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Abstract

As scientific instruments and computer simulations produce more and more data, the task
of locating the essential information to gain insight becomes increasingly difficult. FastBit is
an efficient software tool to address this challenge. In this article, we present a summary of
the key underlying technologies, namely bitmap compression, encoding, and binning. Together
these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster
than popular database systems. To illustrate how FastBit is used in applications, we present
three examples involving a high-energy physics experiment, a combustion simulation, and an
accelerator simulation. In each case, FastBit significantly reduces the response time and enables
interactive exploration on terabytes of data.

1 Introduction

Current generations of scientific instruments [1, 11] and computer simulations [6, 12] are capable of
producing massive amounts of data. However, a relatively small percentage of records often hold
the key to the insight sought by scientists. For example, the high-energy physics experiment STAR
[14] collects billions of events of colliding particles, however, only a few hundred of them might be
the rare events having the unique signature of Quark-Gluon Plasma – finding evidence of Quark-
Gluon Plasma is one of the key scientific objectives of STAR. Locating a relatively small number
of data records distributed throughout a huge collection is a common challenge in many scientific
fields. Database Management Systems (DBMS) are designed to handle such tasks, however, existing
DBMS are not well-suited for scientific data explorations.

The existing DBMS systems are designed for transactional applications where data records are
frequently modified such as modifying one’s bank account during an ATM withdrawal. In contrast,
scientific applications typically do not perform such transactions. Most interactions with a scientific
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data set are to select a subset of records for further analyses, for example, selecting a number of
collision events with certain properties and computing a histogram of their energy distribution, or
selecting regions with a high temperature in a combustion simulation and computing the amount of
heat generated from each region. Such analysis tasks are generally supported by a data warehousing
system and require a different data access technology [5, 10, 15].

A familiar search technology that routinely handles a large amount of data is the web search
engine [3, 43]. The key underlying technology is the inverted index designed for text data. Since
the bulk of scientific data are numerical values, this indexing technology is not applicable. However,
other technologies employed by search engines such as the parallel iterators can be used effectively
for scientific applications.

We have been working on a set of techniques specifically designed for scientific data. They
are based on the bitmap index [4, 18]. The basic bitmap index is only effective on low-cardinality
variables that have a small number of distinct values, such as the gender of a customer or the
state of a customer’s address. However, scientific data usually contains variables with very high
cardinalities, such as floating-point values that hardly ever repeat. In Section 2 of this paper, we
review key techniques to make bitmap indexes efficient on high-cardinality variables.

The software containing our bitmap indexes is called FastBit1. Since its release in 2007, it has
been downloaded thousands of times, received an R&D 100 award, contributed to a number of PhD
theses [19, 24]. It has also been integrated with a number of popular data management and analysis
systems, such as HDF5 [31, 13] and VisIt [7, 22]. Many such work are performed without direct
involvement from any FastBit developer [23, 26]. For example, a group in Brazil used FastBit to
develop an indexing method for geographical data warehouses that was 10 - 20 times faster than
existing techniques [26]. A group in Germany developed a drug screening software that was 100s
of times faster than competing versions [23]. In Section 3 of this paper, we review three use cases
that do involve the developers. These applications use very distinct features of FastBit to locate
individual records satisfying specified conditions (Sec. 3.1), to find connected records (Sec. 3.2),
and to compute conditional histograms (Sec. 3.3).

2 Core Bitmap Indexing Techniques

In this section we review the core bitmap indexing techniques used in FastBit. We start with a
brief description of the basic bitmap index.

2.1 Basic bitmap index

Figure 1 shows a logical view of the basic bitmap index. Conceptually, this index contains the
same information as a B-tree [8, 18]. The key difference is that a B-tree would store a list of Row
IDentifiers (RIDs) for each distinct value of column A, whereas a bitmap index represents the same
information as sequences of bits, which we call bitmaps. In this basic bitmap index, each bitmap
corresponds to a particular value of the column. A bit with value 1 indicates that a particular row
has the value represented by the bitmap.

The bitmap indexes are particularly useful for query-intensive applications, such as data ware-
housing and on-line analytical processing. One of the key reasons is that queries can be answered
with bitwise logical operations on the bitmaps. In the example shown in Figure 1, a query “A <

2” can be answered by performing bitwise OR on b1 and b2 (i.e., b1 | b2). Since most computer
hardware support such bitwise logical operations efficiently, the queries can be answered quickly in
general. Another key reason is that answers from different bitmap indexes can be easily combined.
This is because the answer from each bitmap index is a bitmap and combining the different an-
swers simply requires additional bitwise logical operations. Since combining answers from different

1FastBit software is available from https://codeforge.lbl.gov/projects/fastbit/.
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bitmap index
RID A =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 2 0 0 1 0
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1: An illustration of the basic bitmap index for a column A that can only take on four
distinct values from 0 to 3. Note RID is the short-hand for “row identifiers”.

indexes swiftly is such an important consideration, a number of DBMS that do not support bitmap
indexes, such as PostgreSQL and MS SQL Server, even convert intermediate solutions to bitmaps
so they can be combined them more effectively.

The biggest weakness of the basic bitmap index is that its size grows linearly with the number
of distinct values. Next we review different strategies to control the index sizes and improve the
query response time, namely, compression, encoding and binning.

2.2 Bitmap Compression

Each bitmap in a bitmap index usually contains a large number of 0s, making it easy to compress.
To answer queries efficiently, researchers have developed specialized compression methods that offer
faster bitwise logical operations and consequently faster query response time [16, 37, 38]. The most
widely used bitmap compression method is Byte-aligned Bitmap Code (BBC) [2]. We developed
a new bitmap compression method called Word-Aligned Hybrid (WAH) code and showed it to
perform bitwise logical operations more than 10 times faster than BBC [35, 36].

WAH gains its speed partly from its simplicity. For long sequences of 0s or 1s, it uses run-length
encoding to represent them and for relatively short sequences of mixed 0s and 1s, it represents the
bits literally. Hence, it is a hybrid of two methods. Another key feature that enables it to achieve
performance is that the compressed data is word-aligned. More specifically, WAH compressed data
contains two types of words; literal words and fill words.

As illustrated in Figure 2(a), a literal word contains one bit to indicate its type and uses the
remaining bits to store the bitmap literally. A fill word similarly needs 1 bit to indicate its type.
It uses another bit to indicate whether the bits are all 0s or all 1s, and the remaining bits are used
to store the number of bits in a bitmap it represents. The number of bits represented by a WAH
fill word is always a multiple of the number of bits stored in a literal word.

Figure 2(b) illustrates the effects of compression on overall query response time. In this test,
the commercial implementation of the bitmap index (marked as “DBMS bitmap index”) uses BBC
compression, while “FastBit index” uses WAH compression. The query response time reported are
average time values over thousands of ad hoc range queries that produce the same number of hits.
Overall, the WAH compressed indexes answer queries about 14 times faster than the commercial
bitmap indexes.

2.3 Bitmap Encoding

Bitmap encoding techniques manipulate the bitmaps produced by the basic bitmap index to reduce
either the number of bitmaps in an index or the number of bitmaps needed to answer a query. For
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Figure 2: The effects of compression on query response time. The faster WAH compression used in
FastBit reduces the query response time by an order of magnitude (Timing measurements collected
with a 400 MHz UltraSPARC II CPU [36, 29]).

example, to answer a one-sided range query of the form “A < 3” on the data shown in Figure 1,
one needs to OR three bitmaps b1, b2 and b3. It is possible to store C bitmaps that correspond to
A ≤ ai for each of the C distinct values of A, where C is called the column cardinality of A. Such
a bitmap index would have the same number of bitmaps as the basic bitmap index, but can answer
each one-sided range query by reading just one bitmap. This is the range encoding [4]. Along with
the interval encoding and the equality encoding (used in the basic bitmap index), there are three
basic bitmap encoding methods. Next, we briefly explore strategies to compose more advanced
encodings using these basic methods.

The two common strategies of composing bitmap encodings are multi-component encoding [4]
and multi-level encoding [34, 25]. The central idea of multi-component encoding is to break the key
value corresponding to a bitmap into multiple components in the same way an integer number is
broken into multiple digits in a decimal or binary representation. In general, using more components
reduces the number of bitmaps needed, which may reduce the index size. Carrying this to the
extreme, we can make all base sizes as small as possible (where the minimum is 2). This particular
multi-component encoding can be optimized to be the binary encoding. This encoding produces the
minimum number of bitmaps and the corresponding index size is the smallest without compression.

The new class of encoding method we proposed was the multi-level index composed of a hierarchy
of nested bins on the base data. Each level in such an index is a complete index on its own, and can
answer queries on its own or in combination with other levels. This flexibility can be exploited to
achieve better performance [41]. Figure 3 shows some timing measurements of five multi-level and
multi-component indexes. These timing measurements indicate that two-level encodings, especially
the range-equality encoding RE and the interval-equality encoding IE, can be as much as ten times
faster than the basic bitmap index (marked E1). On average, the two-level encoded indexes are
about 3 to 5 times faster than the basic bitmap index and the binary encoded index (BN).

2.4 Binning

Scientific data are often computed or collected with high precision. For example, the temperature
and pressure in a combustion simulation are computed with 64-bit floating-point values having 16
decimal digits of precision. To capture the full precision of the data in a bitmap index, one typically
needs millions of bitmaps in the basic bitmap index. Such indexes can be large and slow to work
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Figure 3: The average query response time of five different bitmap encoding methods with WAH
compression (BN: binary encoding, E1: the basic one-component equality encoding, EE: two-level
equality-equality encoding, RE: two-level range-equality encoding, IE: two-level interval-equality
encoding; timing measurements collected with a 2.8 GHz Pentium 4 [41]).

with, even with the best compression and bitmap encoding techniques. However, we observe that
an exploratory process does not usually query data at the full precision. For example, a typical
query involving pressure is of the form “pressure > 2×107 Pascal.” In this case, the constant in the
query expression has only one significant digit. To answer all such queries with one-significant-digit
constants, we only need to make sure all the values are binned to one significant digit, which only
requires 9 bins for each distinct exponent in the data. Even if the user requires more than one
significant digit, typically, 2 or 3 significant digits are enough. The number of bins needed are still
modest.

Binning can reduce the number of bitmaps in an index and improve the query response time as
well. However, for some queries, we have to go back to the base data in order to answer the queries
accurately. For example, if we have 99 equal-width bins for pressure between 0 and 109 (with 100
bin boundaries at i×107, i = 0, . . . , 100), then the query condition “pressure > 2.5×107” cannot be
resolved with the index only. More specifically, bins 0 and 1 contain records that satisfy the query
condition, and bins 3 and onwards contain records that do not satisfy the condition, but records in
bin 2 (representing 2 × 107 ≤ pressure < 3 × 107) need to be examined further. In this case, we
say the records in bin 2 are candidates of the query. The process of determining which candidate
actually satisfies the condition is called a candidate check. When a candidate check is needed, it
often dominates the total query response time.

We have studied different approaches to minimize the impact of candidate checks. One is
to reorder the expression being evaluated to minimize the overall cost of candidate checks for a
query [30]. Another approach is to place the bin boundaries to minimize the cost of evaluating a
fixed set of queries [17, 20]. More recently, we proposed a new approach to more directly reduce
the candidate check cost by providing a clustered copy of the base data named Order-preserving
Bin-based Clustering (OrBiC) [40]. This approach organizes all values of each bin contiguously
on disk to reduce the I/O time needed for candidate checks. Figure 4 shows some performance
numbers to illustrate the advantages of this new approach. Figure 4(a) shows the binned index
with OrBiC outperforms the one without OrBiC for all query condition tested, and Figure 4(b)
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(a) individual query (b) average time

Figure 4: Time needed to process range queries using indexes with and without Order-preserving
Bin-based Clustering (OrBiC) (Timing measurements collected on a 2.8 GHz Pentium 4 [40]).
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Figure 5: Using Grid Collector can significantly speed up analysis of STAR data (Timing measure-
ments collected on a cluster with 2.8 GHz Intel Xeon processors [32, 42]).

shows the average time used by a binned index with OrBiC to be less than that used by the precise
index (with no binning).

3 Extended Technologies to Support Applications

After reviewing the core techniques behind the FastBit searching capability, we now show how this
basic searching capability enables more complex searching operations.

3.1 Smart Parallel Iterator

A large data set is often organized as many files each containing a number of data records, and the
files are usually stored on massive storage systems. To perform an analysis, one needs a cluster of
computers to hold the necessary files. The analysis system needs to retrieve and replicate the files
on the cluster. Managing the file replication and extracting the desired records can be challenging.
The mapReduce systems from google and Yahoo! automate some of these operations [9]. The core
concept in such a system is the parallel iterator that coordinates the accesses to files and records.
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Figure 6: Tracking the evolution of ignition kernels in a combustion simulation [33].

In this example, we demonstrate how FastBit fits into an efficient parallel iterator system.
The version of parallel iterator system we built was called Grid Collector. The prototype was

used in the STAR experiment and integrated into the STAR Data Analysis Framework [14, 42]. The
parallel iterator extended the functionality of the Event Iterator in the STAR analysis framework,
and could be used transparently with existing analysis programs. Figure 5(a) shows the schematics
of Grid Collector. FastBit is responsible for building the indexes for the Event Catalog and resolving
the selection criteria specified by the users to identify files and events. The Grid Collector server
also scheduled the file movements and cached files with the storage resource managers.

Figure 5(b) shows the observed speedup values versus the selectivity of the analysis task, where
the baseline is the time needed to run the same analysis without Grid Collector. The selectivity
is the fraction of events in these files that are selected for the analysis task. The Grid Collector
speeds up analysis tasks primarily by reducing the amount of disk pages accessed. When one out
of 1000 events is selected, the speedup values are observed to be between 20 and 50. When one in
ten events is used in an analysis job, the observed speedup is more than 2-fold.

3.2 Tracking spatial features

The previous example contains independent data records; however, many others have correlated
records and the search operations depend on this correlation. For example, the records produced by
a combustion simulation are related to each other by a mesh, to find and track ignition kernels, we
need the connectivity information of this underlying mesh (see Figure 6) [33, 28]. FastBit indexes
are uniquely able to take advantage of the underlying correlations among the data records because
they preserve the ordering of data provided by the user.

We divide the task of tracking ignition kernels into three steps: 1 finding points (records)
satisfying the user provided conditions for ignition kernels, 2 grouping the points into connected
components, and 3 tracking the evolution of the components by computing the overlap among them.
On a casual examination, FastBit indexes seem to only offer help in the first step. Indeed, many
database indexes can only accelerate the first step. However, FastBit indexes and the underlying
compressed bitmap data structure can speed up all three steps.

In step 2, we are able to take advantage of the compressed answers generated from step 1 to
provide a compact representation of the points in the regions of interest. Instead of recording each
data point separately, we store line segments consisting of multiple consecutive points [33]. We
further provide an efficient union-find data structure to accelerate step 2 [39]. At the end of step
2, we again represent each connected component as a compressed bitmap, which allows step 3 to
be completed quickly with our efficient bitwise AND operations.

In general, the first two steps can find any regions of interest. We observed that the time
needed is a linear function of the number of line segments [33]. Since the number of line segments
is bounded by the number of points on the surface of the regions, our algorithm for finding regions
of interest is bounded by a linear function of the number of points on the surface, instead of the
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(a) system schematics (b) parallel coordinate

Figure 7: The schematics of the parallel coordinate system used for selecting and displaying particles
from a Laser Wake-Field Accelerator simulation (a) and a parallel coordinate display for a time
step (b) [22].

number of points in the regions. For well-defined regions, where the number of point inside is much
larger than the number of points on the surface, our approach has a significant advantage.

3.3 Dynamic conditional histograms

Aside from its searching capability, FastBit also has a set of efficient functions for computing
conditional histograms [27, 22, 21]. In this example of visual exploration of Laser Wake-Field
Accelerator (LWFA) simulation data, we illustrate how this capability is used to produce parallel
coordinate plots and facilitate the tracking and understanding of particle bundles in LWFA2. The
new visual analysis system reduced the turn-around time from hours to seconds.

Figure 7(a) illustrates the use of FastBit to produce a parallel coordinate plot in this applica-
tion. FastBit is used to select records according to user specified conditions and to compute the
histograms on the selected records. For example, the context in Figure 7(b) (shown in blue) was
selected with “px > 8.872 × 1010.” The focus (shown in green) was selected with an additional
condition of “x > 1.77 × 10−3.” The parallel coordinate plots contain only particles with a high
forward momentum px (shown as the first axis on the left) > 8.872 × 1010. These particles form
two well-separated groups on the x-axis (shown as the 4th axis from the left), an important feature
for understanding the particle bundles in LWFA.

These parallel coordinate plots are generated using 2-D histograms involving neighboring axes.
FastBit produced these histograms with the data records satisfying the user specified conditions
and removed the need for user (or the visualization system) to read the whole data set before
perform the filtering. This reduced the volume of data accessed and improved the interactivity of
the visual exploration [22].

In the same application, FastBit was also used to track particles through time and select data
for volume rendering and other computations. For example, after a localized group of accelerated
particles was found in one time step, scientists might track its history to understand how the group
was formed. To accomplish this task, we first extracted the identifiers of the particles, then found
particles with these identifiers in other time steps. This search operation involved many thousands
of particle identifiers over millions of particles in the base data. The ability to handle this operation
efficiently is another feature of FastBit.

2Note that the user data is stored in HDF5 files [31, 13] and visualization is performed with VisIt [7].
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4 Summary and Future Plans

FastBit employs a number of advanced bitmap indexing techniques to significantly reduce the
query response time on large scientific data. Its advantages have not only been observed in timing
measurements, but also proven through theoretical computational complexity analyses [37, 38].
Furthermore, we have extended FastBit to include functions for handling simple mesh information
and computing conditional histograms. All these are useful features in analyzing massive data sets.
In addition, FastBit software is available open source so that anyone can derive from it or extend
it for their own work.

A number of new features are currently planned for FastBit, such as handling of queries that
join multiple tables. To support more applications, we are working on integrating information
about irregular and semi-regular meshes for queries involving spatial data. We are also studying
ways to perform text searches using compressed bitmap indexes.

FastBit shares a number of shortcomings of all other bitmap indexes; the most important of
which is that they are slow to update after modifications of a few existing records. This prevents
it from being used effectively in applications where data records change frequently. However, if the
changes are limited to relatively new records, FastBit could work effectively by avoiding indexing
those new records.
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