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Abstract

Eukaryotic transcription generally occurs in bursts of activity lasting minutes to hours; however, 

state-of-the-art measurements have revealed that many of the molecular processes that underlie 

bursting, such as transcription factor binding to DNA, unfold on timescales of seconds. This 

temporal disconnect lies at the heart of a broader challenge in physical biology of predicting 

transcriptional outcomes and cellular decision-making from the dynamics of underlying molecular 

processes. Here, we review how new dynamical information about the processes underlying 

transcriptional control can be combined with theoretical models that predict not only averaged 

transcriptional dynamics, but also their variability, to formulate testable hypotheses about the 

molecular mechanisms underlying transcriptional bursting and control.
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A disconnect between transcriptional bursting and its underlying molecular 

processes

Over the past two decades, new technologies have revealed that transcription is a 

fundamentally discontinuous process characterized by transient bursts of transcriptional 

activity interspersed with periods of quiescence. Although electron microscopy provided 

early hints of bursty transcription [1], the advent of single-molecule fluorescence in situ 
hybridization (smFISH) [2,3], was key to establishing its central role in transcription. The 
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single-cell distributions of nascent RNA and cytoplasmic mRNA molecules obtained using 

this technology provided compelling, if indirect, evidence for the existence and ubiquity 

of gene expression bursts, and indicated that their dynamics were subject to regulation 

by transcription factors [4,5]. These fixed-tissue inferences have been confirmed with new 

in vivo RNA fluorescence labeling technologies such as the MS2/MCP [6] and PP7/PCP 

systems [7], which directly reveal stochastic bursts of transcriptional activity in living cells 

in culture and within animals (Figure 1A–C) [8–11].

What is the role of transcriptional bursting in cellular decision-making? One possibility is 

that bursty gene expression is intrinsically beneficial, helping (for instance) to coordinate 

gene expression or to facilitate cell-fate decision-making [12]. Alternatively, bursting may 

not itself be functional but might instead be a consequence of key underlying transcriptional 

processes, such as proofreading transcription factor identity [13,14].

Bursting and its regulation are intimately tied to the molecular mechanisms that underlie 

transcriptional regulation as a whole. In this article, we argue that, to make progress 

toward predicting transcriptional outcomes from underlying molecular processes, we can 

start with the narrower question of how the burst dynamics emerge from the kinetics of 

molecular transactions at the gene locus. To illustrate the importance and challenge of taking 

kinetics into account, we highlight two interrelated molecular puzzles that arise from new 

measurements of the dynamics of key transcriptional processes in vivo.

First, as illustrated in Figure 1D and reviewed in detail in Appendix Table A.1, despite 

qualitatively similar bursty traces from different organisms, bursts unfold across markedly 

distinct timescales ranging from several minutes [15,16], to tens of minutes [17,18], all 

the way to multiple hours [19]. Is this wide range of bursting timescales across organisms 

reflective of distinct molecular mechanisms or is it the result of a common set of highly 

malleable molecular processes?

Second, recent live imaging experiments have revealed a significant temporal disconnect 

between transcription factor binding events, which generally last for seconds, and the 

transcriptional bursts that these events control, which may last from a few minutes to 

multiple hours.

The majority of the molecular processes underlying transcriptional control are highly 

transient (Figure 1E), with timescales ranging from milliseconds to seconds (see Appendix 

Table A.2 and accompanying text for a detailed tabulation and discussion of these findings).

In this article, we seek to address this second puzzle by surveying key theoretical 

and experimental advances that, together, should shed light on the molecular origins 

of transcriptional bursting and transcriptional regulation. We leverage this framework to 

examine two kinds of molecular-level models that explain how slow burst dynamics could 

arise from fast molecular processes. Finally, we present concrete experimental strategies 

based on measuring variability in the timing of bursts that can be used to discern between 

molecular models of transcriptional bursting.
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Overall, we seek to illustrate how iterative discourse between theory and experiment 

sharpens our molecular understanding of transcriptional bursting by reformulating cartoon 

models as concrete mathematical statements. Throughout this article, we focus on 

illustrative recent experimental and theoretical efforts; we therefore do not attempt to 

provide a comprehensive review of the current literature (see Ref. [20–25] for excellent 

reviews).

The two-state model: a simple quantitative framework for bursting 

dynamics

To elucidate the disconnect between molecular timescales and transcriptional bursting, we 

invoke a simple and widely used model of bursting dynamics: the two-state model of 

promoter switching. While the molecular reality of bursting is likely more complex than 

the two-state model suggests [26–28], there is value in examining where this simple model 

breaks down. This model posits that the promoter can exist in two states: a transcriptionally 

active ON state and a quiescent OFF state (Figure 2A). The promoter stochastically switches 

between these states with rates kon and koff and loads new RNA polymerase II (RNAP) 

molecules at a rate r when in the ON state [22,29–31]. Figure 2B shows a hypothetical 

activity trace for a gene undergoing bursty expression, where a burst corresponds to a period 

of time during which the promoter is in the ON state. The average burst duration, amplitude, 

and separation are given by 1/koff, r, and 1/kon, respectively.

Because the instantaneous transcription initiation rate during a burst is r and zero otherwise, 

the average initiation rate is equal to r times the fraction of time the promoter spends in this 

ON state pon,

initiation rate = r pon, (1)

where brackets indicate time-averaging. As shown in Appendix B, in steady state, pon can be 

expressed as a function of the transition rates kon and koff:

pon = kon
kon + koff

. (2)

Plugging this solution into Equation (1) results in the average rate of mRNA production as a 

function of the bursting parameters given by.

〈initiation rate〉 = r
transcription rate

in ON state

kon
kon + koff

probability of
ON state

.
(3)

Equation (3) shows that, within the two-state model, transcription factors can influence 

the mean transcription rate by modulating any one of the three burst parameters (or 

a combination thereof). For example, consider an activator that can increase the mean 

transcription rate (Figure 2C) by decreasing koff, increasing kon or r, or any combination 
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thereof (Figure 2D). Both live-imaging measurements and smFISH have revealed that the 

vast majority of transcription factors predominantly modulate burst separation by tuning kon 

[5,11,15,16,32–35]. There are also examples of the control of burst amplitude and duration, 

however [17,33,36].

Although experiments have identified which bursting parameters are under regulatory 

control, the question of how this regulation is realized at the molecular level remains largely 

open (with a handful of notable exceptions in bacteria [37], yeast [65], and mammalian 

cell culture [66]). This is because the two-state model is a phenomenological model: we 

can use it to quantify burst dynamics without making any statements about the molecular 

identity of the burst parameters. Nonetheless, by putting hard numbers to bursting and 

identifying which parameter(s) are subject to regulation, this framework constitutes a 

useful quantitative tool to formulate and test hypotheses about the molecular mechanisms 

underlying transcriptional control.

For instance, consider the observation that many activators modulate burst separation. A 

simple way to explain this fact is to posit that transitions between the ON and OFF states 

reflect the binding and unbinding of individual factors to regulatory DNA. Here, koff would 

be the activator DNA-unbinding rate and kon would be a function of activator concentration 

[A],

kon([A]) = [A]k0
b, (4)

where k0
b is the rate constant for activator binding.

A recent study in yeast lent credence to this picture, finding that activator affinity (ku) 

might indeed play a role in dictating burst duration [65]. However, for most genes and 

organisms surveyed so far, the two-state model indicates that transcription factor unbinding 

alone cannot set the timescale for bursting: if koff were an activator unbinding rate, then 

it would be on the order of 1 s−1 (Figure 1D and E, box 7). However, measurements 

of burst duration reveal that koff must be orders of magnitude smaller (≲ 0.01s−1, Figure 

1D). Thus, the two-state model lends a quantitative edge to the disconnect in Figure 1, 

reaffirming that transcriptional bursting is unlikely to be solely determined by the binding 

kinetics of the transcription factors that regulate it. We must therefore extend our simple 

two-state framework to incorporate molecular mechanisms that allow rapid transcription 

factor binding and transcriptional bursts that are orders of magnitude slower.

Bridging the timescale gap: kinetic traps and rate-limiting steps

Recent works have considered kinetic models of transcription that describe transition 

dynamics between distinct microscopic transcription factor binding configurations. These 

models make it possible to investigate how molecular interactions facilitate important 

behaviors such as combinatorial regulatory logic, sensitivity to changes in transcription 

factor concentrations, the specificity of interactions between transcription factors and their 

targets, and transcriptional noise reduction [13,14,38–41,67].
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We illustrate how these kinetic models can shed light on the disconnect between the 

timescales of transcription factor binding and bursting using the activation of the hunchback 
minimal enhancer by Bicoid in the early fruit fly embryo as a case study [34,38,41–44]. 

Recent in vivo single-molecule studies have revealed that Bicoid specifically binds DNA 

in a highly transient fashion (~ 1 – 2 s) [45,46], suggesting that Bicoid binding cannot 

dictate the initiation and termination of hunchback transcriptional bursts, which happen over 

minutes [34]. We seek molecular models that recapitulate two key aspects of bursting: (1) 

the emergence of effective ON and OFF transcriptional states and (2) “slow” (>1 min) 

fluctuations between these states. We sketch out the mathematical basis of these efforts and 

review key results below; more detailed calculations can be found in Appendix C.

Following [38], we consider a simple activation model featuring an enhancer with identical 

activator binding sites. While the full model for the hunchback minimal enhancer consists 

of six binding sites, we first use a simpler version with three binding sites to introduce 

key features of our binding model before transitioning to the more realistic six binding 

sites version when discussing our results. We capture the dynamics of activator binding and 

unbinding at the enhancer by accounting for the transitions between all possible binding 

configurations (Figure 3A). Our assumption of identical activator binding sites leads to two 

simplifications: (1) the same rate, ki,j governs the switching from any configuration with i 
activators bound to any configuration with j bound and (2) all binding configurations with 

the same number n of activators bound have the same rate of transcription, rn = r0 n, which 

we posit to be proportional to the number of bound activators. As a result we need not 

track specific binding configurations and may condense the full molecular representation in 

Figure 3A into a simpler four-state chain-like model with one state for each possible value of 

n (Figure 3B).

Transitions up and down the chain in Figure 3B are governed by the effective binding and 

unbinding rates k+(n) and k−(n). To calculate these rates from the microscopic transition 

rates ki,j, consider, for example, that there are three possible ways of transitioning from the 

0 state to the 1 state, each with rate k0,1. Thus, the effective transition rate between states 0 

and 1 is given by 3k0,1. More generally, in the effective model, activator binding rates are

k+ n = N − n kn, n + 1, (5)

where n indicates the current number of bound activators and N is the total number of 

binding sites. Similarly, activator unbinding rates are given by

k_ n = nkn, n − 1 . (6)

These transition rates allow us to generalize to the more realistic enhancer with six binding 

sites.

We first examine a system in which activator molecules bind and unbind independently from 

each other (Figure 3C). There are only two unique microscopic rates in this system: activator 

molecules bind at a rate ki, i + 1 = kb = k0
b[A], with [A] being the activator concentration and 
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k0
b the binding rate constant, and unbind at a rate ki,i−1 = ku. We fix the unbinding rate ku 

= 0.5 s−1 to ensure consistency with recent experimental measurements of Bicoid in Ref. 

[45,46]. For simplicity, we also set kb = 0.5 s−1 (see Appendix C.2.3 for details).

To gain insight into the model’s transcriptional dynamics, we use stochastic simulations 

based on the Gillespie Algorithm [47]; however a variety of alternative analytic and 

numerical approaches exist [40,41,44]. Our simulations reveal that independent binding 

leads to a unimodal output behavior in which the transcription rate fluctuates rapidly about 

a single average (Figure 3D). This result is robust to our choices of kb or ku, as well 

as the number of binding sites in the enhancer (Appendix C.2.2). The observed lack of 

slow, bimodal fluctuations leads us to conclude that the independent binding model fails to 

recapitulate transcriptional bursting.

One way to extend the independent binding model is to allow for cooperative protein-protein 

interactions between activator molecules. Specifically, we consider a model where bound 

activator molecules [69] act to catalyze the binding of additional activators. Here, the 

activator binding rate is increased by a factor ω for every activator already bound, leading to

ki, i + 1 = kbωi . (7)

Because we assume that activator unbinding still occurs independently, the effective 

unbinding rates remain unchanged (Equation (6)).

Stochastic simulations of the cooperative binding model in Figure 3F reveal that the output 

transcription rate now takes on an all-or-nothing character, fluctuating between high and low 

values that act as effective ON and OFF states. Further, our simulation indicates that these 

emergent fluctuations are quite slow (0.13 transitions/min for the system shown), despite fast 

activator binding kinetics. Both of these phenomena result from large imbalances between 

k+(n) and k−(n) that act as “kinetic traps.”

Consider the case with five bound activators. If k+(5) ≫ k−(5), then the enhancer is much 

more likely to bind one more activator molecule and move to state six than to lose an 

activator and drop to state four. For instance, if k+(5)/k−(5) = 23 (Figure 3F), then the system 

will on average oscillate back and forth between states five and six 23 times before it finally 

passes to state four. While it is possible to generate this kind of trap without cooperativity 

at one end of the chain or the other by tuning kb, cooperative interactions are needed to 

simultaneously achieve traps at both ends.

While we focused on binding-mediated cooperativity here, we note that all results presented 

above hold equally well for the unbinding-mediated case where cooperative interactions 

between bound molecules stabilize binding by reducing ki,i−1 while maintaining ki,i+1 

unchanged. As discussed in Appendix C.3.4, our analysis of this unbinding-mediated 

cooperativity scenario makes the intriguing additional prediction that rapid (~1 s) activator 

dwell times inferred from in vivo experiments could mask the existence of rare long-lived 

(≥10 s) binding events that, despite their infrequency, play a key role in driving slow 

transcriptional burst dynamics. Finally, it is important to note that the phenomenon of 
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emergent slow fluctuations is not limited to activator binding: cooperative interactions in 

fast molecular reactions elsewhere in the transcriptional cycle, such as in the dynamics of 

pre-initiation complex assembly, could, in principle, also induce slow fluctuations.

Inspired by the MWC model of protein allostery [44,50], a second way to bridge the 

timescale gap between activator binding and transcriptional bursting is to posit two distinct 

system configurations: an ON configuration where binding is favored (kb ≫ ku) and an OFF 

configuration that is less conducive to binding (kb ≪ ku). From any of the seven binding 

states, this system can transition from OFF to ON by traversing Mon slow steps, each with 

rate kon
i ≪ ku, where i is the step number (Figure 3G). Similarly, transitions from ON to OFF 

are mediated by Moff steps with rates given by koff
i . Stochastic simulations indicate that this 

system yields bimodal transcription that fluctuates between high and low activity regimes 

on timescales set by the rate-limiting molecular steps (Figure 3H). Thus, as long as these 

steps induce a sufficiently large shift in activator binding (kb), the rate-limiting step model 

reconciles rapid activator binding with transcriptional bursting.

Figure 1B suggests candidates for these slow molecular steps. For example, the ON state 

in Figure 3G could correspond to an open chromatin state that favors binding while the 

OFF state could indicate that a nucleosome attenuates binding such that Mon = Moff = 1. 

Our model also allows multiple distinct rate-limiting steps. For instance, chromatin opening 

could require multiple histone modifications (Mon ≥ 2, Moff = 1), or chromatin opening 

may need to be followed by enhancer-promoter co-localization to achieve a high rate of 

transcription (Mon = 2, Moff = 1).

Although they are not the only possible models, the cooperativity and rate-limiting step 

scenarios discussed above represent two distinct frameworks for thinking about how 

slow processes like bursting can coincide with, and even arise from, rapid processes 

like activator binding. The next challenge in identifying the molecular processes that 

drive transcriptional bursting is to establish whether these models make experimentally 

distinguishable predictions.

Using bursting dynamics to probe different models of transcription

While we cannot yet directly observe the microscopic reactions responsible for bursting in 

real time, these processes leave signatures in transcriptional dynamics that may distinguish 

molecular realizations of bursting such as those of our cooperative binding (Figure 3E) and 

rate-limiting step (Figure 3G) models. Inspired by Ref. [27,51–53], we examine whether 

the distribution of observed burst separation times (Figure 4A) distinguishes between these 

two models. In keeping with literature convention, we refer to these separation times as 

first-passage times from OFF to ON.

The variability in reactivation times provides clues into the number of hidden steps in 

a molecular pathway. For instance, suppose that bursts are separated by an average time 

τoff = 1/kon, as defined in the two-state model in Figure 2A and B. If there is only a 

single rate-limiting molecular step in the reactivation pathway (Mon = 1 in Figure 3G), 

then the first-passage times will follow an exponential distribution (Figure 4B) such that 
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the variability, defined as the standard deviation (σoff), will simply be equal to the mean 

(τoff). Now, consider the case where two distinct molecular steps, each taking an average 

τoff/2, connect the OFF and ON states (Mon = 2). To calculate the variability in the time to 

complete both steps and reactivate, we need to add the variability of each step in quadrature:

σoff = τoff2

2 + τoff2

2 = τoff
2 . (8)

More generally, in the simple case in which each step has the same rate, given an average 

first-passage time of τoff, the variability in the distribution of measured first-passage times 

will decrease as the number of rate-limiting steps, Mon, increases following

σoff Mon = τoff
Mon

. (9)

As predicted by Equation (9), increasing the rate-limiting step number reduces the width 

of the distribution for the rate-limiting step model obtained from stochastic simulations, 

shifting passage times from an exponential distribution when Mon = 1 to increasingly peaked 

gamma distributions when Mon > 1 (Figure 4B).

On the basis of these results, since the fluctuations between high- and low-activity regimes 

reflect transitions through many individual binding states in the cooperative binding model 

(Figure 3E), we might also expect this model to exhibit nonexponential first passage 

times. Instead, the first-passage times are exponentially distributed (Figure 4C). This result 

is consistent with earlier theoretical work that examined a chain model similar to ours 

and found that sufficiently large reverse rates (ku in our case) cause first-passage time 

distributions to exhibit approximately exponential behavior [54].

The coefficient of variation (CV = σoff/τoff) provides a succinct way to summarize the shape 

of passage time distributions for a wide range of model realizations. Figure 4D plots σoff 

against τoff for each of the model architectures considered in Figure 4B and C for a range 

of different τoff values. Points representing distributions with CV = 1 will fall on the line 

with slope one and points for distributions with CV < 1 will fall below it. We see that both 

the cooperative binding model and the single rate-limiting step model have CV values of 

approximately one for a wide range of τoff values, consistent with exponential behavior. 

Conversely, all models with multiple rate-limiting steps have slopes that are significantly 

less than one.

Thus, by moving beyond experimentally measuring average first-passage time for a given 

gene and examining its distribution, it is possible to rule out certain molecular mechanisms. 

For example, a nonexponential distribution would be evidence against the cooperative 

binding and single rate-limiting step models (see Appendix C.1 and Appendix C.4 for details 

about stochastic simulations and first-passage time calculations). While these conclusions 

are specific to the models considered here, the general approach of invoking the distributions 

rather than means and using stochastic simulations to derive expectations for different 
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models can be employed to discriminate between molecular hypotheses in a wide variety 

of contexts. Indeed, the examination of distributions has been revolutionary throughout 

biology by making it possible to, for example, reveal the nature of mutations [55], uncover 

mechanisms of control of transcriptional initiation [56] and elongation [57,58], measure 

translational dynamics [59], and even count molecules [60].

Note that, while appropriate for qualitatively estimating the order of magnitude of bursting 

timescales, raw fluorescence measurements from MS2 and PP7 experiments such as those 

in Figure 1A–C do not directly report on the promoter state. Rather, the signal from these 

experiments is a convolution of the promoter state and the dwell time of each nascent RNA 

molecule on the gene body [16]. As a result, inference techniques like those developed in 

Refs. [16,26] are often required to infer underlying burst parameters and promoter states that 

can be used to estimate first-passage time distributions. Other techniques, such as measuring 

the short-lived luminescent signal from reporters [27], have also successfully estimated 

first-passage times.

The first-passage time analyses discussed here are just one of an expansive set of approaches 

to determining the best model to describe experimental data. For instance, direct fits of 

models to experimental time traces could be used to identify the most appropriate model 

(see, e.g. Refs. [26,61]). A discussion of this and other approaches falls beyond the scope of 

this work, but we direct the reader to several excellent introductions to elements of this field 

[61–64].

Conclusions

The rapid development of live-imaging technologies has opened unprecedented windows 

into in vivo transcriptional dynamics and the kinetics of the underlying molecular processes. 

We increasingly see that transcription is complex, emergent, and—above all—highly 

dynamic, but experiments alone still fail to reveal how individual molecular players 

come together to realize processes that span a wide range of temporal scales, such as 

transcriptional bursting.

Here we have argued that theoretical models can help bridge this crucial disconnect 

between single-molecule dynamics and emergent transcriptional dynamics. By committing 

to mathematical formulations rather than qualitative cartoon models, theoretical models 

make concrete quantitative predictions that can be used to generate and test hypotheses 

about the molecular underpinnings of transcriptional control. We have also shown how, 

although different models of biological phenomena might be indistinguishable in their 

averaged behavior, these same models often make discernible predictions at the level of the 

distribution of such behaviors.

Moving forward, it will be critical to continue developing models that are explicit about 

the kinetics of their constituent molecular pieces, as well as statistical methods for 

connecting these models to in vivo measurements in an iterative dialogue between theory 

and experiment. In particular, robust model selection frameworks are needed to navigate the 

enormous space of possible molecular models for transcriptional control. Such theoretical 
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advancements will be key if we are to synthesize the remarkable experimental findings from 

recent years into a truly mechanistic understanding of how transcriptional control emerges 

from the joint action of its molecular components.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Separation of timescales between transcriptional bursting and its underlying molecular 
processes.
(a,b,c) Transcriptional bursting in (a) an embryo of the fruit fly Drosophila melanogaster, 
(b) the nematode Caenorhabditis elegans, and (c) human cells. (d) In these and other 

organisms, bursting dynamics (average period of ON and OFF) span a wide range of 

timescales from a few minutes to tens of hours. (e) Timescales of the molecular processes 

behind transcription range from fast seconds-long transcription factor binding to slower 

histone modifications, which may unfold across multiple hours or days. A detailed summary 
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of measurements leading to these numbers, including references, is provided in Appendix A. 

(a, adapted from Ref. [16]; b, adapted from Ref. [17]; c, adapted from Ref. [18]).
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Figure 2. The two-state model of transcriptional bursting.
(a) A two-state model of transcriptional bursting by a promoter switching between ON 

and OFF states. (b) Mapping the bursting parameters kon, koff, and r to burst duration, 

separation, and amplitude, respectively. (c) The action of an activator results in an increase 

in the average rate of transcription initiation. (d) In the two-state model, this upregulation 

can be realized by decreasing burst separation, increasing burst duration, increasing burst 

amplitude, or any combination thereof.
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Figure 3. Using theoretical models to understand the origin of ON/OFF bursting dynamic.
(a) Model with three activator binding sites. The transition rates between states with i 
and j activators are given by ki,j. (b) The model in (a) can be simplified to an effective 

four-state chain model in which each state corresponds to a certain number of bound 

molecules and the transcription rate is proportional to the number of bound activators. (c) 
Independent activator binding model with effective binding and unbinding rates plotted 

above and below, respectively. Shading indicates the fraction of time that the system spends 

in each state. (d) Stochastic simulations indicate that rapid activator binding alone drives 

fast fluctuations about a single transcription rate. (e) Cooperative binding model in which 

already-bound activators enhance the binding rate of further molecules. (f) Simulation 
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reveals that cooperativity can cause the system to exhibit bimodal rates of transcription 

and slow fluctuations between effective ON and OFF states. (g) Rate-limiting step model in 

which several molecular steps can connect a regime where binding is favored (ON) and a 

realization where binding is disfavored (OFF). (h) Simulations demonstrate that rate-limiting 

steps can lead to bimodal transcriptional activity reminiscent of transcriptional bursting. 

Simulation results were down-sampled to a resolution of 0.5 s to ensure plot clarity in d, f, 

and h. Scripts used to generate plots in d, f, and h are available on Github [68]. (Parameters: 

c, d, kb = ku = 0.5s−1; e, f, kb = 0.004s−1, ku = 0.5s−1; and ω = 6.7; G,H, kon
u = koff

u = 0.5 s−1, 

koff
b = 0.01 s−1, kon

b = 21 s−1, Moff = 1, Mon = 2, koff
1 = 0.0023, kon

1 = kon
2 = 0.0046 s−1.)
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Figure 4. Using first-passage time distributions to discriminate between models of transcriptional 
bursting.
(a) The outcome of stochastic simulations like those in Figure 3d, f, and g (purple) is 

fit to a two-state model (black) and the first-passage times out of the OFF state are 

measured. (b) First-passage times for the rate-limiting step model as a function of the 

number of rate-limiting steps Mon calculated using stochastic simulations. A single step 

results in an exponential distribution, but distributions break from this behavior when 

more steps are added, yielding increasingly peaked gamma distributions. (c) In contrast, 

first-passage times for the cooperative binding model follow an exponential distribution. 

(d) Standard deviation as a function of mean first-passage time for various parameters 

choices of the cooperative binding (blue) and the rate-limiting step models (red, with color 

shading indicating the Mon values considered in (b)). Distributions with CV = 1, such as 

the exponential distribution, fall on the line of slope one while gamma distributions, with 

CV < 1, fall in the region below this line. Scripts use to generate plots in a, b, c, and d are 

available on GitHub [68]. (Parameters: B, kon
u = koff

u = 0.5 s−1, koff
b = 0.01 s−1, kon

u = 21 s−1, 

Moff = 1, koff
1 = 0.0023 s−1, kon

i = Mon0.0023 s−1; C, kb = 0.004 s−1. ku = 0.5 s−1, and ω = 

6.7; D (rate-limiting-step model), kon
u = koff

u = 0.5 s−1, koff
b = 0.01 s−1, kon

b = 21 s−1, Moff = 

1, τoff ∈ [1.6, 10.9] min, koff
1 = 1/τoff s−1, kon

i = Mon/τoff s−1; D (cooperativity model), kb 

∈ [0.01, 0.003] s−1, ku = 0.5 s−1; and ω ∈ [4.5, 7.4]).
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