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Tracking and forecasting ecosystem
interactions in real time

Ethan R. Deyle1, Robert M. May2, Stephan B. Munch3 and George Sugihara1

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
2Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
3National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, CA, USA

Evidence shows that species interactions are not constant but change as the

ecosystem shifts to new states. Although controlled experiments and model

investigations demonstrate how nonlinear interactions can arise in principle,

empirical tools to track and predict them in nature are lacking. Here we

present a practical method, using available time-series data, to measure and

forecast changing interactions in real systems, and identify the underlying

mechanisms. The method is illustrated with model data from a marine meso-

cosm experiment and limnologic field data from Sparkling Lake, WI, USA.

From simple to complex, these examples demonstrate the feasibility of quan-

tifying, predicting and understanding state-dependent, nonlinear interactions

as they occur in situ and in real time—a requirement for managing resources

in a nonlinear, non-equilibrium world.
1. Introduction
A particularly challenging aspect of ecological interactions is that they are not

generally static. Rather, they are state-dependent (i.e. nonlinear) and change

as ecosystem factors shift: e.g. fish populations show sensitivity to oceano-

graphic conditions that increases when populations decline [1]; competition

among small desert mammals varies with rainfall [2,3]; predation on insect her-

bivores changes with vegetation structure [4] and tadpole competitors suppress

feeding in the presence of predators [5]. Although controlled experiments and

model studies show how varying interactions can arise in principle from

mechanistic state-dependence, empirical tools to track and predict them in

the field are lacking. Here, we present a practical method that uses available

time-series data to quantify, predict and understand changing ecosystem inter-

actions as they occur in real time, as required for managing resources in a

nonlinear non-equilibrium world.

Although much is known about nonlinear interactions in principle [6], heur-

istic understanding from models or controlled experiments may not accurately

reflect what occurs in any specific natural setting. For example, consider two

species that occupy the same trophic level. If their diets overlap, we might

expect mutually negative competitive effects. However, if feeding responses

are nonlinear, the strength or even the existence of competitive effects can

depend on food limitation [7]. Moreover, if they share a common predator,

the possible net outcome could be either positive or negative, depending on

the details of their interactions [8] as well as the timescale of effects [9].

When predators exhibit prey switching, there can be even more complicated

interactions [10]. Thus, in nature it is difficult to say which of the plausible

expectations has arisen.

Indeed, a dearth of quantitative tools for investigating state-dependent

interactions has limited our ability to measure them directly in the field. A

few exceptional studies have tracked changes in food-webs through labour-

intensive field methods (e.g. [11,12]). But while these gut content and other

studies verify the complexity of interactions in principle, they are of little use

for tracking or predicting ‘continually changing species’ interactions in

nature. A more readily scalable alternative would be to estimate specific

mutual interactions from time series of abundance. Currently available tools
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like multivariate autoregression and its generalizations are

specifically designed for systems with constant, fixed linear

interactions and are sometimes ‘fit’ as dynamic linear models

(DLM) to randomly drifting linear interactions [13,14]. But

for nonlinear systems, such models are at best an ad hoc
approximation without mechanism or the ability to predict.

Here, by clear contrast, we present an explicitly nonlinear

approach based on empirical dynamic modelling (EDM as

described below) [15–20] that uses readily available time-

series data to measure and predict nonlinear interactions as

they occur in the field. This approach does not require

linear assumptions of equilibrium or constancy or of stochas-

tic linear dynamics. We first introduce the logic of the

method, and then demonstrate it by applying it to three sys-

tems: a model ecosystem where the interactions are exactly

known; a mesocosm experiment from the Baltic Sea where

the interactions are as expected; and data on zooplankton

from Sparkling Lake, WI, USA.
152258
2. The framework: empirical dynamic modelling
This method extends the classic community matrix idea—

defined for systems in equilibrium—to dynamic systems that

are not in equilibrium. The community matrix is commonly

computed as the matrix of partial derivatives of the system

evaluated at equilibrium (i.e. the Jacobian) or its per capita
equivalent [21,22]. It is a linearization of the system—a theor-

etical expedient where pair-wise interactions are treated as

fixed coefficients. However, real ecological systems are

rarely, if ever, in static equilibrium. They typically exhibit non-

linear behaviour, where the strength and sign of interactions

can vary with ecosystem state so that a single matrix of inter-

actions will not suffice. Rather, to represent such systems it

would be necessary to recalculate the interaction matrix

anew for each successive ecosystem state. This may seem

infeasible for a system being studied in the field, but—as we

explain below—it is easily accomplished with S-maps [17], a

standard EDM method for analysing nonlinear time series

involving sequentially calculated Jacobians.

Briefly, EDM is an equation-free, mechanistic modelling

approach based on the idea of reconstructing the underlying

dynamical system from observed time series [15–20]. The

process of building a manifold from time series is explained

in a 1-min video animation (https://youtu.be/fevurdpiRYg).

In EDM, the state of a dynamical system is a specific location

in a multivariate coordinate space, or state space, whose

coordinate axes are causally coupled ecosystem variables

such as species abundance, temperature, resources, etc. The

state of the system changes in time according to the rules/

equations that describe the system dynamics, and this in turn

traces out a trajectory. The collection of these time-series trajec-

tories forms a geometric object called an attractor manifold,

which describes empirically how variables relate to each other

in time—hence EDM [15–20]. The basic idea of the S-map

method is to recalculate an interaction matrix at each successive

ecosystem state as the system travels along the attractor [17].

To illustrate, figure 1 presents a schematic for a hypothetical

ecosystem consisting of two consumers, C1 and C2, competing

for a shared resource, R. The empirical attractor manifold for

this system is constructed from the time series (figure 1a)

simply by taking the three time-series variables as Cartesian

coordinates, x(t) ¼ fC1(t), C2(t), R(t)g and plotting out the
system trajectory (figure 1b). The dynamics of the first consu-

mer, or how C1 changes from one time point to another, is a

function of the current ecosystem state x(t) and can be written as

C1ðtþ 1Þ ¼ FðxðtÞÞ:

Here F represents the three-dimensional dynamics on the

attractor with respect to C1. The two points on the hypothe-

tical attractor, p and q, represent specific ecosystem states.

Zooming into small neighbourhoods of these points, we see

the interactions between C1 and the other variables are

nearly linear (figure 1c,d), and so F can be characterized by

the appropriate row of the Jacobian matrix, which in discrete

time is taken over the time interval t to t þ 1, and is simply

DF ¼ @C1ðtþ 1Þ
@C1ðtÞ

,
@C1ðtþ 1Þ
@C2ðtÞ

,
@C1ðtþ 1Þ
@RðtÞ

� �
:

The Jacobian elements of this row define the interaction

strengths or net local effect that each of the three variables

C1, C2 and R has on the predicted variable C1 [23]. Clearly,

the interactions differ at p and q. The surface of F at p

(figure 1d ) has a steep positive slope in the R direction, indi-

cating strong dependence on food abundance, and a steep

negative slope along the C2 direction, indicating strong com-

petition. By contrast, at q, C1(t þ 1) is not sensitive to changes

in R or C2 and F is flat (figure 1c)—partial derivatives zero.

Thus, the partial derivatives or Jacobian elements corre-

sponding to these slopes define the interaction strengths for

the system states p and q.
3. The method: measuring interactions with
S-maps

The key to implementing these ideas is that the Jacobian

elements (and thus the interaction strengths) can be recovered

at any target point x(t) on the attractor using S-maps

[16,17,19], where ‘S’ in Sugiharaś S-map denotes the ‘sequen-

tially’ calculated Jacobians as the system moves along its

attractor. Simply put, S-maps are a locally weighted multi-

variate linear regression scheme that approximates the best

local linear model by giving greater weight to points on the

attractor that are near the current ecosystem state. Because

S-maps involve weighted linear regression, it is readily

implemented in common statistical languages such as

MATLAB and R. Example, marked-down R code is

provided in the supplement, and the procedure is as follows.

Similar to other regression schemes, S-maps involves

computing the linear model C that approximates the dynamics

x̂iðt� þ 1Þ ¼ C0 þ
XE

j¼1

Cijxjðt�Þ,

where E is the model order or embedding dimension (i.e.

number of system variables)

However, in S-maps the linear approximation is done

locally at each location x(t*) on the attractor manifold. Stron-

ger weight is given to vectors closer to the target point x(t*)

on the attractor manifold. Hence weighting is local to each

state on the attractor. The exact weight given to observation

k is given by

wk ¼ exp
�u k xðtkÞ � xðt�Þk

�d
,

https://youtu.be/fevurdpiRYg
https://youtu.be/fevurdpiRYg
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Figure 1. A schematic of measuring interactions in a hypothetical three-species ecosystem. The empirical attractor is constructed by re-plotting the time series of C1,
C2 and R (a) simultaneously in three dimensions (b). The attractor displays the historical relationships between variables. The magnitudes of the interaction effects on
C1 are different at the two attractor states, p ( purple) and q (orange). Panels (c) and (d ) show the local effect of C2 and R on C1 at these states. The slopes of these
local surfaces (i.e. the partial derivatives or Jacobian elements) define the interaction strengths calculated by the S-map coefficients (e). The surface at p is steep (c),
thus the estimated interaction coefficients in (e) have large magnitude ( purple arrow). Conversely, the surface at q is flat (d ), so the interaction coefficients are near
zero (orange arrow).
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where jjx 2 yjj denotes the Euclidian distance between two

vectors and

�d ¼ 1

n

Xn

k¼1

kxðtkÞ � xðt�Þk:

The parameter u � 0 tunes how strongly the regression is

localized to the region of state space around each target.

Note that if u ¼ 0, the S-map model reduces to a VAR

model. Thus, constant coefficient VAR models or closely

related multivariate autoregressive (MAR) models arise as a

special case of S-maps—the pathological case where location

on the attractor manifold is irrelevant (no state dependence).

For u . 0, the coefficients of C can vary with location on the

attractor and with increasing u they can vary more strongly

as the system changes state. If u is too small, the coefficients

will underestimate the true variability in interaction strength.

However, with larger u the regression hinges on only the

most proximal points on the manifold and will therefore be

more sensitive to observation error. In practice, some inter-

mediate value of u will optimally balance bias and

uncertainty (see discussion in the electronic supplementary

material on choosing u).

With this local weighting scheme, the S-map model is

simply the SVD (singular value decomposition) solution for
C to the linear equation

B ¼ A � C,

where A is the n � E dimensional matrix of weighted state-

space vectors given by

Akj ¼ wkxjðtkÞ

and B is the n-element vector of the predicted variable, i.e. the

future values of the target variable xi given by

Bk ¼ wkxiðtk þ 1Þ:

For linear regression, SVD is equivalent to a least-squares

fitting that minimizes the Euclidean distance between the

true and estimated attractor points. In some cases, other dis-

tance metrics may be more appropriate. For example, for

small population sizes, an error model that is appropriate

for count data near zero would be appropriate (e.g. [13]).

Finally, it is common practice with this sequential regression

procedure to employ leave-one-out cross-validation to avoid

in-sample fitting.

S-maps have been used both as a simple test for nonlinear

dynamics [17] and as a non-parametric tool for ecosystem

forecasting [19]. Here we note simply that, in multivariate

embeddings (i.e. native embeddings using causal variables

[19] rather than lags of a single variable), the S-map coefficients
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approximate the Jacobian or interaction elements at successive

points along the attractor. That is, S-maps generate the relevant

Jacobian elements that define the interaction strengths, and as

required do so sequentially (S ¼ ‘Sequential Jacobian’) as the

system travels along its attractor. Moreover, in real time,

when the time-series data for C1 at time t þ 1 are not available

for fitting, the interaction strengths computed at that instant are

actually forecasts of the influence of each variable on C1.

At this point, it is worthwhile to compare S-maps to

other methods for reconstructing interaction strengths from

time series. Ives et al. [14] provide a clearly written justifica-

tion for VAR/MAR models to approximate systems in the

vicinity of an equilibrium, where it is appropriate to treat

interactions with a constant matrix. Relaxing the equilibrium

assumption, Lamon et al. [24] apply DLM to ecosystem

interactions, where the coefficients are allowed to drift sto-

chastically through time. These models have been used to

indicate impending regime shifts [25] and in some nearly

linear cases they can be used retrospectively to estimate past

changes in system dynamics [26]. DLM is a linear method

where the system matrix is modelled as a random walk.

These models and their state-space extensions are nicely

described by Holmes et al. [27] and implemented in their

MARSS package.

Because the interaction strengths are allowed to change,

the DLM may appear to be an analogue to the S-map. How-

ever, there is a major difference between the two: DLM

methods are intended for linear stochastic systems and do
not explicitly address state dependence; as such they are

not mechanistically predictive of changes driven by nonlinear

dynamics. Specifically, DLM determine coefficients by

weighting ecosystem states that are nearby in ‘time,’ rather

than ecosystem states that are actually most similar (closest

in the state space, figure 2a,b). If the system changes slowly

relative to the sampling rate, to produce a nearly linear

case, DLM will give results similar to S-maps. However,

states can change quite rapidly in ecosystems (e.g. outbreaks

of spruce budworms or fishery collapses), meaning states

nearby in time may be very dissimilar and have different

interaction strengths. Under these conditions, the DLM

approach will fail to measure interactions correctly

(figure 2c). DLM is a linear method and produces linear fore-

casts with uncertainty bounds that grow very rapidly in

time—they are not intended for nonlinear systems.

By contrast, because S-maps are specifically designed for

nonlinear systems, they are able to portray the mechanistic

conditions (system state) governing system dynamics. This

is a key point that differentiates the EDM approach from

non-mechanistic DLM methods that treat time variation

phenomenologically without providing a mechanistic basis

for understanding why interactions are changing, and typi-

cally require forward information (x(t þ 1)) to fit the

drifting coefficients. Importantly, S-maps have been shown

to be robust to observational noise [28] (see the electronic

supplementary material) with process noise handled by

the regression procedure [17].
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4. Test cases
To demonstrate the concept and the method we will apply it

to three test cases: a model, an experimental mesocosm and a

natural lake ecosystem. The model (figure 3d ) is a classic food

web [29,30] consisting of two consumers (C1, C2), their preda-

tors (P1, P2) and a single resource (R). The trophic interactions

are governed by saturating Holling Type II feeding responses,

and this gives rise to state-dependent competition [7,8]. The

model is reckoned to be a transparent example of state-

dependent interactions.

Figure 3 shows how the EDM approach using S-maps

uncovers the mechanisms that cause the interaction strength to

vary between the consumer C1 and the other ecosystem com-

ponents. For example, in figure 3b competition between C1

and C2 only occurs at low to moderate food levels, whereas at

high food concentrations competition tends to zero. Moreover,

figure 3c shows that @C1/@R (a direct measure of food limitation)
sets a maximum on the strength of competition. This is

explicitly demonstrated by the 0.05 quantile regression [31] of

@C1/@C2 on @C1/@R (dashed red line). The effect is consistent

with the underlying structure of the model, thus validating

the approach. Finally, figure 3e shows that the interaction

strengths forecasted by agrees well with the Jacobian

elements computed directly from the system equations.

Importantly, these predicted interaction coefficients are robust

to realistic amounts of observational noise (see the electronic

supplementary material S1 and figure S8).

Next, we apply the method to the interaction between cala-

noid copepods and rotifers in a freely evolving marine

mesocosm isolated from the Baltic sea [32,33]. We focus on cala-

noids, rotifers and their two main prey items, nanoflagellates

and picocyanobacteria (figure 4d). Figure 4a shows the S-map

estimated interactions on calanoids, for the effects of rotifers,

nanoflagellates and picocyanobacteria. As expected, interactions

with the chief prey item (nanoflagellates) are always positive,
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and interactions with the other grazer (rotifers) are always nega-

tive. However, the intensity of these interactions changes

through time. Competition (2@Cal/@Rot) is strong only when

the prey (nanoflagellate) concentration is near-zero (figure 4b)

with the maximum strength of competition set by food limit-

ation (figure 4c), demonstrated by the 0.05 quantile regression

line (dashed red). Analogous results have been obtained from

experimental evidence of saturating feeding responses [6], how-

ever, here they are recovered noninvasively and directly in the

freely evolving mesocosm, by analysis of the abundance time

series. Although there is no direct way to validate the specific

estimates of interaction strength (as we could for the model),

our results align with ecological expectations—that competition

depends on food limitation—and this validates the approach.

Moreover, the convenience of the approach suggests its utility

in cases where experimental manipulations are logistically

infeasible, such as in large marine ecosystems.

As a final example, we consider the ecological interactions in

Sparkling Lake, WI, USA, focusing again on copepod grazers

(calanoids and cyclopoids). Figure 5a shows the S-map estimates

for calanoids of the time-varying effects of cyclopoids, tempera-

ture and planktivorous fish. Note that the effect of cyclopoids on

calanoids, @Cal/@Cyc, is only negative in certain periods, indi-

cating that there is only intermittent competition. Much of the

time, the interaction is positive. In theory, a positive interaction

can arise from apparent mutualism between trophically similar

species who share common predators [8]. If so, competition

should occur only when predation pressure is low. Thus,
plotting @Cal/@Cyc against total predator biomass, Fish

(figure 5b), we see that competition, indeed, only occurs in

periods with low planktivorous fish abundance. Similarly, plot-

ting @Cal/@Cyc against the predator : prey ratio (figure 5c)

shows that the positive effect occurs most strongly at the highest

ratios, whereas competition occurs only at the lowest predator :

prey ratios. Here, the predator : prey ratio is Fish/(1þ Cal þ
Cyc), where 1 is added to accommodate times when both Cal

and Cyc are measured as 0.

This evidence is consistent with predator-mediated mutual-

ism and resonates with previous work showing that Sparkling

Lake has been dominated by top-down forcing [34]. However,

consistency is not proof. Indeed, because food supply will

have a positive effect on both calanoids and cyclopoids,

increases in one species could correlate with increases in the

other for this reason alone. Unfortunately, this effect could not

be examined in the Sparkling Lake study because there was no

effective measure of food supply to drive the analysis (in

terms of adequate temporal and/or taxonomic resolution, as

discussed in the methods). Thus, although not conclusive, the

weight of evidence in figure 5b,c points to apparent mutualism

(or at least commensalism) mediated by common predators.
5. Concluding remarks
These three demonstrations illustrate how S-maps can

be used to quantify changing species interactions and to
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identify the underlying mechanisms. In the model system, we

are able to recover the known interactions directly from the

time series. In the mesocosm, we find competition that inten-

sifies as food becomes limiting (figure 4b,c)—as expected.

Conversely, in Sparkling Lake, we find competition only

when predator abundance is low (figure 5b) and a net posi-

tive interaction that intensifies as the predator : prey ratio

increases (figure 5c)—suggestive of apparent mutualism.

The S-map procedure, extracts dynamics directly from

time-series, and does not involve correlational evidence to

construct a heuristic mode [35]. As noted elsewhere [15],

such correlations can be inappropriate in nonlinear dynamic

systems, which tend to produce ‘mirage correlations’,

i.e. ephemeral associations among variables that appear

then disappear, or even change sign. As a case in point, in

Sparkling Lake where the sign of @Cal/@Cyc clearly flips

through time, the presence of an interaction may be missed

with a linear time-averaged analysis. Indeed, this can explain

why previous linear analysis of this system using vector

autoregression did not find a significant linear-constant

effect of cyclopoids on calanoids [34], as the positive and

negative episodes would have cancelled out.

EDM applies if (i) there is a deterministic component to

the ecosystem dynamics and (ii) there are sufficient time-

series data to uncover an embedded attractor—sufficient

data to generate an unfolded manifold where trajectories do

not cross. Importantly, these two core assumptions can be

validated by nearest-neighbour prediction (e.g. simplex projec-

tion [18]). Predictability indicates that there are deterministic

dynamics and that there are few places where the future of

the system is undetermined—where trajectories cross [36].
Testing these assumptions is a prerequisite for applying

the method.

Conversely, EDM should not generally apply if the

system cannot be properly embedded. This could occur in a

purely stochastic system with no discernable dynamics or

when observational noise dominates to the extent that no pre-

dictive nonlinear manifold can be uncovered [1,15–20,35,36].

While we have shown that S-maps accommodate reasonable

amounts of observational noise (up to 30%) (electronic

supplementary material, figure S8), there are other generaliz-

ations of vector autoregression that focus specifically on

dealing with noise. Most notably, MARSS combines

Kalman filters with the basic MAR framework to better ident-

ify fixed interactions in the presence of noise [13]. Although

not trivial, it should be possible to combine noise-modelling

methods like MARSS with S-maps—a possible avenue for

future research.

In addition, and because the multivariate S-map method

described here can be sensitive to the specific embedding coor-

dinates, care must be taken to examine a comprehensive set of

time-series variables that can be verified with a causation test

(e.g. convergent cross mapping, CCM [15]) and a multivariate

prediction test [17,19,28], as shown for the case studies here

(see Material and methods and the electronic supplementary

material). This is essential for applying the method sensibly.

Previous work has shown how EDM can be used for

population forecasting [17,19,28] for exploring alternative

environmental scenarios [20], and for detecting causal linkages

[15]. Here, we apply the S-map approach and its intermediate

output (the sequential jacobians) to track and forecast the

changing interactions in ecosystems. While models and field
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experiments can identify species interactions in the abstract,

in the field these interactions are embedded in an evolving net-

work of factors. Therefore, by allowing the study of interactions

as they are realized in nature, EDM offers a path for studying

biological systems as a dynamically changing and intercon-

nected whole [15]. Moreover, insofar as the framework

involves data that can be feasibly collected close to real time

(e.g. as occurs at many LTER sites, fisheries systems and

other monitoring programmes around the world) and can

actually forecast expected interactions, we believe it could

become a practical tool for ecosystem control and management.

It is a conceptual framework that speaks to the critical impor-

tance of ongoing and long-term data collection, where

additional data increases the accuracy of our forecasts, and

our ability to handle novel scenarios.
B
283:20152258
6. Material and methods
(a) Mesocosm data
Data for the Baltic Sea mesocosm were obtained from the sup-

plemental materials of Benincà et al. [32,33]. Because the data

were sampled irregularly, they were processed to give time

series with approximately one week (+1 day) between successive

observations. Only data containing periods with at least 15 succes-

sive (one week apart) observations were considered. All time series

were normalized to have a mean of 0 and standard deviation of 1.

This system is an ideal test case because of its intermediate

complexity, and previously noted nonlinear dynamics [32,33].

Major interactions are summarized in figure 5d. Prior analysis

of interspecies relationships in the mesocosm [33] found evi-

dence of coherent oscillations between predators and prey

through certain periods, but did not reveal much about compe-

tition. We focus on the two main grazers, calanoids and

rotifers, along with their two principle prey items, nanoflagel-

lates and picocyanobacteria [33]. Each group was dominated

by a single species or genus [32,33]. Cross-mapping [15] confirms

that these four species interact closely (see electronic supplemen-

tary material, table S1 and figure S1), and the manifold with

these four species gives excellent predictability of calanoid

dynamics (see electronic supplementary material, figure S2).

Thus, even though the mesocosm has many (greater than or

equal to 10) potentially important state variables, the dynamics

of the grazers can be well embedded in the lower, four-dimen-

sional space. The results shown in figure 4 are robust to

including additional mesocosm variables in the state space (see

electronic supplementary material, figures S6 and S7).

(b) Sparkling lake data
Data for Sparkling Lake between 4 June 1981 and 13 November

2013 were from the Northern Lakes LTER online portal (http://

lter.limnology.wisc.edu) and included the following datasets:

Zooplankton—Trout Lake Area; Chlorophyll—Trout Lake

Area; Chemical Limnology of Primary Study Lakes: Nutrients,

pH and Carbon; and Fish Abundance. Following Beisner et al.
[34], the zooplankton data were resolved to broad taxa—cala-

noids, cyclopoids, cladocerans and rotifers. The temperature

time series, averaged measurements made at 1-m intervals

from 1 to 15 m depth. For chlorophyll, we integrated across the

regularly sampled depths f0 m, 3 m, 5 m, 8 m 10 mg as well as

using surface measurements only. For the fish data, we aggre-

gated catch per unit effort (CPUE) across the two main

planktivores, cisco (Coregonus artedii LeSueur) and smelt

(Osmerus mordax Mitchill). Beisner et al.’s [34] per cent smelt

index was a less useful predictor of month-to-month changes

in calanoids.

The zooplankton, chlorophyll and temperature data were

processed to give time series with approximately 1 month (+4

days) between successive observations. The same fish abundance

was used across the whole calendar year. All time series were

normalized to have a mean of 0 and standard deviation of 1.

Because of data limitations, CCM was not used to determine

the best set of state variables. CCM requires taking consecutive

time lags of observed variables, and the lake is not sampled reg-

ularly in winter months. Instead, as in [19], we used a system of

sequential elimination. We began with an embedding containing

all candidate variables: calanoids (Cal), cyclopoids (Cyc), clado-

cerans (Cld), rotifers (Rot), chlorophyll-a (Chl), temperature (T )

and planktivorous fish abundance (Fish). We then evaluated

which candidate (if any) most improved EDM predictability

when excluded from the embedding [19]. This variable was

eliminated, and the procedure was repeated sequentially until

all remaining candidate variables were helpful predictors. This

left us with the five-dimensional embedding,Cal(t), Cyc(t),
Rot(t), T(t), Fish(t).. Importantly, S-map analysis of this embed-

ding shows evidence of nonlinear dynamics (see ‘Weighting

Parameter’ in the electronic supplementary material, S1 and elec-

tronic supplementary material, figure S5). Thus, while previous

research used linear methods [34], the dynamics can be more

fully understood as nonlinear. Significantly, including either

depth-integrated or surface chlorophyll-a degrades predictability.

So while we expect food abundance to be an important variable,

the monthly chlorophyll-a data reported in [34] does not appear

to be informative. Whether this is an issue of temporal or

taxonomic resolution is unclear.
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