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ABSTRACT OF THE DISSERTATION 

 

Landscape of RNA editing across Autism Spectrum Disorders 

 

by 

 

Stephen Show Tran 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Xinshu Xiao, Chair 

 

Autism spectrum disorders (ASD) encompass neurodevelopmental diseases that share 

core deficits in verbal and nonverbal language, reciprocal interactions, and stereotyped 

and repetitive behaviors. Unfortunately, the molecular etiology of ASD remains 

incompletely understood. Excitingly, the recent advent of next generation RNA 

sequencing has now enabled whole-genome characterization of RNA regulation, 

expression, and modification in ASD. One such RNA modification, that is highly 

prevalent in mammalian synapses yet not studied in ASD, is RNA editing. Thus, in this 

dissertation, we perform a comprehensive spatiotemporal and first genome-wide study 

of RNA editing in ASD across multiple implicated brain regions, genetic etiologies, and 

developmental time points spanning fetal development to adulthood. Collectively, we 

uncovered general trends and regulatory mechanisms of RNA editing relevant to 

neuronal tissue. 
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We first characterized RNA editing in the largest cohort of ASD postmortem brains 

to date. Strikingly the ASD patients exhibited convergent trends of global downregulated 

RNA editing (hypoediting) affecting synaptic development and transmission genes. The 

global hypoediting was observed across multiple brain regions and multiple syndromic 

forms of ASD including dup15q11.2-13.1 duplication syndrome patients and Fragile X 

syndrome patients. Network analyses and experimental work demonstrated that Fragile 

X proteins, FMRP and FXR1P, regulated many of the dysregulated editing sites in 

human brain. 

Since postmortem brains only provide postnatal time windows for studying ASD, 

we next used organoid models to characterize the landscape of RNA editing over ASD 

fetal brain neurodevelopment. We generated the first large-scale dataset of hundreds of 

organoids modelling cerebral cortex development (cortical spheroids) over multiple time 

periods and encompassing a myriad of penetrant autism-susceptibility mutations. RNA 

editing gradually increased over cortical spheroid development both in control spheroids 

and ASD spheroids. However, at all developmental timepoints, the ASD cohort again 

displayed global trends of hypoediting. Functional enrichment analyses implicated the 

hypoedited RNA editing in cellular development and proliferation of radial glia, 

intermediate progenitors, and newborn neurons. 

Throughout these ASD studies, we encountered difficulties running common 

statistical analyses due to distinctive properties of RNA editing data. Thus, we lastly 

developed a statistical framework to handle RNA editing data based on a beta-binomial 

distribution. We developed a method, called REDITs (RNA editing tests), to handle 

important RNA editing analyses including significance of case-control differences and 
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regression associations with covariates. REDITs had demonstrably higher sensitivity 

and specificity on simulated and real RNA editing datasets when compared to the most 

alternative methods used in the RNA editing field.  
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Chapter 1 

Background 

1.1. General background of RNA editing 

RNA editing consists of base conversions of single nucleotides within RNA molecules. 

The Animalia kingdom has two types of known RNA editing, adenosine converted to 

inosine (A-to-I), and cytosine converted to uracil (C-to-U), catalyzed by the ADAR and 

APOBEC family of proteins respectively1,2. The A-to-I type of editing constitutes the 

predominate majority of RNA editing in human, in part because 10% of the human 

genome consists of Alu elements3 which form double stranded secondary structures 

propitious for ADAR binding4.  The rife expansion of Alu within the human genome 55 

million years3 ago may also explain why RNA editing occurs most prevalently in human 

than any other studied species including drosophila, mouse, zebrafish, macaque, and 

chimpanzee5. A diverse landscape of RNA editing also presents across human tissues, 

with overall editing gauging lowest in skeletal muscle and highest in brain tissues6.  
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1.2. RNA editing in brain 

1.2.1. Function of RNA editing in brain 

The above observations suggest particular functional importance for RNA editing in the 

human brain. Even before the advent of high-throughput sequencing, the vast majority 

of studied editing sites were found to hold critical roles in neuronal synapses7. The first 

A-to-I editing site in human was serendipitously discovered when there was an 

observed disparity between RNA and DNA in the coding sequence of GRIA2, which 

encodes a subunit of the GluR2 glutamate channel8. This editing site, causing an amino 

acid change of glutamine into arginine, was found to dramatically alter the calcium 

permeability of GluR2, and if attenuated, phenotypically led to mouse seizure and 

death9. Many other editing sites in brain were subsequently discovered. Similar calcium 

permeability modifying editing sites were discovered in GluK1 and GluK28. The GRIA2, 

GRIA3, and GRIA4 genes all have recoding RNA editing sites altering an arginine to 

glycine which enhances recovery from desensitization after firing currents10. Recovery 

from desensitization is also enhanced by RNA editing of isoleucine to valine in 

potassium channel KCNA111. Some genes such as CACNA1D and HTR2C contain 

multiple editing sites in close proximity which combinatorically generate 5 and 24 

isoforms respectively12,13. All the editing in CACNA1D occurs in its IQ domain which 

reduces calcium dependent CaM binding12. The editing in HTR2C reduces G-protein 

coupling efficiency of neurotransmitter serotonin to secondary messengers13.  



	3	

RNA editing has also been found to regulate alternative splicing of neuronal 

transcripts through both trans and cis mechanisms. An editing site substituting glycine 

to serine in the brain specific splicing factor NOVA114 increases its half-life. RNA editing 

in NOVA1 increases from embryonic to adult stages which could contribute to 

alternative splicing involved in neurodevelopment14. Another interesting example is 

auto-editing by ADAR2 within one of its introns, which creates an alternative splice-site 

eventuating in a non-functional isoform15. This process serves as an auto-negative 

regulatory loop controlling overall editing by ADAR2. The GRIA2 gene has an editing 

site at the end of exon 13 that when edited leads preferentially to inclusion of a 

downstream mutual exclusive flip exon over the nearer flop exon16. The flip exon and G 

edited site slow receptor desensitization over the flop and A non-edited site16.  

1.2.2. Global landscape of RNA editing in brain 

The advent of next generation sequencing (RNA-seq) recently expanded the study of 

RNA editing from a couple of aforementioned recoding sites, to the identification of 

hundreds of thousands of sites present in brain7,17. Contrasting to earlier work, most 

editing actually resides in non-coding regions of the human region17 rather than in 

exons. These non-coding sites, however, may also serve neural function. The editing 

levels of most noncoding sites have been found to gradually increase over prenatal to 

postnatal development18,19. Some of these sites reside in the seed regions of multiple 

microRNAs, likely influencing the microRNA repertoire during brain maturation20. The 

imperative of this temporal regulation was also demonstrated through human neuronal 

progenitor cells where low editing of GRIA2 leading to high calcium influx, was 
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necessary for differentiation into neurons; overstimulating editing levels through 

overexpression of ADAR2 in progenitor cells abrogated their ability to differentiate21. 

Since this increasing trend was found mostly in samples ranging from infancy to 

adulthood, the trajectories of RNA editing still require clarification over the various 

stages of fetal development and in human aging.  

Unexpectedly, the developmental increases in RNA editing do not correlate with 

ADAR gene expression or protein level18,22, indicating existence of other proteins that 

regulate RNA editing in brain. Some candidates include KPNA3 and PIN1 which were 

found to increasingly localize and stabilize ADAR2 in the nucleus over neural progenitor 

cell development23. However, the majority of neuronal relevant RNA editing regulators 

remain undiscovered.  

 An important question concerns how RNA editing contributes to specific synaptic 

processes, neural circuits, and cellular specific functions. Higher resolution technologies 

such as single cell sequencing have begun to delineate RNA editing landscapes across 

cell types in brain. Overall, neurons have globally higher editing levels than other cell 

types in brain such as endothelial, oligodendrocytes, astrocytes, and microglia24. A 

recent study examined RNA editing across neuronal subtypes within drosophila brain 

and uncovered hundreds of differential editing sites that could delineate the different 

populations of neurons25; many sites resided in evolutionarily conserved regions and 

had likely functions for cell type specific neuronal transmission25.  
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1.2.3. RNA editing in brain-related diseases 

Given its role in synaptic transmission, RNA editing poses as a candidate contributor 

towards neurological and brain disorders. In motor neurons of amyotrophic lateral 

sclerosis patients, editing of the Q/R editing site in GRIA2 was highly attenuated, likely 

contributing towards motor neuron death26. Editing levels in the serotonin receptor 

HTR2C were found markedly altered in brains of suicide individuals27. In Alzheimer’s 

disease, editing in multiple synaptic transmission genes was hypoedited28. Some editing 

levels have also been found altered in brains of Schizophrenic and Bipolar Disorder 

patients29 and Autism30. Although suggestive of a perpetrating role, these previous 

studies only investigated a select number of well-characterized recoding sites. A fuller 

understanding of the role of RNA editing in brain disorders will necessitate studying the 

global landscape of editing across many samples of diseased brain.  

1.3. Autism Spectrum Disorders 

1.3.1. Introduction to ASD 

Towards this goal, chapters 3 and 4 of this dissertation focuses on comprehensively 

characterizing the global landscape of RNA editing in ASD (Autism Spectrum 

Disorders).  ASD is a constellation of neurodevelopmental disorders affecting 1 in 68 

individuals that share in common core deficits in communication and reciprocal 

interaction and repetitive and stereotyped behaviors31. The cause of Autism is strongly 

genetic with estimates between 70-80% from twin studies32. However, the genetic 
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architecture of ASD is very complex, with strong evidence for an etiological root from 

both common and hundreds of rare-genetic variants33.  

1.3.2. Transcriptomic landscape of ASD from postmortem brains 

Despite a heterogeneous genetic etiology, large scale transcriptomic studies in 

postmortem brains have found striking convergence across individuals with ASD. Gene 

co-expression networks repeatedly identify that modules (gene networks) related to 

immune response are upregulated in ASD while modules related to neuronal and 

synaptic functions are downregulated34-38. Interestingly, microRNAs, a class of small 

RNA molecules that inhibits gene expression, in postmortem brains also organized into 

modules; upregulated microRNA modules in ASD targeted the downregulated neuronal 

gene modules and downregulated microRNA modules targeted the upregulated immune 

modules39, suggesting a possible causal relationship. Neuronal enriched alternative 

splicing has been found dysregulated34,38, and at least a third of ASD patients displayed 

widespread dysregulation of microexons (exons <27 nucleotides)40.      

A recent dataset of single-cell sequencing in 15 ASD and matched control 

postmortem cortex samples clarified how the transcriptomic changes observed in bulk 

tissue correspond to aberrations amongst brain cell types41. Specifically, laminar layer 

neurons, astrocytes, and microglia cells all had significant differential gene expression 

burdens from ASD. Interestingly, ASD patients had elevated cellular compositions of 

astrocyte cells. Furthermore, astrocytes and microglial cells in ASD had gene 

expression signatures indicative of activated states. Strikingly, even sample-specific 

differentially expressed genes unanimously had strongest burdens in laminar layer 
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neurons and converged in cellular processes related to synaptic development and 

transmission41. Overall these findings refine transcriptomic convergence of ASD to 

activated astrocyte and microglia states and prevalent dysregulation of gene expression 

in laminar neurons and synaptic processes. 

1.3.3. Pre-natal transcriptomics of ASD 

Autism phenotypically manifests as early as infancy42, but the molecular etiology likely 

stems prenatally during fetal development. Unfortunately, the above postmortem studies 

were restricted to studying ASD at postnatal time points. A couple of studies have 

circumvented this limitation by testing enrichment of Autism aberrations within fetal 

developmental gene expression modules derived from control, fetal brain samples43,44. 

Strikingly, rare, de-novo genetic variants from ASD are enriched in fetal modules related 

to histone modifications and gene regulation43,44. The genes within these modules 

express exclusively during fetal stages before desisting postnatally. In contrast, the 

genes in the aforementioned downregulated neuronal modules only express highly 

postnatally43,44. These studies prove that gene expression has fetal-specific regulation 

imperative to ASD progression and not investigable using postmortem brains alone. It is 

possible that RNA editing also displays multimodal abnormalities in prenatal versus 

postnatal ASD.  

 One promising avenue for modeling and studying prenatal ASD etiology is 

organoids. Organoids capture diverse cell types, molecular cell to cell interactions, and 

three dimensional structures which more realistically model brain development than 

iPSC cell models. One study produced telecephalic organoids from iPSC cells from 4 
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families with idiopathic ASD probands45. The organoids transcriptionally recapitulated 

development of 8-9 post conception weeks of neocortex and hippocampus. Compared 

to control fathers, the ASD probands organoids had upregulated genes involved in 

transcriptional regulation and synaptic assembly and overproduction of GABAergic 

neurons. The study attempted to augment homogeneity of their disease cohort by only 

using probands that had enlarged head circumferences45. This, however, raises an 

issue of distinguishing which observed aberrations are specific to their cohort and which 

are reflective of core ASD etiology. To ensure generalizability to core ASD deficits, 

future organoid studies will need to include larger sample sizes harboring both 

idiopathic ASD and mutations in known autism-susceptibility genes. Furthermore, 

understanding the fetal progression of ASD will require propagating organoids across 

multiple differentiation time points.  

1.3.4. Necessity of studying RNA editing in Autism  

Despite massive progress made in detailing the transcriptomic landscape of ASD, RNA 

editing has been largely neglected. A single publication on a small sample size of 

postmortem cortex (11 ASD samples) measured editing at a dozen recoding RNA 

editing sites using targeted sequencing30. ASD patients tended to have outlier levels of 

editing relative to controls. However, a more complete understanding of the contribution 

of editing to ASD will require global analysis of RNA editing across many samples. 

Important questions include how RNA editing presents in adult ASD, which molecule 

processes regulate or are affected by editing, and how RNA editing projects within ASD 

fetal development.  
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1.4. Limitations of data and technologies for studying RNA 

editing 

Recent efforts have generated a prodigious amount of postmortem and single cell data 

for studying ASD34,41. However, the datasets are generally designed for gene 

expression studies which can complicate repurposing for RNA editing. Single cell 

studies in brain often use single-nucleus RNA sequencing because of the harsh 

conditions needed to dissociate brain tissue and for scalability41,46. However, the current 

technologies for single-nucleus sequencing employ STAMPs (single-cell transcriptomes 

attached to microparticles) which only capture the 3’ ends of mRNA transcripts46,47. 

While STAMPs are suitable for calculating gene expression, they lack detection of RNA 

editing sites in the middle and 5’ ends of transcripts.  

 Bulk tissue RNA-seq, though not utilizing STAMPs, suffers from generally 

nonuniform or sparse transcript coverage. Across multiple studies, the number of 

detected RNA editing sites linearly correlated with the number of RNA-sequencing 

reads19,48, indicating that editing level quantification did not reach saturation under 

typical sequencing coverages. This complicates comparing editing sites between 

multiple samples from RNA-sequencing since the coverage per editing site can 

dramatically vary per sample. Fundamentally it is of interest whether RNA editing levels 

differ between ASD versus control samples. However, as RNA editing level is calculated 

as the number of reads harboring a “G” nucleotide divided by the total number of reads 

covering the editing site, studies will inevitably have to cope with samples either lacking 

coverage or having less accurate editing level quantification due to small coverage. 



	10	

Unfortunately, commonly utilized methods for gene expression studies, such as the t-

test18 or linear regression49 of gene expression values, do not handle this issue. Thus 

more development of advanced statistical frameworks for comparing RNA editing data 

is needed and is developed in chapter 4 of this dissertation. 
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Chapter 2 

Widespread RNA editing dysregulation in Autism 

Spectrum Disorder Patient Brains 

2.1 Introduction 

Autism spectrum disorder (ASD) is characterized by a developmental deficit in social 

communication accompanied by repetitive and restrictive interests1, with a strong 

neuropathology implicating glutamatergic2 and serotonergic3 circuits, aberrant structural 

development in multiple brain regions4, excitatory and inhibitory imbalance5, and 

abnormal synaptogenesis6. The genetic etiology of ASD remains incompletely 

understood and shows substantial heterogeneity7. Nevertheless, recent studies, 

leveraging the increasing availability of postmortem samples, have revealed shared 

patterns of transcriptome dysregulation affecting neuronal and glial coding and non-

coding gene expression8,9, neuronal splicing including microexons10, and microRNA 

targeting11 across approximately 2/3 of ASD patients. These studies highlight down-

regulation of activity-dependent genes in neurons and up-regulation of astrocyte and 

microglial genes as key points of convergence in ASD pathology. 

Another major RNA processing mechanism is RNA editing, which refers to the 

alteration of RNA sequences through insertion, deletion or substitution of nucleotides. 

Catalyzed by the ADAR family of enzymes, adenosine-to-inosine (A-to-I) editing is the 
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most prevalent type of RNA editing in humans, affecting the majority of human genes12. 

As inosines in RNA are recognized as guanosines by cellular machinery, A-to-I editing 

can alter gene expression in different ways, for example, through amino acid 

substitutions, modulation of RNA stability, alteration of alternative splicing, and 

modifications of regulatory RNAs or cis-regulatory motifs12,13.  

RNA editing plays important roles in neurodevelopment and maintenance of 

normal neuronal function13.  Indeed, a number of A-to-I editing sites alone are 

imperative in modulating excitatory responses and permeability of ionic channels and 

other neuronal signaling functions13. Not surprisingly, aberrant RNA editing has been 

reported in several neurological disorders, such as schizophrenia, bipolar disorder, 

amyotrophic lateral sclerosis,14 and Alzheimer’s disease.15 In ASD, a previous study 

analyzed a few known RNA editing sites in synaptic genes and reported altered editing 

patterns in a small cohort of ASD cerebella16. Yet, it remains unaddressed if global 

patterns of RNA editing may contribute to the neuropathology of ASD, a question that 

requires larger patient cohorts and multiple implicated brain regions. In addition, the 

regulatory mechanisms of aberrant editing in neurological disorders including ASD 

remain largely unknown.  

Here we report global patterns of dysregulated RNA editing across the largest 

cohort of ASD brain samples to date, spanning multiple brain regions. We identified a 

core set of down-regulated RNA editing sites, enriched in genes of glutamatergic and 

synaptic pathways and ASD susceptibility genes. Multiple lines of evidence associate a 

distinct set of these hypoedited sites with Fragile X proteins: FMRP and FXR1P. 

Through transcriptome-wide protein-RNA binding analyses and detailed molecular 
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assays, we show that FMRP and FXR1P interact with ADAR and modulate A-to-I 

editing. It is known that mutations in FMRP lead to the Fragile X syndrome, a disease 

with high comorbidity with ASD7. Indeed, we observed convergent dysregulated 

patterns of RNA editing in Fragile X and ASD patients, which is consistent with the 

findings that genes harboring ASD risk mutations are enriched in FMRP targets17,18. 

Overall, we provide global insights regarding RNA editing in ASD pathogenesis and 

elucidate a regulatory function of Fragile X proteins in RNA editing that additionally 

serves as a molecular link between ASD and Fragile X Syndrome. 

2.2 Results 

2.2.1 RNA editing analysis of ASD postmortem brain samples 

From 69 unique post-mortem subjects, we obtained rRNA-depleted total RNA-Seq (50 

base paired-end, non-strand-specific) from three brain regions implicated in ASD-

susceptibility: frontal cortex, temporal cortex, and cerebellum (Supplementary Table 1). 

In total, there were 29, 30, and 31 ASD samples, and 33, 27, and 29 control samples 

from frontal cortex, temporal cortex, and cerebellum, respectively, with 45 subjects in 

common across 3 brain regions and 20 subjects in common across 2 regions 

(Supplementary Fig. 1). These datasets were generated as part of our transcriptomic 

study of ASD brain9. Overall, the ASD and control groups did not have significant 

differences in variables that might confound RNA editing analysis (e.g. age, gender, 

etc.) (Supplementary Fig. 2). Each brain sample was sequenced to an average of 70 
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million raw read pairs and averaged 55 million uniquely mapped pairs (Supplementary 

Fig. 3)9.  

We applied our previously developed methods to identify RNA editing sites using 

the RNA-Seq data19, and implemented additional steps to capture editing sites located 

in “hyperedited” regions, which were likely missed by regular methods20 (Methods). 

Combining these approaches, we identified a total of 98,477, 97,994, and 134,085 

predicted RNA editing sites from frontal cortex, temporal cortex, and cerebellum, 

respectively. As expected, the number of predicted RNA editing sites per sample 

correlated with read coverage approximately (Supplementary Fig. 4).  

On average, >95% predicted RNA editing sites were A-to-G and T-to-C editing 

types per sample, and the remaining 5% mainly consisted of C-to-T and G-to-A types, 

consistent with canonical A-to-I and C-to-U editing reflected in non-strand-specific RNA-

Seq data (Fig. 1a, Supplementary Fig. 5). Notably, most (84%) of the A-to-I editing sites 

are listed in the REDIportal database21 (Supplementary Fig. 5). The majority of RNA 

editing sites were located in Alu sequences21 (Supplementary Fig. 5) and in intronic 

regions21 (Supplementary Fig. 5), and the sequence context of A-to-G sites was 

consistent with the typical sequence signature known for ADAR substrates22 

(Supplementary Fig. 5). Examination of correlation between ADAR expression levels 

and various partitions of editing sites (Alu, non-Alu repetitive, non-repetitive regions) 

showed overall positive correlation with ADAR1 and ADAR2 across the editome and 

weakly negative or no correlation with ADAR3 (Supplementary Fig. 6). These findings 

are consistent with known properties of RNA editing established in the literature23, and 

altogether, strongly support the validity of our predicted A-to-I editing sites.  
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The frontal and temporal cortex shared more than 70% of their sites, while the two 

cortical regions and cerebellum shared 50-55% (Supplementary Fig. 5). Furthermore, 

the editing levels of common editing sites between two brain regions were highly 

consistent (correlation coefficient 0.96 between cortices, and 0.89 to 0.90 between 

cortex and cerebellum, Supplementary Fig. 5).  Thus, the three brain regions 

demonstrated similarities and differences in RNA editomes, with the cortices having 

more similarities in RNA editomes than with cerebellum, likely reflecting the substantial 

differences in cellular composition and physiology between these two regions24.  

2.2.2 Reduction of RNA editing in ASD frontal cortex 

Given the observed difference in RNA editing between brain regions, we first focused 

on analysis of RNA editing dysregulation in frontal cortex, a region with strong 

transcriptomic alterations in ASD8,9. We identified a total of 3,314 differential editing 

sites in ASD (p < 0.05, and editing level difference ≥ 5% or editing prevalence difference 

≥ 5%, see Methods and Supplementary Table 2), which were robust to the choice of 

statistical models and parameters (Methods, Figs. S7-9). For each individual, 2.6-10.5% 

of all editing sites were identified as differential (Fig. 1b). Strikingly, the differentially 

edited sites showed a bias of hypoediting in ASD samples (Fig. 1c); the number of 

down-regulated RNA editing sites in ASD far outnumbered those that were upregulated 

(p = 1.3e-59, Chi-squared test, Fig. 1c).  

Across potentially confounding biological and technical variables, diagnosis (i.e., 

ASD or control) was the only variable with significant association (Supplementary Fig. 

10), allowing differential editing sites to substantially separate the two groups of 
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subjects (Fig. 1d). Also, genes harboring the differential editing sites had minimal gene 

expression differences between ASD and control groups (Supplementary Fig. 10), 

evidencing that differential editing was unlikely secondary to differential gene 

expression. 

We utilized Sanger sequencing to confirm the observed editing differences of 8 

sites (Supplementary Table 3), covering an expansive range of editing level differences 

(Fig. 1e). Each editing site was tested in eight postmortem frontal cortex samples (4 

ASD, 4 controls), selected based on sample availability (Supplementary Table 1b). The 

editing differences calculated from RNA-Seq strongly correlated with those from Sanger 

sequencing (Fig. 1e, R2 = 0.75), validating the accuracy of our editing level 

quantification.  

The set of genes harboring at least one differential editing site in frontal cortex 

(total of 1,189) exhibited significant gene ontology (GO) enrichment for categories 

including ionotropic glutamate receptor activity, glutamate gated ion channel activity, 

and synaptic transmission (Fig. 1f). Consistently, genes (e.g., KCNIP4, PCDH9, 

RBFOX1, and CNTNAP2) with the largest number of differential editing sites (both 

before or after correction for gene length, Supplementary Fig. 11) were involved in the 

above functional categories, and a number of genes with differential editing were also 

known ASD susceptibility genes25 (Supplementary Fig. 11). For a relatively small 

number of genes (Supplementary Table 4), such as KCND2 and GRIK2, that harbored 

differential editing sites associated with their gene expression, we observed strong 

enrichment in synaptic functions, including presynaptic and postsynaptic membrane, 

synaptic transmission, cell junction, dendrites, and similar categories (Supplementary 
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Fig. 11). Lastly, we observed that differential editing sites were significantly enriched in 

clusters of editing sites that abruptly increase between fetal and infant stages of cortical 

development26 (Supplementary Fig. 12).  Together, these results indicate that RNA 

editing could contribute towards aberrant synaptic formation in ASD.  

2.2.3 Replication of reduced RNA editing in an independent cohort of 

ASD frontal cortex 

For replication, we analyzed an independent cohort of ASD patients27. After balancing 

technical covariates, we analyzed RNA-Seq data from frontal cortex of 22 ASD and 23 

controls (Supplementary Fig. 13, Supplementary Table 1c). This data set had single-

end reads from polyA primed libraries and low sequencing depth (< 12 million total 

reads per sample, which led to slight 5’ to 3’ bias), constricting sufficient coverage to 

only 4952 editing sites. We, nevertheless, identified differential editing in 185 sites, with 

65% exhibiting reduced editing in ASD (Supplementary Fig. 14, Chi-squared test p = 

0.0085), thus reproducing the hypoediting pattern of our main dataset. Differential 

editing sites in the replication dataset were likewise enriched in genes involved in 

synapse and cell junction (Supplementary Fig. 14), and the levels of differential editing 

significantly correlated with those in our study (Supplementary Fig. 14). Replication of 

the editing landscape using data from a different cohort collected by a different lab 

strongly supports the validity of our observed ASD editing profiles. 
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2.2.4 Global analysis of potential regulators of hypoediting in ASD 

To elucidate the regulatory mechanisms of hypoediting in ASD brains, we examined the 

mRNA and protein expression levels of the ADAR genes but did not observe significant 

differences of ADAR1 and ADARB1 (ADAR2) expression in frontal cortex (Fig. 2a-c). 

Although ADARB2 (ADAR3) protein was undetectable in the brain samples 

(Supplementary Fig. 15), its mRNA was slightly downregulated in ASD (Fig. 2a), which, 

as an RNA editing inhibitor23, cannot explain the observed hypoediting in ASD. The 

ADAR genes did not exhibit differential splicing in these samples, as determined 

previously9, and have no reported rare or common variants associated with ASD.  

Given the absence of explanatory variation by ADARs, we hypothesized other 

trans-regulators must causally contribute. Given the large-scale editome profiles in this 

study, if a prevailing mechanism exists for hypoediting in ASD, then a significant 

number of editing sites should demonstrate correlated variation across the subjects. We 

applied weighted gene co-expression network analysis (WGCNA)28 to search for highly 

correlated clusters of editing sites (i.e., modules) (Methods).  

Remarkably, we identified a module enriched in editing sites that had significant 

association with diagnosis (Fig. 2d, Supplementary Table 5) and enrichment with 

differential editing sites between ASD and controls in frontal cortex of this study (Fig. 

2e), and those from the replication cohort (Supplementary Fig. 14). Correlation between 

the module “eigengene” (i.e., eigen-editing site) and expression of potential trans-

regulators (Supplementary Fig. 15) identified strong association between the turquoise 

module and Fragile X-relevant genes (FMR1 and FXR1) (Fig. 2d). FMR1 demonstrated 
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positive (i.e. enhancing) correlation with editing changes, while FXR1 displayed 

negative (i.e. inhibitory) correlation. This module is significantly enriched with genes 

related to synaptic ontology (Fig. 2f), consistent with a primary known function of FMRP 

in localization and maintenance of synapses29, and previous reports showing 

enrichment of FMRP binding targets in ASD risk genes17,18.   

2.2.5 Interaction between Fragile X proteins and ADARs 

To experimentally inspect the involvement of Fragile X proteins in RNA editing 

regulation, we first conducted subcellular fractionation experiment followed by Western 

blot and reciprocal co-immunoprecipitation (co-IP) experiments in HeLa cells to 

determine the localization and protein interactions of Fragile X proteins and ADARs. 

Consistent with previous literature, the ADAR proteins were enriched in the nuclear 

fraction12, while FMRP and FXR1P were detected substantially in the cytoplasmic 

fraction30 (Fig. 3a). Interestingly, FMRP and FXR1P were also highly detectable in 

nucleus, which was corroborated using immunofluorescence experiments 

(Supplementary Fig. 16). Subcellular distribution of ADAR proteins remained 

unchanged upon FMRP or FXR1P knockdown (Fig. 3a). Reciprocal co-IP experiments 

showed that FMRP interacts with both ADAR1 and ADAR2 in an RNA-independent 

manner (Fig. 3b), while FXR1P interacted with ADAR1 but not with ADAR2. 

Additionally, we observed interaction between FMRP and FXR1P (consistent with 

previous literature)31, but not between ADAR1 and ADAR2.  
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2.2.6 FMRP and FXR1P binding relative to dysregulated editing sites 

Next, we captured the transcriptome-wide binding patterns of FMRP and FXR1P to 

RNA transcripts using enhanced UV crosslinking and immunoprecipitation (eCLIP)32. 

Data from two eCLIP experiments and an input control experiment were obtained for 

each protein using postmortem frontal cortex from control subjects (Methods) 

(Supplementary Fig. 17).  

We first confirmed the quality of our eCLIP experiments. eCLIP peaks identified in 

each replicate (Methods, Supplementary Table 6) demonstrated highly correlated read 

abundance (Supplementary Fig. 17), prompting us to combine peaks from the replicate 

experiments to maximize the sensitivity of peak detection. The binding sites of both 

proteins were predominantly distributed in genic 3’ UTRs, introns and exons 

(Supplementary Fig. 17), consistent with previous literature30,33. Sequence motif 

analyses identified ACUG as the most enriched motif among the FMRP eCLIP peaks 

(Supplementary Fig. 17), which matches a FMRP binding motif previously reported33, 

and CAUGC in FXR1P (Supplementary Fig. 17), which is consistent with a previous 

report that FXR1P tends to associate with AU-rich elements34.  

Next, we examined the proximity of FMRP and FXR1P binding peaks relative to 

dysregulated editing sites in ASD frontal cortex. Remarkably, the FMRP and FXR1P 

eCLIP peaks were significantly enriched around editing sites in the turquoise module 

(Fig. 3c, Methods), a finding that replicated in the FMRP eCLIP data generated from 

K562 cells by ENCODE35 (Supplementary Fig. 18), but, importantly, not for proteins 

lacking evidence for RNA editing regulation (Supplementary Fig. 18). Additionally, 
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FMRP and FXR1P eCLIP target genes significantly overlapped with genes harboring 

differential editing sites or sites in the turquoise module (Supplementary Fig. 19). These 

results suggest that FMRP and FXR1P proteins may regulate RNA editing directly in 

ASD. 

2.2.7 FMRP directly modulates RNA editing 

To investigate whether FMRP directly affects RNA editing, we conducted a series of 

minigene reporter assays (Supplementary Fig. 21, Methods) on two example editing 

sites in HeLa cells (Supplementary Table 3).  These editing sites, located in the 3’ UTRs 

of the TEAD1 and EEF2K genes, were chosen due to close proximity with putative 

FMRP binding motifs (Supplementary Fig. 20). The TEAD1 and EEF2K editing sites are 

likely site-specific editing sites, since no other sites were observed in their immediate 

neighborhood.  

Knockdown of FMR1 and ADAR2 caused significant reduction of editing at the 

TEAD1 editing site (Fig. 3d). Similarly, knockdown of FMR1 caused significant reduction 

of EEF2K editing level (Fig. 3e) and a trend of reduction upon ADAR1 knockdown (p = 

0.06). EEF2K is also endogenously edited in HeLa cells, and responded to FMR1 and 

ADAR1 knockdown significantly, concordant with the minigene assays (Supplementary 

Fig. 21). These data are consistent with our observation that FMRP multifariously 

interacts with both ADAR1 and ADAR2 proteins and corroborates the positive 

association of turquoise eigen-editing site with FMR1 expression levels (Fig. 2d).  

Next, we introduced mutations to the FMRP binding motifs in the minigenes in 

order to weaken the protein-RNA interaction (Supplementary Fig. 20). Loss of these 
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FMRP binding sites caused significant reduction in RNA editing (Fig. 3f, g), importantly, 

without changing the predicted double-stranded RNA (dsRNA) structures 

(Supplementary Fig. 20). Our results suggest that FMRP directly regulates editing of 

these two site-specific sites through mediated interaction between ADAR and the RNA. 

2.2.8 FXR1P regulates hyperedited sites 

In contrast to site-specific editing, another class of editing sites consists of hyperedited 

sites that tend to cluster together20. We conducted minigene experiments on three 

genes (CNTNAP4, NLGN1, and TENM2) that all had manifold editing sites within long 

double-stranded intronic regions (Supplementary Fig. 22, Supplementary Table 3), two 

of which (CNTNAP4 and NLGN1) are ASD risk genes. Consistent with its known role in 

hyperedited RNA editing20, ADAR1 knockdown caused reduction in all the detectable 

editing sites (Fig. 3h), though interestingly ADAR2 knockdown did too to a lesser 

degree. Remarkably, the hyperedited sites in these genes showed increased editing 

levels in FXR1 (but not in FMR1) knockdown cells, which was again consistent with the 

WGCNA results that showed negative correlation between FXR1 expression and RNA 

editing (Fig. 2d). RNA immunoprecipitation experiments supported that FXR1P binds to 

the regions harboring the editing sites in these target genes (Supplementary Fig. 23). 

Additionally, mutations in predicted FXR1 binding motifs induced higher editing levels at 

a majority of sites in two of the three minigenes (Fig. 3i, Supplementary Fig. 23). These 

results potentially indicate direct inhibitory regulation of hyperediting sites by FXR1P 

through mediated interaction between ADAR1 and RNA. 
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2.2.9 Concomitant regulation of RNA editing by FMRP and FXR1P  

To further substantiate the above findings, we validated 6 more differential editing sites 

in two neuroblastoma cell lines (Supplementary Table 3). These candidate sites were 

chosen based on their propinquity to FMRP or FXR1P eCLIP sites and their nominal 

correlation with the turquoise module, FMR1, or FXR1 gene expression. As expected, 

ADAR1 and ADAR2 shRNA knockdown reduced editing at all editing sites 

(Supplementary Fig. 24). Strikingly, FMR1 shRNA knockdown caused significant 

reduction of editing of all sites, while FXR1 knockdown caused significant augmentation 

of editing in 10 of the 12 sites (Fig. 3j, S24). These results were reproducible between 

the two cell lines, further substantiating the inhibitory role of FXR1P and enhancing role 

of FMRP in editing regulation, and demonstrating concomitant regulation of RNA editing 

by these proteins at some editing sites. Together, our experimental results clearly 

validate that FMRP and FXR1P are important regulators of RNA editing. 

2.2.10 Convergent RNA editing alterations between ASD and Fragile X 

patients 

Loss of FMRP manifests in Fragile X syndrome, the most prevalent monogenic cause of 

ASD (1-2% of all ASD)7,36 in which approximately 50% of patients have co-diagnoses or 

features of ASD37. To investigate a possible role for RNA editing contributing to shared 

molecular pathologies, we generated RNA-Seq data from the frontal cortex of four 

patients with Fragile X syndrome and four Fragile X carriers or controls (Supplementary 

Fig. 25). The samples were obtained and separately analyzed from two brain banks. 
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Western blot confirmed that FMRP expression was absent or reduced in the Fragile X 

samples relative to carriers or controls, and the expression levels of ADAR1 and 

ADAR2 were similar between the two groups (Supplementary Fig. 25).  

Strikingly, differential editing sites identified in the Fragile X dataset 

(Supplementary Fig. 25, Methods) showed the same trends as those from ASD: they 

demonstrated a predominant trend of hypoediting in Fragile X patients and strong 

enrichment in genes related to synaptic transmission, cellular junctions, and ionic 

transmission (Fig. 4a,b, Supplementary Table 7), and were also significantly enriched 

around FMRP and FXR1P eCLIP peaks (Fig. 4c). Moreover, a statistically significant 

overlap was observed between the differentially edited genes in Fragile X patients and 

those in the turquoise module identified from  ASD frontal cortex (Fig. 4d), the module 

that is correlated with FMR1 expression (Fig. 2d). In addition, a significant overlap exists 

between the differential editing sites in Fragile X patients and editing sites in the 

turquoise module of ASD for data from one of the two brain banks (Supplementary Fig. 

26). Overall, these results again support our hypothesis that the turquoise module 

encapsulates a subset of dysregulated editing sites in ASD that are under regulation by 

FMRP.  

Altogether, the analysis of editing profiles in Fragile X patient brain provides a 

strong independent line of evidence showing convergence of dysregulated RNA editing 

between Fragile X syndrome and ASD through a common mechanism involving FMRP 

regulation of RNA editing. 
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2.2.11 Consistent hypoediting patterns observed for different brain 

regions of ASD patients 

Here we investigated whether other brain regions share similar editing patterns with the 

frontal cortex. In temporal cortex and cerebellum, we also observed global down-

regulation of RNA editing and enrichment in synapses, cellular junctions, and ionic 

channels (Fig. 5a and Supplementary Fig. 27). Overall, differential editing sites shared 

between brain regions showed significant correlation in levels of dysregulation (Fig. 5b). 

Likewise, WGCNA, performed on the editing sites identified in temporal cortex and 

cerebellum, identified downregulated modules (colored turquoise by WGCNA 

convention) strongly associated with ASD in these brain regions respectively (Fig. 5c, 

Supplementary Table 5). The turquoise modules of the three brain regions shared many 

editing sites (Fig. 5d). Overall, these results demonstrate that the global patterns of 

dysregulated editing are common across implicated brain regions in ASD. 

A small set of 65 and 66 genes were, however, exclusively differentially edited in 

cortex and cerebellum respectively (Fig. 5e, Supplementary Table 8). They exhibited 

significant cortex- and cerebellum-specific expression patterns (Fig. 5f), suggesting that 

the region-specific differential editing may be explained by higher expression in their 

respective brain regions. It is likely that these region-specific genes have distinct 

functional roles in ASD.  

We also examined 59 editing sites conserved across multiple phylogenetic taxa, 

likely serving  as functionally paramount RNA editing sites in human38. Thirteen were 

identified as differentially edited in at least one brain region. Strikingly, they all exhibited 
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hypoediting in ASD, 6 of which were recoding sites (Fig. 5g). Four of the recoding sites 

are located in glutamate receptors: GRIA2 (R764G), GRIA4 (R765G), GRIK1 (Q621R) 

and GRIK2 (Y571C)13.  Additionally, another recoding site was found in the NOVA1 

gene (Fig. 5g), which codes for a brain-specific splicing factor that reportedly may cause 

down-regulated splicing in ASD39. This recoding site (S363G) stabilizes protein half-life 

of NOVA139, suggesting that the down-regulated editing may be an upstream causal 

factor of down-regulated splicing in ASD9. Overall these findings strengthen the 

association between RNA editing and aberrant synaptic signaling in ASD.   

2.2.12 Common and brain region-specific mechanisms of RNA editing 

regulation in ASD 

Next, we examined the prospective regulation of hypoediting in the other brain regions. 

The eigen-editing sites of the turquoise modules in the other two brain regions also 

displayed correlations with both FMR1 and FXR1 expression (Fig. 5c, although the 

correlation for FXR1 in cerebellum was not statistically significant, p = 0.07), suggesting 

that regulation of RNA editing by FMRP and FXR1P may be a common mechanism for 

multiple afflicted brain regions in ASD.  

Correlation of the expression levels of the ADAR (1, 2 and 3) and Fragile X-related 

genes with the 1st principal component (PC) of all differential editing sites 

(Supplementary Fig. 28) also recapitulated many of the turquoise module associations: 

FMR1 significantly associated with the 1st PC in both frontal cortex and cerebellum, and 

FXR1 negatively correlated in all 3 brain regions, corroborating their roles in positive 
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and negative regulation of RNA editing respectively. Although we did not observe 

significant changes of the ADAR mRNAs between ASD and control groups in any brain 

region (Supplementary Fig. 28), ADAR2 was significantly associated with the 1st PC of 

differential editing in temporal cortex (Supplementary Fig. 28) and validated by Western 

blot analysis showing a possible trend of downregulated ADAR2 protein in the temporal 

cortex of ASD (Fig. 5h,i). Lastly, FXR2, though not associated with the turquoise module 

in frontal cortex, showed significantly positive correlation with the turquoise module in 

temporal cortex (Fig. 5c) and with the PC of differential editing in cerebellum 

(Supplementary Fig. 28). Future studies are needed to examine the roles of FXR2 and 

ADAR2 in these brain regions.  

2.2.13 Exacerbated severity of hypoediting patterns in dup15q 

patients 

Duplication of chromosome 15q11.2-q13.1 (i.e., dup15q), accounting for 0.25-3% ASD 

diagnoses40, clinically manifests with more severe motor impairments and intellectual 

disability than idiopathic ASD40,41, along with greater magnitude and homogeneous 

dysregulation of gene expression and splicing9. We analyzed RNA editing in dup15q 

from frontal cortex (8 samples), temporal cortex (9 samples), and cerebellum (5 

samples) against covariate matched controls (Supplementary Fig. 29). Dup15q patients 

exhibited more profound hypoediting (Fig. 6a) than idiopathic ASD (Fig. 1c, 5a). 

Correlation between differential editing levels and the Intelligent Quotient (IQ) scores of 

the idiopathic ASD individuals (Supplementary Fig. 30) was also very high, though not 



	 34	

significant because only a handful of ASD subjects had IQ information: temporal cortex 

(R2=0.64), cerebellum (R2=0.36), and most prominently in frontal cortex (R2=0.80), the 

region considered most strongly associated with cognitive function42. These results 

suggest that editing dysregulation could be related to the severity of cognitive deficits.   

The landscape of editing in dup15q recapitulated the trends in idiopathic ASD. 

Differential editing levels in dup15q significantly correlated with those in idiopathic ASD 

(Fig. 6b), and were enriched in the turquoise modules observed in the idiopathic 

subjects (Fig. 6c), and showed  greater concordance and magnitude of hypoediting (Fig. 

6d). We found hypoediting at nearly all the testable (Methods) 59 conserved sites, 

including replicated differential editing at the glutamate receptors GRIA2 (R764G), 

GRIA4 (R765G), GRIK1 (Q621R), GRIK2 (Y571C), and NOVA1 (Fig. 6e). Overall, these 

results not only strongly validate the hypoediting landscape identified across the 3 brain 

regions of ASD but also reveal an exacerbated hypoediting bias in a subset of ASD 

patients with severe clinical phenotypes. 

2.3 Discussion 

Here we performed the first global investigation of RNA editing in ASD and uncovered a 

common trend of hypoediting in ASD patients across different brain regions and 

different patient cohorts. Furthermore, we showed correlation between the hypoediting 

and FMR1 and FXR1 genes, which we validated as direct regulators of multiple and 

diverse sites in human. Consistent with these roles, we demonstrated convergent RNA 
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editing patterns between ASD and Fragile X syndrome, revealing a shared molecular 

deficit in these closely related neurodevelopmental disorders. 

As the cause of the Fragile X syndrome and as a syndromic ASD, FMRP has been 

subject to a myriad of ASD studies: 1) genes with rare de novo mutations17, common 

variation43, and copy number variants44 in ASD are enriched in FMRP target genes30.  

2) Multiple transcriptome analyses identified significant correlation between FMRP 

expression and ASD-associated gene modules8,18. 3) Many similar cognitive and 

behavioral symptoms manifest in both ASD and Fragile X syndrome36. 4) The protein 

level of FMRP has been shown to be downregulated in ASD patients45. The plethora of 

related literature supports the involvement of FMRP in the pathogenesis of ASD and 

highlights the need to elucidate its potential molecular mechanisms. Our study 

addresses this question by showing that RNA editing may be strongly associated with 

the molecular pathology via which FMRP contributes to the molecular abnormalities 

observed in ASD. 

Our data supports a model where FMRP directly mediates the interaction between 

ADAR and the RNA substrates to promote editing, which advances previous studies of 

FMRP and RNA editing in Mouse, Drosophila, and Zebrafish29. The involvement of 

FXR1P in RNA editing regulation was unknown, and intriguingly, we observed that 

FXR1P, likely through a similar model,  represses editing. Additionally, FMRP and 

FXR1P showed distinct features among the validated regulatory targets, where FXR1P 

acted on promiscuous sites and FMRP on site-selective editing sites. Nevertheless, the 

two proteins also shared common validated target sites, suggesting they could have 
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some synergistic regulation of RNA editing, as they do in other biological processes 

relevant to neurodevelopmental disorders, such as neurogenesis29,46. 

Our study revealed substantial similarities and highly reproducible patterns in 

global editing changes in ASD across the three brain regions we profiled, indicating it 

may affect molecular pathways in general neurological function. Nevertheless, our data 

also allude to some region-specific editing regulation, such as a downregulation trend of 

ADAR2 protein in the temporal cortex, but not in the frontal cortex or cerebellum. 

Expression levels of the gene FXR2, a homolog of FMR1, demonstrated strong 

correlation with RNA editing levels, which is again a temporal cortex-specific 

observation (Fig. 5c). Future studies aimed at studying region-specific RNA editing will 

further elucidate these and other region-specific regulatory mechanisms. 

Individuals with ASD frequently score lower in IQ testing than neurotypicals47. Our 

analyses, although based on a small data set, showed a high correlation between 

differential editing and IQ scores in all 3 brain regions. Additionally, dup15q patients, 

generally known to manifest more severe motor impairments and intellectual disability 

than idiopathic ASD, showed nearly unidirectional and greater severity of hypoediting 

than idiopathic patients in all 3 brain regions. These findings support an association 

between intellectual disability and RNA editing in ASD, which awaits confirmation in 

subsequent cohorts.  

RNA editing alterations occurred in genes of critical neurological relevance 

(Supplementary Fig. 11), including contactins (CNTNAP2, CNTNAP4), neurexins 

(NRXN1, NRXN3), ankyrins (ANK2), and neuronal splicing factors (NOVA1 and 

RBFOX1), which all harbor genetic mutations associated with ASD25. Although causality 



	 37	

here is indeterminable, the occurrence of aberrant RNA hypoediting in known ASD risk 

genes suggests these changes contribute to disease risk. They certainly contribute to 

the disorder’s molecular pathology. Additionally, the differential editing sites significantly 

overlapped with developmentally regulated editing sites, suggesting that hypoediting 

may disrupt editing dependent functions during cortical developmental and further 

accentuates the potentiating role of early-onset molecular pathologies in ASD. 

Furthermore, some differential editing sites showed correlated editing levels with 

expression levels of their host genes, which may indicate a functional relationship.  

Together, this current work indicates that it will be important to further explore the role of 

RNA editing in ASD pathophysiology, so as to determine whether these changes are 

causal, or reflect homeostatic or dyshomeostatic responses.  

2.4 Methods 

2.4.1 RNA-Seq data sets of ASD and control brain samples 

We obtained RNA-Seq data sets of three brain regions of ASD and control subjects 

from our previous study9. For idiopathic ASD, we used all data sets except (1) samples 

from subjects < 7 years old (which showed outlying expression patterns compared to all 

other samples), and (2) samples containing a 15q duplication (dup15q), an established 

genetic cause of syndromic ASD48.  Note that the dup15q samples were analyzed 

separately as described below. We confirmed that ASD diagnosis was not confounded 

by age, batch, and other biological and technical variables (Supplementary Fig. 2). The 

final sample set consisted of an approximately equal number of controls and ASD 
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samples totaling 62 samples in frontal cortex, 57 samples in temporal cortex, and 60 

samples in cerebellum (Supplementary Table 1).  

2.4.2 Dup15q dataset 

A total of 5, 8, and 9 RNA-Seq datasets of dup15q patients were obtained from 

cerebellum, frontal cortex, and temporal cortex respectively (Supplementary Table 1). In 

addition, 11, 14, and 13 controls were chosen respectively from the above idiopathic 

dataset to balance covariates (Supplementary Fig. 29), except batch and brain bank, as 

there were nominally significant (although not passing Bonferroni correction) 

confounding effects between batch, brain bank, and dup15q diagnosis for this subset of 

data9. 

2.4.3 Frontal cortex replication dataset 

For replication of idiopathic results, we downloaded previously published RNA-Seq data 

that were obtained from frontal cortex of 63 ASD and control subjects27. After balancing 

confounding variables, 22 ASD and 23 control datasets remained, none of which 

overlapped subjects from our original dataset.  

2.4.4 RNA-Seq data sets of Fragile X patients and carriers/controls 

Postmortem frontal cortex samples of Fragile X patients and Carriers were obtained 

from the University of Maryland Brain and Tissue Bank and the University of California 

at Davis FXTAS Brain Repository (Supplementary Fig. 25). Total RNA was extracted 
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using TRIzol (Thermo Fisher Scientific, 15596018). RNA-Seq libraries were prepared 

using NEBNext Poly (A) mRNA magnetic isolation module (NEB, E7490) followed by 

NEBNext Ultra Directional RNA library prep kit for Illumina according to manufacturer’s 

instruction. RNA-Seq data were collected on an Illumina HiSeq 2000 sequencer.  

2.4.5 RNA-Seq read mapping and RNA editing identification  

RNA-Seq reads were mapped using RASER49, an aligner optimized for detecting RNA 

editing sites, using parameters m = 0.05 and b = 0.03. Uniquely mapped read pairs 

were retained for further analysis. Unmapped reads were extracted and processed to 

identify “hyperediting” sites. A recent study showed that previous RNA editing 

identification methods failed to detect editing sites in hyperedited regions due to 

existence of a high number of mismatches in the reads20. Our implementation of the 

hyperediting pipeline closely followed a strategy used by a previous study20. In brief, all 

adenosines in unmapped reads were converted into guanosines. These reads were 

aligned to a modified hg19 genome where adenosines were also substituted by 

guanosines. Uniquely mapped read pairs were obtained from this alignment step, and 

previously converted adenosines were reinstituted. We then combined these 

hyperedited reads with the originally uniquely mapped reads to identify RNA editing 

sites. 

The procedures described in our previous studies were used to identify RNA 

editing sites19,50. First, RNA editing sites were identified as mismatches between the 

reads and the human reference genome. A log-likelihood test was carried out to 

determine whether an RNA editing site is likely resulted from a sequence error19. A 
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number of posterior filters were then applied to remove RNA editing sites that were 

likely caused by technical artifacts in sequencing or read mapping50.  

Due to limited sequencing depth and the inherent nature of random sampling in 

RNA-Seq, some editing sites are observable in only a small number of subjects within a 

population cohort. Editing sites with low apparent prevalence lack sufficient sample size 

to enable a comparison between ASD and control groups. Therefore, we applied the 

following filters to retain a subset of editing sites: (1) in each sample, an editing site was 

required to have at least 5 total reads among which at least 2 reads were edited; (2) the 

editing site should satisfy filter (1) in at least 5 samples. We applied these filters to 

editing sites called within each brain region separately.  

2.4.6 Identification of differential RNA editing sites 

We define differential RNA editing sites as those: (1) that had significantly different 

average editing levels between ASD and controls, or (2) that were observed at 

significantly different population frequencies. A challenge with statistical testing for 

differential editing levels is that editing level estimation has a larger uncertainty at lower 

read coverage. More accurate calculations could be obtained by setting a high threshold 

for read coverage. However, this remedy leads to fewer samples or reduced power per 

editing site. We developed a strategy that attempts to optimize the trade-off between 

read coverage requirement and sensitivity in detecting differential editing. 

Specifically, the following procedures were implemented for each editing site ei. (1) 

we first identified the highest total read coverage requirement for ei at which there were 

at least 5 samples in both control and ASD groups. The following read coverage was 
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considered: 20, 15 and 10, in the order of high to low. (2) If a read coverage 

requirement C was reached in (1), we calculated the average editing level of ei among 

the ASD and control samples (Mai, Mci), respectively, that satisfied C. (3) We then 

considered samples where ei did not have at least C reads, but satisfied a lower read 

coverage cutoff (15, 10, or 5). These samples were included if their inclusion did not 

alter Mai and Mci by more than 0.03. (4) We carried out Wilcoxon rank-sum test between 

editing levels of the above samples in ASD and control groups. (5) If a read coverage 

requirement C was not reached in (1), then we tested all samples where ei had ³ 5 read 

coverage so long as there were at least 10 ASD and 10 control samples. Differential 

editing sites were defined as those with a p value < 0.05 and an effect size > 5%, in lieu 

that an editing change of approximately this magnitude was sufficient to cause dendritic 

deficits in mice51. 

Another type of differential editing was defined as editing sites that have different 

prevalence between ASD and controls. For each editing site, a Fisher’s Exact test was 

carried out to compare the numbers of ASD and control samples with nonzero editing 

levels, with the background being the numbers of ASD and control samples with zero 

editing level. The minimum read coverage requirement per site was obtained using the 

same adaptive procedure as described above for the first type of differential editing 

sites. Differential editing sites were defined as those with p < 0.05 and an effect size > 

5%. Differential editing sites identified via the above two methods overlapped 

significantly (Supplementary Fig. 7). 
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Differential editing sites detection in the replication ASD dataset27 was performed 

similarly. However, because only 4952 editing sites had sufficient coverage, we 

eschewed effect size cutoffs and considered sites differential in which p < 0.05. 

The dup15q subset sample size was too small to leverage the adaptive coverage 

model. Instead, we only tested editing sites where ³ 5 dup15q and ³ 5 control samples 

had ³ 5 read coverage (defined as tesSupplementary Table ites). Differential editing 

sites had p < 0.05 and effect size > 5% from either Wilcoxon rank-sum test or Fisher’s 

Exact test. 

2.4.7 Computational comparison of methods and parameters for 

differential editing identification 

Another de facto method for conducting differential testing in postmortem brain studies 

is to leverage a multilinear regression model to correct for potential technical 

confounders. We compared the results of our methods against those of a multilinear 

regression model including diagnosis, sex, age, and RIN as independent factors against 

RNA editing level. The set of differential editing sites strongly and significantly 

overlapped across all brain regions and available sample sizes (Supplementary Fig. 8, 

odds ratio 7-139), suggesting that a priori balancing of ASD and control groups was 

sufficient to obviate technical conflation. An additional issue with multilinear regression 

is a propensity for spuriously introducing noise at editing sites with smaller training 

sizes. Indeed, we found that the differential editing sets at smaller sample sizes (0-10 



	 43	

and 10-20) had more disparate calls between the two methods than the larger samples 

sizes (20-60).  

We also tested whether the particular choice of parameters chosen for Mai and Mci 

significantly altered the differential editing values. We performed differential editing 

analysis with varying values of Mai and Mci, and juxtaposed the differential editing values 

with the originally called values (Mai and Mci = 0.03) (Supplementary Fig. 9). The 

correlation remained nearly at 1, which shows that the differential editing values are 

robust to the choice of Mai and Mci.  

2.4.8 Identification of genes enriched with differential editing 

This analysis aims to identify genes that are enriched with differential editing sites. One 

might consider the top differentially edited genes as those with the largest number of 

differential editing sites. However, as expected, there exists a positive correlation 

between gene length and the number of differential editing sites (Supplementary Fig. 

11). Therefore, we used a linear model to construct a regression between these two 

variables. We defined genes as enriched with differential editing if they had more 

differential editing sites than expected (beyond 95% confidence interval of the expected 

mean).  

2.4.9 Differential editing sites associated with gene expression 

To examine the association between differential editing and gene expression, we 

screened for significant correlations between editing level of each differential editing site 
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and the FPKM value of its host gene. Specifically, the correlation coefficient between 

editing level and FPKM had to pass nominal significance (P < 0.05) within a multilinear 

regression: FPKM ~ age, sex, batch, RIN, brain bank, seqStatPC1, seqStatPC2, editing 

level. seqStatPC1 and seqStatPC2 are the first and second principal components 

encompassing 99% of variance of technical variables as described in our previous 

work9. 

2.4.10 Enrichment of editing sites in developmentally distinct editing 

clusters 

Editing sites identified in 33 postmortem frontal cortex samples spanning the human 

lifespan (fetal, infant, child, teen, middle, and old age) were obtained from a previous 

study26. The original study classified editing sites into 3 developmental trajectories 

(constantly lowly edited sites, perpetually highly edited sites, and developmentally 

increasing sites). We recapitulated the 3 developmental trajectories on editing sites 

residing in all genomic regions using similar clustering criteria as in the original study. 

Briefly, editing sites with a median coverage < 20 reads across all samples were 

discarded. Then, we performed one-way ANOVA on each editing site across the six age 

groups. We considered editing sites passing FDR < 0.05 as developmentally increasing 

sites. Amongst the remaining sites, those with median editing level > 0.5 were 

categorized as perpetually highly edited sites; those with median < 0.5, as constantly 

lowly edited sites. Enrichment of editing sites in ASD within these 3 developmental 

clusters was performed using Fisher’s Exact test.  



	 45	

2.4.11 Annotation of editing sites and heatmap generation 

Editing sites were annotated using ANNOVAR52. Heatmaps throughout this study were 

generated using circlize53. 

2.4.12 Principal components analysis (PCA) 

PCA was conducted on differential editing sites in order to examine associations 

between PCs and potential confounding covariates. The R function prcomp was used 

for this purpose. Missing values in the editing level matrix were imputed using the 

missMDA package54. The PCs were then correlated against technical and biological 

covariates such as age and gender (Supplementary Fig. 10). The first PC was 

predominantly associated with ASD diagnosis, and was thus used as the PC for 

differential editing.  

2.4.13 Weighted gene co-expression network analysis (WGCNA)  

The WGCNA package28 in R was used to find modules of correlated editing sites. In 

multi-sample analysis, it is typical that some editing sites have no available values 

(missing data) in certain samples that lack read coverage at those sites. To preclude 

inaccurate calculations due to samples with too much missing data, we used the 

following requirements for editing sites to be included in WGCNA: (1) with ≥5 reads in ³ 

90% of samples and (2) with nonzero editing levels in ³ 10% samples. In addition, to 

detect variation in the data, we further required that the included editing sites had a 
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standard deviation ³ 0.1 in their editing levels across samples. A soft threshold power of 

10 was used to fit scale-free topology. To avoid obtaining modules driven by outlier 

samples, we followed our previous bootstrapping strategy9,11. One hundred bootstraps 

of the data set were carried out to compute the topological overlap matrix of each 

resampled network. Co-editing modules were obtained using the consensus topological 

overlap matrix of the 100 bootstraps.  

WGCNA offers a dynamic tree-cutting algorithm, which enables identification of 

modules at various dendrogram heights and allows delineation of nested modules55. 

However, upon examination of the WGCNA dendrogram (Fig. 2d), we observed only 

one pronounced module of editing sites. Furthermore, most modules, identified through 

dynamic tree cutting, were generally unstable, highly dependent on tree cutting 

parameters. Therefore, we used the traditional constant height tree cutting, provided by 

WGCNA as cutreeStaticColor, with cutHeight set to 0.9965, which produced the single 

turquoise module. This is the largest module that is most likely biologically relevant and 

technically robust. In addition, this module is conserved across brain regions (Fig. 5c). 

2.4.14 Association of modules with ASD diagnosis and RNA binding 

proteins  

To test the association of the turquoise module with diagnosis, we first defined eigen-

editing sites as the first principal component of the module, according to WGCNA 

recommendation56. A linear regression model was constructed between the eigen-

editing sites and diagnosis, in addition to biological and technical covariates including 
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RIN, age, gender, sequencing batch, PMI, brain bank, 5’ to 3’ RNA bias, AT dropout 

rate, GC dropout rate, mapped bases in intergenic regions, uniquely mapped reads. 

The linear model was fit with backwards selection, and the module was deemed as 

associated with ASD diagnosis if p ≤ 0.05 for the coefficient of this variable.  

We tested if a module was enriched with differential editing sites using Fisher’s 

Exact test. In addition, we tested the association between modules and potential 

regulatory genes by examining the correlation between the eigen-editing sites and 

mRNA expression levels of the genes. It should be noted that the mRNA expression 

levels were corrected values following removal of variability contributed by technical 

covariates9.   

2.4.15 eCLIP-Seq experiment and data analysis  

The eCLIP experimental procedure is detailed in our previous studies32,57. The 

antibodies used for this experiment are: FMRP antibody (MBL, RN016P) and FXR1 

antibody (Bethyl Laboratories, A303-892A). Flash-frozen brain tissue was cryo-ground 

in pestles pre-chilled with liquid nitrogen, spread out in standard tissue culture plates 

pre-chilled to -80°C, and UV crosslinked twice at 254 nM (400 mJ/cm2). 50 mg of 

crosslinked tissue was then used for each eCLIP experiment, performed as previously 

described32,57. As controls, we sampled 2% of the pre-immunoprecipitation (post-lysis 

and fragmentation) sample and prepared libraries identically to the FMRP or FXR1P 

eCLIP (including the membrane size selection step). These libraries served as “size-

matched input (SMInput)” to minimize non-specific background signal in the identical 
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size range on the membrane as well as any inherent biases in ligations, RT-PCR, gel 

migration and transfer steps. 

eCLIP-Seq data were analyzed using the CLIPper software32 that generated a list 

of predicted binding peaks of the corresponding protein. In each replicate, peaks were 

further filtered to retain those whose abundance was at least 2 fold of that in the 

SMInput sample.  

To examine the FMPR or FXR1P binding relative to RNA editing sites, we 

compared the distances from eCLIP peaks to turquoise editing sites compared to gene-

matched random adenosines. Only editing sites residing in genes containing at least 1 

eCLIP peak were considered. The closest distance between an editing site or random 

adenosine and eCLIP peaks were calculated. A total of 10,000 sets of controls were 

generated using this procedure. To determine a P value, we first plotted the cumulative 

distribution of the distances between editing sites or controls and the eCLIP sites. The 

area under the curve (AUC) of this distribution was calculated for the set of editing sites 

and each set of controls. The AUC calculation was constricted to the distance interval 

[0,100,000 kb]. AUC values of the 10,000 sets of controls were modeled by a Gaussian 

distribution, which was used to calculate a P value for the AUC of the set of editing 

sites. Density plots were generated using the geom_density function in the ggplot2 

package in R. To avoid overplotting, we randomly selected and plotted ten of the control 

sets for visualization. Note that the observed linear distance between protein-RNA 

binding and the regulated target sites may be larger than the actual proximity of the 

protein and its targets, due to limited sensitivity of CLIP or existence of secondary or 

tertiary RNA structures. 
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To identify the motifs enriched in eCLIP peaks, we used two alternative methods: 

HOMER58, and DREME59. We ran DREME with all eCLIP peaks of each protein using 

default parameters, which creates control sequences through dinucleotide shuffling. 

HOMER was run with the findMotifsGenome.pl program (-p 4 -rna -S 10 -len 5,6,7,8,9). 

Background controls were defined as randomly chosen sequences in the same type of 

genic region as the true peaks. The control sequences have one-to-one match in length 

with the actual peaks. Three sets of random controls were constructed. Homopolymer 

or dinucleotide repeats were discarded. We required the final consensus motif to be the 

most enriched motif identified by HOMER that was also one of the most enriched motifs 

resulting from DREME. 

2.4.16 RNA editing analysis of Fragile X samples 

The RNA-Seq data derived from Fragile X patients and carriers were analyzed similarly 

as those of the ASD cohorts.  Fisher’s Exact test was used to identify differentially 

edited sites using pooled patient and carrier data sets (p ≤ 0.05 and effect size > 5%).  

2.4.17 Gene ontology enrichment analysis 

Gene ontology (GO) terms were downloaded from Ensembl60. For each query gene, a 

random control gene was chosen to match gene expression level and gene length 

(±10% relative to that of query gene). GO terms present in the sets of query genes and 

control genes were collected respectively. A total of 10,000 sets of control genes were 

obtained. For each GO term, a Gaussian distribution was fit to the number of control 
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genes containing this GO term. The enrichment p value of the GO term among the 

query genes was calculated using this distribution. 

2.4.18 Validation of RNA editing levels 

RNA Extraction. Brain tissues were homogenized in RNA TRIzol reagent (Thermo 

Fisher Scientific, 15596018). Mixture was incubated on ice for 15 min. Chloroform was 

added to the mixture and incubated at room temperature for 10 min. The mixture was 

centrifuged at 12000g for 15 min, and the top layer was carefully extracted. Equal 

volume of 200-proof ethanol was added to the top chloroform layer and mixed 

thoroughly. RNA was further purified using Direct-zol™ RNA MiniPrep Plus kit (Zymo 

Research, R2072) following the manufacture’s protocol.  

cDNA synthesis and PCR. cDNA synthesis was carried out using random 

hexamers, 1 µg total RNA, and the SuperScript IV Reverse Transcriptase (Thermo 

Fisher Scientific, 18090050) as described in the manufacturer’s protocol. Next, 2uL 

cDNA (corresponding to 1/10th of the original RNA) was used as template for PCR 

reactions using the DreamTaq PCR Master Mix (2X) (Thermo Fisher Scientific, k1082). 

PCR was performed on an Eppendorf thermal cycler using the following thermal cycle 

conditions for all candidate sites (5 min, 95°C for hot start followed by 30 cycles of 15 s, 

95°C; 15 s, 55°C and 1min/kb, 72°C).  

Topo Cloning and Clonal Sequencing. PCR products were run on 1% agarose gel 

and visualized under UV light. The correct size band was cut and digested by 

Zymoclean™ Gel DNA Recovery Kit (Zymo Research, D4002) following the 

manufacturer’s protocol. PCR product was inserted into kanamycin resistant pCR 2.1-
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TOPO vector (Thermo Fisher Scientific, 450641). Ligated clones were transformed into 

One Shot TOP10 Chemically Competent E. coli (Thermo Fisher Scientific, C404003). 

Transformed cells were streaked on LB/Agar plates containing kanamycin and X-Gal as 

selection markers and incubated overnight at 37°C. Each plate was divided into 4 

quadrants and 6 white clones were randomly selected from each quadrant (total of 24 

clones per patient sample per editing site). Each clone was inoculated overnight in 

LB/Kanamycin. Plasmid was extracted using Plasmid DNA Miniprep Kits (Thermo 

Fisher Scientific, K210011). Miniprep samples were sequenced using Genewiz Sanger 

sequencing. The number of the clones presenting G peak at the editing site of interest 

was counted to determine the estimated editing ratio. 

2.4.19 Co-immunoprecipitation 

HeLa cells were maintained with DMEM supplemented with 10% FBS and 100 U ml-1 

penicillin/ streptomycin at 37 °C and 5% CO2. Ten million HeLa cells were collected and 

lysed in 1 ml non-denaturing lysis buffer at pH 8.0, containing 20 mM Tris-HCl, 137 mM 

NaCl, 1% NP-40, and 2 mM EDTA supplemented with complete protease inhibitor 

cocktail. Extracted proteins were incubated overnight with ADAR1 antibody (Santa 

Cruz, sc-271854) or FMRP antibody (Millipore, MAB2160) at 4 °C; precipitation of the 

immune complexes was performed with Dynabeads Protein G (Thermo Fisher 

Scientific, 1003D) for 4 h at 4 °C, according to the manufacturer’s instructions. For 

experiments involving Flag-ADAR2, the supernatant derived from Flag-tagged hADAR2 

overexpressing cells was incubated for 3 h at 4 °C with Flag M2 antibody (Sigma, 

F1804). After immunoprecipitation, the beads were washed three times with the lysis 
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buffer at 4 °C, and eluted from the Dynabeads using elute buffer (0.2 M glycine, at pH 

2.8). Twenty microliters were loaded onto the gel and the samples were processed by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by Western blot. 

The following antibodies were used for the Western blots: ADAR1 antibody (Santa Cruz, 

sc-73408), Flag antibody (sc-807), FMRP antibodies (Millipore, MAB2160 and Abcam, 

ab17722), FXR1P antibody (Bethyl Laboratories, A303-892A), and FXR2 antibody 

(Sigma-Aldrich, F1554). The HRP-linked secondary antibodies were used and the blots 

were visualized with the ECL kit (GE, RPN2232). 

2.4.20 Subcellular fractionation  

Cells were fractionated following a previously published protocol with some 

modifications61. Briefly, monolayers of cells in 10-cm plates were washed twice with ice-

cold PBS, followed by gentle scraping of cells. Cells were resuspended with the ice-cold 

HLB+N buffer (10 mM Tris-HCl, at pH 7.5, 10 mM NaCl, 2.5 mM MgCl2 and 0.5% NP-

40) on ice for 5 min. Lysates were layered over a chilled 10% sucrose cushion made in 

the ice-cold HLB+NS buffer (10 mM Tris-HCl, at pH 7.5, 10 mM NaCl, 2.5 mM MgCl2, 

0.5% NP-40 and 10% sucrose) and centrifuged for 5 min at 4 °C at 420g. After 

centrifugation, the supernatant was collected and served as the cytoplasmic fraction. 

The nuclear pellet was then treated with the ice-cold nuclei lysis buffer (10 mM HEPES, 

at pH 7.6, 300 mM NaCl, 7.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 1 M Urea, and 1% 

NP-40) after washing. Fractionation efficiency was validated by Western blot using 

antibody specific to the marker for each fraction: β-tubulin (Sigma, T8328) for the 
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cytoplasmic fraction and rabbit polyclonal U1-70k (Santa Cruz, sc-390899) for the 

nucleoplasmic fraction. 

2.4.21 Construction of minigenes and site-directed mutagenesis 

Partial 3’ UTRs (EEF2K and TEAD1) and intronic (CNTNAP4, NLGN1, and TENM2) 

regions were restriction digested and inserted between the SacII/XhoI sites in the 

pEGFP-C1 vector. Overlapping oligonucleotide primers containing the desired 

mutations were used to amplify mutation-containing fragments from the wild-type 

minigene plasmid, using Q5 High-Fidelity DNA polymerase (New England Biolabs, 

M0491L). All resulting amplification products were confirmed by sequencing. 

2.4.22 Transfection, RNA isolation, RT-PCR amplification, and 

analysis of RNA editing 

HeLa cells were grown on 6-well plates under standard conditions at 37 °C with 5% 

CO2. Cells were grown to 70% confluence, and transfection was performed using 

Lipofectamine 3000 (Thermo Fisher Scientific, L3000015) with 100 ng of minigene 

plasmid. For editing validation of endogenous substrate, two neuroblastoma cell lines, 

SK-N-BE(2) and KELLY, were grown on 6-well plates without transfection of a 

minigene. Cells were harvested after 24 h. Total RNA was extracted using TRIzol 

reagent (Thermo Fisher Scientific, 15596018), followed by treatment with 1 U of DNase 

I (Zymo Research, E1011-A). RNA was further purified using Direct-zol RNA MiniPrep 

kit following the manufacture’s instruction (Zymo Research, R2072). Reverse 
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transcription (RT) was performed on 1 μg total RNA for 1 h at 42 °C using random 

hexamer primer and SuperScript IV (Thermo Fisher Scientific, 18090050). The cDNA 

products derived from the expressed minigenes were detected by PCR using the 

pEGFP-C1-specific forward primer and a gene-specific reverse primer. On the other 

hand, cDNA products for the endogenous substrate were amplified with gene-specific 

primer set. Amplification was performed for 30 cycles, consisting of 30 s at 95 °C, 30 s 

at 55 °C, and 2 minutes at 72 °C. The products from RT-PCR were resolved on 0.8% 

agarose gels. The appropriate PCR product was excised and the DNA was extracted, 

purified, and analyzed by Sanger sequencing. A-to-I editing levels were calculated as 

relative peak heights (that is, ratio between the G peak height and the combined height 

of A and G peaks, height G / height A + height G).  

2.4.23 Production of lentivirus and cell transduction for protein 

knockdown 

pLKO1 non-target control-shRNA (SHC016), FMR1-targeting shRNA 

(TRCN0000059758) or FXR1-targeting shRNA (TRCN0000159153) constructs were 

used. We produced lentiviruses via co-transfection of pCMV-d8.91, pVSV-G and pLKO1 

into HEK293T cells using Lipofectamine 3000 (Thermo Fisher Scientific, L3000015). 

Transduction was carried out according to the standard protocol of the ENCODE 

consortium62. Briefly, viruses were collected from conditioned media after 48 h co-

transfection. Lentivirus-containing media was mixed with the same volume of DMEM 

media that contain polybrene (8 μg/ml), which was used to infect HeLa, SK-N-BE(2), 
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and KELLY cells. After 24 h, cells were incubated with puromycin (2 μg/ml for HeLa and 

1 μg/ml for SK-N-BE(2) and KELLY) for 3-7 days. Knockdown efficiency was evaluated 

by Western blot. Cells were lysed in RIPA containing complete protease inhibitor 

cocktail. Cell lysates were then resolved through 8% SDS-PAGE and probed by ADAR1 

antibody (Santa Cruz, sc-271854), ADAR2 antibody (Santa Cruz, sc-73409), FMRP 

antibody (Millipore, MAB2160), FXR1P antibody (Bethyl Laboratories, A303-892A), and 

FXR2 antibody (Sigma-Aldrich, F1554). 

2.4.24 Western Blot in ASD and Fragile-X brain samples 

Brain tissues were homogenized in RIPA lysis and extraction buffer containing protease 

inhibitor (Thermo Scientific, 88866). Mixture was then incubated on ice for 30 minutes, 

sonicated, and spun down. Crude protein concentration was obtained using Pierce BCA 

Protein Assay Kit (Thermo Fisher Scientific, 23225). Equal amount of protein was 

separated using 8% SDS–PAGE and then transferred onto nitrocellulose membrane. 

The membrane was blocked with 5% non-fat milk (Genesee Scientific, 20-241) and 

0.1% Tween 20 in tris-buffered saline. The blot was incubated in primary antibody 

solution against the protein of interest with 5% non-fat milk and 0.1% Tween 20 in TBS 

overnight at 4°C on shaker. Antibodies used in this experiment include ADAR1 antibody 

(Santa Cruz, sc-271854), ADAR2 antibody (Santa Cruz, sc-73409), ADAR3 antibody 

(Santa Cruz, sc-73410), FMRP antibody (Millipore, MAB2160). Secondary antibody 

containing goat anti-mouse IgG-HRP (sc-2005, Santa Cruz Biotechnology) or goat anti-

rabbit IgG-HRP (sc-2004, Santa Cruz Biotechnology) was used to label the 

corresponding primary antibody. The blot was developed using Amersham ECL Prime 
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Western Blotting Detection Reagent (GE Healthcare Life Sciences, RNP2232) and 

imaged with the Syngene PXi immunoblot imaging system. Beta Actin was used as a 

loading control. Western blot images were analyzed using ImageJ. All uncropped 

images are included in Supplementary Fig. 31. 

2.4.25 RNA immunoprecipitation (RIP)–PCR 

RIP was performed according to previously published protocols with some 

modifications63. Cells were harvested on the second day of minigene transfection in RIP 

buffer (25 mM Tris-HCl, at pH 7.4, 150 mM KCl, 5 mM EDTA, 0.5% NP-40 and 0.5 mM 

DTT supplemented with complete protease inhibitor cocktail and 100 U ml-1 RNase 

OUT), sonicated (10 s three times with 1 min intervals) and centrifuged at 13,000 rpm 

for 10 min at 4 °C. Supernatant was treated with 100 U RNase-free DNase I (Zymo 

Research, E1011-A) at 37 °C for 30 min and then centrifuged again at 13,000 rpm for 

10 min at 4 °C. For immunoprecipitation, lysates were incubated with FXR1P antibody 

(Santa Cruz, sc-374148) or anti-mouse IgG (Santa Cruz, sc-2025) as a negative control 

overnight at 4 °C. The Dynabeads were washed three times with the RIP buffer and 

bound RNA was isolated using TRIzol (Thermo Fisher Scientific, 15596018), according 

to the manufacturer’s instructions. Eluted RNA was reverse-transcribed using 

SuperScript IV (Thermo Fisher Scientific, 18090050) with random hexamer primers. 

PCR was carried out for 30 cycles, consisting of 30 s at 95 °C, 30 s at 55 °C, and 30 s 

at 72 °C. PCR products were analyzed by agarose gel electrophoresis. 
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2.4.26 Immunofluorescence 

HeLa cells were seeded on Millicell EZ Slide 8-well glass (Millipore, PEZGS0816) and 

incubated overnight in DMEM with 10% FBS to obtain 60% monolayer cell confluency. 

Each chamber was carefully rinsed with ice-cold PBS. Cells were fixed in 4% 

paraformaldehyde at room temperature for 10 min and washed with ice-cold 0.1% PBS-

T three times for total of 15 min. Cells were permeabilized with either 0.1% Tween-20 or 

Triton X-100 in PBS for 5 min. Block solution containing 5% normal donkey serum and 

1% BSA in 0.3% PBS-T was applied for 1 h at room temperature on shaker. Cells were 

incubated in primary antibody solution of mouse anti-ADAR1 (1: 100; sc-271854, Santa 

Cruz Biotechnology) and rabbit anti-FMR1 (1: 100; ab17722, Abcam) in 0.3% PBS-T 

containing 1% NDS and 1% BSA for overnight at 4°C. Cells were washed three times 

with ice-cold 0.1% PBS-T for 5 min. Cells were then incubated in a secondary cocktail 

containing Highly Cross-Adsorbed AlexaFluor® 488-conjugated Donkey anti-Mouse IgG 

(1: 200; A-21202, Thermo Fisher Scientific), and AlexaFluor® 488-conjugated Donkey 

anti-Rabbit IgG (1: 200; ab150074, Abcam) in 0.3% PBS-T containing 1% NDS and 1% 

BSA. Chamber was disassembled to expose the slide. Vectashield Anti-fade mounting 

medium containing 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) stain was 

applied to the slide and covered with a coverslip. Cells were examined and imaged at 

63x oil-immersion objective using Zeiss LSM 780 confocal microscope with ZEN 2011 

(Black edition) software and post-processed with ImageJ. All images were taken under 

identical setting and conditions. 
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2.4.27 Statistics 

Differential editing sites were obtained using a two-tailed Wilcoxon signed-rank test 

under an adapting scheme (see previous section). Ascertaining bias for hypoediting was 

performed using a Chi-square test under the null hypothesis of equal numbers of up- 

and down-regulated editing sites. Significance of gene set and editing set overlaps were 

determined using a two-tailed Fisher’s exact test. Significance of minigene reporter 

assays were summarized using one-way ANOVA and a Student’s t-test against proper 

controls, where data distributions were assumed to be normal, but this was not formally 

tested. Data generated in this study was not randomized according to experimental 

conditions or stimulus presentations, and data collection and analyses were not 

performed blind to the conditions of the experiments. For statistics of more specific 

analyses, see the appropriate sections in Methods and Figure legends (also refer to the 

online "Life Sciences Reporting Summary"). 

2.4.28 Sample size selection 

No statistical methods were used to pre-determine sample sizes, but our samples sizes 

are similar to those reported in previous publications.8,9 
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2.6 Figures 
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Figure 2.1 Transcriptome-wide differential editing in the frontal cortex 

of ASD.  

a, Fraction of all types of RNA-DNA differences (RDDs) identified in the RNA-Seq data 

of each subject. b, Fraction of differential and non-differential editing sites for each 

subject. c, Average editing levels of differential editing sites in ASD and controls. 

Numbers (N) of editing sites that were up- or down-regulated in ASD are shown, which 

were compared via Chi-squared test (P value shown above plot). d, Differential editing 

sites segregate ASD and control samples. Normalized editing levels (z-scores) were 

used in hierarchical clustering. Each row corresponds to one editing site. Each column 

represents a sample. e, Experimental validation of differential editing levels using 

Sanger sequencing. The frontal cortex samples used in this experiment are shown in 

Supplementary Table 1. ΔEL: change in editing level (ASD - control), n=8 editing sites. 

f, GO enrichment analysis of genes harboring differential editing sites (n=1,189 genes, 

p-values determined by one-sided Gaussian test, see methods).  
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Figure 2.2 Global analysis reveals potential regulators of differential 

editing in the frontal cortex of ASD.  

a, mRNA expression levels (FPKM) of ADAR1, ADAR2, and ADAR3 estimated from 

RNA-Seq data (n=62 samples). P values were calculated using a regression approach 

where covariates were accounted for15. Dots show individual sample FPKMs. b, 

Western blot of ADAR1 protein in ASD and control samples. (Note the images are 

cropped and uncropped images are in Supplementary Fig. 31, same for all Western blot 

images hereafter.) Protein level was normalized against that of β-actin. Samples used in 

this experiment are shown in Supplementary Table 1 (chosen based on availability). A1-

A5: ASD samples. C1-C5: control samples. P value was calculated via two-tailed 

Student’s t-test. Boxplot definition: center=median, lower hinge=25th percentile, upper 

hinge=75th percentile, min and max extend to observations at most 1.5 * inter quartile 

range (IQR) . c, Similar as b, for ADAR2 protein. d, WGCNA analysis of RNA editing in 

frontal cortex (n=51 samples). Dendrogram of RNA editing sites is shown. The turquoise 

module is indicated by the turquoise color. Correlation of editing sites with diagnosis 

(ASD or control) and mRNA expression levels of a few genes is shown in the Heatmap. 

**: P < 0.01. Right panels: Bar graph and scatter plots represent association between 

diagnosis or mRNA expression levels and the first principal component (PC) of the 

turquoise module. P values of Pearson’s correlation are shown. e, Overlap between the 

turquoise sites and differential editing sites. P value was calculated via Fisher’s Exact 

test (n=4061 editing sites, two-tailed). f, GO enrichment analysis of genes harboring the 

turquoise sites (n=846 genes, one-tailed Gaussian test, see methods). 
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Figure 2.3 FMRP and FXR1P regulate RNA editing.  

a, Western blot of ADAR1, ADAR2, FMRP and FXR1P proteins in the nuclear and 

cytoplasmic fractions of HeLa cells. Cell fractionation was confirmed by Western blotting 
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of β-tubulin and U1-70K as marker proteins. Control cells and cells with stable 

knockdown of FMR1 or FXR1 were used. Experiment was repeated twice with similar 

results. b, Co-IP experiments with or without RNase A in HeLa cells between ADAR1, 

ADAR2, FMRP and FXR1P. Endogenous proteins were targeted except for ADAR2 

(where a FLAG-tagged ADAR2 was expressed). Experiment was repeated 3 times with 

similar results. c, Shortest distance between FMRP or FXR1P eCLIP peaks and 

turquoise editing sites resulted from the WGCNA analysis (orange). Ten sets of random 

control sites (gray) are depicted for comparison (see Methods). Number of editing sites 

(N) is shown (see Methods for P value calculation). d, Experimental testing of an RNA 

editing site in the TEAD1 gene for its dependence on ADAR1, ADAR2, FMRP or 

FXR1P. Control HeLa cells or cells with stable knockdown of one of these proteins were 

used to express a minigene that contains the editing site. Editing levels were measured 

by Sanger sequencing. Example sequencing traces are shown for each sample with the 

targeted editing site underlined. Boxplots include three biological replicates. Overall P 

value (shown above plot) was calculated by one-way ANOVA. Individual comparison P 

values were calculated by one-tailed Student’s t-test. e, Similar as d, for an editing site 

in the EEF2K gene. f. similar as d, but displaying editing levels of the TEAD1 editing 

site in minigenes with the wild-type sequence or different versions of mutants introduced 

to predicted FMRP binding motifs (see Supplementary Fig. 20). Wild-type HeLa cells 

were used to express these minigenes.  g, Similar as f, for the editing site in the EEF2K 

gene (see Supplementary Fig. 20). h, RNA editing levels in control HeLa cells and cells 

with stable knockdown of ADAR1, ADAR2, FMR1 or FXR1. Hyper-editing sites in three 

genes were tested. Error bars represent standard errors of three biological replicates. i, 
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Editing levels in control HeLa cells in the same hyper-edited genes as in h, but with 

mutations introduced at predicted FXR1 binding motifs (see Supplementary Fig. 23c-e). 

Error bars are standard errors of three biological replicates. j, Editing changes at six 

differential editing sites in ASD induced by control shRNA (shControl) or shRNA 

knockdown of ADAR1, ADAR2, FMR1, and FXR1 in two neuroblastoma cell lines, 

KELLY and SK-N-BE(2) (see Supplementary Fig. 24). Boxplots show editing changes 

against shRNA control over the six editing sites (n=6 editing sites). P-values calculated 

using two-tailed t-test. Boxplot definitions for d-g, j: center=median, lower hinge=25th 

percentile, upper hinge=75th percentile, min and max extend to observations at most 1.5 

* IQR. 
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Figure 2.4 Transcriptome-wide differential editing in the frontal cortex 

of Fragile X patients and controls.  

a, Average editing levels of differential editing sites in Fragile X patients compared to 

carriers (left; NeuroBiobank dataset) or controls (right; UC Davis FXTAS dataset). 

Numbers of editing sites (N) that were up- or down-regulated in the patients are shown, 

which were compared via Chi-squared test (P value shown above plot). b, Gene 

ontology enrichment of genes harboring differential editing sites (n=961 and 1914 genes 

for Neurobiobank  and UC Davis FXTAS respectively; one-tailed Gaussian test, see 

methods). c, Similar as Fig. 3c, shortest distance between FMRP or FXR1P eCLIP 

peaks and differential editing sites in a (orange) (n=number of differential editing sites 

overlapping eCLIP genes; P-value from one-tailed Gaussian test, see methods). d, 

Overlap between the genes harboring WGCNA turquoise sites of ASD frontal cortex 

and those harboring differential editing sites in the Fragile X patients. P value was 

calculated via two-tailed Fisher’s Exact test (N = 4051 and 7915 genes in Neurobiobank 

and UC Davis FXTAS respectively).  
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Figure 2.5 RNA editing dysregulation in different brain regions.  

a, Average editing levels of differential editing sites in ASD and controls. Similar as Fig. 

1c, but data for temporal cortex and cerebellum are shown respectively. N=number 

differential editing sites, P-value calculated by Chi-square test. b, Changes in editing 

levels (ΔEL) between ASD and control (ASD-control) of differential editing sites shared 

across brain regions (N=number of differential editing sites shared). Abbreviations 

(same below): TC: temporal cortex; FC: frontal cortex; CBL: cerebellum. Pearson’s 

correlation P and R2 values are shown.  c, Similar as Fig. 2d, for WGCNA analysis of 

editomes in the temporal cortex and cerebellum regions. P-values calculated from linear 

regression (Methods). N = 46 and 47 samples in temporal cortex and cerebellum 

respectively. d, Overlap of editing sites in the turquoise modules of pairs of brain 

regions. Only editing sites with sufficient read coverage in both brain regions for 

WGCNA analysis are included. Odds ratios and P values (in parenthesis) for the 

overlaps are shown in the heatmap (two-tailed Fisher’s Exact test). e, Overlap of genes 

harboring differential editing sites across brain regions. f, Relative FPKM values (log2 

fold change) between cortex and cerebellum samples for genes that harbor differential 

editing sites only in cerebellum, only in cortex or in both types of regions. P values were 

calculated by two-tailed Student’s t-test. N=66 cerebellum, 301 common, and 59 cortex 

specific genes respectively. g, Editing level difference (ΔEL, ASD-control) for a small 

number of literature-reported evolutionarily conserved RNA editing sites that showed 

differential editing between ASD and control groups in at least one brain region. h, 

Similar as Fig. 2b, Western blot of ADAR1 and ADAR2 proteins in temporal cortex 
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samples. Samples used in this experiment are shown in Supplementary Table 1. N=10 

samples. i, Similar as h, Western blot of ADAR1 and ADAR2 proteins in cerebellum 

samples. N = 10 samples. Boxplot definitions: center=median, lower hinge=25th 

percentile, upper hinge=75th percentile, min and max extend to observations at most 1.5 

* IQR. 
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Figure 2.6 Hypo-editing in 3 brain regions of dup15q patients.  

a, Contour scatterplot of differential editing sites in 3 brain regions of dup15q patients vs 

matched controls, similar as Fig. 1c. N=number of differential editing sites hypo and 
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hyperedited. P-value calculated using Chi-square test. b, Comparison of editing level 

difference in idiopathic ASD and dup15q patients relative to their respective controls 

(CTL). Pearson correlation P values and correlation coefficient (r) are shown. N 

represents the number of editing sites that are differential in idiopathic ASD and testable 

(see Methods) in the dup15q patients. c, Overlap between differential editing sites in 

dup15q patients and the turquoise modules of the respective brain regions of idiopathic 

ASD. P values were calculated via two-tailed Fisher’s Exact test, n=3411, 2224, and 

3834 in FC, TC, and CBL respectively. d, Heatmaps (similar as Fig. 1d) of editing sites 

shown in b, including dup15q patients, matched controls, and the entire idiopathic ASD 

cohort. e, Editing level difference (ΔEL, dup15q-control) for a small number of literature-

reported evolutionarily conserved RNA editing sites. Top panel: differential sites in at 

least one brain region of dup15q patients. Bottom panel: all testable editing sites. 
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Chapter 3 

Patient derived cortical spheroids uncover 

dysregulated RNA editing over fetal progression 

of Autism spectrum disorder 

3.1 Introduction 

Autism spectrum disorder (ASD) encompasses neurodevelopmental deficits in 

communicative skills, reciprocal interactions, and repetitive and stereotyped behaviors1. 

The diagnosis of ASD happens as early as infancy usually via clinical observation aided 

by diagnostic tests such as the Autism Diagnostic Observation Schedule2 or Autism 

Diagnostic Interview-Revised3. The pathogenesis of ASD, however, likely stems earlier 

at fetal development. Multiple studies of early autism pathogenesis, including iPSC 

derived neurons and mouse models, have observed aberrations in morphology, 

electrophysiology, and molecular processes4,5. Unfortunately, characterization of 

pathogenic alterations in actual fetal brain is impossible since clinical diagnosis cannot 

be made that early.  

The invention of organoids has provided powerful in vitro models to study early 

ASD brain development6. Organoids are organ-like aggregates originating from stem 

cells that can form 3-dimensional cellular structures that recapitulate organ structure, 
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physiology, and cellular organization and composition6. A few studies have modelled 

early autism using organoids of the cerebral cortex6.  However, they had small sample 

size (e.g. < 5 disease samples)6 and limited protocol reproducibility7.  

Recently, a differentiation method for generating 3D cerebral organoids, called 

cortical spheroids, was shown to have strong reproducibility across multiple donors and 

time points8. Leveraging this method, the Geschwind and Pasca labs have generated 

RNA-sequencing (RNA-seq) data of 553 organoids across multiple time points 

encompassing both idiopathic ASD and 7 syndromic ASD with known genetic mutations 

(unpublished work). Being the first large-scale organoid study of ASD, this dataset 

enables elucidation of the transcriptomic landscape across fetal progression of core 

ASD pathology. Our focus here is to examine the profiles and dynamic changes of RNA 

editing in this dataset.  

Our group recently found widespread dysregulation of RNA editing in a large 

cohort of postmortem brains of autistic individuals9. Genes harboring differential editing 

sites in ASD were significantly enriched in functional categories related to synaptic 

maintenance and transmission9. Interestingly, many of these differential editing sites 

demonstrated substantial increase in their editing levels during fetal to infant transition9. 

Previous transcriptome studies identified modules of genes that exclusively express 

during fetal development and harbor enrichment of autism-related rare genetic 

variants10,11, suggesting the importance of distinct transcriptomic changes in fetal 

progression of ASD. Based on the above findings, we hypothesize that RNA editing is 

significantly altered over fetal development in ASD, which is distinct from the 

dysregulation observed in postnatal brain. Therefore, in this study we analyzed the 
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above organoid dataset to characterize the RNA editing landscape over modelled fetal 

brain development. We uncovered significant dysregulated trends across idiopathic and 

syndromic autism disorders. We observed that RNA editing levels globally increase over 

cortical spheroid development and are hypoedited in ASD. Functionally these 

hypoedited sites likely affect cellular development and proliferation specific to radial glia, 

neural progenitors, and early born neurons.  

3.2 Results 

3.2.1 Overview of the organoid dataset 

RNA-seq data were generated as part of a larger study examining aberrations in 

neurobiology, morphology, and transcriptomics of cortical spheroids modelling autistic 

cortex (unpublished work). Specifically, a directed differentiation method12,13 was 

applied to generate 553 cortical spheroid datasets from neurotypical controls and 

patients with ASD encompassing both idiopathic ASD and syndromic ASD in 8 

susceptibility loci including 15q13 duplication, 16p11 deletion, 16p11 duplication, 22q11 

deletion, 22q13 deletion, mutations in PCDH19, SHANK3, and Timothy Syndrome 

(Supplemental Table 1). Spheroids were differentiated for 25, 50, 75, or 100 days, 

followed by RNA-seq (rRNA depleted, strand specific, paired-end) with an average of 

25.5 (95% CI, 8.4-39) million read pairs. An average of 16.4 million (95% CI, 6.3-27.8) 

read pairs were uniquely mapped to the human genome (Figure 1a).  

Potential confounding covariates, such as batch, sex, and the first two principal 

components summarizing sequencing biases and mapping quality (PCSeq1 and 
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PCSeq2, Methods) spread roughly evenly across ASD and control groups, permitting 

downstream covariate adjustment (Figure 1b-c). Additionally, RNA integrity number 

measured from a subset of samples was consistently high (median 8.95; 95% CI, 7.8-

9.7; Figure 1d), indicating that RNA quality remained high throughout differentiation and 

RNA extraction.  

3.2.2 RNA editing sites in cortical spheroids 

Next we applied our previously developed bioinformatic methods14,15 to globally identify 

RNA editing sites in the cortical spheroid samples. Similar to other studies9,16, the 

number of detectable editing sites per sample (range: 25,00-290,000 editing sites) 

varied depending on sequencing depth (Figure 2a). On average, 97% (95% CI, 95-98%) 

of the detected RNA editing sites were consistent with the canonical A-to-G and C-to-T 

editing types, indicating high detection specificity (Figure 2b).  A-to-G constituted the 

majority of all detected editing sites, consistent with the known rarity of C-to-U editing in 

human17 (Figure 2b). On average, 76% of editing sites fell in Alu regions (Figure 2c; 

95% CI, 66-83%), commensurate with the known binding preference of ADAR proteins 

for Alu structures18.  

3.2.3 Hypoediting in ASD across cortical spheroid development 

In a previous study we found that differential RNA editing sites in ASD were enriched in 

a subset that dramatically increase during the transition from fetal to infant stages9. 

However, the actual developmental trajectory of RNA editing across ASD fetal 
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development remains unknown. The span of differentiation time points of our cortical 

spheroids enabled us to model this and concomitantly investigate aberrations in the 

developmental trajectory in ASD. Over fetal development, RNA editing could have 

multiple modules that project towards distinct trajectories. Thus, we first searched for 

modules of RNA editing in our cortical spheroids using weighted gene co-expression 

analysis (WGCNA).  Interestingly, almost all RNA editing sites clustered into a single 

module (labelled as the turquoise module) (Figure 3, except a small blue module 

reflecting confounding variables). This observation indicates that RNA editing globally 

follows a single trajectory over organoid development. Using the eigengene (1st principal 

component) to view the projection of the turquoise module over differentiation points, we 

found that RNA editing generally increased over organoid development (Figure 4a). 

Interestingly, RNA editing of the ASD cohort followed the same increasing trajectory, but 

exhibited lower editing levels compared to the controls (i.e., hypoediting) across all time 

points (Figure 4a). The same trends also appeared in many of the individual ASD 

genetic susceptibility mutations (Figure 4b), suggesting that hypoediting is likely 

implicated in both core ASD etiology and distinct syndromic phenotypes.  

3.2.4 Potential RNA editing regulators in cortical spheroid 

development 

To investigate potential regulatory mechanisms of the turquoise module, we compiled 

from previous studies a list of RNA binding proteins (RBPs) that regulate RNA 

editing16,19. We hypothesized that potential regulators would show strong correlations 
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between their gene expression and the 1st principal component of the turquoise module. 

Interestingly, we identified many RBPs with strong positive and negative correlations 

(Figure 5). Two members of the ADAR family, ADAR2 and ADAR3 showed positive 

correlations (Figure 5). FXR1 displayed strong negative correlation, consistent with its 

previously discovered role suppressing RNA editing in postnatal Autism brain9 (Figure 

5). Out of all the candidate RBPs, ILF3, a repressor of editing16, had the strongest 

(negative) correlation (Figure 5). Overall, our results suggest that RNA binding proteins 

may have prominent roles in regulating RNA editing over cortical spheroid development. 

3.2.5 Hypoediting affects neuronal propagation    

To investigate the possible functional roles of hypoediting in ASD fetal development, we 

first identified differential editing sites between ASD and control cohorts within each 

differentiation time point. We leveraged a mixed effects model that could adjust for 

technical and biological covariates (e.g. batch and sex) and handle the hierarchical 

dependencies between samples (e.g. multiple samples derived from differentiations 

from the same donor) (Methods). We found 495, 343, 659, and 459 differential editing 

sites at day 25, 50, 75 and 100 respectively (FDR < 0.1 and difference in editing ≥	5%). 

Consistent with the WGCNA analysis, the differential editing sites displayed a 

hypoediting bias at all time points (Figure 6a).  

 Next, we examined differential editing sites for cell type enrichment and found 

that they resided over abundantly within genes specific to dividing radial glia, 

intermediate progenitor cells, and newborn neurons (Figure 6b). Gene ontology analysis 

found that the differential editing sites were located in genes involved in transcriptional 
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regulation and processing and cell growth (Figure 6c). These results indicate that 

hypoediting is likely involved in cellular development and proliferation of maturing 

neurons.  

	

3.3 Discussion 

Transcriptomic studies in postmortem autistic brains have vastly improved our 

understanding of the molecular etiology of ASD. However, because the diagnosis of 

ASD occurs at early infancy, the study of transcriptomics in autistic brain is limited to 

postnatal time periods. In this study, we overcame this issue by modeling cortical 

development of both idiopathic and multiple syndromic forms of ASD using cortical 

spheroids. In particular, we examined RNA editing over hundreds of cortical spheroids 

spanning a comprehensive developmental range. RNA editing globally increased over 

spheroid development, and was hypoedited in the ASD cohort, specifically affecting 

genes relevant to radial glia, neuroprogenitor cells, and newborn neurons in functional 

categories related to cellular proliferation and transcription regulation.  

Interestingly, the functional pathways targeted by dysregulated RNA editing differs 

between fetal and postnatal ages. RNA editing in postnatal human brain targeted 

neuronal transmission genes9 whereas, in cortical spheroids, it primarily targeted 

cellular development and proliferation genes. Interestingly, these results are consistent 

with studies of gene expression in prenatal vs postnatal ASD. Dysregulated genes10,11  

and ASD susceptibility genetic mutations20,21 consistently converge onto either 
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transcriptional regulation genes or synaptic genes; the transcriptional regulation genes 

express specifically during fetal development, whereas, the synaptic genes express 

primarily postnatally. Thus, the changing pathways harboring dysregulated RNA editing 

could serve a convergent purpose with the changing function of dysregulated gene 

expression modules over ASD disease progression.  
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3.4 Methods 

3.4.1 Cortical spheroid generation  

Skin or blood samples were obtained from 45 ASD and 18 control human subjects and 

transformed using a previous developed differentiation method for specifying 3D cortical 

spheroids12,13. The 45 ASD patients and 18 control individuals begot 62 ASD and 21 

CTL cell lines which were differentiated across 86 ASD and 53 CTL inductions. The 

multiple inductions were grown and harvested across 25, 50, 75, and 100 days to 

produce 82 ASD and 52 CTL at day 25, 81 ASD and 52 CTL at day 50, 80 ASD and 52 

CTL at day 75, and 80 ASD and 49 CTL at day 100 for a combined total of 323 ASD 

and 205 CTL cortical spheroids. The avoid batch effects we sequenced some of the 

cortical spheroids across multiple batches, generating 82 ASD and 52 CTL RNA-

sequencing datasets at day 25, 81 ASD and 53 CTL at day 50, 90 ASD and 64 CTL at 

day 75, and 80 ASD and 51 CTL at day 100 for a combined total of 333 ASD and 220 

CTL cortical spheroid RNA-sequencing datasets.  

3.4.2 High throughput sequencing 

Cortical spheroid RNA was harvested and RNA sequenced using rRNA depletion, 

paired end, 2nd read sense, 101 nucleotide long reads to an average coverage of 25.5 

million read pairs. Reads were aligned with Hisat222 to the hg19 genome and 

transcriptome from Ensembl gene annotations. Picard tools was run on mapped read 
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files to obtain sources of mapping quality and sequencing bias including duplicate 

reads, GC dropout, AT dropout, 5’ to 3’ bias, high quality aligned reads, and ribosomal, 

intronic, intergenic, coding, and UTR bases.  

These metrics were summarized using the first two principal components 

henceforth called PCSeq1 and PCSeq2.   

3.4.3 Identifying RNA editing sites 

To our knowledge, no studies have identified RNA editing sites in organoids of human 

brain. Therefore, we performed de novo RNA editing detection using our previous 

methods14,15. First, to rescue reads that were unmappable due to harboring too many 

editing sites23, we re-mapped unmapped reads onto an hg19 genome with all 

adenosines converted to guanosines. Then, RNA editing sites were identified as 

mismatches between mapped reads and the human reference genome. A log-likelihood 

test and posterior filters were then applied to remove sequencing errors and technical 

artifacts caused by difficult to map genomic regions. The RNA editing level per sample 

was estimated as the number of reads harboring the edited allele divided by total reads 

covering the site. Editing level was only estimated for sites having at least 5 reads 

coverage. 

3.4.4 Calculating gene expression  

Gene expressions measured by transcripts per million (tpm) were calculated from in-

house scripts using the exon union of RefSeq transcripts obtained from the UCSC 
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genome browser. TPMs were adjusted for potential confounding variables (e.g. sex, 

batch, and PCseq1-2) using a hierarchical linear mixed effects regression modelling 

confounding variables as fixed effects and cell line, induction, and individual donor as 

nested random effects.  Specifically we implemented the model using the R package 

lme4 as lmer( tpm ~ sex + disease condition + differentiation day + batch2 + batch3 + 

batch3 redo + batch4 + PCseq1 + PCseq2 + (1|individual/cell line/induction)). P-values 

for differential gene expression between ASD and CTL samples were obtained by fitting 

tpm to a reduced model without disease condition, and testing significance of the 

maximum likelihood fit of the full model against the reduced model.  

3.4.5 Detection differential RNA editing sites 

Per differential time point (25, 50, 75, and 100 days), we identified differential editing 

sites as those with significant differences in editing level between ASD and control 

samples. To account for confounding variables (e.g. sex, batch) and to handle the 

hierarchical design of organoid generation (i.e. multiple cell lines and inductions from 

same individual), we used the lme4 package24 in R to fit a linear mixed effect model to 

editing level against sex, disease condition, batch, and PCseq metrics from Picard tools. 

The command was: lmer( editing levels ~ sex + disease condition + batch2 + batch3 + 

batch3_redo + batch4 + PCseq1 + PCseq2 + (1|individual/cell line/induction) ), where all 

fixed variables except PCseq1 and PCseq2 were encoded as 0 or 1. If the data was 

insufficient to fit the nested random effect term, nested levels were iteratively removed 

until convergence was attained. To follow the 10:1 rule, we filtered out editing sites that 

had fewer than 80 samples with at least 5 read coverage, leaving 27201, 27521, 30958, 
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and 27109 editing sites for 25, 50, 75, and 100 days respectively. P-values were 

obtained by fitting a reduced linear mixed effects model without disease condition and 

then testing significance of the maximum likelihood fit of the full model against the 

reduced model. Editing sites were considered differential if Benjamin Hochberg adjusted 

FDR < 0.1 and average difference in editing level between ASD and controls > 0.05. 

3.4.6 Weighted gene co-expression network analysis for RNA editing 

sites 

To find modules of RNA editing sites over organoid development, we performed 

weighted gene co-expression network analysis (WGCNA)25. WGCNA creates modules 

through hierarchical clustering of topological overlap metrics, which are based on 

correlations between editing sites. To suppress confounders (e.g. sex, batch) on 

module formation, we first adjusted RNA editing levels using the lme4 package24 in R to 

run mixed effects linear regression with sex, batch, ASD, differentiation day, PCSeq1, 

and PCSeq2 as fixed effects and individual, cell line, and induction as nested random 

effects (Supplemental Table 1). To ensure calculation of all pairwise correlations with at 

least 20 samples, we next filtered out editing sites that had fewer than 300 samples with 

at least 5 read coverage and nonzero editing. We also ran WGCNA 

goodSamplesGenes function to remove samples with too many missing editing level 

estimates. These filtering steps left 540 samples and 5,770 editing sites for further 

WGCNA steps. We used a soft power threshold of 10 to achieve scale free topology 

and spearman correlation to calculate topological overlap. To prevent confounding 
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modules with outlier samples, we applied a robust WGCNA methodological as 

described in previous work26, running 200 randomizations over all covariates except 

ASD condition and differentiation day. The final topological overlap matrix was 

hierarchically clustered and cut using various tree cutting parameters, all of which gave 

similar module partitions (Figure 3). The final module clusterings found only 233 (4%) 

out of the 5770 editing sites confounded by covariates (Figure 3), indicating that our 

adjustment procedures effectively removed most technical artifacts from the RNA 

editing data. 

3.4.7 Significance of hypoediting trajectory in ASD 

To test significance in ASD of the observed hypoedited trajectory over cortical spheroid 

development, we randomized the ASD and CTL labels over 10,000 permutations and 

shifted the minimum value of the 1st principal component of the turquoise module to 

zero. For each permutation, loess curves were fitted over development time from 25 

days to 100 days. The difference in area under the loess curves for nonrandomized CTL 

samples versus ASD samples was used as the test statistic. The p-value was then 

calculated against a null distribution of the differences in areas from the 10,000 

permutations.  

3.4.8 Enrichment analyses 

Gene ontology enrichment of differential editing sites was performed as described in our 

previous work9. Briefly, genes harboring one or more differential editing sites were 
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agglomerated into a unique query list. Each gene in the list was matched by a random 

gene that had same gene length (±	10%) and same tpm averaged across all samples 

(±	10%). This randomization process was performed for 10,000 permutations, and the 

number of random genes having a given GO term was fit to a Gaussian distribution. The 

number of query genes having the GO term was tested for enrichment using a one-

tailed Gaussian test.  

 Cell type enrichment of differential editing sites was performed similarly as gene 

ontology enrichment, except that cell type marker genes were used instead of GO 

terms. We ascertained the cell type marker genes from a previous single cell 

sequencing study of fetal brain27.   

3.5 Figures 
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Figure 3.1 Overview of cortical spheroid data 

a) Boxplots summarizing the sequencing coverage over all samples (n=553) in terms of 

total read coverage and number of uniquely aligned reads. b) Distribution plots of batch 

(left) and sex (right) over ASD (autism) and CTL (control) samples. The height of bars 

shows proportion of samples. Width of bars is proportional to the number of samples out 

of total (n=553). c) Boxplots summarizing distribution of PCseq1 and PCseq2 over CTL 

and ASD samples. PCseq1 and PCseq2 are the first two principal components of 
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metrics from Picard tools summarizing mapping bias and sequencing quality (Methods). 

d) Summary of read integrity number measured for a subset of samples (n=154) shows 

that RNA quality is high for all samples. Boxplot definition: center, median; lower hinge, 

25th percentile; upper hinge, 75th percentile; minimum and maximum extend to at most 

1.5 X IQR.   



	 99	

	

Figure 3.2 Quality of RNA editing site detection 

Graphs show various properties of the RNA editing sites detected from the RNA-

sequencing data. a) Corrrelation between number of editing sites detected and number 

of uniquely mapped reads per sample. The number of detectable editing sites strongly 

correlates with coverage. b) Types of editing sites detected over all samples. Boxplots 

show the proportion (top) and number (bottom) of types of editing detected over all 

samples. Canonical editing sites include the known A-to-G and C-to-U and their reverse 

complements U-to-C and G-to-A. The predominant A.to.G proportion of editing indicates 
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high specificity of RNA editing detection. c) Number of editing sites over all samples 

falling in alu or non-alu genomic regions. Boxplot defiinition: center, median; lower 

hinge, 25th percentile; upper hinge, 75th percentile; minimum and maximum extend to 

at most 1.5 X IQR. n=553 samples for all graphs. 
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Figure 3.3 Modules of RNA editing sites over cortical spheroid 

development 

Top dendrogram shows topological overlap of editing sites (n=5770). Middle colored 

maps show module member assignment of each editing sites after applying various tree 

cutting parameters. DS=deep splitting parameter, mms=minimal number of editing sites 

required to form a module, dcor=1-minimum correlation used to fuse smaller modules 

together. Bottom heatmaps show spearman correlation of each editing site with various 

biological and confounding variables. Module assignment is highly robust to choice of 

tree cutting parameters and identifies 2 modules. A small subset of sites is strongly 

confounded by technical variables (blue module). All other sites fall in the turquoise 

module. 
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Figure 3.4 Hypoediting in ASD across cortical spheroid development 

Plots show the projection of the turquoise module over cortical spheroid differentiation 

days. a) Loess fitted curve to the 1st principal component of the turqouise module over 

differentiation days partitioned by control (CTL) and autism (ASD) samples. P-value 

shows significance of the observed hypoediting pattern in ASD through permutation 

label swapping. b) Similar to (a) but including partitions over the various autism 
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spectrum disorders. 15q13=15q13 duplication, 16p11del =16p11 deletion, 

16p11dup=16p11 duplication, 22q11del=22q11 deletion, 22q13del=22q13 deletion, 

ASD=all the Autism spectrum disorders combined, CTL=control, idiopathic 

ASD=idiopathic Autism, PCDH19 and SHANK3=mutations in the respective genes, 

TS=Timothy syndrome. 
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Figure 3.5 Potential regulators of RNA editing in cortical spheroid 

development 

Heatmap of the spearman correlation between the 1st principal component of the 

turquoise module and RNA binding proteins known to regulate RNA editing. Annotations 

include the spearman correlation coefficient and corresponding p-value, adjusted using 

the Benjamin Hochberg method. 
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Figure 3.6 Functional enrichment of differential RNA editing in ASD 

cortical spheroids 

a) Histograms show distributions of difference in editing levels (average ASD - average 

CTL) of differential editing sites identfied per differentiation timepoint. Blue bars show 

number of sites downregulated in ASD. Red bars show sites upregulated in ASD. P-

value shows significance of downregulated bias of RNA editing (two-tailed Fisher’s 

Exact test). b) Enrichment of differential editing sites in fetal brain cell types. Red line 

denotes FDR < 0.05 cutoff. P-value shows Benjamin Hochberg adjusted FDR. 

Differential editing sites show enrichment in cell types related to radial glia, 

neuroprogenitor cells, and newborn neurons. c) Gene ontology enrichment of differential 

editing sites. Red line denotes FDR < 0.05 cutoff. P-value shows Benjamin Hochberg 

adjusted FDR. 
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Chapter 4 

Statistical inference of differential RNA editing 

sites from RNA-sequencing data by hierarchical 

modeling 

4.1 Introduction 

RNA editing alters RNA sequences by base modifications, insertions, and deletions, 

which in metazoans1, predominantly consists of adenosine to inosine (A-to-I) changes 

catalyzed by the ADAR proteins. A plethora of studies have demonstrated diverse 

biological roles for A-to-I editing. The most-studied type of RNA editing consists of 

recoding sites. Because inosines are recognized as guanosines by the cellular 

machinery, such editing sites can lead to amino acid substitutions in proteins. 

Functional studies have implicated many of these protein-recoding sites in modulating 

neuronal function, synaptic permeability and emissions2. In contrast, RNA editing in 

non-coding regions is less well understood, despite the vast number of sites. 

Nonetheless, the functional relevance of such editing sites is starting to be elucidated, 

such as in splicing regulation3-5, microRNA targeting and polyadenylation of 3’ UTRs6-8, 

and modulation of double-stranded RNA-related immunity9. Importantly, widespread 

aberrant RNA editing patterns have been reported across a large number of diseases, 
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including neurological diseases10,11, atherosclerosis12, cancer13-16, and autoimmune 

disorders17.  

Recent studies of RNA editing were greatly facilitated by the RNA sequencing 

(RNA-seq) technology and related bioinformatic tools, which allow comprehensive 

delineation of global editomes in diverse biological processes. In editome profiling, a 

critical task is to identify editing sites that are statistically different in their quantitative 

levels between two groups of samples (such as disease vs. controls). Alternatively, 

editing sites whose levels are statistically associated with certain variables, such as 

age, are sought after. Most previous studies utilized the classic t-test18-20, Wilcoxon 

rank-sum test11,13,17,18,21, Fisher’s Exact test11,22-24, or linear regression-based 

test8,11,20,23,25,26 for these purposes. However, these tests are limited due to the lack of 

consideration of uncertainty in the read counts or variability in editing quantification 

between biological replicates.  

Here, we develop and evaluate a suite of tools, REDITs (RNA editing tests), that 

are built upon beta-binomial-based models to carry out differential editing analyses. 

Specifically, REDITs consist of two methods. The first method handles the classic case 

of identifying editing sites that possess differential editing levels between two conditions 

(i.e. case vs. control). The second method carries out statistical inference of categorical 

or quantitative variables that covary with editing levels (e.g. age-correlated RNA 

editing). Beta-binomial models have been applied to analyze DNA methylation27-31. 

However, these methods are not directly applicable to RNA editing studies due to their 

methylation-specific aspects (e.g. methylome-wide priors).  
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We show via simulated and actual data that REDITs have improved sensitivity and 

mitigated false-positive rate compared to commonly used alternatives. We applied 

REDITs to human tissue editomes (GTEx) and examined the association between RNA 

editing and age or gender. Interestingly, we observed that editing shows increasing or 

decreasing trajectories over age in many human tissues and exhibits gender-

associations in some tissue types. 

4.2 Methods 

4.2.1 Beta-binomial model underlying REDITs 

We first consider an A-to-G editing site measured using RNA-seq across 𝑚 samples 

from two conditions (Fig. 1a). For each sample 𝑚(, we denote the total read coverage 

as 𝑛( and the number of reads harboring the edited nucleotide as 𝑘(. As in most 

previous studies, the observed editing level can be calculated as +,
-,

. If we assume the 

true underlying editing level is 𝜃(, then 𝑘( follows a binomial distribution: 

𝑘(|𝜃(~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛(, 𝜃( ,	

𝑃 𝑘(|𝜃( = ( )+,
-, 𝜃(

+, 1 − 𝜃( -,<+,.	

The value of 𝜃(, is expected to vary amongst samples due to biological variability. Thus, 

we model 𝜃( using a beta distribution for samples from the same condition. More 

specifically, for condition 1: 

𝜃(~𝐵𝑒𝑡𝑎(𝛼A, 𝛽A)		
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𝑃 𝜃( = C,
DEFE	 A<C, GEFE

H(IE,JE)
,		𝑖 = 1… 𝑗;	

For condition 2: 

𝜃(~𝐵𝑒𝑡𝑎(𝛼M, 𝛽M)		

𝑃 𝜃( = C,
DNFE	 A<C, GNFE

H(IN,JN)
,	𝑖 = 𝑗 + 1…𝑚,	

	

where	𝛼, 𝛽	are hyper parameters and 𝐵 𝛼, 𝛽  is the beta function. We choose the beta 

distribution because it adheres to the restriction that editing levels must fall in a 

continuum between (0,1). Additionally, the beta distribution is conjugate to the binomial 

distribution (below), which eases our inference procedure. Given the inordinate flexibility 

of both concave and convex shapes possessed by the beta distribution, we restricted 

𝛼 ≥ 1 and 𝛽 ≥ 1 to enforce that it partake only uniform or unimodal shapes and eschew 

U-shapes. Intuitively, this restriction presumes that the distribution of true editing levels 

per condition has measures of centrality and dispersion that approximately correspond 

to the peak and width of the distribution respectively. In addition, these parameter 

restrictions were observed for all editing sites analyzed in the GTEx dataset (Results, 

supplemental Fig. 1a). In totality, each sample follows a generative model whereby its 

true editing level 𝜃( is an observation from a uniform or unimodal beta distribution 

characteristic of its condition, and the random sampling of edited reads or non-edited 

reads from RNA-seq follows a binomial distribution (Fig. 1b). The entire generative 

model is a beta-binomial distribution: 

𝑃 𝑘(, 𝜃( 	𝑛(, 𝛼P, 𝛽P) = 	𝑃 𝑘( 𝜃(, 𝑛()	 ⋅ 𝑃 𝜃( 𝛼P, 𝛽P),	where	𝑙 = 1	for	𝑖 ≤ 𝑗	and	𝑙 = 2	for	𝑖 ≥ 𝑗 + 1	
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= ( )+,
-, 𝜃(

+, 1 − 𝜃( -,<+, ⋅ 	
𝜃(
IT<A	 1 − 𝜃( JT<A

𝐵 𝛼P, 𝛽P
	.	

Integrating over 𝜃( yields the marginal likelihood of 𝑘( given the hyper-parameter 𝛼, 𝛽 : 

𝑃 𝑘( 𝑛(, 𝛼P, 𝛽P) = 	 ( )+,
-, 𝜃(

+, 1 − 𝜃( -,<+, ⋅ 	
𝜃(
IT<A	 1 − 𝜃( JT<A

𝐵 𝛼P, 𝛽P
𝑑𝜃(

A

W
	

= ( )/𝐵 𝛼P, 𝛽P+,
-, 𝜃(

+, 1 − 𝜃( -,<+, ⋅ 𝜃(
IT<A	 1 − 𝜃( JT<A	𝑑𝜃(

A

W
	

= ( )/𝐵 𝛼P, 𝛽P+,
-, 𝜃(

+,YIT<A	 1 − 𝜃( -,<+,YJT<A	𝑑𝜃(
A

W
	

= ( ) ⋅ H +,YIT,-,<+,YJT
H IT,JT

		+,
-, .														(1)		

4.2.2 Statistical inference of differential editing between two groups  

Given two groups of samples (e.g., cases and controls), under the null hypothesis of no 

between-group difference on editing (i.e. 𝛼A = 	𝛼M = 	𝛼W and 𝛽A = 	𝛽M = 	𝛽W), the 

likelihood of the data is given by: 

𝐿W = 	 𝑃 𝑘( 𝑛(, 𝛼W, 𝛽W)
[

A

	= ( ) ⋅
𝐵 𝑘( + 𝛼W, 𝑛( − 𝑘( + 𝛽W

𝐵 𝛼W, 𝛽W
		+,

-,
[

A

.	

The likelihood of the alternative model where significant difference exists between the 

two groups is given by: 

𝐿\ = 	 𝑃 𝑘( 𝑛(, 𝛼A, 𝛽A)
]

(^A

𝑃 𝑘( 𝑛(, 𝛼M, 𝛽M)
[

(^]YA

	

= ( ) ⋅
𝐵 𝑘( + 𝛼A, 𝑛( − 𝑘( + 𝛽A

𝐵 𝛼A, 𝛽A
		+,

-,

]

(^A

( ) ⋅
𝐵 𝑘( + 𝛼M, 𝑛( − 𝑘( + 𝛽M

𝐵 𝛼M, 𝛽M
	 .+,

-,
[

(^_^A
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Wilk’s theorem states that the statistical significance of differential editing is given by: 

−2 ⋅ log cd
ce

~𝜒M,	with	2	degrees	of	freedom	

where 𝐿W and 𝐿\ are evaluated at the maximum likelihood estimates (MLEs) of 𝛼’s and 

𝛽’s. Thus, we call this method REDIT-LLR henceforth. 

4.2.3 Statistical inference of editing sites that covary with quantitative 

variables 

The beta-binomial model can be expanded to handle statistical inference under the 

regression scenarios (REDIT-Regression). For convenience, we describe this method 

using the example of identification of editing sites that covary with age (𝐴(). For a 

specific editing site, we assume the underlying true editing levels per sample, (+,
-,
	~	𝜃() 

( 𝑖 = 1…𝑚), follow a beta distribution with constant dispersion (𝜎) but with mean (𝜇) 

linearly dependent on age (Fig. 1c). The assumption of a constant 𝜎 and the 

dependency of 𝜇 on age is analogous to that of linear regression. We re-parameterize 

the beta-binomial model as follows, 

𝜇 =
𝛼

𝛼 + 𝛽
	

𝜎 =
1

𝛼 + 𝛽
.	

Then the marginal likelihood of 𝑘( in Eq. (1) becomes 

𝑃 𝑘( 𝑛(, 𝑢(, 𝜎) = ( )		
𝐵 𝑘( +

𝜇(
𝜎 , 𝑛( − 𝑘( +

1 − 𝜇(
𝜎

𝐵 𝜇(	
𝜎 ,

1 − 𝜇(
𝜎

.		+,
-, 	



	118	

		

The dependency of 𝜇 on age is linear: 

𝜇( = 	𝛽klm ⋅ 𝐴( +	𝛽W.	

Under the above re-parameterization, 𝜇 must fall between (0,1) and 𝜎 must be > 0, 

which we enforce during maximum likelihood estimation. The likelihood of the data is 

given by: 

𝐿okpk = 𝑃 𝑘( 𝑛(, 𝜇(, 𝜎)
[

(^A

= ( )		
𝐵 𝑘( + 𝜇(

𝜎 , 𝑛( − 𝑘( +
1 − 𝜇(
𝜎

𝐵 𝜇(	
𝜎 ,

1 − 𝜇(
𝜎

		 .+,
-,

[

(^A

	

The null hypothesis 𝐻W is that age does not impact editing, i.e., 𝛽klm = 0 or equivalently 

𝜇( = 	𝛽W. Based on Wilk’s theorem, the statistical significance of the alternative model 

(𝐻\: 𝛽klm ≠ 0) is given by: 

−2 ⋅ log cd
ce

~𝜒M,	with	1	degree	of	freedom	

where 𝐿W and 𝐿\ are maximum likelihood under 𝐻W and 𝐻\ respectively. General 

inference of multiple covariates (𝛽A, 𝛽M, …) with respective observations (𝑋A(, 𝑋M(, …) can 

be carried out by comparing maximum likelihood under the alternative model, 𝜇( = 	𝛽A ⋅

𝑋A( + 𝛽M ⋅ 𝑋M( + ⋯+	𝛽W, to maximum likelihood under null models with 𝛽] = 0 to 

determine statistical association of covariate j with editing for each j=1,2,…. Categorical 

variables (e.g. gender, ethnicity) can also be included by encoding them as 0 and 1. 

Regression for one or more quantitative and/or categorical covariates is handled by our 

provided code (see code availability).  

For regressions of proportions (values restricted between 0 and 1), the 𝜇 term is 

conventionally transformed using a logistic link function:  𝜇( = 	
A

AYmF(Guvw⋅e,x	Gd	)
 . However, 
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the logistic transformation can over-fit the data and lead to inflated maximum likelihood 

ratios. Thus, we chose not to use the logistic link function and instead opted to constrict 

regression coefficients within the maximum likelihood estimation so that editing levels 

would never fall below zero or above 1. 

4.2.4 Simulations to evaluate REDIT-LLR  

To simulate RNA editing data, we extracted RNA editing sites from the REDIportal 

database32 derived from 2660 GTEx samples and other sources. Using these data, we 

simulated realistic read coverages and hyper-parameter distributions reflecting 

biological variance of editing levels.  First, we used maximum likelihood estimation to fit 

beta distributions to the editing levels of each editing site in brain samples of GTEx. 

Brain was chosen since it has the largest sample size among all histological types 

(Supplemental Table 1a). Furthermore, to acquire highly accurate parameters, we 

required the editing sites to have ≥ 20 reads in ≥ 250 brain samples. A total of 1206 

editing sites were retained. The 𝛼 and 𝛽 parameters were then clustered (k-means) into 

10 clusters, yielding 10 representative parameter values (Supplemental Fig. 1a-b, 

Supplemental Table 1b). As an alternative, we repeated the simulations using a 

truncated Gaussian distribution instead of beta distribution. The mean and variance 

parameters were converted directly from the mean and variance of the beta distributions 

(Supplemental Fig. 1d, Supplemental Table 1b).  

Editing levels were sampled from the beta or truncated Gaussian distributions, and 

the numbers of edited reads for each sample were simulated using the corresponding 

binomial distribution. To simulate read coverages, we used maximum likelihood 
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estimation to fit negative binomial distributions to the coverage data of the above editing 

sites from 10 random GTEx brain samples (Supplemental Table 1c, Supplemental Fig. 

1c). A total of 100 independent simulations of 1000 editing sites were created for each 

group, with 2, 3 or 5 samples per group.  

4.2.5 Evaluating sensitivity and false-positive rates of REDIT-LLR  

The false-positive rate and sensitivity of REDIT-LLR was evaluated by simulating case-

control scenarios where the case and control groups were each characterized by 1 of 

the 10 beta (or truncated Gaussian) distributions (Supplemental Fig. 1). Sensitivity was 

evaluated where the cases and controls were simulated using different underlying 

distributions, and false-positive rate was evaluated using identical distributions to 

generate cases and controls.  A p < 0.05 was imposed to call significant comparisons. 

We piloted evaluation of sensitivity and false-positive rate on a single set of parameters 

for a case-control comparison of 3 replicates, where the parameters for sensitivity were 

beta(𝛼=13.52, 𝛽=11.95) versus beta(𝛼 =43.64, 𝛽=0.23), and parameters for false-

positives were beta(𝛼=13.52, 𝛽=11.95) for both groups (Figure 2a,b); simulations were 

then expanded to include all combinations of parameters and sample sizes 

(Supplemental Figure 2,4). 

Pooled Fisher’s Exact test, t-tests, and Wilcoxon Rank-sum tests were also 

applied on the above simulated editing sites. Pooled Fisher’s Exact test was carried out 

by pooling reads from replicates and testing the resulting 2x2 contingency table. The t-

test and Wilcoxon rank sum tests were performed in 2 ways, respectively, (1) using 

editing levels estimated without minimal read coverage requirement, and (2) filtering 
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out, for each editing site, any sample with read coverage < 10 (i.e., thresholded t-test or 

Wilcoxon rank sum test).  

4.2.6 Evaluating false-positive rates of REDIT-Regression using 

simulated data  

To evaluate REDIT-Regression, we simulated editing sites that covary with age. We 

based the simulations on a previous dataset of 33 postmortem human brains spanning 

fetal stages to old age20. A total of 267,766 editing sites were reported by this study. 

To test the false-positive rates, we simulated editing sites where age had no effect 

on editing level. For each editing site, we extracted its read coverage in each sample of 

the original dataset. The editing level and number of edited reads were simulated 

similarly as described for REDIT-LLR, using the beta or truncated Gaussian 

distributions (Supplemental Fig. 1). For each editing site, one of the 10 beta or truncated 

Gaussian distributions, respectively, was randomly selected to simulate edited reads. 

Each simulation included 3, 5, 7, and 33 samples and 267,766 editing sites, with the 

age values of the samples unaltered. For sample sizes of 3, 5, and 7 we chose to use 

samples (R5805, R3523, R3990), (R5805, R3591, R3497, R4371, R3990), and (R5805, 

R5815, R3552, R3497, R4054, R3539, R3990), respectively, as these samples 

represented the age range of the dataset. Each simulation included editing sites where 

median coverage was at least 5 (93,437 sites for n=3, 86,290 for n=5, 68,235 for n=7, 

and 90,919 for n=33), and 100 independent simulations were carried out per sample 

size. For each simulation, the false-positive rate was calculated as the fraction of sites 
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with significant age associations (REDIT-Regression p < 0.05) among all sites tested. 

We piloted the simulations on the sample size of 3 (Figure 2d) and then expanded to 

the other sample sizes (Supplemental Figure 7b, 8b). 

Binomial regression, linear regression, and thresholded linear regression (using 

samples with read coverage ≥	10) were also performed for the above simulated data.  

4.2.7 Evaluating sensitivity of REDIT-Regression using simulated data  

To test sensitivity, we simulated various correlations between age and editing levels. 

First, we estimated representative correlations of these two variables using the original 

data of the 33 postmortem samples. We used editing sites where ≥20 samples had ≥ 

20 read coverage. The observed editing levels (calculated as the number of edited 

reads divided by read coverage) were then regressed against age using linear 

regression. To tractably limit the number of simulated age-associations, we used a 

stricter p-value threshold of p<0.005 to deem editing sites significant. These sites were 

used to derive 5 representative slope and intercept values to simulate linear 

relationships between age and editing levels (Supplemental Fig. 6a-b, Supplemental 

Table 1d).  

 Using the above relationships, we simulated true editing levels of each editing 

site by randomly sampling from a beta or truncated Gaussian distribution whose mean 

was set as 𝜇( = 	𝛽klm ⋅ 𝐴( +	𝛽W, where 𝐴( was the unaltered age of the sample. The 

standard deviation for each editing site was randomly selected from the standard 

deviations of the 10 distributions from the GTEx data described above. Other aspects of 
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the simulations are similar as described for false-positive evaluation. Sensitivity was 

calculated as the fraction of editing sites with significant (p < 0.05) age association 

among all sites tested. We piloted sensitivity evaluation on sample size of 3 and where 

true editing level was a beta distribution with mean set as 𝜇( = 	0.005 ⋅ 𝐴( + 	0.33 (Figure 

2c) and then expanded to the other 4 slope and intercept values and sample sizes 

(Supplemental Figure 7a, 8a). 

4.2.8 Evaluating false-positive rates of REDITs on actual data 

To test the false-positive rate of REDIT-LLR on real data, we obtained 6814 editing sites 

in 18 control samples from a previous study of system lupus erythematosus24,33. We 

randomly permuted the samples and formed two groups (n=2, 3, 5, 10, 15, or 18 per 

group). Thus, any editing site called with p < 0.05 is deemed a false-positive.  

 For REDIT-Regression, we used 267,766 editing sites from the 33 postmortem 

brains20 as described above and randomly grouped samples with replacement to 

achieve various sample sizes (n=5, 10, 15, 20, 25, 30, 33). Each sample was then 

randomly assigned a covariate value (1 to n).  Each random sampling and covariate 

assignment were repeated 100 times. 

4.2.9 Application of REDIT-Regression to identify age and gender 

associated RNA editing 

We applied REDIT-Regression to the GTEx dataset to investigate how RNA editing 

varies with human age (4,668,508 editing sites obtained from the REDIportal database). 
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To expedite run-time, we removed GTEx tissues that had fewer than 10 samples, and 

required editing sites to have ≥ 1 read coverage in ≥	10 samples. Partitioning samples 

per body site and histological type, we identified sites that significantly associated with 

age (|betaage| > 0.01 and FDR < 0.1) through REDIT-Regression using age as the only 

covariate. Tissues with an increasing trajectory in editing over age were defined as 

those where the number of editing sites demonstrating an increasing trend is at least 

twice of that with a decreasing trend (and Fisher’s Exact test FDR < 0.1). Tissues with a 

decreasing trajectory were defined similarly. The same criteria were used when finding 

editing sites associated with age in a dataset of 33 postmortem frontal cortex samples20. 

The subset of samples used to match the age range of GTEx frontal cortex samples 

were R4054 age: 40.60548, R2897 age: 41.04109, R4049 age: 41.20274, R4371 age: 

41.77808, R3791 age: 42.06575, R2826 age: 42.83836, R3539 age: 57.48219, R3479 

age: 58.60548, R3766 age: 59.26027, R3445 age: 61.16712, R4038 age: 67.86575, 

R3990 age: 71.10959. 

To identify editing sites that significantly associate with gender, we ran REDIT-

Regression using both gender and age as covariates, since age is already a known 

variable correlated with editing20,34-36. |Betasex| > 0.05 and FDR < 0.1 was used to call 

significant associations.  

4.2.10 Implementing statistical tests 

The t-test, Wilcoxon rank-sum test, Fisher’s Exact test, and linear regression were 

performed using corresponding base functions in R. Binomial regression was run in R 

using the gamlss package (version 5.1-2) using default arguments. 
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4.2.11 Running-time performance evaluation 

The running-time performances of the REDIT-LLR and REDIT-Regression were 

evaluated by running various numbers of editing sites from real datasets. REDIT-LLR 

was run on 29 Autism and 33 controls from frontal cortex11, and REDIT-Regression was 

run on the 33 frontal cortex samples spanning human development20. We calculated the 

average running-time (average time required to run 1 editing site) by fitting a least-

squares linear regression on running time (minutes) vs number of editing sites tested. 

No computational parallelization was used for these evaluations. 

4.3 Results 

4.3.1 Overview of REDITs 

REDITs model read counts in RNA editing using a beta-binomial distribution, where 

read coverage is modelled using the binomial component, and biological variance 

between replicates is concurrently modelled with the beta component. For differential 

editing tests between groups (e.g. cases vs. controls), REDITs evaluate a null model 

assuming no between-group difference, compared to an alternative model that includes 

two distinct groups. It then determines differential editing based on the significance of 

the likelihood ratio of the two models (thus, called REDIT-LLR, Fig. 1a-b). To test the 

correlation of an editing site with one or multiple biological factors (e.g. covariance of 

editing with age), REDITs model the covariates as a linear combination of regressors 

that together constitute the mean of the beta component. It then tests whether inclusion 
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of each covariate significantly improves the maximum likelihood ratio (thus, called 

REDIT-Regression, Fig. 1a,c).  

4.3.2 Evaluation of the REDIT-LLR method via simulated data 

To evaluate the REDIT-LLR method, we simulated read counts of editing sites using 

beta distributions estimated from GTEx brain tissues (Supplemental Fig. 1a-c, 

Supplemental Table 1b-c). We simulated 2, 3, or 5 biological replicates per group, which 

are typical sample sizes in case-control studies. The significance level was chosen to 

be 0.05. REDIT-LLR had much greater sensitivity (true positive rate) than the t-test or 

Wilcoxon rank-sum test, particularly for smaller sample sizes (Figure 2a, Supplemental 

Fig. 2), which is consistent with the lack of depreciation of sites with inadequate 

coverages by the latter two methods. Also, this problem of the two methods is not 

alleviated using thresholds to impose a minimal coverage requirement (Figure 2a, 

Supplemental Fig. 2), due to loss of sample size.  

Although the Fisher’s Exact test has comparable sensitivity as REDIT-LLR, its 

false-positive rate is much higher than the nominal level of 0.05 and that of REDIT-LLR 

(Figure 2b, Supplemental Fig. 2). This limitation of Fisher’s Exact test is consistent with 

its theoretical flaw of neglecting biological variability. Notably, this problem of Fisher’s 

Exact test exacerbates as sequencing coverage increases (Supplemental Fig. 3).  

As an alternative method, we simulated editing sites using a different hyper-

parameter distribution (truncated normal instead of beta distribution) (Supplemental Fig. 

1d).  The REDIT-LLR method still outperformed the other methods (Supplemental Fig. 

4), indicating that this method is robust to the underlying distribution of editing levels.  
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4.3.3 Evaluation of the REDIT-LLR method using actual RNA-seq data 

We evaluated the false positive rates of different methods by randomly grouping control 

samples of a previous study33 into two groups (Methods). Editing sites identified with p < 

0.05 were considered as false-positive predictions. REDIT-LLR yielded the lowest false 

positive rates in the majority of comparisons (Supplemental Fig. 5a).   All methods 

except Fisher’s exact test had false-positive rates < 5%. In particular, Fisher’s exact test 

performed poorly at editing sites with highly variable editing levels between samples, 

which are enriched in Alu and intronic regions (Supplemental Fig. 5b-c). In contrast, for 

sites with lower variability, which were enriched in exonic and non-Alu regions, Fisher’s 

exact test performed adequately (false-positive rates < 5%). The assumption of low 

variance between biological replicates likely holds for these editing sites where precise 

regulation of editing level may be critical for homeostasis37. 

4.3.4 Evaluation of the REDIT-Regression method 

To evaluate the REDIT-Regression method, we simulated editing sites based on RNA-

seq data of 33 postmortem frontal cortex samples used in a study of RNA editing in 

human development20. The simulations incorporated unaltered read coverages per 

editing site from the actual data. To evaluate sensitivity, we simulated editing sites that 

covary with age (𝛽klmand 𝛽W parameters)(Supplemental Table 1d). For all simulations, 

the REDIT-Regression method had higher sensitivity (proportion of sites with p < 0.05) 

than the linear regressions, though lower sensitivity than binomial regression (Figure 2c, 
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Supplemental Fig. 7a). Similar trends were observed using simulated data generated 

from a truncated normal instead of beta distribution (Supplemental Fig. 8a).  

We also used the same 33 samples as described above, but did not impose any 

correlation between RNA editing and age.  Thus, the prediction of a significant 

association between editing and age is a false positive. Based on these simulations, the 

false-positive rate of REDIT-Regression remains at or below 5%, whereas binomial 

regression yielded much higher false-positive rates (Figure 2d, Supplemental Fig. 7b, 

Supplemental Fig. 8b).  

We next evaluated the false-positive rate of REDIT-Regression using actual RNA-

seq data by bootstrapping samples and shuffling the associated random covariate 

values (Methods). Similar to the simulation results, all methods except the binomial 

regression maintained false-positive rates below 5% (Supplemental Fig. 9). 

Overall,	out	of	the	methods	that	mitigate	false-positives	to	5%,	REDIT-Regression	had	

the	highest	sensitivity,	demonstrating	the	optimal	balance	between	false	and	true	positive	rate.	

4.3.5 REDIT-Regression on GTEx data uncovers association of RNA 

editing with human aging  

Multiple studies indicate that RNA editing levels in the brain increase over age20,34-36. 

However, this trend has not been evaluated across many samples for the panoply of 

human tissues. We applied REDIT-Regression to the GTEx dataset, to 

comprehensively investigate the trajectory of editing variations over human aging. 

Overall in most tissue types, we observed hundreds of editing sites associated with age 



	129	

(Supplemental Table 2a-b, FDR < 0.1 Methods). Interestingly, many also exhibited 

homogenously increasing or decreasing trajectories of editing (Supplemental Table 2a-

b, Fig. 3, Supplemental Fig. 10).  

One striking observation in our results is that editing decreased with age across 

brain regions (Fig. 3, Supplemental Fig. 10). A previous study reported an increasing 

trend of brain editing with age (frontal cortex)20. However, this increasing trend was 

predominantly driven by the fetal to infant transition, which was replicated in another 

study11. The ages of GTEx subjects ranged from 20 years to 70 years (Supplemental 

Fig. 11a-b), which only encapsulates the period of human adulthood to older age. Thus, 

we hypothesized that the disparity in the age-editing association between ours and 

previous studies20,34-36 were attributable to differences in the ages of the respective 

cohorts. To level the comparison, we performed REDIT-Regression in two ways using 

the previous dataset20, with the entire cohort and with a subset of frontal cortex samples 

aged ≥ 20 years, respectively. REDIT-Regression on the entire cohort recapitulated that 

editing levels predominantly increased during development (762 sites increasing vs 148 

sites decreasing, Chi-Square p-value =3.1e-54, odds ratio=5.14). However, in the subset 

of samples aged ≥ 20 years, REDIT-Regression identified no editing sites associated 

with age, which is similar to that observed in the GTEx samples where only 24 sites 

were associated with age (Supplemental Table 2b, brain-frontal cortex). Overall, our 

findings underscore that the trends of RNA editing changes differ between early 

development versus aging. 
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4.3.6 REDIT-Regression on GTEx data reveals gender-biased RNA 

editing  

Although humans display sexual dimorphism in morphology and physiology, RNA 

editing differences between genders is largely unknown.  Recent studies implicated 

RNA editing in gender-specific stratification of glioblastoma survival38. However, 

comprehensive investigation of gender-biased editing across human tissues has not 

been reported.  We carried out REDIT-Regression analysis on the GTEx dataset using 

both age and gender as covariates.  Strikingly, we observed gender-biased editing 

across diverse tissue types (Figure 4, Supplemental Fig. 12, FDR < 0.1 Methods). The 

two tissues with the greatest number of gender-associated sites were thyroid and 

adipose tissues. Interestingly these tissues also have morphological or physiological 

differences between the genders, such as higher thyroid-stimulated hormone levels in 

females39 and lower subcutaneous fat levels in males40. Our observation suggests that 

gender-specific RNA editing may be involved in sexual dimorphism of different aspects 

of physiology.  

4.3.7 Computational speed of REDITs 

We evaluated REDITs run time using data from two previous studies (62 samples in the 

LLR analysis, and 33 samples in the regression analysis)11,20. The REDIT-LLR method 

processed 100,000 editing sites in about 14 minutes (Fig. 5a). REDIT-Regression ran 

36 minutes for 100,000 editing sites (Fig. 5b). For the preponderance of RNA editing 

studies, this level of speed is efficient and should obviate the need for parallelization, 
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permitting application of the methods given the most basic computational resources. 

Nevertheless, we provide an example of how to include parallelization in the REDITs 

codes (see code availability). 

4.4 Discussion 

In this work we introduce REDITs which leverage beta-binomial models to detect editing 

differences between groups or editing association with covariates. Compared to nominal 

methods used in previous studies, REDITs proffers the advantage of handling the 

uncertainty in RNA editing levels calculated from limited sequencing depth in RNA-seq 

data, while still maintaining biological variance modelling. Using both simulated and 

actual data, we demonstrated that REDITs have superior performance than commonly 

utilized tests in RNA editing studies. Since REDITs consider biological replicates to 

model the variability across data sets, they are particularly suitable for handling data 

with sparse and limited counts. If the sequencing depth is very high, REDITs 

mathematically simplify to a likelihood ratio test of beta distributions for case-control 

studies, or a beta regression for regression analyses. Since most RNA-seq data have 

limited coverage at the single-nucleotide level, REDITs serve a widespread utility.  

In this study we clarified the trajectory of editing changes associated with age in 

human tissues. Specifically, we found hundreds of editing sites associated with age in 

most of the GTEx tissues and that many tissues exhibited homogenously increasing or 

decreasing trajectories of editing over age. Our analyses also clarified that, in brain, 

editing level increases during early development, and then decreases from adulthood to 
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old age. Interestingly, some tissues also have many RNA editing sites with gender bias, 

which may contribute to sexual differences in physiology and anatomy. The functional 

importance and mechanistic underpinnings of these trends on human aging and sexual 

dimorphism merit further examination. Overall, REDITs should serve prodigiously to 

expand our understanding of how RNA editing undergirds molecular systems, biological 

phenotypes, and disease. 
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4.7 Figures 

	

Figure 4.7.1 Overview of REDITs 

a) Context for usage of REDITs within RNA editing studies. RNA-seq is generated on 

multiple samples (i=1...m), and editing sites are quantified by piling reads and counting 

number of matches/edited reads (A) to the reference and mismatches/non-edited reads 

(G) to the reference.  ki = # of G reads and ni =  # of A reads + # of G reads. Depending 

on the type of inference sought, samples are partitioned into tables, which are input into 
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REDITs for statistical inference. b) Overview of REDITs-LLR for case-control inference. 

Under the null model, a single beta distribution characterizes the underlying editing 

levels θ1...m of all samples, whereas the alternative model posits distinct beta 

distributions characterizing condition 1 (θ1...j) against condition 2 (θj+1...m) . A binomial 

distribution characterizes editing reads per sample (k1...m). The coverage acquired via 

RNA-seq directly determines n1...m. c) Overview of REDITs Regression for inference of 

covariance with RNA editing. For simplicity, the model is depicted showing covariance 

of editing with age in 4 samples. The underlying editing level of each sample is 

characterized by a distinct beta distribution where mean (ui) is linearly dependent on 

age through ui = 0.2 Ai + 0.1, and dispersion (σ) is constant. Points along regression 

line show locations of the means (ui) of beta distributions. The number of edited reads 

(ki) then follow a binomial(ki | ni, θi) distribution where ni is determined by sequencing 

coverage per sample at this editing site, and θi is an observation from the respective 

beta distribution per sample.  
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Figure 4.7.2 Evaluation of REDITs using simulated data 

a) Sensitivity of REDIT-LLR was evaluated using simulations where group 1 editing 

level was characterized by beta(α=13.52, β=11.95) and group 2 as beta(α=43.64, 

β=0.23) with 3 samples per group. b) False-positive rate was evaluated where both 

group1 and group2 were simulated as beta(α=13.52, β=11.95). c) Sensitivity of REDIT-

Regression was evaluated where editing level was characterized as a beta distribution 

with mean simulated as μi= 0.005*Ai+ 0.33 over 3 samples. d) False-positive rate was 

evaluated where age had no simulated effect on editing levels. Individual points show 

100 replicate simulation results. Red dotted lines show the 5% false-positive threshold. 

Thresholded t-test and thresholded Wilcoxon test = t-test and Wilcoxon rank-sum test 

run on samples with minimal 10 read coverage. Thresholded linear regression = linear 

regression on only samples with minimal 10 read coverage. REDITs have highest 

sensitivities out of all tests that remain within a 5% false-positive rate.    
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Figure 4.7.3 REDIT-Regression uncovers overall trend of increasing 

RNA editing over human aging 

REDIT-Regression was performed to find RNA editing levels that statistically associate 

with age. Plots show linear regression lines fit to z-scores of all RNA editing sites that 
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were found significantly associated with age in samples partitioned by GTEx histological 

type. Only histological types exhibiting homogenous trajectories of editing over age are 

plotted (Supplemental Table 2a). Grey shading shows the 99% confidence interval from 

regression. Points show the median z-score per sample.  
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Figure 4.7.4 Gender-biased RNA editing in various tissues 

REDIT-Regression was performed across GTEx tissues partitioned by histological type 

to find editing sites associated with gender. Bargraphs show number of editing sites 

found significantly more highly edited in males (red) or females (blue). Significant sites 

defined with FDR < 0.1 and mean difference between genders > 0.05. 
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Figure 4.7.5 Computational running-time of REDITs 

The points in the scatterplots show the running time (minutes) in analyzing various 

numbers of editing sites from real datasets. a) Computational running-time of REDIT-

LLR. b) Computational running-time of REDIT-Regression. Annotations specify the 

exact numbers of editing sites tested. The fitted lines were derived by least squares 

regression. 
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Chapter 5  

Concluding remarks 

5.1. Summary  

RNA editing has paramount function in neuronal development and synaptic 

transmission1. However, no studies have yet globally examined the landscape of editing 

in Autism spectrum disorders, a prevalent disease affecting 1 in 68 individuals and 

widely considered a disorder of synaptic transmission2. Large scale global studies of 

RNA editing in disease also lack tools to handle unique difficulties with RNA editing data 

when calling statistical associations. In this work, we conducted the first global studies 

of RNA editing in autistic postmortem brains and cortical spheroids to better understand 

potential roles of RNA editing across critical periods of ASD etiology and multiple 

implicated brain regions, and to identify convergent trends across the heterogenic 

landscape of autistic genetic aberrations. In addition, we developed advanced 

methodologies for RNA editing data to handle commonly desired statistical analyses. 

In chapter 2, we examined the global landscape of RNA editing in postmortem 

brain of ASD patients. The ASD cohort displayed a global trend of downregulated RNA 

editing within synaptic transmission genes. To ascertain prospective regulators of this 

trend, we performed the first massive screen for RNA editing regulators from 

knockdown datasets of RNA editing regulators from ENCODE3; from this screen and 

subsequent experimental validation, we identified FMRP and FXR1P as two novel RNA 
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editing regulators in human and which likely contribute to the hypoediting trend. 

Strikingly, these findings were convergent across multiple brain regions and across 

multiple syndromic forms of ASD, implicating RNA editing contributions to the core 

Autism phenotype. This work has been published in Nature Neuroscience, 2019, S.S. 

Tran, H. Jun, J.H. Bahn, A. Azghadi, G. Ramaswami, E.L. Van Nostrand, T. B. Nguyen, 

Y.H. Hsiao, C. Lee, G. A. Pratt, V. M. Cerdeno, R. J. Hagerman, G. W. Yeo, D. H. 

Geschwind, X. Xiao. “Widespread RNA editing dysregulation in brains from autistic 

individuals.” 

In chapter 3, we studied the landscape of RNA editing over fetal development 

through hundreds of cortical spheroids generated from individuals with idiopathic Autism 

and individuals harboring a myriad of penetrant Autism-susceptibility genes. RNA 

editing globally increased as development progressed, and at all time points we found 

hypoediting of editing within the ASD cohort. Interestingly, the differential RNA editing 

sites were enriched genes from radial glia, intermediate progenitor cells, and newborn 

neurons and cellular pathways important for cell maintenance and proliferation. Overall 

these results suggest that RNA editing could contribute to the abnormal neuronal 

development in ASD. This work is part of a larger project comparing morphological, 

immunohistological, and transcriptomic differences between control and ASD cortical 

spheroids with the labs of Daniel Geschwind and Sergiu Pasca.  

In chapter 4, we advanced statistical methodologies to develop the method 

REDITs (RNA editing tests) which handles unique challenges in RNA editing data. 

REDITs leverages a beta-binomial model which can compute common statistical 

associations such as case-control associations or regression association with 
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covariates, while considering limited and variable coverage of individual editing sites. 

REDITs had higher sensitivity and lower rates of false-positives than the commonly 

used methods across most RNA editing studies. Applying REDITs to the GTEx dataset, 

we found editing sites displaying significant male-female sex bias and clarified the 

overall trajectories of RNA editing over human aging across multiple tissues. This work 

has been submitted to Oxford Bioinformatics, 2019, S. S. Tran, Q. Zhou, X. Xiao. 

“Statistical inference of differential RNA editing sites from RNA-sequencing data by 

hierarchical modeling.” 

5.2. Conclusions 

Our contributions towards RNA editing in ASD and development of methodological tools 

for RNA editing analysis motivate many important directions for future work. 

First, our findings of RNA editing in ASD provide an important high-level view of 

the aberrant landscape; but they are constrained in resolution. In particular, the findings 

of RNA editing from bulk tissue and organoids represent an average across a myriad of 

cell types, brain layers, and intra-cellular locations. Yet, it remains unknown how RNA 

editing would present in the discrete functional units of brain such as at a single-cell 

resolution or across different intra-cellular compartments. Single-cell sequencing across 

multiple ASD and control brains would resolve which cell types experience dysregulated 

RNA editing and whether the hypoediting trend observed in bulk tissue and organoids 

occurs uniquely within one cell type or multiple. Unfortunately, commonly used single-

cell sequencing technologies only capture 3’ ends of transcripts and have limited 
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coverage hundreds of thousands to a couple of million reads per cell4,5. A 

comprehensive single-cell study of RNA editing in ASD will require full length transcript 

coverage and tens of millions of reads sequenced per cell.  

RNA-sequencing in bulk tissue and organoids also does not inform which cellular 

compartments experience dysregulated RNA editing.  Brain cells have 

compartmentalized milieus of gene expression pools6, and likely also tailor their RNA 

editomes to suit diverse functional purposes in nucleus, mitochondria, cellular junctions, 

synapses, trans-vesicles, or other cellular compartments. Any observed dysregulated 

RNA editing specific to cellular compartments would greatly pinpoint the etiological 

contribution to ASD. Excitingly, a technology for accomplishing this, APEX-seq, was just 

recently developed7. APEX-seq utilizes APEX2 fusion proteins for precise labelling, 

isolation, and sequencing of transcriptomes within specific subcellular compartments7. 

The application of APEX-seq within iPSC models, organoids, or animal models would 

greatly accelerate understanding RNA editing in ASD at a subcellular resolution.  

 Expanding upon with previous literature, we observed that RNA editing in brain 

generally increased over age stemming from fetal development to adulthood, and then 

remains relatively stationary or slightly decreases from adulthood onwards. It remains 

unknown which brain cell types harbor this increasing trajectory. Interestingly, the slope 

of increasing RNA editing strongly correlated with major periods of human brain 

maturation, particularly fetal development2. Furthermore, out of all brain cells, neurons 

have the highest levels of RNA editing8. This evidence suggests the observed increase 

of RNA editing in bulk tissue is driven by neurons and is reflecting proliferation and 

maturation of neurons over these time periods. Single cell sequencing of brain over 
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multiple developmental time points would clarify this and could potentially uncover 

distinct trajectories of editing in other cell types. Any observations of trends distinct from 

neurons would open new fields for eliciting the role of editing in other novel non-

neuronal brain functions. Even if editing is primarily a consequence of developing 

neurons, future work could try attenuating global or subsets of neuronal editing sites to 

decipher importance for various facets of neuronal development, which is also relevant 

to ASD given the observed hypoediting at all timepoints of ASD included in our findings.  

 Future studies should elaborate on the functional relevance of hypoediting 

observed across ASD brains and organoids. Only a couple dozen editing sites have 

been found evolutionarily conserved between human and mouse9.  Most of these sites 

reside in synaptic genes, and, coincidentally, included all of the dozen of studied 

recoding sites found in human brain from previous literature9 (Chapter 1 introduction). 

Interestingly, many of these sites also exhibited significant downregulation in brains of 

Autistic patients, suggesting a direct effect by RNA editing on aberrant synaptic 

transmission. In addition to these conserved sites, we also found a dozen non-

conserved recoding sites downregulated in the ASD brains. Non-conserved RNA editing 

sites have been shown to have critical roles in human physiology. For example, non-

conserved editing in the 3’UTR of in cathepsin S mRNA regulates its post-transcriptional 

stability and is associated with changes in cathepsin S levels in patients with 

atherosclerotic vascular diseases10.  Therefore, the isoforms generated by these novel 

recoding sites could serve important roles in brain and contribute to human-specific 

facets of ASD disease etiology.  
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The predominate majority of hypoediting, however, occurred in noncoding regions 

of RNA, particularly introns and 3’UTRs. The noncoding editing sites resided mostly in 

genes responsible for synaptic development and transmission, suggesting they might 

serve complementary roles to recoding sites towards synaptic function. It is generally 

unknown how noncoding RNA editing affects neurons, but previous studies have found 

evidence for a role of noncoding RNA editing in neuronal RNA processing and 

regulation such as microRNA targeting11, circular RNA formation12,13, and alternative 

splicing14,15. Dysfunctional relationships between immune cells and neurons in synaptic 

pruning is increasing considered as an integral part of ASD etiology2. Though not 

demonstrated yet in neuronal tissue, RNA editing was found to modulate the activation 

of immune cells in embryonic mouse and cancer cells16-18, and thus might 

mechanistically constitute part of the aberrant immune states in ASD. Future studies 

should also consider how noncoding RNA editing changes in response to depolarizing 

or desensitizing responses to various external stimuli and neurotransmitters. A study of 

CA1 neurons in hippocampus found that RNA editing affecting flip/flop exon usages in 

GRIA2 glutamate receptor gene varied depending on cell state19. Elevated activity led to 

increased editing and flip inclusion which promoted slower receptor desensitization20. 

Future experiments coupling inducement of various neuronal states with RNA 

sequencing could address the role of these noncoding RNA editing sites in promoting 

neuronal excitability, inhibition, and plasticity on a global scale. 

 The mechanistic underpinnings of the observed hypoediting in ASD also remains 

incompletely understood.  The FMRP and FXR1P proteins, which were involved in the 

regulation of hypoediting in ASD, explained 13% and 14% percent of editing variance 
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across samples, indicating that other factors remain undiscovered. We initially searched 

for prospective RNA editing regulators in ASD by screening hundreds of RNA binding 

protein gene knockdowns from the ENCODE consortium for changes in RNA editing3. 

Unfortunately, the ENCODE consortium used HepG2 (liver) and K562 (lung) cells, 

which do not express brain specific proteins, many of which are relevant to ASD21,22. An 

important extension of this work would be to expand the gene knockdown screens to 

brain-specific proteins in neuronal cultures.  

 The observed aberrations of RNA editing in ASD prompt prospective directions 

for novel therapeutic development. As Fragile X proteins seem important contributors 

towards hypoediting, one might restore normal editing levels by therapeutically raising 

expression of FMR1 and FXR1, or any other relevant RNA binding proteins that will be 

discovered. A recent study developed a therapeutic using CRISPRa that enables 

increasing expression of target genes through adenovirus injection23. Using this 

technology to increase expression of SIM1 reverted obesity in mice down to normal 

weights23. Another therapeutic option is antisense oligonucleotides (ASO); FDA 

approval in 2016 for ASO treatment of Spinal muscular dystrophy24 has opened the 

possibility of applying similar oligo treatments in ASD if repressors of RNA editing get 

discovered. Recent technological advances also make directly restoring editing levels of 

target hypoedited sites possible. The Zhang lab in MIT developed catalytically inactive 

Cas13 fused to ADAR2 to precisely edit target adenosines on RNA25. An alternative 

approach, “leveraging endogenous ADAR for programmable editing of RNA” (LEAPER), 

used synthetic RNAs to recruit endogenous ADARs to target adenosines with high 
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specificity26. Future studies of RNA editing may enable prioritization of the most relevant 

sites to ASD pathology.  

 Lastly, in Chapter 4 we generated more advanced statistical methodologies for 

performing statistical associations in RNA editing studies. Our proposed beta-binomial 

statistical model, which handles both uncertainty from read coverage and variance 

between multiple samples, should propitiously function as a framework to develop 

additional methodologies for RNA editing. We used our statistical model to handle RNA 

editing associations between case-control groups and for regression against fixed 

covariates such as age. Yet, many other common analyses still need methodologies 

better suited for RNA editing data. For example, many gene expression studies of ASD 

applied Principal component analysis (PCA) and t-Distributed Stochastic Neighbor 

Embedding (t-SNE) as methods for data dimensionality reduction to summarize overall 

trends of groups of genes5,27,28. As another example, many large datasets such as 

single cell datasets require mixed-effects modelling because multiple samples can be 

classified by hierarchical categories5 (e.g. same patient, same cell line, same induction). 

Unfortunately, PCA and t-SNE and mixed-effects all disallow missing data and assume 

accurate data measurements; in contrast, RNA editing data is sparse and contains 

varying accuracies of editing level measurements depending on coverage. Future work 

could adapt our beta-binomial model to handle data reduction, mixed-effects modelling, 

and other analyses for RNA editing data. In larger scope, these models could also be 

used in other biological datasets that suffer from similar constraints, such as massive 

parallel reporter assays and RNA splicing measured from RNA-sequencing.  
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Appendix  

Supplemental Figures for Chapter 2 

	

Supplemental Figure 2.1 Unique subjects in idiopathic ASD, control, 

dup15q samples 

a, Venn diagram showing idiopathic ASD and control samples derived per unique 

subject across the 3 brain regions. b, Venn diagram showing dup15q samples derived 

per unique subject. FC: frontal cortex, TC, temporal cortex, CBL, cerebellum. 
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Supplemental Figure 2.2 Comparison of technical covariates between 

ASD and control (CTL) samples.   

Pearson correlation was calculated. No p values passed the Bonferroni corrected cutoff 

0.0045. a, frontal cortex b, temporal cortex, and c, cerebellum. N=45 samples in each 

comparison. Boxplot definitions: center=median, lower hinge=25th percentile, upper 

hinge=75th percentile, min and max extend to observations at most 1.5 * IQR 
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Supplemental Figure 2.3   

Numbers of raw read pairs (gray) and uniquely mapped read pairs (orange) per sample. 

a, frontal cortex. b, temporal cortex. c, cerebellum. 
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Supplemental Figure 2.4 

Number of editing sites detected per brain sample is highy correlated with sequencing 

depth. All samples from all three brain regions are shown. Pearson correlation was 

calculated. N= 179 total samples. 
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Supplemental Figure 2.5 Global RNA editomes in different brain 

regions and their comparisons.  

a, Fraction of all types of predicted RNA editing sites identified in the RNA-Seq data of 

temporal cortex and cerebellum of each subject. b, Overlap of RNA editing sites 
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identified in this study with those in the REDIportal database. FC: frontal cortex. TC: 

temporal cortex. CBL: cerebellum. c, Number of different types of predicted editing sites 

in alu and non-alu regions. d, Distribution of common editing sites in different types of 

genomic regions. e, Sequence consensus in the immediate upstream and downstream 

positions of common RNA editing sites. f, Overlap of common editing sites across brain 

regions. g, Correlation density graphs of average editing levels of common editing sites 

between brain regions. N=number of editing sites. 
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Supplemental Figure 2.6  

Correlation between ADAR mRNA expression (FPKM) and average editing levels of 

different categories of editing sites. a. Alu sites, b.non-Alu repetitive sites, c.non 
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repetitive sites. All correlations use Pearson’s method. N=62, 57, and 60 samples in 

frontal cortex, temporal cortex, and cerebellum respectively. 

	

Supplemental Figure 2.7 

Overlap between wilcoxon differential editing sites and population frequency differential 

sites Left circle: Differential editing sites identified from wilcoxon test on editing level 

disparities. Right circle: Differential editing sites identified from differences in population 

frequencies. a, frontal cortex, b, temporal cortex, c, cerebellum. P values calculated via 

two-tailed Fisher’s Exact test. 
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Supplemental Figure 2.8 Robustness of differential editing sites to 

variations in statistical modeling. 

Green circles: Sets of differential editing sites identified through adaptive wilcoxon rank-

sum test used in this study. Blue circles: Sets of differnetial editing sites identified 
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through multivariable linear model, y=editing level, x=read integrity number, sex, age, 

and diagnosis (i.e. ASD, control). Effect of N (sample size) on robustness of linear 

model was evaluated by binning editing sites by sample size (N = 0-10, 10-20, 20-30, 

30-40, 40+ ). Across frontal cortex, temporal cortex, and cerebellum, differential sites 

identified are significantly overlapping (P=two-tailed Fisher’s Exact test, OR=odds ratio) 

and converge greatest at larger sample sizes. 
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Supplemental Figure 2.9 Impact of Mai and Mci on differential editing 

levels. 

Mai and Mci (see Methods) presented here as ∆inclusion.  The panels show correlation of 

differential editing levels (ASD- Control) between ∆inclusion < 0.03 (this study) and 

alternative ∆inclusion thresholds (∆inclusion < 0.01, 0.02, 0.03, and 0.04). Differential editing 

levels remain unchanged upon varying ∆inclusion. Graph annotations: R (correlation 

coefficient) and P value via Pearson correlation. N=3314, 2412, and 4340 editing sites 

in frontal cortex, temporal cortex, and cerebellum respectively. 
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Supplemental Figure 2.10 Examination of differential editing relative 

to potential confounding variables.  

a, Correlation between the first principal component of differential editing sites from 

frontal cortex and confounding variables and diagnosis; N=62 samples. b, Fold change 

of gene expression levels (ASD/control) for genes harboring differential editing sites in 

frontal cortex. The average fold change shown above the plot. 
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Supplemental Figure 2.11 Genes enriched with differential editing 

sites. 

a, The number of differential editing sites per gene correlates with gene length. Pearson 

correlation was calculated. b, Genes with the largest numbers of differential editing 

sites. In these genes, enrichment of differential editing sites is not explained by gene 

length (except for PTPRD). Error bars show the 95% confidence interval of expected 

number of editing sites calculated via a linear model trained on gene length (see 
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Methods). c, Genes with differential editing sites that are also known ASD susceptibility 

genes. ASD susceptibility genes were required to have a SFARI score < 4 (scores 

indicated to the right of the bars). S = syndromic, 1 = high confidence, 2 = strong 

candidate, 3 = suggestive evidence. a-c, N=1189 genes in lnear model. d, Gene 

ontology of differential editing sites correlated with gene expression. Top 10 GO terms 

are shown. P-value calculated using one-tailed Gaussian test (Methods); N=148 genes. 
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Supplemental Figure 2.12 

Global enrichment of differential editing in ASD among developmentally regulated brain-

specific editing sites. a. Recapitulation of 3 distinct trajectories for all editing sites in 

dorsalateral prefrontal cortex over human lifespan. Editing sites were obtained from a 

previous study. Editing sites are partitioned into clusters based on similar criteria as in 

the original study: Red cluster: Editing sites constitutively highly edited across lifespan, 

anova fdr > 0.05 and median editing level > 0.5. Yellow cluster: Editing sites increasing 

over development, particularly within the fetal-infant stages, anova fdr < 0.05. Blue 

cluster: Editing sites with perpetually low editing levels, anova fdr > 0.05 and median 

editing level < 0.5. Top axis shows individual ages and age groupings. b. Differential 

editing (FC DE sites) and turquoise module sites (FC turquoise sites) from frontal cortex 
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are enriched in the fetal-infant developmentally increasing yellow cluster and depleted 

of sites in the blue developmentally low cluster. P values, two-tailed Fisher’s Exact test. 

Odds ratio < 1 colored blue; > 1 colored red. N=3355 and 1116 editing sites for the DE 

and turquoise site comparisons respectively. 

	  



	177	

 

	

Supplemental Figure 2.13 

Comparison of technical covariates in replicate dataset between ASD and control (CTL) 

samples. Pearson correlation was calculated. N=45 samples in each covariate 

comparison. 
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Supplemental Figure 2.14 Global replication of differential editing in 

the frontal cortex of ASD. 

ASD and Control RNA-seq samples obtained from Liu et al46.  a, Heatmap of differnetial 

editing sites recapitulates segregation of samples by ASD and Controls similar as Fig. 

1d.  About 65% of differential editing sites are hypoedited in ASD, reproducing the 

hypoediting trend observed in Fig. 1c. b, Gene Ontology of genes harboring differential 

editing sites show enrichment in synaptic function; P-value calculated from one-tailed 

Gaussian test (Methods), N=129 genes. c, Pearson correlation between differential 

editing sites in our study and those testable from replication cohort; N=86 editing sites. 
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d, Overlap between the differential editing sites in the replication cohort and editing sites 

in the turquoise module of frontal cortex in our study.  P value calculated via two-tailed 

Fisher’s Exact test, n=428 editing sites. 
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Supplemental Figure 2.15 Examination of ADAR3 and other RNA 

binding proteins. 

a, Western blot of ADAR3 across a myriad of tissues and cell types (Supplementary Fig. 

31). Right, we confirmed the quality of ADAR3 antibody (Santa Cruz, sc-73410) for 

detecting ADAR3 protein expression in 293T ADAR3 overexpression. ADAR3 protein 

was undetected in cell lines U87, KELLY, HepG2, HeLa, and 293T. Left, ADAR3 was 

also undetectable in human postmortemtissue samples (Table S1b). The experiment 

was repeated twice independently with similar results. b, Heatmap showing Pearson 

correlation of FPKM of RNA binding proteins with “eigengene” of turquoise modules. 

RNA binding proteins were chosen from a parallel screen of potential RNA editing 

regulators. Significantly associated RBPs are colored red or blue corresponding to 

positive or negative correlation. N=51 samples per correlation. 
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Supplemental Figure 2.16 Immunofluorescence of ADAR1 and FMRP 

in HeLa. 

Confocal images of immunofluorescence staining of ADAR1 (green), FMRP (red), and 

DAPI (blue) in HeLa cells. Cells were permeabilized with either 0.1% Tween-20 (upper) 

orTriton X-100 (bottom). Experiment was repeated 3 times independently with similar 

results. 
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Supplemental Figure 2.17 Global RNA binding patterns of FMRP and 

FXR1P in human frontal cortex. 

a, Human frontal cortex samples used for eCLIP experiments and the numbers of raw 

reads, usable reads (after quality checks and removal of PCR duplicates) and final 

eCLIP peaks. b, Left: Venn diagrams showing overlap of eCLIP peaks between two 

replicates of each protein. Right: scatter plots showing Pearson’s correlation of log2 fold 



	184	

enrichment (Number of eCLIP reads/number of control reads) of overlapping peaks for 

each protein. N=4870 and 2055 peaks correlated between FMRP and FXR1P replicates 

respectively. c, Distribution of FMRP and FXR1P eCLIP peaks in different types of 

genomic regions. d. Top motifs identified by HOMER and DREME packages in eCLIP 

peaks of FMRP. e, Same as d, but for FXR1P. For details of P-value calculations see 

documentation of respective packages. N=29055 and 13058 combined peaks for FMRP 

and FXR1P respectively. 
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Supplemental Figure 2.18 

Distances between turquoise editing sites in frontal cortex and eCLIP peaks generated 

in cancer cell lines, similar as Fig. 3c. a, Shortest distance between turquoise editing 

sites and FMRP or FXR1P eCLIP peaks from K562 cells generated by the ENCODE 

consortium. b, Shortest distances between turquoise editing sites and eCLIP peaks of 

two negative control RNA binding proteins that do not regulate RNA editing. ENCODE 

accession numbers are (FMR1: ENCSR331VNX, FXR1: ENCSR774RFN, SBDS: 

ENCSR059CWF, SLTM: ENCSR000SSH). P-values from one-tailed Gaussian test 

(Methods), N=number of editing sites. 
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Supplemental Figure 2.19 

Overlap between FMRP and FXR1P eCLIP-bound genes and differentially editied 

genes.  a, Overlap between FMRP gene targets (FMRP eCLIP genes) and differential 

editing sites in frontal cortex (FC DE sites). P values calculated via two-tailed Fisher’s 

Exact test. OR: odds ratio. b, Similar as a, for FXR1P eCLIP genes. c, similar as a, but 

using editing sites in the turquoise module of frontal cortex. d, similar as c, for FXR1P 

eCLIP genes. 
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Supplemental Figure 2.20 

RNA secondary structures predicted by mFold. a, Differential editing (DE) site in the 

TEAD1 gene. Wild-type: wild-type sequence; Mutant 1-4: mutant sequences designed 

to disrupt FMRP binding motifs. Lower case letters (in pink) represents mutations 

introduced to each motif. b, Similar as a, for a DE site in the EEF2K gene. 
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Supplemental Figure 2.21 

Validation of gene knockdown and endogenous editing. a, Western blot (Supplementary 

Fig. 31) of FMRP, FXR1P, and ADAR proteins in HeLa cells with stable shRNA 

knockdown. All knockdowns are confirmed with high efficiency. Experiment was 

repeated 3 times with similar results. b, Endogenous editing levels of the RNA editing 

site in the EEF2K gene in cells shown in a. Boxplots were derived from three biological 

replicates. Overall P value calculated by one-way ANOVA. Individual comparison P 

values were calculated by two-tailed Student’s t-test. Boxplot definition: center=median, 

lower hinge=25th percentile, upper hinge=75th percentile, min and max extend to 

observations at most 1.5 * IQR c, Sanger sequencing traces of the results in b. The 

edited site is underlined. 
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Supplemental Figure 2.22 

mRNA Secondary structure prediction via mFold for regions harboring hyper-editing 

sites. a, CNTNAP4, b, NLGN1, and c, TENM2. Double-stranded regions are illustrated 

by the orange line. The number of editing sites within each double-stranded region is 

listed. 
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Supplemental Figure 2.23 

Three target genes with hyper-editing sites that are dependent on FXR1P. a, Efficiency 

of anti-FXR1P immunoprecipitation was validated by Western blot. Experiment was 

performed once b, Semi-quantitative RT–PCR followed by agarose gel electrophoresis 
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verified the presence of intronic target RNA in anti-FXR1P RIP. Non-specific binding of 

CNTNAP4 RNA to IgG negative control was detected. However, immunoprecipitation 

with the FXR1P antibody pulled down more CNTNAP4 RNA than the non-specific IgG 

antibody.  c-e, related to Fig. 3i, RNA secondary structures predicted by mFold. in c, 

CNTNAP4, d, NLGN1, e, TENM2. Wild-type (left in each panel) shows wild-type 

sequence. Mutant (right in each pane), shows mutations introduced to each FXR1P 

motif. 
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Supplemental Figure 2.24 

Validation of the dependency of differential editing sites on Fragile X proteins and 

ADARs. Endogenous editing levels of 6 differential editing sites (columns) measured in 

shControl (black) cells or cells with shRNA knockdown of FMR1 (grey), FXR1 (orange), 

ADAR1 (blue), and ADAR2 (red)  in two neuroblastoma cell lines (KELLY and SK-N-

BE(2)). Genomic coordinates (hg19) are: PWARSN(1)(chr15:25227816), PWARSN(2) 

(chr15:25227838), ZNF587 (chr19:58372723), SNF714 (chr19:21303017), ZYG11B(1) 

(chr1:53289547), ZYG11B(2) (chr1:53291420). 
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Supplemental Figure 2.25 

Global RNA editing analysis of RNA-Seq data obtained from frontal cortex of Fragile X 

patients and carriers/controls. Dataset analyzed from NIH NeuroBioBank and UC Davis 
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FXTAS brain repository are delineated within the plots. a, Western blot of ADARs and 

FMRP in the frontal cortex of patients, carriers, and controls from NIH NeuroBioBank 

(middle) and FXTAS (right). b, Number of raw and uniquely mapped read pairs for each 

sample. c, Fraction of all types of RNA editing sites identified in each sample. d, 

Fraction of differential and non-differential editing sites identified in each sample. e, 

Distribution of differential editing sites in different types of genomic regions. 
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Supplemental Figure 2.26 

Overlap between differential editing sites in Fragile X patients and those in the turquoise 

module of ASD frontal cortex. Left shows Fragile X vs carriers from NeuroBioBank. 

Right shows Fragile X vs controls from UC Davis FXTAS brain repository. P values 

were calculated using two-tailed Fisher’s Exact test. N= 1679 and 1206 editing sites for 

NeuroBioBank and UC Davis FXTAS respectively. 
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Supplemental Figure 2.27 

Gene ontology of genes harboring differential editing sites in ASD. a. temporal cortex 

(N=1048 genes); b. cerebellum (N=1437 genes). P-value calculated using one-tailed 

Gaussian test (Methods). 
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Supplemental Figure 2.28 

Global regulatory profile of ADARs and Fragile X proteins across brain regions. a, 

Pearson correlation between mRNA levels of ADAR1, ADAR2, ADAR3, FMR1, FXR1, 

and FXR2, and the first principal component of differential RNA editing sites in each 

brain region of ASD. b, ADAR1, ADAR2 and ADAR3 mRNA expression in different brain 

regions of ASD and control samples. P values were calculated similarly as in Fig. 2a, 

using a regression approach where covariates were accounted for9. (a-b) N=62, 57, 

and 60 samples for frontal cortex, temporal cortex, and cerebellum respectively. 
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Supplemental Figure 2.29 

Comparison of technical covariates between dup15q and control (CTL) samples in a, 

frontal cortex b, temporal cortex, and c, cerebellum. Pearson correlation was calculated; 

two-tailed Fisher’s Exact test was alternatively used when present with more than 2 

categories. Uncorrected P values are depicted. The bonferroni significance cut-off is P < 

0.005.  N=22, 22, and 16 samples from frontal cortex, temporal cortex, and cerebellum 

respectively. Boxplot definitions: center=median, lower hinge=25th percentile, upper 

hinge=75th percentile, min and max extend to observations at most 1.5 * IQR 
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Supplemental Figure 2.30 

Correlation between IQ and differential RNA editing. Pearson correlation between the 

1st principal component of differential RNA editing and samples with measured IQ in 

frontal cortex (left), temporal cortex (middle), and cerebellum (right). Power calculated 

for a significance level of 0.05 and n = 4 (the minimum requisite sample size for power 

calculation).   
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Supplemental Figure 2.31 

Uncropped western blot images  

Uncropped western blots in the main text are collected. Some of western blot 

membranes were cut to use for multiple antibodies. The protein standards are 

represented on the left of the blots.  

Antibody information  

ADAR1 (Santa Cruz, sc-73408, Lot # F1417, 1:200)  

ADAR2 (Santa Cruz, sc-73409, Lot # K0917, 1:200)  

ADAR3 (Santa Cruz, sc-73410, Lot # B2316, 1:200)  

FMRP (Millipore, MAB2160, Lot # 2984225, 1:500)  

FMRP (Abcam, ab17722, Lot # GR272723-1, 1:1000)  

FXR1P (Bethyl Laboratories, A303-892A, 1:2000)  

FLAG (Sigma, F7425, Lot # 018M4828V, 1:1000)  

β-Actin (Santa Cruz, sc-47778, Lot # J2915, 1:500)  

β-Tubulin (Santa Cruz, sc-23949, Lot # C0718, 1:200)  

U1-70K (Santa Cruz, sc-390899, Lot # G0616, 1:100)  

ADAR1 (Santa Cruz, sc-271854, Lot # F1616, 5ug/each IP sample)  

FMRP (Millipore, MAB2160, Lot # 2984225, 5ug/each IP sample)  

FLAG (Sigma, F1804, Lot # SLBT7654, 2.5ug/each IP sample)  
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Supplemental Figures for Chapter 4 
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Supplemental Figure 4.1 Simulations for REDIT-LLR 

Realistic distributions were simulated from GTEx to test REDIT-LLR. a) To obtain 

realistic editing level distributions, K-means clustering was run on alpha (α) and beta (β) 

parameters for beta distributions fit by maximum likelihood to editing sites from brain 

GTEx samples. N : number of editing sites that had ≥ 250 samples each with ≥ 20 

reads. Blue line: loess regression line showing distribution of data point density. b) 

Editing level densities used in simulations were modeled with beta distributions and 

constructed using the medians of alpha and beta parameters from the k-means clusters 

from (a).  c) Realistic coverage distributions per sample were modelled using negative 

binomial distributions. Distributions were fit by maximum likelihood from the coverages 

of all editing sites in 10 samples sampled from GTEx. Size and probability (Prob) 

parameters are annotated. d) Similar to (b) but using truncated normal distribution to 

model editing level distributions. Truncated normal distributions were translated by 

method of moments estimation from the beta distributions from (b); μ = mean, σ = 

variance 
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Supplemental Figure 4.2 False-positive rate and sensitivity of REDIT-

LLR using simulated data 

Expanding Figure 2a-b to more simulation parameters and sample sizes. Top row and 

rightmost column show underlying beta distributions characterizing editing levels from 

group1 and group2 respectively. The exact alpha and beta parameters are listed in next 

two rows and rightmost columns. Each bargraph shows proportion of editing sites called 

with p < 0.05 out of 1000 simulated editing sites. Thresholded t-test and Thresholded 

Wilcoxon test : t-test and  Wilcoxon rank-sum test only on samples that have minimum 

of 10 read coverage. On-diagonal entries evaluate false-positive rates, where group1 

and group2 samples are characterized by the same editing level distributions. Red lines 

denote the 5% false-positive threshold. Off-diagonal entries evaluate sensitivity where 

group1 and group2 samples are characterized by different editing distributions. Error 

bars show 25% and 75% quantiles from 100 independent simulations. a) Group1 and 

group2 have a sample size of 3. b) Sample size of 2. c) Sample size of 5. REDIT-LLR 

maintains highest sensitivity out of all methods that have false-positive rates at or below 

5%.   
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Supplemental Figure 4.3 Effect of increasing coverage on false-

positive rate 

Linegraphs show the effect of increasing covering on false-positive rate. Coverage : 

number of reads covering the editing site. Each graph shows false-positive rate (number 

of sites called with p < 0.05 out of 1000 simulated sites) where group1 and group2 

editing levels are characterized by identical beta distributions. Exact alpha and beta 

parameters are annotated. For all simulations both groups had a sample size of 3. 

Thresholded t-test and Thresholded Wilcoxon test : t-test and Wilcoxon rank-sum test 
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only on samples that had minimum of 10 read coverage. The false-positive rate of 

Fisher’s Exact test inflates with increasing coverage. 
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Supplemental Figure 4.4 Evaluating robustness of REDIT-LLR relative 

to underlying editing distribution 

Similar as Supplemental Figure 2 but using truncated normal distributions instead of 

beta distributions to characterize editing level distributions. Top three rows and 
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rightmost three columns depict truncated normal distributions and respective mean (μ) 

and standard deviation (σ) parameters. Simulations were performed for varying sample 

sizes. a) Group1 and group2 both had sample size of 3. b) Sample size of 2. c) sample 

size of 5. Even with the change in underlying distribution, REDIT-LLR retains highest 

sensitivity out of all methods that mitigate false-positive rates at or below 5%. 
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Supplemental Figure 4.5 False-positive evaluation of the REDIT-LLR 

on real data 

a) False-positive rate (proportion of sites called with p < 0.05) of various statistical tests 

on real data of 6814 editing sites. For each given sample size (x axis), 100 random 

subsamplings of control samples were compared against each other. Editing sites 

tested are partitioned into four quartiles according to standard deviation calculated using 

all 18 control samples. Red dotted line denotes the 5% false-positive threshold. 

Thresholded t-test = t-test on samples with at least 10 reads, Thresholded Wilcoxon test 

= Wilcoxon test on samples with at least 10 reads. b) Alu compsition of editing sites 

within each standard deviation quartile. c) Similar to (b) but partitioned according to 

genomic locations of the editing sites. 
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Supplemental Figure 4.6 Simulations for REDIT-Regression 

REDIT-Regression was tested on data simulating effects of age on RNA editing. 

Simulated parameters of effect of age (editing level= βage*age+ β0) on editing level was 
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calculated using a dataset of 33 postmortem brains spanning human development 

(methods). a) K-means clustering of slope (βage) and intercept (β0) parameters that were 

estimated from linear regression on 970 editing sites that all had high coverage 

(methods). Blue line: loess curve depicting density of the points b) Graphical depiction 

of the medians of the five k-means clusters. Open circles show the ages of the 33 

samples. 
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Supplemental Figure 4.7 False-positive rate and sensitivity of REDIT-

Regression on simulated data 

Expanding Figure 2c,d to more simulation parameters and sample sizes.  a) Sensitivity 

(true-positive rate) evaluated using simulated data (Methods). Editing levels were 

characterized as beta distributions with mean editing level having linear dependence on 
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age. The linear dependence is illustrated and annotated in the top 3 rows. Varying 

sample sizes are shown in columns. b) Similar to (a) but evaluating false-positive rate 

where editing has no dependence on age. Red dotted line indicates the 5% false 

positive threshold. Individual points show 100 independent replications of the 

simulations. Binomial : binomial regression; linear :  linear regression; Thresholded 

linear :  linear regression on samples that have minimal 10 read coverage per editing 

site. Out of methods that mitigate false-positives to 5%, REDIT-Regression has the 

highest sensitivity. 
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Supplemental Figure 4.8 Robustness of REDIT-Regression relative to 

underlying distribution of editing 

Similar to Supplemental Figure 7 but characterizing editing levels using a truncated 

gaussian distribution rather than beta distribution a) Evaluations of sensitivity. b) 

Evaluations of false-positive rate. 
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Supplemental Figure 4.9 False-positive evaluation of REDIT-

Regression using real data 

a) False-positive rate (proportion of sites called with p < 0.05) of various statistical tests 

on real data of 267,766 editing sites from 33 postmortem brains. For each given sample 

size (x axis), 100 random subsamplings of samples were selected and assigned a 

randomized covariate value (Methods). binomial : binomial regression, linear : linear 

regression, thresholded linear : linear regression using samples with at least 10 reads. 

Red dotted line shows the 5% false-positive threshold.  
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Supplemental Figure 4.10 Overall projections of RNA editing over age 

partitioned by body sites 

Same as Figure 3 but partitioning samples by body site. Only body sites exhibiting 

homogenous trajectories of editing over age are plotted (Supplemental Table 2b). 
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Supplemental Figure 4.11 Age ranges of GTEx samples 

Histograms of the ages of samples from GTEx in REDIportal. a) Samples partitioned by 

histological type. b) Samples partitioned by body site. N = number of total samples. 
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Supplemental Figure 4.12 Gender-biased RNA editing in various 

tissues 

Similar to Figure 4, but partitioning GTEx samples according to body site. 

 




