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Abstract We reviewed the literature on the effects

of land use changes on mediterranean river ecosys-

tems (med-rivers) to provide a foundation and direc-

tions for future research on catchment management

during times of rapid human population growth and

climate change. Seasonal human demand for water in

mediterranean climate regions (med-regions) is high,

leading to intense competition for water with riverine

communities often containing many endemic species.

The responses of river communities to human

alterations of land use, vegetation, hydrological, and

hydrochemical conditions are similar in mediterra-

nean and other climatic regions. High variation in

hydrological regimes in med-regions, however, tends

to exacerbate the magnitude of these responses. For

example, land use changes promote longer dry season

flows, concentrating contaminants, allowing the accu-

mulation of detritus, algae, and plants, and fostering

higher temperatures and lower dissolved oxygen

levels, all of which may extirpate sensitive native

species. Exotic species often thrive in med-rivers

altered by human activity, further homogenizing river

communities worldwide. We recommend that future

research rigorously evaluate the effects of manage-

ment and restoration practices on river ecosystems,

delineate the cause–effect pathways leading from

human perturbations to stream biological communi-

ties, and incorporate analyses of the effects of scale,

land use heterogeneity, and high temporal hydrolog-

ical variability on stream communities.

Keywords Mediterranean rivers � Streams �
Land use � Ecosystems

Introduction

Profound and far-reaching impacts of humans on the

environment are mediated through land use changes

which destroy, degrade, and fragment habitat, and

constitute the primary cause of losses in biodiversity
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worldwide (Sala et al., 2000; Chapin et al., 2001).

Human impacts on landscapes often diminish the

capabilities for ecosystems to provide essential ser-

vices for people, including clean air and water and

natural products (Foley et al., 2005). Land use changes

have had a large effect on terrestrial and aquatic

environments in mediterranean climate regions (med-

regions), that is the Mediterranean Basin, California-

Baja California, southwestern Australia, southwestern

South Africa, and central Chile, because of their long

history with human activity, rapid urban and agricul-

tural development, and large climatic and topographic

variation (Underwood et al., 2009; Sirami et al., 2010).

Because med-regions contain many endemic species,

human impacts on these regions have a disproportion-

ate effect on global biodiversity and make mediterra-

nean ecosystems (med-ecosystems) among the ‘‘most

imperiled’’ in the world (Myers et al., 2000; Horwitz

et al., 2008; Underwood et al., 2009). Although

considerable research has been conducted on the

effects of land use change on terrestrial environments

in med-regions, studies of land use impacts on aquatic

habitats are more limited. Because water is seasonally

scarce in med-regions, many rivers and streams have

been dammed or diverted to provide water supplies for

human activities (Gasith & Resh, 1999). Given the

critical importance of water quality and quantity in

med-regions and concerns about the impacts of human

environmental alterations on aquatic systems and

species, there is a need for more data and knowledge

to guide management and policy decisions balancing

human and environmental needs for sustainable water

resources. Research in other temperate regions of the

world has shown that land use changes denude native

vegetation, increase runoff and erosion, alter stream

geomorphology and substrata characteristics, modify

flow regimes, and enhance the transport of nutrients,

sediment, and contaminants from catchments to

receiving waters, all with numerous implications for

the stream and river biota (Paul & Meyer, 2001; Allan,

2004; Walsh et al., 2005; Johnson & Horst, 2010).

Human land use impacts on med-ecosystems are

predicted to be heightened by climate change which

will result in warmer, drier, and more variable weather

(Klausmeyer & Shaw, 2009).

In this article, we review and synthesize the

literature on land use impacts on mediterranean rivers

(med-rivers) to provide a foundation for evaluating

current and predicted human effects on streams and

rivers in med-regions. Furthermore, we conduct

comparisons to determine if land use effects on stream

and river ecosystems are different in med and non-med

systems, particularly given the large seasonal and

interannual variability in rainfall, runoff, and stream

discharge observed in med-basins, and end with

research recommendations (Gasith & Resh, 1999).

The history of land use change in mediterranean

regions

Humans have a long history with areas now occupied

by med-ecosystems. Some of the earliest hominids

occurred in South Africa and early African Homo

species expanded into the Mediterranean Basin nearly

a million years ago, with European populations

following the retreat and advance of glaciers. From

its African origins, Homo sapiens expanded through

Europe and Asia, eventually reaching Australia by

40,000–60,000 years ago and the Americas by about

12,000 BP (Fagan, 2003; Hassell & Dodson, 2003).

Early human populations in med-regions engaged in

hunting, fishing, and gathering activities, up to the time

of European conquest in the Americas, southern

Africa, and Australia. Early hunter-gatherers in med-

regions affected landscapes primarily by burning

vegetation, but also by harvesting wood and maintain-

ing paths and wells, creating a mosaic of patches in

different successional stages after disturbance (Simo-

netti & Cornejo, 1990; Keeley, 2002; Abbott, 2003;

Arnesto et al., 2010; Bowman et al., 2011; Faivre et al.,

2011; Gammage, 2011; Neumann et al., 2011). Further-

more, the Khoisan in southwestern South Africa

focused on livestock husbandry beginning about

2,500 years ago, and the Mapuche of central Chile

became small-scale farmers *1,400–2,000 years ago,

with both using fire to create pasture or farmlands.

Although many med-regions originally contained

extensive tree stands, frequent fires started by native

peoples apparently destroyed and prevented the re-

establishment of forests and, in extreme cases, even

shrubs, promoting the expansion of grasslands and

degraded scrub (e.g., Acacia caven Molina savanna in

Chile, garrigue in the Mediterranean Basin) (Keeley,

2002; Gammage, 2011). These people created more

open terrain which facilitated European settlement in

Australia, South Africa, and the Americas (Hallam,

1975; Timbrook et al., 1982; Gammage, 2011). It

384 Hydrobiologia (2013) 719:383–425

123



appears that ancient land use practices are reflected in

today’s landscape patterns (Keeley, 2002), with many

areas continuing to be subjected to intensive livestock

grazing or agricultural, mining, urban, and/or indus-

trial development.

The most intensive and complex impacts of ancient

humans on landscapes occurred in the Mediterranean

Basin. Originally, much of the Mediterranean Basin

was covered by pine, oak, and cedar forests; however,

the expansion of human settlements and agricultural

activity *5,000–2,000 years ago resulted in declines

in forests and the expansion of shrublands and

grasslands (Hooke, 2006). These changes in native

vegetation occurred at different times in different

places, with the Minoans deforesting Crete by

1200–1500 BC with later, similar changes in ancient

Greece, where sacred groves were protected. Land use

changes accelerated during the expansion of the

Roman Empire, resulting from the local use of forests

for firewood, from their large-scale conversion into

farming or grazing lands to produce wine, oil, wheat,

wool, and meat, and from mining activities, such as in

the pyrite belt of southwestern Iberia, which stripped

soils of vegetation (Perlin, 1989; Sabater et al., 2003;

Sirami et al., 2010). Associated with these activities

were Roman, and later Muslim, alterations to the water

cycle, including the construction of dams, weirs, wells,

aqueducts, waterwheels, canals, and other features

which changed river geomorphology, re-routed and

de-watered stream channels, created barriers, and

covered springs (Fagan, 2011). These ancient modifi-

cations of the landscape continued during Medieval

times as trees were felled for firewood, and farming and

grazing activities expanded, with erosion being espe-

cially exacerbated by terrace farming, resulting in

some cases in the choking of stream channels by

sediment (Hooke, 2006).

With the expansion of agricultural, industrial,

mining, and urban activities after European coloniza-

tion of South Africa, Australia, and the Americas, and

particularly after the Industrial Revolution in all med-

regions, med-landscapes and their drainage rivers

became increasingly altered (Arnesto et al., 2010).

Rivers were tapped to produce energy and water for

cities, farmlands, and industrial colonies (Sabater

et al., 2009). Historical land use changes denuded

landscapes of native vegetation and promoted erosion,

flooding, and downstream sedimentation, often pro-

ducing the altered environments evident today.

Current land use patterns and changes

in mediterranean regions

Human population growth and land use changes have

greatly altered landscapes in med-regions. Average

human population density ranges from 5 people/km2

in Australia to ca. 50 people/km2 for Chile and South

Africa to ca. 120 people/km2 in the Mediterranean

Basin and 250 people/km2 in California-Baja Cali-

fornia (Underwood et al., 2009), with urban density

exceeding 200 people/km2 in southern Europe and

over 2,000 people/km2 in the Los Angeles River

basin, California (Table 1). From 1990 to 2000,

human population density and urban area increased

by 13% and agricultural area by 1% in med-regions

throughout the world, with the greatest proportional

changes for population density occurring in Chile

(19%) and for urban and agricultural expansion in the

Mediterranean Basin (?17% change in urban areas,

?1% in agricultural areas) (Underwood et al., 2009).

Currently, average per cent coverage of the landscape

by urban areas range from 0.3% for Australia to 9.2%

for California-Baja California, with the other three

regions (Mediterranean Basin, central Chile, south-

western South Africa) having urban coverages of

0.7–1.5% (Underwood et al., 2009). Percent coverage

by intensive agricultural areas ranges from 6% in

California-Baja California through 24 to 29% in

Chile, South Africa, and the Mediterranean Basin to

37% in Australia. The present percentages of the sum

of urban, farm, and pasture lands covering large

mediterranean catchments (med-catchments) range

from 15 to 69% in the Mediterranean Basin, from 10

to 62% in southern California, from 8 to 70% in

central Chile, from 5 to 66 % in southwestern South

Africa, and from 31 to 86% in southwestern Australia

(Table 1). Land use changes have been greater at

lower than higher elevations, with the only substan-

tive development at elevations [1,000 m occurring

in the Mediterranean Basin. The direct effects of past

and current land use changes include the replacement

of native vegetation by human-made structures

(buildings, roads, concrete lots, plazas) and exotic

plant species (e.g., in monocultures, plantations,

orchards, ornamental gardens, lawns, golf courses).

Projected land use and climate changes also indicate

that med-ecosystems will be among those most

negatively affected by changes in future environ-

mental conditions (Sala et al., 2000).
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Table 1 Percent coverage by human land uses (urban, farm,

and pasture lands) and average human population density for

watersheds largely occurring in mediterranean-type climates

Region and rivers Urban ? farm ?

pasture

Population

density

(#/km2)

Mediterranean Basin

Iberian Peninsula (Sabater et al., 2009)

Ter 34 108

Ebro 50 34

Júcar 52 207

Segura 55 78

Guadalquivir 63 69

Guadiana 69 24

Tagus 48 136

Mondego 37 96

Duero 57 37

Rhône River Basin (Olivier et al., 2009)

Upper Rhône 19 190

Main Rhône 45 141

Ain 40 61

Saône 63 94

Isère 23 82

Durance 24 22

Balkan Rivers (Skoulikidis et al., 2009)

Kamchia 48 48

Evros 61 69

Axios 44 87

Evrotas 35 30

Pinios 55 54

Italian Peninsula (Gumiero et al., 2009)

Tagliamento 18 50

Po 49 224

Arno 57 243

Tiber 55 238

Turkey (Akbulut et al., 2009)

Seyhan 32 92

Ceyhan 38 91

Gediz 15 113

Southern California (Brinkman, 2007; Hunt, 2008)

Santa Maria 13 25

Santa Ynez 10 32

Ventura 15 76

Santa Clara 13 83

Los Angeles 62 2022

San Gabriel 55 1291

Table 1 continued

Region and rivers Urban ? farm ?

pasture

Population

density

(#/km2)

Santa Ana 45 673

Small coastal streams in

southern Santa Barbara

County

0–51 0.1–464

Small coastal streams in

Santa Monica Mtns., CA

1–25 0.4–262

Small streams along Santa

Catalina Gulf Coast

5–30 12–440

Southwestern West Australia (Stein, 2006; Walsh et al., 2007)

Swan 86 11

Murray 61 2

Collie 31 9

Blackwood 81 1

Warren 33 1

Western Cape Province, South Africa (C. A. P. E. Estuaries

Management Program, 2008; Dept. of Environmental Affairs

and Tourism, 2001; Dept. of Water Affairs and Forestry,

2004; River Health Programme, 2003, 2007)

Berg 66 48

Diep 82 71

Hout Bay 36 947

Lourens 72 252

Overberg West WMA

(Palmiet, Bot, Klein,

Uilkraal)

44–49 36

Overberg East WMA

(Heuningnes)

41 7

Breede (Bree) 34 16

Duiwenhoks 47

Goukou 36

Gourits 5 9

Swart 42

Knysna 31

Central Chile (Little et al., 2009; Stehr et al., 2010)

Purapel in Nirivilo 63b

Cauquenes en El Arrayan 59b

Vergara 70b

V de Valpariaisoa 15 107

Metropolitana de Santiagoa 29 429

VI de O’Higginsa 8 54

VII del Maulea 29 33

VIII del Bio Bioa 22 55

a Regional averages
b Primarily pine or Eucalyptus plantations
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Different med-regions also have different land use

challenges. In southern Europe, farming, grazing, and

silvicultural operations, particularly at higher eleva-

tions, have been abandoned with the subsequent return

of shrublands or forest (Sirami et al., 2010); however,

increased mechanization has allowed the expansion of

cereal cultivation in North Africa. In southern Cali-

fornia, many agricultural areas have been converted to

urban land uses. The area covered by vineyards also

has grown rapidly in California, South Africa, Western

Australia, and Spain, whereas increasing amounts of

natural habitat has been converted to pine plantations

and avocado orchards in Chile and olive orchards in

Greece (Aronson et al., 1998; Little et al., 2009;

Underwood et al., 2009). Although Chile and South

Africa have rapidly growing cities, including Valpa-

raiso, Santiago, and Cape Town, most water and land

in these med-regions is used for agricultural activities.

Most med-rivers are heavily managed with flows

being regulated through dams and other engineering

works to ensure constant water supplies in a climate

with highly seasonal rainfall. The construction rate of

large dams in Spain peaked during the 1960s and

1970s and in California during the 1950s and 1960s,

with currently more than 1,000 dams in Spain and over

1,600 in California (Goslin, 2005).

The growth of the wildland–urban interface in

many med-regions has increased the intensity and

frequency of wildfires and promoted the introduction

of exotic species (Verkaik et al., 2012). Land use

changes and fires have similar short-term effects on

the physical, chemical, and biological characteristics

of streams, but with fires constituting a pulsed

perturbation, with rapid ecosystem recovery (Verkaik

et al., 2012), and land use changes constituting a press

perturbation with sustained, long-term impacts on

ecosystems. Frequent clearance, burning, or intense

grazing of med-vegetation, however, can produce a

vegetation type conversion from forest or shrubland to

degraded scrub or grassland (Keeley, 2002; Van de

Wouw et al., 2011), with persistent effects on both

terrestrial and aquatic ecosystems. Other human

effects on med-rivers include straightening and build-

ing levees along river channels, decoupling rivers

from their floodplains and destroying riparian vegeta-

tion as floodplains are converted to grazing, farming,

industrial, or urban uses. For example, riparian

vegetation cover in the middle section of the River

Ebro declined from 40% in the 1950s to 4.5% today

(Ollero, 2007). Although land use changes have

diminished riparian vegetation in many med-ecosys-

tems, canopy cover by riparian vegetation can be as

high or higher in human-altered basins as in undev-

eloped basins because of the protection or restoration

of riparian bufferstrips, planting of ornamental trees,

and increased return flows of irrigation or sewage

water in some catchments. In addition, the construc-

tion of dams on rivers reduces floods in downstream

areas, which may allow the encroachment of riparian

vegetation; however, the net effects of dams on

downstream riparian vegetation depend on the effects

of dams on seasonal river flows (i.e., increased vs.

decreased dry season flows).

Effects of land use changes on mediterranean

streams

Physical factors

Hydrology

Mediterranean ecosystems are defined by a common

climate, which is reflected in the hydrological char-

acteristics of their basins. Driven by seasonal rainfall

patterns, flashy fall or winter floods are followed by a

long dry season, leading to low or non-existent stream

flows (Kennard et al.’s (2010) predictable winter

intermittent pattern). The rivers and streams of central

Chile and parts of the Mediterranean Basin and

California also are fed by snow melt from high

mountains, exhibiting a bimodal hydrograph reflecting

runoff associated with fall or winter rains and spring

snow melt (Gasith & Resh, 1999). As an example of

the high seasonal variability in river discharge

patterns, monthly averages for the Llobregat River in

northeastern Spain range from \2 to 130 m3 s-1

(Sabater & Tockner, 2010). If the fall-winter rains fail,

even for just 1 year, supra-seasonal drought and low or

non-existent flows can prevail (Lake, 2003, 2011).

During human development of mediterranean

landscapes (med-landscapes), native vegetation is

removed, soils are disturbed, impermeable surfaces

are constructed, and open monocultures are cultivated,

leading to increased, rapid runoff and flash floods

during storms and decreased groundwater recharge,

resulting in lower dry season flows or longer no-flow

periods (Konrad & Booth, 2005; Walsh et al., 2005;
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Marchi et al., 2010). Owing to extensive impervious

land surfaces in urban areas, even minor storms may

lead to increased runoff and small peak flow events in

streams (Walsh et al., 2005). Ackerman & Schiff

(2003) reported that increasing runoff coefficients

(ratio of rainfall to runoff, normalized by drainage

area) and a shift from broader to narrower discharge

peaks reflected increases in impervious surfaces in

urbanized sites in southern California.

Changes in runoff and groundwater pumping can

diminish aquifers, exacerbating the effects of seasonal

or longer term droughts on stream flows, particularly

where wells are numerous (e.g., 1 million illegal wells

have been reported in Spain) (Glennon, 2002; Soph-

ocleous, 2002; Menció & Mas-Pla, 2008, 2010).

Although human modifications of med-catchments

generally intensify natural seasonal variation in

discharge, these impacts can be modified by other

human activities. Irrigation return flows or sewage

treatment plant discharges during the dry season can

augment river flows, in some cases maintaining

flowing rivers which would normally dry (Prat &

Munné, 2000; Burton et al., 2005; Riley et al., 2005;

Klose et al., 2009). Irregular water flows (1–100 m3/s)

in the Llobregat River of northeastern Spain are

influenced by the 55 wastewater treatment plants

(WWTPs) scattered through its drainage network,

with WWTP discharge, at times, constituting most of

the river flow.

Human-induced alterations in water yield in med-

catchments are often associated with changes in

vegetation and evapotranspiration rates. The replace-

ment of native vegetation by exotic tree plantations

can increase evapotranspiration rates and decrease

runoff (Stipinovich, 2005), but the reverse is often

observed when native forests or shrublands are

replaced by degraded shrublands, crop lands, or

grassland (Garcı́a-Ruiz et al., 2011). The abandon-

ment of upland agricultural lands in southern Europe

has allowed natural vegetation to expand, which when

combined with increased water consumption for

domestic, industrial, and agricultural uses in lowland

areas, has resulted in lower flows and longer dry

periods for unregulated rivers (Benejam et al., 2008).

As in most arid and semi-arid regions, rivers have

been extensively modified to provide supplies of water

during times of need. The largest use of water in med

and most other climatic regions is for agricultural

purposes, particularly for the irrigation of farmlands.

For example, up to 80% of surface and ground water in

the North African Maghreb is used for agriculture and

irrigated areas are rapidly expanding (e.g., irrigated

area increased from 65,000 ha in 1956 to 345,000 ha

today in Tunisia; Djellouli-Tabet, 2010). Intensive use

of water supplies for agricultural, urban, and industrial

activities amount to 30–220% of the total resource,

stimulating the construction of dams, delivery canals,

wells, and facilities for inter-basin transfers (Sabater,

2008; Sabo et al., 2010a, b). Annual discharge in

Balkan Rivers has declined by 48–79% (Skoulikidis

et al., 2009) and discharge in the Ebro River of

northern Spain has decreased by nearly 40% over the

last 40–50 years (López-Moreno et al., 2011). The

largest impacts on river flow are engendered by the

operation of dams, which affect the timing and

magnitude of flow regimes (López-Moreno et al.,

2011). In the Mediterranean Basin, the largest number

of dams is found in Spain and Turkey, and they have

large effects on river discharge patterns in downstream

areas, reducing floods, increasing low-flow periods,

and changing flow seasonality (i.e., high flows for

irrigation in summer, low flows in winter when runoff

is stored, Belmar et al., 2010; Sabater & Tockner,

2010). Water from two large reservoirs on the

headwaters of the Tagus River of Spain is now

transported out of the basin, resulting in consistent low

river flow below the dams which is further reduced

during natural droughts (Lorenzo-Lacruz et al., 2010).

In these regions of Spain, water demand has been

driven by the conversion from dryland to irrigated

farming.

To illustrate natural hydrographs for med-rivers

and to examine the effects of land use conversions and

dam construction on them, we applied spectral meth-

ods (Sabo & Post, 2008; Sabo et al., 2009; Grossman

& Sabo, 2010; Sabo et al., 2010a, b; Sabo et al., 2012)

to daily average discharge data for med-rivers on four

continents: the Warren River in Western Australia, the

Doring River in southwestern South Africa, the

Salinas River on the California (USA) coast, and the

Ebro River in eastern Spain. Discharge data were

obtained from the Global Runoff Data Centre (http://

www.bafg.de/GRDC/EN/Home/homepage__node.html)

with the exception of data for the Salinas River, which

were derived from the National Water Information

Service (maintained by the United States Geological

Survey). These rivers, which vary in drainage area by

two orders of magnitude (Table 2) have long-term
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discharge datasets, and drain basins with contrasting

land uses, with the Warren River being the least

affected and the Salinas and Ebro being the most

impacted by dams, agriculture, and, in the Ebro basin,

major population centers. Although we contrast river

hydrographs before and after major dam construction,

it should be remembered that the Ebro River basin was

greatly influenced by human activity before these

records began.

In contrasting variation in these four med-river

systems between early and recent periods in the

discharge record (Fig. 1), we first note the strong

seasonality (indexed by the amplitude of seasonal

variation, ARMS) and even stronger interannual

Fig. 1 Hydrographs for med-rivers on four continents. All

panels show daily average discharge (log10 transformed),

normalized by average daily discharge over the same period

of record (black circles). Dark gray lines are the reconstructed

signal extracted from the Fourier power spectrum. The

amplitude of this signal is given by ARMS, and the root mean

squared noise around this signal is NRMS (Sabo & Post, 2008)
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variation associated with the winter rains (indexed by

NRMS, Fig. 1, and rhf and rlf; Table 2). Changes in

hydrograph characteristics between early and late

record periods are most obvious for the Salinas and

Ebro Rivers, where numerous dams and extensive

agricultural development have resulted in highly

managed systems (Fig. 1). Nevertheless, there are

detectable changes in early and late record periods for

all four rivers, as quantified by changes in the standard

deviation of high- and low-flow anomalies (rhf and rlf)

and the number, timing (mode), and duration of high-

and low-flow anomalies exceeding a spectral anomaly

magnitude (SAM) equivalent to rhf and rlf. SAMs for

high flows (rhf) increased in three of the four rivers

whereas the (absolute) magnitude of low-flow anom-

alies (rlf) increased across all four rivers between early

and late periods indicating stronger low-flow variation

(Table 2). Finally, we quantified the frequency, tim-

ing, and duration of low- and high-flow anomalies in

the early and late-period records, but referenced to the

early record reference SAM (rhf and rlf), so that we

could determine if aseasonal extremes had changed

relative to historical patterns of variation. The number

(frequency) and duration of high-flow anomalies

([rhf) tended to decline and the timing of these events

was shifted by 1–3 months. By contrast, the number

(frequency) and duration of low-flow anomalies (\rlf)

tended to increase and the timing of these events was

shifted by 1–7 months with the greatest shift in timing

for the Ebro River in which the historical low flows of

November were replaced by low flows in June (a shift

of 7 months later in the water year for this river;

Table 2). Although we cannot rule out the effects of

climate change on hydrographic changes, alterations

in land use and in the water cycle are likely to be strong

contributors to the observed changes, especially for

the Salinas and Ebro rivers. Among the most note-

worthy changes are alterations in the timing and

increases in the frequency and duration of low-flow

anomalies.

Geomorphology and sediment

Human impacts on vegetation and soils in med-

regions can have large effects on the erosion, trans-

port, and deposition of sediment and, hence, stream

geomorphology. For mediterranean forests, floods

tend to occur late in winter after water tables have

risen, are relatively muted, and have low sediment

loads (Poesen & Hooke, 1997; Garcia-Ruı́z et al.,

2008). In comparison, runoff from cleared land,

whether used or abandoned farmland, causes increases

in flood frequency and intensity, and in suspended

sediment and bed loads (Poesen & Hooke, 1997;

Garcia-Ruı́z et al., 2008). In extreme cases, excessive

sediment inputs to channels can choke streams with

sediment, resulting in shallower depths and less

differentiation between pools and riffles. The repre-

sentation of sand and fine substrata on stream bottoms,

with consequences for substratum embeddedness,

commonly increases with increasing catchment devel-

opment (Ode et al., 2010). Human-created reservoirs

often fill with sediment, reducing sediment transport to

downstream areas (Kondolf, 1997; Minear & Kondolf,

2009). Fire in med-regions can also increase catchment

runoff, flood frequency and severity, and erosion and

sediment deposition with rapid amelioration as terres-

trial vegetation recovers (Candela et al., 2005; Mayor

et al., 2007; Shakesby, 2011). The effects of fire

management activities, such as fire suppression or fuel

removal via mechanical means or controlled burns, can

also influence runoff and erosion (Verkaik et al., 2012).

Flash floods in urbanized med-catchments can

cause major erosion of stream channels, scouring of

stream beds, and the transport of high loads of

suspended solids (Booth, 1990; Poesen & Hooke,

1997; Cherifi & Loudiki, 1999; Chu et al., 2011).

Straightening river channels and lining them with rip-

rap, concrete, or other impervious materials causes the

rapid transport of flood flows, inhibits groundwater

recharge through the channel bottom, and reduces

substrata, bed, and, hence, habitat heterogeneity (Bur-

ton et al., 2005; Brown et al., 2005a, b). In cases where

channels with natural substrata receive runoff from

areas covered by impervious surfaces, sediment inputs

may be low and stream beds may be excavated by flood

flows, resulting in incision and failed banks (Booth,

1990). Channels are often lined with levees or are

designed with excess capacity to prevent flooding of

adjacent areas, which allows development in historical

floodplain areas, but which disconnects rivers and

streams from their riparian corridors and floodplains.

Temperature and light

Land use changes in med-regions can affect temper-

ature and light levels in streams, owing to modifica-

tions of both the hydrological cycle and, particularly,
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the riparian vegetation (Burton et al., 2005). Land use

changes tend to increase overland flow during storms

and decrease hyporheic exchange and groundwater

inputs to streams, resulting in warmer stream temper-

atures (Dallas & Rivers-Moore, 2011). By reducing

dry season flows, land use changes often result in

isolated, non-flowing pools, whose temperatures

reflect ambient atmospheric temperatures. Dams

affect thermal regimes, often creating thermally

stratified reservoirs upstream and increasing or

decreasing temperatures downstream seasonally,

depending on whether reservoir releases come from

the epilimnion or hypolimnion.

Increases in temperature and light levels occur in

most streams where the riparian canopy has been

reduced or eliminated (Naiman & Décamps, 1997;

Rutherford et al., 2004; Burton et al., 2005; Mazor

et al., 2011). Although reductions in riparian vegeta-

tion have been observed in many med-rivers and

streams, such changes have not been observed in

others, apparently depending on whether riparian

corridors are protected or restored, exotic plants have

been planted along streams, or water supplies to

relatively intact riparian zones have been augmented

by return flows. Working in southern California, Rehn

(2010) recorded similar riparian canopy coverages

along natural and degraded streams, but Mazor et al.

(2011) recorded lower average canopy vegetation in

urban than open or agricultural streams. Burton et al.

(2005) reported greater bank shading in natural (87%)

streams than concrete-lined channels (9%) and lower

temperatures in natural streams than in channelized

streams receiving urban runoff or wastewater.

Although in-stream light levels often increase with

reductions in riparian vegetation, this effect can be

overridden by the effects of increased suspended

sediment transport from landscape or channel erosion.

Hydrochemistry

Pollutants

Changes in land use are often associated with inputs of

nutrients, metals, pesticides, herbicides, pharmaceuti-

cals, oil products, plastics, and personal care products

(PCPs), although loading rates depend on the presence

of WWTPs and the specific land uses and lithology

of catchments (Turgut, 2003; Farmaki & Thomaidis,

2008; Muñoz et al., 2009; Sánchez-Pérez et al., 2009;

Fernández et al., 2010; Ginebreda et al., 2010).

Pesticides, pharmaceutical and PCPs, surfactants,

flame retardants, and other groups of chemicals can

attain concentrations from several ng to a few lg/l,

particularly just below WWTPs and in downstream

river sections (Mazor & Schiff, 2008; Petrovic et al.,

2011). Metals can attain concentrations of several

lg/l, with soluble forms most concentrated during low

flows (Guasch et al., 2010; Mazor et al., 2011). Among

8 metals monitored during the dry season in 11

southern California catchments, Mazor & Schiff

(2008) reported concentrations for most of between a

few and 10 lg/l, but with higher average concentra-

tions for dissolved manganese (41–238 lg/l) and

selenium (7–78 lg/l). Although PCBs were not

detected in this study, concentrations of a PAH

(benzo(b)fluoranthene) reached nearly 9 ng/l at one

site and specific pesticides had concentrations as high

as ca. 20 ng/l.

Floods in Mediterranean rivers and streams can

erode, transport, and suspend sediments and associ-

ated (hydrophobic) pollutants, such as sediment-

associated metals, which reach highest concentrations

during floods (Guasch et al., 2010). Ackerman &

Schiff (2003) examined stream concentrations and

fluxes of nutrients (ammonium, nitrate, phosphate),

metals (cadmium, chromium, copper, lead, mercury,

nickel, selenium, zinc), suspended solids, and pesti-

cides (chlorpyrifos, DDT, diazinon) across a land use

gradient (undeveloped open space, agriculture, resi-

dential, mixed urban, commercial, and industrial use)

in southern California (Table 3). Agricultural storm

water had the highest concentrations for all constitu-

ents (by factors of 1.1–81) except for total phosphorus

and diazinon, which were slightly higher in streams in

residential areas, and mercury, which was not detected

in agricultural runoff. The geometric mean concen-

trations for all constituents, except mercury and

nickel, were lower in streams draining undeveloped

versus developed catchments. Concentrations of all

chemical variables were similar and elevated across

residential, commercial, industrial, and mixed urban

areas (=urban areas), with streams in highly urbanized

areas exporting 45–56% of the nutrients, 60% of the

copper and zinc, and 67% of the chlorpyrifosa and

diazinon in this region. Such pollutants in rivers with

low discharge and dilution rates, owing to abstraction

or natural hydrological variation, can interact with

other stressors to produce complex and rather
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unpredictable effects on river communities (Stevenson

& Sabater, 2010).

Salinity

A common effect of land use changes on streams is to

increase the concentration of major ions, as reflected

in conductivity (Burton et al., 2005; Boyacioglu, 2006;

Brinkman, 2007; Ode et al., 2010; Mazor et al., 2011).

Streams and rivers often exhibit increased salinity

levels with increasing catchment development, par-

ticularly in areas with salty soils and groundwater

(McFarlane & George, 1992; Halse et al., 2003).

Massive land clearing in southwestern Western Aus-

tralia has led to the replacement of deep-rooted native

vegetation by shallow-rooted crops, mainly wheat,

with saline groundwater tables becoming shallower

(Halse et al., 2003; Morgan et al., 2003; Caccetta et al.,

2010; Furby et al., 2010). In this area, damaging salt

levels have sometimes reached the soil surface and the

area of dryland salinity has increased annually by

14,000 ha. Rivers and lakes in drier parts of this region

have become more saline because of increased saline

groundwater inputs or storm flows over and through

saline soils (Schofield & Ruprecht, 1989; Ghassemi

et al., 1995; Halse et al., 2003). Salinity levels in

affected streams increase during the first flushing

flows of the winter rainy season reach lowest levels in

late winter with high flows, and increase again as flows

diminish in the dry season, often reaching high levels

in persistent pools in heavily cleared catchments

(Williams et al., 1991; Kay et al., 2001; Halse et al.,

2003, Davis et al., 2010). Increased salinization of

rivers and streams has been observed in other med-

regions, including southeastern Spain and southwest-

ern South Africa (Millán et al., 2011).

Nutrients

Stream and river concentrations of nitrogen and

phosphorous often increase with increasing human

development in med-catchments (Burton et al., 2005;

Busse et al., 2006; Brinkman, 2007; Klose et al., 2009;

Song et al., 2009; Ode et al., 2010; Mazor et al., 2011;

Fig. 2). These nutrients originate from increased

erosion of denuded landscapes; fertilizer and manure

runoff from agricultural lands, gardens, and golf

courses; and sewage effluent. Nutrient peaks often

coincide with or follow storm discharge peaks (e.g.,

Klose et al., 2009; David et al., 2011).

Robinson et al. (2005), working in the Santa

Barbara area of southern California, found marked

differences in nutrient export during storms across

different land uses, approximating 1, 10, and 100 g

nitrate-N ha-1 mm-1 and 0.8, 2–9, and 20–70 g

phosphate-P ha-1 mm-1 for undeveloped uplands,

residential/commercial areas, and greenhouse agricul-

tural lands, respectively. Storm to storm variability

was low. In a year with about 70 cm of rain, Robinson

(2006) reported fluxes of nitrate (mol ha-1 y-1) of 21

from upland chaparral, 49 from residential areas, and

5,684 from greenhouse agriculture. In chaparral

catchments in the San Bernardino Mountains of

southern California, Riggan et al. (1985) reported

nitrate export ranging from 3 to 714 mol ha-1 y-1

over 4 years and Fenn and Poth (1999) measured

nitrate export of 257–829 mol ha-1 y-1 from 1995 to

1998. In three studies in rural areas with extensive tree

Table 3 Comparison of fluxes (expressed as kg km-2) in

storm water for water year 1995 of several important constit-

uents across a land use gradient (left to right: least to most

developed) (subset of data from Table 7 in Ackerman & Schiff,

2003, rounded to whole numbers except metals)

Constituent Open space Agriculture Residential Mixed urban Commercial Industrial

Ammonium 2 50 57 66 94 75

Nitrate 51 271 219 234 275 287

Phosphate 14 21 76 77 103 83

Suspended sediment 717 56,400 7,340 10,600 11,900 18,800

Copper 0.1 5.6 2.2 3.5 4.4 6.3

Zinc 0.1 8.3 9.3 20.4 33.6 43.5

Open space is undeveloped land
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cover and limited urban development in Catalonia,

Spain, nitrate export was calculated to be 3.6 mol

ha-1 y-1 (Avila et al., 2002), 47.1 mol ha-1 y-1

(Butturini & Sabater, 2002), and 15.7 mol ha-1 y-1,

with 52–86% of the annual nitrate export occurring

during storms in the latter case (Bernal et al., 2002).

Goodridge & Melack (2012), working in the

Santa Barbara (California) area, found that nitrate

concentrations changed with increasing discharge,

decreasing in three agricultural catchments, increasing

in the undeveloped catchment and an urban catch-

ment, and remaining constant in another urban catch-

ment. In contrast to the nitrate-runoff relationships,

electrical conductance, a measure of total dissolved

solids, decreased with increasing discharge in all

catchments. Based on the hydrological modeling

results of Beighley et al. (2008) and their own

analyses, Goodridge & Melack (2012) argued that

upland catchment areas with no development played

an important role in regulating stream nitrate concen-

trations, resulting in little variation in peak storm

nitrate concentrations across catchments and with

nitrate concentrations in lower river reaches integrat-

ing upland catchment hydrology and nitrogen pro-

cessing and nitrogen subsidies from lowland areas

(also see Melack & Leydecker, 2005). Upland–

lowland linkages became weaker in dry years and

stronger in wet years. These patterns are likely to be

common where headwater streams drain steep, undis-

turbed montane catchments, flowing into lowland

areas with extensive agricultural and urban develop-

ment. In some cases, such as in the Ventura River of

southern California, storm hydrographs near the

mouth are often bimodal, with an early peak associ-

ated with runoff from lowland developed areas and a

later, higher, and broader peak associated with runoff

from extensive, undisturbed, upland areas, with asso-

ciated changes in material concentrations and fluxes

(Klose et al., 2009).

Besides nutrients in runoff from developed land-

scapes, wastewaters are a major source of nitrogen and

phosphorus in streams and rivers, particularly in

urbanized catchments (Ortiz et al., 2008; Martı́ et al.,

2010). During seasonal or longer term droughts

WWTP discharge can be the major or only contributor

to flow and nutrient flux in urbanized med-rivers,

accounting for more than 50% of nitrogen and

phosphorus loads (Carey & Migliaccio, 2009; Klose

et al., 2009).

Nutrients may be transported to downstream flood-

plains or into estuaries and, thence, into the ocean

(McComb & Davis, 1993; Obermann et al., 2009; Chu

et al., 2011). Many estuaries in med-regions are poorly

flushed during the dry season, becoming isolated from

tidal fluxes and accumulating nutrients from the

catchment, fueling eutrophication (Hodgkin &

Hamilton, 1993; McComb & Davis, 1993).
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Fig. 2 Illustration of relationships among land use, nutrient

concentrations, and benthic algal biomass (as chlorophyll

a concentration) for a med-river system. The data are from 14

sites in the Ventura River catchment, southern California, USA,

sampled in June 2008. Nutrient and chlorophyll data were loge-

transformed and proportion land use cover was arcsine square

root transformed before analyses. Equations, best-fit lines, and

overall r2 and P values from least-squares linear regression

analyses are shown on each panel. (Plotted from data in Klose

et al., 2009, 2012)
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Organic matter

Dissolved and particulate organic matter enters

streams from upland and riparian zones, providing a

carbon source for stream food webs. Land use changes

affect organic matter inputs to streams by altering the

sources, routing, and processing of terrestrial and

aquatic carbon. For example, land use changes often

change the abundance and composition of riparian

vegetation (Fig. 3a), leading to alterations in the

composition and levels of organic carbon in streams

with effects on microbial and invertebrate communi-

ties (see below).

An extensive literature documents the impacts of

organic carbon inputs in sewage on stream organisms

(Cairns & Pratt, 1993; Ortiz et al., 2008). Depending

on the comprehensiveness and sophistication of sew-

age and storm water treatment facilities and the

volume of river flows, sewage and storm runoff inputs

can produce high organic carbon inputs, ammonia

levels, and microbial activity and low dissolved

oxygen concentrations, sometimes eliminating most

macroinvertebrate and fish species (Prat & Munné,

2000; Karaer & Kucukballi, 2006; Ortiz et al., 2008).

Furthermore, inputs of nutrients (N, P) to mediterra-

nean streams (med-streams) can increase the decom-

position rates of particulate organic carbon and

produce algal blooms which, in turn, can stimulate

bacterial growth on algal exudates and detritus (Prat &

Munné, 2000). In some cases, organic and nutrient

inputs stimulate microbial and algal growth in open

med-rivers reducing oxygen to low levels, particularly

at night, sometimes causing fish kills (Klose et al.,

2009, 2012). Similar considerations apply when med-

streams have very low flows or become a series of

isolated, stagnant pools during the summer dry season,

when decomposition of allochthonous leaf litter

produces high dissolved organic carbon (primarily

polyphenol) levels, stained water, and low or no

dissolved oxygen (Towns, 1985, 1991; Boulton &

Suter, 1986; Bunn et al., 1986).

Biological communities

As is apparent from the above discussion, land use

changes have numerous effects on physical–chemical

conditions in streams and rivers, with many ramifica-

tions for biological communities. Many studies,

including those from med-ecosystems, have shown

that land use changes affect the growth, development,

reproduction, and behavior of individual organisms

and the diversity, composition, abundance, and bio-

mass of biological assemblages.

Riparian zones, allochthonous inputs, microbial

communities, and decomposition

Land use changes have had large effects on the

structure, cover, patchiness, and composition of

upland and riparian vegetation in med-regions with

subsequent effects on the wildlife it supports (Fig. 3a,

b; Warner & Hendrix, 1984; Décamps et al., 1987,

1988; Le Maitre et al., 1996; Corbacho et al., 2003;

Brown, 2004; Aguiar & Ferreira, 2005; Ferreira et al.,

2005; Salinas & Casas, 2007; Hughes et al., 2010;

Larsen et al., 2010; Fernandes et al., 2011). One

general pattern is that the total number and relative

proportion of exotic plant species increase with

catchment development (Aguiar & Ferreira, 2005;

Aguiar et al., 2006; Walker et al., 2009; Fig. 3a). In

some cases, exotic plant genera, such as Acacia Mill.

in South Africa and Chile, Eucalyptus L’Hér. in

California and Europe, and Arundo L. in the riparian

zones of South Africa and California, come to

dominate plant communities (Le Maitre et al., 2011).

Where land use development has reduced riparian

vegetation cover, streams have higher temperatures

and light levels, lower inputs of allochthonous carbon,

and greater bank erosion; however, the effects of land

use changes on riparian canopy cover and leaf litter

inputs also will depend on riparian bufferstrip protec-

tions and possible compensation through planting

efforts (Naiman & Décamps, 1997). In some cases,

such as where there are dense growths of Acacia along

streams in the Cape of South Africa, exotic riparian

species may reduce light and temperature levels and

confine or impede flows with repercussions for stream

communities (D. W. A. F., 2004; C. A. P. E., 2008; Le

Maitre et al., 2011; Samways et al., 2011).

Land use changes also can affect riparian vegetation

by increasing nutrient and sediment inputs, and

altering flow regimes, soil moisture levels, groundwa-

ter tables, and disturbance patterns (floods, drought)

(Warner & Hendrix, 1984; Aguiar & Ferreira, 2005;

Salinas & Casas, 2007). In some med-regions,

increases in soil and stream salinity associated with

land use changes may affect riparian vegetation. In

southwestern Western Australia, the species richness,
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but not functional diversity, of riparian plants, partic-

ularly perennial herbs, declined and species composi-

tion was altered by increasing soil salinity (Lymbery

et al., 2003; Doupé et al., 2006). Studying riparian

corridors in two rivers in southern Spain, Salinas &

Casas (2007) found that the species richness of

herbaceous and woody plants, and cover by woody

species, declined downstream with increasing salinity.

The inputs and decomposition rates of litter, and

composition and biomass of associated microbial

communities, are affected by land use changes (Gon-

zález et al., 2010). Working in agricultural catchments

with coastal urban areas in central Portugal, Feio et al.

(2010) reported that the decomposition rates of oak

(Quercus robur L.) and alder (Alnus glutinosa Gaertn.)

leaves in coarse (1 cm) mesh bags, but not in fine

(0.5 mm) mesh bags, were lower in streams affected

by human activity than in relatively undisturbed,

reference streams, apparently because of reduced

densities of macroinvertebrate shredders in the
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Fig. 3 Illustration of relationships between the proportions of

(a) riparian and aquatic plant species, (b) aquatic vertebrate

(fish, amphibian, aquatic reptile) species, and (c) riparian

vertebrate (bird, mammal) species which were exotic and the

proportion of catchments covered by developed lands (agricul-

ture ? urban ? pasture) for a med-region. Plates d and e show

the relationships between the proportions of all invertebrate

individuals (d) and invertebrate taxa (e) which belonged to non-

insect groups and the Chironomidae versus the proportion of

catchments in developed land uses. Proportionate data were

arcsine square root-transformed and equations, best-fit lines,

and overall r2 and P values from least-squares linear regression

analyses are shown on each panel. Re-analysis of data from

Brinkman (2007) (38–41 stream sites sampled over 1–3 springs

(2000–2002) in the Santa Barbara, California, area). Variation

in the relationships between proportions of exotic vertebrate

species and land use patterns was high because of low numbers

of exotic species in these groups (riparian vertebrates = 4

exotic and 81 native species, aquatic vertebrates = 2 exotic and

8 native species); however, exotic species were observed only at

stream sites in developed catchments. Arrows The demarcation

between undeveloped ([95% wildlands, 11–12 sites) and

developed catchments (\95% wildlands, 27–29 sites)
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disturbed streams. Leaf decomposition rates were

negatively related to ammonium and nitrite levels and

alterations of the hydrological regime, and positively

correlated with nitrate and dissolved oxygen concen-

trations. Menéndez et al. (2011) found that alder leaf

breakdown rates increased with increasing nutrient

inputs and shredder densities across five low-order

Spanish streams, and also reported that fungal spor-

ulation rates were positively related to nitrate but

negatively related to ammonia concentrations. Field

studies and laboratory experiments indicate that leaf

decomposition and fungal biomass, community com-

position, and/or sporulation rates are affected by

temperature and inorganic nutrient concentrations,

i.e., factors which are often increased by human

development (Gulis et al., 2006; Artigas et al., 2008;

Ferreira & Chauvet, 2011a, b). In addition, land use

changes often are associated with decreased or

disrupted flows which can affect fungal biomass and

sporulation rates and leaf decomposition rates (Bruder

et al., 2011), but flow resumption stimulates bacterial

and fungal growth (Artigas et al., 2009, 2011). By

changing bottom sediment size distributions, human

land use also affects the decomposition rates of buried

leaf litter by affecting the access of invertebrate

shredders to interstitial space (Navel et al., 2010).

Land use changes can alter leaf decomposition rates

and the growth, species composition, and biomass of

microbial communities by altering the composition of

riparian vegetation. Although leaves from exotic plant

species sometimes have slower decomposition rates

than leaves from native species (e.g., Hart, 1975),

differences in breakdown rates among leaf species

appear to be affected more by leaf properties, such as

structural or secondary compounds or nitrogen con-

tent, than by their geographic origin (Canhoto &

Graça, 1996; Akanil & Middleton, 1997; Graça et al.,

2001; Sampaio et al., 2001; Moline & Poff, 2008).

Nevertheless, stream microbial and invertebrate com-

munities can be altered by changes in riparian plant

composition in developed catchments (Samways

et al., 2011). Bärlocher & Graça (2002), for example,

found that the richness and composition of fungal

communities differed between streams bordered by

native riparian forests and those bordered by pure

Eucalyptus stands, but that decomposition rates of

both Eucalyptus and native chestnut (Castanea sativa

Mill.) leaves did not differ between the two stream

types.

Feio et al. (2010) reported that sediment respiration

rates were lower in undisturbed streams than in

disturbed streams with higher organic matter, nutrient,

and daytime dissolved oxygen levels, but they found

no differences in fungal biomass on leaves or biofilm

biomass (measured as ash free dry mass) on natural

substrata in disturbed and undisturbed streams.

Streams and rivers receiving high organic matter

and/or nutrient loads have high bacterial biomass,

sometimes becoming dominated by specific bacterial

species (e.g., Sphaerotilus natans Kutzing below

sewage outflows) (Karrasch et al., 2006; Ortiz et al.,

2008; Klose et al., 2012).

Much research on bacterial communities in

med-regions has focused on indicators of fecal con-

tamination (Cao et al., 2011a, 2011b). Fecal indicator

bacterial concentrations increase with increasing

urban development and usually peak during and after

storms, leading to health advisories. Using rapidly

developing molecular methods (Hagedorn et al.,

2011), Sercu et al. (2011) observed that bacterial

community composition in a southern California

stream shifted from the wet to the dry season, with

fecal indicator bacteria apparently derived from

catchment runoff during rains but from point sources

of human waste in the dry season.

Algal and aquatic plant biomass and communities

By affecting levels of primary resources, such as

nutrients and light, land use changes have large effects

on algal biomass and species composition (Burton

et al., 2005; Busse et al., 2006; Simpson, 2006; Tornés

et al., 2007; Delgado et al., 2012). Chlorophyll

a values from med-rivers and streams range from 0.2

to 1,400 mg/m2 and increase with catchment devel-

opment (Table 4; Fig. 2; Busse et al., 2006; Klose

et al., 2009, 2012; Ode et al., 2010; Delgado et al.,

2012). Nutrient concentrations often determine algal

biomass in med-rivers, although light can play a major

role in small, headwater, or turbid streams (Busse

et al., 2006; von Schiller et al., 2007; Klose et al.,

2012). The addition of nutrients, however, can trigger

increases in algal biomass even in shaded streams. For

example, Sabater et al. (2011) reported that small

windows of higher light availability were sufficient to

produce a threefold increase in algal biomass in a

forested stream following slight increases in nutrient

concentration. Although small forested med-streams
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have been postulated to be heterotrophic (Acuña et al.,

2004), shifts toward increased autotrophy may occur

when nutrients exceed threshold concentrations

(Sabater et al., 2011). Additions of nutrients to open

med-streams often promote the growth of filamentous

macroalgae, such as Cladophora Kützing, Rhizoclo-

nium Kützing, and Entermorpha Link, sometimes

resulting in dense floating mats. Diatoms also prolif-

erate with increased nutrient loading in more shaded

streams (Busse et al., 2006; Klose et al., 2012).

Because different diatom species show different

tolerances to inputs of organic matter, nutrients,

metals, and biocides, diatom community composition

is a sensitive indicator of water quality in med-streams

and rivers (Tornés et al., 2007; Blanco et al., 2008;

Blanco & Becarés, 2010; Martı́n et al., 2010; Ricart

et al., 2010; Solak & Acs, 2011; Delgado et al., 2012;

Kargioglu et al., 2012). In the Santa Ana River system

in southern California, Burton et al. (2005) found that

the relative representation of cyanobacteria and sen-

sitive diatoms decreased, and that of nitrogen-hetero-

trophic, eutrophic, and motile diatoms increased, with

increasing urban runoff and, especially, wastewater

inputs with high ion and nutrient loads (similar

to California results in Porter et al., 2008). The

biovolume of green algae was higher and the relative

abundances and richness of diatoms were lower in

concrete-lined channels with higher light and temper-

ature levels than in natural streams or channels with

natural bottoms. Working in 104 streams in southern

California, Stancheva et al. (2012) found that the

biovolume and richness of non-diatom benthic algae

were positively correlated with temperature and light

levels, and that heterocystous cyanobacteria and

Zygnemataceae were negatively related to nitrogen

concentrations and red algae were negatively related

to TP concentrations.

WWTP discharge in some med-rivers during the

dry season can be the major or only source of water

and nutrients to downstream reaches, promoting the

luxuriant growth of vascular plants or macroalgae

(e.g., Cladophora), which can sequester large amounts

of nutrients (Simpson, 2006; Martı́ et al., 2010; Klose

et al., 2012). Nutrient uptake and transformation rates

are often high, but nutrient uptake efficiencies are

often low, in streams receiving substantial WWTP

inputs, and nitrogen incorporated into plant and algae

tissue is usually scoured from stream bottoms and

transported downstream during storms (Klose et al.,

2009; Martı́ et al., 2010; Merseburger et al., 2011).

Table 4 Chlorophyll

a values in mediterranean

streams and rivers

Data are the range observed

in each system

System Chlorophyll conc.

(mg m-2)

Source

Mountain stream 6–11 Rolland et al. (1997)

Travertine streams 50–300 Rundio (2009)

Calcareous, non-travertine streams 100–500 Rundio (2009)

Middle mountain stream, low nutrient,shaded 5 Tornés & Sabater (2010)

Middle mountain stream, low nutrient,

unshaded

4–7 Tornés & Sabater (2010)

Middle mountain stream, unfertilized, shaded 8–90 Sabater et al. (2011)

Middle mountain stream, fertilized, shaded 10–120 Sabater et al. (2011)

Undeveloped and rural streams 2–30 Busse et al. (2006)

Suburban streams 50–320 Busse et al. (2006)

Large river, agricultural 0.2–1,425 Urrea-Clos (2010)

Large river, agricultural 14–780 Sabater et al. (2009)

Agricultural streams 60–500 Hornberger et al. (1977)

Undeveloped, low-order streams 4–58 Klose et al. (2012)

River, residential and agricultural 90–417 Klose et al. (2012)

River, mixed use, below WWTP 226–1,037 Klose et al. (2012)

Temporary streams 4–112 Alvarez & Pardo (2007a, b)

Streams draining forested, agricultural,

and urban basins

2–79 Von Schiller et al. (2008)
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Because aquatic macrophytes are sensitive to distur-

bance regimes, substrata characteristics, and light,

nutrient, and contaminant levels (Simpson, 2006;

Going et al., 2008), they are affected by human

alterations to landscapes and the water cycle, often

showing clear differences in species composition,

diversity, and cover between disturbed and undis-

turbed sites (Abou-Hamdan et al., 2005; Bernez &

Ferreira, 2007; Ceschin et al., 2010; Kargioglu et al.,

2012).

Estuaries receive and accumulate nutrients from

their drainage basins often resulting in eutrophication

characterized by blooms of cyanobacteria (Nodularia

spumigena Mertens) or green macroalgae (e.g.,

Cladophora, Enteromorpha) in spring and summer.

For example, the large, shallow Peel-Harvey estuary

of southwestern Australia receives inputs of phospho-

rus from several rivers, which fuel algal blooms

causing anoxic conditions and fish kills (McComb &

Davis, 1993; Ritchie & Weaver, 1993; Keipert et al.,

2008). Total nitrogen concentrations in the Berg

Estuary in the South African Cape have increased

from \300 lg/l prior to 1980 to nearly 2,000 lg/l in

2005 and chlorophyll a concentrations have increased

from 1.8 to 8.2 lg/l in winter and from 0.2 to 1.2 lg/l

in summer over a similar time period, all concordant

with increases in catchment agricultural development

(C. A. P. E., 2008).

Invertebrates

Stream and river invertebrate assemblages show

numerous responses to land use changes (Fig. 3d, e;

Solimini et al., 2000; Alvarez & Pardo, 2007a, b;

Mancilla et al., 2009b; Ode et al., 2010; Sánchez-

Montoya et al., 2010; Waite et al., 2010; Cheimonop-

oulou et al., 2011; Mazor et al., 2011). The relative and

absolute richness, density, and biomass of many stream

insect orders, particularly the Ephemeroptera, Plecop-

tera, and Trichoptera (EPT), decline, whereas those of

some dipterans (e.g., Chironomidae, Muscidae) and

non-insects (nematodes, oligochaetes, leeches, micro-

crustaceans, snails) increase, with increasing catch-

ment development (Fig. 3d, e; Fend et al., 2005;

Alvarez & Pardo, 2007b; Brinkman, 2007; Dallas &

Day, 2007; Mazor & Schiff, 2008; Song et al., 2009;

Correa-Araneda et al., 2010; Theodoropoulos & Ilio-

poulou-Georgudaki, 2010; Waite et al., 2010). Most

studies in med-regions have observed much larger

effects of urbanization than agricultural development

on stream communities, but even moderate human

influences, such as light livestock grazing or legacies in

abandoned farmlands, can result in the loss of sensitive

groups (e.g., Plecoptera) (Brinkman, 2007; Mazor

et al., 2011). Because the invertebrate faunas of

streams in most med-regions contain many endemic

species which are vulnerable to environmental

changes, land use alterations can have large effects

on local and global biodiversity (Bonada et al., 2004;

Samways et al., 2011). For example, in southwestern

Western Australia the insect and crustacean faunas

have high levels of endemicity with many taxa which

are sensitive to increases in stream salinity largely

created by land clearing for the cultivation of crops

(Bunn & Davies, 1990; Horwitz, 1997; Halse et al.,

2003).

Among functional feeding groups, the richness and

diversity of shredders, scrapers, and predators have

been observed to be lower in urbanized than in

undisturbed streams (Brinkman, 2007; Mazor &

Schiff, 2008). On the other hand, agricultural and

urban environments provide habitats, such as orna-

mental, farm, recreational, or sewage treatment ponds

or lakes, storage reservoirs, water mains, tyre pools,

and drainage channels which support specific insect

taxa, particularly Diptera (Culicidae, Chironomidae,

Chaoboridae), which can attain nuisance levels and

transmit disease (Resh & Grodhaus, 1983).

Although numerous studies have shown clear

invertebrate responses to land use changes, it is often

difficult to pinpoint why land use changes have these

effects, given the numerous ways that land use

influences physical–chemical factors. In southern

California, Brinkman (2007) found that many inver-

tebrate metrics, such as EPT richness, were strongly

related to a habitat index which incorporated infor-

mation on bank and bottom stability, substrata size,

and disturbance to channels and riparian vegetation.

Ode et al. (2010) and Mazor et al. (2011) reported that

invertebrate biomonitoring metrics were related to

many abiotic variables, but particularly substratum

size (%sand ? fines), nutrient concentrations (TN,

TP), and in-stream habitat (channel alteration). Work-

ing in central Chile, Mancilla et al. (2009b) reported

that macroinvertebrate distributions were related to

conductivity, bank integrity, and benthic habitat and

Burton et al. (2005) reported that bottom habitat

conditions, rather than stream chemistry, appeared to
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have the greatest impacts on invertebrate community

structure in the Santa Ana River system of southern

California.

Changes to river hydrological regimes and sedi-

ment dynamics owing to land use changes also alter

invertebrate communities. Land use changes often

increase scouring flood flows, removing and trans-

porting invertebrates downstream and fostering the

dominance of quick-colonizing, r-selected species,

with immediate or short-term effects on invertebrate

densities, species composition, and richness (Gasith &

Resh, 1999). At the other extreme, land use changes

can decrease stream flows and increase the duration of

dry periods during the dry season, selecting for species

that can withstand or recover quickly from droughts

(Lake, 2011). If dry periods become too prolonged,

however, it is unlikely that most invertebrate species

can survive. Finally, in some cases, return flows from

agricultural and urban areas can increase dry season

flows, both disrupting the life cycles of species

adapted to seasonal drought and increasing the

survival and densities of exotic species which require

perennial flow, sometimes resulting in the demise of

native species through their interactions with exotic

species (Brown et al., 2005a; Riley et al., 2005).

The construction of dams, in particular, has numerous

effects on aquatic invertebrates by converting

upstream lotic to lentic habitats and altering down-

stream hydrology, hydrochemistry, and geomorphol-

ogy (Kondolf, 1998; Bredenhand & Samways, 2009;

Sabo et al., 2012). For example, sediments are often

intercepted and stored by reservoirs, with increased

scouring of downstream reaches during high-flow

releases, resulting in increased incision, decreases in

turbidity, increases in N2 and O2 levels, and the

armoring of downstream areas (Kondolf, 1997; Sabo

et al., 2012). Bredenhand and Samways (2009)

reported that EPT taxa were diverse and abundant in

flowing sections above a dam in the Cape of South

Africa, but were almost absent in the river below the

impoundment, with chironomids reaching high abun-

dances below the dam.

Because riparian vegetation provides shading, bank

stability, and allochthonous inputs to streams and

filters sediment and contaminants from upland areas,

human-induced changes to riparian zones can have

far-ranging effects on invertebrate communities by

altering environmental conditions, food sources, and

adult habitat (Aguiar et al., 2002; Samways &

Sharratt, 2009; Magoba & Samways, 2010; Theodor-

opoulos & Iliopoulou-Georgudaki, 2010; Samways

et al., 2011). By increasing flood flows, land use

changes result in the increased dislodgement, trans-

port, and loss of leaf litter and associated invertebrates.

Stream channelization eliminates depositional habitat,

decreasing the retention of leaf litter and reducing

shredder densities (Gasith & Resh, 1999). In addition,

human-induced changes in the composition of riparian

vegetation can affect the quantity and quality of inputs

of woody and leaf debris, with repercussions for

invertebrate habitat structure and food supplies

(Mancilla et al., 2009a). Valdovinos (2001) reported

that decomposition rates and shredder (particularly

Plecoptera: Gripopterygidae) densities were much

higher for native Nothofagus pumilio Krasser leaves

than for the leaves of introduced Monterrey pine

(Pinus radiata D. Don) in woodland streams in central

Chile. In Central Portugal, Abelho and Graça (1996)

found that leaf decomposition rates, and the richness

and densities of aquatic invertebrates, in stream

reaches with riparian zones dominated by deciduous

trees were higher than those in reaches surrounded by

Eucalyptus monocultures. Magoba and Samways

(2010) found that stream reaches bordered by native

vegetation or cleared of invasive alien trees (primarily

Acacia) had a higher richness of EPT and Odonata

(EPTO) taxa and density of adult odonates than

reaches lined by invasive alien trees in the Cape of

South Africa. The ingestion, growth, and survival rates

of shredders appear to be determined by the structural

and chemical characteristics of litter from different

plant species rather than by whether or not plants are

native or exotic (e.g., Going & Dudley, 2008).

Some studies have reported that scraper densities

decline with increasing human disturbance, presum-

ably because the effects of sediment deposition

override the effects of increased algal biomass or

because scrapers, which consume microalgae, cannot

handle or ingest the filamentous macroalgae often

promoted by high nutrient and light levels (Dudley

et al., 1986; Dudley, 1992; Burton et al., 2005).

Although microalgae (primarily diatoms) can grow as

epiphytes on macroalgae, many scrapers remove

diatoms from hard substrata and are ill-equipped to

deal with epiphytes. On the other hand, some collec-

tor-gatherer taxa, such as chironomids or baetid

mayflies, can remove epiphytes from macroalgae

and are abundant where filamentous algae proliferate
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(Dudley et al., 1986; Dudley, 1992). Collector-gath-

erer taxa are often abundant at moderately enriched

sites with abundant food sources (Ortiz & Puig, 2007),

but then decline at high levels of enrichment owing to

reductions in nighttime dissolved oxygen levels or to

the excessive loading of toxins (Resh and Grodhaus,

1983; Sánchez-Pérez et al., 2009). Most invertebrate

species are absent below WWTPs releasing large

quantities of organic matter because of low dissolved

oxygen concentrations, but invertebrate communities

recover downstream, showing a longitudinal succes-

sion of invertebrate species of increasing sensitivity to

low oxygen levels (Johnson et al., 1993; Prenda &

Gallardo-Mayenco, 1996; Ortiz et al., 2005, 2008).

Finally, collectors often reach highest abundances

below dams, where filter-feeders intercept plankton

flowing out of reservoirs and deposit feeders benefit

from high fine particulate organic matter (\1 mm,

FPOM) quality; however, shredders are almost absent

because of low coarse particulate organic matter

(CPOM) levels (Casas et al., 2000).

Stream macroinvertebrates also respond directly to

increases in temperature and to inputs of contami-

nants, such as metals, pharmaceutical products, bio-

cides, and other organic pollutants (Paul & Meyer,

2001; Muñoz et al., 2009; Ginebreda et al., 2010;

Dallas & Ketley, 2011; Hamon, 2011; Dallas &

Rivers-Moore, 2012). The effects of temperature

increases and pollutant inputs on the biota can be

multiple, from an additional physiological stress to the

biota to extirpation of sensitive species to selection for

tolerant species (Ricart et al., 2010), with a variety of

food web implications (Muñoz et al., 2009). An

extensive literature documents the effects of toxin and

nutrient inputs in wastewater effluent on invertebrate

populations and communities, with effluent concen-

trations as low as 5% altering macroinvertebrate

assemblages (Johnson et al., 1993; Prat & Munné,

2000; Ortiz & Puig, 2007; Grantham et al., 2012).

Muñoz et al. (2009) reported that concentrations of

some pharmaceuticals (anti-inflammatories, beta-

blockers) were positively related to the densities and

biomass of Chironomus L. spp. and oligochaetes, but

negatively related to other taxa, in the Llobregat River

of northeastern Spain. Burton et al. (2005) found that

EPT and non-chironomid Diptera richness was higher

and the relative abundances of oligochaetes and

Orthocladiinae (especially Cricotopus Wulp) lower

in natural streams than in channels receiving

wastewater effluent. Bollmohr & Schulz (2009)

reported that sensitive insect species, mainly mayflies

and caddisflies, were less abundant at a site containing

high concentrations of organophosphorus pesticides

associated with suspended sediment than at less

contaminated sites, particularly in the dry season, in

a South African med-river.

High salinity also can have a large effect on

invertebrate communities in some med-streams. For

example, taxon richness was low and densities of

chironomid larvae and ostracods were high in the

Hotham River (salinity 4.4–6 ppt) of southwestern

Australia (Bunn & Davies, 1992). In contrast, the

invertebrate community of the saline Blackwood

River was not influenced by salinity levels, suggesting

that its fauna was adapted to high salinities (Williams

et al, 1991; Kay et al., 2001). Hyporheic invertebrate

richness across 13 streams in southwestern Western

Australia was not correlated with salinity levels, but

there were significant changes in assemblage structure

with increasing salinity, with dominant taxa appearing

to be halotolerant (Boulton et al., 2007). In contrast,

some species, such as the endemic freshwater mussel

Westralunio carteri Iredale, have undergone consid-

erable range retractions associated with rising salinity

(Beatty et al., 2010).

Finally, exotic aquatic invertebrates, such as the

New Zealand mud snail [Potamopyrgus antipodarum

(J. E. Gray)], the Asiatic clam [Corbicula fluminea (O.

F. Müller)], the Louisiana red swamp crayfish (Proc-

amburus clarkia Girard), and others, as well as many

exotic fish, have been introduced into or invaded med-

rivers and are often associated with rivers altered by

human activity (Gil-Sánchez & Alba-Tercedor, 2002;

Riley et al., 2005; Brown et al., 2005a, b). Investiga-

tions of the effects of exotic species on the native biota

have produced results ranging from trivial to pro-

found, indicating that much more research is needed to

determine the characteristics of exotic species and

recipient communities which determine the impacts of

exotic species on recipient communities (Múrria et al.,

2008; Lowe et al., 2010; Klose & Cooper, 2012a, b).

Fish and amphibians

Owing to past isolation, high variation in flow

regimes, and frequent droughts, freshwater fish com-

munities in mediterranean climates are usually depau-

perate, but often with a high proportion of endemic
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species (Swift et al., 1993; Bianco, 1995; Economidis,

1995; Vila-Gispert et al., 2002; Lin & Ambrose, 2005;

Marchetti et al., 2006; Ferreira et al., 2007; Impson,

2007; Zogaris et al., 2009; Clavero et al., 2010; Marr

et al., 2010). Fish species richness in these regions has

been considerably augmented by the introduction or

invasion of exotic species, often associated with

reservoirs and altered flow regimes (Bianco, 1995,

1998; Economidis et al., 2000; Corbacho & Sánchez,

2001; Elvira & Almodóvar, 2001; Marchetti et al.,

2004; Innal & Erk’akan, 2006; Kara, 2011; Hermoso

et al., 2012). Most, but not all, studies in southern

California have reported a positive relationship

between the number of exotic fish species and

urbanization (Fig. 3c; Brown et al., 2005b; Lin &

Ambrose, 2005; Riley et al., 2005). Across California,

Marchetti et al. (2004) found that exotic fish species

distributions were related strongly to human-induced

changes to the landscape (agricultural and urban

development) and river systems (dams, diversions,

aqueducts). Currently, fish community composition in

urbanized areas of California varies greatly from site-

to-site, primarily attributable to sites of exotic species

introductions and limited fish dispersal powers

(Marchetti et al., 2006). In the Guadiana River system

in Spain, Corbacho and Sánchez (2001) reported that

the richness of native fish species declined and of

exotic fish species increased with increasing channel-

ization and river regulation. Similarly, the ten native

freshwater fish species in southwestern Australia,

including eight endemics, were found primarily at

wildland sites, but exotic fish species were mainly

observed at sites affected by human activity (Morgan

et al., 2003). In addition, endemic Mediterranean

Basin fish species have been introduced outside their

natural ranges with individual cases of hybridization

and genetic dilution (Bianco, 1998).

Clavero et al. (2010) reported that exotic species

and waterscape alterations (primarily water extrac-

tion) were the dominant threats to endemic species in

the Iberian Peninsula, central Italy, and parts of

northwestern Turkey, but that agricultural activity

and pollution were the major threats to endemic

species in the southern Balkan Peninsula and along the

Mediterranean eastern rim. Analyses at regional or

basin scales suggest that exotic species have had

negative effects on native species (Light & Marchetti,

2007; Hermoso et al., 2011, 2012). Other researchers

have argued that evidence for the magnitudes and

mechanisms of exotic fish species impacts on native

species is largely circumstantial and inconclusive

(Ribeiro & Leunda, 2012). In the Western Cape

Province of South Africa, the introduction of exotic

fish species, particularly piscivorous species like the

smallmouth bass (Micropterus dolomieu Lacepede),

has resulted in the decline and sometimes local

extirpation of native fish species (Clark et al., 2009;

Lowe et al., 2010; Woodford et al., 2010). Although

fish faunas in the med-regions of the world were

originally distinctive, there is increasing homogeni-

zation as native species dwindle and introduced

species become widespread and dominant (Clavero

& Garcı́a-Berthou, 2006; Marr et al., 2010; Clavero &

Hermoso, 2011; Hermoso et al., 2012).

The life cycles and behavior of native aquatic

vertebrates are well adapted to the habitats and

seasonal flow patterns found in med-streams, whereas

many introduced species are not, perhaps accounting

for their absence in wildland streams and their

dominance in streams altered by human activity

(similar to Meffe, 1984). The distribution of aquatic

vertebrate species also may be affected by the

construction of in-stream barriers such as dams, road

crossings, bridges, and culverts, which inhibit the

movement of native fish species. Such barriers prevent

the dispersal of fish to areas where their local

populations have been extirpated by disturbances

(e.g., fire, toxin or oil spills) (Verkaik et al., 2012)

and block the migrations of migratory species (e.g.,

the anadromous salmonids of California, the catadro-

mous eels of Spain, Portugal, and North Africa)

(Kettle et al., 2011; Moyle et al., 2011; National

Marine Fisheries Service, 2012). The construction of

dams appears to be the major cause of severe declines

or local extinctions in migratory fish populations in

med-regions (Innal & Erk’akan, 2006; Moyle et al.,

2008). In a review on the rapid loss of most freshwater

fish species from California, Moyle et al. (2011)

concluded that the greatest threats were exotic species,

agricultural development, and dams.

Stream fish often show sensitive physiological,

demographic, and community responses to inputs of

contaminants, including metals, biocides, PCBs,

PAHs, pharmaceuticals, and many others, with fish

often being used as sentinel species for monitoring

pollutant loads (Hamon, 2011; Petrovic et al., 2011).

Balik (1995), Bacha & Amara (2007), and Vila-

Gispert et al. (2002) identified pollution as a major
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influence on freshwater fish communities in Turkey,

Algeria, and Spain, respectively, whereas fish assem-

blage structure in an Israeli stream was related to

organic loads (Gafny et al., 2000). Fish also respond to

changes in the concentrations of major ions engen-

dered by land use alterations. The forested tributaries

of the lower Blackwood River in southwestern

Western Australia are fed by freshwater springs and

harbor populations of four of the six freshwater

species endemic to this system, whereas the saline

upper tributaries and main channel are dominated by

invasive mosquitofish (Gambusia holbrooki Girard),

followed by several estuarine species and two native

species (the cobbler Tandanus bostocki Whitley and

the western minnow Galaxias occidentalis Ogilby)

(Morgan et al., 2003; Beatty et al., 2006). Salinity

tolerances for one exotic and three endemic fish

species closely mapped the distributions of these fish

species within this catchment and suggested that its

endemic fish fauna is threatened by projected

increases in salinity associated with land use changes,

increased groundwater pumping, reduced groundwa-

ter inputs, and climate change (Beatty et al., 2010,

2011).

Amphibian communities also show substantial

levels of endemicity in many med-regions (Turner &

de Villiers, 2007; Vidal et al., 2009; Pascual et al.,

2011) and have been affected by habitat destruction

and degradation, alterations to the hydrological cycle,

pollution, frequent fires, and the introduction of exotic

plant and animal species (Turner & de Villiers, 2007;

Lillo et al., 2011; Mokhatla et al., 2012). Although

many amphibian species are tied to temporary and

permanent ponds and other wetlands, some are found

in or along streams and rivers (such as the ghost and

stream frogs of South Africa (Heleophryne Sclater,

Strongylopus Tschudi), with stream breeding species

being among the most threatened (Turner & de

Villiers, 2007; Mokhatla et al., 2012). Riley et al.

(2005) reported that native amphibian species were

common in wildland streams but that most were

greatly reduced in streams draining urban areas in

southern California. Amphibian assemblages may be

particularly sensitive to land use changes because they

are directly affected by perturbations in both terrestrial

and aquatic environments (Ficetola et al., 2011). Some

exotic amphibian species, such as the American

bullfrog (Lithobates catesbeianus Shaw) and the

African clawed frog (Xenopus laevis Daudin), have

invaded several med-regions with potentially impor-

tant effects on native amphibian species (Lobos &

Measey, 2002; Lillo et al., 2011).

Land use and climate change

Climate change models indicate that many med-

regions will become warmer and drier, with an

increase in the frequency, intensity, and duration of

droughts (Burke et al., 2006). More specifically,

Mediterranean Europe (e.g., Lehner et al., 2006),

southwestern North America (Seager et al., 2007), the

eastern Mediterranean rim (Chenoweth et al., 2011),

central Chile (Urrutia et al., 2011), and southwestern

West Australia (e.g., Mpelasoka et al., 2008; Van

Ommen & Morgan, 2010) are projected to receive less

rainfall and undergo an increase in drought severity.

Although invertebrates in med-streams may extend

their ranges to higher latitudes with warming (Bonada

et al., 2007a, b), invertebrates in streams in south-

western Australia and southwestern Africa may be

particularly vulnerable because there are no adjacent

lands at higher latitudes (Davies, 2010; Dallas &

Rivers-Moore, 2012). Furthermore, med-stream inver-

tebrates which are cold or cool stenotherms, occupy-

ing streams at high elevations or fed by springs, may

become locally extirpated as temperatures increase

and groundwater inputs decrease (Dallas & Ketley,

2011; Dallas & Rivers-Moore, 2012). The largest

effects of climate change on biological communities in

med-streams and rivers likely will be mediated

through effects on hydrological regimes which have

already been altered by dams, water extraction, and

land use changes. Increases in the frequency and

duration of droughts will alter habitat and the densities

of many stream species unless flows are artificially

maintained (Bêche et al., 2009; Hermoso & Clavero,

2011; Lake, 2011; Moyle et al., 2011). Because of a

drying climate and growing human populations in

med-regions, competition between humans and in-

stream resources for water are destined to increase

(Gasith & Resh, 1999). Finally, land use changes may

affect climatic trends directly. For example, the loss of

native vegetation will reduce surface roughness in

southwestern Western Australia, decreasing the inter-

ception of clouds and reducing regional precipitation

(Pitman et al., 2004; Kala et al., 2011).
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Similarity of the effects of land use changes

on rivers and streams in mediterranean

and other systems

Many of the effects of land use change on streams and

rivers in med-regions, as reviewed above, are similar

to those observed in other climatic regions of the world

(Paul & Meyer, 2001; Allan, 2004; Walsh et al., 2005;

Johnson & Horst, 2010; Feld et al., 2011; Clapcott

et al., 2012). The effects of land use change on

ecological communities, then, are likely to differ more

in magnitude than kind in mediterranean compared to

other climates. Because climate, by definition, distin-

guishes mediterranean from other regions, any differ-

ences between mediterranean and non-mediterranean

systems will have their roots in climatic conditions. In

general, differences in the impacts of land use changes

on mediterranean versus other streams ultimately

stem from the benign thermal environment and high

seasonal and interannual variation in runoff and flow

(Gasith & Resh, 1999). The benign med-climate has

fostered a long history of human–environment inter-

actions, continued human population growth, and

large-scale changes in land use and cover (Hooke,

2006; Underwood et al., 2009; Sirami et al., 2010). In

fact, some med-shrublands and grasslands may be a

product of past human alterations to landscapes and

the high diversity and endemicity of some groups may

have been generated and maintained by a mosaic of

human-induced disturbances (Sirami et al., 2010;

Gammage, 2011). Because most med-regions have

had long periods of aridity and isolation from other

regions, they contain many endemic species adapted to

seasonal wet and dry periods and to supra-seasonal

perturbations (fires, extreme floods, sustained

droughts). Human activity has extensively modified

most lowland med-areas and has encroached into

some foothill and montane areas, producing intense

and frequent fires and high erosion rates.

Based on our review, land use changes have

exaggerated hydrological variation in med-rivers.

Land use changes increase peak flood flows, decrease

lag times between precipitation events and runoff,

enhance the sharpness of hydrograph peaks, and

decrease dry season flows (Konrad & Booth, 2005).

Although organisms in med-streams are resilient to

natural flow variation (e.g., Gasith & Resh, 1999,

Acuña et al., 2005; Magalhães et al., 2007; Artigas

et al., 2009; Boix et al., 2010; Gaudes et al., 2010),

land use changes create more intense hydrological

disturbance, perhaps exceeding the capabilities of

stream organisms for recovering from intense floods

or, especially, from prolonged periods of drying

(Magalhães et al., 2007; Bêche et al., 2009; Lake,

2011). As for streams in other climates, however,

flows can be augmented by aseasonal dam releases,

return flows from irrigation, or sewage treatment

plants, which may allow exotic species to become

established and expand (Riley et al., 2005).

The semi-arid climate and large human populations

of med-regions have created intense competition

between humans and natural environments for clean

water (Gasith & Resh, 1999). Numerous dams have

been built on rivers to store water during wet seasons for

use in dry seasons and dry years, resulting in a scarcity of

natural, free-flowing rivers in many med-regions.

Furthermore, because of high human demand for water,

the hydrological cycle has been extensively modified by

surface and groundwater abstractions, water diversions,

inter-basin transfers, and water conveyance facilities. In

general, the amount of reservoir habitat has increased,

the timing, magnitude, and frequency of downstream

flows have been changed, and species have been

transported to non-native habitats, often reducing native

species and facilitating the establishment and expansion

of exotic species (Marchetti et al., 2004, 2006; Clavero

& Hermoso, 2011; Fig. 1). For example, low flows in

winter can create frequent and severe unnatural winter

droughts in stream channels below dams which ‘‘may be

the principal threat for the conservation of freshwater

biodiversity’’ in some streams (Belmar et al., 2010), and

aquatic habitat is destroyed by dams which cause

prolonged periods of low flow or drying in the dry

season. The extraction of water from med-streams

which produces unnaturally low flows can simplify the

structure of invertebrate (e.g., Boix et al., 2010) and fish

assemblages (e.g., Benejam et al., 2010; Clavero et al.,

2010). Alterations to riverscapes and landscapes often

proceed hand-in-hand, such as where dams protect

downstream areas from flooding thereby, often in

tandem with the construction of levees or other struc-

tures, allowing human development on downstream

floodplains. The construction and operation of dams

have particularly severe effects on migratory species by

blocking migrations and changing flow patterns (Moyle

et al., 2008).

With the exception of Australia, most med-rivers

and streams have their headwaters in mountainous
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areas. The steep slopes and highly erodible soils of

many med-regions, combined with intense fall or

winter rainfall, often produce high erosion rates and

increased sediment inputs to streams. Milliman and

Farnsworth (2011), using a worldwide database of

1,534 rivers, reported that the highest concentrations

of suspended sediments tended to be located in

subtropical arid to semi-arid regions, including those

in med-regions. For example, suspended sediment

concentrations averaged 45,000 mg l-1 in the Miliane

River (Tunisia) and 15,000 mg l-1 in the Santa Clara

River (California, USA), compared to a global average

of 500 mg l-1. Small rivers draining into the Medi-

terranean Sea had high sediment concentrations before

dams were built, and the construction of dams on

many med-rivers has reduced sediment fluxes in

downstream reaches (Milliman & Farnsworth, 2011).

Land use changes exacerbate erosion and sedimen-

tation processes, sometimes clogging and widening

stream channels (Booth, 1990). High flows and

sediment transport during floods scour substrata and

abrade organisms, reducing algal, invertebrate, and

fish populations, whereas increased sediment deposi-

tion during falling hydrograph limbs can smother

coarse substrata, reducing oxygen penetration, cover-

ing and burying organisms, and decreasing habitat

heterogeneity. Conversely, by covering landscapes

with impervious surfaces, flood peaks are heightened

while sediment inputs are reduced, resulting in

downcutting and bank erosion in soil-lined channels

(Booth, 1990; Konrad & Booth, 2005). In many

developed areas, rivers and streams are channelized

and lined with concrete which eliminates most natural

habitat, severely reducing species richness (Burton

et al., 2005).

High human population densities and/or alterations

of landscapes and rivers in mediterranean and other

climatic regions have increased contaminant loading

to rivers and streams, with effects on organisms

ranging from enrichment to lethality. Evidence from

other climatic regions indicates that nutrient-enriched

organic matter derived from sewage may increase

primary consumer productivity and shift communities

to shorter food chains dominated by fast-growing

species (Singer & Battin, 2007). On the other hand,

excessive organic matter inputs can deplete oxygen

and inputs of metals, biocides, pharmaceuticals, PCPs,

and a variety of additional organic compounds can

have a variety of sublethal and lethal effects on stream

organisms (Johnson et al., 1993; Muñoz et al., 2009;

Ginebreda et al., 2010; Hamon, 2011; Petrovic et al.,

2011). Although such effects should be similar in

mediterranean and non-mediterranean regions, the

effects of these contaminants on organisms may be

exacerbated by mediterranean flow regimes. Contam-

inant loading is usually associated with winter floods

with diluted contaminant concentrations, but contam-

inants may become concentrated during low or

intermittent flow periods (Gasith & Resh, 1999;

Guasch et al., 2010). Because contaminant-laden

return flows or sewage effluent may account for most,

if not all, of the discharge in some med-rivers during

the dry season, pollutant concentrations may become

high at these times, with sublethal or lethal effects on

stream organisms (Prat & Munné, 2000; Burton et al.,

2005; Ortiz et al., 2005, 2008; Ortiz & Puig, 2007;

Klose et al., 2009; Petrovic et al., 2011).

Recent analyses allow comparisons of nutrient

export from mediterranean and non-mediterranean

catchments. As reported above, nitrate yields from

med-catchments ranged from 3 to 829 mol ha-1 y-1

(excluding subcatchments with greenhouse agricul-

ture). Lewis (2002) reported that nitrogen export from

19 US catchments with natural land cover and low to

moderate atmospheric nitrate deposition averaged

39 mol ha-1 y-1; Campbell et al. (2000) found that

nitrate export from 15 upland, forested catchments in

New England ranged from 7 to 171 mol ha-1 y-1;

and Sickman et al. (2003) reported average nitrate

yields of 49 mol ha-1 y-1 for 15 Sierra Nevada sites

and 79 mol ha-1 y-1 for 13 Rocky Mountain sites. In

a review of nitrogen export from 946 river basins

throughout the world, Alvarez-Cobelas et al. (2008)

found that annual nitrate export ranged from 0.01 to

7,558 mol ha-1 y-1, with croplands exporting more

nitrogen than pastures or forests and xeric watersheds

exporting less nitrogen than mesic watersheds. Based

on a review of 685 river catchments throughout the

world, Alvarez-Cobelas et al. (2009) reported that

human population density and runoff were the major

predictors of phosphorus export. They reported that P

export was most variable in mediterranean and

temperate shrublands and grasslands, and speculated

that the wide variety of habitats and long history of

land use change may be sources of this variability.

Most nutrient loading is associated with high runoff

from drainage basins during floods. After wet seasons

with high flows, California streams often have spring
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blooms of green filamentous algae (e.g., Cladophora),

presumably because of increased nutrient loading and

decreased grazing and in-stream shading, and are

dominated by vagile, opportunistic invertebrate taxa

which quickly colonize denuded substrata, such as

baetid mayflies, blackflies, and chironomids (Cooper

et al., 1986; Feminella & Resh, 1991). During the dry

season, med-streams are characterized by long periods

of low or intermittent flow when temperatures,

photosynthetic and respiration rates, biological oxy-

gen demand, plant and microbial biomass and pro-

duction, and silt deposition are all high, nutrient

dilution is reduced, and detritus and algae can

accumulate to high levels, provided allochthonous

inputs or nutrient and light levels are sufficient (Gasith

& Resh, 1999). Algal biomass can be particularly high

in open rivers receiving augmented nutrient inputs

from return flows or sewage treatment plants (Prat &

Munné, 2000; Klose et al., 2009). Low or intermittent

flows in open rivers combined with high nutrient

inputs can fuel algal blooms which result in super-

saturated oxygen levels in the daytime, owing to high

algal photosynthetic rates, and depleted dissolved

oxygen levels at night, owing to algal and microbial

respiration, sometimes to levels which are deleterious

to fish and invertebrates (Klose et al., 2012). Many dry

season conditions stemming from low flows will

persist through the winter into the following spring in

perennial streams during droughts, so human impacts

on sedimentation, nutrient loading, and riparian veg-

etation will continue to accumulate in those years.

Open, polluted, downstream reaches of med-rivers

often accumulate high growths of algae or aquatic

plants across drought years or below dams (Klose

et al., 2009). Except where dams reduce flood flows,

this accumulated primary producer biomass is

exported downstream during subsequent floods in

high rainfall years.

As in many arid and semi-arid regions, riparian

vegetation and canopy cover play an especially

important role in ameliorating temperature extremes,

providing carbon sources and cover, stabilizing banks,

and filtering sediment and contaminants out of upland

runoff in med-streams (Naiman & Décamps, 1997;

Sabater et al., 2000, 2006; Sponseller et al., 2001; Roy

et al., 2007). Because humans have destroyed,

degraded, fragmented, and altered the composition

of riparian habitat in many med-regions (Corbacho

et al., 2003), they have changed the cycling of

nutrients and processing of organic matter, as well as

modified the composition, biomass, and productivity

of communities in med-streams. Where humans

reduce riparian cover and promote exotic plant

species, they affect the quantity, quality, and timing

of allochthonous inputs to streams, making microbial

composition, biomass, and production and the densi-

ties of invertebrate shredders sensitive indicators of

riparian perturbations (Moline & Poff, 2008).

Because med-ecosystems exhibit high levels of

endemicity, human impacts on these systems have the

potential to extirpate native species and reduce local,

regional, and global native biodiversity (Clavero et al.,

2010). Due to the ubiquity and intensity of human

impacts on med-streams and rivers, many endemic

species in med-ecosystems are threatened (Moyle

et al., 2011). On the other hand, overall diversity in

med-regions may remain high because of the intro-

duction or invasion of exotic species, which benefit

from the construction of reservoirs, changes to hydro-

logical regimes, enrichment, and other human-induced

changes to riparian and aquatic environments (March-

etti et al., 2004, 2006; Hermoso et al., 2011, 2012).

In summary, although human-induced changes to

hydrological, geomorphological, and hydrochemical

conditions have had similar effects on mediterranean

and non-mediterranean stream and river ecosystems,

human impacts on med-ecosystems may be more

extensive and intensive because of a long history of

human settlement and high levels of landscape and

river alteration. Land use impacts on med-rivers and

streams are exacerbated by high variation in flow

regimes, leading to greater flood and drought distur-

bances, increased erosion and sedimentation,

increased contaminant loading, higher pollutant con-

centrations during low-flow periods, and enhanced

impacts on riparian vegetation. The extensive destruc-

tion and alteration of med-environments may reduce

native species, which were adapted to natural envi-

ronmental conditions, but favor exotic species, which

thrive under altered conditions (Hermoso et al., 2012).

Because aquatic faunas have high levels of endemicity

in med-regions, these multifarious, intensive, and

ubiquitous impacts of humans on mediterranean

aquatic environments have repercussions for the

survival of species and global biodiversity. Land use

and climate changes are proceeding in tandem, so

future research needs to address how predicted climate

change will interact with land use changes to affect
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natural ecosystems and their ability to deliver ecosys-

tem services (Underwood et al., 2009). Because a

number of native riverine species, such as the southern

California steelhead, are near their thermal range

limits, increasing temperatures and decreasing flows

may extirpate such species from some med-regions

(Dallas & Rivers-Moore, 2012; National Marine

Fisheries Service, 2012). The combination of climate

and land use changes, then, are likely to have far-

reaching effects on ecological communities in regions

with med-climates (Bêche et al., 2009; Klausmeyer &

Shaw, 2009).

Management and future directions

From this review, it becomes apparent that land use

changes, and associated alterations of hydrological

regimes, hydrochemistry, aquatic habitat, and sedi-

ment mobilization, transport, and deposition, have

profound, extensive impacts on aquatic-ecosystems

which will accelerate in the future. Because the

impacts of land use changes on aquatic ecosystems

primarily address issues of environmental assessment,

management, and policy, we believe that future

research should focus on providing information needed

to make effective management and policy decisions.

Biomonitoring

Owing to a variety of directives, such as the Clean

Water Act in the US, the Water Framework Directive

in Europe, and the National Water Act in South Africa,

there has been an explosion of interest and efforts in

stream biomonitoring in med-regions (Iliopoulou-

Georgudaki et al., 2003; River Health Programme,

2003; Dallas & Day, 2007; Magalhães et al., 2008;

Mazor & Schiff, 2008; Hermoso et al., 2009, 2010;

Poquet et al., 2009; Ode et al., 2010; Aparicio et al.,

2011; Friberg et al., 2011; Mazor et al., 2011; Munné

& Prat, 2011). Because of the distinctive characteris-

tics of med-streams and rivers, however, standard

biomonitoring practices will need to be modified for

application to med-ecosystems (Gasith & Resh, 1999;

Alvarez-Cobelas et al., 2005). Of particular impor-

tance for biomonitoring and management efforts in

med-regions is a consideration of the high temporal

and spatial variation in the physical, chemical, and

biological characteristics of streams and rivers.

The studies reviewed above show that many species

of microbes, algae, plants, and animals in med-

ecosystems show sensitive responses to land use

changes, so the choice of biological metrics for

assessing human impacts on these systems often

depends on logistical considerations, such as the ease

and cost of sampling, identification, and analysis

(Bonada et al., 2006; Resh, 2008). Beyond measure-

ments of hydrological and hydrochemical parameters,

most monitoring efforts have concentrated on macr-

oinvertebrate assemblages, with some attention to

algae and fish (Rosenberg & Resh, 1993; Fitzpatrick

et al., 2001; Brown et al., 2005a, b; Bonada et al.,

2006; Hermoso et al., 2010; Yates and Bailey, 2010,

2011). There have been many calls, however, to

expand the repertoire of groups and variables moni-

tored, including more emphasis on process variables,

such as primary production, benthic respiration,

leaf decomposition, fungal sporulation, and nutrient

uptake rates. By increasing the repertoire of stream

characteristics examined, managers will have

increased confidence in the robustness of conclusions

about human impacts across a range of land use and

natural gradients (Bunn et al., 1999; Hughes et al.,

2009; Walters et al., 2009; Larsen et al., 2010; Peru &

Dolédec, 2010; Clapcott et al., 2012). Regardless of

the biological group examined, however, most bio-

monitoring approaches rely on the characterization of

assemblages in reference water bodies, which are

minimally affected by human impacts (reviewed in

Carter & Fend, 2005). Because many med-ecosystems

have been extensively modified by humans, the search

for reference systems can become problematic, often

leading to the use of systems that have had some level

of human impact. In addition, many med-ecosystems

are extensively modified at lower, flatter elevations,

but remain relatively undisturbed at higher, steeper

elevations (Underwood et al., 2009). Because most

river systems show natural changes in physical,

chemical, and biological characteristics from their

montane headwaters to their lowland mouths, it may

not be appropriate to use communities at high

elevations as references sites for perturbed lowland

sites (Fend et al., 2005). The major approaches for

dealing with these problems are to show that elevation,

and associated changes in stream physical factors, do

not influence the variables of interest, to target

reference sites whose natural features are matched to

those in disturbed sites, or to account for abiotic
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effects statistically (Dallas & Day, 2007; Yates &

Bailey, 2010; Munné & Prat, 2011).

Similar considerations apply to the temporal

dimension (Mazor et al., 2009). Because med-streams

are characterized by high variation in environmental

conditions related to flow, biomonitoring metrics

should be tailored to particular seasons (wet vs. dry

season) or consider hydrological conditions (wet vs.

dry years, perennial vs. intermittent vs. ephemeral

streams) (Acuña et al., 2005; Bêche et al., 2006;

Bonada et al., 2007a, b, 2008; Sánchez-Montoya et al.,

2007; Feio et al., 2010; Munné & Prat, 2011).

Monitoring programs should be conducted over long

time periods to establish the range of or trends in

natural variability and to examine shifting differences

between perturbed and matched reference systems,

particularly given the complexities of shifting base-

lines (Bêche & Resh, 2007; Lawrence et al., 2010).

Over longer time scales, the use of reference systems

can be compromised by legacy effects, given the long

time periods over which med-rivers have been altered

by human activity and recent switches in land use,

such as the abandonment of farming, plantation, and

grazing lands in southern Europe (Harding et al., 1998;

Sirami et al., 2010). Insofar as land use histories can be

reconstructed, they can allow an evaluation of past

legacies and current effects of land use on ecological

systems (Maloney & Weller, 2011).

A particular focus of many biomonitoring efforts is

the development and application of one or a few

indices of the status (or health or integrity) of river

ecosystems. Common metrics include indices of biotic

integrity (IBI) which incorporate information on

multiple bioindicators and RIVPACs observed/

expected (O/E) measures, where relationships

between biological and abiotic variables at reference

sites are used to predict biological variables at

perturbed sites, with subsequent comparisons to

observed data (Wright et al., 1984; Ode et al., 2005;

Poquet et al., 2009). Although IBI ı́ndices and O/E

models are useful in presentations to governmental

agencies and the public because they distill complex

data into simple messages, they have been criticized

because it is not clear if they add appreciably to

information already contained in simple, biologically

interpretable metrics (e.g., EPT richness), weighting

procedures are often arbitrary, statistical properties are

often obscure, and the underlying biological data are

hidden (Norris & Georges, 1993; Carter & Fend, 2005;

Downes, 2010; Friberg et al., 2011; King et al., 2011;

Yates & Bailey, 2011). From a scientific viewpoint,

however, it is useful to present at least some of the

underlying biological data to further our knowledge of

ecological systems, to refine biomonitoring metrics,

and to trace the distributions and abundances of

specific taxa given concerns about sensitive species

and biodiversity losses. New approaches to biomoni-

toring make extensive use of multivariate or agglom-

erative statistical techniques and comprehensive

analysis of the responses of individual taxa or groups

to perturbations, both assessing the status of sampled

sites and delineating the taxa or groups responsible for

responses (King et al., 2011; Clapcott et al., 2012).

Rather than focus on composite indices, we encourage

the inclusion of biological data in scientific papers,

such as data on specific taxa or groups, as well as the

further development of on-line repositories of bio-

monitoring data (e.g., those used in Sabo et al. 2010a,

b). Furthermore, although it is possible to construct

biotic indices which are indicative of human perturba-

tions which are based on sampling a single habitat (e.g.,

riffles; Rehn et al., 2007), a comprehensive description

of species composition and diversity will require the

sampling of all major habitats (e.g., pools and rifles;

stone vs. vegetated vs. fine sediment habitat) because

of habitat-specific differences in the faunas of med-

streams (Dallas, 2007; Bonada et al., 2008).

Future directions: pinpointing the causes of land

use effects on the stream biota

Although it is clear that land use changes, and

associated changes in hydrological regimes and pol-

lution, alter stream biological communities, it is not

always clear why they have these effects given the

complex pathways of interaction among processes and

factors which affect the stream biota at different scales

of space and time (Fig. 4; Burcher et al., 2007).

Nevertheless, knowledge of the pathways whereby

land use or climate changes affect stream communities

is often necessary for designing effective mitigation or

restoration measures, particularly because different

taxa show different responses to different perturba-

tions (Downes et al., 2002; Downes, 2010; Lawrence

et al., 2010). Although manipulative experiments

often provide the clearest evidence for the effects of

specific perturbations on ecological communities

(Townsend et al., 2008; Lange et al., 2011), they can
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become difficult to conduct, interpret, and replicate if

more than a few factors are manipulated and extrap-

olations from the results of experiments in small areas

to landscape scales are problematic (Cooper & Bar-

muta, 1993; Englund & Cooper, 2003). In some cases,

the strength of our inferences about the specific factors

mediating land use effects on biological variables can

be improved by monitoring and survey designs which

follow the rudiments of rigorous experimental

approaches, including a priori hypotheses, appropriate

control sites which primarily differ from other sites in

one factor (as opposed to reference sites which may

differ in many ways from perturbed sites), and the

random selection of sampled sites within each ‘‘treat-

ment’’ (Downes et al., 2002; Downes, 2010). Although

rarely conducted, follow-up work after development

projects have been completed could test the accuracy

of our models (environmental impact hypotheses or

predictions), providing knowledge for determining

and predicting the responses of systems to future

human perturbations (Kondolf et al., 2007). Detailed

experimental and descriptive information on the levels

and interactions among abiotic and biotic ecosystem

components can allow the construction of models,

which both represent the systems of interest and allow

prediction of the effects of specific perturbations. Data

on the covariance of system components can be used

to delineate the strengths of pathways of interaction

among those components (e.g., through path analysis,

structural equation modeling) (Grace, 2006; Light &

Marchetti, 2007; Hermoso et al., 2011, 2012); how-

ever, these approaches are still correlational and

require verification with appropriate hypothesis-dri-

ven analyses, long-term observations of drivers and

responses, or manipulations. As in most branches of

ecology, then, any examination of the effects of

specific perturbations on ecological systems requires a

combination of experimental, analytical, modeling,

and observational approaches so that systems can be

described, parameter estimates can be refined, and

predictions can be made and tested using experiments

and observations at appropriate scales.

Scale is a particularly important issue in analyses of

land use impacts on ecosystems because different

perturbations, processes, and responses operate at

different scales (Allan and Johnson, 1997; Allan et al.,

1997; Cooper et al., 1998; Townsend et al., 2004).

Correlational analyses, for example, indicate that the
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effects of land use patterns on stream nutrient and

sediment concentrations often operate at large drain-

age basin scales, particularly during the wet season,

whereas riparian influences on light levels and leaf

litter inputs or WWTP impacts on nutrient and algal

concentrations often are apparent at much more local

scales (Sponseller et al., 2001; Busse et al., 2006;

Klose et al., 2009, 2012). Although studies have

examined the effects of the scale of analysis on land

use influences on river systems (Fitzpatrick et al.,

2001; Sponseller et al., 2001; Wang et al., 2001;

Strayer et al., 2003; Townsend et al., 2003, 2004; Pan

et al., 2004; McBride & Booth, 2005; Urban et al.,

2006), it is apparent that many more studies need to be

done in med-ecosystems to delineate the processes

which drive land use impacts at different scales of

space and time (e.g., Fend et al., 2005).

Land use impacts are also spatially variable, with

varying intensities and extents in different parts of

drainage basins and between riparian and upland zones

(King et al., 2005; Urban et al., 2006). Future research in

med-ecosystems could address the effects of the spatial

configuration of land use patterns on rivers (Sponseller

et al., 2001; Strayer et al., 2003; Fend et al., 2005;

McBride & Booth, 2005; Peterson et al., 2011). Because

the inputs of sediment, nutrients, and other contaminants

to streams are intimately related to the routing and

magnitude of water flows through landscapes, spatially

explicit eco-hydrological models have considerable

potential for deciphering patchy land use effects on

streams (Tague et al., 2009; Walsh & Kunapo, 2009).

Future directions: management tools and stream

restoration

Managers and policy makers in med-regions have

many tools or measures for preventing or mitigating

the effects of land use changes on stream and river

ecosystems. These measures include:

• zoning ordinances, land use restrictions, and the

elimination of inappropriate subsidies to prevent

development in sensitive areas,

• restrictions and treatments to reduce the use or

inputs of contaminants,

• water management practices which provide appro-

priate river flows,

• policies and practices which protect or restore

native vegetation and in-stream habitat.

Although studies in other regions have examined

the effects of a variety of management practices on

streams and rivers, few have examined their impacts

on lotic ecosystems in med-regions. Although it is

apparent that WWTP discharge affects river organ-

isms through toxin and nutrient inputs, there have been

few studies on how differences in sewage treatment

levels (primary, secondary, and tertiary treatment) or

storm water treatment (e.g., the use of bioswales or

other managed wetlands) affect receiving water bodies

in med-regions. Furthermore, determinations of max-

imum daily loads for contaminants require knowledge

of the effects of these contaminants on biological

resources and on the sources, routing, and loading of

contaminants over a number of years. In general, long-

term monitoring is necessary to detect trends and

sources of degradation given high interannual hydro-

logical variation. The failure of extensive manage-

ment efforts to mitigate land use effects on aquatic

ecosystems suggests that we are a long way from

effectively modeling and controlling the impacts of

human perturbations on ecosystems (Summers et al.,

2001; Keipert et al., 2008).

New and sometimes large dams are still being

planned and constructed, especially for hydropower

generation, eliciting concerns about their social and

environmental impacts. In cases where dams outlive

their usefulness, owing to sediment infilling and

infrastructural deterioration, there is increasing inter-

est in removing dams to restore riverine ecosystem

structure and function. Although hundreds of dams

have been removed in the upper midwestern and

northeastern US (Stanley & Doyle, 2003), most dam

removal plans for med-regions are in their early

stages. Furthermore, because of the crucial importance

of water supplies in these regions, ongoing conflicts

among different users, stakeholders, citizens’ organi-

zations, and governmental agencies over the construc-

tion, management, or possible removal of dams,

specifically, and over the use and distribution of water

resources, in general, are inevitable.

Finally, considerable funds and efforts have been

directed to stream and river restoration projects, often

involving the removal of exotic riparian plants,

revegetation, addition of coarse elements for in-stream

cover and habitat, installation of fish ladders, re-

contouring of banks and channels to resemble more

natural configurations, and many other measures to

produce more natural flow and geomorphological
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conditions and increased habitat heterogeneity (Kon-

dolf et al., 2001; Purcell et al., 2002; Bernhardt et al.,

2005; Feld et al., 2011). In many cases, it appears that

restoration efforts are conducted at too small a scale to

be effective (Wang et al., 2003; Wohl et al., 2005; Roy

et al., 2006; Bernhardt & Palmer, 2011; Herbst et al.,

2012). Often restoration projects arise in response to

local pressures without attention to priority planning at

catchment scales. Restoration projects often do not

have clear targets and do not include post-treatment

monitoring programs, although such data are neces-

sary to determine the effectiveness of restoration

measures and to refine approaches for restoring river

ecosystems to more natural conditions (Palmer et al.,

2005; Palmer & Allan, 2006; Bernhardt & Palmer,

2007; Kondolf et al., 2007). The evaluation of the

impacts of restoration projects, specifically, and of

land and water management practices, in general, on

river ecosystems constitutes a critical area for future

research, guiding practice, policy, and adaptive man-

agement efforts (Booth et al., 2004; Kondolf et al.,

2007; Feld et al., 2011).

Although it is clear that there are severe, pervasive

impacts of land use changes and water development on

stream and river systems in med-regions, these

impacts are likely to increase given continuing

population growth, urbanization, agricultural devel-

opment, and the construction of tourist facilities and

projected changes in climate (Underwood et al., 2009).

Med-ecosystems have become a flashpoint for chart-

ing a course which balances sustainable resource use

and the protection or restoration of native biodiversity.
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González, E., E. Muller, B. Gallardo, F. A. Comı́n & M. Gon-
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Grantham, T. E., M. Cañedo-Arguelles, I. Perree, M. Riera-

devall & N. Prat, 2012. A mesocosm approach for detecting

stream invertebrate community responses to treated

wastewater effluent. Environmental Pollution 160: 95–102.

Grossman, G. & J. Sabo, 2010. Incorporating environmental

variation into models of community stability: examples

from stream fish. American Fisheries Society Symposium

73: 407–426.

Guasch, H., A. Serra, N. Corcoll, B. Bonet & M. Leira, 2010.

Metal ecotoxicology in fluvial biofilms: potential influence

of water scarcity. In Sabater, S. & D. Barceló (eds), Water
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Peru, N. & S. Dolédec, 2010. From compositional to functional

biodiversity metrics in bioassessment: a case study using

stream macroinvertebrate communities. Ecological Indi-

cators 10: 1025–1086.

Peterson, E. E., F. Sheldon, R. Darnell, S. E. Bunn & B.

D. Harch, 2011. A comparison of spatially explicit land-

scape representation methods and their relationship to

stream condition. Freshwater Biology 56: 590–610.

Petrovic, M., A. Ginebreda, V. Acuña, R. J. Batalla, A. Elosegi,

H. Guasch, M. L. de Alda, R. Marce, I. Muñoz, A. Navarro-
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Ricart, M., H. Guasch, D. Barceló, R. Brix, M. H. Conceição, A.

Geiszinger, M. J. L. de Alda, J. C. López-Doval, I. Muñoz,
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