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Abstract

Scheduling and binding are two major tasks in architectural syn
thesis. The information about mutually exclusive pairs of operations
is very useful in reducing both the total delay of the schedule and the
resource usage in the final implementation. In this paper, we present
an efficient scheme which identifies all the mutually exclusive operation
pairs in behavioral descriptions. Our algorithm uses data-flow analysis
on a tabular model of system functionality, and is shown to work better
than existing methods for identifying mutually exclusive operations.
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Abstract

Scheduling and binding are two major tasks in architectural synthesis. The infor

mation about the mutually exclusive pairs of operations is very useful in reducing both

the total delay of the schedule cuid the resource usage in the final implementation. In

this paper, we present an efficient scheme which identifies all the mutually exclusive

operation pairs in behavioral descriptions. Our algorithm uses data-flow zinalysis on a

tabular model of system functionality, and is shown to work better than the existing

methods for identifying mutually exclusive operations.

1 Introduction

There are two major tasks in architectural synthesis: scheduling and binding [1]. Scheduling

determines the steirt time of each operation while binding maps operations to hardware com

ponents. Binding and scheduling are interrelated problems. Decisions made in binding will



affect the result of scheduling and vice versa. The quaHty of binding and scheduling can be
determined by the resource usage and the total delay. The two goals of reducing total delay
and reducing resource usage are often conflicting. Total delay can be be reduced by maxi
mizing operations in each control step. This however often increases the number of required
resources. On the other hand, resource sharing often results in additional serialization and

hence a longer delay. However, operations can share resource without increasing the total
delay only if they are "mutueiUy exclusive".

Mutually exclusive operations in a behaviorsd description are operations that will never

be executed in the same control step in any execution of the system behavior. In addition,
as shown in one example in this paper, the execution of an operation may imply that the
execution of another operation is a behaviorzd Don't Care [2]. These implications provide a
rich source of mutually exclusive operations that can be exploited to improve the quality of
high-level synthesis. Accordingly, we also consider operations as mutually exclusive if they
never need to be executed together.

In a non-pipelined execution, two operations with a data dependency can not be scheduled

in the same control step, and therefore are not mutually exclusive. Two operations with no

data dependency are mutually exclusive if they belong to mutuedly exclusive control paths
such as conditional breinches, or if the result of one operation is a Don't Care when the other

operation is executed. According to the way how mutually exclusive (m.e.) operations are
identified, we can divide them into three categories, (i) structural^ (ii) behavioral, and (iii)
data-flow. A pair of operations is considered as a structural m.e. p£iir if the two operations
can be identified entirely based on the language structures in the input HDL description. A
behavioral m.e. pair refers to two operations conditionally enabled under mutually exclusive
conditions (that is, conditions that never evaluate to true simultaneously). A data-flow
pair of m. e. operations refers to two operations that are never required to be executed in
any execution of the system behavior based on the data values. Identification of data-flow

m.e. pairs relies on the data-flow ansdysis and the knowledge of other m.e. pzurs.

Example 1.1. Consider the following HDL description in HardwareC. It is modified from
the example in [3].

process example(a, b, c, d, e, x, y, u, v)
in port a[8], b[8], cC8], dC8j , eCsj;
in port X, y;
out port u[8], v[8] ;

static Tl;
static T2C8] ;
static T3C8] ;

Tl = ( a + b ) < c;
T2 = d + e;
13 = c + Ij

/* — 1 ~ ♦/
/♦ — 2 — ♦/
/♦ — 3 — */



if(y) {
if (Tl)

u = T3 + d

else if( !z )
u = T2 + d

if( !Ti ik X )
z = T2 + e

}
else

u = T3 + e;

/• — 4 — ♦/

/• — 5 — ♦/

/» — 6 — •/

/♦ — 7 — ♦/

Operator pairs {+4, +5}, {+4, +7}, {-f Si +7}, and {+6» +7} are structural m.e. pairs. Operator

pairs {+4, +6} and {+8, +5} are behavioral. Operator pwrs {+1, +7}, {+a, +3}, {+2, +4}.

and {+21 +7} are data-flow m.e. pairs. •

1.1 Related Work

In [4], Kim and Liu proposed an sdgorithm that can identify mutually exclusive operators

based on language constructs. In [5], status bits eire assigned to determine the active bsisic

blocks. The mutual exclusiveness of two basic blocks sure determined by checking the in

tersection of the active cube sets of their status bits. These two approaches only identifies

structural m.e. pairs.

Wakabayashi and Yoshimura proposed a scheme using condition vectors (CV) [6]. This

approach identifies all structural m.e. pairs Eind some data-flow m.e. pairs. Due to an incom

plete data-flow anedysis, it does not identiy all data-flow m.e. pairs. Also, due to the lack

of analysis on condition dependencies in the behavioral description, it does not identify any

behaviored m.e. pairs.

Path-based scheduling edgorithm [7] determines the conditional us^e of operators by

analyzing every execution path in the control-flow graph. Operators are mutually exclusive

if they do not appear in the same path. A path analysis alone identifies only structural and
behavioral m.e. pairs.

Juan, Chaiyakul, and Gajski proposed condition graph to solve this problem which per

form better than previous approaches. However, their approach presented in [3] also fails to

identify all data-flow m.e. pairs. Furthermore, there is no efficient implementation presented

and the results were obtained through a manual process.

To summarize, we list in Table 1 the results of applying all approaches we have discussed

to the exeimple in Example l.I. Our approach to m.e. determination is indicated by column

"TDT". TDT stands for Timed Decision Table, a behavioral model introduced in [8] for
hardware presynthesis optimization. In this paper, we show how data-flow ansdysis can

be combined with TDT optimizations to build an. efficient algorithm for mutual exclusion

determination.
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Table 1: Mutual exclusive operates ideniied by different approaches.

The rest of this papers is organized eis follows. Section 2 gives an overview of our approach

which takes three steps to identify each type of m.e. operator pairs. Section 3 shows in more

details how behaviored m.e. pairs cire identihed. Section 4 presents a data-flow analysis based

procedure for identifying data-flow m.e. pairs. We conclude in Section 5 by presenting the

experimental result.

2 Overview of Our Apporach

The first step in our approach is to translate the input behaviored description into the TDT

representation. We assume that the behavioral description is specified using a Hardware

Description Language (HDL). In particular, we support input descriptions in HardwareC [9]
and VHDL.

In the TDT representation, a system is modeled as interacting and concurrently executing

processes. Each process is modeled as a process TDT, which is executed repeatedly. The body

of a process TDT is modeled as hierarchically connected TDTs and action sets. An action

set is a list of actions with a concurrency type. A set of actions are considered of the type

^data-parallel' when any two actions in an action set can be executed simultaneously unless

there Eire data dependencies between the two actions. Other possible concurrency types that

can be specified in an action sets are serieJ and parallel [8]. TDTs are of two kinds: process

TDTs and procedure TDTs. Process TDTs represent either a process or a condition loop.

Procedure TDTs represent conditional brEinches or nested conditionEd breinches. Unlike a

process TDT, a procedure TDT is executed only once when invoked.

In Figure 1(a), we show how the input HDL is modeled in the TDT representation.

The double outlines surrounding the first table indicate that this is a process table. This

table represents the HardwareC process exanqjle in Example 1.1. The semi-columns V in
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Figure 1: The TDT representations of the exetmple behavioral description: (a) the TDT
representation directly converted &om the input HDL, (b) the TDT merged representation.

ActionSeti and ActionSet2 indicate that a data-parallel type is specified in both action sets.

TDTi calls ActionSet2 which contains TDT2 and TDTa. TDT2 and TDTz are connected in

a sequence in their enclosing action set.

When a procedure TDT is invoked for execution, the conditions are first checked to

determined which action set in the corresponding column is to be executed. Take for example,

when TDT2 is executed, first the vzilue of T1 is checked. If T1 evaluates to FALSE, +5 is

executed. Otherwise, the operation for +4 is ceuried out. More detadls of the TDT model

can be found in [2, 8]. Related work on tabuleir representations can be found in [10, 11].
In the TDT model, operators in different columns of a TDT are mutually exclusive. Thus,

after converting a behavioral description into TDT, all structural m.e. pairs can be easily

identified. For example, in the given HardwareC description, {+4, +5} can be identified as
a m.e. pair zifter the conversion.

The second step in our approach is merging smaller TDTs to create bigger ones. Fig
ure 1(b) shows the merged TDT representation of the behavioral description in Excimple 1.1.

Both structured and behavioral m.e. pairs can be identified by asserting any two different

operators from different columns of a TDT as mutually exclusive. Figure 1(b) shows the
merged TDT representation of the behavioral description in Example 1.1. Consider, for ex

ample, operators +4 and -f-g from two different if statements in the behavioral description

in Example 1.1. After merging, they appear in different columns of the same merged TDT

and can be determined as a behavioral m.e. peiir.

The third step in our approach performs a def-use einalysis and identifies data-flow

m.e. peiirs. The def set of an operator refers to the set of operators that define a vari

able used in this operation. The use set of zm operator is the set of operators that use the



variable defined by this operation. In our example, we have

• use(-\-2) - { +6, +6}, and

• tMef+aj = { +4, +7}-

Since all four pziirs {+51+4}, {+6,+7}j {+6)+4}, and {+6,+7} are mutually exlusive,

{+2>+3} is a m.e. peiir because in no invocation of the specified system will the results
of both +2 and +3 be needed. M.E. operators thus identified are da^-flow m.e. operators.
To summarize, we list each m.e. pair with its type in Table 2.

M.E. Pair

{+1. +7}
{+2] +4}

{+3i +5}

{+4t 4-5}

{+4i +7}

{+5> +7}

Type

data-fiow

data-fiow

data-flow

structural

structural

structural

M.E. Pair

{+2. +3}

{+2. +7}

{+3, +6}

{+4> +6}

{+5i +5}

{+61 +7}

Type

data-flow

data-flow

data-flow

behavioral

behavioral

structured

Table 2: Classification of m.e. pairs.

3 Identification of Behavioral M.E. Pairs

To identify behavioral m.e. pairs, we merge leaf TDTs directly translated from the behavioral

descriptions. Leaf TDTs are merged by recursively identifying and applying one of the
following merging cases. Three basic cases are possible; (I) merging TDTs in a sequence,
(II) merging TDTs in a hierarchy, and (III) merging a TDT with a following or preceding
action set. In this paper, we focus our discussion on merging that involves only procedure
TDTs. The merging of process TDTs follows a similar procedure.

3.1 Merging TDTs in a Sequence

Two procedure TDTs in a sequence can be merged if (1) they appecir in an enclosing action
set of concurrency type data-parallel, and (2) they share no columns except Don't Care
columns or columns that contain no action sets. A Don't Care column is column that will

never be selected for execution [8]. The result of merging in this case is a TDT which
contsiins the union of the columns in the original TDTs if the two condition stubs are

identicsd. Otherwise transformations are needed to first change the conditions stub into the



seune. Four transformations can be applied to a TDT for this purpose: (a) adding a Don't

Care row, (b) splitting a row, (c) negating a row, and (d) swapping orders of conditions.
These transformations are paurt of the functionality preserving TDT tremsformations pre

sented in [12]. Most of these transformations are self-explanatory, except row-splitting that is

briefly discussed next. Given a binary logic operator <op> in £in condition of form <GXprl>

<op> <expr2>, the corresponding row of this condition can be split into two rows corre
sponding to <exprl> and <expr2> respectively. The procedure of this splitting is shown

briefly in Figure 2.

1. Replace the condition with avhjconditioni and tfufr-condiitonj in the condition stub.

2. Replace each condition entry with all possible value combinations of <ezpi> and <ezp2> such that

<ezprl> <op> <ezpr2> assumes the value of this condition entry.

3. Duplicate condition entries and action entries accordingly if more than one column is obtained in Step

2.

Figure 2: Algorithm for row splitting.

In the following, we show one example of TDT merging that involves two TDTs in a

sequence.

Dxample 3.1. The TDT sequence {TDTi'jTDT^^ in Figure 1 satisfies the conditions for
merging TDTs in a sequence. Before merging, we perform transformation (b) to convert TDT3
to TDT^ and then transfomation (c) to convertTDTg to TDT^ as shown in below.

TDTl =

TDT2 and TDT3 can then be merged into TDTm where

TDT« =

+4 I +• I

After merging, we have ActionSeti = TDTn. •

3.2 Merging TDTs in a Hierarchy

Procedure TDTs in a hierEirchy result from nested branches in behavioral HDL descriptions.

In Figure 3, we present an algorithm for merging two procudure TDTs in a hierzirchy. In the

algorithm, calling TDT refers to the outmost TDT and called TDT refers to the inner TDT

in the hierarchy. The called TDT is an action in the action set of one column in the calling

TDT. There often exist dependencies among conditions, which are essenticilly assetions as



1. Merge the two procdure TDTs assuming conditions in two condition stub are independent.

(a) Merge the conditions in input TDTs to form the condition stub of the resulting TDT.
(b) Duplicate condition entries and action entries in the calling TDT according to the number of

columns in the called TDT.

(c) Add new conditon rows in the callingTDTs that correpsons to those newiy-added conditions.

(d) In the newlly added rows

• Copy values of the condition entries in the called TDT to entries in the duplicated columns
resulted &om Step 1(b).

• Set the values of other condition entries to Don't Cares.

2. Identify relations among conditions and use the information obtained to reduce the size of resulting
TDT from Step 1.

Figure 3: Algorithm for Merging Two Procedure TDTs.

discussed in [12]. We employ the techniques presented in [8] to reduce the size of the TDTs
using assertions. After merging TDT2 and TDT3 to form TDTm shown in Example 3.1,
TDTi and TDTm are connected in a hereirchy. We can apply the merging algorithm in
Figure 3 to obtain TDT, in Figure 1(b).

3.3 Merging a TDT and an Action Set

A TDT zind zin action set can usueiUy be merged unless the action set modifies a variable
that is used to compute a condition in the TDT. There are two cases: (a) when the action
set appears before the TDT, the two can always be merged; (b) when the action set appears
after the TDT, merging is valid only if there is no def-use path which starts from within one
action set ends in one condition in the TDT. The condition stub and the condition entries

in the resulting TDT remains the same. The action set needs to be inserted in a proper
postition in each column of the resulting table.

Special care needs to be tedeen to keep track of action sharing during this merging process.
One way to help bookkeeping actions is to put the action stub and action entries in limited-

entry form. Take TDT, in Figure 1(b) for example, the values of the condition entries Cein
only be Boolean values 'Y' or 'N' or a Don't Care value 'X', the condition part is then said
to be in limited-entry form, while the action entries can assume many different values, the
action part is then said to be in extended-entry from. The action part of TDTs can also be

put in limited-entry form. We show how the action part of TDT, czin be put in limited-entry

form in Figure 4(a). A check symbol in an action entry in row i and column j indicates
that the action (set) in row i will be executed if column j is selected for execution.

Putting the action part in limited-entry form meikes the representation of shared action



Figure 4: TDTs with action stub and action entries arreinged in Limited-entry form.

in the merging process simpler. We show the result of merging -I-2 and -I-3 with TDT, in

Figure 4(b). Note that -t-i can not be merged into this TDT since it computes T1 which is

a condition in TDT,.

4 Identification of Data-flow M.E. Pairs

Data-flow m.e. pairs are identified with the help of def-use analysis. We perform a def-use

analysis on the merged TDT representation. We give our definition of the use set of an

operator in below.

Definition 4.1 The use set of an operator 0 is the set of operators that consumes the data

computed by o.

operator operator use set operator operator use set

+1 { +4, +6, +6} +5 { OUT}

+2 { +B, +5} +6 { OUT}

+3 { +4. +7} +7 { OUT}

+4 { OUT}

Table 3: Use sets of operators in the example in Figure 1.

Use sets of all operators in a behavioral description can be computed using standeird

data-flow techniques as discussed in [13]. We list the operator use sets of the description

example in Table 3. An 'OUT' indicates that the result of the operator is written to an

output port or sent to another process via a messaging channel.

Given the use sets of operators and information on whether or not some of the operator

pairs are mutually exclusive, additioned information on m.e. pairs can be obtained following



Theorem 4.1 as shown in below. M.E. pairs thus detected are said to be data-flow m.e. pairs.
This theorem can be easily proved by following basic definitions.

Theorem 4.1 Given two operators Oi and 02 and their use sets USE(oi) and USE(o2),

(a) Oi ando2 are mutually exclusive if^a 6 USE(oi)j^/3 € USE(o2), a andfS are mutually
exclusive;

(h) Oi and 02 are mutually exclusive i/Va € USE(oi), a and 02 are mutually exclusive;

(c) Oi and 02 are not mutually exclusive i/3a e USE{oi)^p G USE(o2) such that a and
P are not mutually exclusive;

(d) oi and 02 are not mutually exclusive if 3a G USE(oi) such that a and 02 are not
mutually exclusive.

After TDT merging, any pziir of operators that appear in different columns of a TDT are

determined as a m.e. pair. We can abo determine that any pair of operators with a data-

dependency between them is not a m.e. operator pair. With this information as a starting
point, we cem apply Theorem 4.1 recursively to determine all data-flow m.e. pairs. The order

to apply Theorem 4.1 is presented in the algorithm in Figure 5.

Create def-use graph 0 = {VyE} s.t. V = {o\o is an operator } U{OUT}, E = { (01,03 ) | 03 G^/^^^(oi)};
Vi3ited^{OUTy,
foreach edge e = (01,03) do

me(oi,03)
foreach pair (oi, 03) s.t. oi and 03 are in different columns of the same TDT do

me(oi,03)
reapeat

Pick o € V —Visited s.t. Va € Use{o), we have a G Visited]
foreach 0 G Visited determine me(o,)3) following Theorem 4.1;
Visited^Visited U {o};

until (all nodes in V are now in Visited)

Figure 5: Algorithm for identifying data-flow m.e. pairs.

It is not difiicult to see that each step of the above algorithm takes polynomial time and
hence the whole algorithm takes polynomial time. Due to limited space, we leave out the
deteiiled analysis.



5 Results and Discussion

Our approach for identifying mutucilly exclusive operations has been implemented &8 a part

of the PUMPKIN presynthesis system [12]. We have run our system on several high-level

synthesis benchmarks and behavioral description examples that appeared in previous publi

cation. For comparison, we have also run other approaches that identifies mutually exclusive

operations on the same set of behavioral descriptions. The result of our experiments heis

been summarized in Table 4.

behavioral total if: of % of m.e. pairs identified

description # of operators m.e. pairs Kim's SB CV path-based. CG TDT

kim 24 120 100 100 100 100 100 i 100

jian 7 12 33 33 50 66 92 100

juan 6 7 14 14 43 43 100 ! 100

parker 16 55 78 78 96 78 78 i 100

waka 1 14 21 76 76 100 76 100 100

waka 2 16 22 73 73 100 73 95 100

waka 3 8 12 83 83 100 83 100 100

Table 4: The result.

The behavioral descriptions in Table 4 are either picked from previous publications or

from the high-level synthesis benchmzirk suite. Description 'kim' refers to the example used

in [4]. Description 'jiain' is the example presented in this paper. Description 'juan' refers to

the example used in [3]. Description 'parker' is a HardwareC example from the high-level

synthesis benchmark suite.

For comparison, we have run other approaches along with ours on above mentioned

examples. Kim's refers to Kim £ind Liu's approach [4]. Approach 'SB' stands for the status
bit approach [5]. Approach 'CV refers to condition vector approach [6]. The approach
'path-based' refers to an approach based on path analysis [7]. Approach 'CG' stands for the

usage condition approach using condition graphs [3]. Finally, approach 'TDT' refers to our

approach based on TDT modeling and def-use einalysis.

We discuss mutuzd exclusiveness in the context where oeprations can share resource

in a certain implementation. For example, it won't be useful to consider the the mutual

exclusiveness of an integer subtraction zuid a floating point subtraction. For this reeison,

we only consider certain types of operators that can be implemented on the same type of

function units when we count the number of operators and compute the number of mutually

exclusive operator pairs. The line 'waka 1' lists the experimental result assuming all addition

and subtraction can be implemented on one type of adders. The line 'waka 2' shows the



result assuming all operations are implemented on ALUs. Tlie line 'waka 3' considers only
addition and adders.

The result in Table 4 shows that the TDT based approach performs better than previous
approaches.
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