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Abstract

End to End Learning in Autonomous Driving Systems

by

Yang Gao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Convolutional neural networks have advanced visual perception significantly in recent years.
Two major ingredients that enable such a success are the composition of simple modules
into a complex network and the end to end optimization. However, such success has not yet
revolutionized robotics as much as vision, even if robotics suffer from similar problems as
traditional computer vision, i.e. imperfectness of the manual pipeline design of the system.

This thesis investigates using end-to-end learning for the autonomous driving system, a
concrete robotic application. End to end learning can produce reasonable driving behaviors,
even in the complex urban driving scenarios. Representation learning in end-to-end driving
models is crucial, and auxiliary vision tasks such as semantic segmentation can help to form
a more informative driving representation especially when training data is limited. Naive
convolutional neural networks are usually only capable of doing reactive control and can not
involve complex reasoning in a particular scenario. This thesis also studies how to handle
scene conditioned driving behavior, which goes beyond the capability of reactive control.
Alongside the end-to-end structure, learning methods also play a critical role. Imitation
learning methods will acquire meaningful behaviors but usually, the robot can not master the
skill. Reinforcement learning, on the contrary, either barely learns anything if the environment
is too complex, or it can master the skill otherwise. To get the best of both worlds, this
thesis proposes an algorithmically unified method to learn from both demonstration data
and the environment.
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Chapter 1

Introduction

1.1 Autonomous Driving System

Autonomous driving (AD) is the task of driving a vehicle without any human intervention
in urban and highway conditions. An autonomous driving system is usually equipped with a
set of sensors, such as cameras, lidar, radar, and acoustic sensors. With a stream of sensory
inputs, the autonomous driving system is required to output low-level controls of the vehicle,
usually in the form of continuous steer, throttle and brake values. In this thesis, we focus
on the camera sensory input modality, as the driving task can be solved with only vision
modality in theory. To be able to navigate on various unseen landscapes, the system must be
able to complete the environment state perception, future state prediction, path planning,
trajectory generation tasks, where the system can either complete explicitly or implicitly.

Autonomous driving is an interesting problem to study not only because of its potential
high impact on how people travel on the road but also because it is a great concrete example
of sensorimotor tasks. Sensorimotor learning refers to the task of acting in a physical world,
with explicit consideration of raw sensor inputs. AD is an interesting task because it is
extremely safety-critical, and we need fundamental innovations to ful�ll it. According to
the National Safety Council, there are around 1.25 deaths per 100 million human vehicle
miles [Wikipedia, ]. People usually expect the autonomous driving system would be at
least as good as an average human driver. That would require the system to be far more
reliable than a non-safety-critical robotic system. In Section 1.3, we will discuss how recent
technology advances might be able to improve the performance by a large margin. Besides
the safety-critical aspect, autonomous driving also requires the system to complete many
challenging tasks, and connect them properly under the hood. For example, the system needs
to predict the future environment state, including states of other vehicles and pedestrians.
The system also needs to reason about the interactions among all the agents involved in
the scene. The problem of properly connecting di�erent components is essential to many
sensorimotor systems, as we will take AD system as an example in Section 1.2. The study
of the autonomous driving system will potentially lead to many technological advances to
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Figure 1.1: The Team Victor Tango's urban driving software stack [Currier, ] in the DARPA
Urban Challenge.

sensorimotor research in general.

1.2 Existing Autonomous Driving Systems

DARPA held the autonomous driving challenges in 2004, 2005 and 2007. It is also from
that time, people have built practical autonomous driving systems. Figure 1.1 shows the
software architecture of one of the participating teams in the Urban Challenge. It employs
laser range �nder, cameras, and GPS/IMU as the perception sensors. The perception stack
is a heavily engineered pipeline that detects dynamic obstacles, recognizes the category of
the objects, the location of the road, as well as localizes the ego vehicle. The engineered
perception interface passes the extracted the obstacles, roads and ego vehicle location to the
planning modules. A rule-based planner takes in the output of the perception stack and
optional user input, and generate a coarse route planner. Afterward, it generates a re�ned,
detailed low-level trajectory and executes on the car.

Twelves years later, the basic component of the autonomous driving system is very similar
to the architecture shown in Figure 1.1. They are still in general consist of a perception stack
that output human-de�ned representations of the driving scenario, and a route planner that
incorporates perception's output as well as tra�c rules to generate a coarse route, and the
low-level motion planner that output the detailed local trajectory. Although each module
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Figure 1.2: The architecture of Alexnet [Krizhevsky et al., 2012], �rst place in the ILSVRC
2012 challenge.

has improved a lot over time, they is no signi�cant change to the overall architecture.
However, there are many challenges with this design. Some modules still encounter

technical challenges. On the recognition part, there are way too many semantic classes to
label than other closed world problems, since in the real world, there are a lot of rare object
classes. On the planning side, the system has to smartly \violate" some tra�c rules when
necessary. For example, it needs to cross the double yellow line marking when there is a
malfunctioning vehicle ahead. On the behavior prediction side, the system has to use subtle
facial expressions, or gestures to guess the intention of the pedestrian. It also needs to reason
about multi-agent interaction in a crowded tra�c scenario.

Beyond the technical challenges in each module, coordination among submodules is also a
big challenge. For example, if the perception module outputs a vehicle ahead of you, but
it is 
ickering across the frames. What should the planning module do in this case? The
existing system usually de�nes some heuristic to handle such problems, such as thresholding
and temporal smoothing. However, people have found that managing those coordinations
are much harder than expected. In this thesis, we focus on how to tackle this aspect of the
problem with inspirations from deep neural networks.

1.3 End to End Autonomous Driving Systems

In recent years, convolutional neural networks have achieved great success in the visual
recognition tasks. Figure 1.2 and Figure 1.3 show the ILSVRC 2012 winning and second place
method architectures. The second-place entry is a human-designed pipeline, that extract
image descriptors such as SIFT [Lowe, 1999], and pool them into a feature vector using
the Fisher Vector method [Perronnin and Dance, 2007]. Finally, the pooled feature goes
through some classi�ers and outputs a classi�cation score. The winning entry is an end-to-end
trained convolutional neural network, which is more widely known as AlexNet [Krizhevsky
et al., 2012]. The reason why AlexNet is much better than the previous hand-designed
descriptor-pooling-classi�cation pipeline is usually attributed to the end-to-end coordination
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Figure 1.3: The architecture of second place in the ILSVRC 2012 challenge [Gunji et al., ].

among the layers. Although all layers are simple linear convolution �lters with the ReLU
activation function, they coordinate with each other well by the end to end optimization
algorithm.

If we step back and stare at the existing autonomous driving system shown in Figure
1.1, there is a similar hand-designed aspect of the autonomous driving system that leads
to suboptimal performance. The question is whether can we improve the autonomous
driving performance with this end-to-end philosophy? I.e. use end to end optimization to
improve cross-component cooperation. End to end mechanism refers to the philosophy that
each module can adapt w.r.t the other components, driven by the task loss. In this thesis,
we investigate both the general end-to-end CNN architecture, as well as the task-speci�c
end-to-end architecture (the Perception-Logic Network).

1.4 Open Questions in End-To-End Driving

To design an end to end driving system. There are several open questions.
First, how to design the end to end architecture itself. One obvious choice is to use CNN

like architecture, and hope that all the driving-related knowledge can be learned from the data.
However, as previous work and we have shown [Bojarski et al., 2016b,Xu et al., 2017,LeCun
et al., 2005,Amini et al., 2019], this approach hasn't yet scaled up to complex behaviors such
as by-passing a malfunctioning vehicle. Another choice is to design di�erentiable equivalence
of the previous hand-designed systems. However, it is not clear how to de�ne di�erentiable
counterpart of every component in the existing driving system. It might also be the case
that one needs to make heavy changes to the overall architecture, to better �t the end-to-end
framework.

Second, how to train such an end to end system. Imitation learning is one of the most
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widely used methods to train a robotic system, however, imitation learning usually su�ers
from the distributional shift issue. I.e. the system generates a di�erent distribution of
trajectories at test time and thus the agent is not able to generalize well. Reinforcement
learning is an alternative method to train such a system. However, sometimes it needs
millions of examples, if not billions, to converge. Training such a system in practice is too
costly. In this thesis, we explore a method to combine the best of imitation learning and
reinforcement learning, to get the best of both worlds.

Last but not least, a human should be able to verify and explain the system. Most of the
neural networks are not explainable and hard to verify. In the autonomous driving task, it is
highly desirable to develop the system such that it is easy to verify and explain to human
beings.

1.5 Summary of the Proposed Solution

In this thesis, we study the problem of end to end driving following the open questions
mentioned in Section 1.4. In Chapter2, we take advantage of a newly collected dataset,
called Berkeley Deep Drive Video Dataset (BDDV). We formulate the autonomous driving
problem as a future ego-motion prediction task. We designed an FCN-LSTM architecture
that can directly learn from raw driving videos. This work examines how much work a
modern convolutional neural network could do when trained on real-world urban human
driving recordings. We have shown that only using the vanilla CNN network, it exhibits
behaviors like turning, attend on other tra�c participants, as well as react to the tra�c
lights.

In Chapter 3, we further investigate how to get a more accurate supervision signal for
the dataset used in Chapter 2. The dataset used in Chapter 2 is collected by iPhone's
video recordings and the GPS/IMU sensory readings. The GPS/IMU fused signal gives the
ground truth of the ego-motion of the vehicle. However, the ground truth of the motion is
not accurate enough when there are tall buildings around it, or when the vehicle is doing
subtle behaviors, such as changing lane. In this work, we investigate the combination of
Structure-From-Motion techniques and semantic segmentation methods to acquire accurate
ego-motion from the BDDV dataset.

Chapters 2 and 3 both deal with generic convolution neural networks, which is not
designed for the autonomous driving task. I.e. they do not have the inductive bias that
autonomous driving need. In Chapter 4, we investigate the visuomotor decision-making
problem in autonomous driving. In many cases of autonomous driving, the behavior should
have a strict logical condition. For example, if the weather is rainy or it is dark, then
the agent had better drive more cautiously than usual since the perception capability is
limited. When the pre-condition becomes more complex, it is harder for a vanilla CNN
to learn those logic-conditioned behaviors well. We propose a Perception-Logic Network
that can unsupervised discover logical primitives in the training data, and combine them
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with a di�erentiable logic network. Our method could achieve near-perfect generalization
performance during test time.

In Section 1.4, we also mentioned the hardness of training an end to end driving system.
In Chapter 5, we proposed to combine the best of imitation learning and reinforcement
learning to be able to master the skill and learn with a relatively small amount of data at
the same time.



7

Chapter 2

End-To-End Driving Models

Robust perception-action models should be learned from training data with diverse visual
appearances and realistic behaviors, yet current approaches to deep visuomotor policy learning
have been generally limited toin-situ models learned from a single vehicle or simulation
environment. We advocate learning a generic vehicle motion model from large scale crowd-
sourced video data, and develop an end-to-end trainable architecture for learning to predict a
distribution over future vehicle egomotion from instantaneous monocular camera observations
and previous vehicle state. Our model incorporates a novel FCN-LSTM architecture, which
can be learned from large-scale crowd-sourced vehicle action data, and leverages available
scene segmentation side tasks to improve performance under a privileged learning paradigm.
We provide a novel large-scale dataset of crowd-sourced driving behavior suitable for training
our model, and report results predicting the driver action on held out sequences across diverse
conditions.

2.1 Background

Learning perception-based policies to support complex autonomous behaviors, including
driving, is an ongoing challenge for computer vision and machine learning. While recent
advances that use rule-based methods have achieved some success, we believe that learning-
based approaches will be ultimately needed to handle complex or rare scenarios, and scenarios
that involve multi-agent interplay with other human agents.

The recent success of deep learning methods for visual perception tasks has increased
interest in their e�cacy for learning action policies. Recent demonstration systems [Bojarski
et al., 2016a,Chen et al., 2015a,LeCun et al., 2005] have shown that simple tasks, such as a
vehicle lane-following policy or obstacle avoidance, can be solved by a neural net. This echoes
the seminal work by Dean Pomerleau with the CMU NavLab, whose ALVINN network was
among the earliest successful neural network models [Pomerleau , 1989].

These prior e�orts generally formulate the problem as learning a mapping from pixels to
actuation. This end-to-end optimization is appealing as it directly mimics the demonstrated
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Figure 2.1: Autonomous driving is formulated as a future egomotion prediction problem.
Given a large-scale driving video dataset, an end-to-end FCN-LSTM network is trained to
predict multi-modal discrete and continuous driving behaviors. Using semantic segmentation
as a side task further improves the model.

performance, but is limiting in that it can only be performed on data collected with the
speci�cally calibrated actuation setup, or in corresponding simulations (e.g., as was done
in [Pomerleau , 1989], and more recently in [Tzeng et al., 2016, Rusu et al., 2016, Daftry
et al., 2016]). The success of supervised robot learning-based methods is governed by the
availability of training data, and typical publicly available datasets only contain on the order
of dozens to hundreds of hours of collected experience.

We explore an alternative paradigm, which follows the successful practice in most computer
vision settings, of exploiting large scale online and/or crowdsourced datasets. We advocate
learning a driving model or policy from large scale uncalibrated sources, and speci�cally
optimize models based on crowdsourced dashcam video sources. We release a curated dataset
from which suitable models or policies can be learned.

To learn a model from this data, we propose a novel deep learning architecture for
learning-to-drive from uncalibrated large-scale video data. We formulate the problem as
learning a generic driving model/policy; our learned model is generic in that it learns a
predictive future motion path given the present agent state. Presently we learn our model
from a corpus of demonstrated behavior and evaluate on held out data from the same corpus.
Our driving model is akin to a language model, which scores the likelihood of character or
word sequences given certain corpora; our model similarly is trained and evaluated in terms
of its ability to score as highly likely the observed behavior of the held out driving sequence.
It is also a policy in that it de�nes a probability distribution over actions conditioned on
a state, with the limitation that the policy is never actually executed in the real world or
simulation.

This chapter o�ers four novel contributions. First, we introduce a generic motion approach
to learning a deep visuomotor action policy where actuator independent motion plans are
learned based on current visual observations and previous vehicle state. Second, we develop a
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novel FCN-LSTM which can learn jointly from demonstration loss and segmentation loss, and
can output multimodal predictions. Third, we curate and make publicly available a large-scale
dataset to learn a generic motion model from vehicles with heterogeneous actuators. Finally,
we report experimental results con�rming that \privileged" training with side task (semantic
segmentation) loss learns egomotion prediction tasks faster than from motion prediction task
loss alone1.

We evaluate our model and compare to various baselines in terms of the ability of the
model to predict held-out video examples; our task can be thought of that of predicting
future egomotion given present observation and previous agent state history.

While future work includes extending our model to drive a real car, and addressing issues
therein involving policy coverage across undemonstrated regions of the policy space (c.f. [Ross
et al., 2011]), we nonetheless believe that e�ective driving models learned from large scale
datasets using the class of methods we propose will be a key element in learning a robust
policy for a future driving agent.

2.2 Related Work

ALVINN [Pomerleau , 1989] was among the very �rst attempts to use a neural network
for autonomous vehicle navigation. The approach was simple, comprised of a shallow network
that predicted actions from pixel inputs applied to simple driving scenarios with few obstacles;
nevertheless, its success suggested the potential of neural networks for autonomous navigation.

Recently, NVIDIA demonstrated a similar idea that bene�ted from the power of modern
convolution networks to extract features from the driving frames [Bojarski et al., 2016a].
This framework was successful in relatively simple real-world scenarios, such as highway
lane-following and driving in 
at, obstacle-free courses.

Instead of directly learning to map from pixels to actuation, [Chen et al., 2015a] proposed
mapping pixels to pre-de�ned a�ordance measures, such as the distance to surrounding cars.
This approach provides human-interpretable intermediate outputs, but a complete set of
such measures may be intractable to de�ne in complex, real-world scenarios. Moreover, the
learned a�ordances need to be manually associated with car actions, which is expensive, as
was the case with older rule-based systems. Concurrent approaches in industry have used
neural network predictions from tasks such as object detection and lane segmentation as
inputs to a rule-based control system [Huval et al., 2015].

Another line of work has treated autonomous navigation as a visual prediction task in
which future video frames are predicted on the basis of previous frames. [Santana and Hotz,
2016] propose to learn a driving simulator with an approach that combines a Variational
Auto-encoder (VAE) [Kingma and Welling, 2014] and a Generative Adversarial Network
(GAN) [Goodfellow et al., 2014]. This method is a special case of the more general task
of video prediction; there are examples of video prediction models being applied to driving

1The codebase and dataset can be found athttps://github.com/gy20073/BDD_Driving_Model/
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scenarios [De Brabandere et al., 2016,Lotter et al., 2016]. However, in many scenarios, video
prediction is ill-constrained as preceding actions are not given as input the model. [Oh et al.,
2015,Finn et al., 2016] address this by conditioning the prediction on the model's previous
actions. In our work, we incorporate information about previous actions in the form of an
accumulated hidden state.

Our model also includes a side- or privileged-information learning aspect. This occurs
when a learning algorithm has additional knowledge at training time; i.e., additional labels
or meta-data. This extra information helps training of a better model than possible using
only the view available at test time. A theoretical framework for learning under privileged
information (LUPI) was explored in [Vapnik and Vashist, 2009]; a max-margin framework for
learning with side-information in the form of bounding boxes, image tags, and attributes was
examined in [Sharmanska et al., 2013] within the DPM framework. Recently [Ho�man et al.,
2016] exploited deep learning with side tasks when mapping from depth to intensity data.
Below we exploit a privileged/side-training paradigm for learning to drive, using semantic
segmentation side labels.

Recent advances in recurrent neural network modeling for sequential image data are also
related to our work. The Long-term Recurrent Convolutional Network (LRCN) [Donahue
et al., 2015] model investigates the use of deep visual features for sequence modeling tasks
by applying a long short-term memory (LSTM) recurrent neural network to the output of a
convolutional neural network. We take this approach, but use the novel combination of a
fully-convolutional network (FCN) [Long et al., 2015] and an LSTM. A di�erent approach is
taken by [Xingjian et al., 2015], as they introduce a convolutional long short-term memory
(LSTM) network that directly incorporates convolution operations into the cell updates.

2.3 Deep Generic Driving Networks

We �rst describe our overall approach for learning a generic driving model from large-scale
driving behavior datasets, and then propose a speci�c novel architecture for learning a deep
driving network.

Generic Driving Models

We propose to learn a generic approach to learning a driving policy from demonstrated
behaviors, and formulate the problem as predicting future feasible actions. Our driving model
is de�ned as the admissibility of which next motion is plausible given the current observed
world con�guration. Note that the world con�guration incorporates previous observation and
vehicle state. Formally, a driving modelF is a function de�ned as:

F (s; a) : S � A ! R (2.1)

where s denotes states,a represents a potential motion action andF (s; a) measures the
feasibility score of operating motion actiona under the states.
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Figure 2.2: Comparison among novel architectures that can fuse time-series information with
visual inputs.

Our approach isgeneric in that it predicts egomotion, rather than actuation of a speci�c
vehicle. Our generic models take as input raw pixels and current and prior vehicle state
signals, and predict the likelihood of future motion. This can be de�ned over a range of
action or motion granularity, and we consider both discrete and continuous settings in this
chapter.2 For example, the motion action setA could be a set of coarse actions:

A = f straight, stop, left-turn, right-turn g (2.2)

One can also de�ne �ner actions based on the car egomotion heading in the future. In that
case, the possible motion action set is:

A = f ~vj~v 2 R2g (2.3)

where,~v denotes the future egomotion on the ground plane.
We refer to F (s; a) as a driving model inspired by its similarity to the classical N-gram

language model in Natural Language Processing. Both of them take in the sequence of prior
events, such as what the driver has seen in the driving model, or the previously observed
tokens in the language model, and predict plausible future events, such as the viable physical
actions or the coherent words. Our driving model can equivalently be thought of as a policy
from a robotics perspective, but we presently only train and test our model from �xed existing
datasets, as explained below, and consequently we feel the language model analogy is the
more suitable one.

2We leave the most general setting, of predicting directly arbitrary 6DOF motion, also to future work.
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FCN-LSTM Architecture

Our goal is to predict the distribution over feasible future actions, conditioned on the
past and current states, including visual cues and egomotions. To accomplish our goal, an
image encoder is necessary to learn the relevant visual representation in each input frame,
together with a temporal network to take advantage of the motion history information.
We propose a novel architecture for time-series prediction which fuses an LSTM temporal
encoder with a fully convolutional visual encoder. Our model is able to jointly train motion
prediction and pixel-level supervised tasks. We can use semantic segmentation as a side
task following \previleged" information learning paradigm. This leads to better performance
in our experiments. Figure 2.2 compares our architecture (FCN-LSTM) with two related
architectures [Donahue et al., 2015,Xingjian et al., 2015].

Visual Encoder

Given a video frame input, a visual encoder can encode the visual information in a
discriminative manner while maintaining the relevant spatial information. In our architecture,
a dilated fully convolutional neural network [Yu and Koltun, 2015, Donahue et al., 2015]
is used to extract the visual representations. We take the ImageNet [Russakovsky et al.,
2015] pre-trained AlexNet [Krizhevsky et al., 2012] model, remove POOL2 and POOL5
layers and use dilated convolutions for conv3 through fc7. To get a more discriminative
encoder, we �netune it jointly with the temporal network described below. The dilated FCN
representation has the advantage that it enables the network to be jointly trained with a
side task in an end-to-end manner. This approach is advantageous when the training data is
scarce.

Temporal Fusion

We optionally concatenate the past ground truth sensor information, such as speed and
angular velocity, with the extracted visual representation. With the visual and sensor states
at each time step, we use an LSTM to fuse all past and current states into a single state,
corresponding to the states in our driving model F (s; a). This state is complete, in the sense
that it contains all historical information about all sensors. We could predict the physical
viability from the state s using a fully connected layer.

We also investigate below another temporal fusion approach, temporal convolution, instead
of LSTM to fuse the temporal information. A temporal convolution layer takes in multiple
visual representations and convolves on the time dimension with ann � 1 kernel where n is
the number of input representations.

Driving Perplexity

Our goal is to learn a future motion action feasibility distribution, also known as the
driving model. However, in past work [Pomerleau , 1989,Chen et al., 2015a,Bojarski et al.,
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2016a], there are few explicit quantitative evaluation metrics. In this section, we de�ne an
evaluation metrics suitable for large-scale uncalibrated training, based on sequence perplexity.

Inspired by language modeling metrics, we propose to use perplexity as evaluation metric
to drive training. For example, a bigram model assigns a probability of:

p(w1; � � � ; wm ) = p(w1)p(w2jw1) � � � p(wm jwm� 1)

to a held out document. Our model assign:

p(a1js1) � � � p(at jst ) = F (s1; a1) � � � F (st ; at ) (2.4)

probability to the held out driving sequence with actionsa1 � � � at , conditioned on world states
s1 � � � st . We de�ne the action predictive perplexity of our model on one held out sample as:

perplexity = exp
n

�
1
t

tX

i =1

logF (si ; ai )
o

(2.5)

To evaluate a model, one can take the most probable action predictedapred = argmaxaF (s; a)
and compare it with the actionareal that is carried out by the driver. This is the accuracy
of the predictions from a model. Note that models generally do not achieve 100% accuracy,
since a driving model does not know the intention of the driver ahead of time.

Discrete and Continuous Action Prediction

The output of our driving model is a probability distribution over all possible actions. A
driving model should have correct motion action predictions despite encountering complicated
scenes such as an intersection, tra�c light, and/or pedestrians. We �rst consider the case
of discrete motion actions, and then investigate continuous prediction tasks, in both cases
taking into account the prediction of multiple modes in a distribution when there are multiple
possible actions.

Discrete Actions. In the discrete case, we train our network by minimizing perplexity
on the training set. In practice, this e�ectively becomes minimizing the cross entropy loss
between our prediction and the action that is carried out. In real world of driving, it's more
prevalent to go straight, compared to turn left or right. Thus the samples in the training set
are highly biased toward going straight. Inspired by [Zhang et al., 2016], we investigated the
weighted loss of di�erent actions according to the inverse of their prevalence.

Continuous Actions. To output a distribution in the continuous domain, one could
either use a parametric approach, by de�ning a family of parametric distribution and regressing
to the parameters of the distribution, or one can employ a non-parametric approach, e.g.
discretizing the action spaces into many small bins. Here we employ the second approach,
since it can be di�cult to �nd a parametric distribution family that could �t all scenarios.
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Figure 2.3: Comparison of learning approaches. Mediated Perception relies on semantic-class
labels at the pixel level alone to drive motion prediction. The Motion Re
ex method learns a
representation based on raw pixels. Privileged Training learns from raw pixels but allows
side-training on semantic segmentation tasks.

Driving with Privileged Information

Despite the large-scale nature of our training set, small phenomena and objects may be
hard to learn in a purely end-to-end fashion. We propose to exploit privileged learning [Vapnik
and Vashist, 2009,Sharmanska et al., 2013,Ho�man et al., 2016] to learn a driving policy that
exploits both task loss and available side losses. In our model, we use semantic segmentation
as the extra supervision. Figure 2.3 summarizes our approach and the alternatives: motion
prediction could be learned fully end to end (Motion Re
ex Approach), or could rely fully
on predicted intermediate semantic segmentation labels (Mediated Perception Approach),
in contrast, our proposed approach (Privileged Training Approach) adopts the best of both
worlds, having the semantic segmentation as a side task to improve the representation, which
ultimately performs motion prediction. Speci�cally, we add a segmentation loss after fc7,
which enforces fc7 to learn a meaningful feature representation. Our results below con�rm
that even when semantic segmentation is not the ultimate goal, learning with semantic
segmentation side tasks can improve performance, especially when coercing a model to attend
to small relevant scene phenomena.

2.4 The BDDV Dataset

The Berkeley DeepDrive Video dataset (BDDV) is a dataset comprised of real driving
videos and GPS/IMU data. The BDDV dataset contains diverse driving scenarios including
cities, highways, towns, and rural areas in several major cities in US. We analyze di�erent
properties of this dataset in the following sections and show its suitability for learning a
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Figure 2.4: Example density of data distribution of BDDV in a major city. Each dot represents
the starting location of a short video clip of approximately 40 seconds.

generic driving model in comparison with sets of benchmark datasets including KITTI,
Cityscapes, Comma.ai dataset, Oxford Dataset, Princeton Torcs, GTA, each of which varies
in size, target, and types of data. A comparison of datasets is provided in Table 2.1.

Scale

BDDV provides a collection of su�ciently large and diverse driving data, from which it is
possible to learn generic driving models. The BDDV contains over 10,000 hours of driving
dash-cam video streams from di�erent locations in the world. The largest prior dataset is
Robotcar dataset [Maddern et al., pear] which corresponds to 214 hours of driving experience.
KITTI, which has diverse calibrated data, provides 22 sequences (less than an hour) for
SLAM purposes. In Cityscapes, there are no more than 100 hours driving video data provided
upon request. To the best of knowledge, BDDV is at least in two orders larger than any
benchmark public datasets for vision-based autonomous driving.
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Datasets settings type Approx scale Diversity Speci�c Car

KITTI
city, highway

rural area
real less than 1 hour

one weather condition
one city, daytime

Yes

Cityscape city real less than 100 hours
multiple weather conditions

German cities, daytime
Yes

Comma.ai mostly highway real 7.3 hours highway, N.A. , daytime and night Yes

Oxford city real 214 hours
multiple weather conditions

one city (Oxford), daytime
Yes

Torcs highway synthesis 13.5 hours N.A. N.A.
GTA city, highway synthesis N.A. N.A. N.A.

BDDV(ours)
city, highway

rural area
real 10k hours

multiple cities ,daytime and night
multiple weather conditions

No

Table 2.1: Comparison of our dataset with other driving datasets.

Modalities

Besides the images, our BDDV dataset also comes with sensor readings of a smart phone.
The sensors are GPS, IMU, gyroscope and magnetometer. The data also comes with sensor-
fused measurements, such as course and speed. Those modalities could be used to recover
the trajectory and dynamics of the vehicle.

Diversity

The BDDV dataset is collected to learn a driving model that is generic in terms of driving
scenes, car makes and models, and driving behaviors. The coverage of BDDV includes various
driving, scene, and lighting conditions. In Figure 2.5 we show some samples of our dataset
in nighttime, daytime, city areas, highway and rural areas. As shown in Table 2.1, existing
benchmark datasets are limited in the variety of scene types they comprise. In Figure 2.4 we
illustrate the spatial distribution of our data across a major city.

2.5 Experiments

For our initial experiments, we used a subset of the BDDV comprising 21,808 dashboard
camera videos as training data, 1,470 as validation data and 3,561 as test data. Each video
is approximately 40 seconds in length. Since a small portion of the videos has duration just
under 40 seconds, we truncate all videos to 36 seconds. We downsample frames to 640� 360
and temporally downsample the video to 3Hz to avoid feeding near-duplicate frames into
our model. After all such preprocessing, we have a total of 2.9 million frames, which is
approximately 2.5 times the size of the ILSVRC2012 dataset. To train our model, we used
stochastic gradient descent (SGD) with an initial learning rate of 10� 4, momentum of 0.99
and a batch size of 2. The learning rate was decayed by 0.5 whenever the training loss
plateaus. Gradient clipping of 10 was applied to avoid gradient explosion in the LSTM. The
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Figure 2.5: Sample frames from the BDDV dataset.

LSTM is run sequentially on the video with the previous visual observations. Speci�cally,
the number of hidden units in LSTM is 64. Models are evaluated using predictive perplexity
and accuracy, where the maximum likelihood action is taken as the prediction.

Discrete Action Driving Model

We �rst consider the discrete action case, in which we de�ne four actions:straight , stop ,
left turn , right turn . The task is de�ned as predicting the feasible actions in the next
1=3rd of a second.

Following Section 2.3, we minimize perplexity on the training set and evaluate perplexity
and accuracy of the maximum likelihood prediction on a set of held out videos. In Table 2.2,
we do an ablation study to investigate the importance of di�erent components of our model.

Table 2.2 shows the comparison among a few variants of our method. The Random Guess
baseline predicts randomly based on the input distribution. In the speed-only condition,
we only use the speed of the previous frame as input, ignoring the image input completely.
It achieves decent performance, since the driving behavior is largely predictable from the
speed in previous moment. In the \1-Frame" con�guration, we only feed in a single image at
each timestep and use a CNN as the visual encoder. It achieves better performance than
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Con�guration Image Temporal Speed Perplexity Accuracy
Random-Guess N.A. N.A. No 0.989 42.1%
Speed-Only N.A. LSTM Yes 0.555 80.1%
CNN-1-Frame CNN N.A. No 0.491 82.0%
TCNN3 CNN CNN No 0.445 83.2%
TCNN9 CNN CNN No 0.411 84.6%
CNN-LSTM CNN LSTM No 0.419 84.5%
CNN-LSTM+Speed CNN LSTM Yes 0.449 84.2%
FCN-LSTM FCN LSTM No 0.430 84.1%

Table 2.2: Results on the discrete feasible action prediction task. We investigated the in
uence
of various image encoders, temporal networks and the e�ect of speed. Log perplexity (lower
is better) and accuracy (higher is better) of our prediction are reported. See Section 2.5 for
details.

the two baseline models (random and speed-only). This is intuitive, since human drivers can
get a good, but not perfect, sense of feasible motions from a single frame. In the TCNN
con�guration we study using temporal convolution as the temporal fusion mechanism. We
used a �xed length window of 3 (TCNN3) and 9 (TCNN9), which is 1 and 3 seconds in
time respectively. TCNN models further improves the performance and the longer the time
horizon, the better the performance. However, it needs a �xed size of history window and is
more memory demanding than the LSTM based approach. We also explore the CNN-LSTM
approach, and it achieves comparable performance as TCNN9. When changing the visual
encoder from CNN to FCN, the performance is comparable. However, as we will show later
2.3, a FCN-based visual encoder is vital for learning from privileged segmentation information.
We also found that the inverse frequency weighting of the loss function [Zhang et al., 2016]
encourages the prediction of rare actions, but it does not improve the prediction perplexity.
Thus we do not use this in our methods above.

In Figure. 2.6, we show some predictions made by our model. In the �rst pair of images
(sub�g. a&b), the car is going through an intersection, when the tra�c light starts to change
from yellow to red. Our model has predicted to go straight when the light is yellow, and the
prediction changes to stop when the tra�c light is red. This indicates that our model has
learned how human drivers often react to tra�c light colors. In the second pair (c& d), the
car is approaching a stopped car in the front. In (c), there is still empty space ahead, and
our model predicts to go or stop roughly equally. However, when the driver moves closer to
the front car, our model predicts stop instead. This shows that our model has learned the
concept of distance and automatically map it to the feasible driving action.
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(a) go at yellow light (b) stop at red light

(c) stop & go equal weight at medium
distance

(d) stop when too close to vehicle ahead

Figure 2.6: Discrete actions predicted by our FCN-LSTM model. Each row of 2 images
show how the prediction changes by time. The green bars shows the probability of doing
that action at that time. The red bars are the driver's action. The four actions from top to
bottom are going straight, slow or stop, turn left and turn right.

Table 2.3: Continuous lane following experiment. See Section 2.5 for details.

Con�guration Angle Perplexity
Random Guess 1.86
Linear Bins -2.82
Log Bins -3.66
Data-Driven Bins -4.83

Continuous Action Driving Model

In this section, we investigate the continuous action prediction problem, in particular,
lane following. We de�ne the lane following problem as predicting the angular speed of the
vehicle in the future 1=3 second. As proposed above, we discretize the prediction domain
into bins and turn the problem into a multi-nomial prediction task.

We evaluated three di�erent kinds of binning methods (Table 2.3). First we tried a linear
binning method, where we discretize [� 90� ; 90� ] into 180 bins of width 1� . The linear binning
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method perplexity accuracy
Motion Re
ex Approach 0.718 71.31%
Mediated Perception Approach 0.8887 61.66
Privileged Training Approach 0.697 72.4%

Table 2.4: Comparison of the privileged training with other methods.

method is reasonable under the assumption that constant controlling accuracy is needed
to drive well. Another reasonable assumption might be that constant relative accuracy is
required to control the turns. This corresponds to the log bins method. We use a total of
180 bins that is evenly distributed inlogspace(� 90� ; � 1� ) and logspace(1� ; 90� ). We also
tried a data-driven approach. We �rst compute the distribution of the drivers' behavior (the
vehicle's angular velocity) in the continuous space. Then we discretize the distribution to 180
bins, by requiring each bin having the same probability density. Such data-driven binning
method will adaptively capture the details of the driver's action. During training we use a
Gaussian smoothing with standard deviation of 0:5 to smooth the training labels in nearby
bins. Results are shown in Table 2.3; The data-driven binning method performed the best
among all of them, while the linear binning performed worst.

Figure 2.7 shows examples of our prediction on video frames. Sub-�gure (a) & (b) shows
that our models could follow the curving lane accurately. The prediction has a longer tail
towards the direction of turning, which is expected since it's �ne to have di�erent degrees of
turns. Sub-�gure (c) shows the prediction when a car is starting to turn left at an intersection.
It assigns a higher probability to continue turning left, while still assigning a small probability
to go straight. The probability in the middle is close to zero, since the car should not hit the
wall. Close to the completion of the turn (sub-�gure (d)), the car could only �nish the turn
and thus the other direction disappears. This shows that we could predict a variable number
of modalities appropriately. In sub-�gure (e), when the car is going close to the sidewalk on
its right, our model assigns zero probability to turn right. When going to the intersection,
the model has correctly assigned non-zero probability to turning right, since it's clear by that
time.

Learning with Privileged Information (LUPI)

In this section, we demonstrate our LUPI approach on the discrete action prediction
task. Following Section 2.3, we designed three approaches: The Motion Re
ex Approach
refers to the FCN-LSTM approach above. The Privileged Training approach takes the
FCN-LSTM architecture and adds an extra segmentation loss after the fc7 layer. We used
BDD Segmentation masks as the extra supervision. Since the BDDV dataset only contains
the car egomotion and the BDD Segmentation dataset only contains the segmentation of
individual images, we pair each video clip with 10 BDD Segmentation images during training.
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