
UC Davis
UC Davis Previously Published Works

Title
Genome-wide identification and analysis of a cotton secretome reveals its role in 
resistance against Verticillium dahliae.

Permalink
https://escholarship.org/uc/item/8gk3s7wf

Journal
Journal of Biology, 21(1)

Authors
Li, Ran
Ma, Xi-Yue
Zhang, Ye-Jing
et al.

Publication Date
2023-08-04

DOI
10.1186/s12915-023-01650-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gk3s7wf
https://escholarship.org/uc/item/8gk3s7wf#author
https://escholarship.org
http://www.cdlib.org/


Li et al. BMC Biology          (2023) 21:166  
https://doi.org/10.1186/s12915-023-01650-x

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Biology

Genome-wide identification and analysis 
of a cotton secretome reveals its role 
in resistance against Verticillium dahliae
Ran Li1,2, Xi‑Yue Ma1, Ye‑Jing Zhang1, Yong‑Jun Zhang1, He Zhu2,3, Sheng‑Nan Shao1, Dan‑Dan Zhang1,2, 
Steven J. Klosterman4, Xiao‑Feng Dai1,2*, Krishna V. Subbarao5* and Jie‑Yin Chen1,2*   

Abstract 

Background The extracellular space between the cell wall and plasma membrane is a battlefield in plant‑pathogen 
interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including 
immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance.

Results Here, we examined the secretome of Verticillium wilt‑resistant Gossypium hirsutum cultivar Zhongzhimian 
No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt 
causal agent, Verticillium dahliae. Bioinformatics‑driven analyses showed that the ZZM2 genome encodes 2085 
secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton 
secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining 
encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis  
revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and 
comparable unique genes between the two sub‑genomes. Secretome annotation strongly suggested its involvement  
in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing  
to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, 
salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina 
benthamiana leaves were agro‑infiltrated with 28 randomly selected members, suggesting that the secretome plays 
an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates 
in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium 
wilt resistance in cotton.

Conclusions Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, 
facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms 
regulating disease resistance.
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Background
Plants are confronted by a variety of pathogens, and they 
rely on their defense network to resist infection since 
they are immobile [1]. During the plant-pathogen inter-
actions, the extracellular space between the cell wall and 
the plasma membrane acts as the initial battlefield [2], 
where there occurs a “joust” for life or death. Thus, both 
host plants and pathogens employ diverse evolutionarily 
honed strategies to knock out their opponent.

Pathogens employ their respective secretomes to gain 
advantage during host infections. The secretome, com-
prising multiple pathogenic factors, plays diverse func-
tions in the infection process [3], including cell wall 
degradation, scavenging host reactive oxygen species, 
suppressing host immunity, and acquisition of nutrition 
[4]. For example, hydrolases in the secretome are con-
sidered important for the generation of disease symp-
toms and pathogenesis, especially those involved in plant 
cell wall degradation, important for destroying physical 
barriers in the plant [5]. Thus, many pathogens have an 
expanded arsenal of the carbohydrate-active enzymes 
(CAZymes) to degrade plant cell walls (especially pectin 
and cellulose) and to promote successful infection and 
colonization of their hosts [6–8]. Furthermore, patho-
gens secrete hundreds of effectors that shield the path-
ogens from the host’s immune responses or from the 
manipulation of host cell physiology [9, 10]. For instance, 
the hemibiotrophic fungal pathogen Verticillium dahliae 
secretes effectors that suppress plant defense responses 
for successful infection, including the cellulose-binding 
protein VdCBM1 [11], isochorismatase VdIsc1 [12], and 
small cysteine-rich protein VdSCP41 [13]. Overall, the 
pathogen secretome plays a crucial role on the front lines 
of the battlefield between the pathogen and its host.

Conversely, host plants also have evolved strategies 
to activate defense responses for restricting pathogen 
proliferation [14]. Plants employ two classical immu-
nity networks in response to pathogen attacks [15, 16]. 
The first defense system is a basal defense activated 
by conserved pathogen-associated molecular patterns 
(PAMPs) that are recognized by plant cells via pattern 
recognition receptors (PRRs) [17]. This defense has been 
termed PAMP-triggered immunity (PTI) and involves 
the rapid activation of downstream defense responses 
[17], which stimulate a second immune system known as 
effector-triggered immunity (ETI). After breaching the 
first defense system, ETI involves additional resistance 
proteins (R) that recognize specific pathogen effectors, 
resulting in the rapid activation of the defense responses 
[15, 16]. The plant secretome plays a critical role against 
pathogens, which involves the maintenance of cell wall 
structure, sensory functions between the host and the 
pathogen, communication between plant cells, etc. [18]. 

Extracellular vesicles (EVs, lipid bilayer-enclosed, cyto-
sol-containing spheres) released into the extracellular 
environment play important roles in disease resistance 
by physically preventing penetration, inhibiting pathogen 
proliferation by transmitting toxic molecules, and regu-
lating immune signaling in the form of removing molecu-
lar regulators from the cell surface [19, 20].

More specifically, the plant secrotome provides a multi-
pronged protection against reactive oxygen species (ROS, 
oxalate oxidases, superoxide dismutases, peroxidases, 
singlet oxygen, etc.), antifungal activity (pathogenic-
ity-relate protein 1 (PR1), lipases, proteases, lectines, 
chitinases, glucanases, etc.), cell wall remodeling (polyga-
lacturonases, xylanases, etc.), and activation of immune 
response through the perception of cell wall degrada-
tion products generated by the plant secretome (chi-
tinases, glucanases, polygalacturonases, etc.) [2, 21, 22]. 
For instance, the members of the pathogenesis-related 
protein 1 (PR1) family are among the most abundantly 
secreted protein in plants during pathogen infection, 
which is activated by salicylic acid signaling [23]. Plant-
derived proteases are enriched in the apoplastic region 
during host–pathogen interactions, where they act to 
enhance host resistance against different types of patho-
gens [24–26]. Subtilases (SBTs) belonging to the serine 
protease family are involved in pathogen resistance in 
plants [27, 28] and enhance mitogen-activated protein 
kinase, defense gene expression, and resistance against 
bacterial and fungal pathogens [27]. The secreted aspartic 
protease (TiAP1) of Thinopyrum intermedium interacts 
with the Blumeria graminis f. sp. tritici chitin deacetylase 
(BgtCDA1), inactivating its deacetylation function, ren-
dering fungal cell walls susceptible to the wheat-secreted 
chitinases that liberate chitin fragments and further acti-
vating host immune responses [29]. Therefore, the plant 
secretome acts at the front line of defense and plays piv-
otal roles in disease resistance against pathogens.

Cotton is an important crop worldwide because of its 
fiber and oil seeds, and Verticillium wilt caused by V. 
dahliae is the most destructive disease of cotton, reduc-
ing yield and fiber quality on over 50% of cotton acre-
age [30]. Verticillium wilt is difficult to control due to 
the broad host range of V. dahliae, its long-term survival 
in soil, and its niche in the plant vascular system which 
is not amenable to fungicides [31]. For these reasons, 
improving genetic resistance is considered the optimal 
method to manage Verticillium wilt [32]. Thus, the iden-
tification of resistance genes in cotton has been a priority 
by using the Verticillium wilt-resistant germplasm from 
Gossypium barbadense since the commonly cultivated 
Gossypium hirsutum lacks complete resistance against 
V. dahliae [33, 34]. Within G. barbadense, a number of 
genes involved in Verticillium wilt resistance have been 
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identified, including G. barbadense NB-ARC domain-
containing 1 (GbaNA1) [30], nucleoredoxin 1 (GbNRX1) 
[35], cinnamyl alcohol dehydrogenase GbCAD1 and 
suppressor of SA insensitive 2 (GbSSI2) [36], subtilase 1 
(GbSBT1) [37], Ser/Thr protein kinase (GbSTK) [38], and 
cysteine-rich receptor-like kinase GbCRK18 [39]. Sev-
eral genes from other cotton species were also identified 
for their roles in Verticillium wilt resistance, including 
the G. hirsutum polyamine oxidase (GhPAO) [40], villin 
4 (GhVLN4) [41], polygalacturonase-inhibiting protein 
1 (GhPGIP1) [42], and G. hirsutum dominant suppres-
sor of camta3 1 (GhDSC1) [43]. These resistance genes 
activate diverse defense responses, including the regu-
lation of hormone levels, enhancing the scavenging of 
reactive oxygen species, activating the expression of the 
pathogenesis-related genes, and accelerating phytoalexin 
(gossypol) synthesis [44, 45]. For instance, the silenced 
GhWAKL compromised Verticillium wilt resistance in 
cotton, which mainly inhibited the defense response by 
suppressing salicylic acid signaling [45, 46]. However, 
only a few secreted proteins have been reported to func-
tion in cotton Verticillium wilt resistance, such as chi-
tinase [47, 48]. Thus, additional roles of secretome in 
Verticillium wilt resistance remain unknown.

The availability of higher-quality genome sequences 
of G. hirsutum cultivar Zhongzhimian No.2 [49] has 
enabled bioinformatics studies to identify candidate 
genes encoding secreted proteins that hold promise in 
the development of resistance in G. hirsutum. Cultivar 
Zhongzhimian No.2 (ZZM2) is the most widely planted 
Verticillium wilt-resistant cultivar in China [50–52], cov-
ering over 7.9 million ha (reported by the Chinese Min-
istry of Agriculture and Rural Affairs [MARA] in 2021). 
We previously sequenced the whole genome of ZZM2, 
revealing a genome size of 2.33 Gb, encoding 95,327 pre-
dicted coding sequences [49]. The main objectives of this 
study were (i) to identify the secretome among predicted 
coding sequences from cv. Zhongzhimian No.2 genome, 
(ii) to elucidate the sequence and functional cluster-
ing characteristics of this secretome, (iii) to identify the 
predicted defense response functions of the secretome 

during V. dahliae infection by transcriptome analyses, 
and (iv) to functionally analyze components of the plant 
secretome that have predicted roles in Verticillium wilt 
resistance in cotton.

Results
Identification of the cotton secretome from bioinformatic 
analyses
Secreted proteins of the cotton secretome were identified 
in silico based on the presence of a signal peptide, a lack 
of a transmembrane domain, and predicted extracellular 
location [8]. In this study, the 2.33-Gb genome sequence 
of Verticillium wilt-resistant upland cotton, ZZM2 [49] 
(DDBJ/ENA/GenBank accession is JAMQUR000000000; 
BioProject accession is PRJNA846595), was employed for 
the prediction of the secretome. Among the 95,327 pre-
dicted coding sequences, 8383 proteins were identified 
with a signal peptide sequence using SignalP 5.0 [53]. An 
overlapping 3879 proteins had characteristics of extra-
cellular localization as predicted with the plant model 
in WolfPsort [54]. In total, 74,991 and 76,025 proteins 
were identified without transmembrane (TM) motifs 
by TMHMM 2.0 and Phobius [55, 56] (Additional file 1: 
Fig. S1), respectively. Combining these data, 2085 genes 
(2.19%) were predicted to encode secreted proteins that 
have a signal peptide, lack a transmembrane domain, and 
were predicted as extracellular (Additional file 1: Fig. S1; 
Additional file 2: Table S1).

Statistical analyses showed that the predicted gene 
sequences encoding secreted proteins were mainly of 
short gene length (≤ 400 aa) (Additional file  1: Fig. S2). 
Association analysis of encoded proteins within the chro-
mosomes indicated that the distribution of the predicted 
secretome genes was irregular (Fig. 1A; Additional file 1: 
Figs. S3 and S4). Certain chromosomes encode fewer 
proteins relative to the average of 26 chromosomes, but 
the protein with a higher number of signal peptide and 
extracellular location (Additional file 1: Figs. S3 and S4), 
resulting in the differential distribution of secreted pro-
teins among 26 chromosomes (Fig.  1A). The A10 (111 
genes), D05 (191 genes), and D10 (116 genes) encode 

Fig. 1 Prediction of genes encoding secreted proteins and their distribution on the chromosomes in the genome of cotton cultivar Zhongzhimian 
No.2 (ZZM2). A Characteristics of predicted secreted proteins and their corresponding gene distribution on the 26 chromosomes in the cotton 
genome. The density data were calculated by the number of encoded genes using step windows (window = 500 kb, walking step = 100 kb). 
Secreted proteins were predicted as those with signal peptide (SP), lack of the transmembrane (TM) domain, and the extracellular location. The 
transmembrane domain was predicted by two tools, TMHMM2.0 [55] and Phobius [56]. The subcellular location of the prediction of secreted 
proteins was carried out using the plant model of the WolfPsort procedure by (circle e) [54], and the predicted localization during the host–
pathogen interaction was predicted using the fungi model (circle g–i). A01–A13 and D01–D13 represent the 13 chromosomes of the A 
sub‑genome and the D sub‑genome of the ZMM2 genome, respectively. B Ratio of secreted proteins encoded in each chromosome 
versus the total number of secreted proteins. The statistic of the encoded genes in the genome was set as the comparison group. C Comparison 
of the gene density between the encoded putative secreted proteins and total encoded proteins by step windows. Step window: window = 500 kb, 
walking step = 100 kb. The top panel represents the ratio that the gene density of encoded secreted proteins versus the gene density of total 
encoded proteins. D Prediction of the localization of the secretome during host–pathogen interactions using the fungi model of WolfPsort [54]

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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more secreted proteins than other chromosomes (Addi-
tional file 1: Fig. S5). Comparison of the secreted proteins 
of each chromosome relative to the whole secretome 
further illustrated the irregular distribution of secreted 
proteins, as the D05 chromosome possesses 5.7% of 
total encoded genes but houses 9.2% of total encoded 
secretome (Fig.  1B). Investigation of the gene den-
sity by step-wise windows (window = 500  kb, walking 
step = 100 kb) also illustrated the irregular distribution of 
secreted proteins among the 26 chromosomes and their 
enrichment characteristics (Fig.  1C). Among all step-
wise windows, the encoded proteins from 31 windows 
(28 windows belong to A sub-genome) were predicted 
as secreted protein rich region, which were located in 
the gene sparse region (Fig. 1C). Moreover, gene density 
characteristics showed that the secretome has a higher 
density in the D sub-genome than the A sub-genome 
(Fig. 1A, C), which may be the result of similar numbers 
of encoded proteins in the two sub-genomes (A sub-
genome, 994 proteins; D sub-genome, 1,059 proteins) but 
genome size of the D sub-genome is more compact (A 
sub-genome, 1469 Mb; D sub-genome, 849 Mb) [49]. The 
destiny of the predicted secretome during host–patho-
gen interaction was predicted using the fungal model in 
WolfPsort [54], revealing that 1698 proteins had a simi-
lar predicted subcellular localization of the extracellular 
space, and 78 proteins were predicted to be localized in 
the nucleus (Fig. 1A, D). Taken together, the genome of 
ZZM2 encodes a large set of secreted proteins that dis-
play an irregular distribution among the chromosomes.

Analyses of the conservation and divergence of the cotton 
secretome
Plant-secreted proteins are anticipated to mediate mul-
tiple responses in their external environment and, as 
such, may possess different sequences and biochemical 
properties. Indeed, investigation of the putative secreted 
proteins clearly indicated that they possess different 
sequence characteristics compared to those of the total 

predicted proteins from the ZZM2 genome (Fig. 2A). The 
members of the secretome contain a higher GC percent-
age and exhibit reduced introns/intron length (length 
ratio of coding sequence compared to gene length). The 
composition of amino acid residues in the predicted 
secreted proteins also displayed divergence compared 
to those in the remainder of the genome. Predicted pro-
teins of the secretome were enriched in cysteine, glycine, 
and proline residues, but not in glutamic acid and argi-
nine residues, resulting in their lower isoelectric point 
compared to the overall proteins encoded in the ZZM2 
genome (Fig. 2A; Additional file 1: Fig. S6). These results 
clearly revealed differences in the predicted properties of 
core encoded proteins and the ZZM2 secretome, likely a 
result of their relatively unique localization in the extra-
cellular space.

Sequence conservation and variation within the 
secretome of ZZM2 were investigated by examining 
the relationships among orthologs. From both the cov-
erage and identities of up to 30%, 50%, and 70%, 1765, 
1651, and 1416 genes were clustered in 325, 409, and 447 
orthologous groups (Additional file 2: Table S2), respec-
tively. In addition to the maximum orthologous sequence 
that was enriched in more than 40 genes, more than 20% 
of orthologs (under the 50% parameters) were enriched 
in sets of five or more genes (Additional file 2: Table S2). 
Sequence alignment revealed the conservation charac-
teristics among members of the maximum orthologous 
sequence (Additional file  1: Fig. S7). Furthermore, the 
syntenic relationship among the encoded secreted pro-
teins was investigated by ortholog clustering (both cover-
age and identities up to 30%) in each chromosome and 
in relation with other chromosomes. The results showed 
the expected high synteny with higher gene synteny pair 
numbers between the allelic chromosomes in the A and 
D sub-genomes (Fig. 2B, C; Additional file 1: Fig. S8), as 
81 members from A05 chromosome (122 secreted pro-
teins in total) had syntenic pairs with the allelic D05 
chromosome (191 secreted proteins in total) (Fig.  2C). 

(See figure on next page.)
Fig. 2 Conservation of the cotton secretome in cultivar Zhongzhimian No.2 (ZZM2). A Comparison of the protein properties of the predicted 
secretome versus the total encoded proteins in the ZZM2 genome. The length ratio of CDS/gene represents the value of coding sequence 
length compared to the gene length; the value of the gene without intron is 1.0. Asterisks (***) represent statistical significance at P < 0.001 based 
on unpaired Student’s t‑tests, and Levene’s test was used to assess the homogeneity of variances. B Synteny analysis of encoded secreted proteins 
from the D05 chromosome with those of the other 25 chromosomes. The synteny relationship was constructed by ortholog clustering (both 
coverage and identities up to 30%) of secreted proteins from the D05 chromosome with other secreted proteins from the other 25 chromosomes, 
present in blue lines. The red lines represent the self‑orthologs of secreted proteins within the D05 chromosome. The outer circle with green 
blocks represents the 26 chromosomes of the ZZM2 genome, and the inner circle with brown lines represents the secreted proteins encoded 
in the ZZM2 genome. C Matrix representing the gene number of each chromosome with ortholog relationships of the 26 chromosomes. The data 
in columns but not in rows represent the gene number of each chromosome (top labels) in ortholog clustering (both coverage and identities 
up to 30%) with the other chromosomes (left labels). D Sequence divergence of orthologs detected under different ortholog clustering parameters. 
The ortholog number was determined by the ortholog clustering with 30% parameters, and the attenuation of total gene numbers among these 
orthologs was investigated under the 50% and 70% parameters. High variation represents the total gene numbers attenuated from 30 to 50 
and 70%, medium variation represents the total gene numbers attenuated from 30 to 50 or 70%, and low variation represents identical sequence 
under 30%, 50%, and 70% parameters
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In addition, the orthologs of secreted proteins also dis-
played the comparable high syntenic pairs within chro-
mosomes (red lines) (Fig.  2B, C), as the 62 genes from 
chromosome A10 (111 genes) or 133 genes from chro-
mosome D05 were present in the self-ortholog clustering 
analysis (Fig.  2C). These results were further supported 
by the rigorous ortholog clustering (parameter of 50% or 

70%), in which there were highly syntenic pairs within a 
chromosome or allelic chromosomes (Additional file  1: 
Fig. S9). Thus, these results suggested that the tan-
dem duplications of genes encoding secreted proteins 
frequently occurred among chromosomes of ZZM2. 
Intriguingly, except for the allelic chromosome, the genes 
encoding secreted proteins also showed high synteny 

Fig. 2 (See legend on previous page.)
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to those present in other chromosomes (Fig. 2B), as the 
A05 and D05 chromosomes display comparable syntenic 
pairs as with other chromosomes (Fig.  2C; Additional 
file 1: Fig. S9), suggesting that segmental duplication also 
occurred among different chromosomes. These results 
indicated that a number of the predicted members of the 
secretome may be conserved within the allotetraploid 
cotton genome and that some of this conservation may 
be driven by tandem or segmental duplications. How-
ever, there is also a clear sequence divergence within the 
predicted secretome of the ZZM2 genome. Ortholog 
clustering with parameters from 30 to 70% revealed 
attenuated gene numbers of 55 orthologs (30%, 641 
genes; 50%, 405 genes; 70%, 241 genes), indicating high 
variation among these orthologs. Additionally, a sec-
ond tier of 142 orthologs exhibiting medium variation 
displayed similar variation (30%, 780 genes; 50%, 633 
genes; 70%, 465 genes), while only 128 orthologs exhib-
ited low variation for the same gene numbers under the 
three clustering parameters (Fig.  2D). Although cot-
ton is an allotetraploid species, and it is anticipated that 
most genes would be allelic for the two sub-genomes, 
there are at least 320 unique genes (30% parameters), 
which cannot be grouped in orthologs (Additional file 2: 
Table  S2). Therefore, while the secretome of the ZZM2 
genome reveals some of the expected conservation for 
an allotetraploid genome, it also exhibits variation in the 
sequences of orthologs and the presence of unique genes 
between the two sub-genomes.

Functional analyses of the ZZM2 cotton secretome
The plant secretome includes those proteins that are 
involved in responding to biological stress, includ-
ing pathogen attacks. Thus, the functional character-
istics of the secretome were predicted using InterPro 
(conserved domain), Gene Ontology (biological func-
tion), and KEGG (function network) (Additional file  2: 
Table S1). Prediction of the conserved domains revealed 
that 1495 genes have 443 conserved domains/motifs 

(IPR accessions) (Additional file 2: Table S3), and 69 IPR 
accessions contain at least 20 genes (Fig. 3A; Additional 
file  2: Table  S4). Analysis of the functions of conserved 
domains suggested that the secretome functions in 
defense responses (dirigent protein, leucine-rich repeat 
protein, gibberellin regulated protein, and lysozyme-
like domain protein), polysaccharide metabolism (as 
the glycoside hydrolase, pectate lyase, and xyloglu-
can endotransglucocylase), and cell wall strengthening 
(expansin, rapid alkalinization factor, plant lipid trans-
fer protein) (Fig.  3A; Additional file  2: Table  S4). Gene 
Ontology annotation further indicated that a portion of 
the secretome functions extracellularly in defense and in 
stress responses, since there was a high ratio of secreted 
protein enriched in carbohydrate binding, peroxidase 
activity, and response to stress (P < 0.05) (Fig. 3B). Finally, 
KEGG network analysis showed that only 613 genes were 
matched to 63 pathway accessions (Additional file  2: 
Table S3). Of these pathway accessions, members of the 
secretome were highly enriched in the phenylpropanoid 
biosynthesis pathway and carbohydrate metabolism 
(Additional file 2: Table S5), which share defense-related 
functions, especially lignin production, associations with 
phytoalexin biosynthesis, and polysaccharide metabo-
lism (pectin, cellulose, etc.) (Fig.  3C, D). However, the 
secretome may present a more complex unknown func-
tion in the biological stress response since most mem-
bers are predicted hypothetical proteins for which there 
is no predicted biological function (Additional file  2: 
Table S3). Together, the secretome of the ZZM2 genome 
shares predicted functions concordant with responses to 
biological stress in the extracellular space, such as in the 
defense response and in polysaccharide metabolism.

Transcriptome analyses reveal a role for the secretome 
in resistance to Verticillium dahliae
Disease resistance is a component of biological 
stress responses in the extracellular space. Thus, we 
employed RNA-Seq-based transcriptome analyses of 

Fig. 3 Functional annotation of the secretome from cotton cultivar Zhongzhimian No.2. A Functions of the secretome predicted by conserved 
domains. The conserved domains of secreted proteins were predicted by the Interpro database using InterProScan (https:// www. ebi. ac. uk/ inter 
pro/), and total predicted proteins within the genome were set as the control. Columns in purple and blue color represent the number of proteins 
of the indicated conserved domains accession (IPR accession) from the secretome (axis on the right side) and whole genome (axis on the left 
side), respectively; the scale on the secretome or genome axes represents 500 or 20 genes, respectively. The outer circle with heatmap blocks 
represents the ratio of secretome versus the predicted proteins of the whole genome in the indicated IPR accession. The blue boxes link to IPR 
accessions represent the high ratio of indicated conserved domains in the secretome (number in red color) versus the genome (number in black 
color). B Comparison of the Gene Ontology (GO) annotation between predicted encoded proteins from the whole genome versus the secretome. 
Significant enrichment was determined by a Pearson chi‑square test at P < 0.001, and the items with a green‑colored background represent 
a significantly higher functional enrichment in the secretome versus those from the whole genome. C Enrichment of secreted proteins 
in the phenylpropanoid biosynthesis pathway. The potential pathways were predicted by the KEGG database (https:// www. kegg. jp/), and members 
with homologs of phenylpropanoid biosynthesis pathway (Accession ID: ghi00940) were selected for conceptualization. D Enrichment of secreted 
proteins with predicted polysaccharide metabolism function. The secreted proteins associating with four polysaccharide metabolism pathways 
were selected for conceptualization. E Statistics of gene numbers with functional annotation of the genome and secretome in GO and KEGG 
database

(See figure on next page.)
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cotton challenged by V. dahliae at a critical infection 
stage (within 3 days following infection with V. dahliae, 
the pathogen enters the root xylem vessels) [57], to deter-
mine the role of the secretome against V. dahliae. In total, 
627 members of the predicted encoded secretome were 

differentially expressed (DEGs, |log2FoldChange|≥ 1.0 
and adjusted P < 0.05) in the resistant cultivar (ZZM2) 
and susceptible (cv. Junmian No.1) cultivar in response 
to the V. dahliae infection at five time points (Additional 
file 1: Fig. S10A; Additional file 2: Table S6). The physical 

Fig. 3 (See legend on previous page.)
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location of the DEGs on chromosomes showed that many 
secretome members are specifically induced in ZZM2 
during infection (red columns clusters) in A05, A10, A12, 
and their allelic chromosomes (Fig. 4A). In addition, the 
function of these DEGs was associated with the phenyl-
propanoid biosynthesis pathway, carbohydrate metabo-
lism, and extracellular stress response (Fig.  4A). GO 
analysis further showed that the functions of DEGs were 
significantly enriched in extracellular stress response 
versus the encoded proteins of the secretome (P < 0.05), 
including the functions of oxidoreduction and hydro-
lase activity (Fig.  4B; Additional file  2: Table  S7), and 
may yield unique responses in the resistant versus the 
susceptible cultivars (Additional file  1: Fig. S11). Addi-
tionally, the secretome members involved in phenylpro-
panoid biosynthesis were also strongly responsive during 
V. dahliae infection. Five members of the peroxidases 
(K00430) and 29 members in the cinnamyl-alcohol dehy-
drogenase function were all induced and participated in 
lignin biosynthesis (Fig. 4C; Additional file 2: Table S8). 
Correspondingly, histochemical analysis of lignin in 
stem cross-sections showed higher lignification in the 
xylem vessels and interfascicular fibers in the resistant 
cultivar ZZM2 than in the susceptible cultivar Junmian 
No.1 (Additional file  1: Fig. S12). Finally, the resistant 
cultivar employed more members of the secretome than 
the susceptible cultivar in response to V. dahliae infec-
tion and was investigated using the transcriptome data. 
During infection, the numbers of secretome members 
differentially expressed in the resistant cultivar were 
higher than in the susceptible cultivar at each sampling 
point, especially at 48  h post-inoculation (404 genes in 
the resistance cultivar versus 144 genes in the suscep-
tible cultivar) (Additional file  1: Fig. S10A). GO enrich-
ment revealed that these genes in the resistant cultivar 
have multiple functions (extracellular stress response, 
hydrolase activity, carbohydrate metabolic process, etc.) 

during V. dahliae infection (Additional file 1: Fig. S13A). 
Moreover, among the 627 DEGs, 257 were expressed in 
the resistant but not susceptible cultivar in response to 
V. dahliae (Additional file  1: Fig. S10B), and the major-
ity of these DEGs were involved in the extracellular stress 
response of hydrolase activity, oxidoreductase activity, 
and were extracellular (Fig.  4D; Additional file  1: Fig. 
S13B; Additional file  2: Table  S9). In addition, 92 and 
34 genes were co-expressed at all sampling points in the 
resistant or susceptible cultivar following inoculations 
with V. dahliae (Additional file 1: Fig. S10C), respectively. 
Of these genes, 29 members were co-expressed in the 
resistant cultivar but were not induced in the suscepti-
ble cultivar. Four of those that were significantly upreg-
ulated shared homology with genes involved in defense 
responses, including those encoding pathogenesis-
related protein 4 and cell wall inhibitor of fructosidase 
1 (Additional file 2: Table S10). Unexpectedly, nearly all 
of them (25 genes) were downregulated and had func-
tions in signal responses and catalytic activity (Additional 
file  2: Table  S10). Together, the results of the transcrip-
tome analysis strongly suggested that cotton employs its 
secretome to enhance the extracellular stress response, 
thus contributing to resistance against V. dahliae.

The cotton secretome plays important roles 
in the immunity response
The secretome plays critical roles in homeostasis, 
immune response, development, proteolysis, adhesion, 
and in the extracellular matrix [58, 59]. We collected 
the representative and consolidated secretome mem-
bers according to ortholog clusterings of the secretome, 
resulting in the selection of 645 members from the 
total of 2085 in the original prediction (many members 
are allelic due to the allotetraploid genome or dupli-
cated). These were filtered to 589 members based upon 
the presence of a transmembrane domain (predicted by 

(See figure on next page.)
Fig. 4 Transcriptome analyses of the secretome of cultivar Zhongzhimian No.2 (ZZM2) in response to Verticillium dahliae. A Gene expression 
patterns of the secretome and their functional enrichment in response to V. dahliae infection. The resistant cultivar (cv. Zhongzhimian No.2, ZZM2) 
and susceptible cultivar (cv. Junmian No.1) with the time course (6, 12, 24, 48, 72 h post‑inoculation) samples were performed for transcriptome 
analyses. The filtering parameters of DEGs were |log2FoldChange|≥ 1.0 and Padj < 0.05. All differentially expressed genes (DEGs) were painted 
on the chromosomes according to their physical position. The DEGs of the same time point from the resistance cultivar (red columns) 
and susceptible cultivar (green columns) are shown as overlapping for comparison, and the columns showing “gene response” in both cultivars 
are shown in brown color. Secreted proteins classified in three KEGG annotation pathways (No. 2–4) and according to four gene ontology 
(GO) annotations (No. 5–8) are labeled in orange and blue lines, respectively. Pink triangles represent the candidates for functional validation, 
and the purple dots represent the selected candidates that were differentially expressed in response to V. dahliae. B Significant catalogs of Gene 
Ontology (GO) enrichment of DEGs in the ZZM2 secretome in response to the V. dahliae infection. The significant categories were selected 
by the Pearson chi‑square test with P < 0.05, and the total secreted proteins of the secretome were set as the control. Information on GO categories 
is listed in Additional file 2: Table S8, and the GO category of hydrolase activity (GO:0016787) is labeled in bold font. C The expression pattern 
of phenylpropanoid biosynthesis‑related genes in response to V. dahliae. The heatmap representation includes the five secretome members that are 
differentially expressed and function in the biological process of oxidation (K00430) and 29 members that are differentially expressed and function 
in the biological process of dehydrogenation (K22395). Letters “R” and “S” represent the resistant cultivar ZZM2 and the susceptible cultivar (cv. 
Junmian No.1), respectively. D Heat map analyses showing expression of the predicted secretome in response to V. dahliae in the resistant cultivar 
ZZM2 or the susceptible cultivar Junmian No.1. Blue boxes (left side) represent four Gene Ontology (GO) annotations
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TMHMM2.0) at their N-termini (probable overlaps with 
the signal peptide) and further to 559 members that were 
without a transmembrane domain and a signal peptide 
(Phobious). The 559 members were further narrowed 
to 225, based on the extracellular location score (> 50% 
probability) and arrived at 213 representative secretome 
members by filtering the length to up to 400 amino acid 
(aa) residues (Additional file 1: Fig. S14; Additional file 2: 
Table  S1). To determine whether these 213 secretome 
members can activate immunity, the cell death-inducing 
activity of these gene products was examined by transient 
expression assays in 6-week-old Nicotina benthamiana 
leaves. Unlike the positive control Bcl-2 associated X pro-
tein (BAX) or pathogen-associated molecular patterns 
(PAMP) endoglucanase (VdEG1) [11], which induce obvi-
ous cell death at 4 days after agro-infiltration, agro-infil-
tration assays of all 213 secretome members showed that 
none caused the cell death phenotype until 8  days after 
agro-infiltration (Fig. 5A). To further analyze the poten-
tial role of the secretome members to induce immunity 
that is not associated with cell death, the expression of 
cotton defense response genes was determined at 2 days 
after agro-infiltration of 28 randomly selected members 
in N. benthamiana leaves, including the immunity marker 
gene NbHIN1, the salicylic acid marker gene NbPR1, and 
the jasmonic acid marker gene NbLOX4. As expected, 
several members have the ability to induce the expression 
of these defense response marker genes after transient 
expression in N. benthamiana leaves, including upregu-
lation of NbHIN1 (12 members, several typical members 
of GhSec010 < hypothetical protein > , GhSec013 < adeno-
sine kinase 2-like > , GhSec205 < rapid alkalinization fac-
tor > etc.), NbPR1 (15 members, several typical members 
of GhSec017 < gibberellin-regulated protein 14-like pre-
cursor > , GhSec043 < classical arabinogalactan protein 
5 > , GhSec044 < hypothetical protein >), and NbLOX4 
(10 members, several typical members of GhSec10, 
GhSec13, GhSec190 < hypothetical protein > , etc.), in 
relation to the positive controls of BAX, VdEG1, and 
cotton A08G47475 (thionin protein) (Fig.  5B). All three 
defense marker genes were upregulated when seven 
members of GhSec010, GhSec013, GhSec065 (hypotheti-
cal protein), GhSec140 (germin-like protein), GhSec143 

(GDSL esterase), GhSec175 (hypothetical protein), and 
GhSec190 were transiently expressed in N. benthamiana 
leaves (Fig. 5B). Together, these results strongly indicated 
that the secretome encoded by cotton has the ability to 
induce the immune responses.

The cotton secretome confers Verticillium wilt resistance
To further examine the role of the secretome in Verti-
cillium wilt resistance in cotton ZZM2, we selected 13 
secretome members in which the expression pattern 
was associated with the Verticillium wilt resistance, i.e., 
opposite expression patterns between resistant (ZZM2) 
and susceptible (cv. Junmian No.1) cultivars (Fig.  6A). 
For instance, the expression of GhSec137 (encodes pec-
tin methylesterase inhibitor) was strongly upregulated 
in the resistant cultivar (ZZM2), but its expression was 
not affected in the susceptible cultivar (cv. Junmian No.1) 
after inoculation with the highly virulent V. dahliae strain 
Vd991 (Fig. 6A). Next, tobacco rattle virus (TRV)-based 
virus-induced gene silencing (VIGS) was performed to 
assess the function of the 13 selected secretome mem-
bers from cv. ZZM2. The RT-qPCR analyses indicated 
that each of the secretome member genes was signifi-
cantly decreased (Fig.  6B). Subsequently, the silenced 
plants were challenged with V. dahliae after all the 
CLA1-silenced cotton plants presented an albino pheno-
type on their newly emerged leaves. The results showed 
that of the secretome member genes assayed, 11 of the 
secretome gene silenced plants exhibited symptoms 
of Verticillium wilt compared with the positive CLA1-
silenced cotton plants after inoculation with V. dahliae 
strain Vd991 and conversely of GhSec011 and GhSec039 
silenced plant displayed higher resistance than the posi-
tive CLA1-silenced cotton plants (Fig.  6C). Evaluation 
of the disease symptoms by leaf wilting ratio analyses 
confirmed that these genes conferred Verticillium wilt 
resistance (11 secretome members) or susceptibility 
(GhSec011 and GhSec039) in cotton cv. Zhongzhimian 
No.2 (Fig. 6D). In addition, ortholog analysis showed that 
three Verticillium wilt resistance candidates (GhSec017, 
GASA protein; GhSec065, peroxidase; GhSec091, hypo-
thetical protein) belong to a unique group in the cot-
ton secretome (Additional file  2: Table  S11), and other 

Fig. 5 Members of the Zhongzhimian No.2 (ZZM2) secretome activate the plant immune responses. A Analyses of induction of cell death 
in 4‑week‑old N. benthamiana leaves that were infiltrated with constructs expressing 213 members of the secretome of ZZM2. Cell death 
was examined after 8 days. The PAMP endoglucanase VdEG1‑ and the Bcl‑2‑associated X protein (BAX) were used as positive controls; green 
fluorescent protein (GFP) was used as a negative control. The figure represents selected phenotypes following the infiltration of five members 
of the ZZM2 secretome: GhSec013, GhSec017, GhSec043, GhSec044, and GhSec0190. B Detection of transcripts of defense response genes related 
to the immunity marker gene NbHIN1, salicylic acid signaling marker gene NbPR1, and jasmonic acid signaling marker gene NbLOX4 by reverse 
transcription‑quantitative PCR (RT‑qPCR). The transcripts were detected in 4‑week‑old Nicotiana benthamiana leaves 2 days after agro‑infiltration 
with the 18 random selective secretome members BAX, VdEG1, and the cotton A08G47475 (thionin protein) used as positive controls to induce 
the N. benthamiana immunity response. The RT‑qPCR experiments were performed three times. Error bars represent standard errors. Asterisks * 
(P < 0.05) and ** (P < 0.01) indicate a significant difference relative to the agro‑infiltration GFP control in unpaired Student’s t‑tests

(See figure on next page.)
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associated candidate orthologs belong to multiple 
groups that exhibit sequence divergence (Additional 
file 1: Fig. S15; Additional file 2: Table S11), which indi-
cated that these candidates are important members of 
arm-race between cotton and V. dahliae interactions. 
Taken together, these results strongly suggested that the 
secretome plays a critical role in cotton Verticillium wilt 
resistance.

Discussion
The interface between a host plant and pathogen is the 
initial battlefield where there occurs a “joust” for life or 
death [2], and the secretome plays a critical role at this 
interface in the maintenance of cell wall structure, sen-
sory functions, communication, etc. [3, 18]. The roles 
of the secretome during plant infection have been well 
studied from the pathogen side and include the degrada-
tion of host cell walls, manipulating immunity, scaveng-
ing host reactive oxygen species, acquiring nutrition, etc. 
[4, 5]. Host plants also have employed the secretome to 
activate defense responses for restricting pathogen pro-
liferation [18], but the knowledge of the host secretome 
in disease resistance and their functions is limited. In this 
study, we employed the reference genome of Verticillium 
wilt-resistant cotton cultivar ZZM2 [49] to examine its 
secretome in relation to its role in Verticillium wilt resist-
ance in cotton. Bioinformatics-driven analyses showed 
that ZZM2 encodes 2085 putative secreted proteins, and 
these were enriched in responses to stress as may occur 
in the extracellular space (Fig.  1). Transcriptome analy-
sis corroborated our hypothesis that cotton employs the 
secretome for resistance against the V. dahliae infection 
(Fig. 4); the immune response was activated to transiently 
express select secretome members (Fig.  5). This feature 
was verified by the gene silencing assays in which ZZM2 
displayed higher susceptibility to V. dahliae after sup-
pressing the gene expression level of selected secretome 

candidates (Fig.  6), suggesting that secretome members 
confer Verticillium wilt resistance in cotton.

The plant secretome plays important roles in homeo-
stasis, immune response, development, proteolysis, 
adhesion, extracellular matrix organization, and com-
munication between different cells, and its composition 
changes in response to various stresses and environ-
mental stimuli [18, 58]. Thus, the secretome of several 
plant species has been investigated in planta, and these 
studies have revealed their diversity in function in stress 
responses, especially in host plant–pathogen interactions 
[20, 60, 61]. Host plants release extracellular vesicles 
(EVs) that contain various types of bioactive substances, 
including proteins, nucleic acids, and lipids, to function 
in plant–microbe interactions [20, 61] and in the defense 
responses against pathogens. For instance, sunflower 
releases important secreted defense proteins (PR-4, PR-5, 
PR-6, PR-9, PR-14, proteases, PMR5, Gnk2 antifungal 
protein, GDSL lipase acylhydrolases, etc.) by EVs when 
infected by Sclerotinia sclerotiorum, resulting in inhib-
ited pathogen growth and/or cell death [62]. Similarly, 
pepper secretes proteins with a signal peptide present 
in defense- and stress-related proteins, proteases and 
protease inhibitors, and cell wall structural proteins, to 
enhance the ability against Phytophthora capsica [63]. In 
our study on the predicted secretome of resistance cul-
tivar ZZM2, we observed functional characterization 
as a defense response (pathogenicity-related proteins, 
oxidation-related proteins, etc.) and cell wall strengthen-
ing (Fig. 3), and the corresponding components involved 
in extracellular stress response (oxidoreduction, hydro-
lase activity) and cell wall remodeling (such as phenyl-
propanoid biosynthesis) were significantly enriched in 
the transcriptome of ZZM2 challenged by V. dahliae 
(Fig.  4). Moreover, several selected secretome members 
displayed critical roles in the Verticillium wilt resistance 
(Fig.  6C), and the orthologs of several other crops have 
been proven to play critical roles in disease resistance, 

(See figure on next page.)
Fig. 6 Silencing of cotton secretome‑encoding genes by virus‑induced gene silencing (VIGS) affects resistance to Verticillium dahliae. A Expression 
patterns of 13 selected secretome members in Gossypium hirsutum resistant cultivar Zhongzhimian No.2 (ZZM2) and susceptible cultivar 
Junmian No.1 after inoculation with V. dahliae strain Vd991. Values  (log2 fold change) represent the averages from three biological replicates. 
Transcript expression data are from the indicated cultivars at the different time points after inoculation with V. dahliae. Green shading indicates 
downregulation, and red shading indicates upregulation. B Silencing of selected secretome members in cv. Zhongzhimian No.2 by virus‑induced 
gene silencing (VIGS) affects resistance to V. dahliae. Approximately 14 days after the VIGS procedure in 3‑week‑old ZZM2 plants, the gene‑silenced 
and wild‑type (WT) plants were inoculated with 5 mL of V. dahliae strain Vd991 conidial suspension (5 × 10.6 conidia/mL) or sterile water (mock) 
using a root‑dip method. Experiments consisted of three replicates of 12 plants each arranged in a complete random block design. The Verticillium 
wilt phenotypes of wilting leaves and vascular discoloration were photographed 4 weeks after inoculation. Infiltration with the empty vector 
pTRV2 (TRV2:0) served as a positive control. C Evaluation of the disease symptoms in gene‑silenced plants inoculated with V. dahliae. The disease 
ratings were classified as grade 0 (healthy plants), grade 1 (0–25% leaves wilting), grade 2 (25–50% leaves wilting), grade 3 (50–75% leaves wilting), 
and grade 4 (75–100% leaves wilting). The ratings were conducted with 12 cotton seedlings at 3 weeks post‑inoculation with three replicates. 
All the disease index value displays significant change among the gene‑silenced plants compared to the positive CLA1‑silenced cotton plants 
(P < 0.01). D The silencing efficiency of 13 selected secretome members was determined by RT‑qPCR analysis. The cotton GhUbiquitin gene 
was used as an endogenous control. CK represents the control infiltration with the empty vector pTRV2 (TRV2:0). The means and standard errors 
from three biological replicates are shown. Asterisks ** indicate significant differences (P < 0.01)
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as the dirigent proteins have been demonstrated to play 
significant roles in the plant–pathogen interactions 
[64] and as also the PMEIs in several hosts [65–68]. In 
addition, as with the Cys-rich repeat protein 1 (CRR1) 
that plays a critical role in Verticillium wilt resistance 
[48], most of the secretory proteins have orthologs in 
other cotton genomes with different levels of Verticil-
ium wilt resistance (Additional file  2: Table  S12). CRR1 
is expressed at significantly higher levels in the resist-
ant cultivar relative to the susceptible cultivar (Fig. 6A), 
suggesting a quantitative defense stimulation by the cot-
ton secretome in Verticillium wilt resistance. In a previ-
ous study in Aabidopsis thaliana, secreted proteins that 
participated in these biological processes (peroxidases, 
serine carboxypeptidase, galactosidase, germin-like pro-
tein, etc.) were shown to play critical roles in the defense 
against Verticillium longisporum [69]. Additionally, sev-
eral secreted proteins contribute to resistance against V. 
dahliae, including chitinase 28 (Chi28) and CRR1 [48], 
pectin methylesterase inhibitor 3 (GhPMEI3) [70], and 
the subtilase-like protein GbSBT1 [37]. Thus, the plant 
secretes a wide range of molecules into the extracellular 
space which play crucial roles in signaling, development, 
and stress responses. The cotton secretome also contains 
members with the typical characteristics described for a 
role in defense and contribute to Verticillium wilt resist-
ance (such as proteins involved in defense response and 
cell wall strengthening) during infection by V. dahliae.

The plant secretome contains many components to 
regulate a variety of plant immune responses, includ-
ing ROS production, transcriptional reprogramming 
of genes involved in immunity, and the hypersensitive 
response [71]. These proteins include proteases (Rcr3, 
Pip1, CP2, etc.), chitinase, cystatins, peroxidase, and 
defensins necessary to protect themselves against patho-
gens or to mediate recognition of pathogen virulence fac-
tors, which leads to the induction of defense responses 
[22, 60, 72]. For instance, tomato can secrete protease 
Rcr3 in its apoplast, which is recognized by the Cf-2 
receptors to mediate the induction of defense responses 
for resistance against Cladosporium fulvum [73, 74]. 
The plant defensins can block the function of the fungal 
H + -ATPase, leading to cell death, or induce the produc-
tion of reactive oxygen species (ROS) and nitric oxide 
[75]. In our study, we confirmed that several selected 
members can induce immune responses as determined 
by the activation of defense response marker genes 
(Fig.  5B). A clear example of a plant-secreted protein 
involved in host immunity was identified in T. interme-
dium [29]. The secreted aspartic protease TiAP can inter-
act with the pathogen chitin deacetylase which promotes 
the liberation of chitin fragments and further activates 
the host immune system [29]. Based on our results, the 

secretome encoded by cotton similarly acts as a front line 
of defense and plays a pivotal role in disease resistance.

The plant cell wall, a dynamic and complex structure 
surrounding every plant cell, has been demonstrated to 
have a significant impact on disease resistance and/or 
on abiotic stresses, and has also emerged as an essential 
component of plant monitoring systems, thus expand-
ing its function as a passive defensive barrier [76, 77]. 
For instance, remodeling of primary and secondary cell 
walls by impairing the function of cellulose synthase 
(CESA) genes has a specific impact on pathogen resist-
ance and tolerance to abiotic stresses, as shown in the 
Arabidopsis irregular xylem cell wall mutants defective in 
(CESA) subunits required for secondary cell wall forma-
tion. These show enhanced resistance to different patho-
gens, including the necrotrophic fungi Plectosphaerella 
cucumerina and Botrytis cinerea, the vascular bacterium 
Ralstonia solanacearum, and the vascular fungus Fusar-
ium oxysporum [78, 79]. Lignin is one of the main compo-
nents of plant cell wall, and lignin biosynthesis represents 
a response to a variety of biotic and abiotic stresses [80]. 
Increased accumulation of lignin can provide a basic bar-
rier against pathogen spread and reduces the infiltration 
of fungal enzymes and toxins into plant cell walls [81]. In 
Arabidopsis, the cinnamyl alcohol dehydrogenases were 
highly expressed in roots with strong lignification and 
induced by pathogens invading A. thaliana [82], indica-
tive of lignin as a barrier against pathogens to increase 
disease resistance. In our study, bioinformatics analyses 
revealed that the cotton secretome functions in cell wall 
strengthening, including the polysaccharide metabo-
lism and cell wall biosynthesis (Fig. 3A, C). In particular, 
the functional annotation of cotton secretome revealed 
enrichment of the pathway of phenylpropanoid metabo-
lism that is important in lignin biosynthesis (Fig.  3C). 
Transcriptome analysis further supported a function 
of cell wall biosynthesis, and those genes identified as 
involved in lignin biosynthesis were strongly activated in 
the resistant cultivar ZZM2 compared to the susceptible 
cultivar Junmian No.1 when challenged with V. dahliae 
(Fig. 4C, D). Previous studies have suggested that lignin 
biosynthesis plays a critical role in the cotton and tomato 
Verticillium wilt resistance [83–88], a trend that was 
also apparent in the analysis of the cotton secretome in 
this study (Figs. 3 and 4). The cotton lignin biosynthetic 
gene Gh4CL30 regulates lignification and contributes to  
Verticillium wilt resistance [88], and the cotton lac-
case gene GhLAC15 enhances Verticillium wilt resist-
ance via an increase in defense-induced lignification 
and lignin components in the cell walls of plants [86]. 
Together, these results strongly suggested that the cotton 
secretome plays a critical role in cell wall biosynthesis, 
especially in lignin biosynthesis.
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Conclusions
In conclusion, we employed bioinformatics-driven 
approaches for secretome prediction using the genome 
of Verticillium wilt resistance cotton cultivar ZZM2. 
The predicted secretome contained functions con-
sistent with its role in response to biological stress 
and within the extracellular space, involving immune 
responses and the creation of a defensive barrier by cell 
wall strengthening. Transcriptome analysis and gene 
function validation further revealed that the secretome 
plays a critical role in the resistant cultivar ZZM2 
against the infection of V. dahliae through the activa-
tion of immune responses and plant cell wall lignifica-
tion. These findings will help understand the role of the 
cotton secretome in the Verticillium wilt resistance and 
identify the Verticillium wilt resistance genes in follow-
up studies.

Methods
Plant and microbe materials
The V. dahliae wild-type strain Vd991 (highly virulent 
isolate from Gossypium hirsutum from Jiangsu Prov-
ince in China) [89] was cultured on potato dextrose 
agar (PDA, 200 g potato, 20 g glucose, and 15 g agar per 
liter) for 5  days at 25  °C. The resistant cotton cultivar 
(Gossypium hirsutum cv. Zhongzhimian No.2, ZZM2) 
and susceptible cultivar (Gossypium hirsutum cv. Jun-
mian No.1) seedlings were grown at 25  °C for 3 weeks 
for virulence assays. Tobacco (Nicotiana benthami-
ana LAB) seedlings were grown at 25  °C for 4  weeks 
for transient expression experiments. Both cotton 
and tobacco plants were grown in a greenhouse with 
a 14-h light/10-h dark photoperiod. Agrobacterium 
tumefaciens GV3101 was cultured in Luria–Bertani 
(LB) medium (10 g Tryptone, 10 g NaCl, and 5 g yeast 
extract in 1000 mL total volume of deionized water) at 
28 °C for transient expression experiments in plants.

Bioinformatics for secretome prediction
The putative secreted proteins encoded in the resistant 
cotton cultivar ZZM2 genome were identified using the 
combination of four programs, as described previously 
[8]. The WoLF PSORT software (plant model) was used 
for the subcellular localization of all predicted pro-
teins [54]; signal peptides and signal peptide cleavage 
sites of putative extracellular proteins were predicted 
using the SignalP software (version 5.0; d-Score cutoff 
set to 0.500) [53]; the TMHMM 2.0 [90] and Phobius 
[56] software were employed to identify the transmem-
brane domain. The protein sequences containing a sig-
nal peptide but lacking transmembrane domains were 
identified as secreted proteins. The gene density was 

calculated in 100-kb windows along the length of the 
chromosomes in the cotton genome.

Ortholog clustering
The ortholog groups among the encoded proteins of 
the ZZM genome were clustered using two strategies in 
OrthoMCL [91]. Pairwise sequence similarities between 
all input protein sequences were calculated using all-by-
all BLASTP (parameters: E-values < 1e − 25; match length 
and identities were both 30%, 50%, and 70%); subse-
quently, a Markov clustering algorithm was applied with 
an inflation value (2I) of 1.5 (default value in OrthoMCL) 
for defining ortholog cluster structure. The pairwise 
matches from the BLAST results were clustered using the 
clustering application Hcluster_sg [92] for the orthologs 
among the encoded proteins from the ZZM2 sequenced 
genomes. The synteny of orthologs among chromosomes 
were drawn by the Circos program using their physical 
position on chromosomes [93].

Transcriptome analysis
Three-week-old seedlings of the resistance cotton culti-
var Zhongzhimian No.2 and susceptible cultivar Junmian 
No.1 were gently uprooted, washed, and dipped into 
1 ×  107 conidia/mL suspension (5 mL per seedling) of V. 
dahliae for 10  min. Three independent replicates each 
consisting of 12 plants were inoculated for each treat-
ment, and the samples were collected at 6, 12, 24, 48, and 
72  h after inoculation; the seedlings treated with sterile 
distilled water were controls. Total RNA was extracted 
using an RNA Purification Kit (Tiangen, Beijing, China) 
and prepared for sequencing with three biological rep-
licates for each sample. Genomic DNA was removed by 
DNase treatment, and rRNA was removed by Ribo-zero™ 
rRNA Removal Kit (Epicenter, USA). Strand-specific 
sequencing was performed on an Illumina HiSeq 2000 
platform, which generated 150  bp paired-end reads. 
Raw data were processed through in-house perl scripts 
to obtain clean reads. The clean reads were obtained 
by removing the adapter and low-quality reads (qual-
ity score > Q20). The clean reads were mapped onto the 
reference genome of G. hirsutum cv. Zhongzhimian No.2 
(GenBank: JAMQUR010000000) by Tophat2 (v2.0.9) [94] 
and Bowtie 2 (v2.2.9) [95]. A total of 12 samples were 
selected for sequencing, including Vd991 inoculated on 
cv. Zhongzhimian No.2 and cv. Junmian No.1 at 6 h, 12 h, 
24  h, 48  h, and 72  h as the treatment group and non-
inoculated as the control. Fragments per kilobase of the 
transcript, per million mapped reads (FPKM) was used to 
determine expression values. Cuffdiff (v2.1.1) was used to 
calculate the FPKM of genes in each sample [96]. The fold 
change in gene expression value was calculated by FPKM 
treatment/FPKM control. Transcripts were identified as 
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differentially expressed between treatments and controls 
with the parameters of greater than a twofold change and 
an adjusted P-value < 0.05.

Functional annotation
Annotations of the total predicted proteins and the 
secretome were performed with the following programs. 
Putative functional annotations were assigned using 
BLASTP to identify the best homologs in the databases 
of nr, eggnog [97], and InterProScan (incorporated Inter-
Pro, GO, and KEGG pathway annotation) [98]. The DEGs 
were analyzed using Gene Ontology (GO) analysis in the 
GO-seq package and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis [99] and the KEGG Orthol-
ogous (KO)-Based Annotation System (KOBAS) was 
employed to explore their biological roles. Significant GO 
catalogs of the differentially expressed orthologs were 
selected by the Pearson chi-square test (P < 0.05) using 
the WEGO tool [100].

Transient expression
The selected genes for transient expression analysis were 
amplified from the cDNA of ZZM2 plant seedlings or 
synthesized (Generalbiol, Anhui, China) in the cases 
where they could not be obtained from the cDNA sam-
ples and cloned separately into the PVX vector pGR107 
with the ClonExpress II one-step cloning kit (Vazyme, 
Nanjing, China) according to the manufacturer’s instruc-
tions. The recombinant plasmid was transformed into 
A. tumefaciens strain GV3101. A. tumefaciens carrying 
the selected genes were grown in LB medium at 28  °C 
overnight. The bacteria were harvested and washed in a 
salt solution containing 10 mM  MgCl2, 10 mM morpho-
lineethanesulfonic acid (MES), and 200 mM acetosyrin-
gone, pH 5.6, and resuspended to an optical density at 
600 nm (OD600) of 0.8 for the assays of cell death induc-
tion. The transient expression assays were performed 
using 4-week-old N. benthamiana plant leaves injected 
with the coding sequences of the Bcl-2-associated X pro-
tein (BAX) and VdEG1 as-positive controls and the cod-
ing sequence of green fluorescent protein as a negative 
control. Induction of cell death was monitored at 4 days 
after agro-infiltration on the leaves.

Gene expression analysis
The transient expression samples were collected at 2 days 
after agro-infiltration for the analyses of the expression of 
resistance-related genes in N. benthamiana leaves. Total 
RNA was extracted from the collected samples using a 
Plant RNA Purification Kit (Tiangen, Beijing, China). 
cDNA was prepared using M-MLV Reverse Tran-
scriptase and RT-qPCR analyses were conducted using 
the SYBR Premix Ex Taq kit (Takara) on a QuantStudio 

6 Flex Real-Time PCR System (Applied Biosystems, Fos-
ter City, CA). The N. benthamiana elongation factor 1-α 
(NbEF-1α) gene was used as an internal control to nor-
malize the variance among samples. PCR conditions con-
sisted of an initial denaturation step at 95 °C for 10 min, 
followed by 40 cycles of denaturation at 95  °C for 15  s, 
annealing at 60  °C for 30  s, and extension at 72  °C for 
20 s. Relative expression levels were evaluated using the 
 2−∆∆Ct method [101]. Primers are listed in Additional 
file 2: Table S13.

Virus‑induced gene silencing in cotton
For the virus-induced gene silencing (VIGS) assays, 
approximately 500-bp fragments from the 13 selected 
secretome members were amplified from G. hirsutum 
cv. Zhongzhimian No.2 genomic DNA with previously 
designed primers [102]. Fragments were separately inte-
grated into the pTRV2 vector and introduced into A. 
tumefaciens GV3101. Agrobacterium strains harboring 
the recombinant plasmid were combined with strains 
harboring the pTRV1 vector in a 1:1 ratio and co-infil-
trated into cotyledons of 2-week-old G. hirsutum cv. 
Zhongzhimian No.2 seedling. The efficiency of the VIGS 
assay was evaluated using the essential for chloroplast 
development gene cloroplastos alterados 1 (CLA1) as 
a control. The silencing efficiency of selected genes was 
determined by RT-qPCR, which compared gene expres-
sion in treated plants with gene expression in untreated 
plants collected at the same time, and with primers spe-
cific to the cotton GhUbiquitin gene as controls. Primers 
are listed in Additional file 2: Table S13.

Approximately 14 days following co-infiltration, white 
leaves were observed in plants in which the CLA1 gene 
had been silenced by VIGS, at which point all plants 
were inoculated with 5.0 mL of V. dahliae Vd991 conid-
ial suspension (5 ×  106 conidia/mL) using the root-dip 
method as described above. For each gene, 12 plants 
were used in three replicates. Verticillium wilt symp-
toms were evaluated using an established disease index 
[103] at 3 weeks after inoculation. In detail, the disease 
severity scores from cotton seedlings were divided into 
five grades: 0 = healthy, 1 = one true leaf showing yellow-
ing, 2 = two true leaves showing wilt symptoms, 3 = two 
true leaves fallen off, and 4 = whole plant dead [103]. 
Differences between the inoculated and non-inoculated 
treatment groups were considered significant in paired 
Student’s t-tests with P ≤ 0.05. The vascular discolora-
tion in shoots was assessed visually at four weeks after 
inoculation.

Histochemical test for lignin
Freehand cross-sections from the base of the stem 
of both inoculated and mock-treated cotton plants 
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(ZZM2 and cv. Junmian No.1) were obtained at 14 days 
after treatment, and lignin histochemistry was exam-
ined using the Wiesner reagent [104]. The cross-sec-
tions of stem tissue were incubated in a phloroglucinol 
solution (2% in 95% ethanol) for 10  min, and treated 
with 18% HCl for 5  min. Lignin accumulation levels 
were observed under a Leica fluorescence microscope 
(DM2500, Leica, Wetzlar, Germany).
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