencies were computed with the atomic masses corresponding to the most prevalent isotopomers.

Experimental Data Selection

For simplicity and due to the lack of analytic first derivatives of the $\operatorname{CCSD}(\mathrm{T})$ energy with respect to nuclear displacements for non-HF references, we restricted the systems of study in this work to diatomic species for which the ground state potential energy surface can be determined via fitting to single point calculations. Beginning from all diatomics of row 2 and row 3 species (and hydrogen) for which Huber and Herzberg ${ }^{70}$ report ground state harmonic frequencies, we include all species for which we were able to compute a smooth potential energy surface about the corresponding equilibrium bond length for each method (excluded species are listed in Tab. S7). The overall data set contains 36 closed-shell
species (29 neutrals, 6 cations, 1 anion) and 59 open-shell species (38 neutrals, 15 cations, 6 anions; 46 doublets, 13 triplets). Among other species in this data set, we include all 12 species from Beran et al. ${ }^{8}$ as well as several isovalent analogues of these species containing row 3 elements. Other notable inclusions are $\mathrm{B}_{2}\left(X^{3} \Sigma_{g}^{-}\right)$and $\mathrm{C}_{2}\left(X^{1} \Sigma_{g}^{+}\right)$, both known to exhibit MR behavior in their ground states, ${ }^{46,71}$ and $\mathrm{F}_{2}\left(X^{1} \Sigma_{g}^{+}\right)$, a biradicaloid diamagnetic system know that is unbound at the UHF level of theory. ${ }^{72}$ Where available, experimental frequencies were updated with data from Irikura. ${ }^{73}$ Frequencies for $\mathrm{OH}^{-}, \mathrm{F}_{2}{ }^{+}$, and SO^{+} were updated with more recent experimental data from Hotop et al., ${ }^{74}$ Cormack et al., ${ }^{75}$ and Milkman et al., ${ }^{76}$ respectively.

Results and Discussion

Vibrational frequencies

Fig. 1 presents the errors in the corrected vibrational frequencies on the closed- and openshell subsets for each method as box plots. In these plots, the boxed region represents data from the first to the third quartile of the distribution, a red line marks the median of the data, whiskers enclose all data within 1.5 times the inter-quartile distance of the upper and lower box edges, and points mark data lying outside of these regions. Tab. 1 presents the root mean square deviations (RMSD), mean signed deviations (MSD), most negative deviations (MIN), and most positive deviations (MAX), all in cm^{-1}, of the corrected vibrational frequencies from the experimental frequencies for the overall data set. $\operatorname{CCSD}(\mathrm{T}): \kappa$-OOMP2 is seen to give the best overall performance in terms of RMSDs with a value of $17.66 \mathrm{~cm}^{-1}$, reducing the RMSD for $\operatorname{CCSD}(\mathrm{T}): \mathrm{UHF}$ by more than a factor of two. $\operatorname{CCSD}(\mathrm{T}): O O M P 2$ is seen to perform slightly worse but still improves on the $\operatorname{CCSD}(\mathrm{T}): \mathrm{UHF}$ RMSD by a factor of 2 . The performance of the DFT orbital approaches is hindered by the presence of C_{2}, representing the MIN value for all functionals tested. The MAX value, corresponding to PH^{+}, is shared
among all non-HF methods tested. $\operatorname{CCSD}(\mathrm{T}): \mathrm{R}(\mathrm{O}) \mathrm{HF}$ is seen to give the worst performance, dominated by large blue-shifts for $\mathrm{C}_{2}, \mathrm{~B}_{2}$, and $\mathrm{N}_{2}{ }^{+}$. On average the frequencies are slightly blue-shifted for $\operatorname{CCSD}(\mathrm{T}): \mathrm{UHF}$ and slightly red-shifted for all other methods.

Figure 1: Box plots (overall, left, and enhanced, right) of the errors in corrected vibrational frequencies (in cm^{-1}) are presented. Red lines mark the median errors, boxes bound the central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile range of the box edges, and points denote outlying data.

Table 1: Root mean square deviations, mean signed deviations, most negative deviations, and most positive deviations (all in cm^{-1}) for the predicted corrected vibrational frequencies of all species are summarized for the $\operatorname{CCSD}(\mathrm{T})$ methods utilizing different molecular orbital references.

	$\begin{gathered} \hline \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{UHF}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{R}(\mathrm{O}) \mathrm{HF}) \end{gathered}$	$\begin{aligned} & \Delta \text { (CCSD(T): } \\ & \kappa \text {-OOMP2) } \end{aligned}$	$\begin{gathered} \hline \Delta(\text { CCSD(T): } \\ \text { OOMP2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { BLYP) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \text { (CCSD(T): } \\ \omega \text { B97X-V) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \\ \hline \end{gathered}$
RMSD	41.05	66.09	17.66	18.82	24.75	26.75	26.35	31.19	29.77
MSD	4.35	-12.31	-2.19	-1.80	-4.99	-4.36	-4.05	-4.71	-5.45
MIN	-240.71	-473.73	-64.06	-64.26	-142.01	-186.68	-187.50	-246.37	-184.40
MAX	177.65	88.51	90.68	88.43	87.87	86.24	88.25	89.26	89.52

Closed-shell subset

Table 2: Experimental vibrational frequencies (in cm^{-1}) and errors (in cm^{-1}) in the corrected vibrational frequencies for the 36 closed-shell species are presented in for the $\operatorname{CCSD}(\mathrm{T})$ methods utilizing different molecular orbitals. Root mean square deviations, mean signed deviations, most negative deviations, and most positive deviations (all in cm^{-1}) for the set of species and subsets are also presented.

Row 2	Dimer	State	Expt.	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{UHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{RHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \kappa \text {-OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{BLYP}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
	LiH	$X^{1} \Sigma^{+}$	$1405.49805^{\text {a }}$	-7.12	-7.12	-8.81	-2.59	-8.41	-9.83	-2.50	-8.68	-6.13
	Li_{2}	$X^{1} \Sigma_{g}^{+}$	$351.4066^{\text {a }}$	-11.40	-2.21	-16.69	-16.52	-15.37	-13.54	-1.76	-16.24	-11.40
	LiF	$X^{1} \Sigma^{+}$	$910.57272^{\text {a }}$	-5.10	-5.10	-5.60	-6.23	-6.96	-6.37	-6.23	-6.09	-6.07
	BeH^{+}	$X^{1} \Sigma^{+}$	$2221.7^{\text {b }}$	-11.81	-11.81	-13.69	-12.35	-16.41	-13.93	-16.22	-11.43	-10.61
	BeO	$X^{1} \Sigma^{+}$	$1487.32{ }^{\text {b }}$	-20.79	-20.79	-17.36	-21.83	-20.41	-19.22	-20.00	-18.16	-18.40
	BH	$X^{1} \Sigma^{+}$	$2366.7296{ }^{\text {a }}$	-2.51	-1.20	0.49	-1.09	-1.00	-1.63	-1.02	-0.97	2.51
	BF	$X^{1} \Sigma^{+}$	$1402.15865^{\text {a }}$	-10.53	-10.53	-12.64	-13.60	-15.41	-13.50	-13.60	-12.88	-13.02
	C_{2}	$X^{1} \Sigma_{g}^{+}$	$1855.0663^{\text {a }}$	52.18	-473.73	-29.19	-15.21	-142.01	-186.68	-187.50	-246.37	-184.40
	CO	$X^{1} \Sigma^{+}$	$2169.75589^{\text {a }}$	-16.15	-16.15	-18.53	-19.25	-20.34	-18.52	-18.76	-18.10	-18.13
	N_{2}	$X^{1} \Sigma_{g}^{+}$	$2358.57^{\text {a }}$	-4.81	-4.81	-5.92	-6.09	-6.74	-5.86	-6.13	-5.77	-5.85
	NO^{+}	$X^{1} \Sigma^{+}$	$2376.72^{\text {a }}$	-7.36	-7.36	-9.86	-9.73	-11.48	-10.19	-9.78	-9.70	-9.60
	OH^{-}	$X^{1} \Sigma^{+}$	$3735.2^{\text {c }}$	-0.73	-0.73	-2.05	-6.68	-0.99	0.86	-0.98	0.55	-0.33
	HF	$X^{1} \Sigma^{+}$	$4138.385^{\text {a }}$	-7.04	-7.04	-9.66	-8.96	-8.06	-7.40	-8.24	-7.48	-7.40
	F_{2}	$X^{1} \Sigma_{g}^{+}$	$916.929^{\text {a }}$	60.05	0.83	3.10	3.57	3.20	3.06	3.00	2.93	2.73
	RMSD			23.32	126.94	13.29	11.97	39.74	51.03	51.14	66.67	50.25
	MSD			0.49	-40.55	-10.46	-9.75	-19.31	-21.62	-20.69	-25.60	-20.44
	MIN			-20.79	-473.73	-29.19	-21.83	-142.01	-186.68	-187.50	-246.37	-184.40
	MAX			60.05	0.83	3.10	3.57	3.20	3.06	3.00	2.93	2.73
Row 2-	Dimer	State	Expt.	$\Delta(\operatorname{CCSD}(\mathrm{T})$:	$\Delta(\operatorname{CCSD}(\mathrm{T}):$	$\Delta(\operatorname{CCSD}(\mathrm{T})$:						
Row 3				UHF)		κ-OOMP2)	OOMP2)	BLYP)	B97M-rV)	B97)	$\omega \mathrm{B97X}-\mathrm{V})$	$\omega \mathrm{B} 97 \mathrm{M}-\mathrm{V})$
	NaH	$X^{1} \Sigma^{+}$	$1171.968^{\text {a }}$	-8.85	-8.85	-9.09	-9.02	7.76	-9.10	7.98	7.86	8.02
	NaLi	$X^{1} \Sigma^{+}$	$256.5412^{\text {a }}$	-1.17	-2.62	-0.85	-3.97	-29.30	-1.75	-12.05	-1.76	-1.76
	NaF	$X^{1} \Sigma^{+}$	$535.65805^{\text {a }}$	-5.05	-5.05	-5.43	-5.87	-6.35	-5.99	-5.62	-5.61	-5.57
	MgH^{+}	$X^{1} \Sigma^{+}$	1699.1^{b}	-10.18	-10.18	-12.48	-12.48	-12.96	-11.67	-10.62	-11.98	-12.33
	AlH	$X^{1} \Sigma^{+}$	$1682.37474{ }^{\text {a }}$	-15.37	-16.73	-13.07	-12.95	-15.55	-21.21	-12.58	-16.38	-12.04
	AlF	$X^{1} \Sigma^{+}$	$802.32447^{\text {a }}$	-8.87	-8.87	-9.64	-10.18	-11.23	-10.23	-10.19	-9.86	-9.95
	SiH^{+}	$X^{1} \Sigma^{+}$	$2157.17^{\text {a }}$	-4.24	-7.01	-1.20	-4.25	-1.28	-4.20	-2.62	-6.51	-2.32
	SiO	$X^{1} \Sigma^{+}$	$1241.54388^{\text {a }}$	-10.51	-10.51	-11.60	-15.61	-14.30	-12.50	-12.45	-11.07	-11.14
	PN	$X^{1} \Sigma^{+}$	$1336.948^{\text {a }}$	33.01	-4.82	-5.90	-7.60	-6.56	-5.54	-5.84	-5.45	-5.57
	BeS	$X^{1} \Sigma^{+}$	$997.94{ }^{\text {a }}$	-240.71	-9.00	-8.22	-8.10	-7.73	-8.00	-7.74	-7.96	-7.20
	CS	$X^{1} \Sigma^{+}$	$1285.08^{\text {b }}$	-5.98	-5.98	-7.54	-9.54	-9.31	-8.00	-7.98	-6.94	-7.13
	NS ${ }^{+}$	$X^{1} \Sigma^{+}$	$1415{ }^{\text {b }}$	52.10	3.90	3.37	3.04	2.40	3.51	3.15	3.47	3.24

	HCl	$X^{1} \Sigma^{+}$	$2990.9248^{\text {a }}$	16.30	16.30	14.11	15.27	16.82	16.86	15.88	16.93	16.10
	LiCl	$X^{1} \Sigma^{+}$	$642.95453^{\text {a }}$	-7.45	-7.45	-7.55	-7.57	-7.65	-7.58	-7.73	-7.49	-7.82
	BCl	$X^{1} \Sigma^{+}$	$840.29472^{\text {a }}$	-2.91	-2.09	-2.44	-3.45	-4.81	-4.04	-3.51	-2.66	-2.84
	CCl^{+}	$X^{1} \Sigma^{+}$	$1175^{\text {b }}$	2.19	2.19	-4.74	-11.35	-9.69	-6.52	-6.24	-3.41	-3.94
	ClF	$X^{1} \Sigma^{+}$	$783.4534{ }^{\text {a }}$	-7.29	-7.29	-7.02	-6.99	-6.08	-5.87	-6.00	-6.31	-6.33
	RMSD			60.79	8.63	8.31	9.47	11.86	9.68	8.89	8.83	8.23
	MSD			-13.23	-5.05	-5.25	-6.51	-6.81	-5.99	-4.95	-4.42	-4.03
	MIN			-240.71	-16.73	-13.07	-15.61	-29.30	-21.21	-12.58	-16.38	-12.33
	MAX			52.10	16.30	14.11	15.27	16.82	16.86	15.88	16.93	16.10
Row 3- Row 3	Dimer	State	Expt.	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{UHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{RHF}) \end{gathered}$	$\begin{aligned} & \Delta(\operatorname{CCSD}(\mathrm{T}): \\ & \kappa \text {-OOMP2) } \end{aligned}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{BLYP}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
	NaCl	$X^{1} \Sigma^{+}$	$364.6842^{\text {a }}$	-5.25	-5.25	-5.27	-5.29	-5.31	-5.41	-5.31	-5.27	-5.29
	AlCl	$X^{1} \Sigma^{+}$	$481.77466^{\text {a }}$	-7.43	-7.43	-7.38	-7.50	-7.88	-7.70	-7.60	-7.44	-7.47
	SiS	$X^{1} \Sigma^{+}$	$749.64559^{\text {a }}$	-8.84	-8.84	-8.35	-9.41	-9.62	-9.05	-8.96	-8.42	-8.43
	P_{2}	$X^{1} \Sigma_{g}^{+}$	$780.77^{\text {a }}$	32.77	-4.64	-4.41	-4.67	-4.68	-4.38	-4.48	-4.47	-4.52
	Cl_{2}	$X^{1} \Sigma_{g}^{+}$	$559.751^{\text {a }}$	-11.83	-11.83	-11.64	-11.69	-11.64	-11.63	-11.59	-11.66	-11.63
	RMSD			16.58	8.03	7.84	8.14	8.25	8.06	8.01	7.87	7.88
	MSD			-0.11	-7.60	-7.41	-7.71	-7.83	-7.64	-7.59	-7.45	-7.47
	MIN			-11.83	-11.83	-11.64	-11.69	-11.64	-11.63	-11.59	-11.66	-11.63
	MAX			32.77	-4.64	-4.41	-4.67	-4.68	-4.38	-4.48	-4.47	-4.52
Closedshell				$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{UHF}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{RHF}) \end{gathered}$	$\begin{aligned} & \Delta(\operatorname{CCSD}(\mathrm{T}): \\ & \kappa \text {-OOMP2) } \end{aligned}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { OOMP2) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{BLYP}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \\ \hline \end{gathered}$
	RMSD			44.66	79.44	10.48	10.36	26.27	32.65	32.61	42.12	31.98
	MSD			-6.07	-19.16	-7.58	-7.94	-11.82	-12.30	-11.44	-13.08	-10.89
	MIN			-240.71	-473.73	-29.19	-21.83	-142.01	-186.68	-187.50	-246.37	-184.40
	MAX			60.05	16.30	14.11	15.27	16.82	16.86	15.88	16.93	16.10

[^0]Tab. 2 presents the experimental vibrational frequencies, in cm^{-1}, and errors in the corrected vibrational frequencies, in cm^{-1}, for the 36 species in the closed-shell subset. We see that the use of OOMP2 or κ-OOMP2 orbitals is able to reduce the RMSD of UHF orbitals by a factor of 4 from $44.66 \mathrm{~cm}^{-1}$ to 10.36 and $10.48 \mathrm{~cm}^{-1}$, respectively. The use of DFT orbitals is also seen to reduce the RMSD, with BLYP outperforming the other functionals and ω B97X-V improving the RMSD by only $2.5 \mathrm{~cm}^{-1}$. On average, all methods are seen to red-shift the closed-shell frequencies by $5-12 \mathrm{~cm}^{-1}$.

The performance of $\operatorname{CCSD}(\mathrm{T})$ with DFT and RHF orbitals is most negatively impacted for the C_{2} system, with errors in excess of $-100 \mathrm{~cm}^{-1}$ for each. This data point also represents a negative outlier for $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 orbitals and a positive outlier for $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals. Its significant MR character renders C_{2} outside of the scope of the singlereference methods evaluated in this work. ${ }^{46,71}$ Judging from the mean-field $\left\langle S^{2}\right\rangle$ values (Tab. S8) for κ-OOMP2 and OOMP2 of 0.89140 and 0 , respectively, we observe that OOMP2 is "artificially" restoring symmetry in this case while the broken spin-symmetry of the κ OOMP2 reference orbitals is diagnostic of a MR problem, consistent with the literature. ${ }^{46,71}$ Spin-symmetry breaking in κ-OOMP2 as a signal of MR character has been demonstrated earlier in a study of fullerenes by Lee and Head-Gordon. ${ }^{43}$ Considering the other dimers in the closed-shell subset, $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals is seen to exhibit poor performance for $\mathrm{F}_{2}, \mathrm{PN}, \mathrm{BeS}, \mathrm{NS}^{+}$, and P_{2}, especially given that all other methods have absolute errors below $10 \mathrm{~cm}^{-1}$ for these species. These errors can be attributed to spin contamination of the reference orbital set. For UHF, the mean field $\left\langle S^{2}\right\rangle$ values for $\mathrm{F}_{2}, \mathrm{PN}, \mathrm{BeS}, \mathrm{NS}^{+}$, and P_{2} are $0.31922,0.70716,1.01647,0.69154$, and 0.67604 , respectively while the mean-field $\left\langle S^{2}\right\rangle$ values of κ-OOMP2, OOMP2, and the five DFT functionals for these species are all zero. The performance of RHF orbitals on these systems confirms that the UHF errors are largely due to spin-contamination. The large error for BeS at the $\operatorname{CCSD}(\mathrm{T})$:UHF level can be traced to the character of the UHF wavefunction, which localizes nearly an entire electron's spin density on each atomic center. The $\left\langle S^{2}\right\rangle$ value of 1.01647 shows significant
triplet contamination. In the absence of these symmetry-broken species (and MR C_{2}), the performance across the methods is largely equalized with RMSDs ranging from 9.5 to 12 cm^{-1}. The maximum error outlier for all non-HF references is attributed to $\mathrm{HCl} . \mathrm{NaLi}$ is also an outlying case for $\operatorname{CCSD}(\mathrm{T}): \operatorname{BLYP}\left(-29.30 \mathrm{~cm}^{-1}\right)$.

Open-shell subset

Table 3: Experimental vibrational frequencies (in cm^{-1}) and errors (in cm^{-1}) in the corrected vibrational frequencies for the 59 open-shell species are presented in for the $\operatorname{CCSD}(\mathrm{T})$ methods utilizing different molecular orbitals. Root mean square deviations, mean signed deviations, most negative deviations, and most positive deviations (all $\mathrm{in}^{\mathrm{cm}}{ }^{-1}$) for the set of species and subsets are presented.

Row 2- Row 2	Dimer	State	Expt.	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{UHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{ROHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \kappa \text {-OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{BLYP}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
	LiO	$X^{2} \Pi_{i}$	$814.62^{\text {a }}$	-6.94	-6.58	-7.10	-7.22	-8.16	-7.02	-7.04	-6.97	-6.94
	BeH	$X^{2} \Sigma^{+}$	$2061.235^{\text {a }}$	-5.15	-3.33	-10.86	-3.14	-3.30	-7.48	-5.31	-4.56	-11.46
	BeF	$X^{2} \Sigma^{+}$	$1247.36^{\text {b }}$	9.50	9.54	8.85	8.47	7.42	8.23	8.30	8.61	8.42
	B_{2}	$X^{3} \Sigma_{g}^{-}$	$1051.3^{\text {b }}$	-16.10	-237.81	-29.18	-1.90	-90.13	-72.72	-61.76	-45.34	-75.26
	BN	$X^{3} \Pi$	$1514.6{ }^{\text {b }}$	6.82	-12.16	-8.55	-7.84	-7.27	-7.70	-7.12	-7.95	-8.55
	BO	$X^{2} \Sigma^{+}$	$1885.286^{\text {a }}$	-11.61	-21.54	-21.02	-23.17	-24.32	-21.41	-22.38	-21.98	-21.92
	CH	$X^{2} \Pi_{r}$	$2860.7508^{\text {a }}$	-10.43	-3.54	1.87	-1.66	-1.56	-0.88	-0.74	-0.33	-2.12
	$\mathrm{C}_{2}{ }^{-}$	$X^{2} \Sigma_{g}^{+}$	$1781.189^{\text {a }}$	-116.46	-116.55	-6.89	-8.56	-7.90	-6.57	-4.75	-46.93	-133.20
	CN	$X^{2} \Sigma^{+}$	$2068.648^{\text {a }}$	54.67	-7.54	-7.85	-10.32	-8.92	-7.36	-7.65	-7.05	-7.37
	CO^{+}	$X^{2} \Sigma^{+}$	$2214.127^{\text {a }}$	67.00	-16.16	-16.90	-20.40	-19.77	-13.55	-16.29	-16.28	-16.00
	CF	$X^{2} \Pi_{r}$	$1307.93{ }^{\text {a }}$	-3.10	-3.19	-6.70	-8.59	-10.31	-7.35	-7.36	-6.36	-6.52
	NH	$X^{3} \Sigma^{-}$	$3282.72^{\text {a }}$	0.19	-1.70	-1.75	-0.73	-1.66	-1.85	-0.93	-0.68	-0.93
	$\mathrm{N}_{2}{ }^{+}$	$X^{2} \Sigma_{g}^{+}$	$2207.0115^{\text {a }}$	70.77	-300.51	-6.08	-7.18	-6.92	-4.96	-5.51	-4.79	-5.09
	NO	$X^{2} \Pi_{r}$	$1904.1346^{\text {a }}$	177.65	-6.03	-6.77	-6.31	-7.80	-6.83	-7.09	-6.89	-6.90
	NF	$X^{3} \Sigma^{-}$	$1141.37^{\text {a }}$	-7.98	-8.95	-10.86	-13.45	-14.29	-9.97	-10.40	-9.82	-9.56
	OH	$X^{2} \Pi_{i}$	$3737.761^{\text {a }}$	-10.03	-10.11	-9.36	-10.91	-11.21	-9.13	-9.16	-8.56	-10.23
	OH^{+}	$X^{3} \Sigma^{-}$	$3113.37^{\text {b }}$	6.88	39.41	4.44	4.52	6.84	6.76	4.34	4.44	4.32
	O_{2}	$X^{3} \Sigma_{g}^{-}$	$1580.161^{\text {a }}$	-4.57	15.98	-3.09	-3.11	-3.25	-3.05	-3.23	-3.22	-3.24
	$\mathrm{O}_{2}{ }^{+}$	$X^{2} \Pi_{g}$	$1905.892^{\text {a }}$	28.13	5.42	4.68	4.77	3.87	4.66	4.40	4.54	4.45
	$\mathrm{O}_{2}{ }^{-}$	$X^{2} \Pi_{g, i}$	$1090{ }^{\text {b }}$	24.81	58.45	27.20	27.23	27.20	27.12	26.89	26.82	26.85
	OF	$X^{2} \Pi$	$1053.0138^{\text {a }}$	29.52	2.27	2.56	0.62	1.23	5.31	4.65	5.21	5.54
	HF^{+}	$X^{2} \Pi_{i}$	$3090.5{ }^{\text {b }}$	26.49	25.19	27.97	29.45	27.38	28.07	26.44	26.44	26.78
	$\mathrm{F}_{2}{ }^{+}$	$X^{2} \Pi_{g, i}$	$1104{ }^{\text {d }}$	-34.13	-6.63	20.51	23.81	19.99	19.30	18.63	17.94	17.71
	$\mathrm{F}_{2}{ }^{-}$	$X^{2} \Sigma_{u}^{+}$	$510^{\text {b* }}$	-40.09	-46.82	-64.06	-64.26	-63.25	-64.22	-63.46	-63.22	-63.09
	RMSD			51.77	84.14	18.77	18.44	25.78	23.00	21.46	21.76	35.74
	MSD			9.83	-27.20	-4.96	-4.16	-8.17	-6.36	-6.11	-6.96	-12.26
	MIN			-116.46	-300.51	-64.06	-64.26	-90.13	-72.72	-63.46	-63.22	-133.20
	MAX			177.65	58.45	27.97	29.45	27.38	28.07	26.89	26.82	26.85

 $\begin{array}{ll}\infty & 1 \\ \infty & i \\ \infty & 0 \\ \infty & 1 \\ 0 & 1\end{array}$ | 0 | ∞ |
| :--- | :--- |
| ∞ | $\underset{1}{c}$ |
| | i | $\begin{array}{cc}10 & 0 \\ \infty & 0 \\ \infty & 1 \\ 0 & 1\end{array}$

 $\begin{array}{ll}10 & \infty \\ \infty & \infty \\ \infty & \wp \\ & i\end{array}$

UHF

	MSD	9.55	-2.20	-1.46	8.80	-1.71	-1.60	-1.52	-1.42	-1.39
	MIN	-8.83	-17.22	-14.00	-16.97	-15.43	-15.34	-14.91	-13.45	-13.33
	MAX	44.58	10.87	11.06	60.95	11.14	11.32	11.25	11.06	11.07
Open- shell		$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{UHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{ROHF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \kappa \text {-OOMP2 }) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \text { BLYP) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
	RMSD	38.69	56.43	20.87	22.47	23.77	22.39	21.65	22.01	28.34
	MSD	10.71	-8.11	1.10	1.95	-0.82	0.48	0.45	0.40	-2.13
	MIN	-116.46	-300.51	-64.06	-64.26	-90.13	-72.72	-63.46	-63.22	-133.20
	MAX	177.65	88.51	90.68	88.43	87.87	86.24	88.25	89.26	89.52

[^1]Tab. 3 presents the experimental vibrational frequencies, in cm^{-1}, and errors in the corrected vibrational frequencies, in cm^{-1}, for the 59 species in the open-shell subset. Turning to Fig. 1, the open-shell non-HF methods exhibit an increase in the number of outliers as compared to the closed-shell cases. Overall, $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 orbitals provides the best RMSD of all references ($20.87 \mathrm{~cm}^{-1}$), improving on the performance of $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals by nearly a factor of two $\left(38.69 \mathrm{~cm}^{-1}\right)$. The use of OOMP2, BLYP, B97M-rV, B97, and ω B97X-V orbitals yields comparable performance to κ-OOMP2 orbitals (22-24 cm^{-1}), while the overall performance of $\operatorname{CCSD}(\mathrm{T})$ with ω B97M-V orbitals falls between the other non-UHF references and the UHF reference ($28.34 \mathrm{~cm}^{-1}$). In terms of MSDs, CCSD(T) with UHF orbitals is seen to blue shift the open-shell frequencies by $11 \mathrm{~cm}^{-1}$ while the nonUHF methods yield little-to-no systemic shift in frequencies $\left(\pm 2 \mathrm{~cm}^{-1}\right)$. The performance of $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 or OOMP2 orbitals on the open-shell systems is a factor of two worse than for the closed-shell systems.

Looking at individual cases, errors in corrected vibrational frequencies for the triplet ground state of B_{2} are seen to range from $-1.90 \mathrm{~cm}^{-1}$ using OOMP2 orbitals to -237.81 cm^{-1} using ROHF orbitals. B_{2} is another system which is known to exhibit MR character and therefore the varied and often poor performance of these single reference methods is to be expected. ${ }^{46}$ Evidence of MR character is seen in the mean-field $\left\langle S^{2}\right\rangle$ values, where the κ-OOMP2 and UHF orbitals both significantly break spin-symmetry ($\left\langle S^{2}\right\rangle$ of 2.81206 and 2.90778, respectively; Tab. S8). The DFT orbital references are also seen to significantly break spin-symmetry while the OOMP2 reference artificially restores spin-symmetry for this system. The ROHF reference is seen to break spatial symmetry, giving rise to a large error.

In agreement with the work of Beran et al. ${ }^{8}$ and Tentscher and Arey ${ }^{11}$ the predictions of the frequencies of CN, NO, OF, and their isoelectronic and isovalent counterparts with $\operatorname{CCSD}(\mathrm{T})$ using a UHF reference yield sizeable errors. CN is isoelectronic to $\mathrm{C}_{2}{ }^{-}, \mathrm{CO}^{+}$, and $\mathrm{N}_{2}{ }^{+}$and is isovalent to $\mathrm{CP}, \mathrm{CS}^{+}$, and $\mathrm{P}_{2}{ }^{+} . \operatorname{CCSD}(\mathrm{T})$ with UHF orbitals yields errors in the corrected frequencies of these species of $54.67 \mathrm{~cm}^{-1},-116.46 \mathrm{~cm}^{-1}, 67.00 \mathrm{~cm}^{-1}, 70.77$
$\mathrm{cm}^{-1}, 35.49 \mathrm{~cm}^{-1}, 30.28 \mathrm{~cm}^{-1}$, and $33.88 \mathrm{~cm}^{-1}$, respectively, while $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 orbitals improves these errors to $-7.85 \mathrm{~cm}^{-1},-6.89 \mathrm{~cm}^{-1},-16.90 \mathrm{~cm}^{-1},-6.08 \mathrm{~cm}^{-1}, 4.78 \mathrm{~cm}^{-1}$, $-3.84 \mathrm{~cm}^{-1}$, and $8.27 \mathrm{~cm}^{-1}$, respectively. In all of these cases but $\mathrm{C}_{2}{ }^{-}$these errors with UHF orbital references are accompanied by spin-symmetry breaking at the level of the reference with respective $\left\langle S^{2}\right\rangle$ values of $1.15755,0.75627,0.96970,1.23889,1.61297,1.47259,1.16866$ for UHF and $0.76257,0.75579,0.76730,0.75334,0.82118,0.80770,0.75476$ for the κ-OOMP2 reference (Tab. S8). The spin-symmetry restoration from the κ-OOMP2 (or OOMP2/DFT) orbitals is seen to dramatically improve the predicted frequencies for these systems with significant symmetry-breaking occurring at the UHF level. For $\mathrm{C}_{2}{ }^{-}$, the errors in predicted frequency for $\operatorname{CCSD}(\mathrm{T})$ with UHF and ROHF orbitals have the opposite sign of the other frequency errors in this isoelectronic/isovalent family of dimers and the UHF $\left\langle S^{2}\right\rangle$ suggests little spin-contamination. Instead, UHF, ROHF ω B97X-V, and ω B97M-V are seen to favor broken-spatial-symmetry solutions for $\mathrm{C}_{2}{ }^{-}$, contributing to large errors in the predicted frequencies while κ-OOMP2, OOMP2, and the other density functionals preserve the spatial symmetry and yield much more reliable frequencies. For $\mathrm{N}_{2}{ }^{+}$, the ROHF reference is seen to break spatial-symmetry as well, leading to a large error not shared by any of the other methods. Byrd et al. ${ }^{7}$ have also demonstrated broken spatial-symmetry solutions in ROHF can lead to large errors in harmonic frequency prediction. For $\mathrm{P}_{2}{ }^{+}, \operatorname{CCSD}(\mathrm{T})$:OOMP2 yields an error of $60.95 \mathrm{~cm}^{-1}$, almost twice that of $\operatorname{CCSD}(\mathrm{T})$:UHF. The orbital optimization of the ground state at the OOMP2 level is shown to give preference to a higher symmetry orbital occupation where the $\pi_{3 p_{x}}$ and $\pi_{3 p_{y}}$ MOs are doubly-occupied and the $\sigma_{3 p_{z}}$ orbital is singly-occupied. The ground state for all other methods doubly occupies the $\sigma_{3 p_{z}}$ and singly-occupies one of the two $\pi_{3 p}$ orbitals, breaking the $D_{\infty h}$ symmetry of the molecule. The latter occupation, however, is the filling predicted by MO theory and yields reasonable frequencies in comparison to the experimental benchmark. This represents another example of essential symmetry breaking that is quelled by OOMP2.

NO is isoelectronic to O_{2}^{+}and isovalent to $\mathrm{PO}, \mathrm{NS}, \mathrm{SO}^{+}, \mathrm{PS}$, and $\mathrm{S}_{2}{ }^{+} . \operatorname{CCSD}(\mathrm{T})$ with

UHF orbitals yields errors in the corrected frequencies of these species of $177.65 \mathrm{~cm}^{-1}, 28.13$ $\mathrm{cm}^{-1},-3.47 \mathrm{~cm}^{-1}, 24.33 \mathrm{~cm}^{-1}, 21.21 \mathrm{~cm}^{-1}, 19.14 \mathrm{~cm}^{-1}$, and $44.58 \mathrm{~cm}^{-1}$, respectively, while $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 orbitals yields error of $-6.77 \mathrm{~cm}^{-1}, 4.68 \mathrm{~cm}^{-1},-6.44 \mathrm{~cm}^{-1},-3.17$ $\mathrm{cm}^{-1}, 0.55 \mathrm{~cm}^{-1},-5.46 \mathrm{~cm}^{-1}$, and $11.06 \mathrm{~cm}^{-1}$, respectively. NO represents the most positive outlier for $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals while the error for PO is the smallest of all the orbital references considered. Comparing the mean-field $\left\langle S^{2}\right\rangle$ values between UHF and κ-OOMP2 for these species, $\mathrm{O}_{2}^{+}(1.12597$ vs. 0.75272$)$, NS (1.18951 vs. 0.75758), $\mathrm{SO}^{+}(1.18709$ vs. $0.75583)$, PS (1.05380 vs. 0.76119), and $\mathrm{S}_{2}{ }^{+}(1.23007$ vs 0.75862$)$ show significant spincontamination at the UHF level while cases exhibiting the largest and smallest errors, NO (0.79621 vs. 0.75407) and PO (0.77298 vs. 0.75758), respectively, show little evidence of significant spin-contamination (Tab. S8). These findings are consistent with those of Szalay et al., ${ }^{9}$ which find that in these errors arise from instabilities in the doublet wavefuction. This discrepancy between NO and PO arises due to the instability in the PO UHF wavefunction occurring at a larger internuclear separation than the equilibrium bond length around which data was collected.

OF is isoelectronic to F_{2}^{+}and isovalent to OCl and $\mathrm{ClF}^{+} . \mathrm{CCSD}(\mathrm{T})$ with UHF orbitals yields errors in the corrected frequencies of these species of $29.52 \mathrm{~cm}^{-1},-21.63 \mathrm{~cm}^{-1},-5.50$ cm^{-1}, and $50.44 \mathrm{~cm}^{-1}$, respectively, while $\operatorname{CCSD}(\mathrm{T})$ with κ-OOMP2 orbitals yields error of $2.56 \mathrm{~cm}^{-1}, 33.01 \mathrm{~cm}^{-1},-4.64 \mathrm{~cm}^{-1}$, and $45.33 \mathrm{~cm}^{-1}$, respectively. The errors for UHF and non-UHF orbitals for $\mathrm{F}_{2}{ }^{+}$are seen to differ by over $50 \mathrm{~cm}^{-1}$ while for OCl and ClF the errors in the frequencies are in good agreement. Similarly to the cases of NO and PO, the UHF wavefunctions for $\mathrm{OF}, \mathrm{OCl}$, and ClF^{+}do not demonstrate signs of significant spin contamination ($\left\langle S^{2}\right\rangle$ values of $0.77257,0.77010,0.76463$, respectively; Tab. S8).

Potential issues with experimental data

Table 4: Experimental vibrational frequencies (in cm^{-1}), mean errors for the non-HF $\operatorname{CCSD}(\mathrm{T})$ methods (in cm^{-1}), ranges of the errors for the non-HF $\operatorname{CCSD}(\mathrm{T})$ methods (in cm^{-1}), and alternative experimental reported frequencies (in cm^{-1}) are presented for species where the experimental results are in question.

Dimer	State	Current Expt. Frequency	Mean Non-HF Error	Non-HF Error Range	Alternative Expt. Frequency
$\mathrm{O}_{2}{ }^{-}$	$X^{2} \Pi_{g, i}$	$1090{ }^{70}$	27.04	0.41	$1090{ }^{77,78}$
					$\begin{array}{r} 1108 \pm 20^{79} \\ 1140^{80} \end{array}$
					$1145{ }^{81}$
HF^{+}	$X^{2} \Pi_{i}$	$3090.5^{70,82,83}$	27.51	3.01	
					$3118{ }^{8 *}$
					$3119^{11^{*}}$
$\mathrm{F}_{2}{ }^{+}$	$X^{2} \Pi_{g, i}$	1104^{75}	19.70	6.09	1091.5^{85}
$\mathrm{F}_{2}{ }^{-}$	$X^{2} \Sigma_{u}^{+}$	$510^{70,86 *}$	-63.65	1.17	
NaO	$X^{2} \Pi$	$526{ }^{70}{ }^{*}$	-38.53	0.25	$504^{87^{*}}$
					$547^{* 8}$
AlH^{+}	$X^{2} \Sigma^{+}$	$1620{ }^{70,89}$	27.08	14.89	
PH^{+}	$X^{2} \Pi_{r}$	$2299.6^{70,90}$	88.61	4.44	$2382.75{ }^{91}$ *
PH^{-}	$X^{2} \Pi_{i}$	$2230{ }^{70}$	30.37	8.56	$2230 \pm 100{ }^{92}$
PO^{-}	$X^{3} \Sigma^{-}$	$1000{ }^{70}$	33.43	3.68	1000 ± 70^{92}
HCl^{+}	$X^{2} \Pi_{i}$	$2673.69{ }^{73}$	24.00	1.63	$2702.6{ }^{\text {93* }}$
LiCl^{-}	$X^{2} \Sigma^{+}$	$480{ }^{70}$	26.99	0.44	480 ± 80^{94}
ClF^{+}	$X^{2} \Pi$	870^{70}	46.67	2.40	870 ± 30^{95}
					912 ± 30^{96}

* Theoretical results.

In the cases of ClF^{+}and PH^{+}the predicted frequencies for $\operatorname{CCSD}(\mathrm{T})$ with a UHF orbital reference and $\operatorname{CCSD}(\mathrm{T})$ with non-UHF orbital references differ significantly (more than 25 cm^{-1}) from the reported benchmark value while the $\operatorname{CCSD}(\mathrm{T})$ with non-UHF orbitals all yield predicted frequencies in agreement with each other. This observation is true of other molecules and ions in the open-shell set as well, as summarized in Tab. 4. In all of these cases except $\mathrm{F}_{2}{ }^{+}$and F_{2}^{-}the errors for $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals are consistent with the errors for $\operatorname{CCSD}(\mathrm{T})$ with non-HF orbitals. The agreement of all methods suggests that potentially inaccurate or imprecise experimental reference values should be revisited. For $\mathrm{NaO}^{87,88}$ and $\mathrm{F}_{2}{ }^{-},{ }^{86}$ the reference data given by Huber and Herzberg ${ }^{70}$ are sourced from calculations performed at the HF level of theory; any of the $\operatorname{CCSD}(\mathrm{T})$ methods surveyed should be seen as a more accurate result for these systems. For another subset of these systems the error bars on the experimental values envelop the frequencies calculated from this work $\left(\mathrm{PH}^{-}: 2230 \pm 100 \mathrm{~cm}^{-1},{ }^{92} \mathrm{PO}^{-}: 1000 \pm 70 \mathrm{~cm}^{-1},{ }^{92} \mathrm{LiCl}^{-}: 480 \pm 80 \mathrm{~cm}^{-194}\right)$. For
ClF^{+}, Huber and Herzberg ${ }^{70}$ reference DeKock et al. ${ }^{95}$ who report a vibrational frequency of $870 \pm 30 \mathrm{~cm}^{-1}$ while Anderson et al. ${ }^{96}$ report a frequency of $912 \pm 30 \mathrm{~cm}^{-1}$. Our calculations, which predict a ClF^{+}frequency of $917 \mathrm{~cm}^{-1}$, more closely agree with the work of Anderson et al. Similarly, for $\mathrm{O}_{2}{ }^{-}$Huber and Herzberg ${ }^{70}$ cite a value of $1090 \mathrm{~cm}^{-1}$ based on the works of Boness and Schulz ${ }^{77}$ and Linder and Schmidt ${ }^{78}$ while also noting that Gray et al. ${ }^{80}$ and Creighton and Lippincott ${ }^{81}$ give values of $1140 \mathrm{~cm}^{-1}$ and $1145 \mathrm{~cm}^{-1}$, respectively. In a more recent study, Ervin et al. ${ }^{79}$ give a value of $1108 \pm 20 \mathrm{~cm}^{-1}$, which is in good agreement with our theoretical predictions of $1117 \mathrm{~cm}^{-1}$. The most positive error point for many of the $\operatorname{CCSD}(\mathrm{T})$ method with non-UHF references, PH^{+}, does not have much experimental data on its spectroscopic constants in the literature, with the value of $2299.6 \mathrm{~cm}^{-1}$ tracing back to a study by Narasimham. ${ }^{90}$ A recent modeling study by Reddy et al. ${ }^{91}$ predicts a ground-state frequency of $2382.75 \mathrm{~cm}^{-1}$, in good agreement with our calculated values of $2386-2390 \mathrm{~cm}^{-1}$, suggesting that further experimental study of this system is worthwhile. The experimental reference for $\mathrm{F}_{2}{ }^{+}$was taken from Cormack et al. ${ }^{75}$ while Yang et al., ${ }^{85}$ consistent with Tentscher and Arey, ${ }^{11}$ suggest a value of $1091.5 \mathrm{~cm}^{-1}$, further from our theoretical predictions. For HF^{+}, the large-basis results from Beran et al. ${ }^{8}$ and Tentscher and Arey ${ }^{11}$ predict an error that agree with our error prediction of $28 \mathrm{~cm}^{-1}$. These calculated frequencies are closer to the value originally reported by Gewurtz et al. ${ }^{82}$ and Hovde et al. ${ }^{83}$ of $3090.5 \mathrm{~cm}^{-1}$ adopted by Huber and Herzberg ${ }^{70}$ than to the value of $3061.8 \mathrm{~cm}^{-1}$ proposed by Yencha et al. ${ }^{84}$ Similarly, our predictions of the corrected vibrational frequency of HCl^{+} are blue-shifted by approximately $24 \mathrm{~cm}^{-1}$ compared to the experimental reference value of $2673.69 \mathrm{~cm}^{-1}$ from Irikura. ${ }^{73}$ A recent joint experimental and theoretical study of this system by Patanen et al. ${ }^{93}$ has suggested a computed value of $2702.6 \mathrm{~cm}^{-1}$, in much better agreement with our results. For AlH^{+}, Huber and Herzberg ${ }^{70}$ cite a 1934 study by Hoslt ${ }^{89}$ to approximate the vibrational frequency, though a more precise value is desired for the point of comparison to our computed frequencies to better assess the error between the different reference methods. Taking these data as representative, the uncertainties in experimental
frequencies can be tens of cm^{-1}, especially for charged species.

Pruned subset

In order to draw more meaningful conclusions about the performance of $\operatorname{CCSD}(\mathrm{T})$ with κ OOMP2 orbitals, we consider a subset of data points where the MR species $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{B}_{2}\right)$ and the species with ambiguous experimental values (Tab. 4) discussed above are excluded, leaving 35 closed-shell species (28 neutrals, 6 cations, 1 anion) and 46 open-shell species (36 neutrals, 9 cations, 1 anion; 35 doublets, 11 triplets). Tab. 5 presents the RMSDs, MSDs, MINs, and MAXs for the closed-shell species, open-shell species, and the overall pruned set. These data are presented graphically in Fig. 2. For the pruned data set $\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97$ and $\operatorname{CCSD}(\mathrm{T}): \kappa$-OOMP2 are seen to yield the best performance with RMSDs of $8.48 \mathrm{~cm}^{-1}$ and $8.50 \mathrm{~cm}^{-1}$, respectively. The performances of $\operatorname{CCSD}(\mathrm{T}): \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}$ and $\operatorname{CCSD}(\mathrm{T}): \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}$ are hindered by $\mathrm{C}_{2}{ }^{-}$; excluding this point brings the RMSDs for these methods to the same level as the other DFT-based methods.

Figure 2: Box plots (overall, left, and enhanced, right) of the errors in corrected vibrational frequencies(in cm^{-1}) are presented for the pruned subset of species. Red lines mark the median errors, boxes bound the central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile range of the box edges, and points denote outlying data.

Comparing Fig. 1 and Fig. 2, we see that the pruning procedure removed many of the outlier cases that were shared between all or nearly all of the methods surveyed. For

Table 5: Root mean square deviations, mean signed deviations, most negative deviations, and most positive deviations (all in cm^{-1}) for the cropped subset of species are summarized for the $\operatorname{CCSD}(\mathrm{T})$ methods utilizing different molecular orbitals.

Closed- shell pruned	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { UHF }) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{R}(\mathrm{O}) \mathrm{HF}) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \kappa \text {-OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \mathrm{BLYP}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \text { B97M-rV) } \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\operatorname{CCSD}(\mathrm{T}): \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD (T) } \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
RMSD	44.43	8.86	9.41	10.18	11.56	10.05	9.45	9.50	8.97
MSD	-7.74	-6.17	-6.96	-7.73	-8.10	-7.32	-6.41	-6.41	-5.93
MIN	-240.71	-20.79	-18.53	-21.83	-29.30	-21.21	-20.00	-18.16	-18.40
MAX	60.05	16.30	14.11	15.27	16.82	16.86	15.88	16.93	16.10
Openshell pruned	$\begin{gathered} \Delta(\text { CCSD(T) } \\ \text { UHF) } \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { ROHF }) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \kappa \text {-OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { BLYP }) \end{gathered}$	$\begin{gathered} \hline \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97 \mathrm{M}-\mathrm{rV}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \hline \Delta(\text { CCSD (T) } \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD(T) } \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
RMSD	38.33	48.57	7.75	13.45	8.80	7.61	7.67	10.26	21.11
MSD	9.27	-11.32	-3.48	-2.83	-4.61	-3.32	-3.35	-3.97	-6.34
MIN	-116.46	-300.51	-21.02	-23.17	-24.32	-21.41	-22.38	-46.93	-133.20
MAX	177.65	39.41	11.06	60.95	11.14	11.32	11.25	11.06	11.07
Total pruned	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { UHF }) \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD(T) } \\ \mathrm{R}(\mathrm{O}) \mathrm{HF}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \kappa \text {-OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD }(\mathrm{T}): \\ \text { OOMP2) } \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{BLYP}) \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \text { B97M-rV) } \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \mathrm{B} 97) \end{gathered}$	$\begin{gathered} \Delta(\text { CCSD(T) } \\ \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta(\mathrm{CCSD}(\mathrm{~T}): \\ \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}) \end{gathered}$
RMSD	41.07	37.06	8.50	12.15	10.08	8.75	8.48	9.94	16.96
MSD	1.92	-9.10	-4.98	-4.95	-6.11	-5.04	-4.67	-5.03	-6.17
MIN	-240.71	-300.51	-21.02	-23.17	-29.30	-21.41	-22.38	-46.93	-133.20
MAX	177.65	39.41	14.11	60.95	16.82	16.86	15.88	16.93	16.10

$\operatorname{CCSD}(\mathrm{T}): \mathrm{UHF}$, the remaining outlying points are the spin-contaminated points from the closed-shell subset $\left(\mathrm{F}_{2}, \mathrm{PN}, \mathrm{BeS}, \mathrm{NS}^{+}\right.$, and $\left.\mathrm{P}_{2}\right)$, and HCl , while the remaining open-shell outliers are $\mathrm{NO}, \mathrm{N}_{2}{ }^{+}, \mathrm{CO}^{+}$, and $\mathrm{C}_{2}{ }^{-}$. The range covered by the $\operatorname{CCSD}(\mathrm{T}): \mathrm{UHF}$ whiskers is larger by a factor of two than nearly all the other methods tested. For $\operatorname{CCSD}(\mathrm{T}): \mathrm{R}(\mathrm{O}) \mathrm{HF}$ the pruning procedure largely brings the results in line with the other non-UHF methods, significantly improving on the closed- and open-shell UHF outliers significantly, though the cases of spatial-symmetry breaking $\left(\mathrm{C}_{2}{ }^{-}, \mathrm{N}_{2}{ }^{+}\right)$still persist as large errors. For $\operatorname{CCSD}(\mathrm{T}): \kappa$-OOMP2, the pruning procedure leaves only one closed-shell and one open-shell outlier, HCl and BO , respectively. For $\operatorname{CCSD}(\mathrm{T}):$ OOMP2, the remaining outliers in the closed-shell subset are HCl and BeO while the open-shell set has outliers $\mathrm{P}_{2}{ }^{+}$, which has been previously discussed, Si_{2}, which breaks spatial symmetry at the OOMP2 level, and BO. CCSD(T):BLYP has closedshell outliers in $\mathrm{NaLi}, \mathrm{NaH}$, and HCl and an open-shell outlier in BO. $\mathrm{CCSD}(\mathrm{T}): \mathrm{B} 97 \mathrm{M}-\mathrm{rV}$ and $\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97$ both have HCl as an open-shell outlier and BO as a closed-shell outlier. $\operatorname{CCSD}(\mathrm{T}): \omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}$ has closed-shell outliers in HCl and NaH and open-shell outliers in $\mathrm{C}_{2}{ }^{-}$ and BO. $\operatorname{CCSD}(\mathrm{T}): \omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}$ also has HCl and NaH as closed-shell outliers and $\mathrm{C}_{2}{ }^{-}$as an open-shell outlier. The non-HF methods are seen to have their mean values red-shifted compared to experiments by $5-6 \mathrm{~cm}^{-1}$.

Conclusions

We have evaluated the performance of $\operatorname{CCSD}(\mathrm{T})$ with different MO references to predict the vibrational frequencies of both closed-shell and open-shell diatomic molecules and ions. The at times problematic use of a UHF reference was compared against the use of κ-OOMP2, OOMP2, BLYP, B97M-rV, B97, $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}$, and $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}$ molecular orbital references. Overall, $\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97, \operatorname{CCSD}(\mathrm{~T}): \kappa$-OOMP2, and $\operatorname{CCSD}(\mathrm{T}): B 97 \mathrm{M}-\mathrm{rV}$ yield RMSDs on the pruned overall data set of $8.48 \mathrm{~cm}^{-1}, 8.50 \mathrm{~cm}^{-1}$, and $8.75 \mathrm{~cm}^{-1}$, respectively, reducing the RMSD for $\operatorname{CCSD}(\mathrm{T})$:UHF by nearly a factor of 5 . For the pruned closed- and open-shell subsets the associated RMSDs are $9.45 \mathrm{~cm}^{-1}$ and $7.67 \mathrm{~cm}^{-1}$, respectively, $9.41 \mathrm{~cm}^{-1}$ and $7.75 \mathrm{~cm}^{-1}$, respectively, and 10.05 and 7.61 , respectively, for $\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97, \operatorname{CCSD}(\mathrm{~T}): \kappa$ OOMP2, and $\operatorname{CCSD}(\mathrm{T}): \mathrm{B} 97 \mathrm{M}-\mathrm{rV}$. The slightly degraded performance of the other non-HF MO references are skewed by one or two data points and otherwise rank competitively with the B97, κ-OOMP2, and B97M-rV. These outlying data points are seen to arise from spatial or spin-symmetry breaking or erroneous symmetry restoration. The effect of regularization in κ-OOMP2 is seen to prevent the symmetry issues seen in OOMP2. While many of the spin-symmetry issues were resolved by the use of $R(O)$ HF reference orbitals, large errors arising from spatial-symmetry breaking are seen to plague the method and skew the overall statistics.

A major practical limitation of these very promising non-HF $\operatorname{CCSD}(\mathrm{T})$ methods is the present lack of implemented analytic gradients, relegating the current application of these to systems with only a few atoms. One may develop an approach like that of Taube and Bartlett's FNO-CCSD $(\mathrm{T})^{97}$ for κ-OOMP2 and/or DFT orbitals. The success of the non-HF CCSD(T) methods in treating closed-shell and open-shell systems with the same accuracy speaks to the usefulness of such an implementation. Such approaches do not affect the overall asymptotic scaling and would extend the "black box" utility of $\operatorname{CCSD}(\mathrm{T})$ currently seen for closed-shell systems. Furthermore, the use of κ-OOMP2 as the generator of MOs also provides a diagnostic tool in the mean-field $\left\langle S^{2}\right\rangle$ of the multireference character of the
target system, informing the expected accuracy of the subsequent CCSD(T) results.
In order to assess errors relating to the computational treatment presented in this work we consider errors in the basis set and errors related to the approximate treatment of triple excitations. Peterson and Dunning ${ }^{62}$ demonstrated a blue shift of computed harmonic frequencies for row 3 diatomic species of $2-15 \mathrm{~cm}^{-1}$ when going from the cc-pwCVTZ to cc-pwCV5Z. Provided this trend holds with the aug-cc-pwCVnZ basis sets the use of the aug-cc-pwCVQZ basis should help to correct the systematic red-shift seen for the non-HF CCSD(T) methods. For exact treatment of triples Tentscher and Arey ${ }^{11}$ found CCSDT tends to red-shift in computed frequencies compared to $\operatorname{CCSD}(\mathrm{T})$. This effect is exacerbated for species where $\operatorname{CCSD}(\mathrm{T})$ with UHF orbitals is particularly poor $\left(\mathrm{N}_{2}{ }^{+}, \mathrm{CN}\right)$ while for other other species the shift was on the order of $5 \mathrm{~cm}^{1}$. We also note that CCSDT, free of the perturbative nature of $\operatorname{CCSD}(\mathrm{T})$, should be less sensitive to the choice of reference orbitals.

Further extension of this approach to cases where DFT traditionally struggles would be of significant interest. In particular, extension to transition metals species and systems with significant charge separation is highly desirable to discriminate if $\operatorname{CCSD}(\mathrm{T})$:DFT is able to remedy the traditional failures of DFT. Additionally, the exponential regularization schemes of Lee and Head-Gordon ${ }^{38}$ could be extended to the perturbative triples calculation in $\operatorname{CCSD}(\mathrm{T})$ as an attempt to handle cases of nonvariational failure in traditional $\operatorname{CCSD}(\mathrm{T})$.

Acknowledgement

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. L. W. B. thanks the NSF for a NSF Graduate Research Fellowship DGE-1106400.

Supporting Information Available

Tables of equilibrium bond lengths, comments on the data set, mean-field $\left\langle S^{2}\right\rangle$ values, and

CCSD data are presented in the Supporting Information.

References

(1) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479 483.
(2) Thomas, J. R.; DeLeeuw, B. J.; Vacek, G.; Crawford, T. D.; Yamaguchi, Y.; Schaefer III, H. F. The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities. J. Chem. Phys. 1993, 99, 403-416.
(3) Helgaker, T.; Gauss, J.; Jørgensen, P.; Olsen, J. The prediction of molecular equilibrium structures by the standard electronic wave functions. J. Chem. Phys. 1997, 106, 64306440.
(4) Bak, K. L.; Gauss, J.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Stanton, J. F. The accurate determination of molecular equilibrium structures. J. Chem. Phys. 2001, 114, 65486556.
(5) Purvis, G. D.; Bartlett, R. J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910-1918.
(6) Noga, J.; Bartlett, R. J. The full CCSDT model for molecular electronic structure. J. Chem. Phys. 1987, 86, 7041-7050.
(7) Byrd, E. F.; Sherrill, C. D.; Head-Gordon, M. The theoretical prediction of molecular radical species: a systematic study of equilibrium geometries and harmonic vibrational frequencies. J. Phys. Chem. A 2001, 105, 9736-9747.
(8) Beran, G. J. O.; Gwaltney, S. R.; Head-Gordon, M. Approaching closed-shell accuracy for radicals using coupled cluster theory with perturbative triple substitutions. Phys. Chem. Chem. Phys. 2003, 5, 2488-2493.
(9) Szalay, P. G.; Vázquez, J.; Simmons, C.; Stanton, J. F. Triplet instability in doublet systems. J. Chem. Phys. 2004, 121, 7624-7631.
(10) Stanton, J. F.; Gauss, J. A Discussion of Some Problems Associated with the Quantum Mechanical Treatment of Open-Shell Molecules. Adv. Chem. Phys. 2003, 125, 101-146.
(11) Tentscher, P. R.; Arey, J. S. Geometries and vibrational frequencies of small radicals: Performance of coupled cluster and more approximate methods. J. Chem. Theory Comput. 2012, 8, 2165-2179.
(12) Brueckner, K. A. Nuclear saturation and two-body forces. II. Tensor forces. Phys. Rev. 1954, 96, 508.
(13) Nesbet, R. K. Brueckner's Theory and the Method of Superposition of Configurations. Phys. Rev. 1958, 109, 1632.
(14) Dykstra, C. E. An examination of the Brueckner condition for the selection of molecular orbitals in correlated wavefunctions. Chem. Phys. Lett. 1977, 45, 466-469.
(15) Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W. Sizeconsistent Brueckner theory limited to double substitutions. Chem. Phys. Lett. 1989, 164, 185-192.
(16) Hampel, C.; Peterson, K. A.; Werner, H.-J. A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chem. Phys. Lett. 1992, 190, 1-12.
(17) Stanton, J. F.; Gauss, J.; Bartlett, R. J. On the choice of orbitals for symmetry breaking problems with application to NO_{3}. J. Chem. Phys. 1992, 97, 5554-5559.
(18) Barnes, L. A.; Lindh, R. Symmetry breaking in $\mathrm{O}_{4}{ }^{+}$: An application of the Brueckner coupled-cluster method. Chem. Phys. Lett. 1994, 223, 207-214.
(19) Xie, Y.; Allen, W. D.; Yamaguchi, Y.; Schaefer III, H. F. Is the oxywater radical cation more stable than neutral oxywater? J. Chem. Phys. 1996, 104, 7615-7623.
(20) Crawford, T. D.; Stanton, J. F.; Szalay, P. G.; Schaefer III, H. F. The $\tilde{C}^{2} A_{2}$ excited state of NO_{2} : Evidence for a C_{s} equilibrium structure and a failure of some spin-restricted reference wavefunctions. J. Chem. Phys. 1997, 107, 2525-2528.
(21) Scuseria, G. E.; Schaefer III, H. F. The optimization of molecular orbitals for coupled cluster wavefunctions. Chem. Phys. Lett. 1987, 142, 354-358.
(22) Krylov, A. I.; Sherrill, C. D.; Byrd, E. F.; Head-Gordon, M. Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model. J. Chem. Phys. 1998, 109, 10669-10678.
(23) Van Voorhis, T.; Head-Gordon, M. The quadratic coupled cluster doubles model. Chem. Phys. Lett. 2000, 330, 585-594.
(24) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.
(25) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
(26) Fang, Z.; Lee, Z.; Peterson, K. A.; Dixon, D. A. Use of Improved Orbitals for CCSD(T) Calculations for Predicting Heats of Formation of Group IV and Group VI Metal Oxide Monomers and Dimers and UCl_{6}. J. Chem. Theory Comput. 2016, 12, 3583-3592.
(27) Fang, Z.; Vasiliu, M.; Peterson, K. A.; Dixon, D. A. Prediction of bond dissociation energies/heats of formation for diatomic transition metal compounds: CCSD (T) works. J. Chem. Theory Comput. 2017, 13, 1057-1066.
(28) Bouř, P. Configuration interaction with Kohn-Sham orbitals and their relation to excited electronic states. Chem. Phys. Lett. 2001, 345, 331-337.
(29) Needs, R. J.; Kent, P. R. C.; Porter, A. R.; Towler, M. D.; Rajagopal, G. Quantum Monte Carlo calculations for ground and excited states. Int. J. Quantum Chem. 2002, 86, 218-225.
(30) Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108.
(31) Rettig, A.; Hait, D.; Bertels, L. W.; Head-Gordon, M. Third-Order Møller-Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals. J. Chem. Theory Comput. 2020,
(32) Sherrill, C. D.; Lee, M. S.; Head-Gordon, M. On the performance of density functional theory for symmetry-breaking problems. Chem. Phys. Lett. 1999, 302, 425-430.
(33) Scuseria, G. E. On the connections between Brueckner-coupled-cluster, densitydependent Hartree-Fock, and density functional theory. Int. J. Quantum Chem. 1995, 55, 165-171.
(34) Heßelmann, A.; Jansen, G. First-order intermolecular interaction energies from KohnSham orbitals. Chem. Phys. Lett. 2002, 357, 464-470.
(35) Lindgren, I.; Salomonson, S. Brueckner orbitals and density-functional theory. Int. J. Quantum Chem. 2002, 90, 294-308.
(36) Lochan, R. C.; Head-Gordon, M. Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules. J. Chem. Phys. 2007, 126, 164101.
(37) Neese, F.; Schwabe, T.; Kossmann, S.; Schirmer, B.; Grimme, S. Assessment of OrbitalOptimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics. J. Chem. Theory Comput. 2009, 5, 3060-3073.
(38) Lee, J.; Head-Gordon, M. Regularized Orbital-Optimized Second-Order Möller-Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers. J. Chem. Theory Comput. 2018, 14, 52035219.
(39) Soydaş, E.; Bozkaya, U. Assessment of orbital-optimized MP2.5 for thermochemistry and kinetics: dramatic failures of standard perturbation theory approaches for aromatic bond dissociation energies and barrier heights of radical reactions. J. Chem. Theory Comput. 2015, 11, 1564-1573.
(40) Haggag, O. S.; Malakar, P.; Pokhilko, P.; Stanton, J. F.; Krylov, A. I.; Ruhman, S. The elusive dynamics of aqueous permanganate photochemistry. Phys. Chem. Chem. Phys. 2020, 22, 10043-10055.
(41) Stück, D.; Head-Gordon, M. Regularized orbital-optimized second-order perturbation theory. J. Chem. Phys. 2013, 139, 244109.
(42) Coulson, C. A.; Fischer, I. XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule. Philos. Mag. 1949, 40, 386-393.
(43) Lee, J.; Head-Gordon, M. Distinguishing artificial and essential symmetry breaking in a single determinant: Approach and application to the $\mathrm{C}_{60}, \mathrm{C}_{36}$, and C_{20} fullerenes. Phys. Chem. Chem. Phys. 2019, 21, 4763-4778.
(44) Lee, J. Postmodern Electronic Structure Theory. Ph.D. thesis, University of California, Berkeley, 2019.
(45) Sharada, S. M.; Stück, D.; Sundstrom, E. J.; Bell, A. T.; Head-Gordon, M. Wavefunction stability analysis without analytical electronic Hessians: application to orbitaloptimised second-order Møller-Plesset theory and VV10-containing density functionals. Mol. Phys. 2015, 113, 1802-1808.
(46) Karton, A.; Daon, S.; Martin, J. M. L. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data. Chem. Phys. Lett. 2011, 510, 165-178.
(47) Tentscher, P. R.; Arey, J. S. Binding in Radical-Solvent Binary Complexes: Benchmark Energies and Performance of Approximate Methods. J. Chem. Theory Comput. 2013, 9, 1568-1579.
(48) Bertels, L. W.; Lee, J.; Head-Gordon, M. Third-Order Møller-Plesset Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions. J. Phys. Chem. Lett. 2019, 10, 4170-4176.
(49) Lee, J.; Head-Gordon, M. Two single-reference approaches to singlet biradicaloid problems: Complex, restricted orbitals and approximate spin-projection combined with regularized orbital-optimized Møller-Plesset perturbation theory. J. Chem. Phys. 2019, 150, 244106.
(50) Lee, J.; Malone, F. D.; Morales, M. A. Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C_{36} fullerene and an iron porphyrin model complex. J. Chem. Theory Comput. 2020, 16, 3019-3027.
(51) Bozkaya, U.; Turney, J. M.; Yamaguchi, Y.; Schaefer, H. F.; Sherrill, C. D. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupledcluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory. J. Chem. Phys. 2011, 135, 104103.
(52) Mardirossian, N.; Ruiz Pestana, L.; Womack, J. C.; Skylaris, C.-K.; Head-Gordon, T.; Head-Gordon, M. Use of the rVV10 nonlocal correlation functional in the B97M-V density functional: defining B97M-rV and related functionals. J. Phys. Chem. Lett. 2017, 8, 35-40.
(53) Becke, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107, 8554-8560.
(54) Mardirossian, N.; Head-Gordon, M. $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{V}$: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 2014, 16, 99049924.
(55) Mardirossian, N.; Head-Gordon, M. $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{V}$: A combinatorially optimized, rangeseparated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016, 144, 214110.
(56) Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett. 1993, 208, 359 -363.
(57) Bernholdt, D. E.; Harrison, R. J. Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers. Chem. Phys. Lett. 1996, 250, 477 484.
(58) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315-2372.
(59) Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree-Fock theory. J. Chem. Phys. 1977, 66, 3045-3050.
(60) Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
(61) Kendall, R. A.; Dunning Jr, T. H.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796-6806.
(62) Peterson, K. A.; Dunning Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms $\mathrm{Al}-\mathrm{Ar}$, and the first row atoms B-Ne revisited. J. Chem. Phys. 2002, 117, 10548-10560.
(63) Woon, D. E.; Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 13581371.
(64) Prascher, B. P.; Woon, D. E.; Peterson, K. A.; Dunning, T. H.; Wilson, A. K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for $\mathrm{Li}, \mathrm{Be}, \mathrm{Na}$, and Mg . Theor. Chem. Acc. 2011, 128, 69-82.
(65) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175-3183.
(66) Hättig, C. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple- ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 2005, 7, 59-66.
(67) Hill, J. G.; Peterson, K. A. Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core-valence basis sets for $\mathrm{Li}, \mathrm{Be}, \mathrm{Na}$, and Mg. Phys. Chem. Chem. Phys. 2010, 12, 10460-10468.
(68) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184215.
(69) Dunham, J. L. The energy levels of a rotating vibrator. Phys. Rev. 1932, 41, 721.
(70) Huber, K. P.; Herzberg, G. H. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P., Mallard, W., Eds.; National Institute of Standards and Technology: Gaithersburg MD, 20899, 1979; data prepared by Jean W. Gallagher and Russell D. Johnson, III.
(71) Watts, J. D.; Bartlett, R. J. Coupled-cluster calculations on the C_{2} molecule and the $\mathrm{C}_{2}{ }^{+}$and $\mathrm{C}_{2}{ }^{-}$molecular ions. J. Chem. Phys. 1992, 96, 6073-6084.
(72) Purwanto, W.; Al-Saidi, W.; Krakauer, H.; Zhang, S. Eliminating spin contamination in auxiliary-field quantum Monte Carlo: Realistic potential energy curve of F_{2}. J. Chem. Phys. 2008, 128, 114309.
(73) Irikura, K. K. Experimental Vibrational Zero-Point Energies: Diatomic Molecules. J. Phys. Chem. Ref. Data 2007, 36, 389-397.
(74) Hotop, H.; Patterson, T.; Lineberger, W. High resolution photodetachment study of OH^{-}and OD^{-}in the threshold region 7000-6450 Å. J. Chem. Phys. 1974, 60, 18061812.
(75) Cormack, A. J.; Yencha, A. J.; Donovan, R. J.; Lawley, K. P.; Hopkirk, A.; King, G. C. High-resolution threshold photoelectron spectroscopy of molecular fluorine. Chem. Phys. 1996, 213, 439-448.
(76) Milkman, I. W.; Choi, J. C.; Hardwick, J. L.; Moseley, J. T. High-resolution studies of the $A^{2} \Pi-X^{2} \Pi$ system of rotationally cooled SO^{+}. J. Mol. Spectrosc. 1988, 130, 20-32.
(77) Boness, M. J. W.; Schulz, G. J. Structure of O_{2}. Phys. Rev. A 1970, 2, 2182.
(78) Linder, F.; Schmidt, H. Experimental study of low energy e- O_{2} collision processes. Z. Naturforsch. A 1971, 26, 1617-1625.
(79) Ervin, K. M.; Anusiewicz, I.; Skurski, P.; Simons, J.; Lineberger, W. C. The only stable state of $\mathrm{O}_{2}{ }^{-}$is the $X^{2} \Pi_{g}$ ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV . J. Phys. Chem. A 2003, 107, 8521-8529.
(80) Gray, R. L.; Haselton, H. H.; Krause Jr, D.; Soltysik, E. A. Vibrational structure in electron scattering by O_{2}. Chem. Phys. Lett. 1972, 13, 51-53.
(81) Creighton, J. A.; Lippincott, E. R. Vibrational frequency and dissociation energy of the superoxide ion. J. Chem. Phys. 1964, 40, 1779-1780.
(82) Gewurtz, S.; Lew, H.; Flainek, P. The electronic spectrum of HF ${ }^{+}$. Can. J. Phys. 1975, 53, 1097-1108.
(83) Hovde, D. C.; Keim, E. R.; Saykally, R. J. Velocity modulation laser spectroscopy of molecular ions: The hyperfine-resolved rovibrational spectrum of HF^{+}. Mol. Phys. 1989, 68, 599-607.
(84) Yencha, A. J.; Cormack, A. J.; Donovan, R. J.; Hopkirk, A.; King, G. C. Threshold photoelectron spectroscopy of HF and DF in the outer valence ionization region. J. Phys. B: At., Mol. Opt. Phys. 1999, 32, 2539.
(85) Yang, J.; Hao, Y.; Li, J.; Zhou, C.; Mo, Y. A combined zero electronic kinetic energy spectroscopy and ion-pair dissociation imaging study of the $\mathrm{F}_{2}{ }^{+}\left(X^{2} \Pi_{g}\right)$ structure. J. Chem. Phys. 2005, 122, 134308.
(86) Gilbert, T. L.; Wahl, A. C. Single-Configuration Wavefunctions and Potential Curves for Low-Lying States of $\mathrm{He}_{2}^{+}, \mathrm{Ne}_{2}^{+}, \mathrm{Ar}_{2}^{+}, \mathrm{F}_{2}^{-}, \mathrm{Cl}_{2}^{-}$and the Ground State of $\mathrm{Cl}_{2} . J$. Chem. Phys. 1971, 55, 5247-5261.
(87) O'Hare, P. A. G.; Wahl, A. C. Thermochemical and Theoretical Investigations of the Sodium-Oxygen System. II. Properties of NaO and Its Ions from Hartree-Fock Molecular Orbital Studies. J. Chem. Phys. 1972, 56, 4516-4525.
(88) So, S. P.; Richards, W. G. The electronic ground states of alkali monoxides. Chem. Phys. Lett. 1975, 32, 227-230.
(89) Holst, W. Über das Bandenspektrum des ionisierten Aluminiumhydrides. Z. Phys. 1934, 89, 40-49.
(90) Narasimham, N. A. The Emission Spectrum of the PH^{+}molecule. Can. J. Phys. 1957, 35, 901-911.
(91) Reddy, R.; Ahammed, Y. N.; Rao, A. S.; Rao, T. V. R. Dissociation energies of PH and PH+. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 1035-1038.
(92) Zittel, P. F.; Lineberger, W. C. Laser photoelectron spectrometry of $\mathrm{PO}^{-}, \mathrm{PH}^{-}$, and $\mathrm{PH}_{2}{ }^{-}$. J. Chem. Phys. 1976, 65, 1236-1243.
(93) Patanen, M.; Nicolas, C.; Linguerri, R.; Simoes, G.; Travnikova, O.; Liu, X.-J.; Hochlaf, M.; Bozek, J. D.; Miron, C. High-Resolution Photoelectron Spectroscopy with Angular Selectivity-A Tool To Probe Valence-Rydberg States and Couplings in HCl^{+}. J. Phys. Chem. A 2014, 118, 4975-4981.
(94) Carlsten, J. L.; Peterson, J. R.; Lineberger, W. C. Binding of an electron by the field of a molecular dipole- LiCl^{-}. Chem. Phys. Lett. 1976, 37, 5-8.
(95) DeKock, R. L.; Higginson, B. R.; Lloyd, D. R.; Breeze, A.; Cruckshank, D. W. J.; Armstrong, D. R. Photoelectron spectra of halides: V. Experimental and theoretical study of the electronic structures of ClF, ClF3, BrF and BrF3. Mol. Phys. 1972, 24, 1059-1072.
(96) Anderson, C. P.; Mamantov, G.; Bull, W.; Grimm, F. A.; Carver, J. C.; Carlson, T. A. Photoelectron spectrum of chlorine monofluoride. Chem. Phys. Lett. 1971, 12, 137-139.
(97) Taube, A. G.; Bartlett, R. J. Frozen natural orbital coupled-cluster theory: Forces and application to decomposition of nitroethane. J. Chem. Phys. 2008, 128, 164101.

Graphical TOC Entry

[^0]: مं $\dot{\sim}$

[^1]: ${ }^{\mathrm{a}}$ From Ref. 73.
 ${ }^{\mathrm{b}}$ From Ref. 70.
 ${ }^{\mathrm{d}}$ From Ref. 75.
 ${ }^{\mathrm{e}}$ From Ref. 76.
 ${ }^{*}$ Theoretical results

